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ABSTRACT 

 

The fluidization characteristics or hydrodynamic behaviours of coarse (regular / 

irregular), fine and nano particles have been studied in a fluidized and/or spouted bed for gas-

solid system. A stirrer and external force (equivalent centrifugal force) have been used with fine 

and nano particles respectively for smooth fluidization. The speed of rotation of stirrer with fine 

particles and frequency of application of external force (magnitude of force) with nano particles 

were also varied for analyzing the fluidization characteristics. Experiments were carried out in a 

cylindrical column by varying different system parameters (viz. static bed height, particle size, 

particle density and superficial velocity of the medium, speed of rotation of stirrer and spout 

diameter). Fluidization characteristics, such as bed expansion ratio, bed fluctuation ratio, bed 

pressure drop, minimum fluidizing/spouting velocity and fluidization index of coarse (regular / 

irregular), fine and nano particleshave been tried to be analyzed by developing correlations on 

the basis of dimensional less analysis. Finally calculated values of different fluidization 

characteristics have been compared against the experimentally observed values. The comparison 

results show a good agreement among the experimental and calculated values thereby indicating 

the application of these developed correlations over a wide range of parameters. 

 

 



v 
 
 

CFD simulation has also been carried out for the hydrodynamic behaviours. Finally 

calculated values of these fluidization characteristics obtained through CFD simulation have 

been compared against the experimentally observed values. The results show a good agreement 

thereby implying the design of fluidizer for gas-solid systems can be optimum design for many 

chemical industries. The technique of external force application can also be suitably used in 

industries for handling nano particles with increased efficiencies. 

 

Key words: - Fluidized bed, Spouted bed, Coarse / Fine / Nano particles, hydrodynamic studies, 

Dimensionless analysis and CFD simulation 
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INTRODUCTION 

1.1 Fluidization  

Fluidization is one of the best ways of interacting solid particles with fluid when drag 

force is acting on the solid particles is equal to gravity force / weight of the particles. The 

variables affecting the quality of fluidization i.e. Fluid flow rate, Fluid inlet, Particle size, Fluid 

densities, Static bed height. That is why the present work aims to study the effect of different 

parameters on hydrodynamic behaviors of fluidized / spouted bed. 

1.2 Need for CFD 

Computational Fluid Dynamics (CFD) is a whole new field which needs to be explored 

well. Over the recent years there have been various computational works but in comparison to 

the huge experimental data available, more works in the field of CFD is required. CFD 

predictions can be verified with the experimental data and results and can be checked if they hold 

good or not. With the experimental work being tedious, CFD helps in predicting the fluid flow, 

behavior of the fluidized bed and various hydrodynamic characteristics. CFD actually helps in 

modeling the prototype of a process and through CFD predictions one can apply those 

parameters to achieve the desired results. Thus the complex hydrodynamics of fluidization could 

be understood using CFD. 

1.3 Advantages of Fluidization 

There are several advantages of fluidized bed relative to fixed bed processes such as; 

ability to maintain uniform temperature gradients, significantly lower pressure drops which 

reduces low pumping costs, catalysts can be continuously added / withdrawn / reactivated due to 
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low inter particle diffusion resistance and low gas - solid and liquid – solid mass transfer 

resistance . Bed channeling / plugging minimized due to vigorous movement of solid particles in 

fluidized bed. High reactant conversion i.e. completely mixed flow pattern in reaction kinetics 

achieved in fluidized bed by low investment for specification of feed and product and ability to 

operate reactor in a continuous state by uniform solid particle mixing in fluidized bed. 

1.4 Application of Fluidization 

It has extensive industrial applications due to above mentioned advantages of the 

fluidized bed, in nuclear power plants, chemical, biochemical and metallurgy industry. It is 

extensively used in Petroleum industry for fluid bed catalytic cracking. In chemical operation i.e. 

gasification and carbonization of coal, roasting of sulphur ores, reduction of iron oxides, 

blending of granular materials, granulation of fertilizer,  combustion, incineration, and pyrolysis 

of shale and in physical operation i.e. drying of solids such as crushed minerals, sand, polymers, 

pharmaceuticals, fertilizers and crystalline products, coating of metals with plastic and particles 

in pharmaceutical and agricultural industries, transportation, granulation of solids,  heating, 

cooling and water and waste treatment etc. it is used. The commercial applications of fluidization 

are fluid catalytic cracking, reforming, Fischer- Tropsch synthesis, catalyst regeneration, 

granulation (growing particles), oxidation reactions involving solid catalyzed gas phase 

reactions, fluid coking, bio-oxidation process for waste water treatment, transportation of solids 

like slurry pipeline for coal. 
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1.5 Objective of the work 

The aim of the present work could be summarized as follows 

 To study the fluidization characteristics of different sized solid particles (5mm to 70nm) 

in both fluidized bed as well as spouted bed. 

 Effect of different system parameters on hydrodynamic behaviors of the bed in a 

cylindrical fluidized bed. 

 Correlate the different bed dynamics of coarse regular/ irregular and fine particles by 

varying system parameters in both fluidized bed and spouted bed.  

 CFD Simulation for the bed expansion of fine Particles for prediction of its 

characteristics. 

 Validation of bed characteristics of fine alumina powder with experimental and CFD 

simulation. 

1.6 Thesis Layout 

The second chapter gives a comprehensive review of literature related to the 

hydrodynamic characteristics in a fluidized bed as well as spouted bed. It includes the 

computational aspect as well as the hydrodynamics behaviors of gas-solid fluidization by CFD 

methodologies. The third chapter deals with the experimentation of different size materials. The 

fourth chapter deals with comparison of hydrodynamics behaviors of different particle sizes in a 

gas – solid bed. Chapter five deals with the result part obtained from simulations which have 

been discussed thoroughly. The correlations for bed dynamics of different particle sizes in gas – 

solid bed have been discussed by varying system parameters in chapter six as results and 

discussion. In chapter seven conclusions have been drawn on present work and scope of the 

future work has also been discussed. 
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LITERATURE SURVEY 

The fluidized bed is one of the best known contacting methods used in processing 

industries. The solid particles are transformed to fluid – like state through the contact with fluid 

i.e. gas or liquid or both which is allowed to pass through a distributor plate. Under the fluidized 

state, the gravitational force pull on solid particles is offset by the fluid drag force on them, thus 

the particles remain in a semi – suspended condition. At the critical value of fluid velocity, the 

upward drag force exerted by solid particles become exactly equal to the downward gravitational 

force, causing the solid particles to be suspended within the fluid. At this critical value, the bed is 

said to be fluidized and exhibits behaviors of fluid.  

2.1 Types of Fluidized Bed 

According to flow regime the fluidized bed is divided into following types (Fig. – 2.1) 

 Fixed bed                   Incipiently fluidized bed 

 Smooth fluidized bed  Bubbling  fluidized bed 

 Turbulent fluidized bed  Channeling fluidized bed 

 Slugging fluidized bed  Spouted bed 

2.2 Fluidized Bed versus Spouted Bed 

The difference between fluidized bed and spouted bed lies in the dynamic behaviors of the solid 

particles. Such as - 

 In a fluidized bed, air is passed through a uniform distributor / multi orifice plate to float 

the particles which move up and down. Spouted beds are gas – particle contactor in 
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which the gas is introduced through a single orifice at the center of a conical or flat base, 

instead of a multi orifice, resulting in a systematic cyclic pattern of solid movement 

inside the bed. 

 The fluidized bed is used to describe the condition of fully suspended particles in a fluid 

stream whereas spout bed apparatus used in those areas where intense contact of fluid –

solid systems is required and to determine the effectiveness of fluid – solid contact. 

 A fluidized bed consists of two phases: the bubble phase and the emulsion phase (Kunii 

and Levenspiel, 1991). In bubble phase, the bubbles are present in the core region of the 

bed and the emulsion phase is only occupied near wall region of the bed. The bubble 

phase slowly increases linearly and the emulsion phase decreases with increasing the 

fluidizing velocity and reaches a constant minimum value of fluidization velocity     

(Fig.- 2.2).                                                                              

A spouted bed has three different regions each with its own specific flow behaviors: the 

annulus, the spout and the fountain (Mathur and Epstein, 1974). At stable spouting 

process, a spout appears in the center, a fountain above the bed surface and an annulus 

between the spout and the wall. 

 The spout and the fountain are similar to fluidized beds with particles dynamically 

suspended, while the annulus region is more like a packed bed or moving bed. At partial 

spouting, there are only two distinct regions, an internal spout that is similar to a fluidized 

bed and the surrounding packed particle region which is similar to a packed bed. 
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 The advantages of spouted beds over the conventional fluidized bed are its ability to 

process coarse, sticky and heat sensitive materials. 

 The spouting and its stability, operating condition, spouting bed height along with the 

changing phenomenon from spouting to bubbling, slugging etc. depends on many factors 

like particle size, orifice size of spouting, flow rate of fluidizing fluid, bed height and the 

density of particles used. For a given solid material contacted by a specific fluid in a 

vessel of fixed geometry, there exists a maximum spoutable bed depth, beyond which the 

spouting action does not exists but it is replaced by a poor quality fluidization. The 

minimum spouting velocity at this bed depth can be 1.25 to 1.5 times the corresponding 

minimum fluidization velocity, Umf.  

2.3 Geldart’s Classification of Particles 

The Geldart’s classification system is used to identify and distinguish between the 

fluidization properties of particulate materials in a vertical gas-solid fluidized bed at given 

conditions (Kunii and Levenspiel, 1991). In this system, gas flows upward through a distributor 

with a velocity which is enough to fluidize the particle but this velocity is not so much that 

particle can go out of the column. According to this system, particles which show similar kind of 

fluidization behavior are classified into the same group which is based on particle diameter and 

density difference of two phases. 

In 1973, Professor D. Geldart proposed the grouping of powders in to four so-called "Geldart 

Groups" as follows.  
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Group A Particles: Such particles are having size between 20 and 100 μm, and the particle 

density less than 1.4 g/cm
3
.  

Group B Particles: These particles lie between 40 and 500 μm size and the particle density 

between 1.4 to 4 g/cm
3 
and exhibit incipient fluidization. 

Group C Particles: This group contains extremely fine and consequently the most cohesive 

particles. With a size of 20 to 30 μm, these particles fluidize under very difficult to achieve 

conditions, and may require the application of an external force, such as mechanical agitation, 

magnetic field, electric field, and centrifugal field etc. 

Group D Particles: The particles in this region are above 600 μm and typically have high particle 

densities. Fluidization of this group requires very high fluid energies and is typically associated 

with high levels of abrasion. Drying grains and peas, roasting coffee beans, gasifying coals, and 

some roasting metal ores are such solids, and they are usually processed in shallow beds or in the 

spouting mode. 

Fluidization quality is closely related to particle intrinsic properties such as particle size, 

particle density, size distribution of particle and its surface characteristics. As the particle size 

decreases the cohesive force (i.e. Vander Wall Force) for the particle increases. As a result  of 

this the fluidization of cohesive materials for fine particle becomes much more difficult in 

comparison to the larger size particle. The fine particle in Group C (small particle size and low 

particle density) fluidize poorly in Geldart’s classification chart due to their strong inter-particle 

cohesive forces, exhibiting problems like channeling, resulting in no fluidization of particles 

and also tend to rise as a slug of solids. Group C particles are cohesive in nature (Geldart1973), 
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are unsuitable for fluidization because they tend to form agglomerates since they are having 

strong inter particle forces between them. Nano sized powders, fall under the Geldart group C 

(< 30 microns) classification, which means that fluidization is expected to be difficult due to 

cohesive forces i.e. strong inter particle forces. Nano size particles differ from conventional 

Geldart C particles not only in being much smaller size but also in having a very low bulk 

density which has also been pointed out by Geldart in his classification map. Therefore, 

development of the reliable technique to improve the fluidization quality of cohesive fine 

powders is essential.   

2.4 Improvement of Fluidization Quality 

The fluidization quality of fine / nano particles has been tried to be improved by following two 

techniques:- 

(I) By external force        (II)        By altering the intrinsic properties of particles 

The external force means using vibration, sound amplifier, magnetic field, electric field, 

centrifugal field and mechanical agitation for improving the bed fluidity or flow ability of fine 

cohesive powders.  

The other one done by modifying surface characteristics by mixing with other particles having 

different size or shape because of higher gravity force. 
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2.5 Parameters Studied  

    The parameters studied during a fluidization/spouting process are 

 Minimum Fluidization(Umf) / Spouting Velocity (Ums) 

 Bed Pressure Drop (∆p)  Bed Expansion Ratio (R) 

 Bed Fluctuation Ratio (r)  Fluidization Index (FI) 

 

2.5.1 Minimum Fluidization Velocity: 

When a fluid passes upwards through the interstices of a bed of solids without the 

slightest disturbance of the solids, the bed is called a fixed bed. With further increase in the 

velocity of fluid, the entire bed of solids is suspended and its weight is counterbalanced by the 

buoyancy force. At this point, the bed of solids starts behaving like a fluid. This is called onset 

of fluidization and the velocity of fluid at which it happens is known as the minimum 

fluidization / spouting velocity, which is one of the most important parameter for the design of 

fluidizers. 

Cardoso et al. (2008) calculated minimum fluidization velocity of fine particle and Padhi et al. 

(2009) presented hydrodynamic properties i.e. minimum fluidization velocity, bed pressure drop, 

minimum bubbling  velocity, minimum slugging velocity, bubbling velocity, expansion ratio, 

fluctuation ratio of gas solid fluidization in a hexagonal bed. 

2.5.2 Pressure drop:  

The pressure drop through the bed is another important parameter which controls the 

channel and slug formation and thereby mixing of the bed material with the fluidizing fluid. 
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In fluidization process (Kunii and Levenspiel, 1991), at low flow rates of fluid the bed behaves 

like a packed bed, where the pressure drop is approximately proportional to gas velocity without 

any change in the bed height. With further increase in velocity, the bed materials start moving 

and the fluidization begins. Once the bed is fluidized, the pressure drop across the bed remains 

constant, but bed height continues to increase with increasing flow of fluid. 

In spouting process (Mathur and Epstein, 1974), the bed pressure drop gradually increases with 

increase in velocity up to certain limit and then decreases up to certain point after which it 

remains constant. 

Zhiping et al. (2007) investigated the minimum fluidization velocities of quartz, sand and glass 

beads under different pressures of 0.5, 1.0, 1.5 and 2.0 MPa. They concluded that the minimum 

fluidization velocity decreases with the increasing of pressure and the minimum fluidization 

velocities is stronger for larger particles than for smaller ones by the influence of pressure. 

2.5.3 Bed Expansion Ratio: 

Bed Expansion Ratio is used to describe the characteristics of bed height during 

fluidization condition. This is quantitatively defined as the ratio of average expanded bed height 

of a fluidized/spouted bed to the initial static bed height at a particular flow rate of the fluidizing 

medium (above the minimum fluidizing velocity). Average expanded bed height is the arithmetic 

mean of highest and lowest level occupied by top of the fluidized bed. It is denoted by “R”.  

                              
    

       
   

         

    
                                           (2.1) 
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This term used in the spouted bed is also having the same meaning at fluidization condition. It is 

an important parameter for fixing the height of fluidized bed required for a particular service. 

The expansion ratio of a fluidized bed depends on excess gas velocity above the minimum 

fluidization, particle size (dp), and initial bed height (Hs). 

Sau et al. (2010) studied the expansion behaviors of tapered fluidized bed systems by specifying 

the height of the bed. The expanded heights of tapered fluidized beds and bed expansion ratio for 

spherical and non-spherical particles have been calculated by them. Based on dimensional 

analysis, models have been developed as a function of geometry of tapered bed, static bed height, 

particle size, density of solid and gas and superficial velocity of the fluidizing medium.  

2.5.4 Bed Fluctuation Ratio: 

The term bed fluctuation ratio is used to describe the characteristics of the bed during 

fluidization/spouting process. This is quantitatively defined as the ratio of the highest and lowest 

levels which the top of the bed occupies at any particular fluid flow rate. It is denoted by “r”. 

   
    

    
                                                                                (2.2) 

Bed fluctuation ratio has widely been used of quantify fluidization quality. A lower value of 

fluctuation ratio is indicative of improved fluidization quality with less fluctuation of the top 

surface of the bed in fluidized condition. [Singh et al. (2006), Sahoo, A. (2010) and Kumar et 

al. (2007)] explained bed expansion and fluctuation in cylindrical fluidized beds for irregular 

particles of binary mixtures in a gas-solid system using stirred promoters where effects of 

different system parameters have been analyzed. 
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2.5.5 Fluidization Index: 

Fluidization index is the ratio of pressure drop across the bed to the weight force exerted 

by the bed material per unit area of cross-section of the column. For ideal fluidization, 

fluidization index is 1. 

        
  

     
                                                                                                  (2.3) 

Fluidization index (Singh et.al 2005) which gives a measure of the degree of uniform expanded 

bed during fluidization condition. The higher the ratio, the bed can hold more gas between the 

minimum fluidization and bubbling point.  

2.6 Previous Works 

2.6.1 Spouting Process: 

Olazar et al. (1993) studied binary mixtures of glass spheres of particle size between 1 and 8 

mm, in stable regime and without segregation, in a conical spouted bed. The effects of the 

stagnant bed height, the mixture composition and the gas velocity on bed stability and bed 

segregation have been analyzed. Rooney et al. (1974) studied hydrodynamic behaviors of 

spouted beds of sand particles and found the range of particle sizes that can be spouted extends 

downwards to atleast 90 - 150 µm. They also investigated further whether a bed of particles of 

given size can be maintained in the spouting condition or, not. It was concluded that particle size 

strongly dependent on the diameter of the inlet orifice. 

Shan et al. (2001) explained fixed bed regime and spouting bed regime by carried out 

experiments successively with the increase in superficial gas velocity for Geldart - A and D 
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particles in a conical bed using three cone angles. The characteristics of the regime for Geldart-A 

powder differs from that for the Geldart-D particles due to the disappearance of partially 

fluidized bed regime.  

Olazar et al. (1994) studied the hydrodynamic behavior of a nearly flat base spouted bed (angle 

150
0
) in a pilot plant unit, using solids of different densities and particle sizes and with different 

values of the contactor inlet diameters. It was observed that the equation of Mathur and Gishler 

with an exponent of 0.10 for the (Do/Dc) modulus is suitable for calculation of the minimum 

spouting velocity. Original correlations for prediction of the maximum pressure drop for stable 

operation and bed voidage in the bed expansion are also proposed. 

Zhong et al. (2006) experimentally studied the maximum spoutable bed height for a spout-fluid 

bed (cross-section of 0.3 m × 0.03 m and height of 2 m) packed with Geldart group D particles. 

The effects of particle size, spout nozzle size and fluidizing gas flow rate on the maximum 

spoutable bed height has been studied. It was observed that the maximum spoutable bed height 

of spout-fluid bed decreases with increasing particle size and spout nozzle size. The increase in 

fluidizing gas flow rate leads to a sharp decrease in the maximum spoutable bed height.  

Bacelos et al. (2008) carried out experimental investigation to evaluate the stable spouting 

regime in conical spouted beds using four particle mixtures: a reference (mono particles), a 

binary mixture, and two ternary mixtures with flat and Gaussian distributions respectively using 

a high-viscosity Newtonian fluid, glycerol. The mixtures were selected for particle sizes (dp) 

ranging from 1.09 to 4.98 mm and particle size ratios ranging from 1.98 to 4.0. Experimental 

data show the pressure fluctuation signals of the bed for stable spouting. However, the analysis 

of skewness of curves of pressure fluctuation as a function of air velocity appears not sufficient 
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to identify a particular flow regime. For glycerol in the spouting regime, the standard deviation 

was noted to increase with increasing glycerol concentration due to the growth of inter particle 

forces. They have also discussed the implications of these research findings on the drying of 

suspensions in conical spouted beds using glass bead mixtures. 

Olazar et al. (1994) have proved that conical spouted beds allow for stable operation with 

sawdust and with wood residues, even with mixtures of these materials of wide particle size 

range and without being diluted with an inert solid. Peculiar hydrodynamic characteristics have 

been observed with sawdust. From the hydrodynamic study of sawdust, the ranges of the 

contactor geometric factors (cone angle, inlet diameter/base diameter ratio, inlet 

diameter/particle diameter ratio) for which operation is stable have been determined.  

2.6.2 Fine Particle Fluidization: 

Wang et al. (1997) carried out experiments on the fluidization using fine particles (Geldart 

group C) with mean sizes 0.01-18.1 µm and densities 101~8600 kg/m
3
. Experimental results 

show that the fine particles fluidization process usually involves plugging, channeling, 

disrupting, and agglomerating. When fluidized, the entities fluidized generally consist of particle 

agglomerates varying in size from the largest at the bottom of the bed (some even defluidized) to 

the smallest at the top (some even unassociated to discrete particles). Best to fluidize are the 

agglomerates which have reached a uniform equilibrium size after repeated solids circulation. 

Lowering agglomerate density proves to be an effective measure for improving the fluidization 

quality of fine particles.  
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Laszuk et al. (2008) explained uniform fluidization of a group-C material (particle size ≤ 50 

μm). An experimental plant in which the hydraulic resistance of the bed was measured as a 

function of its height and the rotational speed of the mixer during the fluidization is described. It 

is established that an increase in the height of the stationary bed above 0.01m leads to an increase 

in hydraulic resistance on transition to the fluidized state, especially at low rotational speeds of 

the mixer. 

Kusakabe et al. (1989) fluidized fine particles including some submicron powders are fluidized 

under reduced pressures and the minimum fluidization velocity was determined in a shallow bed. 

When the gas throughput is not enough in a deep bed, only an upper part of the bed is fluidized 

and the rest is quiescent. 

Avidan et al. (1982) investigated bed expansion of fine powders with two high aspect ratio fluid 

beds i.e. expanded top bed and a circulating system. Xu et al (2006) investigated the effects of 

vibration on fluidization of fine particles (4.8 – 216 µm size in average) and concluded that the 

fluidization quality is enhanced under mechanical vibration leading to larger bed pressure drops 

at low superficial gas velocities Umf. The effectiveness of vibration on improving fluidization is 

strongly dependent on the properties (Geldart particle type, size-distribution and shape) of the 

primary particles used and the vibration parameters (frequency, amplitude and angle) applied. 

The possible roles of mechanical vibration in fine particle fluidization have been studied with 

respect to bed voidage, pressure drop, agglomeration, and tensile strength of bed particle. 

Vibration is found to significantly reduce both the average size and the segregation of 

agglomerates in the bed thus improving the fluidization quality of cohesive particles. Also, 

vibration can dramatically reduce the tensile strength of the bed particle. Obviously, vibration is 
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an effective means to overcome the inter particle forces of fine powders in fluidization and 

enhance their fluidization quality. 

Mawatari et al. (2005) studied to clarify the operational ranges for vibro-fluidization of fine 

cohesive particles (glass beads, dp = 6 micron) by decreasing and increasing gas velocity. In the 

increasing gas velocity method, a cross-point was obtained from the relationship between the gas 

velocity and the bed pressure drop. At one of the gas velocities at these cross-points, the bed void 

fraction reached its maximum. Jaraiz et al. (1992) estimated the inter particle cohesive forces 

from pressure drop versus bed expansion data for packed vibrated beds of very fine particles 

subjected to a gentle up flow of gas. A consequence of this analysis is a prediction of the Geldart 

C/A transition. 

Russo et al. (1995) studied non fluent catalyst particles of 0.5 - 45 µm by carried out sound 

assisted fluidization in a 145 mm i.d. column. Different amounts of solids were fluidized in the 

column with a loudspeaker generated an acoustic field, above the bed, with a sound pressure 

level (referred to 20 µPa) varying from 110-140 dB and a frequency varying from 30 to 1000 Hz.  

Valverde et al. (2009) investigated the behavior of a fluidized bed of fine magnetite particles, a 

naturally cohesive powder which is affected by a cross flow magnetic field. It was observed that 

the fluidized bed displays a range of stable fluidization even in the absence of an external 

magnetic field. Upon application of the magnetic field, the interval of stable fluidization is 

extended to higher gas velocities and bed expansion is enhanced.  

 

 



Hydrodynamics studies of Coarse, Fine and Nano Particles in a cylindrical Fluidized/ Spouted Bed : 

CFD Simulation 
2012 

 

19 National Institute of Technology, Rourkela 

 

2.6.3 Nano Particle Fluidization: 

Jung et al. (2002) carried out experiments on fluidization and collapsing bed with ‘Tullanox’, 10 

nm dia. fumed silica. The minimum fluidization velocity was determined to be 0.0115 m/s at the 

unusually low volume fraction of solids of 0.0077. The solids volume fraction was measured 

using a γ -ray densitometer. Fluidization was without large bubbles, with a high bed expansion 

ratio. The highest granular temperature was of the order of that of Geldart B particles, as 

measured by Cody et al. (1996). 

Zhu et al. (2005) experimentally studied the effect of different parameters on the fluidization 

characteristics of nano particle agglomerates. Taking advantage of the extremely high porosity of 

the bed, optical techniques were used to visualize the flow behavior, as well as to measure the 

sizes of the fluidized nano particle agglomerates at the bed surface. Upon fluidizing 11 different 

nano particle materials, two types of fluidization behavior systematically were investigated for 

nano particle, agglomerate particulate fluidization (APF) and agglomerate bubbling fluidization 

(ABF). Using the Ergun equation, the pressure drop was measured and bed height, average 

agglomerate size and voidage at minimum fluidization were predicted by the model. The 

minimum fluidization velocities for APF nano particles were calculated. 

Huang et al. (2008) investigated the nano-particles mixing behavior in a nano-agglomerate 

fluidized bed (NAFB) using R972, a kind of nano-SiO2 powder, by the nano particle coated 

phosphors tracer method. The axial and radial dispersion coefficients were calculated and 

observed that the axial solids dispersion coefficient increased with increasing superficial gas 

velocities, and ranged between 9.1×10
−4

 and 2.6×10
−3

 m
2
/s. There was a step increase in the 

axial solids dispersion coefficient between the particulate, bubbling and turbulent fluidization 
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regimes. As the superficial gas velocity increased, the radial solids dispersion coefficient 

increased gradually, from 1.2×10
−4

 to 4.5×10
−4

 m
2
/s. Authors have concluded that the density 

difference between the fluidized particles and fluidizing medium, kinetic viscosity of the 

fluidizing medium, and other hydrodynamic factors like superficial velocity of the fluidizing 

medium and average diameters of the fluidized particles, were the key factors in the solids 

mixing in the fluidized beds.  

Hakim et al. (2005) studied the fluidization behavior of fumed silica, zirconia, and iron oxide 

nano powders at atmospheric and reduced pressures. The characteristics of fluidized aggregates 

of nano particles were studied by using a high speed laser imaging system and the effect of 

different particle interactions (London vander Waals, liquid bridging and electrostatic) at 

atmospheric pressure. The reduction of inter particle forces resulted in a reduced aggregate size 

and minimum fluidization velocity (Umf) and an increased bed expansion. Nano particles were 

also fluidized at reduced pressure (16 Pa) with vibration to study the effect of low pressure on 

the minimum fluidization velocity.  

Nam et al. (2004) fluidized 12-nm silica particles by coupling aeration with vibration with 

frequency in the range of 30 to 200 Hz, and vibrational acceleration in the range of 0 to 5 m/s
2
. 

The minimum fluidization velocity was approximately 0.3 – 0.4 cm/s, and essentially 

independent of the vibrational acceleration. However, the bed expanded almost immediately 

after the air was turned on, reaching bed expansion of three times the initial bed height or higher. 

Thus the bed appeared to exhibit a fluid like behavior at velocities much lower than the 

minimum fluidization velocity. Fluidization of nano particles was achieved as a result of the 

formation of stable, relatively large, and very porous agglomerates. Practically no bubbles or 
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elutriation of particles was observed. Wang et al. (2007) explained the behavior of gas-particle 

interaction in a fluidized bed which depends strongly on the size of the particles being fluidized. 

Fluidization characteristics of macro-sized particles, from several tens of microns to several 

millimeters, are well described by the Geldart [1973] classification. Degussa Aerosil R974 

powder, with a primary particle size of 12 nm, was fluidized using nitrogen in a cylindrical 

vessel of 50 mm i.d. and 900 mm height. Characteristics of incipient fluidization are analyzed in 

relation to variations in the initial packed bed conditions. Bed collapse experiments were 

performed and the results are used for assessing fluidization characteristics of the particles. It 

was found that nano sized particles possess characteristics of both Group A and Group C of 

Geldart classification.  

2.6.4 CFD Simulation: 

Computational Fluid dynamics (CFD) is a powerful tool to predict the fluid mechanics 

that uses numerical methods and algorithms to solve and analyze problems that involve fluid 

flows and also describing the proper design of such system. CFD simulation method widely used 

to analyze the fluid flow behaviors as well as heat and mass transfer process and chemical 

reaction.  

It has been widely used in an attempt to model gas- solid fluidized beds using two 

different approaches / methods: a discrete method (Lagrangian model) and a continuous method 

(multi fluid or Eulerian – Eulerian model). In discrete method, the fluid phase is described by 

Navier- stoke equation with the use of inter phase forces of two phases, in this case, the gas is 

treated as the continuous phase and the solid as the discrete phase. In Eulerian model, the 

different phases are treated as interpenetrating continua by incorporating the concept of phase 
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volume fraction and to solve the conservation equation for each phase. That is why in case of 

fluidization, the two phases are treated as interpenetrating continua where the solids are treated 

as discrete, and the particle trajectory is obtained by solving the Newton’s equation of motion. 

The finite volume method is used for solving or discretized the governing equations i.e. 

conservation of mass, momentum, energy. 

2.6.4.1 Advantages of CFD: 

Major advancements in the area of gas-solid multiphase flow modeling offer substantial 

process improvements that have the potential to significantly improve process plant operations. 

Prediction of gas solid flow fields, in processes such as pneumatic transport lines, risers, 

fluidized bed reactors, hoppers and precipitators are crucial to the operation of most process 

plants. In recent years, computational fluid dynamics (CFD) software developers have focused 

on this area to develop new modeling methods that can simulate gas-solid flows to a much higher 

level of reliability. As a result, process industry engineers are beginning to utilize these methods 

to make major improvements by evaluating alternatives. 

The key advantages of CFD are: 

1. It provides the flexibility to change design parameters without the expense of hardware 

changes. Hence it costs less than laboratory or field experiments, allowing engineers to try more 

alternative designs than would be feasible otherwise. 

2. It has a faster turnaround time than experiments.  

3. It guides the engineer to the root of problems, and is therefore well suited for trouble-shooting. 
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4. It provides comprehensive information about a flow field, especially in regions where 

measurements are either difficult or impossible to obtain. 

2.6.4.2 Computational Model 

In the present work, an Eulerian granular multiphase model is adopted where gas and solid 

phases are all treated as continua interpenetrating and interacting with each other everywhere in 

the computational domain. The pressure field is assumed to be shared by all the two phases, in 

proportion to their volume fraction. The motion of each phase is governed by respective mass 

and momentum conservation equations.  

Continuity equation: 

 

  
                                                                                                 (2.4) 

The volume fraction of the two phases satisfies;                                                           (2.5)  

Momentum equations:  

For gas phases  

 

  
                                                                                         (2.6) 

For solid phase 

 

  
                                                                                        (2.7) 
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              Where L.H.S. represents the temporal and spatial transport term and R.H.S. represents 

various interacting forces. The first term in R.H.S. of eq
n
 (2.6) and (2.7) is represents the 

hydrodynamic pressure of solid and gas phases. The second term i.e. gτ and sτ in the R.H.S of 

eq
n
 (2.6) and third term of eq

n
 (2.7) represents stress-strain tensors of gas and solid phase 

respectively. The second term in the R.H.S of eq
n
 (2.7) represents additional solid pressure due 

to solid collisions. The terms gi,F  and si,F  of the above momentum equations represent the 

inter-phase momentum exchange respectively.  

Inter-Phase Momentum Exchange: 

Inter - phase momentum exchange Fi is the combination of different interaction forces i.e. lift 

force, drag force and added mass force between two phases i. e solid phase and liquid phase. It is 

represented as 

   Fi = FL + FD + F VM                                                                                                                      (2.8) 

The lift force (FL) does not used in 2D simulation because difficult to understand the complex 

mechanism of lift force in gas phase. The added mass force (FVM) is not used in 2D simulation 

because added mass force is used when high frequency fluctuations of the slip velocity used. 

This force is much smaller than drag force when bubble fluidization or bubbly flow used. Thus 

only drag force (FD) is used as inter – phase momentum exchange in 2D CFD simulation. 

Gas – solid inter phase drag force: 

The momentum exchange between two dispersed phases i.e. gas phase and solid phase has been 

considered for CFD simulation. The drag force is acting on a particles in gas – solid phase, is 
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represented by the product of momentum exchange coefficient and slip velocity between two 

phases. Gas – solid inter phase drag force is represented as 

                                                                                               (2.9) 

Where Kgs is the inter phase exchange coefficient of gas – solid phase. It is calculated from 

Gidaspow drag model i.e. it is the combination of Ergun equation and Wen and Yu model. 

When       

        
          

    
       

            

  
                                                                     (2.10) 

When        

      
 

 
  

             

  
  

                                                                                         (2.11) 

 Where CD is the drag coefficient proposed by Wen and Yu and is given as 

    
  

     
              

     
        When Rep 1000                                            (2.12) 

 CD = 0.44      when Rep    1000                                                                                   (2.13) 

The particle Reynolds number is defined as follows 

       
           

  
                                                                                            (2.14) 
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Stress-Strain Tensors: 

The term         in eq
n
 (2.6) & (2.7) are the stress-strain tensors of gas and solid respectively 

and are given as:-  

                 
          

 

 
                                                               (2.15)                                         

                
          

 

 
                                                                  (2.16) 

Solid Pressure: 

The pressure gradient produced in solid phase, resulting from normal stresses due to 

particle – particle interaction. This is very important when solid fraction reaches to a maximum 

packing. To calculate solid phase pressure gradient, two methods is used i.e. constant viscosity 

model (CVM) and kinetic theory granular flow (KTGF). In constant viscosity model, the solid 

phase pressure is only function of local solid porosity using empirical correlations and dynamic 

shear viscosity of the solid phase is assumed to be constant. And the second model i.e. kinetic 

theory granular flow (KTGF) is based on the application of the kinetic theory of dense gases. 

This model gives more idea about particle – particle interaction. In the present work kinetic 

theory granular flow model has been used. 

Closure laws of turbulence: 

The effect of turbulent fluctuations of velocity is described by standard k - є model equation. 

There are three methods used for modeling the turbulence in multi-phase. Those are (i) mixture 
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turbulence model (ii) dispersed turbulence model (iii) turbulence model for each phase. In the 

present work, k - є dispersed turbulent model has been used for modeling of turbulence. 

The value k and є in gas phase i.e.in continuous phase is directly calculated from differential 

transport equation. The turbulence kinetic energy in gas phase is representing as follows: 

 

  
                       

     

  
                                                        (2.17) 

Where σ k = turbulent kinetic energy 

           Gk = generation of turbulence kinetic energy due to mean velocity gradients 

          S k = User- defined source term          

The      represent the influence of dispersed phase in continuous gas phase.  This can be 

derived from instantaneous equation of continuous phase and      is calculated as below 

     
   

    

 
                                                                                                  (2.18) 

 Where    = covariance velocity of continuous gas phase and j represent no of secondary phases. 

    = relative velocity 

    = drift velocity 

The turbulence dissipation rate in gas phase is representing as follows: 

 

  
                       

     

  
      

  

  
                

  
 

  
                       (2.19) 

Then σ ɛ= turbulent dissipation energy 

S k= User- defined source term  

         and     can be calculated as follows 

         
  

  
                                                                                                                       (2.20) 
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Bahramian et al. (2010) explained the Computational Fluid Dynamics (CFD) modeling of gas-

solid, two phase flow and the effect of boundary conditions for predicting the hydrodynamic 

characteristics of fluidized beds. The hydrodynamics of conical fluidized bed containing dried 

TiO2 nano-agglomerates were studied by them both experimentally and computationally. The 

Eulerian-Eulerian multiphase model and granular kinetic theory using Gidaspow drag function 

were applied in simulations. The effect of three different types of boundary conditions (BC) 

including no-slip/friction, free-slip/no-friction and high-slip/small-friction were developed in 

Schaeffer and Johnson and Jackson were investigated. 

Hamzehei et al. (2010) investigated hydrodynamics of a 2D non-reactive gas–solid fluidized 

bed reactor applying CFD techniques. A multi fluid Eulerian model incorporating the kinetic 

theory for solid particles was applied to simulate the unsteady state behavior of this reactor and 

momentum exchange coefficients were calculated by using the Syamlal-O’Brien drag functions 

and finite volume method was applied to discretize the equations. Simulation results also 

indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with 

each other as they moved upwards forming larger bubbles. The effects of particle size and 

superficial gas velocity on hydrodynamics were also studied.  

Sau et al. (2011) carried out experimental and numerical studies for the hydrodynamics in a gas– 

solid tapered fluidized bed. The experimental results were compared with CFD simulation 

results. The gas–solid flow was simulated using the Eulerian – Eulerian model and applying the 

kinetic theory of granular flow for solid particles. The Gidaspow drag model was used to 

calculate the gas–solid momentum exchange coefficients.  
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Taghipour et al. (2005) studied experimentally and computationally hydrodynamics of a two-

dimensional gas–solid fluidized bed reactor. A multi fluid Eulerian model incorporating the 

kinetic theory for solid particles was applied to simulate the gas–solid flow. Momentum 

exchange coefficients were calculated using the Syamlal–O’Brien, Gidaspow and Wen–Yu drag 

functions. The solid-phase kinetic energy fluctuation was characterized by varying the restitution 

coefficient values from 0.9 to 0.99.  

Goldschmidt et al. (2001) applied two-dimensional multi fluid Eulerian CFD model with 

closure laws according to the kinetic theory of granular flow to study the influence of the 

coefficient of restitution on the hydrodynamics of dense gas-fluidized beds. It is observed that 

hydrodynamics of dense gas- fluidized beds (i.e. gas bubbles behaviors) strongly depend on the 

amount of energy dissipated in particle-particle encounters.  
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Figure 2.1: Phase Transition with Increasing Gas Flow 
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Figure – 2.2: Different Regions of Fluidized / Spouted Bed 
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EXPERIMENTATION 

Different sized solid particles (i.e. 5 mm to 70 nm) been analyzed in fluidized / spouted 

bed. Hydrodynamic studies of these particles have been studied by varying different system 

parameters. Schematic diagram of experimental set up for spouting process is shown in           

Fig. – 3.1, which consists of number of components. 

3.1 Components of Experimental Set-Up 

Different components of the experimental set-up are as follows: 

1. Air Compressor: 

It is a multistage air compressor of sufficient capacity 25 kgf/cm
2
. 

2. Air Accumulator / Receiver: 

It is a horizontal cylinder used for storing the compressed air from compressor. There is 

one G.I. pipe inlet to the accumulator and one by-pass line from one end of the cylinder. The exit 

line is also a G.I. pipe taken from the central part of the cylinder. The purpose of using the air 

accumulator in the line is to dampen the pressure fluctuations. The operating pressure in the 

cylinder is kept at 20 psig. 

3. Pressure Gauge: 

A pressure gauge in the required range (1-50 psig) is fitted in the line for measuring the 

working pressure. The pressure gauge is fitted with an air accumulator / receiver. 
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4. Silica Gel Tower: 

A silica gel tower is used for absorbing the moisture content of the air supply. A silica gel 

column is provided in the line immediately after the air receiver to arrest the moisture carried by 

air from the receiver / air accumulator. 

5. Valves: 

A globe valve of ½ inch ID is provided in the by-pass line for sudden release of the line 

pressure. A gate valve of 1/2 inch ID is provided in the line just before rotameter to control the 

flow rate of air to the fluidizing bed. 

6. Rotameter: 

A Rotameter is used in the line for measuring the flow rate of the air i.e. used as 

fluidizing medium. The Rotameter used in the range of 0-50 m
3
/ hr for spouting purpose and      

0 -10 lpm for fluidizing purpose. 

7. Air Calming Section: 

This is an important component of the experimental set-up. It consists of a cylindrical 

portion (4.5 cm id. and 7.5 cm length) followed by a conical bottom. The cone angle is about 

35
0
- 40

o
. The larger side is of 45 mm id. and the smaller of 12 mm id., the height of the cone 

being 6.5 cm. The cone is brazed with G.I. flange of 11.4 cm O.D. The central bore of the flange 

is also of 45 mm dia. The cone is made of ordinary G.I. sheet. The inside hollow space of the 

distributor is filled with spherical glass beads of size 5 mm for uniform distribution of fluid for 
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fluidizing purpose and without packing of spherical glass beads used for spouting purpose for 

uniform distribution of fluid to avoid channeling. 

8. Air Distributor: 

For spouting process, a card board of circular size was used as the distributor, made up of 

4mm thick card board which was strong enough to withstand the air pressure. It was easy to 

make hole in this distributor by simply cutting at the centre. For fluidization process a filter cloth 

placed on a perforated plate made up of G.I sheet is used as the air distributor. Orifices on this 

plate are of 5 mm openings and randomly placed. 

9. Fluidizer: 

The fluidizers are cylindrical columns made up of transparent Perspex sheets column 

with one end fixed to a Perspex flange. The flange of 5/16” thickness has 4 bolt holes of ¼” dia. 

Two pressure tapings are provided for noting the bed pressure drop. A screen is provided at the 

bottom of the flange and the conical claiming section is also attached with the flange of the 

fluidizer. 

10. Manometer Panel Board: 

A U tube manometer is used to measure the bed pressure drop. Mercury used as the 

manometric liquid for spouting whereas carbon tetra chloride for fluidization purpose. 
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3.2 Procedure for Coarse (Irregular / Regular) Particles 

Initially, the material is taken in the fluidizer, the bed height is noted. Air is passed 

through the bed; the expanded bed height is noted with the increased flow rate of air. Bed 

expansion / fluctuation, pressure drop was measured at each velocity. The fluidizer is a 

cylindrical column of diameter, 10 cm and length 100 cm. An 80 mesh screen is placed just 

above the distributor plate between the lower flange of the fluidizer and the conical air 

distributor to prevent the backflow of bed materials. This is tightly attached to the column with 

the help of a gasket, so that there is no leakage of air.  

The calming section was without any packing material for spouted bed for allowing a jet of fluid 

to pass through the central hole of the distributor. The spout diameter was varied as 2.5 cm, 3 

cm, 3.5 cm and 4 cm for coarse regular/ irregular particles. Air flow rate was measured with 

Rotameter and U-tube manometer was used for measuring the pressure drop across the bed with 

the mercury (Hg) as the manometric fluid. 

The same procedure was repeated for different spout diameter for different static bed heights and 

different particle sizes/ densities of bed materials. Thus the variations of different system 

parameters are discussed as scope of the experiment in Table – 3.1 (A) and (B). The bed 

dynamics (i.e. bed expansion / fluctuation ratio, fluidization index) can be calculated by using 

eq
n
 2.1, 2.2 and 2.3 for developing correlations. 
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3.3 Procedure for Fine Particles in spouted bed 

Different fine particles were used to study the bed dynamics in same experimentation unit 

(Fig. -3.1) was used but only the fluidizer was changed. The fluidizer was a cylindrical column 

(made up of Perspex material) of diameter, 5 cm and length 100 cm. A filter cloth is between the 

lower flange of the fluidizer and the calming section to prevent the backflow of bed materials. 

Air distributer is used above the filter cloth. This is tightly attached to the column with the help 

of a gasket, so that there is no leakage of air. No packing material was used in the calming 

section. Air distributor was prepared from card boards by making a hole at the centre which is 

known as the spout and the dia. of spout was also varied i.e. 1 mm, 2mm, 3 mm, and 4mm. 

The experiments were carried out by allowing air to flow through the distributor by 

varying the different system parameter and are discussed as scope of the experiment in         

Table – 3.2. The expanded bed heights and manometer readings were noted down at different 

flow rates of the supplied air under different operating conditions.  

For Fluidization Process:- 

Hydrodynamics studies of different sized solid particles in fluidized bed were also carried 

out in the same experimental set up (Fig.- 3.1), only distributor and fluidizer was changed and a 

rod promoter used. 

3.4 Procedure for Fine Particles 

The fluidizer is a cylindrical column (made up of Perspex material) of diameter 5 cm and 

length 100 cm. A filter cloth (orifice ≈ 40 microns) is placed between the lower flange of the 

fluidizer and the calming section to prevent the backflow of bed materials. This is tightly 
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attached to the column with the help of a gasket, so that there is no leakage of air. The calming 

section was packed with glass beads for allowing the fluid to pass through filter cloth of the 

distributor and carbon tetra chloride (CCl4) as the manometric fluid.  

During fluidization process a stirrer (a rod promoter) was hanged from the top of the fluidized 

column to vibrate the bed as shown in Fig. - 3.2. The stirrer was connected to a motor and speed 

of rotation was varied by a Varriac. Six numbers of rods each of 6 mm diameter were used. Five 

numbers of rods were placed laterally having 75 mm length and spacing of 60 mm between two 

successive rods & length of central rod is 350 mm. Fluidizer with the stirrer is shown in       

Fig.–3.3. 

The experiments were carried out by passing air through the distributor by varying the different 

system parameter and are discussed as scope of the experiment in Table -3.3. The expanded bed 

heights and manometer readings were observed at different flow rates of the supplied air. 

3.5 Procedure for Nano Materials 

Hydrodynamic studies of nano particles were also carried out in the same experimental 

set up as Fig. -3.1, only fluidizer was changed. An arrangement was made for applying external 

force on the outer surface of the column. One, central rod of 6 mm diameter and 350 mm long 

was used for the stirrer. Five numbers of rubber tubes, each of 75 mm length and spaced at a 

distance of 60 mm from the other were placed laterally (Fig.–3.2). The Stirrer is placed just 

outside the column to exert external radial force on the column. Fluidizer with the stirrer is 

shown in Fig. – 3.3. 
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The experiments were carried out by varying the different system parameter and are discussed as 

scope of the experiment in Table – 3.4. The expanded bed heights and manometer readings were 

noted down at different flow rates of the supplied air under different operating conditions. 

Table – 3.1 (A):  Scope of Experiment for Coarse Irregular Particles in Spouting Process  

SL.NO. MATERIALS HS, cm dp, mm Di, cm s, g/cc U0/Umf 

1 Dolomite 8 3.325 2.5 2.89 1 

2 Dolomite 12 3.325 2.5 2.89 1 

3 Dolomite 16 3.325 2.5 2.89 1 

4 Dolomite 20 3.325 2.5 2.89 1 

5 Dolomite 8 2.58 2.5 2.89 1 

6 Dolomite 8 2.18 2.5 2.89 1 

7 Dolomite 8 1.7 2.5 2.89 1 

8 Dolomite 8 3.325 3 2.89 1 

9 Dolomite 8 3.325 3.5 2.89 1 

10 Dolomite 8 3.325 4 2.89 1 

11 Brick 8 3.325 2.5 1.92 1 

12 Marble 8 3.325 2.5 1.39 1 

13 Coal 8 3.325 2.5 1.57 1 

14 Dolomite 8 3.325 2.5 2.89 1.1 

15 Dolomite 8 3.325 2.5 2.89 1.2 

16 Dolomite 8 3.325 2.5 2.89 1.3 
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Table – 3.1 (B):  Scope of Experiment for Coarse Regular Particles inSpouting Process  

SL.NO MATERIALS HS, cm dp, mm Di, cm s, g/cc U0/Umf 

1 Glass Beads 8 3.325 2.5 2.8 1 

2 Glass Beads 12 3.325 2.5 2.8 1 

3 Glass Beads 16 3.325 2.5 2.8 1 

4 Glass Beads 20 3.325 2.5 2.8 1 

5 Glass Beads 8 2.58 2.5 2.8 1 

6 Glass Beads 8 2.18 2.5 2.8 1 

7 Glass Beads 8 1.7 2.5 2.8 1 

8 Glass Beads 8 3.325 3 2.8 1 

9 Glass Beads 8 3.325 3.5 2.8 1 

10 Glass Beads 8 3.325 4 2.8 1 

11 Aluminum Balls 8 3.325 2.5 3.21 1 

12 Mustard Seeds 8 3.325 2.5 1.3 1 

13 Sago 8 3.325 2.5 1.59 1 

14 Glass Beads 8 3.325 2.5 2.8 1.1 

15 Glass Beads 8 3.325 2.5 2.8 1.2 

16 Glass Beads 8 3.325 2.5 2.8 1.3 

Table – 3.2:  Scope of Experiment for Fine Particles in Spouting Process 

SL.NO. MATERIALS HS, cm dp, microns Di, mm s, g/cc U0/Umf 

1 Dolomite 8 63 3 1.15 1 

2 Dolomite 12 63 3 1.15 1 

3 Dolomite 16 63 3 1.15 1 

4 Dolomite 20 63 3 1.15 1 

5 Dolomite 8 125 3 1.15 1 

6 Dolomite 8 90 3 1.15 1 

7 Dolomite 8 45 3 1.15 1 

8 Dolomite 8 63 1 1.15 1 

9 Dolomite 8 63 2 1.15 1 

10 Dolomite 8 63 4 1.15 1 

11 Alumina 8 63 3 0.64 1 

12 Marble 8 63 3 1.39 1 

13 Sand 8 63 3 1.14 1 

14 Dolomite 8 63 3 1.15 1.25 

15 Dolomite 8 63 3 1.15 1.5 

16 Dolomite 8 63 3 1.15 1.75 
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Table – 3.3: Scope of the Experiment for Fine Particles in Fluidization Process 

S.L. No MATERIALS Uo/Umf Hs, cm N, rpm ρs, g/cc dp, µm 

1 Talcum Powder 1.25 16 121.2 0.88 80 

2 Talcum Powder 1.5 16 121.2 0.88 80 

3 Talcum Powder 1.75 16 121.2 0.88 80 

4 Talcum Powder 2.0 16 121.2 0.88 80 

5 Talcum Powder 1.25 20 121.2 0.88 80 

6 Talcum Powder 1.25 24 121.2 0.88 80 

7 Talcum Powder 1.25 28 121.2 0.88 80 

8 Talcum Powder 1.25 16 73.9 0.88 80 

9 Talcum Powder 1.25 16 101.6 0.88 80 

10 Talcum Powder 1.25 16 137.4 0.88 80 

11 Alumina Powder 1.25 16 121.2 0.64 63 

12 Silicon Carbide 1.25 16 121.2 0.72 70 

13 Magnetite 1.25 16 121.2 2.4 75 

14 Talcum Powder 1.25 16 121.2 0.88 80 

15 Talcum Powder 1.25 16 121.2 0.88 80 

16 Talcum Powder 1.25 16 121.2 0.88 80 

 

Table – 3.4: Scope of the Experiment for Nano Particles in Fluidization Process 

SL. No. Static bed 

height (Hs),cm 

Superficial air 

velocity (U0), m/s 

Angular velocity         

(ω), rpm 

External force (F), N 

1 8 0.084 277 2.83 

2 12 0.093 335 3.43 

3 16 0.101 411 4.2 

4 20 0.11 575 5.88 
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1. Compressor; 2. Receiver; 3.Constant pressure tank; 4. Pressure gage; 5. 

Silica gel tower; 6. By pass valve; 7. Line valve;  8.Rotameter;   9.Calming 

section without  glass bead packing;    10.Fluidizer; 11.Distributer; 

12.Pressure tapping 13.U tube manometer (Hg columns) 

Figure – 3.1: Schematic View of the Experimental Set-up 

 

 

Figure – 3.2: Schematic Diagram Distributor and Stirrer 
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Spouted  Bed Fine Fluidization Nano Fluidization 

Figure – 3.3: Schematic Diagram and Picture of the Fluidizers 
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HYDRODYNAMIC STUDIES 

The hydrodynamic study of the fluidized / spouted bed has been carried out by analyzing 

the bed dynamics for coarse (regular/ irregular), fine and nano particles. 

The following bed dynamics were analyzed in a spouting / fluidization processes are 

 Minimum Fluidization(Umf) / Spouting Velocity (Ums) 

 Pressure Drop (∆p)  Bed Expansion Ratio (R) 

 Bed Fluctuation Ratio (r)  Fluidization Index (FI) 

4.1: Coarse (Regular / Irregular) Particles in Spouted bed:- 

4.1.1 Pressure drop and minimum spouting velocity 

 The overall changes in values of bed pressure drops of coarse (regular / irregular) 

particles were observed to increase with the increase in superficial spout velocity (Uo) for the 

spouted bed (Fig.- 4.1). 

In spouting process, the bed pressure drop gradually increases with increase in spouting velocity 

up to certain limit and then decreases up to certain point after which it remains constant. The 

reasons behind this may be due to the following facts: 

i. Initially at low air flow rates, the air simply passes up without disturbing the solid 

particles. The pressure drop is observed to be a linear function of the air flow rate 

showing packed bed behavior. 

ii. Again with the increase in air flow rate to a certain value, an empty cavity is formed 

just above the inlet at the base of the bed. The particles surrounding the cavity are 
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compressed and form a compacted arch which offers a greater resistance to flow. As a 

result the total pressure drop across the bed continues to rise. 

iii. With further increase in air flow, the cavity elongates to form an internal spout and 

the arch of compacted solids still exists above the internal spout so that the pressure 

drop across the bed rises further until it reaches a maximum value. 

iv. As the air flow rate is increased further, the height of the hollow internal spout 

becomes large in comparison with the packed solids i.e. the resistance offered by the 

arched solids is exceeded by air velocity and fountain forms then the pressure drop 

decreases to a certain point. Further increase in air flow rate, breaks the spout causing 

the fluidization of solids for which the pressure drop remains constant, the 

corresponding velocity at which the pressure drop is constant is called as the 

minimum spout velocity. 

In case of coarse irregular, the bed pressure drop increases sharply with increase in spouting 

velocity as compared to coarse regular particles. This is due to the presence of more number of 

air bubbles in coarse irregular particles. Thus the bed pressure drop increases with increase in 

superficial velocity of air as size of air bubble also increases.  

4.1.2 Bed Expansion Ratio 

The values of bed expansion ratio of coarse (regular/ irregular) particles are also observed to 

increase with the increase in superficial velocity (Uo) for spouted bed (Fig. – 4. 2).     

This may be due to the fact that when superficial velocity exceeds minimum spout 

velocity. As a result more number of air bubbles forms thereby causing bed expansion. As air 
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bubble size increases with increase in spouting velocity, the bed expansion ratio increases. Again 

with increase in initial static bed height (Hs) and spout diameter (Di) the bed expansion ratio are 

observed to decrease. This may be due to the breaking up of air bubbles with increase in initial 

static bed height. The bed expansion ratio is also observed to increase with the increased density 

of the particles (ρs), and the increased particle sizes (dp). 

In case of irregular coarse particles, bed expansion ratio is observed to be more in 

comparison with coarse regular particles. This may be due to the presence of more number of air 

bubbles with irregular particles. Thus the initial height for irregular particles expands more as 

compared to regular coarse particles. 

4.1.3 Bed Fluctuation Ratio 

The values of bed fluctuation ratio for coarse (regular/ irregular) particles are observed to 

increase with the increase in superficial velocity (Uo) for spouted bed (Fig. – 4. 3). 

It is observed that with the increase in superficial air velocity (Uo) bed fluctuation ratio 

increase. Again with an increase in initial static bed height (Hs) and spout diameter (Di), the bed 

fluctuation ratios decrease. This may be due to the more weight of bed materials and breaking up 

of air bubbles with increased initial static bed height which restrict the movement of materials at 

a constant velocity. The bed fluctuation ratio is also observed to increase with the increased 

density of the particles (ρs). This may be due to the fact that minimum expanded height of bed 

(Hmin) reduces to minimum due to heaviness of the particles with increase in density. The bed 

fluctuation ratio also increase with increased particle size (dp) decrease in excess gas velocity 
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because less number of air bubbles present and also minimum expanded height of bed (Hmin) 

reduces due to breakage of air bubbles. 

In case of irregular coarse particles, bed fluctuation ratio is more as compared to regular 

particles. This may be due to the breakage of more number of bubbles with irregular particles as 

a result the minimum expanded height of bed (Hmin) reduces thereby increasing the bed 

fluctuation ratio. 

4.1.4 Fluidization Index 

The fluidization index of coarse (regular/ irregular) particles is observed to increase initially with 

the increase in superficial velocity (Uo) for spouted bed (Fig. - 4.4) upto certain point then 

decreases suddenly and after that it remains constant. 

A high value of fluidization index is observed for glass beads, marble and bricks 

implying that the bed can hold more gas between the minimum fluidization and bubbling point. 

A low value of fluidization index is observed for the mustard seeds, sago and coal implying that 

less gas is held between the minimum fluidization and bubbling point, because of less bubble 

formation among particles. The fluidization index of aluminium balls and dolomite is 

approximately one indicating the case of ideal fluidization. 

In case of irregular coarse particles, fluidization index is more as compared to coarse 

regular particles. Profile of fluidization index is similar to that of bed pressure drop for spouted 

bed (Fig. – 4.4). The bed pressure drop is more in irregular particles than the coarse regular 

particles because of the surface irregularities. 
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4.2: For Fine Fluidization / Spouting Process:- 

The hydrodynamic study of the fluidized or spouted bed using fine particles has been 

carried out thereby analysing the bed pressure drop, bed expansion and / or fluctuation ratio and 

fluidization index. 

4.2.1 Pressure drop and Minimum Spouting/ Fluidization Velocity 

The bed pressure drop of fine particles is observed to increase with the increase in superficial 

velocity (Uo) for both, the fluidized bed and spouted bed (Fig. - 4. 5). 

 It is observed that the bed pressure drop gradually increases with increase in superficial 

gas velocity up to certain limit after which it remains constant when all the bed materials are 

fluidized. In the case spouting process, it is observed that with the increase in gas flow, the bed 

pressure drop gradually increases up to certain limit because air simply passes up and an empty 

cavity/ spout formed at the inlet of the bed.  Again increasing air flow rate, the bed pressure drop 

decreases up to certain point after which it remains constant. In this case, spout breaks and all the 

bed materials are in fluidization condition. 

4.2.2 Bed Expansion Ratio 

The bed expansion ratio of fine particles is observed to increase with the increase in superficial 

gas velocity (Uo) for both, the fluidized bed and spouted bed (Fig. – 4. 6). 

This may be due to the fact that when superficial gas velocity exceeds minimum 

fluidisation / spouting velocity. As a result more number of gas bubbles forms thereby causing 

bed expansion and the gas bubble size increases with excess superficial gas velocity. Again with 
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increase in initial static bed height (Hs) the bed expansion ratio is observed to increase and 

decrease for fluidized bed and spouted bed respectively. The reason may be frequent breakage of 

more number of air bubbles in the spouted bed whereas in fluidized bed bubble size increases. 

For fluidized bed, the bubbles grow in sizes with the increased superficial velocity of fluid 

causing higher bed expansion. But for the spouted bed, the bubbles breaks easily by the spout of 

fluid with increased superficial velocity thereby decreasing the bed expansion. 

 The bed expansion ratio is observed to be decreases with the increased speed of the 

stirrer (N) and increased spout diameter (Di).  This may be due to the bed materials of column 

moves vigorously and the air bubbles are break due to collision among particles. As a result the 

bed expansion decreases with in cease of speed of stirrer and dia. of spout. The bed expansion 

ratio is also observed to increase in both cases with the increased density of the particles (ρs) as 

when density increases minimum fluidization / spout velocity increases and the bed expansion 

ratio increases accordingly. Similarly increased particle size (dp) increases the bed expansion for 

both the cases. 

4.2.3 Bed Fluctuation Ratio 

The bed fluctuation ratio of fine particles is observed to increase with the increase in superficial 

gas velocity (Uo) for both, the fluidized bed and spouted bed (Fig. – 4.7). 

This may be due more gas bubbles formed when superficial gas velocity exceeds 

minimum fluidisation / spouted velocity. Again with increase in initial static bed height (Hs), the 

bed fluctuation ratio increases for both cases. This may be due to the minimum expanded bed 

height (Hmin) reduces to minimum due to heaviness of the particles thereby increasing the bed 
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fluctuation ratio. The bed fluctuation ratio are observed to be decreased with the increased speed 

of the stirrer (N) and increased spout diameter (Di), due to breaking up of gas bubbles by 

collision among particles in the bed. Increase in spout diameter allows more air to flow thereby 

preventing bubble formation. The bed fluctuation ratio is also observed to increase and decrease 

with the increased density of the particles (ρs), for fluidized and spouted bed respectively. 

Similarly increased particle size (dp), increases bed fluctuation ratio in both cases due to frequent 

bubble formation and breakage of air bubbles. As a result minimum expanded bed height (Hmin) 

reduces thereby increasing the bed fluctuation ratio.  

4.2.4 Fluidisation Index 

The fluidization index of fine particles are observed to increase with the increase in superficial 

gas velocity (Uo) for both, the fluidized bed and spouted bed (Fig. – 4. 8). 

Fluidization index gives an idea of the degree of the uniformity in expansion of the bed. 

A high value of fluidization index was observed for sand and silicon carbide powders implying 

that the bed can hold more gas between the minimum fluidization and bubbling point. A low 

value of fluidization index is observed for the talcum powder, magnetite and dolomite powder 

because of more cohesive forces among particles thereby indicating a brittle fluidization state 

where a small change could cause a break from the uniformly fluidized state to a bubbling 

regime or a packed bed.  
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4.3: For Nano Fluidization Process:- 

The hydrodynamic behaviours of copper nano materials (i.e. dp = 70 nm and surface   

area = 5m
2
/gm) have been studied in fluidized bed. 

4.3.1 Pressure drop and Minimum Fluidization Velocity  

The bed pressure drop of copper nano particles are observed to increase with the superficial 

velocity (Uo) in the fluidized bed as shown in Fig. - 4.9 (a). 

It is observed that the bed pressure drop gradually increases with increase in superficial 

gas velocity. Once the bed is completely fluidized, the bed pressure drop across the bed remains 

constant, but bed height continues to increase with increasing superficial velocity for nano 

particles is shown in Fig. - 4.9(b). 

4.3.2 Bed Expansion Ratio 

The bed expansion ratio of copper nano particles are observed to increases with the increase in 

superficial gas velocity (Uo), (Fig. – 4. 10). 

This may be due to the fact that as superficial gas velocity exceeds minimum fluidization 

velocity, more number of gas bubbles forms thereby causing bed expansion. As bubble size 

increases further with increase in superficial velocity of fluid, bed expands further. The bed 

expansion ratio also increases with the increase in static bed height and decreases on the 

application of external force (i.e. equivalent centrifugal force). This may be due to breakage of 

gas bubbles in fluidized bed. 
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4.3.3 Bed Fluctuation Ratio 

The bed fluctuation ratio of copper nano particles are observed to increase with the increase in 

superficial gas velocity (Uo), (Fig. – 4. 11). 

This may be due to excess velocity above minimum fluidization velocity, as a result more 

number of bubbles forms and bubble size increases gradually. Application of external force 

decreases the bed fluctuation ratio due to frequent breaking of air bubbles. Increased external 

force prevents entrainment and elutriation of particles. 

4.3.4 Fluidization Index 

The fluidization index of copper nano particles are observed to increase with the increase in 

superficial gas velocity (Uo), (Fig. – 4. 12) upto certain point, then decreases suddenly and after 

that remains constant. 

At low gas velocity, nano particles exhibit only slugging and channeling in a fluidized 

bed column. With the application of external force, the bed of nano particles fluidized smoothly. 

It is observed experimentally that on application of external force the fluidization index value is 

close to one indicating almost ideal fluidization behaviors. 
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Regular Particles Irregular Particles 

Figure – 4.1: Comparison Plot of Bed Pressure drop Profile for Coarse Particles 

  

Regular Particles Irregular Particles 

Figure – 4.2: Comparison Plot Bed Expansion Ratio for Coarse Particles 
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Regular Particles Irregular Particles 

Figure – 4.3: Comparison Plot Bed Fluctuation Ratio for Coarse Particles 

 

  

Regular Particles Irregular Particles 

Figure – 4.4: Comparison Plot Fluidization Index for Coarse Particles 
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Fluidization Process Spouting Process 

Figure – 4.5: Comparison Plot of Bed Pressure Drop Profile for Fine Particles 

 

  

Fluidization Process Spouting Process 

Figure – 4.6: Comparison Plot of Bed Expansion Ratio for Fine Particles 
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Fluidization Process Spouting Process 

Figure – 4.7: Comparison of Bed Fluctuation Ratio for Fine Particles 

 

  

Fluidization Process Spouting Process 

Figure – 4.8: Comparison Plot of Fluidisation Index for Fine Particles 
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(a) Bed Pressure Drop (b) Maximum Bed Height 

Figure – 4.9: Variation of Pressure Drop/ bed height against Superficial Velocity for Nano 

Particles 

 

 

Figure – 4.10: Bed Expansion Ratio against Superficial Velocity for Nano Particles 
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Figure – 4.11: Bed Fluctuation Ratio against Superficial Velocity for Nano Particles 

 

 

Figure – 4.12: Fluidization Index against Superficial Velocity for Nano Particles 
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 CFD SIMULATION FOR HYDRODYNAMIC BEHAVIOUR 

5.1 Introduction 

Over the past few decades, Computational Fluid Dynamics (CFD) has been used to 

improve process design by allowing engineers to simulate the performance of alternative 

configurations, eliminating guesswork that would normally be used to establish equipment 

geometry and process conditions. The use of CFD enables engineers to obtain solutions for 

problems with complex geometry and boundary conditions. A CFD analysis yields values for 

pressure, fluid velocity, temperature, and species or phase concentration on a computational grid 

throughout the solution domain.  

Computational Fluid Dynamics (CFD) is an important tool for design and optimization of 

chemical processes. A fundamental problem encountered in modeling hydrodynamics of a fluid–

solid fluidized bed is the motion of two phases. For the fluidization operation minimum two 

phases are required; one is called primary phase and other one is secondary phase. Usually the 

fluid which passes through the inlet is considered as primary phase and particulate in the bed is 

the secondary phase. The operating conditions like superficial fluid velocity, temperature of the 

primary and secondary phase, and inlet and exit pressure of the bed affect the performance of the 

fluidized bed. The physical property of the phases, particle size and distribution controls the 

hydrodynamic behaviors of it. Hydrodynamic modeling has the remarkable ability to synthesize 

data from various, relatively simple experiments and, thereby, to describe the time-dependent 

distribution of fluid and solids volume fractions, velocities, pressure, temperature, and species 

mass fractions in industrial reactors, where measurement of such quantities might be all but 

impossible. Such calculations, therefore, allow the designer to visualize the conditions in the 
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reactor, to understand how performance values change as operating conditions are varied, to 

conduct what-if experiments, and, thereby, to assist in the design process. 

The objective of this project is to simulate bed dynamics of a gas-solid fluidized bed 

handling fine alumina powder by applying CFD techniques. CFD modeling of fluidized beds 

usually adopts the Eulerian model. The focus of this experiment is on understanding the complex 

hydrodynamics of two-phase fluidized beds containing fine particles of micron size. The CFD 

software package FLUENT 13 has been used to simulate a gas - solid fluidized bed .The 

fluidized bed to be simulated is of height 1 m and diameter 0.05 m. The gas (air) has been 

injected at the base with different velocities while taking fine alumina powder of diameter 63 

micron as solid bed. The static bed heights of the solid phase in the fluidized bed used for 

simulation are 16 cm. The 2D geometry is considered with quadrilateral meshing scheme.  

5.2 CFD modeling 

The model equations which are already described in literature (eq
n
 2. 4 – 2. 20) are used 

for simulation using commercial CFD software package, FLUENT 13. The present simulation is 

carried out in fluidized bed of height 1 m and diameter 0.05 m. The working fluid is air and 

working solid is fine alumina powder having size 63 microns. Eulerian multi phase model has 

been used to model the transition nature of bubbling fluidized bed. The assumptions taken for 

simulation are no lift force, no mass transfer between gas and solid phase, constant pressure 

gradient and constant density of each phase. Isothermal flow condition was assumed for which 

there is no energy equation. Turbulent fluidization is observed with fine particles in the present 

work where viscosity is considered to be negligible. Thus gas phase turbulence was modeled 

using the k- ε model. The dispersed phases were considered as laminar. The system of equations 
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was solved using a finite-volume scheme; Momentum transfer between the gas and the dispersed 

phases was modeled using Gidaspow drag laws for the respective flow regime. 

The simulation of two phase fluidized bed was performed by solving the governing 

equations of mass and momentum conservation using fluent software. Eulerian multi-fluid model 

is adopted in the present work where gas phase is treated as continuous, inter-penetrating and 

interacting everywhere within the computational domain. The pressure filed is assumed to be 

shared by all the two phases proportional to their volume fraction. The motion of each phase is 

governed by the respective mass and momentum equations. Two dimensional computational 

geometry has been generated for the fluidization column as shown in Fig.- 5.1. A uniform mesh 

i.e. Quadrilateral element structure (height to width ratio of 1) has been generated. In total, 

12500 cells with size of each cell as 0.002 m x 0.002 m have been used for computation. 

Initial and Boundary condition 

Table 5.1 shows the initial conditions. The inlet boundary condition is designated as 

“velocity inlet” where the direction of gas flow is normal to the surface and the flow rate of gas 

is measured by different superficial gas velocity in the range of 0 to 0.067 m/s and the outlet 

boundary condition is the pressure boundary condition, which is set as 1.013×10
5 

Pa. Wall 

boundary conditions are no-slip boundary conditions for the gas phase and free slip boundary 

conditions for the solid phase. The volume fraction of the solid is 0.9 in static bed height of the 

column at inlet condition.  

The phase coupled simple method has been chosen for pressure – velocity coupling and 

first order upwind scheme has been used for discretization of volume fraction equation 
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whereas second order upwind scheme has been used for discretization of momentum, turbulent 

kinetic energy and turbulent dissipation rate respectively. In the discretization process; the 

governing partial differential equations are converted to algebraic equation. First order upwind 

means the value of cell at the centre is assumed to average throughout the cell and Second order 

upwind means a gradient is used from face cell to center cell. The initial bed of solids is packed 

into the bottom of the bed. The time step has been chosen as 0.001 of 1000 steps. The 

convergence criteria for all the numerical simulations are based on monitoring of the mass flow 

residual. It was observed that the residual value is converging in the range of 1.0e
–03 

as shown in 

Fig.- 5.1. 

The relaxation factor has been used for stimulating of different flow quantities such as     

pressure = 0.2, density = 1, body force = 1, momentum = 0.2, volume fraction = 0.9, granular 

temperature = 0.2, turbulent kinetic energy = 0.5, turbulent dissipation rate = 0.5, turbulent 

viscosity = 1. The simulation has been carried out till the system reached quasi- steady state 

(flow variable is independent of time). 

5.3Study of hydrodynamic behavior 

The hydrodynamics behavior of fluidized bed analyzed or the average flow variable is 

achieved by monitoring the expanded bed height or volume fraction of phase i.e. solid / gas 

phase where average value of dynamic flow characteristics is calculated in terms time, axial and 

radial direction. Variation of expanded bed height or volume fraction of solid phase (i.e. 63 

micron alumina powder) with time for initial bed height 0.16 m at air velocity of 0.016 m/sec has 

been shown in Fig. - 5.2.   
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While simulating the fluidized bed, the profile of bed changes with time. But after some time no 

significant change in the profile is observed. This indicates that the fluidized bed has come to a 

Quasi – steady state. From Fig. - 5.2, it is observed that bed profile / expanded bed height 

increases up to 25 sec after that it is constant. The fully developed Quasi – steady state is reached 

after 30 sec. Simulation is carried out upto 60 sec (in the present case) and observed that the 

expanded bed height / bed profile is same in between 30 – 60 sec of simulation time (that means 

there is no significant change in the profile of bed). 

5.3.1 Phase Dynamics 

The phase dynamics of gas phase and solid phase have been represented in the form of 

contour plot, XY plot and vector plot. These phase dynamics are observed at air velocity 0.016 

m/sec for initial bed height 0.16m of 63 micron size of alumina powder has been shown in Fig. - 

5.3 to 5.6 after quasi-steady state is achieved. 

From Fig. - 5.3, the value of volume fraction of solid phase and gas phase are calculated.  The 

contour plot of solid i.e. alumina powder illustrates that bed is in fluidized condition. The 

contour plot of gas i.e. air illustrates that gas hold up is more than fluidized solid bed (i.e. volume 

fraction of solid is less as compared to gas) in two phase region. And also it is observed from the 

contour plot of air, that gas holdup is significantly more in fluidized part of the bed as compared 

to remaining part. 

Velocity vectors 

The velocity vectors for alumina powder and air in the fluidized column obtained at inlet 

air velocity of 0.016 m/s for static bed height of 16 cm for alumina powder of particle size 63 
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microns which is achieved after the quasi steady state are shown in Fig. - 5.4. These vectors 

show direction of velocity and thus help in determining flow patterns in fluidized bed 

From velocity vector of solid phase (Fig. – 5.4 (a)), it is observed that there is vigorous 

movement of solid particles throughout the bed implying that the velocity at the bottom is small. 

It is also observed, in the middle of the bed direction of velocity near the wall downwards while 

that in the central region (i.e. away from wall) is upwards.  At the upper part of bed i.e. fluidizing 

section there is circulatory motion (i.e. downward motion of the solid particles near the wall 

region and upward motion at central zone of the cylindrical column). No velocity vector is seen 

in the upper section of the column as there is no alumina powder present in this section.  

The velocity vector of gas phase in the fluidized bed column is shown in Fig. -5.4 (b). 

From Fig.- 5.4 (b), It is observed that air flow is always an upward direction flow throughout the 

column which indicates that velocity of air is very small within the bed of particles as compared 

to that in remaining part of the column. This may be due to very small volume fraction of 

alumina powder. In the upper section of the column air velocity is high thus it carries air bubbles 

along with it. But in the lower section of the column solid particles obstruct the movement of 

bubbles thus reduces air velocity. When gas leaves fluidized part of the bed the transition from 

low to high velocity can be clearly seen.   

XY plot: 

The XY plot (Fig. - 5.5) show the velocity magnitude in gas phase (i.e. air) in radial 

direction at superficial air velocity of 0.016 m/s for initial static bed height of 0.16 m. For a fully 

developed flow this kind of parabolic pattern is obvious. Besides, it represents the fully 
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developed flow with the axial velocity being maximum at the centre line and minimum at the 

wall. This may be due to free slip boundary condition of gas. This plot gives a peak value of air 

velocity / maximum outlet velocity of air as 0.023 m/s and the minimum velocities at wall are 

zero. 

X-Y plot is the plot of volume fraction of solid against bed height after reaching Quasi – 

steady state in at different simulation time. The bed height can also be calculated from XY plot 

of volume fraction of solid particles at air velocity of 0.016 m/sec as shown in Fig. - 5.6. Bed 

height is determined by taking volume fraction of solid i.e. alumina powder on Y-axis while 

height of the bed on X-axis in 2D mesh.  

From Fig. – 5.6, it is observed that solid volume fraction (i.e. alumina powder) increases 

in axial direction with minimum value at bottom of bed / base of the column. When steady state 

is attained gas hold up remains constant (after 30 sec). A point is reached where the solid volume 

fraction sharply decreases to zero is the indication of the maximum fluidization. From this 

maximum expanded bed height is obtained. 

5.4 Bed expansion 

Fig. -5.7 shows a set of contours of solid volume fraction of 63 microns alumina powder 

at inlet air velocity of 0.016 m/sec for initial bed height of 16 cm. It is observed that the 

expanded bed height / bed profile increases in gas – solid system with increase in gas/air velocity 

and simultaneously bed voidage increases / solid volume fraction decreases. Experimentally the 

same trend is also observed. 
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XY plot: 

The bed height of the column is calculated in terms of volume fraction of solid. It is 

observed that the bed height increases with increase of air velocity as shown in Fig. 5.8. The bed 

height of alumina powder is represented in XY plot (Fig. – 5. 8).  

A comparison of experimental and simulated results for expansion ratio at different air velocities 

at bed height 16 cm has been shown in Fig. -5.9. It is found that simulated results are in good 

agreement with experimental results with a 28% deviation (approx.). 

Experimentally, the expanded bed height / bed profile has been calculated by varying 

particle density, particle size in cylindrical column. A comparison has been made with CFD 

simulation. Fig.- 5.10 represents contour plot of volume fraction of solid at constant air velocity 

of 0.016 m/sec for initial bed height 0.16 m in cylindrical column. It is observed that with 

increase in particle size and density of particle, the solid volume fraction decreases i.e. expanded 

bed height increases.  

The bed expansion is clearly studied from X-Y plot i.e. volume fraction of solid against 

different densities of static bed height 16 cm as shown in Fig.- 5.11. Bed height is determined by 

taking volume fraction of fine solid particles along Y-axis while density of solid is taken along 

X-axis after reaching Quasi – steady state. From Fig. -5.11, it is observed that the volume 

fraction of solid particles decreases with increase in particle size and density. That means the bed 

expansion decreases with increase of particle density / particle size.  
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A comparison of experimental and simulated results obtained at constant air velocity of 

0.016 m/s and initial bed height 16 cm for different density of particle has been shown in Fig. – 

5.12. It is observed that as density increases, solid volume fraction increases upto certain level 

and then decreases and understood that simulated results are in good agreement with 

experimental results with a 32% deviation (approx.).  

CFD simulation of hydrodynamics of gas- solid fluidized bed has been carried out for 

different operating condition by employing the Eulerian – Eulerian granular multi-phase 

approach. The CFD simulation results have shown good agreement with experimental data for 

solid phase hydrodynamics in terms of expanded bed height. The bed expansion height increases 

with gas velocity and decreases with particle size as well as particle density. Experimental result 

and CFD analysis have shown an increase in bed expansion with gas velocity and particle 

density.  

Table – 5.1: Initial Condition of CFD Simulation for Column of ID 0.05 m and Height 1 m  

(a) Solid phase:- 

Sample Magnetite Talcum powder Silicon Carbide Alumina 

Particle size 75*10
-6

 m 80*10
-6

 m 70*10
-6

 m 63*10
-6

 m 

Particle density 2400 kg/m
3
 880 kg/m

3
 720 kg/m

3
 640 kg/m

3
 

Initial static bed height 0.016 m 0.016 m 0.016 m 0.016 m 

Static bed voidage 0.9 0.9 0.9 0.9 

 

(b) Gas Phase :- 

 

 

 

Sample Air 

Viscosity 1.8 *10
-5

 Pa s 

Density 1.17 kg / m
3
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2 D Mesh   Plot of residuals with the progress of simulation 

Figure -5.1: Mesh and Residual Plot of Simulation 

 

 

 0sec     5sec    10sec    15sec    20sec   25sec    30sec   35sec   40sec   45 sec   50sec  55sec 60sec 

Figure -5.2: Contour Plot of Volume Fraction for Alumina Powder m/sec with respect of 

Time 
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              Solid Phase     Gas Phase 

Figure -5.3: Contour Plot of Volume Fraction of Solid Phase and Gas Phase  

 

 

 

(a) Solid phase          (b) Gas phase 

Figure -5.4: Velocity Vector Solid phase and Gas phase 
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Figure -5.5: XY Plot of Velocity Magnitude in Gas Phase 

 

 

Figure -5.6: XY Plot of Solid Volume Fraction  
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                 0.016 m/s  0.021 m/s   0.033 m/s  0.038 m/s 0.046m/s  0.059 m/s   0.067m/s 

Figure –5.7: Contour plot of Solid Volume Fraction of Alumina Powder at Different Air 

Velocities 

 

  

Figure - 5.8: XY plot of Bed Height against Air Velocity  
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Figure – 5.9: Comparison of Experimental and Simulated Results for Expansion Ratio at 

Different Air Velocities  

 

       Magnetite                     Silicon Carbide           Alumina Powder             Talcum Powder 

Figure – 5.10: Contour plot of Volume Fraction of Solid Materials at different particle 

densities 
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Figure -5.11: XY plot of Bed Height against Density of Solids  

 

 

Figure – 5.12: Comparison of Experimental and Simulated Results for Expansion Ratio at 

Different Densities 
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RESULTS AND DISCUSSION 

6.1 CORRELATION PLOTS 

Correlations have been developed for the bed expansion / fluctuation ratio, fluidization 

Index by varying different system parameters on the basis of dimensionless analysis. 

Dimensionless analysis helps one understand how the typical value of the dependent variable i.e. 

bed expansion ratio, bed fluctuation ratio, fluidization Index changes when any one of the 

independent variables is varied, while the other independent variables are held fixed.  The 

calculated values of these bed dynamics thus obtained through correlation equations have been 

compared with the experimentally observed values. These developed correlations are obtained 

through eq
n
- 2.1, 2.2 and 2.3. 

The applicability of correlation plots are: 

 The effect of parameters can be known, for designing the process equipment and 

optimizing the process. 

 These correlations give the base of the design for the industrial equipments. 

 These correlations can be used directly in the laboratory scale. 

 These correlations need to be scaled up for pilot plant unit and industrial equipment. 

6.1.1 Correlation Plots for Coarse (Regular / Irregular) particles 

The correlation plots of bed expansion / fluctuation ratio and fluidization index for coarse 

(regular / irregular) particles in spouted bed are shown in Fig. - 6.1, 6.2 and 6.3. The observed 

and calculated values of these bed dynamics have been compared in Table – 6.1 and 6.2 for 

coarse regular and irregular particles respectively in spouted bed. The comparison of standard 
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and mean deviations of coarse regular and irregular particles in spouted bed are listed in       

Table – 6.3.  

6.1.1.1 Bed Expansion Ratio 

The correlations developed for bed expansion ratio on the basis of dimensionless analysis are as 

follows 

(i) For Regular Coarse Particle          

         
  

  
 
      

 
  

  
 
     

 
  

  
 
   

 
  

  
 
    

 
  

   
 
    

                                    (6.1) 

(ii) For Irregular Coarse Particle      

         
  

  
 
      

 
  

  
 
     

 
  

  
 
     

 
  

  
 
      

 
  

   
 
    

                        (6.2) 

6.1.1.2 Bed Fluctuation Ratio 

The correlations developed for bed fluctuation ratio on the basis of dimensionless analysis are as 

follows 

(i) For Regular Coarse Particles                    
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(ii) For Irregular Coarse Particles 
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6.1.1.3 Fluidization Index 

The correlations developed for fluidization index of coarse particles on the basis of 

dimensionless analysis are as follows 

(i) For Regular Coarse Particle          

               FI        
  

  
 
      

 
  

  
 
     

 
  

  
 
     

 
  

  
 
      

 
  

   
 
     

                               (6.5) 

(ii) For Irregular Coarse Particle          

               FI        
  

  
 
      

 
  

  
 
     

 
  

  
 
      

 
  

  
 
     

 
  

   
 
      

                             (6.6) 

6.2 Correlation plot for Fine particles in Fluidized / Spouted bed: 

The correlation plots of bed expansion / fluctuation ratio and fluidization index for fine 

particles in fluidized / spouted bed are shown in Fig. - 6.4, 6.5 and 6.6. The observed and 

calculated values of these bed dynamics have been compared in Table – 6.4 and 6.5 for fine 

particles in fluidized bed and spouted bed respectively. The comparison of standard and mean 

deviations of fine particles in fluidized / spouted bed are listed in Table – 6.6.  

6.2.1 Bed expansion ratio 

The correlations developed for bed expansion ratio in fluidized / spouted bed of fine particles 

on the basis of dimensionless analysis are as follows 

(i) In fluidized bed          

R       
  

  
 
      

 
  

  
 
     

 
  

  
 
    

 
  

   
 
    

                          (6.7) 
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(ii) In spouted bed          
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            (6.8) 

6.2.2 Bed fluctuation ratio 

The correlations developed for bed fluctuation ratio in fluidized / spouted bed of fine 

particles on the basis of dimensionless analysis are as follows 

(i) In fluidized bed          

r      
  

  
 
      

 
  

  
 
     

 
  

  
 
     

 
  

   
 
    

                                        (6.9) 

(ii) In spouted bed  

        
  

  
 
      

 
  

  
 
     

 
  

  
 
      

 
  

  
 
      

 
  

   
 
     

                          (6.10) 

6.2.3 Fluidization Index 

The correlations developed for fluidization index in fluidized / spouted bed of fine particles 

on the basis of dimensionless analysis are as follows 

(i) In fluidized bed          

FI       
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(ii) In spouted bed          
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6.3 Discussion for Correlation Plots 

It was observed that increase of spout diameter decreases the bed expansion/ fluctuation 

ratio and fluidization index because of more amount of air passing in the central region only in 

case of spouted bed. In case of fluidized bed the increased speed of rotation of stirrer and 

increased frequency of application of external force breaks the bubbles and agglomerations of 

fine particles thereby reducing the bed expansion / fluctuation ratio and fluidization index.  The 

high value of the correlation coefficient for coarse, fine particles in both fluidized / spouted bed 

indicates that the dimensionless analysis explains well the variations of dependent variable. The 

calculated values of the bed expansion / fluctuation ratio, fluidization index obtained through 

dimensionless analysis are compared with the experimentally observed values. The deviations of 

calculated values are found to be within +15% to -15% and mean deviation within 1 to 7% for 

coarse and    -1 to 5% for fine particles. 

6.4 Nano Fluidization 

The effects of the different system parameters on hydrodynamic behaviors of copper 

nano materials (i.e. dp = 70 nm and surface area= 5m
2
/gm) have been studied in the present work. 

6.4.1 Effects of Velocity  

Effect of superficial velocity on bed dynamics has been studied (Fig.-6.7) for different 

static bed heights at constant external force. 

6.4.2 Effect of External Force 

During the fluidization process for nano particles, it was observed that all the materials 

are lifted up as a single mass and then disintegrated to form stable channels. The bed expands 
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slightly with an uneven surface (as slugging phenomenon takes place). On application of external 

force, the bed collapses in a few of seconds, the channels then disappear and the bed expands 

rapidly and uniformly until it reaches the full expansion. A homogenous fluidization state is then 

easily established. 

The external force can be calculated as follows: 

External Force = Centrifugal Force                                                                (6.13) 

Effects of external force on bed dynamics i.e. bed pressure drops, bed expansion ratio, bed 

fluctuation ratio and fluidization index of copper nano materials at constant static bed height as 

well as superficial velocity are shown in Fig. – 6.8.  

6.4.3 Discussion for Nano Fluidization 

The variation of bed pressure drop against the superficial gas velocity was plotted for 

each set of experiment from which the minimum fluidization velocities for nano particles were 

observed. A sample plot is shown in Fig. -6.7 (a) and 6.8 (a). It is observed that the bed pressure 

drop gradually increases with increase in velocity up to certain limit after which it remains 

constant once true fluidization is attained.  

It is observed that with the increase in superficial velocity (Uo) both the expansion and 

fluctuation ratio increases monotonically in fluidized bed in Fig.- 6.7 (b), (c) and 6.8 (b), (c), 

indicating that more bubbles forms as superficial velocity exceeds minimum fluidization 

velocity. As a result bed expands. As bubble size increases further with increase in superficial 

velocity of fluid, bed expansion as well as bed fluctuation ratio increase. 
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Fluidization index values were found out to be approximately 1 indicating the case of 

ideal fluidization. This implies that the application of the external force results in proper 

fluidization in Fig. – 6.7 (d) and 6.8 (d).  

Comparison of variation in bed dynamics with superficial velocity of fluid for different 

static bed height as shown in Fig. - 6.7 at constant external force i.e. 4.2 N. It is observed that, 

bed expansion / fluctuation ratio and fluidization index decrease as increase of static bed height. 

The bed pressure drops increases with increase in static bed height.  

As nano particles exhibit only slugging and channeling even at low gas velocities in a 

fluidized bed. With the application of external force, the bed of nano particles fluidize smoothly. 

With the aid of external force to the column, large agglomerate clusters break down due to 

combined effect of hydrodynamic force and external force. The pressure drop increases with 

increase of static bed height while other parameters constant. 

The bed expansion / fluctuation ratio were also observed to increase linearly due to large 

bed voidage and lighter weight of nano particles. In case of low static bed height, bed materials 

might be entrained and expanded bed height might not be properly observed. Application of 

external force, reduces bed expansion / fluctuation ratio and improves fluidization index with 

increase of static bed height while other parameters remains constant. 

Attempt was made to compare the effects of different amounts of external forces on bed 

dynamics by varying the superficial velocity of fluid as shown in Fig. –6.8 at constant static bed 

height i.e. 8 cm. From Fig.-6.8, it is observed that increased external force decreases 

substantially all the bed dynamics under investigation i.e. bed pressure drop (ΔP), bed expansion 

ratio (R), fluctuation ratio (r) and fluidization index (F.I.). As increased external force reduces all 
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the bed dynamics substantially minimum fluidization velocity also decreases and also frequent 

breaking of air bubbles. So that it prevents entrainment and elutriation of particles.  

Table – 6.1:  Observed Data and Calculated Values of Bed Dynamics for Spouting Process 

of Coarse Regular Particles 

 

 

 

 

Sl.

No Hs/Dc ρs/ρf dp/Dc Di/Dc Uo/Umf 

R  r  F.I.  

 

     

Rexp Rcal rexp rcal F.I. exp F.I. cal 

1 0.8 2211.809 0.033 0.25 1 1.181 1.166 1.223 1.214 0.606 0.672 

2 1.2 2211.809 0.033 0.25 1 1.112 1.161 1.119 1.172 0.674 0.675 

3 1.6 2211.809 0.033 0.25 1 1.09 1.158 1.102 1.144 0.642 0.677 

4 2 2211.809 0.033 0.25 1 1.182 1.155 1.14 1.122 0.931 0.678 

5 0.8 2530.459 0.033 0.25 1 1.237 1.224 1.162 1.289 0.805 0.666 

6 0.8 1030.928 0.033 0.25 1 1 0.882 1 0.862 0.821 0.706 

7 0.8 1255.858 0.033 0.25 1 1 0.948 1 0.942 0.513 0.697 

8 0.8 2211.809 0.026 0.25 1 1.381 1.282 1.569 1.43 0.812 0.685 

9 0.8 2211.809 0.022 0.25 1 1.712 1.371 2.078 1.605 0.539 0.694 

10 0.8 2211.809 0.017 0.25 1 1.506 1.52 1.802 1.916 0.791 0.708 

11 0.8 2211.809 0.033 0.3 1 1.275 1.232 1.428 1.301 0.799 0.681 

12 0.8 2211.809 0.033 0.35 1 1.293 1.29 1.379 1.38 0.704 0.689 

13 0.8 2211.809 0.033 0.4 1 1.381 1.343 1.483 1.452 0.733 0.697 

14 0.8 2211.809 0.033 0.25 1.1 1.006 1.161 1.012 1.203 0.606 0.674 

15 0.8 2211.809 0.033 0.25 1.2 1.006 1.17 1.012 1.225 0.606 0.670 

16 0.8 2211.809 0.033 0.25 1.3 1.018 1.175 1.037 1.235 0.606 0.668 



Hydrodynamics studies of Coarse, Fine and Nano Particles in a cylindrical Fluidized/ Spouted Bed : 

CFD Simulation 
2012 

 

84 National Institute of Technology, Rourkela 

 

Table – 6.2:  Observed Data and Calculated Values of Bed Dynamics for Spouting Process 

of Coarse Irregular Particles 

Table - 6.3: Comparison Results of Bed Dynamics for Coarse Particle in Spouted Bed 

Items               R                  r                  FI 

Regular  Irregular  Regular  Irregular  Regular  Irregular  

Standard 

Deviation 

-11 - +7 % -5 - +10 % -13 - +8 % -2 - +15 % -10 - +15% -18% to +11% 

Mean 

Deviation 

1.05 % 6.07 % 3.95 % 3.79 % 4.62 % 1.28 % 

 

 

Sl.No Hs/Dc ρs/ρf dp/Dc Di/Dc Uo/Umf 
R  r  F.I.  

 

     

Rexp Rcal rexp rcal F.I. exp F.I. cal 

1 0.8 2282.6 0.033 0.25 1 1.031 0.868 1.062 1.021 0.945 0.97 

2 1.2 2282.6 0.033 0.25 1 1.004 0.861 1.008 0.999 1.033 0.917 

3 1.6 2282.6 0.033 0.25 1 1.015 0.856 1.031 0.983 0.577 0.881 

4 2 2282.6 0.033 0.25 1 1.002 0.852 1.005 0.971 0.857 0.855 

5 0.8 1513.3 0.033 0.25 1 1.018 0.868 1.062 1.02 1.31 0.794 

6 0.8 1236.2 0.033 0.25 1 1.006 0.868 1.008 1.019 0.974 0.719 

7 0.8 655.9 0.033 0.25 1 1.012 0.867 1.031 1.018 0.425 0.528 

8 0.8 2282.6 0.026 0.25 1 1.25 0.845 1.5 0.971 0.867 1.036 

9 0.8 2282.6 0.022 0.25 1 1.012 0.83 1.025 0.938 1.112 1.085 

10 0.8 2282.6 0.017 0.25 1 1.012 0.806 1.025 0.888 1.44 1.165 

11 0.8 2282.6 0.033 0.3 1 1.006 0.86 1.0125 1.02 0.84 1.035 

12 0.8 2282.6 0.033 0.35 1 1.006 0.853 1.012 1.02 1.307 1.093 

13 0.8 2282.6 0.033 0.4 1 1.006 0.847 1.012 1.02 1.138 1.146 

14 0.8 2282.6 0.033 0.25 1.1 1.175 1.022 1.136 0.886 1.44 0.976 

15 0.8 2282.6 0.033 0.25 1.2 1.375 1.187 1.444 1.168 1.364 0.964 

16 0.8 2282.6 0.033 0.25 1.3 1.531 1.361 1.578 1.329 1.364 0.958 
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Table – 6.4:  Observed Data and Calculated Values of Bed Dynamics for Fluidization 

Process of Fine Particles 

 

 

 

 

 

 

Sl.No Hs/Dc ρs/ρf dp/Dc Uo/Umf N R  r  F.I.  

 

     

Rexp Rcal rexp rcal F.I.exp F.I. cal 

1 3.2 692.91 0.0013 1.25 121.2 1.031 1.062 1.062 1.008 0.749 0.786 

2 4.4 692.91 0.0013 1.25 121.2 1.045 1.061 1.09 1.029 0.772 0.763 

3 5 692.91 0.0013 1.25 121.2 1.02 1.06 1.04 1.025 0.755 0.754 

4 5.6 692.91 0.0013 1.25 121.2 1.035 1.06 1.071 1.021 0.89 0.746 

5 3.2 503.93 0.0013 1.25 121.2 1.031 1.021 1.062 1.015 0.942 0.802 

6 3.2 566.92 0.0013 1.25 121.2 1.031 1.036 1.062 1.024 0.958 0.796 

7 3.2 1889.76 0.0013 1.25 121.2 1.187 1.203 1.235 1.123 0.805 0.737 

8 3.2 692.91 0.0012 1.25 121.2 1.187 1.117 1.235 1.072 0.845 0.788 

9 3.2 692.91 0.0014 1.25 121.2 1.031 1.013 1.062 1.011 0.958 0.785 

10 3.2 692.91 0.0015 1.25 121.2 1.031 0.97 1.062 0.984 0.942 0.783 

11 3.2 692.91 0.0013 1.5 121.2 1.187 1.212 1.054 1.081 0.642 0.746 

12 3.2 692.91 0.0013 1.75 121.2 1.375 1.356 1.135 1.117 0.642 0.714 

13 3.2 692.91 0.0013 2 121.2 1.5 1.494 1.2 1.149 0.642 0.688 

14 3.2 692.91 0.0013 1.25 73.9 1.031 1.066 1.062 1.043 0.712 0.648 

15 3.2 692.91 0.0013 1.25 101.6 1.031 1.063 1.062 1.041 0.811 0.734 

16 
3.2 692.91 0.0013 1.25 137.4 1.512 1.061 1.05 1.039 0.942 0.826 



Hydrodynamics studies of Coarse, Fine and Nano Particles in a cylindrical Fluidized/ Spouted Bed : 

CFD Simulation 
2012 

 

86 National Institute of Technology, Rourkela 

 

Table – 6.5:  Observed Data and Calculated Values of Bed Dynamics for Spouting Process 

of Fine Particles 

Table - 6.6: Comparison results for Bed Dynamics of fine Particles in fluidized/Spouted 

Bed 

Items                 R                r              F. I. 

Fluidized 

Bed 

Spouted 

Bed 

Fluidized 

Bed 

Spouted 

Bed 

Fluidized 

Bed 

Spouted 

Bed 

Standard 

Deviation 

- 4 - +5 % -11 - +5 % -2 - +13 % - 4 - +9 % -11 - +16 % -18 - +11% 

Mean 

Deviation 

- 0.578 % - 0.047 % 4.15 % 0.019 % 5.008 % - 0.055 % 

 

Sl.No Hs/Dc ρs/ρf dp/Dc Di/Dc Uo/Umf R  r  F.I.  

 

     

Rexp Rcal rexp rcal F.I.exp F.I. cal 

1 1.6 677.16 0.00126 0.06 1 1.031 1.034 1.062 1.076 0.801 0.974 

2 2.4 677.16 0.00126 0.06 1 1.083 1.026 1.166 1.06 0.655 0.949 

3 3.2 677.16 0.00126 0.06 1 1.015 1.021 1.031 1.049 0.754 0.932 

4 4 677.16 0.00126 0.06 1 1.025 1.018 1.05 1.04 0.722 0.919 

5 1.6 503.93 0.00126 0.06 1 1.031 1.027 1.062 1.062 1.328 1.08 

6 1.6 1173.2 0.00126 0.06 1 1.062 1.046 1.125 1.102 0.618 0.803 

7 1.6 1259.8 0.00126 0.06 1 1.043 1.047 1.087 1.105 0.899 0.783 

8 1.6 677.16 0.0009 0.06 1 1.031 1.036 1.037 1.062 0.819 0.834 

9 1.6 677.16 0.0018 0.06 1 1.031 1.03 1.062 1.069 0.848 1.147 

10 1.6 677.16 0.0025 0.06 1 1.018 1.028 1.062 1.082 1.456 1.334 

11 1.6 677.16 0.00126 0.02 1 1.043 1.043 1.087 1.109 0.78 1.064 

12 1.6 677.16 0.00126 0.04 1 1.062 1.037 1.125 1.088 1.281 1.006 

13 1.6 677.16 0.00126 0.08 1 1.018 1.031 1.037 1.067 0.86 0.951 

14 1.6 677.16 0.00126 0.06 1.25 1.062 1.186 1.125 1.179 0.801 0.893 

15 1.6 677.16 0.00126 0.06 1.5 1.343 1.327 1.388 1.271 0.801 0.832 

16 1.6 677.16 0.00126 0.06 1.75 1.512 1.459 1.304 1.355 0.801 0.784 
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 Regular Particles Irregular Particles 

Figure - 6.1: Correlation Plots of Bed Expansion Ratio against System Parameters for 

Coarse Particles 

  

 Regular Particles  Irregular Particles 

Figure - 6.2: Correlation Plot of Bed Fluctuation Ratio against System Parameters for 

Coarse Particles 
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Regular Particles Irregular Particles 

Figure - 6.3: Correlation Plot of Fluidization Index against System Parameters for Coarse 

Particles 

  

Fluidization Process Spouting Process 

Figure - 6.4: Correlation Plot of Bed Expansion Ratio against System Parameters for Fine 

Particles 
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Fluidization Process Spouting Process 

Figure - 6.5: Correlation Plot of Bed Fluctuation Ratio against System Parameters for Fine 

Particles 

  

 Fluidization Process  Spouting Process 

Figure - 6.6: Correlation Plot of Bed Fluidization Index against System Parameters for 

Fine Particles 

y = 0.0501x0.6491 

1 

100 

r 
e

xp
 

(Hs/Dc) 
-0.005 (ρs/ρf) 

-0.014 (dp/Dc) 
-0.624 (U0/Umf) 

0.339 (N) -0.014 

y = 0.6744x0.9146 

1 

10 

1 10 

r 
e

xp
 

(Hs/Dc) 
-0.04 (ρs/ρf) 

0.048 (dp/Dc) -
0.035 

(Di/Dc)
 -0.035 (U0/Umf) 

0.451 

y = 0.0757x-0.254 

0.1 

1 

0.00001 0.0001 0.001 0.01 0.1 1 

FI
 e

xp
 

(Hs/ Dc) 
0.635 (ρs/ρf) 

0.437 (dp/Dc) 
0.164  (U0/Umf) 

1.9 (N) -0.629 

y = 168.69x0.916 

0.1 

1 

0.001 0.01 

Fi
e

xp
 

(Hs/Dc)
 -0.07 (ρs/ρf) 

-0.5 (dp/Dc) 
0.51 (Di/Dc) 

-

0.09 (U0/Umf) 
-0.43 



Hydrodynamics studies of Coarse, Fine and Nano Particles in a cylindrical Fluidized/ Spouted Bed : 

CFD Simulation 
2012 

 

90 National Institute of Technology, Rourkela 

 

 

  

(a) Bed Pressure Drop (b) Bed expansion ratio 

  

(c) Bed Fluctuation ratio (d) Fluidization Index 

Figure - 6.7: Comparison of Variation in Bed Dynamics with Superficial Velocity of Fluid 

for Different Static Bed Heights for Nano Particles 

 

 

0 

200 

400 

600 

800 

1000 

1200 

1400 

0 0.05 0.1 0.15 

p
re

ss
u

re
 (N

/m
2)

 

velocity (m/s) 

8 cm 

12 cm 

16 cm 

20 cm 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 0.05 0.1 0.15 

R
 

velocity (m/s) 

8 cm 

12 cm 

16 cm 

20 cm 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0 0.05 0.1 0.15 

r 

velocity (m/s) 

8 cm 
12 cm 
16 cm 
20 cm 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

0 0.05 0.1 0.15 

F.
I.

 

velocity (m/s) 

8 cm 
12 cm 
16 cm 
20 cm 



Hydrodynamics studies of Coarse, Fine and Nano Particles in a cylindrical Fluidized/ Spouted Bed : 

CFD Simulation 
2012 

 

91 National Institute of Technology, Rourkela 

 

  

(a)Bed Pressure Drops (b)Bed Expansion ratio 

  

(c)Bed Fluctuation Ratio (d) Fluidization Index 

Figure - 6.8: Comparison of Variation in Bed dynamics with Superficial Velocity for 

Different Amounts of External force for Nano Particles 
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CONCLUSION 

The hydrodynamic study of the fluidized / spouted bed has been carried out by 

calculating the bed expansion / fluctuation ratio and fluidization index of coarse (regular / 

irregular), fine and nano particles.  

The bed expansion ratio and fluctuation ratio for the fluidized bed are observed to decrease with 

the increased speed of the stirrer (N) as the rotation of the stirrer prevents the bubble formation. 

The bed expansion ratios are observed to increase with the increased density of the particles but 

the variation of bed fluctuation ratio with the density of particles is observed to decrease for the 

fluidized bed.  

With the view of satisfactory fluidization achieved by using a stirrer in the fluidized bed 

provides some agitation by which fine powders do not stick to the wall of the column thereby the 

formation of agglomerates is prevented. Thus uniform fluidization is achieved. Therefore the 

stirrer may also be used in fluidized bed reactor where catalysts are mainly smaller in size to 

provide large surface area for effective reactions to occur. This method can be applicable in any 

industry system i.e. drying of fine particles. This may also use in fluidized bed reactor where 

catalysts are mainly smaller in size to provide large surface area for reaction to occur and also 

gives the fundamentals optimum design of fluidized bed reactor. 

The preliminary study has shown that fluidization of nano particle can be easily and 

smoothly fluidized with the assistance of external force. Thus it can be concluded that applying 

external force i.e. centrifugal force improves the bed dynamics to a great extent thereby 

minimizing the energy consumption. Therefore an external arrangement for creating some force 
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on outside of the column will be best option to improve the bed dynamics as well as economy of 

the process. 

Correlations were developed for the bed expansion / fluctuation ratio and fluidization 

Index by varying different system parameters. The overall changes in values of bed expansion / 

fluctuation ratios, and fluidization Index were observed from the developed correlations. The 

calculated values of bed dynamics obtained through developed correlation or dimensional 

analysis are in good agreement with the experimentally observed values of bed dynamics. 

Comparing the calculated values of different bed dynamics obtained through developed 

correlations deviations are found to be within +15% to -15%. Thus the developed correlations 

can be used suitably over a wide range of system parameters for the study of bed behavior of 

fluidized bed as well as spouted bed reactor in industries over a wide range of parameters. 

The knowledge of bed dynamics also gives the fundamentals for optimum design of 

fluidized bed reactor, gasifies and combustors, especially in the fixation of bed heights for such 

units. These models can be suitably scaled up for pilot plant units or for industrial uses.  The 

developed correlations can also be used as the basis of designs for the industrial fluidized or 

spouted bed reactors, especially in Pharmaceutical industry. The developed correlation can 

further be used successfully for the calculation of bed dynamics such as bed 

expansion/fluctuation ratio and fluidization index with spherical / non spherical, coarse, fine and 

nano particles in chemical industries. Predication of bed expansion/ fluctuation ratios and 

fluidization index is of significance in gas- solid fluidization as their numerical values quantify 

the fluidization quality and in addition, the design fundamentals for gas-solid fluidization system.  
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The CFD simulation exhibited a solid circulation pattern for all the operating condition. 

The good agreement between the values obtained from CFD simulation and experimental ones 

with the present operating condition, it can be concluded that the Eulerian - Eulerian multi- phase 

granular flow approach is capable to predicting the overall performance of gas- solid fluidized 

bed. Thus the dynamic characteristics of gas – solid fluidization for fine particles obtained from 

CFD simulation validates with the experimental results, thereby the developed correlations are 

validated. 

           The calculated values of bed expansion ratio obtained through CFD simulation analysis 

have been compared with the experimentally observed values for the laboratory scale fluidized 

bed column. The comparison shows that the percentage deviation between calculated values of 

experimental and the values obtained through CFD simulation are very less.  

7.1 SCOPE AND FUTURE WORK 

 Hydrodynamic behaviors of nano particles to be studied by varying different system 

parameters. 

 To develop correlation for the hydrodynamics behaviors of nano particles. 

 Hydrodynamic behaviors of nano particles to be simulated by CFD Simulation. 

 Validation of bed dynamics of nano particles with experimental and CFD simulation. 
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NOMENCLATURE 

H :  Bed height, cm 

D :  Diameter, cm 

d :  Particle diameter, microns 

U :  Velocity of air, m/s 

N : Velocity of rod promoter, rpm 

R : Expansion ratio 

r  :  Fluctuation ratio 

r  : Radius of rubber tube, m 

∆P     :  Pressure drop, N/m
2
 

W :  Weight of material, gm 

A :  Area of cross-section, cm
2 

u : velocity in phase, m/s 

Fi : Inter-phase momentum exchange 

F : Force, N 

F : Centrifugal Force, N  

K : Interphase exchange coefficient, kg/s 

CD : drag coefficient 

I  : Identity matrix 

σ : Coefficient in turbulent parameter 

G  : Generation of turbulence  

S k : User- defined source term 

    : Dispersed phase in continuous gas phase 
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    : Covariance velocity of continuous gas phase 

    : Relative velocity, m/s 

    : Drift velocity, m/s 

        C1,C2,C3 : Coefficient in turbulent parameter 

m : Mass of bed materials, kg 

Greek Symbols 

ρ :  density, gm/cc 

Є : Volume fraction 

Є : Dissipation rate, m
2
/s

3
 

τ : Stress-strain tensors, Pa 

μ : Viscosity, Pa s 

λ : Bulk viscosity, Pa s 

ω : Angular velocity, rpm 

Subscripts 

S : static  

max : Maximum 

min : Minimum 

avg : Average 

C :  Column 

i  : Spout 

o : Superficial 

mf : Minimum fluidization / spout 

p :  Particle 
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k : Phase 

k : Kinetic energy, J 

f  : Fluid 

g : Gas 

s : Solid 

L : Lift 

D : Drag 

VM : Added mass 

gs : Inter phase of gas and solid 

t  : Turbulent 

j  : No. of secondary phases 

Superscripts 

T : Transpose 

Abbreviations 

CFD : Computational fluid dynamics 

cal : Calculated 

exp : Experimental 

F.I. : Fluidization Index 

2D : Two dimensional 

Rep : Particles Reynolds’s number 

CVM  : Constant viscosity model  

KTGF  : Kinetic theory granular flow  

NAFB : Nano-agglomerate fluidized bed  
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BC : Boundary conditions  

APF  : Agglomerate particulate fluidization  

ABF : Agglomerate bubbling fluidization  
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