

Efficient VLSI Architectures for Image
Compression Algorithms

Vijay Kumar Sharma

Department of Electronics & Communication Engineering
National Institute of Technology Rourkela

Rourkela-769008, Odisha, India

Efficient VLSI Architectures for Image
Compression Algorithms

Thesis submitted in partial fulfillment of the requirements for the degree
of

Master of Technology (Research)
In

Electronics and Communication Engineering

By

Vijay Kumar Sharma

(Roll No. 609EC101)

January 2012

Under the guidance of

Dr. U. C. Pati
Dr. K. K. Mahapatra

Department of Electronics & Communication Engineering
National Institute of Technology Rourkela

Rourkela-769008,Odisha, India

To all who have shown Love and Support

Department of Electronics & Communication Engineering

National Institute of Technology Rourkela
Rourkela-769008, Odisha, India

Certificate

This is to certify that the thesis entitled “Efficient VLSI Architectures for Image
Compression Algorithms” by Mr. Vijay Kumar Sharma, submitted to the
National Institute of Technology, Rourkela for the degree of Master of
Technology (Research), is a record of an original research work carried out by
him under our supervision in the department of Electronics and Communication
Engineering during session 2009-2011. We believe that the thesis fulfills the part
of the requirements for the award of degree of Master of Technology (Research).
Neither this thesis nor any part of it has been submitted elsewhere for the degree
or academic award.

Prof. U. C. Pati
Department of Electronics and
Communication Engineering

National Institute of Technology, Rourkela

Prof. K. K. Mahapatra
Department of Electronics and
Communication Engineering

National Institute of Technology, Rourkela

Acknowledgement

I am grateful to my research advisors Prof. U. C. Pati and Prof. K. K. Mahapatra for
providing me the opportunity to realize this work. They inspired, motivated, encouraged
and gave me full freedom to do my work with proper suggestions throughout my research
work. I am indebted to Prof. K.K. Mahapatra for his kind and moral support throughout
my academics at NIT Rourkela.

I am also grateful to NIT Rourkela for providing adequate facilities in my research work.

I acknowledge MHRD and DIT (Ministry of Information & Communication
Technology), Govt. of India, for giving financial support.

My special thanks to Prof. S. K. Patra, Prof. D. P. Acharya and Prof. A. K. Swain for
their help and valuable suggestions. I would like to thank Sushant sir, my senior, for
helping me in VLSI.

I am thankful to Prof. S. Meher and Prof. S. K. Behera for his inspiration and support. I
am also thankful to Prof. G. S. Rath, Prof. B. D. Sahoo, Prof. K. B. Mohanty and Prof.
N.V. L. N. Murty for their valuable support in my research work.

I would like to give special thank to Prakash sir, Preeti madam and Ranjan sir who helped
and supported me throughout my research work.

I must thank Karupannan sir, Kanhu sir, Jagannath and Tom sir for their support and
help. I also thank Srinivas sir and Venkatratnam sir for their good attitude and behavior.

I sincerely thank to all my friends, Research scholars of ECE Department, M.Tech
(VLSI) students and all academic and non-teaching staffs in NIT Rourkela who helped
me.

Vijay Kumar Sharma

v

Contents
Certificate III
Acknowledgement IV
Contents V
List of Figures VII
List of Tables XIII

Abstract 1

Chapter 1 Introduction 3

1.1 Motivation 4

1.2 Background 6

1.3 Objective of the Thesis 9

1.4 Chapter Wise Contribution of the Thesis 10

1.5 Summary 11

Chapter 2 Image Compression 13

2.1 Introduction 13

2.2 Image representation and classification 14

2.3 Image Quality Measurement Metric 15

2.4 Image Compression Model 17

2.5 Transform based Image Coding 19

2.6 JPEG baseline Image Coding 21

2.7 Discrete Cosine Transform (DCT) 23

2.7.1 2-D DCT Equation 24

2.7.2 Energy Compaction Property of 2-D DCT 25

2.7.3 Image Reconstruction by Selective DCT Coefficients 27

2.8 Separable Discrete Hartley Transform (SDHT) 31

2.9 Conclusions 35

Chapter 3 Distributed Arithmetic and Its VLSI Architecture 36

3.1 Introduction 36

3.2 Systolic Architecture 37

3.3 ROM based Distributed Arithmetic (DA) 39

vi

3.3.1 FPGA Implementation of 8-points 1-D DHT using ROM 45
based DA

3.3.2 FPGA Implementation of SDHT using ROM based DA 46

3.4 ROM Free DA 48

3.4.1 FPGA Implementation of DCT using ROM free DA 51

3.4.2 Area and Power Efficient VLSI Architecture of 8x1 1-D DCT 58

3.5 SDHT Implementation using ROM free DA 64

3.6 Conclusions 67

Chapter 4 Efficient JPEG Image Compression Architecture 68

4.1 Introduction 68

4.2 Normalization matrix for hardware simplification in JPEG 68

4.3 Efficient Architecture from DCT to Quantization and Re-ordering 72

4.4 Huffman Coding Architecture Implementation in FPGA for JPEG 78

4.5 Conclusions 93

Chapter 5 Direct Computation of 8x8 2-D DCT Coefficients Equation 94
 and Its Hardware Architecture

5.1 Introduction 94

5.2 Equation for Direct computation of 2-D DCT 95

5.3 Non-recursive VLSI architecture of 2-D DCT 102

5.4 JPEG Image Compression Architecture using Proposed 114
Non-recursive 2-D DCT

5.5 Conclusions 117

Chapter 6 Summary and Conclusions 118

6.1 Summary 118

6.2 General Conclusions 119

6.3 Future Scope 120

Appendix A 121

Appendix B 122

vii

List of Figures

Fig.1.1 Energy efficiency on different implementations [23] 5

Fig.1.2 Trends in power consumption and battery capacity [37] 6

Fig.2.1 Representation of digital image in two dimensional 14

spatial coordinate

Fig.2.2 A generalized image compression model [76] 18

Fig.2.3 Transform based image compression model 19

Fig.2.4 (a) Zig-zag ordering for DCT coefficients 23

(b) JPEG baseline Image compression 23

Fig.2.5 2-D DCT from separable property 24

Fig.2.6 64 basis functions image of an 8x8 2-D DCT matrix 25

Fig.2.7 Energy compaction of DCT. Image (left) and its DCT
 coefficients image (right)

 (a) 450x450 Lena, 26
(b) 256x256 Cameraman and 26
(c) 512x512 Peppers 26

Fig.2.8 Original (left) and reconstructed (right) image after
 quantizing all AC coefficients of 8x8 DCT to zero

 (a) Lena and 27
 (b) Peppers 27

Fig.2.9 From left to right, original image, reconstructed
 image by taking all DCT coefficients, reconstructed

image by taking first row and first column DCT
 coefficients, reconstructed image by taking
 first 15 coefficients in zig-zag order of

 (a) 448x448 Lena, quality=1 29
 (b) 448x448 Lena, quality=5 29
 (c) 512x512 Peppers, quality=1 29
 (d) 512x512 Peppers, quality=8 29
 (e) 512x512 Crowd, quality=1 30
 (f) 512x512 Crowd, quality=5 30
 (g) 256x256 Cameraman, quality=1 30

viii

 (h) 256x256, Cameraman, quality=3 30

Fig.2.10 Basis function image of SDHT 32

Fig.2.11 PSNR performance of SDHT and DCT for

 (a) Lena image 33
 (b) Cameraman image 33

Fig. 2.12 Original (left), reconstructed image using DCT (middle) 34
and reconstructed image using SDHT (right) at very
high compressions

 (a) Lena 34
 (b) Cameraman 34

Fig. 3.1 Operations using

(a) single processing element 37
(b) Systolic Array [42] 37

Fig. 3.2 (a) Systolic convolution array 39
 (b) basic operations of one PE [42] 39

Fig. 3.3 Architecture of ROM based DA 42

Fig. 3.4 Architecture of ROM based DA using OBC technique 44

Fig. 3.5 RTL schematic of 8-points DHT using ROM based DA 46

Fig. 3.6 Row-column decomposition technique for 46
 2-D SDHT implementation

Fig. 3.7 Hardware implementation in Xilinx FPGA of 48
 8x8 data matrix Di through ChipScope Pro tool

Fig. 3.8 Structure to realize the sum of vectors in the 50
 example using ROM free DA

Fig. 3.9 Adder/subtractor structure to realize the 8-points 53
 DCT of equation (3.8) [58]

Fig. 3.10 Adder bit width reduction in ROM free DA
 to save area and power

 (a) without shift 55
 (b) with right shift 58

Fig. 3.11 Circuits to reduce sign extension error propagation
 when number is negative

ix

 (a) MUX1 selects A if B is -1 else sum of A and B 56
(b) MUX2 selects B if A is -1 else sum of A and B 56
(c) Final sum is from MUX1 or MUX2 output 56

Fig. 3.12 VHDL simulation result using Xilinx ISE Simulator
 of data X for the Implementation of 1-D DCT architecture
 using

 (a) simple addition operator 57
 (b) proposed adder 57

Fig. 3.13 VLSI architecture for computation of 8 point DCT in
pipeline manner for

 (a) computation of F(0) and F(4) 60
 (b) computation of F(1), F(3), F(5) and F(7) 60
 (c) computation of F(2) and F(6) 60

Fig. 3.14 RTL Schematic of Proposed 8-point 1-D DCT in 62
 Xilinx ISE 10.1

Fig. 3.15 Adder/subtractor for all 8-points DHT coefficients 65
 calculation

Fig. 3.16 Hardware implementation result of 8x8 image data 66
 matrix Di by proposed DA for DHT method

Fig. 4.1 PSNR against compression ratio for

 (a) 448x448 Lena 70
 (b) 256x256 Cameraman, 70
 (c) 512x512 Crowd 70
 (d) 512x512 Barbara Images 70

Fig. 4.2 Original and reconstructed images using normal
 quantization matrix and modified matrix

 (a) 448x448 Lena 71
 (b) 256x256 Cameraman 71
 (c) 512x512 Crowd 71
 (d) 512x512 Barbara 71

Fig. 4.3 DCT to Zig-zag re-ordering Architecture 72

Fig. 4.4 2-D DCT Coefficients storage in 64x10 bits 73
 registers after shifting

Fig. 4.5 MATLAB Simulation results for 2-D DCT of 77
 sample data Ds

Fig. 4.6 Quantized and zig-zag ordered coefficients of Ds 77

(arranged in left to right and top to bottom order)

x

Fig. 4.7 2-D DCT coefficients of Ds obtained through Xilinx 77
 ChipScope Logic Analyzer

Fig. 4.8 Quantized and Zig-zag ordered 2-D DCT coefficients 78
 of Ds obtained through Xilinx ChipScope Logic Analyzer

Fig. 4.9 Coding Sequence of DCT coefficients in JPEG 79

Fig. 4.10 RTL Schematic of Huffman Coding implemented in
 Xilinx FPGA

 (a) Top module 80
 (b) Detail schematic 80

Fig. 4.11 Top Level Interface of Category selection module 81

Fig. 4.12 Simulation output of Category selection module 81

Fig. 4.13 RTL Schematic of DC base code module

 (a) Top interface 82
 (b) Details 82

Fig. 4.14 Simulation result of DC base code module 82

Fig. 4.15 RTL Schematic of DCT Coefficient code module

 (a) Top interface 83
 (b) Details 83

Fig. 4.16 Simulation result of DCT coefficient code module 83

Fig. 4.17 RTL Schematic of Run Module (top view) 84

Fig. 4.18 Simulation result of run module for received AC coefficients

(a) 1 to 21 84
(b) 22 to 45 85
(c) 46 to 63 85

Fig. 4.19 RTL Schematic of Address formation module

 (a) top view 86
(b) detail view 86

Fig. 4.20 Simulation result from address formation module 86

Fig. 4.21 RTL Schematic of Memory module for AC base
 code storage

 (a) top view 87
(b) detail view 87

Fig. 4.22 Simulation result from AC base code memory module 87

xi

Fig. 4.23 RTL Schematic of control module (top view) 89

Fig. 4.24 Simulation results of control module

 (a) DC coefficient coding 89
 (b) AC coefficient coding 90
 (c) Special code 90
 (d) Buffered Output as bit stream 91

Fig. 4.25 Macro Statistics of Advance HDL Synthesis of 91
 Complete Huffman Coding

Fig. 5.1 2-D DCT computation

 (a) using 1-D DCT and transposition memory 96
 (b) without transposition memory 96

Fig. 5.2 Architectural components of direct 2-D DCT computation 102

Fig. 5.3 Adder and shifter stage in the architecture 103

Fig. 5.4 A basic cell to add four inputs with different sign 104

Fig. 5.5 Proposed non-recursive VLSI architecture for the 104
 direct computation of 2-D DCT

Fig. 5.6 Layout of proposed 2-D DCT design with 64x8 bits 107
 registers for the data buffer

Fig. 5.7 JPEG Image and MPEG video compression flow with

 (a) general DCT model 108
 (b) quantizer circuit 108
 (c) proposed DCT model 108

Fig. 5.8 Image processing using proposed 2-D DCT architecture 109
 model in MATLAB

Fig. 5.9 Original, (a) and (c), and reconstructed, 110
 (b) and (d), images using proposed

 non-recursive 2-D DCT architecture model

Fig. 5.10 PSNR with different internal bit-width precision used 111

Fig. 5.11 Zig-zag order DCT coefficients

 (a) 1 to 21 112
 (b) 22 to 42 112
 (c) 43 to 64 112

obtained from Xilinx xc2vp30 device using ChipScope
pro logic analyzer

xii

Fig. 5.12 Zig-zag ordered DCT coefficients along
 with Quantization
 (a) 1 to 10 113

(b) 11 to 20 113
(c) 21 to 30 113
(d) 31 to 40 114
(e) 41 to 51 114
(f) 51 to 64 114

 obtained from Xilinx xc2vp30 device
 using ChipScope pro logic analyzer

Fig.5.13 Architecture of JPEG compression using proposed
 non-recursive 2-D DCT

(a) block diagram 115
(b) RTL Schematic in Xilinx 115

Fig.5.14 Bit stream of 8x8 sample JPEG processed data 116
 using non-recursive 2-D DCT architecture model
 in MATLAB (top), VHDL simulation (middle) and

 Hardware output through Xilinx ChipScope Pro (bottom)

xiii

List of Tables

TABLE 2.1 COMPRESSION RATIO OBTAINED FOR DIFFERENT QUANTIZATION LEVEL 28

TABLE 2.2 PSNR AND COMPRESSION RATIOS OF IMAGES SHOWN IN FIG.2.12 34

TABLE 3.1 ROM CONTENTS FOR THREE 4-BITS INPUTS 41

TABLE 3.2 ROM CONTENTS FOR THREE 4-BITS INPUTS IN OBC TECHNIQUE 44

TABLE 3.3 DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 45
 DHT USING ROM BASED DA

TABLE 3.4 FUNCTIONS OF EACH ALU FOR DIFFERENT DCT COEFFICIENTS [58] 54

TABLE 3.5 DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 1-D DCT 58

TABLE 3.6 AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION OF 58
 1-D DCT

TABLE 3.7 (a) PIPELINE COMPUTATION OF DCT COEFFICIENTS F(0) AND F(4) 61

 (b) PIPELINE COMPUTATION OF DCT COEFFICIENTS F(1), F(3), F(5) AND F(7) 61

 (c) PIPELINE COMPUTATION OF DCT COEFFICIENTS F(2) AND F(6) 61

TABLE 3.8 DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 1-D DCT 62

TABLE 3.9 AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION 63
 OF 8-POINT 1-D DCT

TABLE 3.10 DEVICE UTILIZATION SUMMARY FOR 2-D DCT IMPLEMENTATION 63
 USING ROW-COLUMN DECOMPOSITION TECHNIQUE OF PROPOSED
 1-D DCT ARCHITECTURE

TABLE 3.11 2-D DCT ARCHITECTURE IMPLEMENTATION AREA AND POWER USING 63
 ROW-COLUMN DECOMPOSITION TECHNIQUE OF PROPOSED 1-D DCT

TABLE 3.12 FUNCTIONS OF EACH ALU FOR DIFFERENT DHT COEFFICIENTS 65

TABLE 3.13 COMPARISON OF ADDERS OF DHT AND DCT IN [58] 66

TABLE 3.14 HARDWARE UTILIZATION FOR PROPOSED DA FOR 1-D DHT 66

TABLE 4.1 ZIG-ZAG ORDER SEQUENCE MATRIX 72

TABLE 4.2 CLOCK CYCLE OPERATIONS FOR THE COMPUTATION OF 2-D DCT 74
 TO ZIG-ZAG ORDERING

xiv

TABLE 4.3 MEMORY BITS AND LATENCY COMPARISONS FOR THE QUANTIZATION AND 74
 ZIG-ZAG BUFFER IN PROPOSED HARDWARE SCHEME WITH EXISTING

TABLE 4.4 MEMORY/REGISTERS SAVINGS ACHIEVED IN PROPOSED DCT TO 74
 ZIG-ZAG ARCHITECTURE

TABLE 4.5 HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG 75
 ORDERING ARCHITECTURE IMPLEMENTED IN FPGA

TABLE 4.6 HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG 76
 ORDERING ARCHITECTURE IMPLEMENTED IN ASIC LIBRARY

TABLE 4.7 CATEGORY OF DCT COEFFICIENTS 79

TABLE 4.8 DESIGN SUMMARY OF HUFFMAN CODING IMPLEMENTED IN FPGA 92

TABLE 4.9 COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION 93
 IN TERMS OF TOTAL MEMORY USES IN TABLE STORAGE

TABLE 4.10 COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION 93
 IN TERMS OF NO. OF BITS PER AC TABLE ENTRIES

TABLE 5.1 SHORT NOTATIONS OF IMAGE DATA VALUES 98

TABLE 5.2 SHORT NOTATIONS OF TERMS 100

TABLE 5.3 ACCUMULATOR VALUES AND COSINE ANGLES REQUIRED IN GENERALISED 101
 EQUATION (5.7) FOR ALL AC COEFFICIENTS CALCULATION

TABLE 5.4 ANGLE GROUP VALUES USED IN TABLE 5.3 102

TABLE 5.5 COMPARISON OF DIFFERENT 2-D DCT ARCHITECTURES 106

TABLE 5.6 FPGA IMPLEMENTATION AND COMPARISON RESULT OF PROPOSED 111
 NON-RECURSIVE 2-D DCT ARCHITECTURE WITH DA

TABLE 5.7 FPGA IMPLEMENTATION RESULTS OF COMPLETE JPEG USING 116
 PROPOSED NON-RECURSIVE 2-D DCT

TABLE A.1 BASE CODES FOR DC COEFFICIENTS 121

TABLE A.2 BASE CODES FOR AC COEFFICIENTS 122

Symbols Used

Name Symbol

Number #

1

Abstract
An image, in its original form, contains huge amount of data which demands not only

large amount of memory requirements for its storage but also causes inconvenient

transmission over limited bandwidth channel. Image compression reduces the data from

the image in either lossless or lossy way. While lossless image compression retrieves the

original image data completely, it provides very low compression. Lossy compression

techniques compress the image data in variable amount depending on the quality of

image required for its use in particular application area. It is performed in steps such as

image transformation, quantization and entropy coding. JPEG is one of the most used

image compression standard which uses discrete cosine transform (DCT) to transform the

image from spatial to frequency domain. An image contains low visual information in its

high frequencies for which heavy quantization can be done in order to reduce the size in

the transformed representation. Entropy coding follows to further reduce the redundancy

in the transformed and quantized image data.

Real-time data processing requires high speed which makes dedicated hardware

implementation most preferred choice. The hardware of a system is favored by its low-

cost and low-power implementation. These two factors are also the most important

requirements for the portable devices running on battery such as digital camera. Image

transform requires very high computations and complete image compression system is

realized through various intermediate steps between transform and final bit-streams.

Intermediate stages require memory to store intermediate results. The cost and power of

the design can be reduced both in efficient implementation of transforms and

reduction/removal of intermediate stages by employing different techniques.

The proposed research work is focused on the efficient hardware implementation of

transform based image compression algorithms by optimizing the architecture of the

system. Distribute arithmetic (DA) is an efficient approach to implement digital signal

processing algorithms. DA is realized by two different ways, one through storage of pre-

computed values in ROMs and another without ROM requirements. ROM free DA is

more efficient. For the image transform, architectures of one dimensional discrete Hartley

transform (1-D DHT) and one dimensional DCT (1-D DCT) have been optimized using

ROM free DA technique. Further, 2-D separable DHT (SDHT) and 2-D DCT

2

architectures have been implemented in row-column approach using two 1-D DHT and

two 1-D DCT respectively.

A finite state machine (FSM) based architecture from DCT to quantization has been

proposed using the modified quantization matrix in JPEG image compression which

requires no memory in storage of quantization table and DCT coefficients. In addition,

quantization is realized without use of multipliers that require more area and are power

hungry.

For the entropy encoding, Huffman coding is hardware efficient than arithmetic

coding. The use of Huffman code table further simplifies the implementation. The

strategies have been used for the significant reduction of memory bits in storage of

Huffman code table and the complete Huffman coding architecture encodes the

transformed coefficients one bit per clock cycle.

Direct implementation algorithm of DCT has the advantage that it is free of

transposition memory to store intermediate 1-D DCT. Although recursive algorithms

have been a preferred method, these algorithms have low accuracy resulting in image

quality degradation. A non-recursive equation for the direct computation of DCT

coefficients have been proposed and implemented in both 0.18 µm ASIC library as well

as FPGA. It can compute DCT coefficients in any order and all intermediate

computations are free of fractions and hence very high image quality has been obtained in

terms of PSNR. In addition, one multiplier and one register bit-width need to be changed

for increasing the accuracy resulting in very low hardware overhead. The architecture

implementation has been done to obtain zig-zag ordered DCT coefficients. The

comparison results show that this implementation has less area in terms of gate counts

and less power consumption than the existing DCT implementations. Using this

architecture, the complete JPEG image compression system has been implemented which

has Huffman coding module, one multiplier and one register as the only additional

modules. The intermediate stages (DCT to Huffman encoding) are free of memory, hence

efficient architecture is obtained.

3

Chapter 1
Introduction

An image in its original representation carries huge amount of data. Thus, it requires

large amount of memory for storage [1]. Image compression is an important area in

image processing which efficiently removes the visually insignificant data [2–8].

Compressed images are sent over limited bandwidth channel with some additional

processing for robust (error free) transmission [9–12]. Transform based image

compression algorithm is a most preferred choice which consists of image transform (in

non-overlapping blocks), quantization of transformed coefficients and entropy coding

[13]. Joint photographic expert group (JPEG) is a committee that standardizes the image

compression algorithm [14]. The 8x8 block-wise two-dimensional discrete cosine

transform (2-D DCT) is used as orthogonal transform in JPEG image compression [15].

Images compressed by this standard are used globally. This algorithm provides the user

to choose between amount of compression and quality as per the requirement of the

image in different applications. The variable amount of compression makes this

algorithm very much suitable for the transmission purpose as user can adjust the bit rate

of the transmission according to channel capacity.

JPEG is fixed algorithm and it has some flexibility that can be incorporated easily

without any major changes in the basic structural feature [16–18]. JPEG system can be

implemented in software as well as in hardware. Software solution is not promising for

the applications requiring high speed. Therefore, real-time processing is done through the

dedicated hardware [19,20]. In custom hardware implementation, architecture plays a

vital role in deciding area, power and throughput of the design. Architecture

optimizations lead to lower computational units (adders, multipliers), reduced memory

size for storage of temporary variables and smaller interconnects. Architecture

explorations to minimize the area and power consumption is a issue for portable devices

running on battery. Low silicon area reduces the cost of the appliance [21,22] and low

Chapter‐1 Introduction

4

power consumption increases the battery lifetime (time between recharges for chargeable

battery) which in turn reduces the weight of the battery and overall size [23]. 2-D DCT is

a complex algorithm and requires high computations. Further, subsequent stages in

transform based image compression require high memory storage along with arithmetic

circuits. For portable devices, having image compression system (like JPEG compression

in digital camera [24–27]), low-cost design, that can be achieved by reducing silicon area

is highly required [28–31]. By efficiently designing the hardware architecture, image

compression can be performed with low-cost and low power budget.

1.1 Motivation

System level implementation of a digital device can be performed in embedded

processors, digital signal processors (DSPs), application specific instruction set

processors (ASIPs), reconfigurable logic/processors and dedicated hardware. Each

implementation gives best performance for a particular application area. Unlike

embedded processors, where low cost and low power consumption are basic

requirements, price and performance of DSP processors vary according to application

areas. They come in three categories, i.e., low cost, low power midrange and diversified

high end. In the high end category, ultra high speed applications are implemented in

DSPs [32]. ASIPs are designed for a particular application area. Their hardware and

instruction-set may be optimized for power, area or performance. In terms of power

consumption and hardware cost ASIPs are intermediate between general purpose

processors (GPPs) and application specific integrated circuits (ASICs) [33–36].

Although processors, mentioned above, have flexibility that their functionality can

be modified by changing the soft codes without any hardware modifications unless major

changes (like throughput improvement by adding hardware in parallel or pipeline

manner) are required, it (flexibility) comes at the cost of lower energy efficiency. Fig.1.1

depicts the energy efficiency of various implementations with respect to the flexibility.

Reconfigurable processors provide the functionality of a hardware accelerator by

assembling a number of functional units on temporal basis through configurable

interconnect and configurable bus of the processor. Thus, when accelerator work is

finished, the same functional units can be used for other applications, unlike dedicated

Chapter‐1 Introduction

5

Fig.1.1 Energy efficiency on different implementations[23]

accelerator in DSPs which brings additional hardware overhead. FPGA is used for this

purpose [23]. DSP processors are traditionally used inside the digital camera.

Nevertheless, it requires the hardware processor and memory to store soft codes. Since

the JPEG is a standard and changes in it is rare (and almost none), dedicated hardware for

the JPEG compression in a digital camera is a promising solution because of the

following reasons. Dedicated hardware possesses the maximum energy efficiency as

compared to embedded processors, DSPs and reconfigurable hardwares, that increase the

battery life time between recharges and has the low silicon area. It is important in camera

(and in all consumer electronic appliances) because silicon area directly relates to cost of

the device. In battery perspective, there is a constant annual growth of battery capacity in

tune with the technology evolutions that enabled the battery volume shrinkage and also

good talk-time for first WCDMA phones (Fig.1.2) [37]. But, for multimedia space (very

high computation is involved) there is need to reduce power as battery capacity is not

enough to meet the computations. Dedicated hardware has high speed which is necessary

for the digital camera (and in all real time applications) where images are captured,

compressed and stored in a pipeline manner in real time. Efficient design strategy of the

dedicated hardware system can lead to reduction in power demanding computational

units such as adders and multipliers [38]. An image processing system requires high

storage (memory) elements. Moreover, memory related operations dominate the system

Chapter‐1 Introduction

6

Fig.1.2 Trends in power consumption and battery capacity [37]

power consumption [39,40]. Techniques can be used for well defined system to reduce

the memory and hence power consumption [41].

1.2 Background

Systolic architecture is used to implement digital signal processing and arithmetic

algorithms in which fast processing is required. It was the preferred design approach for

the special purpose systems because of its simple, regular and pipeline operations

performed by set of small interconnected similar array cells called processing elements

(PEs). Breaking the whole processing into small cells has the two major advantages. In

case of systolic architecture, a set of data brought from the memory is processed by

several PEs in a pipeline structure i.e., multiple operations are performed on each data

item. Therefore, computation is increased at the same memory bandwidth [42]. One

example for systolic array is given by H.T. Kung [42], where convolution operation were

mapped on systolic array. A major area and power consuming module in VLSI is

multiplier. Past research in the implementation of any DSP algorithm using systolic array

was centered on the reduction of the number of multipliers. In many literatures, DCT is

implemented by systolic array architectures with the purpose of reducing number of

Chapter‐1 Introduction

7

multipliers [43–48]. Apart from systolic, other DCT implementations also favored the

multiplier reduction. H. Malvar [49] implemented DCT using DHT with reduced number

of multipliers. Y.-M. Chin et al. [50] proposed a new convolution based algorithm for

computing DCT. Still, all these algorithms are not free of multipliers, i.e. they need

multipliers along with adders and other logic components for the VLSI implementation.

Distributed arithmetic (DA) algorithm can implement DSP algorithms without

multipliers, which is important for area and power savings in VLSI designs. For DA

implementation of inner product of arrays, one of the inputs should be constant array.

ROM based DA relies on the manual pre-computations of constants and their storage in

ROM. These pre-computed values are fetched from the ROM addressed by the input bits.

According to S.A. White [51], by careful design one may reduce the total gate count in a

signal processing arithmetic unit upto 80 percent. ROM based DA is utilized for DCT

implementations in literatures [52–54]. ROM based design is not preferred choice in

VLSI because ROM has slow speed (ROM access time) and more power consumption

[55,56]. Moreover, size of memory (ROM) has to be increased exponentially with the

size of transform and also high accuracy requirements. ROM free DA architecture

exploits the sparse nature of matrix formed by binary representation of coefficients (most

places are zero) in contrast to pre-computing and storing them in ROM based DA i.e.,

constant coefficients are distributed. Shams et. al, [57] first gave the analysis of ROM

free DCT and named the algorithm NEDA (New DA). The reduced adder tree of ROM

free DA is implemented by P. Chungan et al. [58]. Yuan-Ho Chen et al. [59] proposed

high throughput DCT architecture using DA which uses less number of bit-width in DA

precision for hardware reduction.

For 2-D DCT implementation from 1-D DCT using techniques mentioned above

requires transposition memory resulting in high cost design along with irregular

architecture for realization of data pipelined computation [60]. Also, row-column

decomposition technique is unsuitable for the applications requiring transmission in

limited bandwidth as all DCT coefficients need to be calculated in advance for sending,

though it is sent one by one. To reduce the circuit cost, direct recursive computation of 2-

D DCT is carried out using recursive kernel in which DCT coefficients are computed one

by one at regular clock cycles [61–67]. The disadvantage of recursive kernel is that

Chapter‐1 Introduction

8

accuracy is reduced to a large extent due to round-off error. More errors are introduced as

recursive cycle increases because each processed register values requires higher number

of bits for its representation and fixed size of register in VLSI makes it non-practical.

Quantization and Huffman coding are the other parts in the image compression

system which requires huge storage and controlling circuitry. Quantization is division of

2-D DCT coefficients with a quantization step-size (different for different DCT

coefficients in 8x8 blocks). Zig-zag ordering [15] has to be performed of the quantized

DCT coefficients to encode the most important image information contents first.

Hardware implementation of complete JPEG image compression is done in literatures

[19], [68–71]. For the Huffman coding in JPEG compression, JPEG committee provides

an optimized table (having codes for DCT coefficients) for the Huffman code. These

tables need to be stored in memory. M. Kovac et al. [69], have implemented quantization

with 16-bit multiplier and RAM. M. Kovac et al. [70] used 13x10-bit multiplier and

RAM to store quantization table. Adders and shifters along with 64x12-bits ROM

memory have been used by L. V. Agostini et al. [19]. M. Kovac et al. [70] used adders

and shifters for division purpose and one division takes eight clock cycles. Five adders

and five pipeline register stages along with quantization table have been used by Sung-

Hsien Sun et al. [71] for quantization. The zig-zag ordering is performed by 8x8 arrays of

register pairs by M. Kovac et al. [69] and M. Kovac et al. [70] whereas L. V. Agostini et

al. [19] used time-interleaved RAM pairs of size 64x10-bits for the reading and writing

operations. Similarly, Sung-Hsien Sun et al. [71] have used two RAM blocks for loading

64 DCT coefficients. Agostini et al. [19] used two ROM having sizes 12x13-bits and

176x21 bits to store Huffman code table. Efficient way of storing Huffman code table is

presented by Sun et al. [71], where instead of storing 16-bits code word (required for the

base code [1]), 8-bits width of memory size has been used and the whole system operate

at 4.1 MHz in FPGA implementation.

After review of these articles, efficient hardware architectures for the image

compression have been proposed. The architectures are optimized in all the stages for

memory as well as datapath reductions by appropriate controlling circuitry and also by

exploiting redundant nature of image in original representation. The objectives and

outline of the work proposed in the thesis are presented in the following section.

Chapter‐1 Introduction

9

1.3 Objective of the Thesis

A novel equation for the computation of 2-D DCT coefficients without use of

transposition memory is proposed. The equation can compute DCT coefficients one by

one in any order in a non-recursive way. All the internal computations are performed in

integer format making hardware architecture highly accurate for DCT coefficient

computation. The fractional cosine values are stored in a register which is multiplied with

a multiplier at last stage only. Therefore, hardware overhead becomes negligibly small as

only a multiplier and a register bit width needs to be changed for higher accuracy of DCT

coefficients. From the proposed equation, VLSI architecture is implemented in both

FPGA as well ASIC library. The implemented architecture has less area and low power

consumption when compared to existing 2-D DCT implementations. From this

implementation, an additional multiplier and a register are enough to get the quantized

and zig-zag ordered DCT coefficients without extra memory requirements and at the

same latency.

Hardware architecture for computation of 1-D DCT with reduced area and power

using memory free DA approach is presented and implemented in FPGA as well ASIC

library for area and power comparisons. The presented 1-D DCT architecture reduces the

DA computational units from architecture presented by P. Chungan et al. [58] from seven

to three with clock latency increased by 3 cycles. Image compression using separable

discrete Hartley transform (SDHT) has been done and it is found that SDHT performs

same as DCT at high compression. Hardware architecture for DHT using ROM free DA

is proposed which has less adder bit-width requirement than DCT. The architecture for 1-

D DHT and 2-D DHT is implemented in FPGA.

A simple finite state machine (FSM) based architecture for computation of DCT to

zig-zag ordering of quantized DCT coefficients is proposed. The architecture removes

memory requirements for 64 DCT coefficients storage, quantization table storage as well

storage of quantized coefficients for zig-zag ordering. The energy compaction property of

DCT coefficients is studied by reconstructing the image using less number of DCT

coefficients.

Chapter‐1 Introduction

10

Huffman coding is implemented for JPEG Huffman code table. Strategies have been

used to reduce the code memory requirements.

The major research works done are listed here:

1. The energy compaction property of DCT is studied by reconstructing the

different images with the help of only selected DCT coefficients in the

decompression.

2. Image compression and decompression is done using 2-D separable discrete

Hartley transform (2-D SDHT). Basis function image of SDHT is plotted,

PSNR vs. compression ratio (rate-distortion curve) is plotted and compared with

the 2-D DCT for different standard images.

3. FPGA implementation of SDHT is performed using efficient ROM free DA

approach and results are compared with ROM based DA.

4. Area and power efficient VLSI architecture for 8 point 1-D DCT using ROM

free DA is presented and implemented in FPGA as well as ASIC library.

5. A simple finite state machine (FSM) based VLSI architecture from DCT to Zig-

zag reordering of transformed coefficients for JPEG baseline encoder using

quantization table suitable for less complex hardware design is presented and

implemented in FPGA as well as standard cell.

6. Non-recursive equation and its VLSI architecture for direct computation of 8x8

two dimensional 2-D DCT without transposition memory for high image quality

is presented and implemented in FPGA as well as standard cell based

technology.

7. Huffman coding is implemented using memory requiring less number of bit

storage as compared to original.

1.4 Chapter Wise Contribution of the Thesis

Chapter-1 : Introduction

 Introduction to transform based image compression along with motivation behind

the dedicated hardware design for image compression is presented. Background work and

main research contribution is also mentioned.

Chapter‐1 Introduction

11

Chapter-2 : Image Compression

The focus of this chapter is to study the energy compaction property of DCT and

DHT in transformed based image compression. Image reconstruction is done using

selective 2-D DCT coefficients. Quality assessment is done by reconstruction.

Compression ratios are tabulated for different images at different quantization level. 2-D

SDHT is used for the image compression and decompression.

Chapter-3 : Distributed Arithmetic and its VLSI Architecture

Distributed Arithmetic (DA) implementation approach for DCT and DHT is main

aim of this chapter. Efficient implementation of DCT and DHT using ROM free DA

approach is described. Different implementation results (like 1-D DCT, 1-D DHT etc.)

are summarized and compared with the existing implementations.

Chapter-4 : Efficient JPEG Image Compression Architecture

This chapter focuses on efficient architecture of JPEG from DCT to zig-zag ordering

where memory requirements for intermediate storage of DCT coefficients before and

after quantization is removed by simple control circuit design. Also, efficient

implementation of Huffman code table with reduced storage is done.

Chapter-5 : Direct Computation of 8x8 2-D DCT Coefficients Equation and Its
Hardware Architecture

The direct computation equation of 2-D DCT coefficients is explained. The proposed

equation computes DCT coefficients in non-recursive way without transposition memory

and require less hardware for image compression as demonstrated with the complete

JPEG implementation.

Chapter-6 : Summary and Conclusions

The comprehensive summary of the thesis is provided with scope for future work.

1.5 Summary

In this introductory chapter, transformed based image compression and requirement for

the low cost and low power image compression hardware are introduced. Motivations

Chapter‐1 Introduction

12

towards the dedicated hardware implementation rather than software implementation are

explained. The related works done in hardware implementation of DCT and complete

JPEG image compression system is highlighted. The thesis objective is mentioned with

major contributions illustrated point wise. Finally, chapter organization of the thesis is

summarized.

13

Chapter 2
Image Compression

2.1 Introduction

A digital image is two-dimensional functional in space where amplitudes at each location

are called pixels. There are different types of images depending upon the different

number of data bits per pixel for their representation. Quality of an image can be assessed

either visually or by mathematical formulation. The former is called subjective quality

assessment and the later objective quality assessment. A common objective quality

assessment metric for images obtained after decompression is PSNR (peak signal-to-

noise ratio). Transform based lossy image compression is flexible as it can compress

images at different qualities depending upon the application of the image. JPEG uses 8x8

block-wise 2-D DCT as the transform. DCT has very high energy compaction and its

performance is almost similar to optimal Karhunen-Lo'eve transform (KLT) with the

advantage of constant kernel and less computational complexity. Still, for the hardware

implementation, similar kind of transform which will have less computational complexity

and hence less hardware requirement with performance almost similar to DCT can be a

preferred choice.

In this chapter, introduction about digital image representations and its various

classifications have been given. Image quality assessment has been briefed. Basics of

transform based image compression along with JPEG image compression have been

described. The energy compaction property of DCT has been studied by compressing the

images with few low frequency DCT coefficients. Compression ratios at different scale

of compression for different standard images have been tabulated and images are

displayed for quality visual assessment. Separable discrete Hartley transform (SDHT) has

been introduced for image compression and decompression. Quality of images obtained

from compression and decompression by SDHT is compared with DCT.

Chapter‐2 Image Compression

14

2.2 Image representation and classification

Image of a natural scene has infinite level of brightness and color intensity variations.

Apart from intensity, they are continuous function in two dimensional space. To process

the image for various applications by digital processors along with its storage in memory,

image data obtained from electronic image sensors (CCD or CMOS) in digital camera,

scanner or any similar device are converted into digital form by A/D converter. Sampling

and quantization steps are used [1]. The infinite intensity levels of the image has now

become digital having finite levels. Spatial continuity, itself being sampled by the fixed

points present on the sensor, is converted to discrete. Continuous image signal (natural

scene), now, is a two dimensional digital function, represented by f(x, y), where the

magnitude of function f represents the intensity from among finite levels of intensities at

any point (x, y) in the space. The coordinate (x, y) is discrete as shown in Fig.2.1. The

intensities at different points in space are called pixel elements or pixels of the image.

One example of finite level of intensities can be all integral values from 0 to 255. In

general, any digital image will have the fixed number of pixel elements in horizontal as

well as vertical directions. The term size of the image is used for the total number of pixel

elements in an image. It is represented by MxN, where M is the number of rows and N is

the number of columns of image data.

Fig.2.1 Representation of digital image in two dimensional spatial coordinate

Pixel

y

 x

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

f(x, y)

 (0,0)

Chapter‐2 Image Compression

15

In digital representation, the magnitude of intensity is represented by a fixed

number of bits for the entire pixels. Classification of image on the basis of the number of

bits used for representing each of its pixel value is as follows [72]

(a) Bi-level image

Each pixel will have one bit (binary) value, representing black and white. Textual

information can be represented by the bi-level image.

(b) Grayscale image

This is a most common type of image used in many applications. A grayscale image

represents the 2n shades of a gray, where n is the number of bits representing each pixel.

The 8-bits (one byte) representation is most preferred and used for display in computer

monitor and printing purpose as well. In 8-bit representation there are 256 shades of

gray (or intensities) between black and white.

(c) Continuous-tone image

In a continuous-tone image there are many shades of a color (or gray). In other words,

one pixel has many intensity levels such that nearby pixel intensity, though it differs by

one unit intensity level, appears same to the eyes. Images obtained from the digital

cameras and scanners are example of continuous-tone image. Color image is represented

by 24-bits pixel value in three color component planes R (red), G (green) and B (blue)

with 8-bits allocated for intensities of each color.

2.3 Image Quality Measurement Metric

Images are degraded in quality while going through the different processing steps such as

acquisition, compression, transmission and reproduction [73]. In image and video

processing fields, there are various systems and they all convey visual information for

human perception. There is trade-off between system resources and visual quality

obtained from these systems [74]. These requirements lead to necessity for the image

quality measurement metric. In addition, there are engineers working on the optimization

of signal processing algorithms [75]. So, it is also important for this perspective to test

Chapter‐2 Image Compression

16

algorithms for quality of the obtained signal (benchmarking algorithms). There are two

methods to evaluate the quality of images. These are as follows:

 Subjective Quality Measure

In the most of the image processing applications, human beings are the ultimate viewer

and hence, subjective quality evaluation is done by the human beings. Consensus of the

individuals regarding quality of compressed/decompressed images is taken in account.

Viewer gives ratings among different choices available. Mean opinion score (MOS) is a

numerical value that is the output of the observation given by [13],

 1

1

C

i i
i

C

i
i

n R
MOS

n
=

=

=
∑

∑

Here, Ri is the numerical value corresponding to category i, ni is the number of

judgments in that category and C is the number of category. However, subjective

evaluation is expensive and process is slow. So, quality measurement cannot be

incorporated in the automatic systems [73, 74].

 Objective Quality Measure

Accurate and automatic quality measurement can be done by formulating a mathematical

model. Signal-to-noise ratio (SNR) is a simple mathematical model of quality

measurement expressed in terms of mean square error (MSE) and signal variance (sσ),

given by [13],

2

10() 10log s

MSE
SNR dB σ⎛ ⎞

⎜ ⎟
⎝ ⎠

=

where variance is expressed by,

2 2

1 1 1 1
([,]) , [,]1 1M N M N

s
m n m n

f m n f m n
MN MN

μ μσ
= = = =

− == ∑∑ ∑∑

and MSE is given by,

(2.1)

(2.2)

(2.3)

Chapter‐2 Image Compression

17

2

1 1
([,] [,])1 M N

m n
f m n f m nMSE

MN
∧

= =

−= ∑∑

where f [m, n] represents original image and f
∧

[m, n] represents the image after the

application of compression/decompression process, the quality of which has to be

determined. The size of the image is MxN. SNR being dependent on the image variance,

another quantitative measurement metric is peak signal-to-noise ratio (PSNR). PSNR is

expressed by the same SNR equation with variance replaced by maximum intensity level

in the image representation. In case of 8-bits per pixel (gray scale) image, the maximum

intensity is 255.

2

10
255() 10log
MSE

PSNR dB ⎛ ⎞
⎜ ⎟
⎝ ⎠

=

PSNR is a better measurement matrix for comparing two images processed by the

hardware, as it gives the truncation error introduced due to limited bit-width

representation (e.g., register bit-width) [57].

2.4 Image Compression Model

Image compression reduces the amount of data from the original image representation.

There are two approaches to compress an image. These are:

(a) Lossless compression

(b) Lossy compression

Image data compressed by lossless compression method can be retrieved back accurately

in the reverse process called decompression. Lossless compression method has the

disadvantage that images can be compressed by a maximum compression ratio of about 3

to 4 (very low compression), where compression ratio (CR) is given by,

1
2

n
n

CR =

Here, n1 is the total number of bits in original image and n2 is the total number of bits in

compressed image. In lossy compression method, an image is compressed at the cost of

(2.4)

(2.5)

(2.7)

Chapter‐2 Image Compression

18

removing unwanted information from it which cannot be perceived by human visual

system (the human eyes are not able to distinguish the changes). With the help of lossy

compression technique, images can be compressed to a large extent (very high

compression) subject to quality requirement for image application. Hence, lossy

compression is a most common and used in many image and video coding standard such

as JPEG, MPEG etc.

Fig.2.2 shows a general image compression model. Image data representation has

redundancy (also called pixel correlation, interpixel redundancy or spatial redundancy),

in the sense, a pixel value can be predicted by its neighborhood pixels [1, 76]. De-

correlation process removes the spatial redundancy and hence, facilitates compression.

Some of the techniques used for this process are predictive coding, transform coding and

subband coding [76]. Apart from the interpixel redundancy, there is statistical

redundancy present in the data after de-correlation (not only image but any data possess

statistical redundancy). This is removed by entropy encoding process where more

probable symbol is assigned less number of bits and vice-versa (also called variable

length encoding). Huffman coding and arithmetic coding are two important techniques

used for entropy encoding of data [77], [78]. Although, arithmetic encoding gives slightly

Fig.2.2 A generalized image compression model [76]

Decorrelation
or

Preprocessing

Additional
Preprocessing

Entropy
Encoder

Input
image Lossless Encoding

Lossy Encoding

Compressed
image

Chapter‐2 Image Compression

19

more compression than the Huffman encoding, it is a more complex and computation

intensive. Therefore, Huffman coding is preferred choice in hardware implementation of

entropy coding. In case of lossless compression, images undergo entropy encoding

directly after de-correlation, whereas lossy compression require additional preprocessing

stage called quantization before it is encoded by entropy process. Quantization is

irreversible process and it is the only lossy stage in image compression model.

2.5 Transform based Image Coding

Transform based image coding is most preferred and widely used lossy image

compression (coding) method. Fig.2.3 shows the block diagram of transformed based

image compression coding technique. The purpose of the transform is to remove

interpixel redundancy (or de-correlate) from the original image representation. The image

data is transformed to a new representation where average values of transformed data are

smaller than the original form. This way the compression is achieved. The higher the

correlation among the image pixels, the better is the compression ratio achieved. An

image transform should have the following properties.

(a) Inverse transformation should exist

(b) De-correlate the original image data

(c) Clear separation of frequency

Inverse transformation is a pre-requisite requirement in any transform because

transformed data should be re-constructed for image formation by inverse process

(decompression). Orthogonal transform (like DCT, DHT, DWT, etc.) is used for this

purpose. A de-correlation property makes the transformed data independent from each

other. In lossy image compression, some coefficients are quantized to zero or altered to a

Fig.2.3 Transform based image compression model

Image in
NxN

blocks

NxN
Orthogonal
Transform

Quantization
Entropy

Encoding
Bit

stream

Re-
arrangement

Chapter‐2 Image Compression

20

new smaller value. Therefore, by the de-correlation property, in inverse transforms,

original image data remains nearly unchanged. Frequency separation brings the

transformed data made up of different frequency coefficients. An image contains very

high visual information in the low frequency contents than the high frequency content.

Very fine details are represented by high frequency contents of the image and in many

applications, fine details are not required (also in many cases these details are not

important as they are not visible to human eyes). Therefore, if clear order of frequency is

known, high frequency coefficients can be ignored (quantized to zero) in the coding stage

and hence compression is achieved. An ideal image transform should possess the

following two properties. These are:

(a) Maximum energy compaction

(b) Less computational complexity

By the energy compaction, very few coefficients can have high values in the transform

domain. Therefore, lesser the coefficients value, higher is the compression. Fast image

compression is required in many compression systems and complex transform leads to

high computation time making the process slower. Also, in case of faster implementation,

dedicated hardware is used. Furthermore, high complex algorithm requires more

hardware area, making the encoder design costly and also more power consuming.

Block based transform

Images can be transformed in non-overlapped smaller block size, like 4x4, 8x8, 16x16,

32x32, etc. Since, nearby pixels possess correlations, this trend is valid throughout the

entire image pixels. Therefore, larger the block size taken for the transform, more

correlation can be exploited and interpixel redundancy can be removed. In practice, it is

found that average coding gain improvement is much lower when increasing the

transform size [13, 79]. In contrast, the computational complexity increases by a larger

amount with increase of block size. Hence, a compromise is made for the transform size

between the computational complexity and coding gain and 8x8 block based transform is

adopted in many image and video coding standards, like JPEG image compression,

MPEG video compression, etc.

Chapter‐2 Image Compression

21

Quantization

Quantization process brings variable compression in the image compression process.

Quantization process is done by dividing each transformed coefficients by a constant step

size. In this process, transformed coefficients are made smaller to bring the compression

[15]. Inverse quantization step restores original coefficients but with round-off error.

Higher step size used for the quantization makes transformed coefficients smaller i.e.,

more compressed, with the cost of losing data in rounding and truncation. Quantization

step size can be controlled by a variable number. Automatic compression size is

incorporated by meeting the trade-off between image quality, bit-rate for transmission

and memory size used for the storage of compressed images. Transformed coefficients

possess the different frequency values. Accordingly, high frequency coefficients which

carry low visual information can be quantized heavily without losing important image

information.

Coefficients Re-arrangement

Many high frequency transformed coefficients when quantized heavily become zero. In

order to code the quantize coefficients efficiently, Run-Length encoding procedure is

applied. In Run-Length encoding procedure, not all zeros are encoded by a unique code

for zero, but it is encoded by the number of zeros preceding the non-zero coefficient.

Hence, larger zeros make little change in code length. Therefore, it is important that zero

quantized coefficients are not distributed among non-zero coefficients, rather for optimal

encoding, all zeros should come together in sequence. For this purpose, transformed and

quantized coefficients are re-arranged in increasing frequency order so that higher

frequencies (which are quantized to zero) appear last.

2.6 JPEG baseline Image Coding

JPEG baseline image coding is a transform based lossy image compression technique and

it is standardized by JPEG committee [14]. Image is processed in 8x8 blocks to reduce

the computational complexity for the implementation. The 8x8 block-wise 2-D DCT is

taken followed by quantization of DCT coefficients. A typical quantization matrix is

given by,

Chapter‐2 Image Compression

22

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

mQ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Quantized DCT coefficients are rearranged in increasing frequency order (zig-zag order)

as shown in Fig 2.4(a) so as to encode the visually significant coefficients first. The first

DCT coefficient is having zero frequency. It is called DC coefficient and the rest of the

63 coefficients are called AC coefficient [15]. DC coefficient from the previous block are

subtracted with the current block (differential coding) and are encoded using Huffman

coding. The DC coefficients represent the average image information of the block. The

DC differential coding is performed to reduce the code size as nearest block possess the

almost same average energy [1]. The AC coefficients are first encoded by run-length

coding where an AC coefficient and runs of zero preceding this coefficient are grouped.

This is performed because most of the high frequency coefficients (residing in bottom

right region) become zero after quantization and hence efficient (short) binary code is

obtained. The run-length coded data are then encoded by Huffman coding procedure. The

JPEG committee provides a standard table for quantization as well as Huffman coding

(Fig.2.4(b)). Quantization levels are stored in quantization table whereas, Huffman table

contains the base codes of the AC and DC coefficients. For getting base code for a

coefficient, its category (it is assigned for a range of coefficients [1]) and run-length code

(for AC coefficients) form the address to fetch the base code from the table. Base code is

extended with binary code of the coefficient to make the complete code of the coefficient.

The DC and AC coefficients code are then combined to form bit-stream. The run of zeros

more than 16 are encoded by special code. At the end when all coefficients in a block are

encoded, a special code indicating end of block is inserted. Huffman coding can be

performed without use of table, but it makes the encoding slower and also the

computation more complex.

Chapter‐2 Image Compression

23

Fig.2.4(a) Zig-zag ordering for DCT coefficients

Fig.2.4(b) JPEG baseline Image compression

2.7 Discrete Cosine Transform (DCT)

DCT is an orthogonal transform. Karhunen-Lo'eve transform (KLT) is optimal in class of

orthogonal transforms like Fourier transform, Walsh-Hadamard transform and Haar

transform and has the best energy compaction [72, 79]. However, KLT is not ideal for

practical image compression as its basis vectors has to be calculated according to the

pixel values of the image (i.e., KLT is a data dependent). For each image, there will be

Encoder

8x8 DCT Quanti-
zation

Zig-zag
order

Quantization
Table

Original Image
(in 8x8 block)

Bit
stream

generator Bit
stream

DC
Differential

Coding

Run Length
Coding

Category
Selection

Huffman
Code
Table

Chapter‐2 Image Compression

24

separate basis vectors that also need to be included in the compressed image for the

decompression process. It was found that DCT performs close to KLT and their

performances are also close with respect to rate-distortion criterion (quality at different

compression) [79]. In addition, there are several fast and hardware efficient algorithms

available for the computation of DCT [80–87]. Therefore, DCT became the widely used

transform for lossy image encoding/compression and also in the several other signal

processing applications.

2.7.1 2-D DCT Equation

For a NxN 2-D data X(i, j), 0 ≤ i ≤ N-1 and 0 ≤ j ≤ N-1, NxN 2-D DCT is given by [64],

1 1

0 0

(2 1) (2 1)(,) () () (,) cos cos
2 2

2 N N

i jN
i u j vF u v C u C v X i j

N N
π π− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ += ×∑∑

where, 0 ≤ u≤ N-1 and 0 ≤ v ≤ N-1 and C(u), C(v) = 1/ 2 for u, v=0, C(u), C(v) =1

otherwise. The 2-D DCT equation is separable transform and can be evaluated by first

taking the 1-D DCT to rows followed by 1-D DCT to columns, where 1-D DCT is given

by,

1

0

2 (2 1)() () ()cos
2

N

iN
i uF u C u X i

N
π−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

+= ∑

With, C(u) defined as above. Fig.2.5 shows the 2-D DCT calculation from 1-D DCT

using separable property. DCT transforms the spatial data into frequency domain.

Fig.2.5 2-D DCT from separable property

(2.8)

X(i, j) T(i, j)

1-D DCT
to Rows

F(i, j)

1-D DCT
to Columns

Original
NxN data

2-D DCT of
NxN

(2.9)

Chapter‐2 Image Compression

25

Fig.2.6 64 basis functions image of an 8x8 2-D DCT matrix

For i, j=0, cosine term will be zero and F(0,0) will represent the average value (DC) of all

NxN pixels. Basis function images are generated for 8x8 2-D DCT as shown in Fig.2.6.

Top-left image has no intensity variation and hence, it corresponds to DC frequency.

Other 63 images are varying in intensity and shows spatial frequencies. Frequencies are

increasing from top to bottom and left to right with bottom right representing the

maximum frequency. Therefore, top left coefficient of any transformed image block

corresponding to zero frequency is called DC coefficient and rest are called AC

coefficients.

2.7.2 Energy Compaction Property of 2-D DCT

DCT has very good energy compaction. Most of the image energy is stored in few DCT

coefficients. Images are transformed into 2-D DCT and images of coefficients are

displayed in right side for three types of standard images as shown in Fig. 2.7. Top left

side is brighter indicating high intensity, i.e., high numerical value of coefficients,

whereas, rest of the parts are black that means they have almost zero value (and hence

zero energy) as energy is proportional to square of the image intensity.

Chapter‐2 Image Compression

26

(a)

(b)

(c)

Fig.2.7 Energy compaction of DCT. Image (left) and its DCT coefficients’ image
(right) (a) 450x450 Lena, (b) 256x256 Cameraman and (c) 512x512 Peppers

Chapter‐2 Image Compression

27

2.7.3 Image Reconstruction by selective DCT coefficients

DC coefficient of DCT contains the average pixel values of the image. This is true for the

block based transform as well. In case of block based transform, DC coefficients of each

block carry most of the signal energy of that block and therefore, DC coefficients of the

image have highest energy as compared to the average energy possess by total AC

coefficients of entire blocks. This is shown in Fig.2.8, where Lena and Peppers images

are first DCT transformed in 8x8 blocks. Then, AC coefficients of each block is

discarded (quantized to zero) and image is reconstructed by Inverse DCT (IDCT) with

the help of only DC coefficients of each block. Energy compaction property of DCT

(a)

(b)

 Fig.2.8 Original (left) and reconstructed (right) image after quantizing all AC
coefficients of 8x8 DCT to zero (a) Lena and (b) Peppers

Chapter‐2 Image Compression

28

coefficients discussed in Sub Section 2.4.2 clarify that most of the image energy is

contained in few low order DCT coefficients. This observation can be exploited to reduce

the computation of DCT in both hardware and software implementations. Four types of

images are JPEG compressed and decompressed in three cases by selectively taking 8x8

DCT coefficients.

Case 1: All 64 DCT coefficients are taken for reconstruction.

Case 2: Only first row and first column DCT coefficients are taken for reconstruction.

Case 3: Only first 15 DCT coefficients in zig-zag ordered are taken for reconstruction.

TABLE 2.1 shows the percentage improvement in compression ratio (CR) in case 2 and

case 3 with respect to case 1. Shadow rows shows the CR for heavy quantization (higher

value of quantization parameter i.e., “quality”). Fig.2.9 shows the reconstructed

TABLE 2.1
COMPRESSION RATIO OBTAINED FOR DIFFERENT QUANTIZATION LEVEL

Images

Compression
ratio in case
1

(all 64 DCT
coefficients
taken)

Compression
ratio in case
2

(first row and
first column
DCT
coefficients
taken)

Compression
ratio in case
3

(first 15
coefficients
taken)

%
improvement
in
compression
ratio in case 2
(as compared
to case 1)

%
improvement
in
compression
ratio in case 3
(as compared
to case 1)

Lena

(448x448)

quality=1 12.66 19.08 14.16 50.7 % 11.84 %

quality=5 33.74 39.96 34.09 18.4 % 1.0 %

Peppers
(512x512)

quality=1 12.50 18.17 14.02 45.3 % 12.1 %

quality=8 41.50 45.24 41.58 9.0 % 0.1 %

Crowd
(512x512)

quality=1 6.88 11.61 7.96 68.7 % 15.7 %

quality=5 17.48 23.87 17.62 36.5 % 0.8 %

Cameraman
(256x256)

quality=1 9.64 16.58 13.30 72 % 37.9 %

quality=3 19.42 27.98 22.06 44.0 % 13.6 %

Note: “quality” is a parameter in JPEG compression which decides DCT coefficients quantization level

Chapter‐2 Image Compression

29

(a)

(b)

(c)

(d)

Fig.2.9 From left to right, original image, reconstructed image by taking all DCT
coefficients, reconstructed image by taking first row and first column DCT

coefficients, reconstructed image by taking first 15 coefficients in zig-zag order of
(a) 448x448 Lena, quality=1, (b) 448x448 Lena, quality=5, (c) 512x512 Peppers,

quality=1, (d) 512x512 Peppers, quality=8

Chapter‐2 Image Compression

30

(e)

(f)

(g)

(h)

Fig.2.9 (continued), (e) 512x512 Crowd, quality=1, (f) 512x512 Crowd, quality=5, (g)
256x256 Cameraman, quality=1, (h) 256x256, Cameraman, quality=3.

images in above mentioned three cases. Reconstructed images are shown for the quality

comparison as psychovisual information (not visible to eyes [88]) are removed by

Chapter‐2 Image Compression

31

discarding the high frequency coefficients. The following observations can be made from

TABLE 2.1 and Fig. 2.9.

• There is much improvement in compression ratio in case of low quantization

without visual image quality degradation.

• At the higher quantization, smooth image (like Peppers, Lena) shows little

improvement in compression ratio while detailed images (Cameraman) show still

high improvement without visual quality degradation when first 15 low frequency

coefficients are taken for image reconstruction, quantizing rest to zero.

From these observations, it can be concluded that DCT algorithm, which computes DCT

coefficients one by one sequentially, can be made computationally efficient (at the same

time low energy consuming) and faster by selectively taking the DCT coefficients for the

image quality requirements. In addition, higher compression can be achieved by doing so.

2.8 Separable Discrete Hartley Transform (SDHT)

Discrete Hartley transform (DHT) has many applications in signal processing and

communications [89–91]. Discrete Hartley transform (DHT) has been used as a substitute

for discrete Fourier transform (DFT) by Bracewell et al. [92]. DHT is used in JPEG

based image compression with DHT replacing the DCT by Pattanaik et al. [93]. Original

2-D DHT equation is not separable like 2-D DCT. In the literature [94], the concept of

separable DHT was introduced by Watson. Separable 2-D DHT (SDHT) can be

implemented in hardware by row-column transformation method of 1-D DHT and has

very low hardware requirement as compared to DCT (shown in following chapter). Non

separable DHT cannot be implemented using 1-D DHT making its implementation

computation intensive. Separable 2-D DHT is given by the equation [94],

1 1

0 0

2 2(,) (,)
N M

x y

ux vyY u v f x y cas cas
N M
π π− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ∑∑

where, () cos() sin()cas x x x= +

(2.10)

Chapter‐2 Image Compression

32

and the 1-D DHT is given by the equation,

1

0

2() () , 0,1,..., 1
N

n
Y k X n cas nk k N

N
π−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= = −∑

where, 2
nkH cas nk

N
π⎛ ⎞

⎜ ⎟
⎝ ⎠

= is the transform’s kernel.

Fig. 2.10 shows the basis function image of SDHT. Higher frequencies coefficients

occupy the middle place while lower are at boundaries. SDHT is tested for the

performance in terms of PSNR with respect to DCT with two standard images in image

compression area namely Lena and Cameraman. Images are compressed by JPEG

standard principle with two modifications. In case of SDHT based transform, DCT block

is replaced by SDHT and quantization matrix has been modified to quantize the SDHT

coefficients as per the DCT (same numbers are used but in appropriate places). Fig.2.11

shows the performance curves. It can be observed that SDHT performs better in heavy

quantization (at higher compression) while DCT performs better in lower compression in

Fig.2.10 Basis function image of SDHT

(2.11)

Chapter‐2 Image Compression

33

(a)

(b)

Fig.2.11 PSNR performance of SDHT and DCT for (a) Lena image and (b)
Cameraman image

both types of images. Therefore, SDHT can be used for the image compression in

applications requiring high compression and low hardware cost (low hardware also leads

Chapter‐2 Image Compression

34

(a)

(b)

Fig. 2.12 Original (left), reconstructed image using DCT (middle) and reconstructed
image using SDHT (right) at very high compressions (a) Lena and (b) Cameraman

to low power consumptions) Fig.2.12 shows the decompressed images at very high

compression and TABLE 2.2 shows their performance values in terms of PSNR and

compression ratio.

TABLE 2.2
PSNR AND COMPRESSION RATIOS OF IMAGES SHOWN IN FIG.2.12

 Lena Image Cameraman Image

Transform used DCT SDHT DCT SDHT

PSNR 29.44 30.83 30.53 30.95

Compression Ratio 60.88 60.54 48.71 48.93

Chapter‐2 Image Compression

35

2.9 Conclusions

Digital image representation and its quality measurement metric have been described in

this chapter. The energy compaction property of DCT has been studied by decompressing

the standard images with selected low frequency DCT coefficients. High compression

can be obtained when images are compressed with few lower DCT coefficients without

visual distortion. An alternate transform namely separable discrete Hartley transform

(SDHT) has been used for the image compression and decompression in JPEG

compression procedure replacing DCT. From simulation, it is found that it performs

better than DCT in high compression.

36

Chapter 3
Distributed Arithmetic and Its VLSI

Architecture

3.1 Introduction

Multimedia digital signal processing became more reliable, faster, flexible and cost-

effective because of advancement in the VLSI technology. Technology scaling has

enabled us to integrate a number of different components on a single VLSI chip. A signal

processing algorithm can have different VLSI architectures depending upon the area in

which it has to be used. In the early design stage, ‘Architecture Exploration’ is used to

search for the best architecture that meets the desired specifications at the lowest possible

component used. DCT is a computation intensive algorithm and is realized by a large

number of additions and multiplications operations. Systolic architecture was primarily

used for the DSP algorithm implementation because of its modularity and parallel

processing. Many DCT architectures were proposed on systolic design to reduce the

number of multipliers in the systolic design as multipliers consumes high power and

occupy less area. Nevertheless, they could not eliminate it. One solution to complete

removal of multipliers from the DSP architecture implementation became possible by the

use of distributed arithmetic (DA).

In this chapter, basics of two types of DA architectures, one using ROM and

another free of ROM are described. Architectures of 8-point 1-D DHT, 8x8 SDHT, 8-

point DCT, 8x8 2-D DCT are described and implemented in both ROM based DA and

ROM free DA approach. Comparisons between them are done in terms of hardware and

power requirements. An area and power efficient DCT is also proposed and implemented

in FPGA as well as standard cell based ASIC.

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

37

3.2 Systolic Architecture

Systolic architecture is used to implement digital signal processing and arithmetic

algorithms in which fast processing is required. It was the preferred design approach for

the special purpose systems because of its simple, regular and pipeline operations done

by set of small interconnected similar array cells called processing elements (PEs).

Breaking the whole processing into small cells has the two major advantages. First one is

that design cost (nonrecurring) is reduced as designing of a small cell cost less as

compared to complex one. These small cells are reused for implementing the desired

algorithm (Reusability). Second advantage of the systolic architecture is that it is able to

Fig. 3.1 Operations using (a) single processing element and (b) Systolic Array [42]

Systolic Array

 (a)

 (b)

MEMORY

PE

100 ns
(1 byte/cycle)

5 Millions of Operations
per second

for PE requiring
2 byte data per operation

MEMORY

PE

100 ns
(1 byte/cycle)

30 Millions of
Operations per second

for PE requiring
2 byte data per operation

PE PE PE PE PE

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

38

match the high processing power of its internal components with the slow speed I/O

interconnects and lower memory bandwidth. If the I/O speed is low as compared to

speed of data being computed by an internal architecture, then high memory bandwidth is

required to speed up the computation. In case of systolic architecture, a set of data

brought from the memory is processed by several PEs in a pipeline structure i.e., multiple

operations are performed on each data item. Therefore, computation is increased at the

same memory bandwidth [42]. Fig. 3.1 depicts an example illustrating the increased

speed at the same memory bandwidth. Here, the maximum speed between memory

processing element is 10 million bytes per second. If the each operation requires two

bytes of data, then maximum speed is limited to 5 million operations per second. By the

use of multiple processing, the speed is increased to 30 million operations per second at

the same bandwidth.

One example for systolic array is given by Kung [42], where the following

convolution operation has to be mapped on systolic array. Given a sequence of weights

[w1, w2,..,wk] and the input sequence [x1,x2,..,xn], the following result sequence [y1,

y2,…,yn+1-k] can be obtained which is defined by,

1 2 1 1...i i i k i ky w x w x w x+ + −= + + +

Fig. 3.2 (a) shows the systolic architecture for the convolution with k=3, whereas Fig. 3.2

(b) shows the basic cell (PE) used in the architecture. Multiple data sets have to be

convolved with the fixed value w1,w2 and w3. Therefore, to speed up of the operations,

each data is available to multiple processing elements and each one perform parallel

multiply operations, resulting w1x1, w2x1 and w3x1 in first clock cycle. With the initial

value of y set to zero, accumulated result w1x1 is pushed to the right cell. In the second

clock cycle, this result is accumulated with w2x2. After third cycle, final yi results are

available at each clock cycle. A major area and power consuming module in VLSI is

multiplier. Past research in the implementation of any DSP algorithm using systolic array

was centered on the reduction of the number of multipliers. In many literatures, DCT is

implemented by systolic array architectures with the purpose of reducing the number of

(3.1)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

39

Fig. 3.2 (a) Systolic convolution array and (b) basic operations of one PE [42]

multipliers [43–48]. Apart from systolic, other DCT implementations also favored the

multiplier reduction. In the literature by Malvar [49], DCT is implemented using DHT

with reduced number of multipliers. Chin et al. [50] proposed new convolution based

algorithm for computing DCT. Still, all these algorithms are not free of multipliers, i.e.

they need multipliers along with adders and other logic components for the VLSI

implementation. Next section describes distributed arithmetic (DA) algorithms which

implements DSP algorithms without multipliers, which is important for area and power

savings in VLSI designs.

3.3 ROM based Distributed Arithmetic (DA)
Distributed Arithmetic (DA) is a bit serial computation approach. It implements

multiplications without multiplier in VLSI design. For DA implementation of inner

product of arrays, one of the inputs should be constant array. ROM based DA relies on

the manual pre-computations of constants and storing them in ROM. These pre-computed

x1

y1

x2

y2

x3

y3
W2 W3 W1

 W

xin

yin yout

yout yin +W • Xin

(a)

(b)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

40

values are fetched from the ROM addressed by the input bits. According to White [51],

by careful design, one may reduce the total gate count in a signal processing arithmetic

unit upto 80 percent. An example of DA approach for the inner product implementation

in signal processing given by White [51] is as follows. Consider the sum of product

expressed by,

1

k

k k
k

A xy
=

=∑

 Here, Ak are constant and xk are other set of inputs. Assuming xk to be a fractional value

(or normalized to fraction), i.e., |xk| < 1, it can be expressed in 2’s complement binary

representation as,

0

1

1
2 n

k k

N

kn
n

bx b −
−

=
+= − ∑

The bk0 is sign bit whereas, bk,N-1 is the least significant bit (LSB) in the binary

representation of bit-width N. Putting xk from (3.2b) in (3.2a), y can be written as,

1

0
1

1

0
1 1 1

1
2

2 ()

N
n

k kn
n

N k k
n

k kn k k
n k k

k

k
k

b b

A b A b

Ay
−

−

=

−
−

= = =

=

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
=

= ∑

∑ ∑ ∑

∑

Since Ak are constants, from (3.2c), it can be found that for given number of elements in

the inputs (known value of k), expression in the bracket can be pre-computed and stored

in ROM. Since, bkn are binary 1 or 0, when multiplied with Ak, it will make Ak either 0 or

no change in it. For example, suppose number of inputs are k = 3 and number of bits in

the binary representation are 4 (N=4), then for a set of inputs [x1=1010, x2=1100, x3=

1001] in 2’s complement (first bit being a sign bit), the term in (3.2c) given by,

1

1 1

N

n

k

k nk
k

A b
−

= =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

×∑ ∑

can be written as,

(3.2a)

(3.2b)

(3.2c)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

41

() ()
()

1 2 3 1 2 3

1 2 3

1 2 3
1 1 1

(0) (1) (0) (1) (0) (0)
(0) (0) (1)

k k k

k k k k k k
k k k

A A A A A A

A A A

A b A b A b
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
=

× + × + ×

× + × + × + × + × + ×
+ × + × + ×

∑ ∑ ∑

The b1k represents bit first of the kth input (which is 0 for first including 1 for second

input and 0 for third input) and likewise. Hence, from (3.2d), different combinations of Ak

can be pre-computed and stored in memory. The addresses of the pre-computed values

will be given by the nth bit of all inputs. In the above example, it will be 010, 100 and

001. The size of the memory (ROM) will be the possible binary combinations of Ak i.e.,

2k and the number of clock cycles required for getting final sum of product will be the

number of bits in the input representation. The second term in (3.2c) i.e., 01
()k

k kk
A b

=
−∑

has negative sign which means there will be negative storage for all positives as well. So

the total memory requirement will be 2x2k. TABLE 3.1 shows the binary input

combinations. The multiplication with 2-n in the first term will be performed

TABLE 3.1
ROM CONTENTS FOR THREE 4-BITS INPUTS

In
pu

ts
 (x

k)

 b1n b2n b3n

 (sign-bit)
ROM contents

for 1 ≤ n ≤ N-1
 0 0 0 A1×0+A2×0+A3×0= 0
 0 0 1 A1×0+A2×0+A3×1= A3
 0 1 0 A1×0+A2×1+A3×0= A2
 0 1 1 A1×0+A2×1+A3×1= A2+ A3
 1 0 0 A1×1+A2×0+A3×0= A1
 1 0 1 A1×1+A2×0+A3×1= A1+ A3
 1 1 0 A1×1+A2×1+A3×0 = A1+ A2
 1 1 1 A1×1+A2×1+A3×1= A1+ A2+ A3

for n=0
 0 0 0 – (A1×0+A2×0+A3×0)= 0
 0 0 1 – (A1×0+A2×0+A3×1)= – A3

 0 1 0 – (A1×0+A2×1+A3×0)= –A2
 0 1 1 – (A1×0+A2×1+A3×1)= –(A2+ A3)

 1 0 0 – (A1×1+A2×0+A3×0)= –A1
 1 0 1 – (A1×1+A2×0+A3×1)= –(A1+ A3)
 1 1 0 – (A1×1+A2×1+A3×0) = – (A1+ A2)
 1 1 1 – (A1×1+A2×1+A3×1)= – (A1+ A2+ A3)

(3.2d)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

42

Fig. 3.3 Architecture of ROM based DA

by n-bit right shift operation. Fig. 3.3 depicts the architecture of this ROM based DA.

Three inputs (x1, x2, x3, 4-bits each) are applied serially (one bit at each clock cycle, sign-

bit first and LSB last) by using parallel to serial converter (PISO) at each input address

line of ROM in parallel fashion. Since contents of ROM in the lower half (for n=0) of the

TABLE 3.1 is same as upper half (for 1 ≤ n ≤ N-1) with a sign change, only one half of

the contents need to be stored. By using a control signal (ctrl), sign change can be done

by 2’s complementer circuit at appropriate time, i.e., at first clock cycle ROM content

will be negated. Here, width of the memory is denoted as M and it will determine the

precision of the fractional data. Adder will accumulate the data coming from the ROM.

Each data from ROM needs to be shifted left by an increasing number of bits every clock

cycle before accumulating in adder (first clock cycle 2-0=1, no shift, second clock cycle

2-1=1/2, one bit shift, third clock cycle 2-2=1/4, two bit shift and so on). This can be done

by shifting the accumulated result itself one bit at each clock cycle right (left shift of one

operand is equivalent to right shift of another). Final result will be obtained in y at N

clock cycles (4 clock cycles in the present example).

Offset Binary Coding (OBC) Technique

White [51] has suggested a technique called offset binary coding (OBC) to reduce the

ROM size by half. By using the OBC technique, size of ROM can be made half in ROM

PISO

x1
(1010) 0 1 0 1

sign-
bitLSB

PISO

 x2
(1100) 0 0 1 1

PISO

 x3
(1001) 1 0 0 1

ROM
(size

=23xM)

 2’s
comple-
menter

M
U
X

ADDER

SHIFTER

y

ctrl

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

43

based DA. Here are the illustrations for this technique. For interpretation, let input data

are not in (0, 1) straight binary code, but in (1, –1) offset binary code. Let,

()1
2k k kx x x⎡ ⎤⎣ ⎦= − −

Since, xk is a 2’s complement binary, its negative will be expressed as,

1
(1)

0
1

2 2
N

n N
knkk

n
bx b

−
− − −

=

+ +− = − ∑

Here, bar indicates the complement of that bit. From (3.2b) and (3.3b), equation (3.3a)

can be written as,

1
(1)

00
1

1 ()2 2
2

()
N

n N
knkk k kn

n
b bx b b

−
− − −

=

⎡ ⎤− −⎢ ⎥⎣ ⎦
= − − +∑

If we define two new variables ckn and ck0 such that ()knkn knc b b= − for 0n ≠ and

00 0()kk kc b b= − − , then (3.3c) can be written as,

1
(1)

0
1

1
(1)

0

1 2 2
2

1 2 2
2

N
n N

k k kn
n

N
n N

kn
n

c c

c

x
−

− − −

=

−
− − −

=

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤

−⎢ ⎥⎣ ⎦

= +

=

∑

∑

It is clear that since ckn and ck0 are difference of 0 and 1, their values will be either 1 or –1

(0–1=–1 and 1–0=1). So sum of product from equations (3.2a) and (3.3d) are,

1
(1)

0

1
(1)

0

1

1

1 1

1 2 2
2

1 12 2
2 2

N
n N

kn
n

N
n N

n

k

k k
k

k

k
k

k k

k kn k
k k

c

A x

A

A c A

y

−
− − −

=

−
− − −

=

=

=

= =

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞

−⎜ ⎟
⎝ ⎠

=

=

=

∑

∑

∑

∑

∑ ∑

Once again, all possible summations of Ak can be pre-computed and stored in ROM.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

44

 All possible combinations of Ak summations for k=3 (3 inputs, as mentioned in previous

example) are shown in TABLE 3.2. Top half contents of ROM are same as other half

with a negative sign. Therefore, only half of 2k ROM is required and can be addressed by

only k–1 bits. In the TABLE 3.2, if first half are stored in ROM, then values

corresponding to lower half bits are obtained by inverting bits of the upper half. For

example, data at location addressed by [1 0 0] is negative of data addressed by [0 1 1],

data addressed by [1 0 1] is negative of data addressed by [0 1 0] and likewise. This can

be realized in hardware by doing XOR with bits of first input data. The second expression

in equation (3.3e) is a constant which can be stored in a register (kI) and added with

initial condition. Fig 3.4 shows the architecture of ROM based DA using OBC technique.

TABLE 3.2
ROM CONTENTS FOR THREE 4-BITS INPUTS IN OBC TECHNIQUE

 b1n b2n b3n

 (sign-bit)
ROM contents

Inputs (xk) 0 0 0 –A1–A2–A3
 0 0 1 –A1–A2+A3
 0 1 0 –A1+A2–A3
 0 1 1 –A1+A2+A3

 1 0 0 A1–A2–A3=– (–A1+A2+A3)
 1 0 1 A1–A2+A3=– (–A1+ A2– A3)
 1 1 0 A1+A2–A3 = – (–A1– A2+ A3)
 1 1 1 A1+A2+A3=– (–A1– A2– A3)

Fig. 3.4 Architecture of ROM based DA using OBC technique

 2’s
comple-
menter

M
U
X

ADDER

SHIFTER

y

X
O
R

X
O
R

PISO

x2
(1100) 0 0 1 1

sign-
bitLSB

PISO

 x1
(1010) 0 1 0 1

PISO

 x3
(1001) 1 0 0 1

R
O
M

Size
2k-1×M

Register
(kI)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

45

3.3.1 FPGA Implementation of 8-Points 1-D DHT using ROM based DA

1-D DHT implementation using ROM based DA requires less hardware as compared to

systolic array implementation [95]. From (2.11), 8-point DHT can be written as,

7

0
7

0

2() () , 0,1,...,7
8

() , 0,1,...,7nk

n

n

Y k X n cas nk k

X n H k

π
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

= =

∑

∑

For the computation of first coefficient y(1), there will be 8-inputs array multiplication

given by,

1

7

0
(1) () n

n
Y X n H

=
=∑

Similarly for the other DHT coefficients, 8-array multiplications are required to be done.

Since each 8-array multiplication takes ROM of size 27 i.e., 128 locations, total number

of ROM locations required for 8-point DHT are 8x128. Hnk values are pre-computed

according to TABLE 3.2 for each coefficient and stored in ROM. We have taken 4-bits

precision of fractional binary value stored in ROM. 8-bits inputs and 11-bits output has

been taken for the implementation. VHDL code has been written for the 8-point DHT

implementation in xc2vp30 device on Virtex-II board of Xilinx FPGA [96]. TABLE 3.3

shows the hardware utilizations of FPGA and Fig. 3.5 depicts the RTL schematic

generated. Power analysis is performed using xpower analyzer tool in Xilinx ISE 10.1.

TABLE 3.3
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT DHT USING ROM BASED DA

FPGA-chip: Xilinx XC2VP30
 Used Available Utilization
of slices 561 13696 4 %
of 4 input LUTs 998 27392 3 %
of slice Flip Flops 341 27392 1 %
Min. Period (ns) 5.92 - -
Power (mW) 48.8 - -

(3.4)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

46

Fig. 3.5 RTL schematic of 8-points DHT using ROM based DA

3.3.2 FPGA Implementation of SDHT using ROM based DA

8x8 2-D SDHT has been implemented using the row-column decomposition technique.

First 8-point 1-D DHT is taken to all rows one by one. The transformed 64 1-D DHT

coefficients are stored in 64 11-bits width registers. Finally, 8-point 1-D DHT is taken

column-wise to 1-D DHT coefficients. Fig. 3.6. depicts the flow.

Fig. 3.6 Row-column decomposition technique for 2-D SDHT implementation

8x8 data
IN

Column-wise
8-point

1-D DHT

Registers
(64x11 bits)

2-D SDHT
Coefficients

OUT

Row-wise
8-point

1-D DHT

1-D DHT
coefficients

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

47

A sample 8x8 data is taken for the simulation and hardware verification given by

matrix,

30 29 39 42 32 36 46 39
33 34 37 36 36 42 43 33
37 40 34 32 41 45 38 32
40 43 35 36 45 40 35 47
40 42 38 42 46 35 43 75
40 40 41 43 41 40 65 102
40 40 41 36 35 58 95 117
41 41 40 27 30 75 117 121

iD =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and its MATLAB simulation result for 2-D SDHT is given by,

2934 269 360 212 146 94 0 556
397 48 260 208 128 83 143 370
214 139 24 29 26 8 120 253
147 83 41 36 22 11 55 170

()
104 50 34 25 16 5 34 117
64 35 17 17 9 6 21 66
0 0 6 5 0 0 2 0

336 238 335 33 48 13 141 426

o SDHTD

− − − − −

− − −

− −

− −
=

− −

− −

−

− − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

In Xilinx ISE environment, ChipScope Pro is a tool that integrate the logic analyzer and

other measurement hardware components with the target design inside the Xilinx FPGA.

Apart, ChipScope Pro contains many features that a designer needs to verify his design.

Hardware triggering can be done by external switch without affecting the original design

inside the FPGA [97]. Xilinx xc2vp30 device on Virtex-II pro board is programmed by

bit-file generated from the ISE 10.1 tool and hardware output is obtained from device

using ChipScope Pro logic analyzer tool through USB cable. Fig. 3.7 shows the 2-D

SDHT results of 8x8 data matrix Di. When compared to MATLAB simulations results in

Do(SDHT) matrix, error is present because of fixed point binary representation of

fractional data in ROM.

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

48

Fig. 3.7 Hardware implementation in Xilinx FPGA of 8x8 data matrix Di through
ChipScope Pro tool

3.4 ROM Free DA

The following are the disadvantages of ROM based DA.

1. Size of ROM is given by 2(k-1)×M where k is size of input M is precision of

fractional constant (ROM size increases as the transform size).

2. Bit serial operation along with ROM access makes the overall computation

slower (lower throughput).

Also, ROM based design is not preferred choice in VLSI because ROM has slow speed

(ROM access time) and more power consumption [55–56]. ROM free DA architecture

exploits the sparse nature of matrix formed by binary representation of coefficients (most

places are zero) in contrast to pre-computing and storing them in ROM based DA i.e.,

constant coefficients are distributed. Shams et. al. [57] first gave the analysis of ROM

free DCT and named the algorithm NEDA (New DA). The following is the description of

NEDA.

Consider the sum of product of two vectors given by,

1

L

k k
k

y A X
=

=∑ (3.5a)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

49

which can be written as,

[]
1

2
1 2 L

L

X
X

y A A A

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

L
M

where, Ak are the constant coefficients and Xk are the input variables. In binary 2’s

complement form Ak can be expressed as,

1
, 1

2

,
0

2 2N n
k k N

N

k n
n

A A A−
−

−

=
+= − ∑

Ak,n are bit 0 or 1. N is the number of bits in binary representation of Ak and Ak,N-1

represents the sign-bit while Ak,0 the LSB. Here, N is referred as DA precision. Equation

(3.5c) can be expressed in matrix product form given by,

,0

,10 1 1

, 1

2 2 2

k

kN
k

k N

A
A

A

A

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

L
M

From (3.5d), for each k, equation (3.5b) can be written as,

1,0 2,0 ,0 1

1,1 2,1 ,1 20 1 1

1, 1 2, 1 , 1

1

20 1 1

2 2 2

2 2 2

L

LN

N N L N L

N

L

A A A X
A A A X

y

A A A X

X
X

y M

X

−

− − −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L
L

M M L M M

L

L
M

Here, matrix M is a sparse matrix as it contains the binary values either 0 or 1. From

equation (3.5e), it is evident that summation y can be realized by using adders only and

(3.5b)

(3.5c)

(3.5d)

(3.5e)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

50

also less number of adders will be used depending upon the number of 1’s present in the

sparse matrix M. For example, suppose two sets of vectors are given by A1, A2, A3 as

constant coefficients and X1, X2, X3 as variables. If binary 2’s complement representation

of A are,

1 2 3[1 0 0 1], [0 1 0 1], [1 1 0 1]A A A= = =

then from equation (3.5e), their sum of product is,

() () ()

1
0 1 2 3

2

3

1 2 3

0 1 2 3

2 3

1 3

0 2 3
1 2 3 2 3 1 3

1 1 1
0 0 0

2 2 2 2
0 1 1
1 0 1

0
2 2 2 2

2 2 2

X
y X

X

X X X

X X
X X

X X X X X X X

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎣ ⎦

+ +⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅⎣ ⎦ ⎢ ⎥+
⎢ ⎥− −⎣ ⎦

= + + ⋅ + + ⋅ − + ⋅

Expression in (3.5f) can be realized by the hardware architecture shown in Fig. 3.8

where, ‘+’ and ‘–’ signs represent adder and subtracter respectively. The structure is free

Fig. 3.8 Structure to realize the sum of vectors in the example using ROM free DA

(3.5f)

X1

X2

X3

+

<<

<<

– +

+

+
+

y

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

51

of ROM and multipliers. It can be implemented in a single clock cycle with the help of

adders/subtracters and shifters only. Therefore, ROM free DA is faster. Further,

adders/subtracters can be compressed in number of bits to reduce the area of design. For

example, shifting the binary values right results in less number of bits in its

representation and hence, bit width of the adders can be reduced accordingly. Bit width

reduction of adders in ROM based DA leads to low accuracy. Following are the

differences between ROM based DA and ROM free DA for sum of product

implementation.

1. Number of adders in ROM free DA is proportional to number of 1’s present in

binary representation of constant coefficients but in case of ROM based DA,

number of adders and shifters requirement is 1 each along with ROM of size 2k-1.

2. With the increased number of bits in input representation, width of adders in

ROM free DA will increase but the number remains the same whereas, in ROM

based DA, it will lead to increased clock cycle and hence slower speed.

3.4.1 FPGA Implementation of DCT using ROM free DA

Chungan et al. [58] has implemented 8x8 2-DCT in standard cell technology library using

ROM free DA. Adders are claimed to have more compressed in as compared to DCT

NEDA architecture of DCT in [57]. For 8-point 1-D DCT, equation (2.9) can be written

as,

7

0

1
2

(2 1)() () ()cos
16i

i uF u C u X i π
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

+= ∑

In [65], (3.6) can be broken using periodicity properties as,

(0) [(0) (1) (2) (3) (4) (5) (6) (7)]
(1) [(0) (7)] [(1) (6)] [(2) (5)] [(3) (4)]
(2) [(0) (3) (4) (7)] [(1) (2) (5) (6)]
(3) [(0) (7)] [(1) (6)]() [(2) (5)](

F X X X X X X X X P
F X X A X X B X X C X X D
F X X X X M X X X X N
F X X B X X D X X

= + + + + + + +

= − + − + − + −

= − − + + − − +

= − + − − + − −) [(3) (4)]()

(4) [(0) (1) (2) (3) (4) (5) (6) (7)]

A X X C

F X X X X X X X X P

+ − −

= − − + + − − +

(3.6)

(3.7a)

(3.7b)
(3.7c)

(3.7d)

(3.7e)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

52

(5) [(0) (7)] [(1) (6)]() [(2) (5)] [(3) (4)]
(6) [(0) (3) (4) (7)] [(1) (2) (5) (6)]()
(7) [(0) (7)] [(1) (6)]() [(2) (5)] [(3) (4)]()

F X X C X X A X X D X X B
F X X X X N X X X X M
F X X D X X C X X B X X A

= − + − − + − + −
= − − + + − − + −
= − + − − + − + − −

where,

1 1 3 1cos , cos , cos ,
2 8 2 8 2 4

1 1 3 1 5 1 7cos , cos , cos , cos
2 16 2 16 2 16 2 16

M N P

A B C D

π π π

π π π π

= = =

= = = =

Now, ROM free DA based algorithm can be used to implement DCT equation above.

Constant cosine coefficients can be written in 2’s complement binary fractional form to

exploit the DA. For example, F(1) coefficient can be written with 12-bit DA precision

according to (3.5e) as,

() () () ()
()
()
()
()

0 1 12

0 1 12

(1) 2 2 2

(0) (7)
(1) (6)1 1 1 13 5 7cos cos cos cos16 16 16 16 (2) (5)2 2 2 2
(3) (6)

0 0 0 0
0 0 0 0
1 1 1 0
1 1 0 0
1 0 0 1
1 1 0 1

2 2 2 1 0 1 0
0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 0 1 0

F

X x
X x
X x
X x

π π π π

− −

− −

⎡ ⎤= −⎣ ⎦
−⎡ ⎤

⎢ ⎥−⎡ ⎤ ⎢ ⎥⋅ ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎡ ⎤= −⎣ ⎦ ⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

L

L

()
()
()
()

(0) (7)
(1) (6)
(2) (5)
(3) (6)

X x
X x
X x
X x

⎤
⎥
⎥
⎥
⎥
⎥
⎥

−⎡ ⎤⎥
⎢ ⎥⎥ −⎢ ⎥⎥ ⋅
⎢ ⎥⎥ −
⎢ ⎥⎥

−⎢ ⎥⎣ ⎦⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎦

(3.7f)
(3.7g)

(3.7h)

(3.8)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

53

It can be noted that negative sign is used for power of 2 because here binary

representation is for fractional value instead of integral value in equation (3.5e) and can

be implemented with right shift. If we write F(1) in the form as,

0

1

2

3

4

5

0 1 12 6

7

8

9

10

11

12

(1)
(1)
(1)
(1)
(1)
(1)

(1) 2 2 2 (1)
(1)
(1)
(1)
(1)
(1)
(1)

F
F
F
F
F
F

F F
F
F
F
F
F
F

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= −⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

where powers of F denote number of times shifting is required after evaluating right most

Fig. 3.9 Adder/subtracter structure to realize the 8-points DCT of equation (3.8) [58]

(3.9)

+

+

+/–
ALU9

+/–
ALU6

+/–
ALU7

+

+/–
ALU5

+/–
ALU8

+

+

+

+/–
ALU1

+/–
ALU2

+/–
ALU3

+/–
ALU4

X(0)
X(7)

X(1)

X(6)

X(2)

X(5)

X(3)

X(4)

R15
R14

R13

R12
R11
R10
R9
R8

R7

R6
R5
R4

R3
R2
R1

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

54

TABLE 3.4

FUNCTIONS OF EACH ALU FOR DIFFERENT DCT COEFFICIENTS [58]

 F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)
ALU1 + – + – + – + –
ALU2 + – + – + – + –
ALU3 + – + – + – + –
ALU4 + – + – + – + –
ALU5 + + + + – + + +
ALU6 + + – + + + – +
ALU7 + + – + + + – +
ALU8 + + + + – + + +
ALU9 + + + + – + + +
F0 0 0 0 R6 0 R5 R9 R12
F1 0 0 0 R6 0 R5 R9 R12
F2 R8 R2 R7 R1 R8 R7 0 R10
F3 0 R1 R11 R13 0 R15 R7 R1
F4 R8 R7 R11 R15 R8 R10 R7 R1
F5 R8 R13 0 R7 R8 R14 R9 R2
F6 0 R4 R7 R5 0 R3 0 0
F7 R8 R9 R7 R2 R8 R13 0 R14
F8 0 R4 0 R5 0 R3 R9 0
F9 R8 R7 R9 R14 R8 R9 R11 R13
F10 0 R12 R11 R7 0 R14 R11 R2
F11 0 R12 R7 R7 0 R14 R7 R2
F12 0 R14 R7 R12 0 R4 R7 R1

two matrices, then whole 8 DCT coefficients can be calculated by using adder/subtracter

structure in Fig. 3.9 and TABLE 3.4 combined [58]. The ‘+’ and ‘–’ sign in the

corresponding row indicates function (addition or subtraction) to be performed by the

ALUs in Fig. 3.9. Each DCT coefficient is obtained by summing Ri values in the same

column. Shifting must be done before summing the column values and number of bit to

be shifted right is decided by the power of F in that row. For example, coefficient F(1) is

calculated as,

2 3 4 5 6 7

8 9 10 11 12

(1) 2 / 2 1/ 2 7 / 2 13 / 2 4 / 2 9 / 2

4 / 2 7 / 2 12 / 2 12 / 2 14 / 2

F R R R R R R

R R R R R

= + + + + +

+ + + + +

and Ri values from Fig. 3.9 and TABLE 3.4 are,

(3.10)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

55

() ()() ()
() ()
() ()
() ()() ()

() ()
() ()
() ()
()

2 (0) (7) (1) (6) (2) (5)

1 (0) (7) (1) (6) ,

7 (0) (7) (3) (4) ,

13 (0) (7) (1) (6) (0) (7) ,

4 (0) (7) (2) (5) ,

9 (1) (6) (2) (5) ,

12 (1) (6) (3) (4) ,

14 (2) (5) (3

,R X X X X X X

R X X X X

R X X X X

R X X X X X X

R X X X X

R X X X X

R X X X X

R X X X

= − + − + −

= − + −

= − + −

= − + − + −

= − + −

= − + −

= − + −

= − + ()) (4)X−

as ALU1, ALU2, ALU3 and ALU4 perform subtraction whereas, others perform addition

operation. Division operations of power of 2 in (3.10) is performed by shifting the

corresponding Ri values right. Since the binary contents become smaller after shifting

i.e., bit width decreases, adders width can be made smaller accordingly to reduce the

area. For example, if R1 and R2 sizes are of 10-bits each, then adder bit width required to

add them should be of size 10-bits. Since R2 is shifted by 2-bits and R1 by 3-bits right, it

can be realized by using 8-bits adder as shown in Fig. 3.10.

Fig. 3.10 Adder bit width reduction in ROM free DA to save area and power (a)
without shift and (b) with right shift

Adder for error reduction in shift and add method

Shifted data are represented by less number of bits and hence, adder bit-width is reduced

resulting in less hardware cost, as explained above. For DCT computation, image data is

represented in signed 2’s complement form range -128 to 127. Bit width of shifted data is

determined by number of times shift operation is done. So different bit-width

intermediate data are present which are to be added. For 2-input adder, both input data

width has to be equal and hence, sign extension is done in smaller bit-width data. Shifting

+
R1

R2 (10-bits
adder)

(10-bits)

(10-bits)

+
(8-bits
adder)

7-bits)

(8-bits)

R1

R2

Right shift
(3-bits)

Right shift
(2-bits)

(10-bits)

(10-bits)
(a) (b)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

56

and addition with sign extension creates error. For example, if initial value is -2 in 8-bit

2’s complement representation, this can be written as 11111110. If we take 4 shifted

sample of this value a=111111 (shifting 2 times), b=1111 (shifting 4 times), c=111

(shifting 5 times), d=11 (shifting 6 times) all are -1. But all these data should be zero. If

we add these values in cascade, result will be -4 (which should be zero). To overcome

this problem, we have realized adder as shown in Fig. 3.11. If one of the inputs is -1,

then output is other input.

Fig. 3.11 Circuits to reduce sign extension error propagation when number is
negative (a) MUX1 selects A if B is -1 else sum of A and B (b) MUX2 selects

B if A is -1 else sum of A and B, (c) Final sum is from MUX1 or MUX2 output.

MUX3 Y
(n+1 bit)

 Y1
 Y2

(c)

 +

MUX2

&

B (n bit)

A (n bit)

Generic
NAND gate

(b)

Y2
(n+1 bit)

 + MUX1

&

A (n bit)

B (n bit)

Generic
NAND gate

Y1
(n+1 bit)

(a)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

57

FPGA and ASIC Implementation

VHDL code has been written for the FPGA as well as ASIC implementations. Simulation

is performed using Xilinx ISE simulator for 8x1 data matrix X which is given by,

X = [60, 40, 25, 55, 40, 42, 82, 84]

MATLAB simulation result for 1-D DCT of X gives,

Y = [151.3209 -32.4895 33.1588 -1.7108 17.6777 18.5074 -16.0309 -5.0975]

Fig. 3.12 shows the result of Xilinx ISE simulator using simple adder and proposed

adder scheme. It is evident with MATLAB comparison that error due to sign

extension is less in proposed adder scheme.

 (a) (b)

Fig. 3.12 VHDL simulation result using Xilinx ISE Simulator of data X for the
implementation of 1-D DCT architecture using (a) simple addition operator

and (b) proposed adder

For FPGA implementation of DCT as discussed above, xc2vp30 device on Xilinx

Virtex-II pro board is used. TABLE 3.5 shows the device utilization summary for the

FPGA implementation. For the ASIC implementation, TSMC CLN65GPLUS 65 nm

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

58

standard cell technology library has been used and the code is synthesized in Synopsys

Design Compiler (DC). TABLE 3.6 shows the hardware requirements in terms of area

and power 8-bits input data and 12-bits DA precision has been used in both the

implementations.

TABLE 3.5
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 1-D DCT

FPGA-chip: Xilinx XC2VP30
of 4 input LUTs 1268
of slices 694
of slice Flip Flops 0
of IOB Flip Flops 88
Min. Period (ns) 32.6
Power (W) 13.1

TABLE 3.6

AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION OF 1-D DCT

 TSMC CLN65GPLUS 65nm technology

Total cell area 8259.84 µm2

Total Dynamic Power (global operating voltage 1.1v) 3.62 mW

Min. Slack at 500MHz 0.004

3.4.2 Area and Power Efficient VLSI Architecture of 8X1 1-D DCT

By analyzing equations (3.7a) to (3.7h) in previous section, it can be seen that there are

only seven cosine terms that are to be represented in DA form. So instead of computing

F(0) to F(7) in parallel as in [58], they can be computed in pipelined fashion. A general

DA based module can be implemented which takes the inputs and gives the multiply and

accumulation result.

Let,

 a1=X(0)+X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(7),

 a2=X(0)–X(1) –X(2)+X(3)+X(4)–X(5)–X(6)+X(7),

 b1=X(0)–X(7), b2=X(1)–X(6), b3=X(2)–X(5), b4=X(3)–X(4),

 c1=X(0)–X(3)–X(4)+X(7) and c2=X(1)–X(2)–X(5)+X(6)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

59

Then from (3.7a) to (3.7h),

 F(0)=(a1×P), F(4)=(a2×P),

 F(1)=(b1×A)+(b2×B) + (b3×C)+(b4×D),

 F(3)=(b1×B)–(b2×D)–(b3×A)–(b4×C),

 F(5)=(b1×C)–(b2×A)+(b3×D)+(b4×B),

 F(7)=(b1×D)–(b2×C)+(b3×B)–(b4×A),

 F(2)=(c1×M)+(c2×N), and F(6)=(c1×N)–(c2×M)

These equations can be implemented using only 4 DA modules as compared to 7 DA

modules used in previous implementation. Therefore, area and power reduction can be

achieved. These modules will be given by,

[] []0 1 122 2 2 1 ,P a− −⎡ ⎤− ⋅ ⋅⎣ ⎦L

[]0 1 12

1
2

2 2 2 ,
3
4

b
b

A B C D
b
b

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤− ⋅ ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

L

and

[]0 1 12 1
2 2 2

2
c

M N
c

− − ⎡ ⎤⎡ ⎤− ⋅ ⋅ ⎢ ⎥⎣ ⎦
⎣ ⎦

L

F(0) and F(4) coefficients can be obtained from the DA module in (3.12a) in two clock

cycles with a1 as input in first clock cycle for coefficient F(0) and a2 as input in second

clock cycle for F(4) coefficient. In similar way, from other two modules, rest of the DCT

coefficients can be calculated by input ordering and sign change. Fig. 3.13 shows the

hardware architectures and TABLE 3.7 shows the ordering of the inputs at each clock

cycle. Timing and control unit determines the inputs at each clock cycle and also sign of

the inputs. It gives the signal 0 or 1 to multiplexers to select input having same sign or

inverted.

(3.11)

(3.12a)

(3.12b)

(3.12c)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

60

Fig. 3.13 VLSI architecture for computation of 8 point DCT in pipeline manner for
(a) computation of F(0) and F(4) (b) computation of F(1), F(3), F(5) and F(7) and (c)

computation of F(2) and F(6)

 M
O
D
U
L
E
3

2’S
Complementer

MUX
1

Timing and Control

F(2),
F(6)

c2

c1

(c)

MUX

1

M
O
D
U
L
E
2

MUX
2

MUX
4

2’S
Complementer

2’S
Complementer

2’S
Complementer

2’S
Complementer

MUX
3

 Timing and Control

F(1),
F(3),
F(5),
F(7)

b1

b2

b3

b4

(b)

M
O
D
U
L
E
1

Timing and Control

F(0),
F(4)a1,

a2

(a)

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

61

TABLE 3.7(a)
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(0) AND F(4)

 MODULE 1

 Clock cycle 1 Clock cycle 2

Input a1 a2

Output F(0) F(4)

TABLE 3.7(b)
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(1), F(3), F(5) AND F(7)

 MODULE 2

 Clock cycle 1 Clock cycle 2 Clock cycle 3 Clock cycle 4

Input 1 b1 -b3 -b2 -b4

Input 2 b2 b1 b4 b3

Input 3 b3 -b4 b1 -b2

Input 3 b4 -b2 b3 b1

Output F(1) F(3) F(5) F(7)

TABLE 3.7(c)
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(2) AND F(6)

 MODULE 3

 Clock cycle 1 Clock cycle 2

Input 1 c1 -c2

Input 2 c2 c1

Output F(2) F(6)

Hardware Implementation results and comparisons

The architecture proposed (Fig. 3.13) has been implemented in Xilinx FPGA and also in

TSMC CLN65GPLUS 65 nm standard cell technology library for ASIC using VHDL

code. We have implemented ROM free DA architecture proposed in [58] in FPGA. We

have compared the proposed ROM free DA architecture for 8-points 1-D DCT with the

ROM free DA architecture in [58]. TABLE 3.8 summarizes the FPGA comparisons while

TABLE 3.9 compares the ASIC implementations with 8-bits input and 12-bits DA

precision. Fig. 3.14 depicts the RTL schematic in Xilinx ISE 10.1.

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

62

Fig. 3.14 RTL Schematic of Proposed 8-point 1-D DCT in Xilinx ISE 10.1

TABLE 3.8
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 1-D DCT

FPGA-chip: Xilinx XC2VP30
 1-D DCT architecture in [58] Proposed 1-D DCT architecture
of 4 input LUTs 1268 696
of slices 694 370
of slice Flip Flops 0 97
of IOB Flip Flops 88 0
Min. Period (ns) 32.6 16.29 (Freq. 61.38 MHz)
Power (W) 13.1 2.06

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

63

TABLE 3.9
AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION OF 8-POINT 1-D DCT

 TSMC CLN65GPLUS 65nm technology
 1-D DCT

architecture in [58]
Proposed 1-D
DCT architecture

improvement

Total cell area 8259.84 5683.68 31.2 %
Total Dynamic Power (global operating
voltage 1.1v)

3.62 mW 2.27 mW 37.3 %

Min. Slack at 500 MHz 0.004 0.116

Total of 31.2 % area and 37.3 % power improvements are achieved in standard cell based

synthesis of VHDL code. From the FPGA and ASIC implementation comparison results,

it is evident that the proposed architecture is efficient in terms of area (FPGA resources in

case of FPGA implementation) and power.

Using row-column decomposition technique, 8x8 2-D DCT is implemented using

proposed architecture. Intermediate 1-D DCT results are stored in registers. TABLE 3.10

shows the FPGA implementation result and TABLE 3.11 shows the ASIC

implementation result.

TABLE 3.10
DEVICE UTILIZATION SUMMARY FOR 2-D DCT IMPLEMENTATION USING ROW-COLUMN

DECOMPOSITION TECHNIQUE OF PROPOSED 1-D DCT ARCHITECTURE

FPGA-chip: Xilinx XC2VP30
of 4 input LUTs 2522
of slices 1701
of slice Flip Flops 1025
Max. Freq.(MHz) 45.173
Power (W) 0.751

TABLE 3.11
2-D DCT ARCHITECTURE IMPLEMENTATION AREA AND POWER USING ROW-COLUMN

DECOMPOSITION TECHNIQUE OF PROPOSED 1-D DCT

TSMC CLN65GPLUS 65 nm technology
Total cell area 23505.84 µm2

Total Dynamic Power (global operating voltage 1.1v) 5.78 mW
Min. Slack at 500 MHz 0.036

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

64

3.5 SDHT Implementation using ROM Free DA

Considering the periodicity and symmetry of trigonometric functions 8-point 1-D DHT

equation (3.4) can be written as,

[]
[] [] []
[] [] [] []
[] [] []
[]

() ()

()

(0) (0) (4) (1) (5) (2) (6) (3) (7)

(1) (1) (5) (2) (6) (0) (4)

(2) (2) (6) (1) (5) (3) (7) (0) (4)

(3) (2) (6) () (3) (7) (0) (4)

(4) (1) (5) (2)

A B

A

x x x x x x x x

y x x C x x B x x A

y x x x x B x x x x A

y x x B x x C x x A

y x x x

y A

− −

−

+ + + + + + +

= − + − + −

= + + + + + + +

= − − + − + −

= + +

=

[] [] []
[] [] []
[] [] [] []
[] [] []

()(6) (3) (7) (0) (4)

(5) (1) (5) () (2) (6) (0) (4)

(0) (4) (1) (5) () (2) (6) () (3) (7)

(7) (2) (6) () (3) (7) () (0) (4)

(6)

Ax A x x x x A

y x x C x x B x x A

x x x x B x x A x x

y x x B x x C x x A

y A B

−+ + + + +

= − − + − + −

+ + − + + − + +

= − − + − − + −

= +

Representing in DA form as in [58] for DCT, we get adder/subtractor matrix for DHT for

all data as in Fig.3.15. TABLE 3.12 shows the explanation of Fig.3.15. Divide and

multiply operations are done by shifting. Yn implies shifting n bits. Negative sign in n

implies left shift where as positive sign implies right shift. Positive sign in TABLE 3.12

implies that ALUs perform addition and negative sign implies subtraction operation as

for DCT in previous section (Section 3.3). As an example, let’s take the fourth column

for calculating Y(2). Y(2) is the sum of Y-1(2)*2, Y0(2), Y1(2)/2, Y2(2)/22, Y3(2)/23,

Y4(2)/24, Y5(2)/25, Y6(2)/26, and Y7(2)/27. The values of Y-1(2), Y0(2), Y1(2), Y2(2),

Y3(2), Y4(2), Y5(2), Y6(2), Y7(2) can be obtained from R3, R5, 0, 0, 0, 0, 0, 0, 0 in

TABLE 3.12. So, Y(2) can be calculated as,

Y(2)=R3*2+R5

TABLE 3.13 shows the number of adder/subtracter used in the implementation and bit-

width comparison for DCT and DHT. Compared to DCT adder/subtractor of [58], DHT

adder/subtractor requires less number of ALU and adders (only 4 ALUs and 7 adders in

proposed DHT, but 9 ALUs and 6 adders in DCT).

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

65

Fig. 3.15 Adder/subtracter for all 8-point DHT coefficients calculation

TABLE 3.12
FUNCTIONS OF EACH ALU FOR DIFFERENT DHT COEFFICIENTS

 Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7)
ALU1 + - + - + - + -
ALU2 + - + NO + - + NO
ALU3 + - + - + - + -
ALU4 + NO + - + NO + -
Y-1 0 0 R3 R10 R7 R2 R8 R3
Y0 R5 R1 R5 R4 R5 R9 R5 R9
Y1 0 0 0 0 0 R2 0 R6
Y2 0 R2 0 R6 0 0 0 0
Y3 0 R2 0 R6 0 0 0 0
Y4 0 0 0 0 0 R2 0 R6
Y5 0 R2 0 R6 0 0 0 0
Y6 0 0 0 0 0 R2 0 R6
Y7 0 R2 0 R6 0 R2 0 R6

+

 R10

R9

R8

R1

R2

R6

R3

 R4

R5

+

+

+

+

+

+

X(0)

X(4)

+/‐

ALU1

X(2)

X(6)

ALU3

+/‐

X(1)

X(5)

ALU2

+/‐

X(3)

X(7)

ALU4

+/‐

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

66

TABLE 3.13
COMPARISON OF ADDERS OF DHT AND DCT IN [58]

scheme Adder matrix Adder bit-width

DCT 9 ALU +6 850

Proposed DHT 4 ALU +7 452

FPGA Implementation Results of 8-point 1-D DHT and comparisons

We have implemented the 8-points 1-D DHT in Xilinx FPGA using VHDL code and

results are compared with ROM based DA of DHT implemented in Section 3.3. TABLE

3.14 shows the results and comparisons with the ROM based DA. ROM free DA

implementation has less hardware requirement as compared to ROM based DA.

TABLE 3.14
HARDWARE UTILIZATION FOR PROPOSED DA FOR 1-D DHT

Logic Utilization ROM based DA ROM Free DA
of Slices 561 309
of 4 input LUTs 998 562
Slice Flip Flops 341 0

2-D SDHT has been implemented using row-column decomposition technique and

xc2vp30 device is programmed. Same sample 8x8 2-D data has been used here as before

Fig. 3.16 Hardware implementation result of 8x8 image data matrix Di by
proposed DA for DHT method

Chapter‐3 Distributed Arithmetic and Its VLSI Architecture

67

in previous ROM based DA and Fig. 3.16 shows the 8x8 matrix output obtained using

ChipScope pro device.

3.6 Conclusions

Different DSP based algorithm implementation approaches are described in this chapter.

Two DA techniques, ROM based and ROM free, that implement multiply and

accumulate operations in VLSI without using multiplier are illustrated. Using DA

technique, 1-D DHT and 1-D DCT architectures are implemented and comparisons have

been done. In both the cases (DCT and DHT), ROM based implementation has more area

and power requirements along with slower speed. An area and power efficient DCT

architecture is proposed in ROM free DA which reduces the number of computational

modules in original ROM free DA. Implementation in standard cell based ASIC library

of proposed architecture shows about 37% power savings and about 31% area savings in

8-point 1-D DCT architecture. FPGA implementation is also done and it shows the

considerable FPGA resource reduction in proposed DCT architecture. Using row-column

approach, 2-D DCT and 2-D SDHT are also implemented and hardware utilizations are

summarized.

68

Chapter 4
Efficient JPEG Image Compression

Architecture

4.1 Introduction

JPEG image compression is a standard image compression algorithm widely used for

image compression in high end electronic circuits and systems as well as in battery

powered devices such as digital camera. It uses steps in between 8x8 block wise DCT and

binary stream storage in buffer memory such as quantization, zig-zag reordering and

Huffman coding. To proceed from one step to another, memory is required to store block

processed image data. Moreover, it uses Huffman code table for Huffman coding

implementation where base code of DC and AC coefficients are stored as it makes

hardware simple and high performing.

In this chapter, a simple hardware is presented for DCT to quantization to reduce the

memory requirements in the intermediate stages by exploiting some of the flexibilities in

JPEG implementation. Simulations have been performed to check the image quality by

introducing the step to reduce the memory. Further, correctness of hardware

implementation is demonstrated through comparisons of MATLAB and hardware

outputs. The Huffman coding is implemented by employing the strategies to store the

Huffman code table with reduced memory requirements.

4.2 Normalization matrix for hardware simplification in JPEG

JPEG coding procedure has been described in Section 2.6. 8x8 DCT, quantization and

Huffman coding are three major steps followed in its implementation. Data from DCT

output is quantized by a quantizer. Quantization is performed by dividing each DCT

coefficient by a quantizer step size followed by rounding to nearest integer (Eq. 4.1).

Chapter‐4 Efficient JPEG Image compression Architecture

69

() ()
()

,
,

,
Q F u v

F u v Integer Round
Q u v

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

where, F(u,v) is the DCT coefficients and Q(u,v) is the quantization matrix (also called

normalization matrix). JPEG committee recommends to use a typical normalization

matrix explained in Section 2.6, although users are free to use their own matrix. If that

matrix is used for the quantization, then each coefficients must use a divider for the

quantization along with 64 memory locations to store 64 quantization levels [19], [68–

71]. A quantization matrix that can do the quantization without use of divider (or

multiplier) and memory while maintaining the quality of image will be good choice for

the hardware implementation. We have quantized the DCT coefficients in JPEG image

compression by the following normalization matrix which is given as,

16 16 16 16 32 64 64 64
16 16 16 16 32 64 64 64
16 16 16 32 32 64 64 64
16 16 32 32 32 64 64 64
32 32 32 64 128 128 128 128
64 64 64 64 128 128 128 128
128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128

nQ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

This matrix can further be scaled to achieve high compression, i.e.,

n n qualityQ Q′ = ×

 where, quality is scaling parameter. Quantization using matrix Qn can be performed by

only shifting operations and this matrix is chosen by observing the fact that low spatial

frequency contents, which are in top left region of DCT coefficients have the high visual

information. Therefore, less quantization will preserve the image quality whereas bottom

right regions of DCT coefficients (high frequencies) have very less visual information

and can be discarded by high quantization. MATLAB simulations have been carried

out for the performance comparisons of quantization matrix Qn and the typical (normal)

(4.1)

Chapter‐4 Efficient JPEG Image compression Architecture

70

 (a) (b)

 (c) (d)

Fig. 4.1 PSNR against compression ratio for (a) 448x448 Lena, (b) 256x256

Cameraman, (c) 512x512 Crowd and (d) 512x512 Barbara Images

quantization matrix. PSNR against compression ratio for four standard images are plotted

in Fig. 4.1. Fig. 4.2 shows the original and reconstructed images obtained by using both

modified table and typical table (provided by JPEG) for normalization. Both the results

(almost same PSNR and good visual qualities of images obtained) suggest that modified

normalization matrix for the hardware simplification can be used in JPEG image

compression. Moreover, in hardware implementation, there will be less round off error

using modified table as it requires only bit shifting to perform quantization, whereas

typical matrix will give more round off error because of fractional value obtained after

division (fractional value representation has more accuracy at higher bit number of bits

used for its representation).

Chapter‐4 Efficient JPEG Image compression Architecture

71

(a)

(b)

(c)

(d)

Fig. 4.2 Original and reconstructed images using normal quantization matrix and
modified matrix (a) 448x448 Lena, (b) 256x256 Cameraman, (c) 512x512 Crowd

and (d) 512x512 Barbara

Chapter‐4 Efficient JPEG Image compression Architecture

72

4.3 Efficient Architecture from DCT to Quantization and Re-ordering

An hardware efficient architecture for the computation of 2-D DCT, quantization and zig-

zag ordering of the quantized coefficients is shown in Fig. 4.3. The 2-D DCT is computed

by row-column decomposition method. When second 1-D DCT is being computed,

timing and control will generate the eight addresses to store the eight transform

coefficients each clock cycle in specified address (or register). For example, the first set

of eight addresses generated will be 0, 2, 3, 9, 10, 20, 21, 35 (TABLE 4.1). Coefficients

are stored in memory/registers after conditional shifting. First 8 outputs from the second

1-D DCT need to be divided by 16, 16, 16, 16, 32, 64, 128 and 128 for quantization

which is done by shifting DCT coefficients right by 4, 4, 4, 4, 5, 6, 7, 8 and 8 bits.

Similarly other coefficients from the second 1-D DCT are shifted according Qn before

storage in memory/registers. To synthesize the HDL code to have registers for storage,

stored quantized coefficients, each at one clock cycle, are brought to output.

Fig. 4.3 DCT to Zig-zag re-ordering Architecture

TABLE 4.1
ZIG-ZAG ORDER SEQUENCE MATRIX

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

Chapter‐4 Efficient JPEG Image compression Architecture

73

They are brought to the output in zig-zag order. Addresses for memory/registers are

generated by 8-bits counter which counts from 0 to 63. This is because coefficients are

stored in zig-zag order in increasing address of memory/registers from 0 to 63 which

were generated for storage.

This architecture reduces a large number of memory/registers bits in different way.

From 8-bits input data, 1-D DCT can produce 11-bits coefficients. These 1-D DCT

coefficients when transformed to 2-D DCT by second 1-D DCT, can produce 14-bits

output. If the quantization is performed after the 2-D DCT, then there is need of 64x14

bits of memory/registers to store 64 DCT coefficients. These bits are not required in the

proposed architecture as outputs of second 1-D DCT are connected to the memory

locations (or stored in registers) before shifting (quantization) as in Fig. 4.4. Only 64x10

bits of memory/registers are required to store quantized DCT coefficients completely,

eliminating memory for the storage of 2-D DCT coefficients. Here, 10-bits of quantized

coefficients are taken as minimum division is 16 (4-bits shift). Another memory/registers

saving is achieved in the zig-zag ordering buffer. Instead of use of large memory for

getting quantized coefficients in zig-zag re-order only 8 numbers of 8-bits registers are

required to generate the 8 addresses in each clock cycle (TABLE 4.2). At each clock

cycle, the contents of these 8 registers are changed by timing and control circuitry. The

additional 8-bits counter is required for accessing quantized and stored coefficients in

Fig. 4.4 2-D DCT Coefficients storage in 64x10 bits registers after shifting

Chapter‐4 Efficient JPEG Image compression Architecture

74

TABLE 4.2
CLOCK CYCLE OPERATIONS FOR THE COMPUTATION OF 2-D DCT TO ZIG-ZAG ORDERING

locations 0 to 63. TABLE 4.3 lists the total memory/registers bits and latencies required

in literature by Agostini et al. [19] and proposed hardware architecture for the

computation of quantization and zig-zag order only. A total of 1336 bits have been saved

in quantization and zig-zag ordering along with 896 bits in 2-D DCT coefficients storage

(TABLE 4.4). Because both implementation platforms are different, logic cells cannot be

compared. But from the simplicity of the proposed architecture, hardware savings can be

predicted which is further shown in implementation details in next Section where FPGA

implementation details and hardware utilization is shown. For the scaling to get more

compression, quantization step-size can be changed by adding one multiplier at the

output of zig-zag buffer without changing any internal hardware.

TABLE 4.3
MEMORY BITS AND LATENCY COMPARISONS FOR THE QUANTIZATION AND

ZIG-ZAG BUFFER IN PROPOSED HARDWARE SCHEME WITH EXISTING

 Memory bits Latency

Agostini et al. [19] 2048 (768+1280) 70

Proposed Hardware 712 72

TABLE 4.4
MEMORY/REGISTERS SAVINGS ACHIEVED IN PROPOSED DCT TO ZIG-ZAG ARCHITECTURE

 In Quantization and Zig-zag buffer In storing 2-D DCT Coeffs.

No. of Bits saved 1336 896

Chapter‐4 Efficient JPEG Image compression Architecture

75

FPGA/ASIC implementation results and discussions

The 1-D DCT implementation is performed for the compressed DA based algorithm

proposed by Chungan et al. [58] (explained in section 3.4.1), but shifting is performed by

division operator (/) in VHDL code to reduce the error due to sign extension.

Quantization is performed by both wiring (each LSB removal is equal to division by 2)

and division operator in two different implementations. 8-bits input, 14-bits internal word

representation and 12-bits DA precision have been used for the implementation.

Implementation is carried out in Xilinx XC2VP30 FPGA device in Virtex-II Pro board as

well as Synopsys DC using TSMC CLN65GPLUS 65 nm technology library. FPGA

implementation results are tabulated in TABLE 4.5. Total of 3070 slices are used in

FPGA implementation of DCT to zig-zag order when division is performed by using

operator (/) whereas wiring to shift for quantization uses 2856 slices. From the results of

2-D DCT implementations, it can be seen that quantization and zig-zag ordering are

realized by additional 635 slices and 633 registers which are very less as compared to

previous literature mentioned in previous section. Register savings lead to low power

consumption as well as area savings. The total cell area in the synthesis of VHDL code in

Synopsys DC is 30527.64 µm2 in only 2-D DCT and 39015.36 µm2 in DCT to zig-zag.

TABLE 4.6 shows the Synopsys DC implementation results for total cell area and power

consumption in different implementations.

TABLE 4.5
HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG

ORDERING ARCHITECTURE IMPLEMENTED IN FPGA

FPGA Chip: Xilinx XC2VP30

 # of 4 input
LUTs

of slices
of slice
Flip Flops

Clock Freq.
(MHz)

Power
(W)

Only 2-D DCT 4502 2435 868 48.4 14.97

Zig-zag ordered using
division operator for
quantization

5276 3070 1501 31.1 16.58

Zig-zag ordered using wire
shifting for quantization

4986 2856 1409 40 16.53

Chapter‐4 Efficient JPEG Image compression Architecture

76

TABLE 4.6
HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG

ORDERING ARCHITECTURE IMPLEMENTED IN ASIC LIBRARY

TSMC CLN65GPLUS 65 nm technology
(clock frequency = 500 MHz)

 Total cell area
Total Dynamic Power

(global operating
voltage 1.1v)

Min. Slack at
500MHz

Only 2-D DCT 30527.64 µm2 6.78 mW 0.477 ns

Zig-zag ordered using division
operator for quantization

39015.36 µm2 10.05 mW 0.01 ns

Zig-zag ordered using wire
shifting for quantization

38133.30 µm2 10.07 mW 0.059 ns

Functional Verification through simulation and Hardware results

For the functional verification, a sample 8x8 image data in the range -128 to 127 has been

taken which is given by,

 -95 -96 99 98 94 100 57 54

108 103 99 98 94 80 57 39

107 102 -2 -3 94 80 58 -60

104 99 96 96 -7 -20 58 41

 2 -3 -6 -5 -7 -19 -41 -58

 -1 -5 -8 -6 -8 -19 60 42

 -3 -7 -9 -7 -8 -19 -40 -57

 -4 -7 -10 -8 -8 -19 -4

sD =

0 -57

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and its 2-D DCT MATLAB output is shown in Fig. 4.5. After quantizing the DCT

coefficients by the modified quantization table followed by Zig-zag ordering, the

coefficients are shown in Fig. 4.6. Prototyping on Xilinx Virtex-II FPGA board for the

implementation of shifting done by division operator architecture, 2-D DCT outputs

obtained through ChipScope pro is shown in Fig. 4.7. Fig. 4.8 shows the quantized and

zig-zag ordered coefficients. 25 MHz clock frequency (obtained through DCM) is used as

synthesized deign shows maximum frequency of 31.1 MHz. Small error is observed in

hardware implementation is because of truncation in the number of bits representation.

Chapter‐4 Efficient JPEG Image compression Architecture

77

Fig. 4.5 MATLAB Simulation results for 2-D DCT of sample data Ds

Fig. 4.6 Quantized and zig-zag ordered coefficients of Ds
(arranged in left to right and top to bottom order)

Fig. 4.7 2-D DCT coefficients of Ds obtained through Xilinx ChipScope Logic
Analyzer

Chapter‐4 Efficient JPEG Image compression Architecture

78

Fig. 4.8 Quantized and Zig-zag ordered 2-D DCT coefficients of Ds obtained through
Xilinx ChipScope Logic Analyzer

4.4 Huffman Coding Architecture Implementation in FPGA for JPEG

Huffman coding is a variable length code used in image compression for the removal of

data redundancy. It is done by encoding more frequent occurring symbols (data) with less

number of bits and less frequent symbols with more number of bits. Optimized code for

the data is obtained. For the hardware implementation, use of Huffman code table makes

the hardware simple and high performing [19]. JPEG uses a code table (called Huffman

code table) to do the Huffman coding [1, 15, 69–71]. The architecture of Huffman coding

has been explained in Section 2.6 (JPEG baseline image coding). Since FPGA has more

dedicated memory (RAMs/ROMs), it is a good choice for Huffman coding

implementation. The following steps are to be carried out for the implementation after

quantization of DCT coefficients.

1) Storing Huffman code tables for DC and AC coefficients separately in memory

2) Category selection

3) Bringing the DC coefficient difference base code from the DC base code table

4) Extending the DC base code with binary value of DC difference coefficient

5) Bringing the AC coefficient base code from the AC base code table

6) Extending the AC base code with binary value of AC coefficient

7) Repetition from step 5 until all AC coefficients are encoded

Chapter‐4 Efficient JPEG Image compression Architecture

79

The Huffman code tables for DC and AC coefficients are given in Appendix A and

Appendix B respectively. DC code table is small and coding is done simply by

addressing the proper location in DC base code memory whose address is given by

category of the coefficient. TABLE 4.7 shows the category for different DCT coefficients

range. The AC coefficient base code table is addressed by an additional variable namely

run. It is the number of zeros preceding the particular AC coefficient. If there are 16 zeros

preceding a coefficient, it is encoded by a special code whose value is “111111110111”.

The end of block is encoded using “1010”. Fig. 4.9 shows the sequence of code formed

by the encoding of DCT coefficients according to JPEG Huffman code table. The code

lengths of AC base code are variable and therefore efficient storage of code tables in

memory can save the memory space. Sun et al.[71] have constructed the efficient way of

memory for AC coefficients storage. They have used 8-bits for each (run, cat.) pair

storage. In our design, only 7-bits are used for each (run, cat.) savings 160 memory bits.

Fig 4.10 shows RTL schematic of Huffman coding algorithm implemented in Xilinx

FPGA. It consists

TABLE 4.7
CATEGORY OF DCT COEFFICIENTS

Category Quantized DCT Coefficients Range
0 -
1 -1, 1
2 -3, -2, 2,3
3 -7,...-4, 4,...7
4 -15, ...-8, 8, ...15
5 -31, ...-16, 16,...31
6 -63, ...-32, 32, ...63
7 -127, ... -64, 64, ... 127
8 -255, ...-128, 128, ...255
9 -511,... -256, 256, ...511
10 -1023, ...-512, 512, ...1023
11 -2047,... -1024, 1024,... 2047

DC base

code

Binary value of DC

Coeff.

AC base code/Special

Code (“11111110111”)

Binary value of AC

Coeff.

• • • 1010

Fig. 4.9 Coding Sequence of DCT coefficients in JPEG

Chapter‐4 Efficient JPEG Image compression Architecture

80

RTL Schematic of Huffman Code table in Xilinx FPGA

(a)

(b)

Fig. 4.10 RTL Schematic of Huffman Coding implemented in Xilinx FPGA (a) Top
module and (b) Detail schematic

Chapter‐4 Efficient JPEG Image compression Architecture

81

of the following 7 individual modules.

1) Category selection module (catSelect_1)

2) Memory module for storing DC base code (dcBasecodeMemory_1)

3) DCT coefficient code module (dctCoeffCode_1)

4) Run module (run_1)

5) Address formation module (makeAddress_1)

6) Memory module for storing AC base code table (acBaseCodeMemory_1) and

7) Control module (control_1)

1) Category Selection Module

The category selection module takes input as 11-bits quantized DCT (represented by x)

coefficients and gives the category of the coefficient as output in the rising clock edge. It

is implemented by a simple logic which detects position of last ‘1’ from LSB occurring in

the input data. The position number is the category. The negative data input is converted

into the equivalent positive number before finding the category. Fig. 4.11 shows the tip

level interface of the circuit and Fig. 4.12 shows the simulation output result in Xilinx

ISE 10.1.

Fig. 4.11 Top Level Interface of Category selection module

Fig. 4.12 Simulation output of Category selection module

Chapter‐4 Efficient JPEG Image compression Architecture

82

2)Memory Module for storing DC base code

It consists of two different ROMs where DC base code and its length are stored. Size of

base code ROM is12x3-bits and size of the its length is 12x4-bits. It takes the category of

the DC coefficients and gives the DC base code and its length simultaneously in the

rising clock edge. The length is required when forming the final code. Fig. 4.13 shows

the RTL schematic and Fig. 4.14 shows the simulation output.

(a)

(b)

Fig. 4.13 RTL Schematic of DC base code module (a) Top interface and (b) Details

Fig. 4.14 Simulation result of DC base code module

Chapter‐4 Efficient JPEG Image compression Architecture

83

3)DCT coefficient Code Module

DCT coefficient code module makes the proper code of the data obtained after

quantization. Fig. 4.15 shows the RTL schematic. It is performed by subtracting ‘1’ from

the input data if MSB is ‘1’ otherwise same (input) data is the output. One subtractor is

used here. DC_data is a controlling signal input which selects quantized DC coefficient

as input if its value is ‘1’ else it selects AC coefficients. Fig. 4.16 shows the simulation

result.

(a)

(b)

Fig. 4.15 RTL Schematic of DCT Coefficient code module (a) Top interface and (b)
Details

Fig. 4.16 Simulation result of DCT coefficient code module

Chapter‐4 Efficient JPEG Image compression Architecture

84

4)Run Module

It takes the quantized DCT coefficients, counts the number of zero coefficients received

and gives the same output if non-zero coefficient is received with the number of zeros

(‘run_out’) preceding this coefficient and the a valid data signal (‘valid_data’) indicating

that the current coefficient is a non-zero. Input data to this module is recognized by

‘receive_data’ signal. Special code valid signal ‘scode_valid_out’ is inserted ‘1’ when

non-zero coefficients received in a row exceeds 16. A counter counts the total

coefficients received. If count reaches 63 (all current block AC coefficients have been

received), an end of block signal ‘eob_out’ is inserted high. Fig. 4.17 shows the top level

view of RTL schematic and Fig. 4.18 shows the simulation result.

Fig. 4.17 RTL Schematic of Run Module (top view)

(a)

Fig. 4.18 Simulation result of run module for received AC coefficients (a) 1 to 21

Chapter‐4 Efficient JPEG Image compression Architecture

85

(b)

(c)

Fig. 4.18 (continued) (b) 22 to 45 and (c) 46 to 63

5)Address formation Module

The AC base code table is stored in continuous memory locations from 0 to 161. Address

formation module takes ‘run’ (from run module output) and ‘cat’ (from category

selection module) of the AC coefficients and gives the 8-bits ‘address’ (as total of 161

locations in AC base code table have to be addressed) as output for the AC base code

table. It is an asynchronous circuit as the address output should available as soon as ‘cat’

input changes. Each additional ‘run’ increments the ‘address’ by 10 times and each

additional ‘cat’ increments it by one location, i.e.,

address=(run × 10) + cat

Fig. 4.19 shows the RTL schematic and Fig. 4.20 shows the simulation results.

Chapter‐4 Efficient JPEG Image compression Architecture

86

(a)

(b)

Fig. 4.19 RTL Schematic of Address formation module (a) top view (b) detail view

Fig. 4.20 Simulation result from address formation module

6)Memory Module for Storing AC base Code Table

There are two ROMs used for the implementation (shown in Fig. 4.21). One is having

size 161x7 and it stores the AC base code. Here, 7-bits storage have been used as a

maximum of 7-bits (right most) out of 16-bits length are different. Left most 9-bits are

either not required or are all ‘1’s (see Appendix B). The more than 7-bits base code

required is extended by adding extra ‘1’s to it. For example, if base code is

“1111110011” (10-bits) then “1110011” is stored in memory, i.e.,

Complete AC base code= “111” (extension bits) & ”1110011” (from ROM)

The second ROM (size 161x4) stores the code length of the corresponding AC base code.

The module takes the input address from the address formation module and gives base

code as output and its length at rising clock edge (shown in Fig. 4.22).

Chapter‐4 Efficient JPEG Image compression Architecture

87

(a)

(b)

Fig. 4.21 RTL Schematic of Memory module for AC base code storage (a) top view
and (b) detail view

Fig. 4.22 Simulation result from AC base code memory module

Chapter‐4 Efficient JPEG Image compression Architecture

88

7)Control Module

The control module controls all the coding activity. It is implemented using FSM. The

top interface is shown in Fig. 4.23. The state of the FSM changes according to the input

control data received. There is a buffer register named ‘buff_reg’ of bit-widths 201 where

all the codes received are buffered. The initial state of the controller is ‘init’ at reset and

on receiving ‘data_valid’ signal, it starts buffering of data in ‘buff_reg’ register. If

‘DC_data_valid’ control signal is received, it goes to ‘dcbase’ state. In this state, it takes

the extended DC base code data (in ‘dcbasecode’ register) at each clock cycle as shown

in Fig 4.24(a). The extended 9-bits DC base code is formed by taking 3-bits DC base

code from DC base code memory through ‘DC_basecode_in’ interface and its length

through ‘len_DC_basecode_in’ interface. Soon after completion of base code, the FSM

goes to ‘dccoeff’ state where it stores the binary value of DC coefficient having length

equal to its category. The total number of data stored in the buffer register is shown

through ‘code_len_count’ register status. At the end of ‘dccoeff’ state, the value of

‘code_len_count’ is 9 as it has 5-bits as DC base code and 4-bits as DC coefficient code

value.

On receiving ‘AC_data_valid’ signal high, the controller goes to AC base code state

‘acbase’ followed by AC coefficient code state ‘accoeff’ (shown in Fig. 4.24(b)). The

same thing is done here as described for DC base code and DC coefficient code. The

length of AC base code received from memory (through ‘AC_basecode_in’ bus) is 7-bits

and it is extended by adding ‘1’s to form the total length 16 in ‘ext_AC_basecode_in’

register. However, only required length obtained through ‘len_AC_basecode_in’ is taken

into consideration for storing bits in buffer register.

When ‘scode_valid’ signal is inserted high, it goes to ‘acspl’ state and stores 12-bits

special code (“11111110111”) in buffer register in 12 clock cycles (Fig. 4.24(c)). When

all AC coefficients are encoded, which is indicated by inserting ‘eob_valid’ signal high,

the controller goes to state ‘eob’ (Fig. 4.24(d)) and it stores “1010” bit streams. At the

end of this state, ‘code_done’ signal is inserted high. This state is followed by data output

state ‘dataout’ where buffered data are brought to the output. Here, one bit data per clock

cycle is considered for the implementation, although desired number of bits per clock

cycle can be taken to output depending on throughput requirements.

Chapter‐4 Efficient JPEG Image compression Architecture

89

Fig. 4.23 RTL Schematic of control module (top view)

(a)

Fig. 4.24 Simulation results of control module (a) DC coefficient coding

Chapter‐4 Efficient JPEG Image compression Architecture

90

(b)

(c)

Fig. 4.24 (continued), (b) AC coefficient coding, (c)Special code

Chapter‐4 Efficient JPEG Image compression Architecture

91

(d)

Fig. 4.24 (continued), (d) Buffered Output as bit stream

Design Summary of Huffman Coding Implementation

Fig. 4.25 shows the advanced HDL synthesis report of the complete Huffman coding

Fig. 4.25 Macro Statistics of Advance HDL Synthesis of Complete Huffman Coding

Chapter‐4 Efficient JPEG Image compression Architecture

92

TABLE 4.8
DESIGN SUMMARY OF HUFFMAN CODING IMPLEMENTED IN FPGA

FPGA Chip: Xilinx XC2VP30

Module
of

Slices
of Slice
Flip Flops

of 4 i/p
LUTs

Max.
Freq.(MHz)

$Dynamic
Power
(mW)

BRAMs

Category
Selection

16 4
(IOB FF) 27 5.759 ns

(Max. delay) 5.2 –

*DC base code
memory

4 7 7 3.615 ns
(Max. delay) 2 –

DCT coeff. Code 15 – 26 9.74 ns
(Max. delay) 29.34 –

Run 29 32 55 307 4.13 –

Address
Formation

6 – 10 8.40 ns
(Max. delay) 22.5 –

AC base code
memory

– – – – 3.14 2

 **Control 366 229 668 177.17 13.9 –

Complete design 439 273 802 149.535 29.13 2

 $ Total power in each case = Dynamic power + 103.13 (Quiescent power)
 *Distributed memory (SRAM) in LUTS have been used for DC base code storage
 ** 201 Flip Flops have been used for buffer register

implementation and TABLE 4.8 shows the hardware utilization and power consumption

report in Xilinx XC2VP30 FPGA device module wise. Here, total power is sum of

dynamic power and quiescent power which is 103.13 mW for this device. Also, DC base

code module uses SRAMs of LUTs as distributed ROM to store the DC base code table.

In this particular implementation, the buffer register width is taken as 201 bits.

Comparison

We have compared our proposed implementation with the existing one and TABLE 4.9

and TABLE 4.10 show the comparison results in terms of memory uses. Agostini et al.

[19] use 176x21 bits in AC code table and 12x13 bits in DC code table. In our method,

Chapter‐4 Efficient JPEG Image compression Architecture

93

only 161x11 bits in AC and 12x7 bits in DC code table have been used which saves a

memory storage of 1997 bits. Sun et al.[71] have used strategy to save the memory in

code table implementation. They have used 8 bits per AC code table entry. In our

proposed strategy, only 7 bits per entry have been used. Thus, the proposed Huffman

design is efficient and simple.

TABLE 4.9
COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION

 IN TERMS OF TOTAL MEMORY USES IN TABLE STORAGE

Memory uses In DC code table In AC code table

Agostini et al. [19] 12x13 bits 176x21 bits

Proposed 12x7 bits 161x11 bits

TABLE 4.10
COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION

 IN TERMS OF NO. OF BITS PER AC TABLE ENTRIES

Memory uses No. of bits in each AC table entry in 161 locations

Sun et al. [71] 8 bits per entry

Proposed 7 bits per entry

4.5 Conclusions

Simulation results for two quantization tables, normal and modified (for hardware

simplification), confirm that normalization table that is suitable for hardware

simplification can be used in JPEG baseline image compression. A simple FSM based

architecture for the computation of 2-D DCT, quantization and zig-zag ordering for JPEG

image compression is proposed using quantization matrix suitable for hardware design. It

eliminates the 64x13 bits memory requirement for storing the 2-D DCT coefficients as

well as another memory requirements for storing the quantized DCT coefficients for zig-

zag ordering. Hardware output obtained from FPGA is compared with MATLAB

simulation to check the correctness of the implemented design. Huffman coding is

implemented using Huffman code table. By employing the strategies, memory

requirements to store the AC and DC Huffman code table have been reduced.

94

Chapter 5
Direct Computation of 8x8 2-D DCT

Coefficients Equation and Its Hardware
Architecture

5.1 Introduction

The 8x8 2-D DCT is used in image compression algorithms (JPEG) as well as in video

compression standard such as MPEG-x and H.26x. It is a highly complex algorithm and

its hardware implementation requires a large number of adders and multipliers. Hardware

reduction has been the active area of research from the long time. To reduce the

hardware, row-column decomposition is the conventional approach to implement 2-D

DCT where 1-D DCT is taken to rows followed by 1-D DCT to columns with

intermediate results stored in transposition memory. A further hardware saving is

obtained by using distributed arithmetic (DA) algorithm which replaces multiplication

with additions. The disadvantage of row-column approach is that it requires a large

transposition memory to store intermediate 1-D DCT results. This results in high circuit

cost, more power consumption and reduced accuracy as final results are obtained after

two times DA precision have been applied (first time for 1-D DCT computation and

second time for 2-D DCT computation from 1-D DCT). To increase the precision, all

intermediate operations need to be done with higher bit-width causing the proportionate

increase in size of adders and transposition memory. For low cost consumer products and

portable devices; a more regular and simpler circuit is required that has low area and low

power dissipation. Row-column decomposition technique is also unsuitable for the

applications requiring transmission in limited bandwidth as all DCT coefficients need to

be calculated in advance for sending, though it is sent one by one. To reduce the circuit

cost, direct recursive computation of 2-D DCT is done using recursive kernel in which

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

95

DCT coefficients are computed one by one at regular clock cycles. The disadvantage of

recursive kernel is that accuracy is reduced to a large extent due to round-off error. Errors

are introduced with the increase of recursive cycles because each processed register

values requires higher number of bits for its representation. Fixed size of register in VLSI

makes it non-practical.

Therefore, non-recursive computation of DCT coefficients which has hardware

overhead as low as recursive kernel or even lower is a better choice in VLSI architecture

design for the realization of DCT computation. In this chapter, we have proposed non-

recursive VLSI architecture for 8x8 2-D DCT that performs direct computation of 2-D

DCT without any transposition memory with the following additional advantages.

1) Fractional value multiplication is used two times at last stage only and all

intermediate stages are free of error.

2) To increase accuracy, only one register bit-width and one multiplier bit-width

need to be changed (almost negligible hardware overhead).

3) Critical/Important DCT coefficients can be calculated first instead of

calculating entire 64 DCT coefficients for transmitting in limited bandwidth

capacity channel.

By using this architecture, JPEG image compression has been implemented which

requires only one additional register, one multiplier and Huffman coding circuitry

bypassing intermediate memory stages to store DCT coefficients.

5.2 Equation for Direct computation of 2-D DCT

Direct computation of 2-D DCT coefficients has advantages that it can be implemented in

hardware without transposition memory and most important DCT coefficients can be

computed first without computing all 2-D DCT coefficients. Moreover, in row-column

approach, 1-D DCT circuitry uses the 16 times DCT computations for 8x8 data (8 times

for row DCT and 8 times for column DCT) as shown in Fig. 5.1(a). In terms of hardware

requirements, direct computation can be performed by using control and arithmetic

circuitry (Fig. 5.1(b)). The design of control circuitry for direct computation plays an

important role as it affects the arithmetic circuit requirements and also the accuracy of

final coefficients obtained. Here, we derive a novel approach to compute the 2-D DCT

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

96

(a)

(b)

Fig. 5.1 2-D DCT computation (a) using 1-D DCT and transposition memory
and (b) without transposition memory

coefficients in direct method having a simple control circuitry and less arithmetic circuit

units.
The 8x8 2-D DCT for a set of 2-D data xሺi, jሻ with 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7 is given by,

() () () ()
7 7

0 0

2 (2 1) (2j 1), x i, j cos cos
8 16 16i j

i u vF u v C u C v π π
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ += ×∑∑

where u, v= 0,1,…,7, and C(u), C(v)= 1/ 2 for u, v= 0 and C(u), C(v)= 1, otherwise. For

the direct computation of 2-D DCT, recursive computation is the preferred choice. But,

hardware implementation of recursive algorithm requires higher number of precisions in

the datapath that leads to proportionate increment of area and cost of the design.

Therefore, non-recursive algorithm to compute 2-D DCT is better suitable for the

dedicated hardware design. Here, we develop the hardware implementation model for the

direct computation of 2-D DCT in non-recursive way. DC coefficient F(0,0) is,

8-point
1-D DCT

Memory
(64×(n+3) bits

RAM/Registers)

8-point
1-D DCT

Intermediate ResultRow DCT
(8-times 1-D DCT
computations)

Column DCT
(8-times 1-D DCT
computations)

x1

x2

x8

n

n

n

Data
Buffer

2-D
DCT

Control
Circuit

x1

x2

xm

n

n

n

Data
Buffer

Arithmetic
Circuits

2-D
DCT

(5.1)

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

97

()

()

7 7

0 0

7 7

0 0

7

0

20,0 (0) (0) (,)
8

1 1 (,)
2 2

1 (,0) (,1) (, 2) (,3) (, 4) (,5) (,6) (,7)
8

2
8

i j

i j

i

F C C X i j

X i j

X i X i X i X i X i X i X i X i

= =

= =

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ + + + + + +

=

=

=

∑∑

∑∑

∑

Let,

() ()

() ()

() ()

() ()

7 7

0 0

7 7

0 0

7 7

0 0
7 7

0 0

 ,0 1, ,1 2,

 , 2 3, ,3 4,

 , 4 5, ,5 6,

 ,6 7 and ,7 8

i i

i i

i i

i i

X i sumc X i sumc

X i sumc X i sumc

X i sumc X i sumc

X i sumc X i sumc

= =

= =

= =

= =

= =

= =

= =

= =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

where, sumci means sum of values in column i. Therefore DC coefficient F(0,0), from

(5.2), can be written as,

()1(0,0) 1 2 3 4 5 6 7 8
8

F sumc sumc sumc sumc sumc sumc sumc sumc= + + + + + + +

F(1,1) is written as,

()

() ()

() ()

7

0

2 12(1,1) cos
8 16

3(,0) (,7) cos (,1) (,6) cos
16 16

5 7(, 2) (,5) cos (,3) (, 4) cos
16 16

i

i
F

X i X i X i X i

X i X i X i X i

π

π π

π π

=

⎛ ⎞+⎛ ⎞
= ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

Here, trigonometric property, cos() cos()π ϕ ϕ− = − has been used in (5.1). Equation

(5.4) can be further written as,

(5.2)

(5.3)

(5.4)

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

98

3 5 7(1,1) cos ()cos ()cos () cos
16 16 16 16

 cos
16

F A B E C I D Mπ π π π

π

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

× ⎛ ⎞
⎜ ⎟
⎝ ⎠

where, symbols A, B, C, ... represents the values given in TABLE 5.1 in terms of inputs.
TABLE 5.1

SHORT NOTATIONS OF IMAGE DATA VALUES

 Image data values

notations
n1=(c1-c2) -(c3-c4)
n2=(c1-c2)+(c3-c4)
n3=(c1+c2)-(c3+c4)
n4=(c1+c2)+(c3+c4)

c1 c2 c3 c4 n1 n2 n3 n4
X(0,0) X(0,7) X(7,0) X(7,7) A Ap pA pAp
X(1,0) X(1,7) X(6,0) X(6,7) B Bp pB pBp
X(2,0) X(2,7) X(5,0) X(5,7) C Cp pC pCp
X(3,0) X(3,7) X(4,0) X(4,7) D Dp pD pDp
X(0,1) X(0,6) X(7,1) X(7,6) E Ep pE pEp
X(1,1) X(1,6) X(6,1) X(6,6) F Fp pF pFp
X(2,1) X(2,6) X(5,1) X(5,6) G Gp pG pGp
X(3,1) X(3,6) X(4,1) X(4,6) H Hp pH pHp
X(0,2) X(0,5) X(7,2) X(7,5) I Ip pI pIp
X(1,2) X(1,5) X(6,2) X(6,5) J Jp pJ pJp
X(2,2) X(2,5) X(5,2) X(5,5) K Kp pK pKp
X(3,2) X(3,5) X(4,2) X(4,5) L Lp pL pLp
X(0,3) X(0,4) X(7,3) X(7,4) M Mp pM pMp
X(1,3) X(1,4) X(6,3) X(6,4) N Np pN pNp
X(2,3) X(2,4) X(5,3) X(5,4) O Op pO pOp
X(3,3) X(3,4) X(4,3) X(4,4) P Pp pP pPp

Further, the trigonometric property given by,

{ }1cos cos cos() cos()
2

m n m n m n× = − + +

can be used in (5.4) to simplify the computation. Therefore, (5.5) becomes,

()
() () ()

() ()

cos 0 cos
411,1

8 3cos cos
8 8

A F K P B E C I H N L O
F

A B E G J L O P C I D M F H N K

π

π π

⎡ ⎤⎛ ⎞+ + + + + + + + + − − +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ + + + + + − + + + + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

(5.5)

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

99

() () () () ()1 3cos 0 2 cos 3 cos 4 co1 s
8 4 8 8

A ACC ACC AC CC Cπ π π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

where, ACCi’s in (5.6) are used to represent the accumulated input signal values.

Following the procedure above, other DCT coefficients can be computed one by one in

serial fashion or in parallel according to the requirements by the non-recursive equation

which is given as,

1 11 cos(1) 2 cos(2)
8 8

(,)
1 13 cos(3) 4 cos(4)
8 8

ACC ACC
F u v R

ACC ACC

β β

β β

⎡ ⎤⎛ ⎞ ⎛ ⎞× + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞× + ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

where, 1β , 2β , 3β and 4β represents the cosine angles. 1ACC , 2ACC , 3ACC , 4ACC

and R values are required to compute DCT coefficients which are listed in TABLE 5.3

whereas TABLE 5.2 lists the short notations used in TABLE 5.3. Angle Group column in

TABLE 5.3 represents the four cosine angles 1β , 2β , 3β and 4β whose values are listed

in TABLE 5.4. Let us take an example to calculate F(3,1). From generalized equation

(5.7) and with the help of TABLE 5.3 and 5.4, F(3,1) can be written as,

()
() ()

() () ()

1 17 cos 0 (S8 S9) cos / 4
8 8

3,1 1
1 1S10 S11 cos / 8 (S12 S13) cos 3 / 8
8 8

S
F

π

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞× + + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= ×
⎢ ⎥⎛ ⎞ ⎛ ⎞+ × + + ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

For the ‘Angle Group 3’ case, one extra value “c” is added along with four accumulators.

From (5.7), it is evident that the required DCT coefficients can be calculated with very

high precision as all internal values are preserved accurately because of non-floating type

operations involved. Also, to further increase the accuracy, only one register which

contains cosine values in fractional format for the multiplication and one multiplier bit-

width need to be changed. The DCT coefficients can be calculated in any order by

exploiting pipelining and parallelism with throughput and hardware cost trade-off.

(5.6)

(5.7)

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

100

TABLE 5.2
SHORT NOTATIONS OF TERMS

 Term
 no

ta
tio

n

 Term
 no

ta
tio

n

 Term

no
ta

tio
n

A F K P+ + + S0 pA pM pC pO− − + S36 pLp pNp pOp pIp− + − S71

A B E G+ + + S1 pJ pH pL pF− + − S37 pAp pBp pCp pDp− − + S72

J L O P+ + − S2 pO pD pP pC− + − S38 pNp pOp pPp pMp+ − − S73

B E C I+ + + S3 pE pI pF pJ− + − S39 pEp pFp pGp pHp− − + S74

H N L O+ − − S4 pA pM pB pN− − + S40 pJp pKp pLp pIp+ − − S75

C I D M+ + + S5 pK pH pL pG+ − − S41 pAp pDp pEp pHp− − + S76

F H N K− − − S6 pB pN pD pP− − + S42 pLp pMp pPp pIp+ − − S77

E L N C− − − S7 pI pG pK pE− + − S43 pBp pCp pFp pGp− − + S78

A G D K− − − S8 pB pF pJ pN− − + S44 pKp pNp pOp pJp+ − − S79

M J P F+ + − S9 pC pG pK pO− − + S45 pCp pNp pOp pBp+ − − S80

A G C H− − − S10 pA pE pI pM− − + S46 pEp pHp pIp pLp− − + S81

I J P N− − + S11 pD pH pL pP− − + S47 pAp pDp pFp pGp− − + S82

B O D K+ + + S12 Ap Dp Ep Hp− + − S48 pJp pKp pMp pPp− − + S83

E F M L+ − + S13 Jp Kp Np Op− + − S49 pCp pNp pOp pBp+ − − S84

H I O B+ + − S14 Ap Dp Fp Gp− + − S50 pEp pHp pIp pLp− − + S85

A J D F− + − S15 Ip Lp Np Op− − + S51 pAp pDp pEp pHp− − + S86

G P K M+ − − S16 Bp Cp Ep Hp− + − S52 pLp pMp pPp pIp+ − − S87

D F E B− + − S17 Kp Mp Pp Jp+ − − S53 pBp pCp pFp pGp− − + S88

L K M O+ + − S18 Bp Cp Fp Gp− − + S54 pKp pNp pOp pJp+ − − S89

A J C N− + − S19 Ip Lp Mp Pp− − + S55 pA pE pI pM+ + + S90

H G P I− − − S20 Ep Fp Gp Hp− − + S56 pB pF pJ pN+ + + S91

G J M D− + − S21 Ip Jp Kp Lp− − + S57 pC pG pK pO+ + + S92

C H B L− − − S22 Ap Bp Cp Dp− − + S58 pD pH pL pP+ + + S93

E O I N+ − + S23 Mp Np Op Pp− − + S59 pAp pEp pIp pMp+ + + S94

C H F K− − + S24 Ap Dp Fp Gp− − + S60 pBp pFp pJp pNp+ + + S95

I N D M− − − S25 Lp Np Op Ip− + − S61 pCp pGp pKp pOp+ + + S96

A P B L− − − S26 Ap Dp Ep Hp− − + S62 pDp pHp pLp pPp+ + + S97

G J E O+ − − S27 Kp Np Op Jp+ − − S63 sumc1 sumc8− c1mc8

pA pM pB pN− + − S28 Bp Cp Fp Gp− + − S64 sumc2 sumc7− c2mc7

pG pK pH pL− + − S29 Lp Mp Pp Ip− + − S65 sumc3 sumc6− c3mc6

pA pM pC pO− + − S30 Cp Ep Hp Bp+ − − S66 sumc4 sumc5− c4mc5

pF pJ pH pL− − + S31 Kp Mp Pp Jp− + − S67 sumc1 sumc8+ c1pc8

pB pN pD pP− + − S32 pAp pDp pMp pPp− − + S68 sumc2 sumc7+ c2pc7

pE pI pG pK− − + S33 pFp pGp pJp pKp− − + S69 sumc3 sumc6+ c3pc6

pC pO pD pP− − + S34 pBp pCp pEp pHp− + − S70 sumc4 sumc5+ c4pc5

pE pI pF pJ− − + S35

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

101

TABLE 5.3
ACCUMULATOR VALUES AND COSINE ANGLES REQUIRED IN GENERALISED EQUATION (5.7) FOR ALL AC

COEFFICIENTS CALCULATION

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

102

TABLE 5.4

 ANGLE GROUP VALUES USED IN TABLE 5.3

Angle Group

(1, 2, 3, 4)β β β β

1 (0, / 4, / 8, 3 / 8)π π π

2 (/ 16, 3 / 16, 5 / 16, 7 / 16)π π π π

3 (/ 4, / 4, / 4, / 4)π π π π

4 (/ 8, / 8, 3 / 8, 3 / 8)π π π π

5.3 Non-recursive VLSI architecture of 2-D DCT

Based on equation (5.7) derived above, the non-recursive architecture for computing 2-D

DCT coefficients has the components as shown in Fig. 5.2 along with the clock latency of

each components. Since sum of all eight columns are required, it is done by the

accumulator (adder). One accumulator can do the accumulation of column values from

the data buffer, but it requires 64 clock latency. Therefore, to reduce the clock latency,

eight parallel accumulators have been used that gives the sums in eight clock latency.

Fig. 5.2 Architectural components of direct 2-D DCT computation

2 clock 2 clock 8 clock 8 clock

 Data
Buffer

Accumulators
(parallel, 8 nos.)

Data
Selector

Shift
Register

and
Adder

Multiplier
and

Accumulator
Adder

(stage 1)

Adder
(stage 2)

MUX

Registers
(8×n)

12 clock cycles for each DCT coefficient computation

DCT

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

103

These values are stored in registers of size n-bits. For this design in particular for 8-bits

input data, 11-bits registers have been used. Data selector module takes appropriate

address of the data inside the data buffer to make available four parallel data at each

clock cycle to the adder stage 1. In next clock cycle, four more data comes from the data

buffer to the adder stage 1 and the result of successive additions are applied to adder

stage 2. So the clock latency for this stage is 2 clock cycles. MUX will select the data

either from the column sum registers or from the adder stage 2 and further two successive

samples are added in adder and shifter stage which consists of a register and adder as

shown in Fig. 5.3. Binary values of cosine in fractional form are stored in one and only

register and each ACCi’s values are multiplied with a multiplier. Since, the ACCi’s

values are available after every two clock cycles, four multiplications are performed in 8

clock cycles and results are accumulated. The initial eight clock cycles are used to get the

column sum and once it is available, the remaining computations are done in total 12

clock cycles, i.e., successive DCT coefficients are obtained after every 12 clock cycles.

Complete Architecture Design

Fig. 5.4 depicts the one cell component used in proposed architecture of Fig. 5.5. This

basic cell adds four data values applied to its four inputs with different sign (positive or

negative) and the appropriate sign is selected by multiplexer whose select line is

controlled by timing and controller module in Fig. 5.5. From the data buffer, 16 pixels

values are obtained in one clock cycle. These 16 pixel values are given to four basic

adder modules. The four data sums obtained from the four basic modules are applied

further to same type of basic module cell to get addition of these four values.

Fig. 5.3 Adder and shifter stage in the architecture

ADDER

REGISTER

Input rate R
Output rate R/2

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

104

Fig. 5.4 A basic cell to add four inputs with different sign

Fig. 5.5 Proposed non-recursive VLSI architecture for the direct computation of 2-D
DCT

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

105

E.g., let 4 values out of 16 from data buffer are x(0,1), x(0,6), x(7,1) and x(7,6). These

values applied to basic adder module with proper sign controlled by timing and control

module will result in

E = x(0,1)–x(0,6) –x(7,1)+x(7,6)

Similarly, others 12 values are given by,

L = x(3,2) –x(3,5) –x(4,2)+x(4,5)

N = x(1,3)–x(1,4) –x(6,3)+x(6,4)

and
C = x(2,0)–x(2,7) –x(5,0)+x(5,7)

These four results when applied to second stage basic adder cell results,

S7 = E–L–N–C

with proper sign extension.

Other values, e.g., S8, S9, S10, S11 and S12, required for F(3,1) are calculated in next

clock cycle. S7 is the ACC1 for F(3,1). ACC2 is sum of S9 and S10. REGISTER 1 is

used to hold one value (S8) and next value coming through (S9) is added or subtracted by

the ACCUMULATOR 2 with add/sub signal from timing and control circuitry. Sum of

columns is calculated by the ACCUMULATOR 1 where a counter is used to get the pixel

values from data buffer. Counter output is given as the address in data buffer. MUX 1 is

used to select the data from ACCUMULATOR 1 or basic cell module in second stage.

MUX 2 is used to change the sign of ACCs as and when required. REGISTER 2 stores

the cosine values in binary fractional format (e.g., fractional value of ()cos / 4π . In every

two clock cycle, REGISTER 2 contents are changed and multiplied in the

MULTIPLIER. ACCUMULATOR 3 accumulates four values, e.g., S7×(1/8cos(0)),

(S8+S9)×(1/8cos(π/4)), (S10+S11)×(1/8cos(π/8)) and (S12+S13)×(1/8cos(3π/8)).

SIFTER performs multiplication by √2 where ACCUMULATOR 3 output is shifted and

added. SHIFTER reduces the hardware by performing multiplication with less precision

by addition of shifted values. Multiplier can be used instead of shifter for higher

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

106

precision. Finally MUX 3 selects the values direct from ACCUMULATOR 3 or after one

multiplication.

VLSI/FPGA Implementation

The proposed architecture is implemented using 0.18 µm TSMC CMOS standard cell

technology library. The industry standard Synopsys Design Compiler (DC) tool has been

used for the synthesis of architecture described in VHDL language. 12-bits precision for

the cosine values are used in REGISTER 2. For the multiplication by √2, shifting

operation is performed. TABLE 5.5 shows the comparison of proposed implementation

with other existing methods for 2-D DCT computation. The proposed architecture has the

lowest area in terms of gate counts (15.4 K) and low power consumption as well (11 mW

at 100 MHz).

TABLE 5.5
COMPARISON OF DIFFERENT 2-D DCT ARCHITECTURES

 Shams et
al. [57]

Chen et al.
[59]

Chen et
al. [31]

Sun et al.
[52]

Chen et
al. [64]

Jian et al.
[98]

Proposed

Method Row-
column

Row-
column

Direct
recursive

Row-
column

Direct
recursive

Direct
Non-
recursive

Direct
Non-
recursive

Technology 0.18 µm 0.18 µm NA 2 µm NA 0.6 µm 0.18 µm
ROM words No No No Yes No No No
RAM words No No No Yes No No No

of
Multipliers

0 0 4/6 0 Yes 0 1

Gate Counts
(NAND2)

22.5 K
(approx)

22.2 K NA 18.25 K
(16x16
DCT)

NA 28.5 K 15.4 K

Throughput High High Low Low Low Moderate Low
Accuracy Moderate Moderate NA Very

high
Low NA Very high

Power
consumption

Low
(0.194

mW for
8x1 DCT)

Moderate
(39 mW
@125
MHz)

NA Very
high
(0.36 W
@14.3
MHz)

NA NA Low
(11 mW
@100
MHz)

Design
complexity

Low

Moderate High Low Moderate High Low

Note: Gate Count is 1/4 of transistor count as one 2-input NAND gate requires 4 transistors

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

107

Layout of the Design

Additional registers (64x8 bits) for the data buffer have been used with 8-bits data input

for storing 64 data values in 64 clock cycles. The gate level design mapped in 0.18 µm

TSMC library is obtained after synthesis from the DC in verilog form. The layout of the

design is performed in Cadence SOC encounter tool. Fig. 5.6 shows the automatic layout

generated.

DCT coefficients Calculation in Any order

Although throughput is low, it calculates the DCT coefficients in any order. Hence, it

finds more importance in applications like image and video compressions. In the

mentioned applications, only few low order DCT coefficients are important (carry much

of the visual information) and others are quantized to zero value. In JPEG image

compression, quantized DCT coefficients are rearranged in zig-zag order [15]. In terms of

hardware implementation of JPEG and MPEG, additional storage (to store 64 DCT

coefficients) and reordering circuitry (control circuit) are required as shown in Fig. 5.7(a)

[19, 69–71]. Moreover, quantization table which consists of 64 memory locations (ROM)

as quantization levels are also used (Fig 5.7(b)). This burden can be overcome by getting

Fig. 5.6 Layout of proposed 2-D DCT design with 64x8 bits registers for the data
buffer

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

108

(a)

(b)

(c)

Fig. 5.7 JPEG Image and MPEG video compression flow with (a) general DCT
model, (b) quantizer circuit and (c) proposed DCT model

zig-zag ordered coefficients directly from the proposed architecture with the control

circuitry designed to obtain coefficients in zig-zag order. Also, instead of using 64xW

size of ROM for quantization level of coefficient, one register of width W is used and its

value is changed by the same control circuitry at the time of getting final DCT output.

Since image can be reconstructed with few low order DCT coefficients, low bandwidth

can be used for the transmission of images by calculating few low order DCT coefficients

with the help of proposed architecture model. Fig. 5.7(c) shows the simple model used in

the proposed design.

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

109

Low Hardware overhead for higher Precision

In DA based DCT computation, for getting 1-D DCT results with higher accuracy even

without having input width unchanged, DA precision needs to be increased. This leads to

increase in bit-width of adders and consequently the area of chip[57, 59]. The proposed

architecture has all intermediate operations performed in fixed point format. The only

fractional values used in the computation are the cosine values stored in a single register

and it is multiplied with the accumulated value by a multiplier. Therefore, to increase the

accuracy of the DCT coefficients, only one register bit-width and one multiplier input bit-

width has to be changed. Thus, a negligible hardware overhead is required for high

accuracy.

Simulation and Image Reconstruction

An image consists of huge amount data. Therefore, to simulate the modelled

architecture for different images with different precision is time consuming. MATLAB

model of the architecture is designed and data samples are compared with the DCT

output obtained from the VHDL simulation in Xilinx ISE 10.1 with the MATLAB. The

similarity of outputs confirm that MATLAB model of the design is exact. Using the

MATLAB model, two standard test images named Lena and Peppers data are DCT

transformed. For the reconstruction of the images, Inverse DCT (IDCT) is performed

using MATLAB double precision floating point data (Fig. 5.8). The original and

reconstructed images are shown in Fig. 5.9. PSNR is the objective quality image metric.

It is better suited for objective quality measurement of design modelled in hardware as it

Fig. 5.8 Image processing using proposed 2-D DCT architecture model in MATLAB

Hardware
Model of

DCT
architecture

in MATLAB

Original
Image

Processed
Image data

Inverse DCT
in MATLAB

using
double

precision
floating

point data

Reconstructed
Image

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

110

 (a) (b)

 (c) (d)

Fig. 5.9 Original, (a) and (c), and reconstructed, (b) and (d), images using proposed
non-recursive 2-D DCT architecture model

focuses on error introduced by the truncation [57]. Fig. 5.10 depicts the PSNR

comparison performances for proposed architecture with other existing at different

internal bit-width. In the proposed architecture, bit-width of register which stores the

cosine floating point data is considered. The proposed architecture has very high

accuracy in terms of PSNR as all internal computations are in fixed point. PSNR up to 56

dB has been obtained with the proposed architecture model which was obtained in [52]

using 16x16 transform whereas all other transform based on 8x8 has PSNR a maximum

up to 50 dB.

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

111

Fig. 5.10 PSNR with different internal bit-width precision used

FPGA prototyping for Silicon validation

The proposed architecture is prototyped in Xilinx FPGA for the silicon validation.

TABLE 5.6 shows the hardware resource utilization in XC2VP30 device on Virtex-II pro

board and its comparison with other architectures. Since no transposition memory is used,

it has low register (379 numbers) utilization. These registers are used to store

intermediate calculations and also states of the timing and control circuitry.

TABLE 5.6
 FPGA IMPLEMENTATION AND COMPARISON RESULT OF PROPOSED

NON-RECURSIVE 2-D DCT ARCHITECTURE WITH DA

FPGA-chip
Xilinx XC2VP30

2-D DCT Architecture implemented
using row-column in DA

Proposed non-recursive
2-D DCT Architecture

of four input

LUTs
4502 3370

of slices

2435 1747

of Slice Flip
Flops

868 379

Max. Frequency
(MHz)

48.4 58.6

power
consumption

 14.97 W
 0.79 W

 Note: The proposed architecture uses one 18X18 Multiplier

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

112

A sample 8x8 data which is given by,

-95 -96 99 98 94 100 57 54
108 103 99 98 94 80 57 39
107 102 -2 -3 94 80 58 -60
104 99 96 96 -7 -20 58 41
2 -3 -6 -5 -7 -19 -41 -58
-1 -5 -8 -6 -8 -19 60 42
-3 -7 -9 -7 -8 -19 -40 -57
-4 -7 -10 -8 -8 -19 -40 -57

Di

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

is taken for the functional verification. These data are stored in block RAM of the Xilinx

FPGA XC2VP30 device on Virtex-II pro board. The device is programmed by bit-file

generated from the ISE tool. The hardware output is obtained from device using

ChipScope Pro logic analyser tool through USB cable. Fig. 5.11 shows the output from

the device in zig-zag order with 50 MHz clock frequency (digital clock manager is used

to get 50 MHz frequency from 100 MHz available on the Virtex-II pro board). The DCT

(a)

(b)

(c)

Figure 5.11 Zig-zag order DCT coefficients (a) 1 to 21, (b) 22 to 42 and (c) 43 to 64
obtained from Xilinx xc2vp30 device using ChipScope pro logic analyser

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

113

output from the MATLAB model used for the image transform and reconstruction for

PSNR measurement is given by,

180 58 -59 19 -12 28 -11 17
251 -45 -69 4 -11 10 24 12
-19 -92 -105 -9 4 -7 56 8
-73 -141 -49 -77 15 22 44 12

()
-57 -28 -52 -79 11 30 39 -6
1 -29 -13 -34 -4 27 5 4
-25 -81 2 43 -17 -4 -17 22
-119 5 -63 93 -14 -40 11 6

DCT Di

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The MATLAB output, same as obtained through the hardware, confirms the silicon

validation of the proposed 2-D DCT architecture. The quantized DCT coefficients

obtained from the hardware by using JPEG standard quantization level [15] is shown in

Fig. 5.12. It is obtained by inserting an additional 16-bits register and a multiplier only in

the 2-D DCT circuitry. The quantized output is obtained in next clock cycle from the

DCT coefficients because of the use of a register between DCT and multiplier.

(a)

(b)

(c)

Fig. 5.12 Zig-zag ordered DCT coefficients along with Quantization (a) 1 to 10, (b)
11 to 20, (c) 21 to 30

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

114

(d)

(e)

(f)

Fig. 5.12 (continued), (d) 31 to 40, (e) 41 to 51 and (f) 51 to 64 obtained from Xilinx
xc2vp30 device using ChipScope pro logic analyzer

5.4 JPEG Image Compression Architecture using Proposed
Non-recursive 2-D DCT

The non-recursive 2-D DCT architecture proposed in the previous section is used for the

JPEG image compression architecture. Since, this 2-D DCT architecture gives quantized

and zig-zag ordered coefficients, the only other module used here is Huffman coding

architecture (explained in previous chapter). The 2-D DCT architecture gives quantized

DCT coefficients at 12 clock cycles per coefficient. The developed Huffman coding

architecture performs Huffman coding and stores the codes in memory at each clock

cycle. For small quantized (DCT) coefficients, base code length will be small along with

coefficients code itself. Therefore, for less than 12-bits encoding per coefficient, same

clock cycle can drive both the 2-D DCT module and Huffman coding module. However,

if Huffman coding length is bigger (more than 12-bits per coefficient value), then clock

of Huffman coding can be halved for correct functioning. Here, since coefficients are

small, same clock has been used in both the module. The signals required to indicate the

valid AC and DC coefficients are generated from the DCT module by inserting those

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

115

signals high and low at the appropriate time with the help of 1-bit register for each signal

(no additional hardware overhead). Fig. 5.13(a) shows the JPEG compression model

using proposed non-recursive 2-D DCT architecture. The complete removal of

intermediate stages for storage of DCT coefficients for quantization and zig-zag ordering

is illustrated using proposed model. Fig. 5.13(b) shows the RTL schematic of the

architecture in Xilinx FPGA. The same sample data used in the DCT and quantization is

used here. Fig. 5.14 shows the simulation and hardware outputs from FPGA (same in all

(a)

(b)

Fig. 5.13 Architecture of JPEG compression using proposed non-recursive 2-D DCT
(a) block diagram and (b) RTL Schematic in Xilinx

BRAM
(8x8 sample

data)

Proposed
2-D DCT
module

Huffman
Coding
module Bit-stream

Output Input

Timing and Control

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

116

Fig. 5.14 Bit stream of 8x8 sample JPEG processed data using non-recursive 2-D
DCT architecture model in MATLAB (top), VHDL simulation (middle) and

Hardware output through Xilinx ChipScope Pro (bottom)

three cases). The simulation output from the MATLAB is one that has been used for

image reconstruction using proposed non-recursive 2-D DCT architecture model. The

clock frequency used here for testing on Xilinx Virtex-II pro board is 10 MHz. TABLE

5.7 shows the hardware utilization summary in FPGA. It can be noted that additional 8-

bits 64 buffer has been used for the sample data storage apart from JPEG main circuitry.

TABLE 5.7
 FPGA IMPLEMENTATION RESULTS OF COMPLETE JPEG USING

PROPOSED NON-RECURSIVE 2-D DCT

FPGA-chip: Xilinx XC2VP30

 Used Available Utilization

of four input LUTs 4427 27392 16%

of slices

2325 13696 16%

of Slice Flip Flops 1137 27392 4%

of BRAMs 3 136 2%

of MULT18x18s 2 136 1%

Max. Frequency
(MHz)

37.92 – –

Power consumption 140 mW – –

Chapter‐5 Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture

117

5.5 Conclusions

 A novel non-recursive VLSI architecture for the direct computation of 2-D DCT is

proposed and implemented in 0.18 µm ASIC library as well as in FPGA. Implementation

results show that the proposed architecture is area and power efficient when compared

with other architectures which compute 2-D DCT either by direct or row-column method.

Although the architecture has low throughput, it has very high accuracy in terms of

PSNR. High accuracy is due to preserving all internal calculations in integer format. To

further increase the accuracy, hardware overhead is negligibly small. The proposed

architecture can calculate DCT coefficients in any order finding it more suitable for

image and video compression applications where few low order DCT coefficients are

enough for the reconstruction of images. Complete JPEG architecture is implemented

using this non-recursive DCT architecture and Huffman coding with complete removal of

intermediate storages in different stages like quantization and zig-zag ordering. FPGA

prototyping has been done for the silicon validation in Xilinx FPGA. Hardware output is

same as obtained from MATLAB and VHDL simulations.

118

Chapter 6
Summary and Conclusions

6.1 Summary

In the implementation of image compression algorithms, hardware platform provides the

faster speed than their software counterpart. Also, there is maximum energy efficiency

obtained when the design is implemented in dedicated hardware. For the portable devices

running on battery, there is a need to reduce the power as well as silicon area in the

hardware circuitry (to reduce the cost). Architecture exploration is one of the

optimization steps in VLSI where different architectures are explored to obtain the

required specification at the lowest silicon area.

In the proposed work, the image compression algorithms specially DCT, DHT,

Huffman coding and JPEG are explored and implemented for the purpose of reduced

silicon area and power.

Chapter-1 introduces the topic along with motivation and work done so far in the

DCT, DHT and Huffman coding architecture implementations.

Chapter-2 briefs the basics of image compression and image quality metric. The

energy compaction property of DCT has been studied with the image compression and

decompression using selected DCT coefficients. It is found that first 15 zig-zag ordered

DCT coefficients are enough for the image reconstruction while providing extra

compression. So, the circuit which computes 2-D DCT coefficients one by one will be a

good choice for DCT based image compression. The separable DHT has been used for

image compression and decompression in JPEG style and it is found that it performs

almost same as DCT at very high compression.

Chapter‐6 Summary and Conclusions

119

Chapter-3 introduces the efficient hardware implementation algorithm called DA.

Both ROM based and ROM free approaches have been used for the DHT

implementation. ROM free DA requires less hardware than ROM based DA and has

more accuracy. Efficient ROM free 1-D DCT architecture is proposed and implemented

using DA approach which has 31% area improvement and 37 % power improvement

than the conventional.

Chapter-4 is dedicated towards the removal of intermediate stages which requires a

significant amount of ROMs and registers to store DCT coefficients in quantization and

zig-zag ordering in JPEG image compression. Also, Huffman coding architecture has

been implemented using the strategies to save the memory in the storage of Huffman

code tables.

Chapter-5 presents a novel non-recursive architecture for the computation of 2-D

DCT coefficients without intermediate transposition memory. The architecture is

implemented in FPGA as well as in 0.18 µm ASIC library. The comparative result shows

that the architecture is area efficient in terms of gate counts. The architecture has

excellent image quality in terms of PSNR. The additional feature of this architecture is

that it can compute the 2-D DCT coefficients in any order (zig-zag ordering has been

implemented in the current work). Using this architecture, the complete JPEG image

compression architecture is implemented. The only additional components required till

zig-zag ordering are one 13-bits register and one 13x13 multiplier to perform

quantization. Huffman coding is integrated without the buffer in between quantized DCT

coefficients and Huffman coding module. The prototyping in Xilinx FPGA of the

complete JPEG architecture and comparison of the results obtained from MATLAB and

VHDL simulations (same in all cases) validated the designed JPEG.

6.2 General Conclusions

The following are the conclusions from the research carried out:

1) Presented direct non-recursive computation approach is the most suitable design

for hardware implementation when high image quality is required at low cost

hardware. The quantized and zig-zag ordered coefficients obtained through this

Chapter‐6 Summary and Conclusions

120

non-recursive architecture completely removes the intermediate stages like

memory for storing quantization table and DCT coefficients at different stages

resulting in low cost image compression architecture.

2) For the applications requiring only DCT coefficients with high throughput,

proposed efficient ROM DA based 1-D DCT circuitry can be used which has low

area and low power consumption than the conventional ROM free DA.

3) SDHT can be employed in the system where high compression of image is

required at high compression. It has same performance as DCT in terms of PSNR

while hardware is significantly lower than DCT.

4) The modified quantization table suitable for hardware simplification has the same

performance in terms of PSNR as default one provided by JPEG. However, it has

no storage requirement in memory and FSM based design approach leads to

memory reduction in storage of DCT coefficients for zig-zag ordering and

quantization.

5) The Huffman coding architecture has been implemented with the reduced

memory for the storage of Huffman code tables and it encodes the coefficients

bit-by-bit at each clock cycle resulting in efficient design.

6.3 Future Scope

The non-recursive equation for the direct computation of 2-D DCT coefficients is very

much suitable for the image and video compression architectures design as it computes

the 2-D DCT coefficients in any order. The future scope can be to optimize the

architecture using this equation for the high throughput image compression using pipeline

design technique.

121

Appendix. A

TABLE A.1
*BASE CODES FOR DC COEFFICIENTS

Category Codeword
0 00
1 010
2 011
3 100
4 101
5 110
6 1110
7 11110
8 111110
9 1111110
10 11111110
11 111111110

*Source : R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd.Ed.,Prentice Hall, 2002.

122

Appendix. B

TABLE A.2

*BASE CODES FOR AC COEFFICIENTS
(Run,
Cat.)

AC Codeword (Run,
Cat.)

AC Codeword (Run,
Cat.)

AC Codeword (Run,
Cat.)

AC Codeword

0,0 1010 (eob)
0,1 00 4,1 111011 8,1 11111010 12,1 1111111010
0,2 01 4,2 1111111000 8,2 111111111000000 12,2 1111111111011010
0,3 100 4,3 1111111110010111 8,3 1111111110110111 12,3 1111111111011011
0,4 1011 4,4 1111111110011000 8,4 1111111110111000 12,4 1111111111011100
0,5 11010 4,5 1111111110011001 8,5 1111111110111001 12,5 1111111111011101
0,6 111000 4,6 1111111110011010 8,6 1111111110111010 12,6 1111111111011110
0,7 1111000 4,7 1111111110011011 8,7 1111111110111011 12,7 1111111111011111
0,8 1111110110 4,8 1111111110011100 8,8 1111111110111100 12,8 1111111111100000
0,9 1111111110000010 4,9 1111111110011101 8,9 1111111110111101 12,9 1111111111100001
0,10 1111111110000011 4,10 1111111110011110 8,10 1111111110111110 12,10 1111111111100010
1,1 1100 5,1 1111010 9,1 111111000 13,1 11111111010
1,2 111001 5,2 1111111001 9,2 1111111110111111 13,2 1111111111100011
1,3 1111001 5,3 1111111110011111 9,3 1111111111000000 13,3 1111111111100100
1,4 111110110 5,4 1111111110100000 9,4 1111111111000001 13,4 1111111111100101
1,5 11111110110 5,5 1111111110100001 9,5 1111111111000010 13,5 1111111111100110
1,6 1111111110000100 5,6 1111111110100010 9,6 1111111111000011 13,6 1111111111100111
1,7 1111111110000101 5,7 1111111110100011 9,7 1111111111000100 13,7 1111111111101000
1,8 1111111110000110 5,8 1111111110100100 9,8 1111111111000101 13,8 1111111111101001
1,9 1111111110000111 5,9 1111111110100101 9,9 1111111111000110 13,9 1111111111101010
1,10 1111111110001000 5,10 1111111110100110 9,10 1111111111000111 13,10 1111111111101011
2,1 11011 6,1 1111011 10,1 111111001 14,1 111111110110
2,2 11111000 6,2 11111111000 10,2 1111111111001000 14,2 1111111111101100
2,3 1111110111 6,3 1111111110100111 10,3 1111111111001001 14,3 1111111111101101
2,4 1111111110001001 6,4 1111111110101000 10,4 1111111111001010 14,4 1111111111101110
2,5 1111111110001010 6,5 1111111110101001 10,5 1111111111001011 14,5 1111111111101111
2,6 1111111110001011 6,6 1111111110101010 10,6 1111111111001100 14,6 1111111111110000
2,7 1111111110001100 6,7 1111111110101011 10,7 1111111111001101 14,7 1111111111110001
2,8 1111111110001101 6,8 1111111110101100 10,8 1111111111001110 14,8 1111111111110010
2,9 1111111110001110 6,9 1111111110101101 10,9 1111111111001111 14,9 1111111111110011
2,10 1111111110001111 6,10 1111111110101110 10,10 1111111111010000 14,10 1111111111110100
3,1 111010 7,1 11111001 11,1 1111111010 15,1 1111111111110101
3,2 111110111 7,2 11111111001 11,2 1111111111010001 15,2 1111111111110110
3,3 11111110111 7,3 1111111110101111 11,3 1111111111010010 15,3 1111111111110111
3,4 1111111110010000 7,4 1111111110110000 11,4 1111111111010011 15,4 1111111111111000
3,5 1111111110010001 7,5 1111111110110001 11,5 1111111111010100 15,5 1111111111111001
3,6 1111111110010010 7,6 1111111110110010 11,6 1111111111010101 15,6 1111111111111010
3,7 1111111110010011 7,7 1111111110110011 11,7 1111111111010110 15,7 1111111111111011
3,8 1111111110010100 7,8 1111111110110100 11,8 1111111111010111 15,8 1111111111111100
3,9 1111111110010101 7,9 1111111110110101 11,9 1111111111011000 15,9 1111111111111101
3,10 1111111110010110 7,10 1111111110110110 11,10 1111111111011001 15,10 1111111111111110

 15,0 111111110111
(Spl. Code)

*Source : R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd.Ed.,Prentice Hall, 2002.

123

References

[1] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd.Ed.,Prentice Hall, 2002.

[2] Chin-Hwa Kuo, Tzu-Chuan Chou and Tay-Shen Wang, “An efficient spatial prediction-based image
compression scheme,” IEEE Transactions on Circuits and Systems for Video Technology, vol.12(10),
pp. 850- 856, Oct. 2002.

[3] Chen Shoushun, Amine Bermak, Wang Yan and Dominique Martinez, “Adaptive-Quantization Digital
Image Sensor for Low-Power Image Compression,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol.54(1), pp.13-25, Jan. 2007.

[4] M.D. Reavy, C.G.Boncelet, “An algorithm for compression of bilevel images,” IEEE Transactions on
Image Processing, vol.10(5), pp.669-676, May 2001.

[5] Debin Zhao, Wen Gao, and Y. K. Chan, “Morphological representation of DCT coefficients for image
compression,” IEEE Transactions on Circuits and Systems for Video Technology, vol.12(9), pp. 819-
823, Sep. 2002.

[6] K. A. Kotteri, A. E. Bell and J. E. Carletta, “Multiplierless filter Bank design: structures that improve
both hardware and image compression performance,” IEEE Transactions on Circuits and Systems for
Video Technology, vol.16(6), pp. 776- 780, June 2006.

[7] N. N. Ponomarenko, K. O.Egiazarian, V. V.Lukin, and J. T. Astola, “High-Quality DCT-Based Image
Compression Using Partition Schemes,” IEEE Signal Processing Letters, vol.14(2), pp.105-108, Feb.
2007.

[8] Xinpeng Zhan, “Lossy Compression and Iterative Reconstruction for Encrypted Image,” IEEE
Transactions on Information Forensics and Security, vol.6(1), Mar. 2011.

[9] Yi-Huang Han and Jin-Jang Leou, “Detection and correction of transmission errors in JPEG images,”
IEEE Transactions on Circuits and Systems for Video Technology, vol.8(2), pp.221-231, Apr. 1998.

[10] R.Chandramouli, N.Ranganathan and S.J. Ramadoss, “Adaptive quantization and fast error-resilient
entropy coding for image transmission,” IEEE Transactions on Circuits and Systems for Video
Technology, vol.8(4), pp.411-421, Aug. 1998.

[11] V. DeBrunner, L. DeBrunner, Wang Longji and S. Radhakrishnan, “Error control and concealment for
image transmission,” IEEE Communications Surveys & Tutorials, vol.3(1), pp.2-9, First Quarter 2000.

[12] P.P. Dang and P.M. Chau, “Robust image transmission over CDMA channels,” IEEE Transactions on
Consumer Electronics, vol.46(3), pp.664-672, Aug 2000.

[13] K. S. Thyagarajan, Digital Image Processing with Application to Digital Cinema, Focal Press,
Elsevier, 2006.

[14] Web, http://www.jpeg.org

[15] Gregory K. Wallace, “The JPEG Still Picture Compression Standard,” IEEE Transactions on
Consumer Electronics, Vol. 38(I), Feb. 1992.

 References

124

[16] M.A. Golner, W.B. Mikhael and V. Krishnan, “Multifidelity JPEG based compression of images using
variable quantisation,” Electronics Letters, vol. 37(7), pp.423-424, March 2001.

[17] Navin Chaddha, Avneesh Agrawal, Anoop Gupta and Teresa H.Y. Meng, “Variable compression using
JPEG,” Proceedings of the International Conference on Multimedia Computing and Systems, 1994.,
pp.562-569,May 1994.

[18] Long- Wen Chang and Ching- Yang Wang and Shiuh-Ming Lee, “Designing JPEG quantization tables
based on human visual system,” Proceedings. 1999 International Conference on Image Processing,
ICIP 99. pp.376-380, 1999.

[19] Luciano Volcan Agostini, Ivan Saraiva Silva and Sergio Bampi, “Multiplierless and fully pipelined
JPEG compression soft IP targeting FPGAs,” Microprocessors and Microsystems, vol. 31(8), 3
pp.487-497, Dec. 2007.

[20] J.A. Kalomiros and J. Lygouras, “Design and evaluation of a hardware/software FPGA-based system
for fast image processing,” Microprocessors and Microsystems, vol.32, pp.95–106, 2008.

[21] Luca Benini and Giovanni de Micheli, “System-level power optimization: techniques and tools” ACM
Transactions on Design Automation of Electronic Systems (TODAES), Volume 5(2), pp.115-192, April
2000.

[22] Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, Digital integrated circuits: a design
perspective, 2nd Ed. Prentice Hall,2008.

[23] Jan Rabaey, Low Power Design Essentials, Springer, 2009.

[24] K. Illgner et al., “Programmable DSP platform for digital still cameras,” Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, Vol.4,
pp.2235-2238, March, 1999.

[25] W. Rabadi, R. Talluri, K. Illgner, J. Liang, and Y. Yoo, “Programmable DSP Platform for Digital Still
Cameras,” Application Report, Apr. 2000, TI.

[26] Hyun Lim, Soon-Young Park, Seong-Jun Kang and Wan-Hyun Cho, “FPGA Implementation of Image
Watermarking Algorithm for a Digital Camera,” IEEE Pacific Rim Conference on Communications,
Computers and signal Processing, 2003. PACRIM. 2003, Vol.2, pp.1000-1003, Aug. 2003.

[27] Rongzheng Zhou et al., “System-on-Chip for Mega-Pixel Digital Camera Processor with Auto Control
Fiinctions,” Proceedings of 5th International Conference on ASIC, Vol.2, pp.894-897, Oct.2003.

[28] S. An C. Wang, “Recursive algorithm, architectures and FPGA implementation of the two-dimensional
discrete cosine transform,” IET Image Processing, vol. 2(6), pp. 286–294, 2008.

[29] Danian Gong, Yun He, and Zhigang Cao, “New Cost-Effective VLSI Implementation of a 2-D
Discrete Cosine Transform and Its Inverse,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 14(4), pp.405-415, April 2004.

[30] Shih-Chang Hsia and Szu-Hong Wang, “Shift-Register-Based Data Transposition for Cost-Effective
Discrete Cosine Transform,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol.15(6), pp.725-728, June 2007.

 References

125

[31] Che-Hong Chen, Bin-Da Liu, Jar-Ferr Yang, and Jiun-Lung Wang, “Efficient Recursive Structures for
Forward and Inverse Discrete Cosine Transform,” IEEE Transactions on Signal Processing, vol.52(9),
pp.2665-2669, Sep. 2004.

[32] J. Eyre and J. Bier, “DSP processors hit the mainstream,” Computer, vol.31 (8), pp.51-59, Aug 1998.

[33] A. Hoffmann et al., “A novel methodology for the design of application specific instruction set
processors (ASIP) using a machine description language,” IEEE Transactions on Computer-Aided
Design, vol. 20, Nov. 2001, pp. 1338–1354.

[34] F. Sun, S. Ravi, A. Raghunathan, N. K. Jha. “A Scalable Synthesis Methodology for Application-
Specific Processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.14 (11),
Nov. 2006, pp 1175-1188.

[35] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The next design discontinuity,”
Proceedings of International Conference on Computer Design, Freiburg, Germany, pp. 84–90, Sep.
2002.

[36] O. Schliebusch, H. Meyr, and R. Leupers, Optimized ASIP Synthesis from Architecture Description
Language Models, Springer, 2007.

[37] Y. Neuvo, “Cellular phones as embedded systems,” IEEE International Solid-State Circuits
Conference, ISSCC, Digest of Technical Papers, Vol.1, pp.32-37, Feb. 2004.

[38] Hao Xiao, An Pan, Yun Chen, and Xiaoyang Zeng, “Low-Cost Reconfigurable VLSI Architecture for
Fast Fourier Transform,” IEEE Transactions on Consumer Electronics, Vol. 54(4),pp.1617-1622, Nov.
2008.

[39] Hansoo Kim and In-Cheol Park, “High-Performance and Low-Power Memory-Interface Architecture
for Video Processing Applications,” IEEE Transactions on Circuits And Systems for Video
Technology, Vol. 11(11), pp.1160-1170, Nov. 2001.

[40] Sven Wuytack, Francky Catthoor, Lode Nachtergaele and Hugo De Man, “Power Exploration for Data
Dominated Video Application,” International Symposium on Low Power Electronics and Design,
1996., pp. 359 – 364, Aug. 1996.

[41] E. Catthoor, E. Franssen, S. Wuytack, L .Nachtergaele and H.De Man “Global communication and
memory optimizing transformations for low power signal processing systems,” Workshop on VLSI
Signal Processing, VII, 1994, pp.178-187, 1994.

[42] H.T. Kung, “Why systolic architectures?,” Computer , Vol.15(1), Jan. 1982, pp.37-46.

[43] W. Ma, “2-D DCT systolic array implementation,” Electronics Letters , Vol.27 (3), 31 Jan. 1991,
pp.201-202.

[44] J. S. Ward and B. J. Stanier, “Fast discrete cosine transform algorithm for systolic arrays,” Electronics
Letters , Vol.19(2), Jan. 1983 pp.58-60.

[45] Nam Ik Cho and Sang Uk Lee, “DCT algorithms for VLSI parallel implementations,” IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol.38 (1), Jan. 1990, pp.121-127.

 References

126

[46] M.H. Lee and Y. Yasuda, “New 2D systolic array algorithm for DCT/DST,” Electronics Letters ,
Vol.25 (25), 7 Dec. 1989, pp.1702-1704.

[47] M. Sun, L. Wu, M. Liou, “A concurrent architecture for VLSI implementation of discrete cosine
transform,” IEEE Transactions on Circuits and Systems, Vol.34 (8), Aug 1987, pp. 992- 994.

[48] M. H. Lee, “On computing 2-D systolic algorithm for discrete cosine transform,” IEEE Transactions
on Circuits and Systems, Vol. 37 (10), Oct 1990, pp.1321-1323.

[49] H. Malvar, “Fast computation of discrete cosine transform through fast Hartley transform,” Electronics
Letters, Vol. 22 (7), Mar. 1986, pp.352-353.

[50] Y.-M. Chin and J.-L. Wu, “Convolution-based DCT algorithm,” Electronics Letters, Vol. 27 (20),
Sept. 1991, pp.1834-1836.

[51] S. A. White, “Applications of distributed arithmetic to digital signal processing: a tutorial review,”
IEEE ASSP Magazine, vol.6, no.3, Jul.1989, pp.4-19.

[52] M.-T. Sun, T.-C. Chen, A.M. Gottlieb, ‘‘VLSI Implementation of a 16x16 Discrete Cosine
Transform,” IEEE Transactions on Circuits and Systems, vol.36(4), pp. 610 – 617, Apr. 1989.

[53] Thucydides Xanthopoulos and Anantha P. Chandrakasan, “A Low-Power DCT Core Using Adaptive
Bitwidth and Arithmetic Activity Exploiting Signal Correlations and Quantization,” IEEE Journal of
Solid-State Circuits, Vol. 35(5), pp.740-750, May 2000.

[54] Sungwook Yu and Earl E. Swartzlander Jr., “DCT implementation with distributed arithmetic,” IEEE
Transactions on Computers, vol.50(9), pp.985-991, Sep 2001.

[55] Chua-Chin Wang, Chia-Hao Hsu, Tuo-Yu Yao and Jian-Ming Huang, “A ROM-less DDFS Using A
Nonlinear DAC With An Error Compensation Current Array,” IEEE Asia Pacific Conference on
Circuits and Systems, APCCAS 2008, pp.1632-1635, Nov. 30 2008-Dec. 3 2008.

[56] Chua-Chin Wang, Jian-Ming Huang, Y.-L. Tseng, Wun-Ji Lin and Ron Hu, “Phase-Adjustable
Pipelining ROM-Less Direct Digital Frequency Synthesizer With a 41.66-MHz Output Frequency,”
IEEE Transactions on Circuits and Systems—II: Vol.53(10), Oct. 2006, pp.1143-1147.

[57] A. Shams, A. Chidanandan, W. Pan, and M. Bayoumi, “NEDA: A low power high throughput DCT
architecture,” IEEE Transactions on Signal Processing, Vol.54 (3), Mar. 2006, pp.955-964.

[58] Peng Chungan, Cao Xixin, Yu Dunshan, Zhang Xing, “A 250MHz optimized distributed architecture
of 2D 8x8 DCT,” 7th International Conference on ASIC, pp. 189 – 192, Oct. 2007.

[59] Yuan-Ho Chen, Tsin-Yuan Chang and Chung-Yi Li, “High Throughput DA-Based DCT With High
Accuracy Error-Compensated Adder Tree,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol.19(4), pp.709-714, April 2011.

[60] S.-F. Hsiao, Y.H. Hu, T.-B. Juang and C.-H. Lee, “Efficient VLSI Implementations of Fast
Multiplierless Approximated DCT Using Parameterized Hardware Modules for Silicon Intellectual
Property Design,” IEEE Transactions on Circuits and Systems—I: Regular Papers, Vol. 52(8),
pp.1568-1579, Aug. 2005.

 References

127

[61] J. F. Yang and C. P. Fan, “Recursive implementation of discrete cosine transforms: with selectable
fixed coefficient filters,” IEEE Transactions on Circuits and Systems. II, Vol. 46, Feb. 1999, pp. 211–
216.

[62] C.H. Chen, B.D. Liu, J.F.Yang and J.-L.Wang, “Efficient Recursive Structures for Forward and
Inverse Discrete Cosine Transform,” IEEE Trans. on Signal Processing, Vol. 52, No. 9, Sept. 2004,
pp.2665-2669.

[63] J. F. Yang, and C. P Fan, “Compact recursive structures for discrete cosine transform,” IEEE
Transactions on Circuits System II, vol. 47,Apr.2000, pp. 314–321.

[64] C. Chen. B. Liu, and J. Yang, “Direct recursive structures for computing radix-r two-dimensional
DCT/IDCT/DST/IDST,” IEEE Transactions on Circuits and Systems.-I, Vol. 51(10), Oct. 2004, pp.
2017–2030.

[65] A. Elnaggar, and H.M. Alnuweiri, “A new multidimensional recursive architecture for computing the
discrete cosine transform,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.10
(1), Feb. 2000, pp.113-119.

[66] C.-T. Chiu and K.J.R. Liu, “Real-time parallel and fully pipelined two-dimensional DCT lattice
structures with application to HDTV systems,” IEEE Transactions on Circuits and Systems for Video
Technology, Vol.2(1), Mar 1992, pp.25-37.

[67] Yuk-Hee Chan, Lap-Pui Chau, and Wan-Chi Siu, “Efficient implementation of discrete cosine
transform using recursive filter structure,” IEEE Transactions on Circuits and Systems for Video
Technology, Vol.4(6), Dec. 1994, pp.550-552.

[68] Z. Qihui, C. Jianghua, Z. Shaohui and M. Nan, “A VLSI implementation of pipelined JPEG encoder
for grayscale images,” Proc. International Symposium on Signals, Circuits and Systems, pp.1-4, 2009.

[69] M. Kovac and N. Ranganathan, “JAGUAR: A fully pipelined VLSI architecture for JPEG image
compression standard,” Proceedings of the IEEE, Vol.83(2), pp. 247-258, 1995.

[70] M. Kovac, N. Ranganathan and M. Zagar, “A prototype VLSI chip architecture for JPEG image
compression,” Proceedings of European Design and Test Conference, 1995. ED&TC, pp.2-6., 1995.

[71] Sung-Hsien Sun and Shie-Jue Lee, “A JPEG Chip for Image Compression and Decompression,”
Journal of VLSI Signal Processing, Vol.35(1), pp.43–60, 2003.

[72] David Salomon and Giovanni Motta, Handbook of Data Compression. (5th Edition), Springer, 2010.

[73] Zhou Wang and Alan C. Bovik, Modern Image Quality Assessment, Morgan & Claypool Publishers,
2006.

[74] H. R. Sheikh, Alan C. Bovik and Gustavo de Veciana, “An Information Fidelity Criterion for Image
Quality Assessment Using Natural Scene Statistics,” IEEE Transactions on Image Processing, Vol. 14
(12), Dec. 2005, pp. 2117-2128.

[75] Zhou Wang and Alan C.Bovik, “Mean squared error: Love it or leave it? A new look at Signal Fidelity
Measures,” IEEE Signal Processing Magazine, Vol. 26 (1), Jan. 2009, pp.98-117.

[76] T. Acharya and P. Tsai, JPEG2000 Standard for Image Compression. John Wiley and Sons, Inc., 2005.

 References

128

[77] X. Kavousianos, E. Kalligeros, and D. Nikolos “Multilevel-Huffman Test-Data Compression for IP
Cores With Multiple Scan Chains,” IEEE Transactions Very Large Scale Integration (VLSI) Systems,
Vol. 16 (7), July 2008, pp.926-931.

[78] P. G. Howard and J. S. Vitter, “Arithmetic Coding for Data Compression,” Proceedings of the IEEE,
Vol. 82 (6), June 1994.

[79] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Transactions on
Computers, Vol. C-23, pp. 90-93, Jan. 1974.

[80] Cheng Chao and K.K Parhi, “Hardware Efficient Fast DCT Based on Novel Cyclic Convolution
Structure,” IEEE Transactions on Signal Processing, Vol. 54(11), Nov. 2006, pp.4419-4434.

[81] F . M. Bayer and R. J. Cintra, “Image Compression Via a Fast DCT Approximation,” IEEE Latin
America Transactions, Vol. 8 (6), Dec. 2010, pp.708-713.

[82] Il Dong Yun and Sang Uk Lee, “On the Fixed-Point-Error Analysis of Several Fast DCT Algorithms,”
IEEE Transactions on Circuits and Systems for Video Technology, Vol.3 (1), Feb.1993, pp. 27-41.

[83] A. N. Skodras and A.G. Constantinides, “Efficient input-reordering algorithms for fast DCT,”
Electronics Letters , Vol.27 (21), Oct. 1991, pp.1973-1975.

[84] Jie Liang and T.D.Tran , “Fast multiplierless approximations of the DCT with the lifting scheme,”
IEEE Transactions on Signal Processing, Vol.49(12), Dec 2001, pp.3032-3044.

[85] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform,” IEEE
Transactions on Acoustics, Speech, Signal Processing, Vol. ASSP-35 (10), Oct. 1987, pp. 1455–1461.

[86] S. C. Chan and K. L. Ho, “A new two-dimensional fast cosine transform algorithm,” IEEE
Transactions on Signal Processing, Vol.39 (2), Feb 1991, pp.481-485.

[87] Yu-Tai Chang and Chin-Liang Wang, “A New Fast DCT Algorithm and Its Systolic VLSI
Implementation,” IEEE Transactions on Circuits And Systems—II: Analog and Digital Signal
Processing, Vol. 44 (11), Nov.1997, pp.959-962.

[88] David L. McLaren, D. Thong Nguyen, “Removal of subjective redundancy from DCT coded images,”
IEE Proceedings I, Communications, Speech and Vision, Vol.3, pp.482 – 485, 2001.

[89] P. K. Meher, T . Srikanthan, J. C. Patra, ‘‘Scalable and Modular Memory-Based Systolic Architectures
for Discrete Hartley Transform,” IEEE Transactions on Circuits and Systems, Vol.53, no.5, pp. 1065 –
1077, May 2006.

[90] C. Moraga, “Generalized Discrete Hartley Transforms,” 39th International Symposium on Multiple-
Valued Logic, ISMVL, pp. 185 – 190, May 2009.

[91] Sabri A. Mahmoud, Ashraf S. Mahmoud, “The use of Hartley transform in OCR with application to
printed Arabic character recognition,” Pattern Analysis & Applications, Vol.12 (4), pp. 353-365,
July.2008.

[92] R. N. Bracewell, O. Buneman, H. Hao, J. Villasenor, ‘‘Fast Two-Dimensional Hartley Transform,”
Proceedings of the IEEE, Vol.74, pp. 1282 – 1283, Sept. 1986.

 References

129

[93] S. K. Pattanaik, K. K. Mahapatra, “DHT Based JPEG Image Compression Using a Novel Energy
Quantization Method,” IEEE International Conference on Industrial Technology, pp.2827-2832,
Dec.2006.

[94] A. B. Watson , and A. Poirson, ‘‘Separable two-dimensional discrete Hartley transform,” Journal of
the Optical Society of America A, Vol.3(12), Dec. 1986.

[95] A. Amira, “An FPGA based System for Discrete Hartley transforms,” International Conference on
Visual Information Engineering, pp. 137 – 140, 7-9 July 2003.

[96] Web, www.xilinx.com

[97] Xilinx Inc., User Guide, ChipScope Pro Software and Cores.

[98] Jian, Bian Li, Xuan, Zeng, Rong, Tong Jia and Yue, Liu: ‘An Efficient VLSI Architecture For 2D-
DCT Using Direct Method’, Proceedings. 4th International Conference on ASIC, 2001, Fudan Univ.,
Shanghai, 2001, pp.393-396.

 Personal Detail

Academic

 B.Tech (2004-2008) in Electronics and Communication Engineering from SASTRA
Deemed University, Thanjavur, Tamilnadu, India.

 Admitted for M.Tech (Research) degree in July 2009 in Electronics and Communication
Engineering, NIT Rourkela, India.

Work Experience

 Worked as Engineer Trainee at Honeywell Technology Solutions Lab, Madurai from 29
Sept. 2009 to 30 Jan. 2010.

 Worked in SMDP-II VLSI Project at NIT Rourkela from 1 Aug. 2011 to 17 July 2012.

Publications Related to the Thesis

In Journals
[1] Vijay Kumar Sharma, Umesh C. Pati and K. K. Mahapatra, “A Simple VLSI Architecture for

Computation of 2-D DCT, Quantization and Zig-zag ordering for JPEG,” International Journal of

Signal and Imaging Systems Engineering (IJSISE), Vol 5 (1), pp.58-65, 2012.

[2] Vijay Kumar Sharma, K. K. Mahapatra and Umesh C. Pati, “Non-Recursive Equation and

Direct Computation of 8x8 2-D DCT Coefficients for High Accuracy and Low Hardware,”

Integration, the VLSI Journal (Revised version to be submitted) .

In International Conferences

 [1] Vijay Kumar Sharma, Richa Agrawal, U. C.Pati, and K. K. Mahapatra, “2-D Separable Discrete
Hartley Transform Architecture for Efficient FPGA Resource,” International Conference on
Computer and Communication Technology, ICCCT 2010, MNNIT Allahabad, pp.236-241,17-19
Sept. 2010.

[2] Vijay Kumar Sharma, U. C. Pati and K. K. Mahapatra, “An Study of Removal of Subjective
Redundancy in JPEG for Low Cost, Low Power, Computation efficient Circuit Design and High
Compression Image,” International Conference on Power, Control and Embedded Systems,
ICPCES 2010, MNNIT Allahabad, pp. 1-6, Nov. 29 -Dec. 1, 2010.

[3] Vijay Kumar Sharma, U. C. Pati and K. K. Mahapatra, “A Simple VLSI Architecture for
Computation of 2-D DCT, Quantization and Zig-zag ordering for JPEG,” International
Conference on Electronic Systems, ICES 2010, NIT Rourkela, Jan. 7-9, pp. 182-185.

[4] Vijay Kumar Sharma, K. K. Mahapatra and Umesh C. Pati, “An Efficient Distributed Arithmetic
based VLSI Architecture for DCT,” International Conference on Devices and Communications,
Feb. 24-25, 2011, BIT Mesra, Ranchi, pp. 1-5.

