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Abstract 
An image, in its original form, contains huge amount of data which demands not only 

large amount of memory requirements for its storage but also causes inconvenient 

transmission over limited bandwidth channel. Image compression reduces the data from 

the image in either lossless or lossy way. While lossless image compression retrieves the 

original image data completely, it provides very low compression. Lossy compression 

techniques compress the image data in variable amount depending on the quality of 

image required for its use in particular application area. It is performed in steps such as 

image transformation, quantization and entropy coding. JPEG is one of the most used 

image compression standard which uses discrete cosine transform (DCT) to transform the 

image from spatial to frequency domain. An image contains low visual information in its 

high frequencies for which heavy quantization can be done in order to reduce the size in 

the transformed representation. Entropy coding follows to further reduce the redundancy 

in the transformed and quantized image data. 

Real-time data processing requires high speed which makes dedicated hardware 

implementation most preferred choice. The hardware of a system is favored by its low-

cost and low-power implementation. These two factors are also the most important 

requirements for the portable devices running on battery such as digital camera. Image 

transform requires very high computations and complete image compression system is 

realized through various intermediate steps between transform and final bit-streams. 

Intermediate stages require memory to store intermediate results. The cost and power of 

the design can be reduced both in efficient implementation of transforms and 

reduction/removal of intermediate stages by employing different techniques. 

The proposed research work is focused on the efficient hardware implementation of 

transform based image compression algorithms by optimizing the architecture of the 

system. Distribute arithmetic (DA) is an efficient approach to implement digital signal 

processing algorithms. DA is realized by two different ways, one through storage of pre-

computed values in ROMs and another without ROM requirements. ROM free DA is 

more efficient. For the image transform, architectures of one dimensional discrete Hartley 

transform (1-D DHT) and one dimensional DCT (1-D DCT) have been optimized using 

ROM free DA technique. Further, 2-D separable DHT (SDHT) and 2-D DCT 
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architectures have been implemented in row-column approach using two 1-D DHT and 

two 1-D DCT respectively. 

A finite state machine (FSM) based architecture from DCT to quantization has been 

proposed using the modified quantization matrix in JPEG image compression which 

requires no memory in storage of quantization table and DCT coefficients. In addition, 

quantization is realized without use of multipliers that require more area and are power 

hungry. 

For the entropy encoding, Huffman coding is hardware efficient than arithmetic 

coding. The use of Huffman code table further simplifies the implementation. The 

strategies have been used for the significant reduction of memory bits in storage of 

Huffman code table and the complete Huffman coding architecture encodes the 

transformed coefficients one bit per clock cycle. 

Direct implementation algorithm of DCT has the advantage that it is free of 

transposition memory to store intermediate 1-D DCT. Although recursive algorithms 

have been a preferred method, these algorithms have low accuracy resulting in image 

quality degradation. A non-recursive equation for the direct computation of DCT 

coefficients have been proposed and implemented in both 0.18 µm ASIC library as well 

as FPGA. It can compute DCT coefficients in any order and all intermediate 

computations are free of fractions and hence very high image quality has been obtained in 

terms of PSNR. In addition, one multiplier and one register bit-width need to be changed 

for increasing the accuracy resulting in very low hardware overhead. The architecture 

implementation has been done to obtain zig-zag ordered DCT coefficients. The 

comparison results show that this implementation has less area in terms of gate counts  

and less power consumption than the existing DCT implementations. Using this 

architecture, the complete JPEG image compression system has been implemented which 

has Huffman coding module, one multiplier and one register as the only additional 

modules. The intermediate stages (DCT to Huffman encoding) are free of memory, hence 

efficient architecture is obtained.   
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Chapter 1 
Introduction 

An image in its original representation carries huge amount of data. Thus, it requires 

large amount of memory for storage [1]. Image compression is an important area in 

image processing which efficiently removes the visually insignificant data [2–8]. 

Compressed images are sent over limited bandwidth channel with some additional 

processing for robust (error free) transmission [9–12]. Transform based image 

compression algorithm is a most preferred choice which consists of image transform (in 

non-overlapping blocks), quantization of transformed coefficients and entropy coding 

[13].  Joint photographic expert group (JPEG) is a committee that standardizes the image 

compression algorithm [14]. The 8x8 block-wise two-dimensional discrete cosine 

transform (2-D DCT) is used as orthogonal transform in JPEG image compression [15]. 

Images compressed by this standard are used globally. This algorithm provides the user 

to choose between amount of compression and quality as per the requirement of the 

image in different applications. The variable amount of compression makes this 

algorithm very much suitable for the transmission purpose as user can adjust the bit rate 

of the transmission according to channel capacity.  

JPEG is fixed algorithm and it has some flexibility that can be incorporated easily 

without any major changes in the basic structural feature [16–18].  JPEG system can be 

implemented in software as well as in hardware. Software solution is not promising for 

the applications requiring high speed. Therefore, real-time processing is done through the 

dedicated hardware [19,20]. In custom hardware implementation, architecture plays a 

vital role in deciding area, power and throughput of the design. Architecture 

optimizations lead to lower computational units (adders, multipliers), reduced memory 

size for storage of temporary variables and smaller interconnects. Architecture 

explorations to minimize the area and power consumption is a issue for portable devices 

running on battery. Low silicon area reduces the cost of the appliance [21,22] and low 
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power consumption increases the battery lifetime (time between recharges for chargeable 

battery) which in turn reduces the weight of the battery and overall size [23]. 2-D DCT is 

a complex algorithm and requires high computations. Further, subsequent stages in 

transform based image compression require high memory storage along with arithmetic 

circuits. For portable devices, having image compression system (like JPEG compression 

in digital camera [24–27]), low-cost design, that can be achieved by reducing silicon area 

is highly required [28–31]. By efficiently designing the hardware architecture, image 

compression can be performed with low-cost and low power budget. 

1.1 Motivation  

System level implementation of a digital device can be performed in embedded 

processors, digital signal processors (DSPs), application specific instruction set 

processors (ASIPs), reconfigurable logic/processors and dedicated hardware. Each 

implementation gives best performance for a particular application area. Unlike 

embedded processors, where low cost and low power consumption are basic 

requirements, price and performance of DSP processors vary according to application 

areas. They come in three categories, i.e., low cost, low power midrange and diversified 

high end. In the high end category, ultra high speed applications are implemented in 

DSPs [32]. ASIPs are designed for a particular application area. Their hardware and 

instruction-set may be optimized for power, area or performance. In terms of power 

consumption and hardware cost ASIPs are intermediate between general purpose 

processors (GPPs) and application specific integrated circuits (ASICs) [33–36].  

Although processors, mentioned above, have flexibility that their functionality can 

be modified by changing the soft codes without any hardware modifications unless major 

changes (like throughput improvement by adding hardware in parallel or pipeline 

manner) are required, it (flexibility) comes at the cost of lower energy efficiency. Fig.1.1 

depicts the energy efficiency of various implementations with respect to the flexibility. 

Reconfigurable processors provide the functionality of a hardware accelerator by 

assembling a number of functional units on temporal basis through configurable 

interconnect and configurable bus of the processor. Thus, when accelerator work is 

finished,  the  same  functional  units can be used for  other applications, unlike dedicated  
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Fig.1.1 Energy efficiency on different implementations[23] 

accelerator in DSPs which brings additional hardware overhead. FPGA is used for this 

purpose [23]. DSP processors are traditionally used inside the digital camera. 

Nevertheless, it requires the hardware processor and memory to store soft codes. Since 

the JPEG is a standard and changes in it is rare (and almost none), dedicated hardware for 

the JPEG compression in a digital camera is a promising solution because of the 

following reasons. Dedicated hardware possesses the maximum energy efficiency as         

compared to embedded processors, DSPs and reconfigurable hardwares, that increase the 

battery life time between recharges and has the low silicon area. It is important in camera 

(and in all consumer electronic appliances) because silicon area directly relates to cost of 

the device. In battery perspective, there is a constant annual growth of battery capacity in 

tune with the technology evolutions that enabled the battery volume shrinkage and also 

good talk-time for first WCDMA phones (Fig.1.2) [37]. But, for multimedia space (very 

high computation is involved) there is need to reduce power as battery capacity is not 

enough to meet the computations. Dedicated hardware has high speed which is necessary 

for the digital camera (and in all real time applications) where images are captured, 

compressed and stored in a pipeline manner in real time. Efficient design strategy of the 

dedicated hardware system can lead to reduction in power demanding computational 

units such as adders and multipliers [38]. An image processing system requires high 

storage (memory) elements. Moreover, memory related operations dominate the system  
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Fig.1.2 Trends in power consumption and battery capacity [37] 

power consumption [39,40]. Techniques can be used for well defined system to reduce 

the memory and hence power consumption [41]. 

1.2 Background  

Systolic architecture is used to implement digital signal processing and arithmetic 

algorithms in which fast processing is required. It was the preferred design approach for 

the special purpose systems because of its simple, regular and pipeline operations 

performed by set of small interconnected similar array cells called processing elements 

(PEs). Breaking the whole processing into small cells has the two major advantages. In 

case of systolic architecture, a set of data brought from the memory is processed by 

several PEs in a pipeline structure i.e., multiple operations are performed on each data 

item. Therefore, computation is increased at the same memory bandwidth [42]. One 

example for systolic array is given by H.T. Kung [42], where convolution operation were 

mapped on systolic array. A major area and power consuming module in VLSI is 

multiplier. Past research in the implementation of any DSP algorithm using systolic array 

was centered on the reduction of the number of multipliers. In many literatures, DCT is 

implemented by systolic array architectures with the purpose of reducing number of 
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multipliers [43–48]. Apart from systolic, other DCT implementations also favored the 

multiplier reduction. H. Malvar [49] implemented DCT using DHT with reduced number 

of  multipliers.  Y.-M. Chin et al. [50] proposed a new convolution based algorithm for 

computing DCT. Still, all these algorithms are not free of multipliers, i.e. they need 

multipliers along with adders and other logic components for the VLSI implementation. 

Distributed arithmetic (DA) algorithm can implement DSP algorithms without 

multipliers, which is important for area and power savings in VLSI designs. For DA 

implementation of inner product of arrays, one of the inputs should be constant array. 

ROM based DA relies on the manual pre-computations of constants and their storage in 

ROM. These pre-computed values are fetched from the ROM addressed by the input bits. 

According to S.A. White [51], by careful design one may reduce the total gate count in a 

signal processing arithmetic unit upto 80 percent. ROM based DA is utilized for DCT 

implementations in literatures [52–54]. ROM based design is not preferred choice in 

VLSI because ROM has slow speed (ROM access time) and more power consumption 

[55,56]. Moreover, size of memory (ROM) has to be increased exponentially with the 

size of transform and also high accuracy requirements.  ROM free DA architecture 

exploits the sparse nature of matrix formed by binary representation of coefficients (most 

places are zero) in contrast to pre-computing and storing them in ROM based DA i.e., 

constant coefficients are distributed. Shams et. al, [57] first gave the analysis of ROM 

free DCT and named the algorithm NEDA (New DA). The reduced adder tree of ROM 

free DA is implemented by P. Chungan et al. [58]. Yuan-Ho Chen et al. [59] proposed 

high throughput DCT architecture using DA which uses less number of bit-width in DA 

precision for hardware reduction.    

For 2-D DCT implementation from 1-D DCT using techniques mentioned above 

requires transposition memory resulting in high cost design along with irregular 

architecture for realization of data pipelined computation [60]. Also, row-column 

decomposition technique is unsuitable for the applications requiring transmission in 

limited bandwidth as all DCT coefficients need to be calculated in advance for sending, 

though it is sent one by one. To reduce the circuit cost, direct recursive computation of 2-

D DCT is carried out using recursive kernel in which DCT coefficients are computed one 

by one at regular clock cycles [61–67]. The disadvantage of recursive kernel is that 
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accuracy is reduced to a large extent due to round-off error. More errors are introduced as 

recursive cycle increases because each processed register values requires higher number 

of bits for its representation and fixed size of register in VLSI makes it non-practical. 

Quantization and Huffman coding are the other parts in the image compression 

system which requires huge storage and controlling circuitry. Quantization is division of 

2-D DCT coefficients with a quantization step-size (different for different DCT 

coefficients in 8x8 blocks). Zig-zag ordering [15] has to be performed of the quantized 

DCT coefficients to encode the most important image information contents first. 

Hardware implementation of complete JPEG image compression is done in literatures 

[19], [68–71]. For the Huffman coding in JPEG compression, JPEG committee provides 

an optimized table (having codes for DCT coefficients) for the Huffman code. These 

tables need to be stored in memory. M. Kovac et al. [69], have implemented quantization 

with 16-bit multiplier and RAM. M. Kovac et al. [70] used 13x10-bit multiplier and 

RAM to store quantization table. Adders and shifters along with 64x12-bits ROM 

memory have been used by L. V. Agostini et al. [19]. M. Kovac et al. [70] used adders 

and shifters for division purpose and one division takes eight clock cycles. Five adders 

and five pipeline register stages along with quantization table have been used by Sung-

Hsien Sun et al. [71] for quantization. The zig-zag ordering is performed by 8x8 arrays of 

register pairs by M. Kovac et al.  [69] and M. Kovac et al. [70] whereas L. V. Agostini et 

al.  [19] used time-interleaved RAM pairs of size 64x10-bits for the reading and writing 

operations. Similarly, Sung-Hsien Sun et al. [71] have used two RAM blocks for loading 

64 DCT coefficients. Agostini et al. [19] used two ROM having sizes 12x13-bits and 

176x21 bits to store Huffman code table. Efficient way of storing Huffman code table is 

presented by Sun et al. [71], where instead of storing 16-bits code word (required for the 

base code [1]), 8-bits width of memory size has been used and the whole system operate 

at 4.1 MHz in FPGA implementation. 

After review of these articles, efficient hardware architectures for the image 

compression have been proposed. The architectures are optimized in all the stages for 

memory as well as datapath reductions by appropriate controlling circuitry and also by 

exploiting redundant nature of image in original representation. The objectives and 

outline of the work proposed in the thesis are presented in the following section.    
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1.3 Objective of the Thesis  

A novel equation for the computation of 2-D DCT coefficients without use of 

transposition memory is proposed. The equation can compute DCT coefficients one by 

one in any order in a non-recursive way. All the internal computations are performed in 

integer format making hardware architecture highly accurate for DCT coefficient 

computation. The fractional cosine values are stored in a register which is multiplied with 

a multiplier at last stage only. Therefore, hardware overhead becomes negligibly small as 

only a multiplier and a register bit width needs to be changed for higher accuracy of DCT 

coefficients. From the proposed equation, VLSI architecture is implemented in both 

FPGA as well ASIC library. The implemented architecture has less area and low power 

consumption when compared to existing 2-D DCT implementations. From this 

implementation, an additional multiplier and a register are enough to get the quantized 

and zig-zag ordered DCT coefficients without extra memory requirements and at the 

same latency. 

Hardware architecture for computation of 1-D DCT with reduced area and power 

using memory free DA approach is presented and implemented in FPGA as well ASIC 

library for area and power comparisons. The presented 1-D DCT architecture reduces the 

DA computational units from architecture presented by P. Chungan et al. [58] from seven 

to three with clock latency increased by 3 cycles. Image compression using separable 

discrete Hartley transform (SDHT) has been done and it is found that SDHT performs 

same as DCT at high compression. Hardware architecture for DHT using ROM free DA 

is proposed which has less adder bit-width requirement than DCT. The architecture for 1-

D DHT and 2-D DHT is implemented in FPGA.  

A simple finite state machine (FSM) based architecture for computation of DCT to 

zig-zag ordering of quantized DCT coefficients is proposed. The architecture removes 

memory requirements for 64 DCT coefficients storage, quantization table storage as well 

storage of quantized coefficients for zig-zag ordering. The energy compaction property of 

DCT coefficients is studied by reconstructing the image using less number of DCT 

coefficients.  
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Huffman coding is implemented for JPEG Huffman code table. Strategies have been 

used to reduce the code memory requirements. 

The major research works done are listed here: 

1. The energy compaction property of DCT is studied by reconstructing the 

different images with the help of only selected DCT coefficients in the 

decompression. 

2. Image compression and decompression is done using 2-D separable discrete 

Hartley transform (2-D SDHT). Basis function image of SDHT is plotted, 

PSNR vs. compression ratio (rate-distortion curve) is plotted and compared with 

the 2-D DCT for different standard images. 

3.  FPGA implementation of SDHT is performed using efficient ROM free DA 

approach and results are compared with ROM based DA. 

4. Area and power efficient VLSI architecture for 8 point 1-D DCT using ROM 

free DA is presented and implemented in FPGA as well as ASIC library. 

5. A simple finite state machine (FSM) based VLSI architecture from DCT to Zig-

zag reordering of transformed coefficients for JPEG baseline encoder using 

quantization table suitable for less complex hardware design is presented and 

implemented in FPGA as well as standard cell. 

6. Non-recursive equation and its VLSI architecture for direct computation of 8x8 

two dimensional 2-D DCT without transposition memory for high image quality 

is presented and implemented in FPGA as well as standard cell based 

technology.  

7. Huffman coding is implemented using memory requiring less number of bit 

storage as compared to original.  

 

1.4 Chapter Wise Contribution of the Thesis 
 

Chapter-1 :  Introduction 

   Introduction to transform based image compression along with motivation behind 

the dedicated hardware design for image compression is presented. Background work and 

main research contribution is also mentioned. 
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Chapter-2 : Image Compression 

The focus of this chapter is to study the energy compaction property of DCT and 

DHT in transformed based image compression. Image reconstruction is done using 

selective 2-D DCT coefficients. Quality assessment is done by reconstruction. 

Compression ratios are tabulated for different images at different quantization level. 2-D 

SDHT is used for the image compression and decompression.  

Chapter-3 : Distributed Arithmetic and its VLSI Architecture 

Distributed Arithmetic (DA) implementation approach for DCT and DHT is main 

aim of this chapter. Efficient implementation of DCT and DHT using ROM free DA 

approach is described. Different implementation results (like 1-D DCT, 1-D DHT etc.) 

are summarized and compared with the existing implementations.   

Chapter-4 : Efficient JPEG Image Compression Architecture 

This chapter focuses on efficient architecture of JPEG from DCT to zig-zag ordering 

where memory requirements for intermediate storage of DCT coefficients before and 

after quantization is removed by simple control circuit design. Also, efficient 

implementation of Huffman code table with reduced storage is done.  

Chapter-5 : Direct Computation of 8x8 2-D DCT Coefficients Equation and Its   
Hardware Architecture 

The direct computation equation of 2-D DCT coefficients is explained. The proposed 

equation computes DCT coefficients in non-recursive way without transposition memory 

and require less hardware for image compression as demonstrated with the complete 

JPEG implementation. 

Chapter-6 : Summary and Conclusions  

The comprehensive summary of the thesis is provided with scope for future work.  

1.5 Summary 

In this introductory chapter, transformed based image compression and requirement for 

the low cost and low power image compression hardware are introduced. Motivations 
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towards the dedicated hardware implementation rather than software implementation are 

explained. The related works done in hardware implementation of DCT and complete 

JPEG image compression system is highlighted. The thesis objective is mentioned with 

major contributions illustrated point wise. Finally, chapter organization of the thesis is 

summarized.   
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Chapter 2 
Image Compression 

2.1 Introduction 

A digital image is two-dimensional functional in space where amplitudes at each location 

are called pixels. There are different types of images depending upon the different 

number of data bits per pixel for their representation. Quality of an image can be assessed 

either visually or by mathematical formulation. The former is called subjective quality 

assessment and the later objective quality assessment. A common objective quality 

assessment metric for images obtained after decompression is PSNR (peak signal-to-

noise ratio). Transform based lossy image compression is flexible as it can compress 

images at different qualities depending upon the application of the image. JPEG uses 8x8 

block-wise 2-D DCT as the transform. DCT has very high energy compaction and its 

performance is almost similar to optimal Karhunen-Lo'eve transform (KLT) with the 

advantage of constant kernel and less computational complexity. Still, for the hardware 

implementation, similar kind of transform which will have less computational complexity 

and hence less hardware requirement with performance almost similar to DCT can be a 

preferred choice. 

In this chapter, introduction about digital image representations and its various 

classifications have been given. Image quality assessment has been briefed. Basics of 

transform based image compression along with JPEG image compression have been 

described. The energy compaction property of DCT has been studied by compressing the 

images with few low frequency DCT coefficients. Compression ratios at different scale 

of compression for different standard images have been tabulated and images are 

displayed for quality visual assessment. Separable discrete Hartley transform (SDHT) has 

been introduced for image compression and decompression. Quality of images obtained 

from compression and decompression by SDHT is compared with DCT.   
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2.2 Image representation and classification 

Image of a natural scene has infinite level of brightness and color intensity variations. 

Apart from intensity, they are continuous function in two dimensional space. To process 

the image for various applications by digital processors along with its storage in memory, 

image data obtained from electronic image sensors (CCD or CMOS) in digital camera, 

scanner or any similar device are converted into digital form by A/D converter. Sampling 

and quantization steps are used [1]. The infinite intensity levels of the image has now 

become digital having finite levels. Spatial continuity, itself being sampled by the fixed 

points present on the sensor, is converted to discrete. Continuous image signal (natural 

scene), now, is a two dimensional digital function, represented by f(x, y), where the 

magnitude of function f represents the intensity from among finite levels of intensities at 

any point (x, y) in the space. The coordinate (x, y) is discrete as shown in Fig.2.1. The 

intensities at different points in space are called pixel elements or pixels of the image. 

One example of finite level of intensities can be all integral values from 0 to 255. In 

general, any digital image will have the fixed number of pixel elements in horizontal as 

well as vertical directions. The term size of the image is used for the total number of pixel 

elements in an image. It is represented by MxN, where M is the number of rows and N is 

the number of columns of image data.      

 

 

 

 

 

 

  

 

Fig.2.1 Representation of digital image in two dimensional spatial coordinate 
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In digital representation, the magnitude of intensity is represented by a fixed 

number of bits for the entire pixels. Classification of image on the basis of the number of 

bits used for representing each of its pixel value is as follows [72] 

(a) Bi-level image 

Each pixel will have one bit (binary) value, representing black and white. Textual 

information can be represented by the bi-level image. 

(b) Grayscale image 

This is a most common type of image used in many applications. A grayscale image 

represents the 2n shades of a gray, where n is the number of bits representing each pixel. 

The 8-bits (one byte) representation is most preferred and used for display in computer 

monitor and printing purpose as well. In 8-bit representation there are 256 shades of 

gray (or intensities) between black and white. 

(c) Continuous-tone image 

In a continuous-tone image there are many shades of a color (or gray). In other words, 

one pixel has many intensity levels such that nearby pixel intensity, though it differs by 

one unit intensity level, appears same to the eyes. Images obtained from the digital 

cameras and scanners are example of continuous-tone image. Color image is represented 

by 24-bits pixel value in three color component planes R (red), G (green) and B (blue) 

with 8-bits allocated for intensities of each color.   

2.3 Image Quality Measurement Metric 

Images are degraded in quality while going through the different processing steps such as 

acquisition, compression, transmission and reproduction [73]. In image and video 

processing fields, there are various systems and they all convey visual information for 

human perception. There is trade-off between system resources and visual quality 

obtained from these systems [74]. These requirements lead to necessity for the image 

quality measurement metric. In addition, there are engineers working on the optimization 

of signal processing algorithms [75]. So, it is also important for this perspective to test 
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algorithms for quality of the obtained signal (benchmarking algorithms). There are two 

methods to evaluate the quality of images. These are as follows: 

 Subjective Quality Measure   

In the most of the image processing applications, human beings are the ultimate viewer 

and hence, subjective quality evaluation is done by the human beings. Consensus of the 

individuals regarding quality of compressed/decompressed images is taken in account. 

Viewer gives ratings among different choices available. Mean opinion score (MOS) is a 

numerical value that is the output of the observation given by [13], 
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Here, Ri  is the numerical value corresponding to category i, ni is the number of 

judgments in that category and C is the number of category. However, subjective 

evaluation is expensive and process is slow. So, quality measurement cannot be 

incorporated in the automatic systems [73, 74].   

 Objective Quality Measure   

Accurate and automatic quality measurement can be done by formulating a mathematical 

model. Signal-to-noise ratio (SNR) is a simple mathematical model of quality 

measurement expressed in terms of mean square error (MSE) and signal variance ( sσ ), 

given by [13], 
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and MSE is given by,  
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where f [m, n] represents original image and f
∧

[m, n] represents the image after the 

application of compression/decompression process, the quality of which has to be 

determined. The size of the image is MxN. SNR being dependent on the image variance, 

another quantitative measurement metric is peak signal-to-noise ratio (PSNR). PSNR is 

expressed by the same SNR equation with variance replaced by maximum intensity level 

in the image representation. In case of 8-bits per pixel (gray scale) image, the maximum 

intensity is 255. 

2
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255( ) 10log
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=  

PSNR is a better measurement matrix for comparing two images processed by the 

hardware, as it gives the truncation error introduced due to limited bit-width 

representation (e.g., register bit-width) [57]. 

2.4 Image Compression Model 

Image compression reduces the amount of data from the original image representation. 

There are two approaches to compress an image. These are: 

(a) Lossless compression 

(b) Lossy compression 

Image data compressed by lossless compression method can be retrieved back accurately 

in the reverse process called decompression. Lossless compression method has the 

disadvantage that images can be compressed by a maximum compression ratio of about 3 

to 4 (very low compression), where compression ratio (CR) is given by, 

1
2

n
n

CR =  

Here, n1 is the total number of bits in original image and n2 is the total number of bits in 

compressed image. In lossy compression method, an image is compressed at the cost of 

(2.4)

(2.5)

(2.7)
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removing unwanted information from it which cannot be perceived by human visual 

system (the human eyes are not able to distinguish the changes). With the help of lossy 

compression technique, images can be compressed to a large extent (very high 

compression) subject to quality requirement for image application. Hence, lossy 

compression is a most common and used in many image and video coding standard such 

as JPEG, MPEG etc.     

Fig.2.2 shows a general image compression model. Image data representation has 

redundancy (also called pixel correlation, interpixel redundancy or spatial redundancy), 

in the sense, a pixel value can be predicted by its neighborhood pixels [1, 76]. De-

correlation process removes the spatial redundancy and hence, facilitates compression. 

Some of the techniques used for this process are predictive coding, transform coding and 

subband coding [76]. Apart from the interpixel redundancy, there is statistical 

redundancy present in the data after de-correlation (not only image but any data possess 

statistical redundancy). This is removed by entropy encoding process where more 

probable symbol is assigned less number of bits and vice-versa (also called variable 

length encoding). Huffman coding and arithmetic coding are two important techniques 

used for entropy encoding of data [77], [78]. Although, arithmetic encoding gives slightly 

 

 

 

 

 

 

 

 

 

 

Fig.2.2 A generalized image compression model [76] 
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more compression than the Huffman encoding, it is a more complex and computation 

intensive. Therefore, Huffman coding is preferred choice in hardware implementation of 

entropy coding. In case of lossless compression, images undergo entropy encoding 

directly after de-correlation, whereas lossy compression require additional preprocessing 

stage called quantization before it is encoded by entropy process. Quantization is 

irreversible process and it is the only lossy stage in image compression model.  

2.5 Transform based Image Coding  

Transform based image coding is most preferred and widely used lossy image 

compression (coding) method. Fig.2.3 shows the block diagram of transformed based 

image compression coding technique. The purpose of the transform is to remove 

interpixel redundancy (or de-correlate) from the original image representation. The image 

data is transformed to a new representation where average values of transformed data are 

smaller than the original form. This way the compression is achieved. The higher the 

correlation among the image pixels, the better is the compression ratio achieved. An 

image transform should have the following properties. 

(a) Inverse transformation should exist 

(b) De-correlate the original image data  

(c) Clear separation of frequency  

Inverse transformation is a pre-requisite requirement in any transform because 

transformed data should be re-constructed for image formation by inverse process 

(decompression). Orthogonal transform (like DCT, DHT, DWT, etc.) is used for this 

purpose. A de-correlation property makes the transformed data independent from each 

other. In lossy image compression, some coefficients are quantized to zero or altered to a  

 

 

 

Fig.2.3 Transform based image compression model 
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new smaller value. Therefore, by the de-correlation property, in inverse transforms, 

original image data remains nearly unchanged. Frequency separation brings the 

transformed data made up of different frequency coefficients. An image contains very 

high visual information in the low frequency contents than the high frequency content. 

Very fine details are represented by high frequency contents of the image and in many 

applications, fine details are not required (also in many cases these details are not 

important as they are not visible to human eyes). Therefore, if clear order of frequency is 

known, high frequency coefficients can be ignored (quantized to zero) in the coding stage 

and hence compression is achieved. An ideal image transform should possess the 

following two properties. These are: 

(a) Maximum energy compaction 

(b) Less computational complexity 

By the energy compaction, very few coefficients can have high values in the transform 

domain. Therefore, lesser the coefficients value, higher is the compression. Fast image 

compression is required in many compression systems and complex transform leads to 

high computation time making the process slower. Also, in case of faster implementation, 

dedicated hardware is used. Furthermore, high complex algorithm requires more 

hardware area, making the encoder design costly and also more power consuming. 

Block based transform 

Images can be transformed in non-overlapped smaller block size, like 4x4, 8x8, 16x16, 

32x32, etc. Since, nearby pixels possess correlations, this trend is valid throughout the 

entire image pixels. Therefore, larger the block size taken for the transform, more 

correlation can be exploited and interpixel redundancy can be removed. In practice, it is 

found that average coding gain improvement is much lower when increasing the 

transform size [13, 79]. In contrast, the computational complexity increases by a larger 

amount with increase of block size. Hence, a compromise is made for the transform size 

between the computational complexity and coding gain and 8x8 block based transform is 

adopted in many image and video coding standards, like JPEG image compression, 

MPEG video compression, etc.  
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Quantization 

Quantization process brings variable compression in the image compression process. 

Quantization process is done by dividing each transformed coefficients by a constant step 

size. In this process, transformed coefficients are made smaller to bring the compression 

[15]. Inverse quantization step restores original coefficients but with round-off error. 

Higher step size used for the quantization makes transformed coefficients smaller i.e., 

more compressed, with the cost of losing data in rounding and truncation. Quantization 

step size can be controlled by a variable number. Automatic compression size is 

incorporated by meeting the trade-off between image quality, bit-rate for transmission 

and memory size used for the storage of compressed images. Transformed coefficients 

possess the different frequency values. Accordingly, high frequency coefficients which 

carry low visual information can be quantized heavily without losing important image 

information.  

Coefficients Re-arrangement 

Many high frequency transformed coefficients when quantized heavily become zero. In 

order to code the quantize coefficients efficiently, Run-Length encoding procedure is 

applied. In Run-Length encoding procedure, not all zeros are encoded by a unique code 

for zero, but it is encoded by the number of zeros preceding the non-zero coefficient. 

Hence, larger zeros make little change in code length. Therefore, it is important that zero 

quantized coefficients are not distributed among non-zero coefficients, rather for optimal 

encoding, all zeros should come together in sequence. For this purpose, transformed and 

quantized coefficients are re-arranged in increasing frequency order so that higher 

frequencies (which are quantized to zero) appear last.       

2.6 JPEG baseline Image Coding  

JPEG baseline image coding is a transform based lossy image compression technique and 

it is standardized by JPEG committee [14]. Image is processed in 8x8 blocks to reduce 

the computational complexity for the implementation. The 8x8 block-wise 2-D DCT is 

taken followed by quantization of DCT coefficients. A typical quantization matrix is 

given by,  



Chapter‐2                                                                                                                        Image Compression 
 

22 
 

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

mQ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Quantized DCT coefficients are rearranged in increasing frequency order (zig-zag order) 

as shown in Fig 2.4(a) so as to encode the visually significant coefficients first. The first 

DCT coefficient is having zero frequency. It is called DC coefficient and the rest of the 

63 coefficients are called AC coefficient [15]. DC coefficient from the previous block are 

subtracted with the current block (differential coding) and are encoded using Huffman 

coding. The DC coefficients represent the average image information of the block. The 

DC differential coding is performed to reduce the code size as nearest block possess the 

almost same average energy [1]. The AC coefficients are first encoded by run-length 

coding where an AC coefficient and runs of zero preceding this coefficient are grouped. 

This is performed because most of the high frequency coefficients (residing in bottom 

right region) become zero after quantization and hence efficient (short) binary code is 

obtained. The run-length coded data are then encoded by Huffman coding procedure. The 

JPEG committee provides a standard table for quantization as well as Huffman coding 

(Fig.2.4(b)). Quantization levels are stored in quantization table whereas, Huffman table 

contains the base codes of the AC and DC coefficients. For getting base code for a 

coefficient, its category (it is assigned for a range of coefficients [1]) and run-length code 

(for AC coefficients) form the address to fetch the base code from the table. Base code is 

extended with binary code of the coefficient to make the complete code of the coefficient. 

The DC and AC coefficients code are then combined to form bit-stream. The run of zeros 

more than 16 are encoded by special code. At the end when all coefficients in a block are 

encoded, a special code indicating end of block is inserted. Huffman coding can be 

performed without use of table, but it makes the encoding slower and also the 

computation more complex.   
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Fig.2.4(a) Zig-zag ordering for DCT coefficients 

 

 

 

 

 

Fig.2.4(b) JPEG baseline Image compression 

2.7 Discrete Cosine Transform (DCT)  

DCT is an orthogonal transform. Karhunen-Lo'eve transform (KLT) is optimal in class of 

orthogonal transforms like Fourier transform, Walsh-Hadamard transform and Haar 

transform and has the best energy compaction [72, 79]. However, KLT is not ideal for 

practical image  compression as its basis vectors has to be calculated according to the 

pixel values of the image (i.e., KLT is a data dependent). For each image, there will be 
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separate basis vectors that also need to be included in the compressed image for the 

decompression process. It was found that DCT performs close to KLT and their 

performances are also close with respect to rate-distortion criterion (quality at different 

compression) [79]. In addition, there are several fast and hardware efficient algorithms 

available for the computation of DCT   [80–87]. Therefore, DCT became the widely used 

transform for lossy image encoding/compression and also in the several other signal 

processing applications. 

2.7.1 2-D DCT Equation 

For a NxN 2-D data X(i, j), 0 ≤ i ≤ N-1 and 0 ≤ j ≤ N-1, NxN 2-D DCT is given by [64],   
   

    
1 1

0 0

(2 1) (2 1)( , ) ( ) ( ) ( , ) cos cos
2 2

2 N N

i jN
i u j vF u v C u C v X i j

N N
π π− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ += ×∑∑   

where, 0 ≤ u≤ N-1 and 0 ≤ v ≤ N-1 and C(u), C(v) = 1/ 2 for u, v=0, C(u), C(v) =1 

otherwise. The 2-D DCT equation is separable transform and can be evaluated by first 

taking the 1-D DCT to rows followed by 1-D DCT to columns, where 1-D DCT is given 

by, 

1

0

2 (2 1)( ) ( ) ( )cos
2

N

iN
i uF u C u X i

N
π−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

+= ∑  

With, C(u) defined as above. Fig.2.5 shows the 2-D DCT calculation from 1-D DCT 

using separable property. DCT transforms the spatial data into frequency domain.  

 

 

 

 

 

Fig.2.5 2-D DCT from separable property 

(2.8)
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Fig.2.6 64 basis functions image of an 8x8 2-D DCT matrix 

For i, j=0, cosine term will be zero and F(0,0) will represent the average value (DC) of all 

NxN pixels. Basis function images are generated for 8x8 2-D DCT as shown in Fig.2.6. 

Top-left image has no intensity variation and hence, it corresponds to DC frequency. 

Other 63 images are varying in intensity and shows spatial frequencies. Frequencies are 

increasing from top to bottom and left to right with bottom right representing the 

maximum frequency. Therefore, top left coefficient of any transformed image block 

corresponding to zero frequency is called DC coefficient and rest are called AC 

coefficients. 

2.7.2 Energy Compaction Property of 2-D DCT  

DCT has very good energy compaction. Most of the image energy is stored in few DCT 

coefficients. Images are transformed into 2-D DCT and images of coefficients are 

displayed in right side for three types of standard images as shown in Fig. 2.7. Top left 

side is brighter indicating high intensity, i.e., high numerical value of coefficients, 

whereas, rest of the parts are black that means they have almost zero value (and hence 

zero energy) as energy is proportional to square of the image intensity.    
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(a) 

 
(b) 

 
(c) 

Fig.2.7 Energy compaction of DCT. Image (left) and its DCT coefficients’ image 
(right) (a) 450x450 Lena, (b) 256x256 Cameraman and (c) 512x512 Peppers 
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2.7.3 Image Reconstruction by selective DCT coefficients  

DC coefficient of DCT contains the average pixel values of the image. This is true for the 

block based transform as well. In case of block based transform, DC coefficients of each 

block carry most of the signal energy of that block and therefore, DC coefficients of the 

image have highest energy as compared to the average energy possess by total AC 

coefficients of entire blocks. This is shown in Fig.2.8, where Lena and Peppers images 

are first DCT transformed in 8x8 blocks. Then, AC coefficients of each block is 

discarded (quantized to zero) and image is reconstructed by Inverse DCT (IDCT) with 

the  help  of  only DC coefficients of  each  block.  Energy compaction property  of  DCT  

 

 
(a) 

 
(b) 

                   Fig.2.8 Original (left) and reconstructed (right) image after quantizing all AC 
coefficients of 8x8 DCT to zero (a) Lena and (b) Peppers 
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coefficients discussed in Sub Section 2.4.2 clarify that most of the image energy is 

contained in few low order DCT coefficients. This observation can be exploited to reduce 

the computation of DCT in both hardware and software implementations. Four types of 

images are JPEG compressed and decompressed in three cases by selectively taking 8x8 

DCT coefficients.        

Case 1: All 64 DCT coefficients are taken for reconstruction.  

Case 2: Only first row and first column DCT coefficients are taken for reconstruction.  

Case 3: Only first 15 DCT coefficients in zig-zag ordered are taken for reconstruction. 

TABLE 2.1 shows the percentage improvement in compression ratio (CR) in case 2 and 

case 3 with respect to case 1. Shadow rows shows the CR for heavy quantization (higher 

value of quantization parameter i.e., “quality”). Fig.2.9 shows the reconstructed  

TABLE 2.1 
COMPRESSION RATIO OBTAINED FOR DIFFERENT QUANTIZATION LEVEL 

Images   

Compression 
ratio in case 
1  

(all 64 DCT 
coefficients 
taken) 

Compression 
ratio in case 
2  

(first row and 
first column 
DCT 
coefficients 
taken) 

Compression 
ratio in case 
3  

(first 15 
coefficients 
taken)  

% 
improvement 
in 
compression 
ratio in case 2 
(as compared 
to case 1) 

% 
improvement 
in 
compression 
ratio in case 3 
(as compared 
to case 1) 

Lena 

(448x448) 

quality=1 12.66 19.08 14.16 50.7 % 11.84 % 

quality=5 33.74 39.96 34.09 18.4 % 1.0 % 

Peppers 
(512x512) 

quality=1 12.50 18.17 14.02 45.3 % 12.1 % 

quality=8 41.50 45.24 41.58 9.0 % 0.1 % 

Crowd 
(512x512) 

quality=1 6.88 11.61 7.96 68.7 % 15.7 % 

quality=5 17.48 23.87 17.62 36.5 % 0.8 % 

Cameraman 
(256x256) 

quality=1 9.64 16.58 13.30 72 % 37.9 % 

quality=3 19.42 27.98 22.06 44.0 % 13.6 % 

Note: “quality” is a parameter in JPEG compression which decides DCT coefficients quantization level   
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(a) 

 
(b) 

 
(c) 

 

(d) 

Fig.2.9  From left to right, original image, reconstructed image by taking all DCT 
coefficients, reconstructed image by taking first row and first column DCT 

coefficients, reconstructed image by taking first 15 coefficients in zig-zag order of 
(a) 448x448 Lena, quality=1, (b) 448x448 Lena, quality=5, (c) 512x512 Peppers, 

quality=1, (d) 512x512 Peppers, quality=8 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Fig.2.9 (continued), (e) 512x512 Crowd, quality=1, (f) 512x512 Crowd, quality=5, (g) 
256x256 Cameraman, quality=1, (h) 256x256, Cameraman, quality=3. 

images in above mentioned three cases. Reconstructed images are shown for the quality 

comparison as psychovisual information (not visible to eyes [88]) are removed by 
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discarding the high frequency coefficients. The following observations can be made from 

TABLE 2.1 and Fig. 2.9. 

• There is much improvement in compression ratio in case of low quantization 

without visual image quality degradation. 

• At the higher quantization, smooth image (like Peppers, Lena) shows little 

improvement in compression ratio while detailed images (Cameraman) show still 

high improvement without visual quality degradation when first 15 low frequency 

coefficients are taken for image reconstruction, quantizing rest to zero.  

From these observations, it can be concluded that  DCT algorithm, which computes DCT 

coefficients one by one sequentially, can be made computationally efficient (at the same 

time low energy consuming) and faster by selectively taking the DCT coefficients for the 

image quality requirements. In addition, higher compression can be achieved by doing so.  

2.8 Separable Discrete Hartley Transform (SDHT)  

Discrete Hartley transform (DHT) has many applications in signal processing and 

communications [89–91]. Discrete Hartley transform (DHT) has been used as a substitute 

for discrete Fourier transform (DFT) by Bracewell et al. [92]. DHT is used in JPEG 

based image compression with DHT replacing the DCT by Pattanaik et al. [93]. Original 

2-D DHT equation is not separable like 2-D DCT. In the literature [94], the concept of 

separable DHT was introduced by Watson. Separable 2-D DHT (SDHT) can be 

implemented in hardware by row-column transformation method of 1-D DHT and has 

very low hardware requirement as compared to DCT (shown in following chapter). Non 

separable DHT cannot be implemented using 1-D DHT making its implementation 

computation intensive. Separable 2-D DHT is given by the equation [94], 

1 1

0 0

2 2( , ) ( , )
N M

x y

ux vyY u v f x y cas cas
N M
π π− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ∑∑  

where, ( ) cos( ) sin( )cas x x x= +  

 

(2.10)
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and the 1-D DHT is given by the equation,  

 

1

0

2( ) ( ) , 0,1,..., 1
N

n
Y k X n cas nk k N

N
π−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= = −∑  

where, 2
nkH cas nk

N
π⎛ ⎞

⎜ ⎟
⎝ ⎠

=  is the transform’s kernel. 

Fig. 2.10 shows the basis function image of SDHT. Higher frequencies coefficients 

occupy the middle place while lower are at boundaries. SDHT is tested for the 

performance in terms of PSNR with respect to DCT with two standard images in image 

compression area namely Lena and Cameraman. Images are compressed by JPEG 

standard principle with two modifications. In case of SDHT based transform, DCT block 

is replaced by SDHT and quantization matrix has been modified to quantize the SDHT 

coefficients as per the DCT (same numbers are used but in appropriate places).  Fig.2.11 

shows the performance curves. It can be observed that SDHT performs better in heavy 

quantization (at higher compression) while DCT performs better in lower compression in  

 

Fig.2.10 Basis function image of SDHT 

(2.11)
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(a) 

 
(b) 

Fig.2.11 PSNR performance of SDHT and DCT for (a) Lena image and (b) 
Cameraman image 

 

both types of images. Therefore, SDHT can be used for the image compression in 

applications requiring high compression and low hardware cost (low hardware also leads  
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(a) 

 
(b) 

Fig. 2.12 Original (left), reconstructed image using DCT (middle) and reconstructed 
image using SDHT (right) at very high compressions (a) Lena and (b) Cameraman 

 
to low power consumptions)  Fig.2.12 shows the decompressed images at very high 

compression and TABLE 2.2 shows their performance values in terms of PSNR and 

compression ratio.   
 

TABLE 2.2 
PSNR AND COMPRESSION RATIOS OF IMAGES SHOWN IN FIG.2.12 

 Lena Image Cameraman Image 

Transform used DCT SDHT DCT SDHT

PSNR 29.44 30.83 30.53 30.95 

Compression Ratio 60.88 60.54 48.71 48.93 
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2.9 Conclusions  

Digital image representation and its quality measurement metric have been described in 

this chapter. The energy compaction property of DCT has been studied by decompressing 

the standard images with selected low frequency DCT coefficients. High compression 

can be obtained when images are compressed with few lower DCT coefficients without 

visual distortion. An alternate transform namely separable discrete Hartley transform 

(SDHT) has been used for the image compression and decompression in JPEG 

compression procedure replacing DCT. From simulation, it is found that it performs 

better than DCT in high compression.  
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Chapter 3 
Distributed Arithmetic and Its VLSI 

Architecture 

3.1 Introduction 

Multimedia digital signal processing became more reliable, faster, flexible and cost-

effective because of advancement in the VLSI technology. Technology scaling has 

enabled us to integrate a number of different components on a single VLSI chip. A signal 

processing algorithm can have different VLSI architectures depending upon the area in 

which it has to be used. In the early design stage, ‘Architecture Exploration’ is used to 

search for the best architecture that meets the desired specifications at the lowest possible 

component used. DCT is a computation intensive algorithm and is realized by a large 

number of additions and multiplications operations. Systolic architecture was primarily 

used for the DSP algorithm implementation because of its modularity and parallel 

processing. Many DCT architectures were proposed on systolic design to reduce the 

number of multipliers in the systolic design as multipliers consumes high power and 

occupy less area. Nevertheless, they could not eliminate it. One solution to complete 

removal of multipliers from the DSP architecture implementation became possible by the 

use of distributed arithmetic (DA).  

In this chapter, basics of two types of DA architectures, one using ROM and 

another free of ROM are described. Architectures of 8-point 1-D DHT, 8x8 SDHT, 8-

point DCT, 8x8 2-D DCT are described and implemented in both ROM based DA and 

ROM free DA approach. Comparisons between them are done in terms of hardware and 

power requirements. An area and power efficient DCT is also proposed and implemented 

in FPGA as well as standard cell based ASIC.    
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3.2 Systolic Architecture  

Systolic architecture is used to implement digital signal processing and arithmetic 

algorithms in which fast processing is required. It was the preferred design approach for 

the special purpose systems because of its simple, regular and pipeline operations done 

by set of small interconnected similar array cells called processing elements (PEs). 

Breaking the whole processing into small cells has the two major advantages. First one is 

that design cost (nonrecurring) is reduced as designing of a small cell cost less as 

compared to complex one. These small cells are reused for implementing the desired 

algorithm (Reusability).  Second  advantage of the systolic architecture is that it is able to  

 

 

 

 

 

 

 

                                                  

 

 

 

 

 

 

 

 

Fig. 3.1 Operations using (a) single processing element and (b) Systolic Array [42] 
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match the high processing power of its internal components with the slow speed I/O 

interconnects and lower memory bandwidth.  If the I/O speed is low as compared to 

speed of data being computed by an internal architecture, then high memory bandwidth is 

required to speed up the computation. In case of systolic architecture, a set of data 

brought from the memory is processed by several PEs in a pipeline structure i.e., multiple 

operations are performed on each data item. Therefore, computation is increased at the 

same memory bandwidth [42]. Fig. 3.1 depicts an example illustrating the increased 

speed at the same memory bandwidth. Here, the maximum speed between memory 

processing element is 10 million bytes per second. If the each operation requires two 

bytes of data, then maximum speed is limited to 5 million operations per second. By the 

use of multiple processing, the speed is increased to 30 million operations per second at 

the same bandwidth.   

One example for systolic array is given by Kung [42], where the following 

convolution operation has to be mapped on systolic array.  Given a sequence of weights 

[w1, w2,..,wk ] and the input sequence [x1,x2,..,xn], the following result sequence [y1, 

y2,…,yn+1-k] can be obtained which is defined by, 

1 2 1 1...i i i k i ky w x w x w x+ + −= + + +  

  

Fig. 3.2 (a) shows the systolic architecture for the convolution with k=3, whereas Fig. 3.2 

(b) shows the basic cell (PE) used in the architecture. Multiple data sets have to be 

convolved with the fixed value w1,w2 and w3. Therefore, to speed up of the operations, 

each data is available to multiple processing elements and each one perform parallel 

multiply operations, resulting w1x1, w2x1 and w3x1 in first clock cycle. With the initial 

value of y set to zero, accumulated result w1x1 is pushed to the right cell. In the second 

clock cycle, this result is accumulated with w2x2. After third cycle, final yi results are 

available at each clock cycle. A major area and power consuming module in VLSI is 

multiplier. Past research in the implementation of any DSP algorithm using systolic array 

was centered on the reduction of the number of multipliers. In many literatures, DCT is 

implemented  by  systolic array architectures with the purpose of reducing the  number of  

(3.1)
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Fig. 3.2 (a) Systolic convolution array and (b) basic operations of one PE [42] 

 

multipliers [43–48]. Apart from systolic, other DCT implementations also favored the 

multiplier reduction. In the literature by Malvar [49], DCT is implemented using DHT 

with reduced number of  multipliers. Chin et al. [50] proposed new convolution based 

algorithm for computing DCT. Still, all these algorithms are not free of multipliers, i.e. 

they need multipliers along with adders and other logic components for the VLSI 

implementation. Next section describes distributed arithmetic (DA) algorithms which 

implements DSP algorithms without multipliers, which is important for area and power 

savings in VLSI designs.  

3.3 ROM based Distributed Arithmetic (DA) 
Distributed Arithmetic (DA) is a bit serial computation approach. It implements 

multiplications without multiplier in VLSI design. For DA implementation of inner 

product of arrays, one of the inputs should be constant array. ROM based DA relies on 

the manual pre-computations of constants and storing them in ROM. These pre-computed 
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values are fetched from the ROM addressed by the input bits. According to White [51], 

by careful design, one may reduce the total gate count in a signal processing arithmetic 

unit upto 80 percent. An example of DA approach for the inner product implementation 

in signal processing given by White [51] is as follows. Consider the sum of product 

expressed by, 

1

k

k k
k

A xy
=

=∑  

 Here, Ak are constant and xk are other set of inputs. Assuming xk to be a fractional value 

(or normalized to fraction), i.e., |xk| < 1, it can be expressed in 2’s complement binary 

representation as, 

0
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1
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kn
n

bx b −
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+= − ∑  

The bk0 is sign bit whereas, bk,N-1 is the least significant bit (LSB) in the binary 

representation of bit-width N. Putting xk from (3.2b) in (3.2a), y can be written as, 
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Since Ak are constants, from (3.2c), it can be found that for given number of elements in 

the inputs (known value of k), expression in the bracket can be pre-computed and stored 

in ROM. Since, bkn are binary 1 or 0, when multiplied with Ak, it will make Ak either 0 or 

no change in it. For example, suppose number of inputs are k = 3 and number of bits in 

the binary representation are 4 (N=4), then for a set of inputs [x1=1010, x2=1100, x3= 

1001] in 2’s complement (first bit being a sign bit), the term in (3.2c) given by,  

1

1 1

N

n

k

k nk
k

A b
−

= =

⎛ ⎞
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⎝ ⎠

×∑ ∑  

can be written as, 

(3.2a)

(3.2b)

(3.2c)
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The b1k represents bit first of the kth input (which is 0 for first including 1 for second 

input and 0 for third input) and likewise. Hence, from (3.2d), different combinations of Ak 

can be pre-computed and stored in memory. The addresses of the pre-computed values 

will be given by the nth bit of all inputs. In the above example, it will be 010, 100 and 

001. The size of the memory (ROM) will be the possible binary combinations of Ak i.e., 

2k and the number of clock cycles required for getting final sum of product will be the 

number of bits in the input representation. The second term in (3.2c) i.e., 01
( )k

k kk
A b

=
−∑  

has negative sign which means there will be negative storage for all positives as well. So 

the total memory requirement will be 2x2k. TABLE 3.1 shows the binary input 

combinations. The multiplication with 2-n in the first term will be performed  

TABLE 3.1 
ROM CONTENTS FOR THREE 4-BITS INPUTS  

In
pu

ts
 (x

k) 

             b1n                 b2n              b3n   

                    (sign-bit)               
ROM contents 

for 1 ≤ n ≤ N-1 
             0                0               0 A1×0+A2×0+A3×0= 0 
             0                0               1 A1×0+A2×0+A3×1= A3  
             0                1               0 A1×0+A2×1+A3×0= A2  
             0                1               1 A1×0+A2×1+A3×1= A2+ A3 
             1                0               0 A1×1+A2×0+A3×0= A1 
             1                0               1 A1×1+A2×0+A3×1= A1+ A3 
             1                1               0 A1×1+A2×1+A3×0 = A1+ A2 
             1                1               1 A1×1+A2×1+A3×1= A1+ A2+ A3 

for n=0
             0                0               0 – (A1×0+A2×0+A3×0)=  0 
             0                0               1 – (A1×0+A2×0+A3×1)=  – A3  

 0                1               0 – (A1×0+A2×1+A3×0)=  –A2  
 0                1               1 – (A1×0+A2×1+A3×1)=  –(A2+ A3) 

             1                0               0 – (A1×1+A2×0+A3×0)=  –A1 
             1                0               1 – (A1×1+A2×0+A3×1)=  –(A1+ A3) 
             1                1               0 – (A1×1+A2×1+A3×0) = – (A1+ A2) 
             1                1               1 – (A1×1+A2×1+A3×1)=  – (A1+ A2+ A3) 

(3.2d)
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Fig. 3.3 Architecture of ROM based DA 
 

by n-bit right shift operation. Fig. 3.3 depicts the architecture of this ROM based DA. 

Three inputs (x1, x2, x3, 4-bits each) are applied serially (one bit at each clock cycle, sign-

bit first and LSB last) by using parallel to serial converter (PISO) at each input address 

line of ROM in parallel fashion. Since contents of ROM in the lower half (for n=0) of the 

TABLE 3.1 is same as upper half (for 1 ≤  n ≤ N-1) with a sign change, only one half of 

the contents need to be stored. By using a control signal (ctrl), sign change can be done 

by 2’s complementer circuit at appropriate time, i.e., at first clock cycle ROM content 

will be negated. Here, width of the memory is denoted as M and it will determine the 

precision of the fractional data. Adder will accumulate the data coming from the ROM. 

Each data from ROM needs to be shifted left by an increasing number of bits every clock 

cycle before accumulating in adder (first clock cycle 2-0=1,  no shift,  second clock cycle 

2-1=1/2, one bit shift, third clock cycle 2-2=1/4, two bit shift and so on). This can be done 

by shifting the accumulated result itself one bit at each clock cycle right (left shift of one 

operand is equivalent to right shift of another). Final result will be obtained in y at N 

clock cycles (4 clock cycles in the present example).  

Offset Binary Coding (OBC) Technique 

White [51] has suggested a technique called offset binary coding (OBC) to reduce the 

ROM size by half. By using the OBC technique, size of ROM can be made half in ROM  
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based DA. Here are the illustrations for this technique. For interpretation, let input data 

are not in (0, 1) straight binary code, but in  (1, –1) offset binary code. Let, 

( )1
2k k kx x x⎡ ⎤⎣ ⎦= − −  

Since, xk is a 2’s complement binary, its negative will be expressed as,  

1
( 1)

0
1

2 2
N

n N
knkk

n
bx b

−
− − −

=

+ +− = − ∑  

Here, bar indicates the complement of that bit. From (3.2b) and (3.3b), equation (3.3a) 

can be written as,  

1
( 1)

00
1

1 ( )2 2
2

( )
N

n N
knkk k kn

n
b bx b b

−
− − −

=

⎡ ⎤− −⎢ ⎥⎣ ⎦
= − − +∑  

If we define two new variables ckn and ck0 such that ( )knkn knc b b= − for    0n ≠ and 

00 0( )kk kc b b= − − , then (3.3c) can be written as, 

1
( 1)

0
1

1
( 1)

0

1 2 2
2

1 2 2
2

N
n N

k k kn
n

N
n N

kn
n

c c

c

x
−

− − −

=

−
− − −

=

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤

−⎢ ⎥⎣ ⎦

= +

=

∑

∑
 

It is clear that since ckn and ck0 are difference of 0 and 1, their values will be either 1 or –1 

(0–1=–1 and 1–0=1). So sum of product from equations (3.2a) and (3.3d) are, 

1
( 1)

0

1
( 1)

0

1

1

1 1

1 2 2
2

1 12 2
2 2

N
n N

kn
n

N
n N

n

k

k k
k

k

k
k

k k

k kn k
k k

c

A x

A

A c A

y

−
− − −

=

−
− − −

=

=

=

= =

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞

−⎜ ⎟
⎝ ⎠

=

=

=

∑

∑

∑

∑

∑ ∑

 

Once again, all possible summations of Ak can be pre-computed and stored in ROM. 

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)
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 All possible combinations of Ak summations for k=3 (3 inputs, as mentioned in previous 

example) are shown in TABLE 3.2. Top half contents of ROM are same as other half 

with a negative sign. Therefore, only half of 2k ROM is required and can be addressed by 

only k–1 bits. In the TABLE 3.2, if first half are stored in ROM, then values 

corresponding to lower half bits are obtained by inverting bits of the upper half. For 

example, data at location addressed by [1 0 0] is negative of data addressed by [0 1 1], 

data addressed by [1 0 1] is negative of data addressed by [0 1 0] and likewise.  This can 

be realized in hardware by doing XOR with bits of first input data. The second expression 

in equation (3.3e) is a constant which can be stored in a register (kI) and added with 

initial condition. Fig 3.4 shows the architecture of ROM based DA using OBC technique.  

TABLE 3.2 
ROM CONTENTS FOR THREE 4-BITS INPUTS IN OBC TECHNIQUE 

              b1n                 b2n              b3n   

                    (sign-bit)               
ROM contents 

Inputs (xk)              0                0               0 –A1–A2–A3  
              0                0               1 –A1–A2+A3   
              0                1               0 –A1+A2–A3   
              0                1               1 –A1+A2+A3 

              1                0               0 A1–A2–A3=– (–A1+A2+A3)  
              1                0               1 A1–A2+A3=– (–A1+ A2– A3) 
              1                1               0 A1+A2–A3 = – (–A1– A2+ A3) 
              1                1               1 A1+A2+A3=– (–A1– A2– A3) 

 

 

 

 

 

 

 

 
Fig. 3.4 Architecture of ROM based DA using OBC technique 
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3.3.1 FPGA Implementation of 8-Points 1-D DHT using ROM based DA  

1-D DHT implementation using ROM based DA requires less hardware as compared to 

systolic array implementation [95].  From (2.11), 8-point DHT can be written as, 

7

0
7

0

2( ) ( ) , 0,1,...,7
8

( ) , 0,1,...,7nk

n

n

Y k X n cas nk k

X n H k

π
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

= =

∑

∑
 

For the computation of first coefficient y(1), there will be 8-inputs array multiplication 

given by, 

1

7

0
(1) ( ) n

n
Y X n H

=
=∑  

Similarly for the other DHT coefficients, 8-array multiplications are required to be done. 

Since each 8-array multiplication takes ROM of size 27 i.e., 128 locations, total number 

of ROM locations required for 8-point DHT are 8x128.  Hnk values are pre-computed 

according to TABLE 3.2 for each coefficient and stored in ROM. We have taken 4-bits 

precision of fractional binary value stored in ROM. 8-bits inputs and 11-bits output has 

been taken for the implementation. VHDL code has been written for the 8-point DHT 

implementation in xc2vp30 device on Virtex-II board of Xilinx FPGA [96]. TABLE 3.3 

shows the hardware utilizations of FPGA and Fig. 3.5 depicts the RTL schematic 

generated. Power analysis is performed using xpower analyzer tool in Xilinx ISE 10.1. 

TABLE 3.3 
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT DHT USING ROM BASED DA 

FPGA-chip: Xilinx XC2VP30 
 Used Available Utilization 
# of slices 561 13696 4 % 
# of 4 input LUTs 998 27392 3 % 
# of slice Flip Flops 341 27392 1 % 
Min. Period (ns) 5.92 - - 
Power (mW) 48.8 - - 

 

(3.4)
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Fig. 3.5 RTL schematic of 8-points DHT using ROM based DA 

3.3.2 FPGA Implementation of SDHT using ROM based DA  

8x8 2-D SDHT has been implemented using the row-column decomposition technique. 

First 8-point 1-D DHT is taken to all rows one by one. The transformed 64 1-D DHT 

coefficients are stored in  64 11-bits width registers. Finally, 8-point 1-D DHT is taken 

column-wise to 1-D DHT coefficients. Fig. 3.6. depicts the flow. 

 

 

 

 

Fig. 3.6 Row-column decomposition technique for 2-D SDHT implementation 
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A sample 8x8 data is taken for the simulation and hardware verification given by 

matrix, 

30 29 39 42 32 36 46 39
33 34 37 36 36 42 43 33
37 40 34 32 41 45 38 32
40 43 35 36 45 40 35 47
40 42 38 42 46 35 43 75
40 40 41 43 41 40 65 102
40 40 41 36 35 58 95 117
41 41 40 27 30 75 117 121

iD =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and its MATLAB simulation result for 2-D SDHT is given by, 

2934 269 360 212 146 94 0 556
397 48 260 208 128 83 143 370
214 139 24 29 26 8 120 253
147 83 41 36 22 11 55 170

( )
104 50 34 25 16 5 34 117
64 35 17 17 9 6 21 66
0 0 6 5 0 0 2 0

336 238 335 33 48 13 141 426

o SDHTD

− − − − −

− − −

− −

− −
=

− −

− −

−

− − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In Xilinx ISE environment, ChipScope Pro is a tool that integrate the logic analyzer and 

other  measurement hardware components with the target design inside the Xilinx FPGA. 

Apart, ChipScope Pro contains many features that a designer needs to verify his design. 

Hardware triggering can be done by external switch without affecting the original design 

inside the FPGA [97]. Xilinx xc2vp30 device on Virtex-II pro board is programmed by 

bit-file generated from the ISE 10.1 tool and hardware output is obtained from device 

using ChipScope Pro logic analyzer tool through USB cable. Fig. 3.7 shows the 2-D 

SDHT results of 8x8 data matrix Di. When compared to MATLAB simulations results in 

Do(SDHT) matrix, error is present because of fixed point binary representation of 

fractional data in ROM.  
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Fig. 3.7 Hardware implementation in Xilinx FPGA of 8x8 data matrix Di through 
ChipScope Pro tool 

3.4 ROM Free DA 

The following are the disadvantages of ROM based DA. 

1. Size of ROM is given by 2(k-1)×M where k is size of input M is precision of 

fractional constant (ROM size increases as the transform size). 

2. Bit serial operation along with ROM access makes the overall computation 

slower (lower throughput). 

Also, ROM based design is not preferred choice in VLSI because ROM has slow speed 

(ROM access time) and more power consumption [55–56]. ROM free DA architecture 

exploits the sparse nature of matrix formed by binary representation of coefficients (most 

places are zero) in contrast to pre-computing and storing them in ROM based DA i.e., 

constant coefficients are distributed. Shams et. al. [57] first gave the analysis of ROM 

free DCT and named the algorithm NEDA (New DA). The following is the description of 

NEDA.  

Consider the sum of product of two vectors given by, 

1

L

k k
k

y A X
=

=∑  (3.5a)
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which can be written as, 

[ ]
1

2
1 2 L

L

X
X

y A A A

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

L
M

 

where, Ak are the constant coefficients and Xk are the input variables. In binary 2’s 

complement form Ak can be expressed as, 

1
, 1

2

,
0

2 2N n
k k N

N

k n
n

A A A−
−

−

=
+= − ∑  

Ak,n are bit 0 or 1. N is the number of bits in binary representation of Ak and Ak,N-1 

represents the sign-bit while Ak,0 the LSB. Here, N is referred as DA precision. Equation 

(3.5c) can be expressed in matrix product form given by, 

,0

,10 1 1

, 1

2 2 2

k

kN
k

k N

A
A

A

A

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

L
M

 

From (3.5d), for each k, equation (3.5b) can be written as, 

1,0 2,0 ,0 1

1,1 2,1 ,1 20 1 1

1, 1 2, 1 , 1

1

20 1 1

2 2 2

2 2 2

L

LN

N N L N L

N

L

A A A X
A A A X

y

A A A X

X
X

y M

X

−

− − −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L
L

M M L M M

L

L
M

 

Here, matrix M is a sparse matrix as it contains the binary values either 0 or 1. From 

equation (3.5e),  it is evident  that  summation  y can be realized by using adders only and  

(3.5b)

(3.5c)

(3.5d)

(3.5e)
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also less number of adders will be used depending upon the number of 1’s present in the 

sparse matrix M. For example, suppose two sets of vectors are given by A1, A2, A3 as 

constant coefficients and X1, X2, X3 as variables. If binary 2’s complement representation 

of A are, 

1 2 3[1 0 0 1], [0 1 0 1], [1 1 0 1]A A A= = =  

then from equation (3.5e), their sum of product is, 

( ) ( ) ( )

1
0 1 2 3

2

3

1 2 3

0 1 2 3

2 3

1 3

0 2 3
1 2 3 2 3 1 3

1 1 1
0 0 0

2 2 2 2
0 1 1
1 0 1

0
2 2 2 2

2 2 2

X
y X

X

X X X

X X
X X

X X X X X X X

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎣ ⎦

+ +⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅⎣ ⎦ ⎢ ⎥+
⎢ ⎥− −⎣ ⎦

= + + ⋅ + + ⋅ − + ⋅

 

Expression in (3.5f) can be realized by the hardware architecture shown in Fig. 3.8 

where, ‘+’ and ‘–’ signs represent adder and subtracter respectively. The structure is free 

 

 

 

 

 

 

Fig. 3.8 Structure to realize the sum of vectors in the example using ROM free DA  
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of ROM and multipliers. It can be implemented in a single clock cycle with the help of 

adders/subtracters and shifters only. Therefore, ROM free DA is faster. Further, 

adders/subtracters can be compressed in number of bits to reduce the area of design. For 

example, shifting the binary values right results in less number of bits in its 

representation and hence, bit width of the adders can be reduced accordingly. Bit width 

reduction of adders in ROM based DA leads to low accuracy. Following are the 

differences between ROM based DA and ROM free DA for sum of product 

implementation. 

1. Number of adders in ROM free DA is proportional to number of 1’s present in 

binary representation of constant coefficients but in case of ROM based DA, 

number of adders and shifters requirement is 1 each along with ROM of size 2k-1. 

2. With the increased number of bits in input representation, width of adders in 

ROM free DA will increase but the number remains the same whereas, in ROM 

based DA, it will lead to increased clock cycle and hence slower speed.  

3.4.1 FPGA Implementation of DCT using ROM free DA  

Chungan et al. [58] has implemented 8x8 2-DCT in standard cell technology library using 

ROM free DA. Adders are claimed to have more compressed in as compared to DCT 

NEDA architecture of DCT in [57]. For 8-point 1-D DCT, equation (2.9) can be written 

as,  

7

0

1
2

(2 1)( ) ( ) ( )cos
16i

i uF u C u X i π
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

+= ∑  

In [65], (3.6) can be broken using periodicity properties as, 

(0) [ (0) (1) (2) (3) (4) (5) (6) (7)]
(1) [ (0) (7)] [ (1) (6)] [ (2) (5)] [ (3) (4)]
(2) [ (0) (3) (4) (7)] [ (1) (2) (5) (6)]
(3) [ (0) (7)] [ (1) (6)]( ) [ (2) (5)](

F X X X X X X X X P
F X X A X X B X X C X X D
F X X X X M X X X X N
F X X B X X D X X

= + + + + + + +

= − + − + − + −

= − − + + − − +

= − + − − + − − ) [ (3) (4)]( )

(4) [ (0) (1) (2) (3) (4) (5) (6) (7)]

A X X C

F X X X X X X X X P

+ − −

= − − + + − − +

 

(3.6)

(3.7a)

(3.7b)
(3.7c)

(3.7d)

(3.7e)
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(5) [ (0) (7)] [ (1) (6)]( ) [ (2) (5)] [ (3) (4)]
(6) [ (0) (3) (4) (7)] [ (1) (2) (5) (6)]( )
(7) [ (0) (7)] [ (1) (6)]( ) [ (2) (5)] [ (3) (4)]( )

F X X C X X A X X D X X B
F X X X X N X X X X M
F X X D X X C X X B X X A

= − + − − + − + −
= − − + + − − + −
= − + − − + − + − −

 

 

where,  

1 1 3 1cos , cos , cos ,
2 8 2 8 2 4

1 1 3 1 5 1 7cos , cos , cos , cos
2 16 2 16 2 16 2 16

M N P

A B C D

π π π

π π π π

= = =

= = = =
 

Now, ROM free DA based algorithm can be used to implement DCT equation above. 

Constant cosine coefficients can be written in 2’s complement binary fractional form to 

exploit the DA. For example, F(1) coefficient can be written with 12-bit DA precision 

according to (3.5e) as, 

( ) ( ) ( ) ( )
( )
( )
( )
( )

0 1 12

0 1 12

(1) 2 2 2

(0) (7)
(1) (6)1 1 1 13 5 7cos cos cos cos16 16 16 16 (2) (5)2 2 2 2
(3) (6)

0 0 0 0
0 0 0 0
1 1 1 0
1 1 0 0
1 0 0 1
1 1 0 1

2 2 2 1 0 1 0
0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 0 1 0

F

X x
X x
X x
X x

π π π π

− −

− −

⎡ ⎤= −⎣ ⎦
−⎡ ⎤

⎢ ⎥−⎡ ⎤ ⎢ ⎥⋅ ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎡ ⎤= −⎣ ⎦ ⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

L

L

( )
( )
( )
( )

(0) (7)
(1) (6)
(2) (5)
(3) (6)

X x
X x
X x
X x

⎤
⎥
⎥
⎥
⎥
⎥
⎥

−⎡ ⎤⎥
⎢ ⎥⎥ −⎢ ⎥⎥ ⋅
⎢ ⎥⎥ −
⎢ ⎥⎥

−⎢ ⎥⎣ ⎦⎥
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⎥
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⎢ ⎥
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(3.7f)
(3.7g)

(3.7h)

(3.8)
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It can be noted that negative sign is used for power of 2 because here binary 

representation is for  fractional value instead of integral value in equation (3.5e) and can 

be implemented with right shift. If we write F(1) in the form as, 

0

1

2

3

4

5

0 1 12 6

7

8

9

10

11

12

(1)
(1)
(1)
(1)
(1)
(1)

(1) 2 2 2 (1)
(1)
(1)
(1)
(1)
(1)
(1)

F
F
F
F
F
F

F F
F
F
F
F
F
F

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= −⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L  

 

where powers of F denote number of times shifting is required after evaluating right most  

 

 

 

 

 

 

 

 

Fig. 3.9 Adder/subtracter structure to realize the 8-points DCT of equation (3.8) [58] 
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TABLE 3.4 

FUNCTIONS OF EACH ALU FOR DIFFERENT DCT COEFFICIENTS [58] 

 F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) 
ALU1 + – + – + – + – 
ALU2 + – + – + – + – 
ALU3 + – + – + – + – 
ALU4 + – + – + – + – 
ALU5 + + + + – + + + 
ALU6 + + – + + + – + 
ALU7 + + – + + + – + 
ALU8 + + + + – + + + 
ALU9 + + + + – + + + 
F0 0 0 0 R6 0 R5 R9 R12 
F1 0 0 0 R6 0 R5 R9 R12 
F2 R8 R2 R7 R1 R8 R7 0 R10 
F3 0 R1 R11 R13 0 R15 R7 R1 
F4 R8 R7 R11 R15 R8 R10 R7 R1 
F5 R8 R13 0 R7 R8 R14 R9 R2 
F6 0 R4 R7 R5 0 R3 0 0 
F7 R8 R9 R7 R2 R8 R13 0 R14 
F8 0 R4 0 R5 0 R3 R9 0 
F9 R8 R7 R9 R14 R8 R9 R11 R13 
F10 0 R12 R11 R7 0 R14 R11 R2 
F11 0 R12 R7 R7 0 R14 R7 R2 
F12 0 R14 R7 R12 0 R4 R7 R1 

 

two matrices, then whole 8 DCT coefficients can be calculated by using adder/subtracter 

structure in Fig. 3.9 and TABLE 3.4 combined [58]. The ‘+’ and ‘–’ sign in the 

corresponding row indicates function (addition or subtraction) to be performed by the 

ALUs in Fig. 3.9. Each DCT coefficient is obtained by summing Ri values in the same 

column. Shifting must be done before summing the column values and number of bit to 

be shifted right is decided by the power of F in that row. For example, coefficient F(1) is 

calculated as, 

2 3 4 5 6 7

8 9 10 11 12

(1) 2 / 2 1/ 2 7 / 2 13 / 2 4 / 2 9 / 2

4 / 2 7 / 2 12 / 2 12 / 2 14 / 2

F R R R R R R

R R R R R

= + + + + +

+ + + + +
 

and Ri values from Fig. 3.9 and TABLE 3.4 are, 

(3.10)
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( ) ( )( ) ( )
( ) ( )
( ) ( )
( ) ( )( ) ( )

( ) ( )
( ) ( )
( ) ( )
( )

2 (0) (7) (1) (6) (2) (5)

1 (0) (7) (1) (6) ,

7 (0) (7) (3) (4) ,

13 (0) (7) (1) (6) (0) (7) ,

4 (0) (7) (2) (5) ,

9 (1) (6) (2) (5) ,

12 (1) (6) (3) (4) ,

14 (2) (5) (3

,R X X X X X X

R X X X X

R X X X X

R X X X X X X

R X X X X

R X X X X

R X X X X

R X X X

= − + − + −

= − + −

= − + −

= − + − + −

= − + −

= − + −

= − + −

= − + ( )) (4)X−

 

as ALU1, ALU2, ALU3 and ALU4 perform subtraction whereas, others perform addition 

operation. Division operations of power of 2 in (3.10) is performed by shifting the 

corresponding Ri values right. Since the binary contents become smaller after shifting 

i.e., bit width decreases, adders width can be made smaller accordingly to reduce the 

area. For example, if R1 and R2 sizes are of 10-bits each, then adder bit width required to 

add them should be of size 10-bits. Since R2 is shifted by 2-bits and R1 by 3-bits right, it 

can be realized by using 8-bits adder as shown in Fig. 3.10.      

 

 

 

 

Fig. 3.10 Adder bit width reduction in ROM free DA to save area and power (a) 
without shift and (b) with right shift 

Adder for error reduction in shift and add method 

Shifted data are represented by less number of bits and hence, adder bit-width is reduced 

resulting in less hardware cost, as explained above. For DCT computation, image data is 

represented in signed 2’s complement form range -128 to 127. Bit width of shifted data is 

determined by number of times shift operation is done. So different bit-width 

intermediate data are present which are to be added. For 2-input adder, both input data 

width has to be equal and hence, sign extension is done in smaller bit-width data. Shifting 

+ 
R1 

R2 (10-bits 
adder) 

(10-bits) 

(10-bits) 

+ 
(8-bits 
adder) 

7-bits) 

(8-bits) 

R1 

R2 

Right shift 
(3-bits) 

Right shift 
(2-bits) 

(10-bits)

(10-bits)
(a) (b)
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and addition with sign extension creates error. For example, if initial value is  -2 in 8-bit 

2’s complement representation, this can be written as 11111110. If we take 4 shifted 

sample of this value a=111111 (shifting 2 times), b=1111 (shifting 4 times), c=111 

(shifting 5 times), d=11 (shifting 6 times) all are -1. But all these data should be zero. If 

we add these values in cascade, result will be -4 (which should be zero). To overcome 

this problem, we have realized adder  as shown  in  Fig. 3.11. If one of the inputs is -1, 

then output is other input. 

                         

                         

                                                

Fig. 3.11 Circuits to reduce sign extension error propagation when number is 
negative (a) MUX1 selects A if B is -1 else sum of A and B (b) MUX2  selects             

B if A is -1 else sum of A and B, (c) Final sum is from MUX1 or MUX2 output.       
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FPGA and ASIC Implementation 

VHDL code has been written for the FPGA as well as ASIC implementations. Simulation 

is performed using Xilinx ISE simulator for 8x1 data matrix X which is given by, 

X = [60, 40, 25, 55, 40, 42, 82, 84] 

MATLAB simulation result for 1-D DCT of X gives, 

Y = [151.3209  -32.4895   33.1588   -1.7108   17.6777   18.5074  -16.0309   -5.0975] 

Fig. 3.12 shows the result of Xilinx ISE simulator using simple adder  and  proposed  

adder  scheme. It is  evident   with  MATLAB comparison that error due to sign 

extension is less in proposed adder scheme. 

 

                                                            

                                    (a)                                                                    (b) 

Fig. 3.12 VHDL simulation result using Xilinx ISE Simulator of data X for the 
implementation of 1-D DCT architecture using (a) simple addition operator         

and (b) proposed adder    

For FPGA implementation of DCT as discussed above, xc2vp30 device on Xilinx 

Virtex-II pro board is used. TABLE 3.5 shows the device utilization summary for the 

FPGA implementation. For the ASIC implementation, TSMC CLN65GPLUS 65 nm 
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standard cell technology library has been used and the code is synthesized in Synopsys 

Design Compiler (DC). TABLE 3.6 shows the hardware requirements in terms of area 

and power 8-bits input data and 12-bits DA precision has been used in both the 

implementations. 

TABLE 3.5 
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF  8-POINT 1-D DCT 

FPGA-chip: Xilinx XC2VP30 
# of 4 input LUTs 1268 
# of slices 694 
# of slice Flip Flops 0 
# of IOB Flip Flops 88 
Min. Period (ns) 32.6 
Power (W) 13.1 

 
TABLE 3.6 

AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION OF 1-D DCT  

 TSMC CLN65GPLUS 65nm technology 

Total cell area 8259.84 µm2 

Total Dynamic Power (global operating voltage 1.1v) 3.62 mW 

Min. Slack at 500MHz 0.004 

 

3.4.2 Area and Power Efficient VLSI Architecture of 8X1 1-D DCT 

By analyzing equations (3.7a) to (3.7h) in previous section, it can be seen that there are 

only seven cosine terms that are to be represented in DA form. So instead of computing 

F(0) to F(7) in parallel as in [58], they can be computed in pipelined fashion. A general 

DA based module can be implemented which takes the inputs and gives the multiply and 

accumulation result. 

Let, 

                        a1=X(0)+X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(7), 

                        a2=X(0)–X(1) –X(2)+X(3)+X(4)–X(5)–X(6)+X(7), 

                        b1=X(0)–X(7), b2=X(1)–X(6), b3=X(2)–X(5), b4=X(3)–X(4), 

                        c1=X(0)–X(3)–X(4)+X(7) and c2=X(1)–X(2)–X(5)+X(6) 
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Then from (3.7a) to (3.7h),  

                        F(0)=(a1×P), F(4)=(a2×P), 

                        F(1)=(b1×A)+(b2×B) + (b3×C)+(b4×D), 

                        F(3)=(b1×B)–(b2×D)–(b3×A)–(b4×C), 

                        F(5)=(b1×C)–(b2×A)+(b3×D)+(b4×B), 

                        F(7)=(b1×D)–(b2×C)+(b3×B)–(b4×A),  

                        F(2)=(c1×M)+(c2×N), and F(6)=(c1×N)–(c2×M) 

These equations can be implemented using only 4 DA modules as compared to 7 DA 

modules used in previous implementation. Therefore, area and power reduction can be 

achieved. These modules will be given by, 

[ ] [ ]0 1 122 2 2 1 ,P a− −⎡ ⎤− ⋅ ⋅⎣ ⎦L  

[ ]0 1 12

1
2

2 2 2 ,
3
4

b
b

A B C D
b
b

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤− ⋅ ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

L
 

and 

[ ]0 1 12 1
2 2 2

2
c

M N
c

− − ⎡ ⎤⎡ ⎤− ⋅ ⋅ ⎢ ⎥⎣ ⎦
⎣ ⎦

L  

F(0) and F(4) coefficients can be obtained from the DA module in (3.12a) in two clock 

cycles with a1 as input in first clock cycle for coefficient F(0) and a2 as input in second 

clock cycle for F(4) coefficient. In similar way, from other two modules, rest of the DCT 

coefficients can be calculated by input ordering and sign change. Fig. 3.13 shows the 

hardware architectures and TABLE 3.7 shows the ordering of the inputs at each clock 

cycle. Timing and control unit determines the inputs at each clock cycle and also sign of 

the inputs. It gives the signal 0 or 1 to multiplexers to select input having same sign or 

inverted. 

(3.11)

(3.12a)

(3.12b)

(3.12c)
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Fig. 3.13 VLSI architecture for computation of 8 point DCT in pipeline manner for 
(a) computation of F(0) and F(4) (b) computation of F(1), F(3), F(5) and F(7) and (c) 

computation of F(2) and F(6) 
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TABLE 3.7(a) 
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(0) AND F(4) 

                                           MODULE 1 

 Clock cycle 1 Clock cycle 2 

Input  a1 a2 

Output F(0) F(4) 

 

TABLE 3.7(b) 
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(1), F(3), F(5) AND F(7)  

                                        MODULE 2 

 Clock cycle 1 Clock cycle 2 Clock cycle 3 Clock cycle 4 

Input 1 b1 -b3 -b2 -b4 

Input 2 b2 b1 b4 b3 

Input 3 b3 -b4 b1 -b2 

Input 3 b4 -b2 b3 b1 

Output F(1) F(3) F(5) F(7) 

 

TABLE 3.7(c) 
PIPELINE COMPUTATION OF DCT COEFFICIENTS F(2) AND F(6)  

                                           MODULE 3 

 Clock cycle 1 Clock cycle 2 

Input 1 c1 -c2 

Input 2 c2 c1 

Output F(2) F(6) 

 
Hardware Implementation results and comparisons 

The architecture proposed (Fig. 3.13) has been implemented in Xilinx FPGA and also in 

TSMC CLN65GPLUS 65 nm standard cell technology library for ASIC using VHDL 

code. We have implemented ROM free DA architecture proposed in [58] in FPGA. We 

have compared the proposed ROM free DA architecture for 8-points 1-D DCT with the 

ROM free DA architecture in [58]. TABLE 3.8 summarizes the FPGA comparisons while 

TABLE 3.9 compares the ASIC implementations with 8-bits input and 12-bits DA 

precision. Fig. 3.14 depicts the RTL schematic in Xilinx ISE 10.1.    
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Fig. 3.14 RTL Schematic of Proposed 8-point 1-D DCT in Xilinx ISE 10.1  

TABLE 3.8 
DEVICE UTILIZATION FOR THE FPGA IMPLEMENTATION OF 8-POINT 1-D DCT 

FPGA-chip: Xilinx XC2VP30 
 1-D DCT architecture in [58] Proposed 1-D DCT architecture 
# of 4 input LUTs 1268 696 
# of slices 694 370 
# of slice Flip Flops 0 97 
# of IOB Flip Flops 88 0 
Min. Period (ns) 32.6 16.29 (Freq. 61.38 MHz) 
Power (W) 13.1 2.06 
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TABLE 3.9 
AREA AND POWER COMPARISONS FOR SYNOPSYS DC IMPLEMENTATION OF 8-POINT 1-D DCT 

 TSMC CLN65GPLUS 65nm technology 
 1-D DCT 

architecture in [58] 
Proposed 1-D 
DCT architecture 

improvement 

Total cell area 8259.84 5683.68 31.2 % 
Total Dynamic Power (global operating 
voltage 1.1v) 

3.62 mW 2.27 mW 37.3 % 

Min. Slack at 500 MHz 0.004 0.116  
 

Total of 31.2 % area and 37.3 % power improvements are achieved in standard cell based 

synthesis of VHDL code. From the FPGA and ASIC implementation comparison results, 

it is evident that the proposed architecture is efficient in terms of area (FPGA resources in 

case of FPGA implementation) and power.   

Using row-column decomposition technique, 8x8 2-D DCT is implemented using 

proposed architecture. Intermediate 1-D DCT results are stored in registers. TABLE 3.10 

shows the FPGA implementation result and TABLE 3.11 shows the ASIC 

implementation result.  

TABLE 3.10 
DEVICE UTILIZATION SUMMARY FOR 2-D DCT IMPLEMENTATION USING ROW-COLUMN        

DECOMPOSITION TECHNIQUE OF PROPOSED 1-D DCT ARCHITECTURE 

FPGA-chip: Xilinx XC2VP30 
# of 4 input LUTs 2522 
# of slices 1701 
# of slice Flip Flops 1025 
Max. Freq.(MHz) 45.173  
Power (W) 0.751 

 

TABLE 3.11 
2-D DCT ARCHITECTURE IMPLEMENTATION AREA AND POWER USING ROW-COLUMN          

DECOMPOSITION TECHNIQUE OF PROPOSED 1-D DCT   

TSMC CLN65GPLUS 65 nm technology 
Total cell area 23505.84 µm2 

Total Dynamic Power (global operating voltage 1.1v) 5.78 mW 
Min. Slack at 500 MHz 0.036 
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3.5 SDHT Implementation using ROM Free DA 

Considering the periodicity and symmetry of trigonometric functions 8-point 1-D DHT 

equation (3.4) can be written as, 

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
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Representing in DA form as in [58] for DCT, we get adder/subtractor matrix for DHT for 

all data as in Fig.3.15. TABLE 3.12 shows the explanation of Fig.3.15. Divide and 

multiply operations are done by shifting. Yn implies shifting n bits. Negative sign in n 

implies left shift where as positive sign implies right shift. Positive sign in TABLE 3.12 

implies that ALUs perform addition and negative sign implies subtraction operation as 

for DCT in previous section (Section 3.3). As an example, let’s take the fourth column 

for calculating Y(2). Y(2) is the sum of Y-1(2)*2, Y0(2), Y1(2)/2, Y2(2)/22, Y3(2)/23, 

Y4(2)/24, Y5(2)/25, Y6(2)/26, and Y7(2)/27. The values of Y-1(2), Y0(2), Y1(2), Y2(2), 

Y3(2), Y4(2), Y5(2), Y6(2), Y7(2) can be obtained from R3, R5, 0, 0, 0, 0, 0, 0, 0 in 

TABLE 3.12. So, Y(2) can be calculated as, 

Y(2)=R3*2+R5 

TABLE 3.13 shows the number of adder/subtracter used in the implementation and bit-

width comparison for DCT and DHT. Compared to DCT adder/subtractor of [58], DHT 

adder/subtractor requires less number of ALU and adders (only 4 ALUs and 7 adders  in 

proposed DHT, but 9 ALUs and 6 adders  in DCT).  
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Fig. 3.15 Adder/subtracter for all 8-point DHT coefficients calculation  

 

TABLE 3.12 
FUNCTIONS OF EACH ALU FOR DIFFERENT DHT COEFFICIENTS 

 Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) 
ALU1 + - + - + - + - 
ALU2 + - + NO + - + NO 
ALU3 + - + - + - + - 
ALU4 + NO + - + NO + - 
Y-1 0 0 R3 R10 R7 R2 R8 R3 
Y0 R5 R1 R5 R4 R5 R9 R5 R9 
Y1 0 0 0 0 0 R2 0 R6 
Y2 0 R2 0 R6 0 0 0 0 
Y3 0 R2 0 R6 0 0 0 0 
Y4 0 0 0 0 0 R2 0 R6 
Y5 0 R2 0 R6 0 0 0 0 
Y6 0 0 0 0 0 R2 0 R6 
Y7 0 R2 0 R6 0 R2 0 R6 
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TABLE 3.13 
COMPARISON OF ADDERS OF DHT AND DCT IN [58]  

scheme Adder matrix Adder bit-width 

DCT 9 ALU +6 850 

Proposed DHT 4 ALU +7 452 

 

FPGA Implementation Results of 8-point 1-D DHT and comparisons 

We have implemented the 8-points 1-D DHT in Xilinx FPGA using VHDL code and 

results are compared with ROM based DA of DHT implemented in Section 3.3. TABLE 

3.14 shows the results and comparisons with the ROM based DA. ROM free DA 

implementation has less hardware requirement as compared to ROM based DA.  

TABLE 3.14 
HARDWARE UTILIZATION FOR PROPOSED DA FOR 1-D DHT 

Logic Utilization ROM based DA ROM Free DA 
# of Slices 561 309 
# of 4 input LUTs 998 562 
# Slice Flip Flops 341 0 

 

2-D SDHT has been implemented using row-column decomposition technique and 

xc2vp30 device is programmed.  Same sample 8x8 2-D data has been used here as before  

 

Fig. 3.16 Hardware implementation result of 8x8 image data matrix Di by   
proposed DA for DHT method 
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in previous ROM based DA and Fig. 3.16 shows the 8x8 matrix output obtained using 

ChipScope pro device. 

3.6 Conclusions 

Different DSP based algorithm implementation approaches are described in this chapter. 

Two DA techniques, ROM based and ROM free, that implement multiply and 

accumulate operations in VLSI without using multiplier are illustrated. Using DA 

technique, 1-D DHT and 1-D DCT architectures are implemented and comparisons have 

been done. In both the cases (DCT and DHT), ROM based implementation has more area 

and power requirements along with slower speed. An area and power efficient DCT 

architecture is proposed in ROM free DA which reduces the number of computational 

modules in original ROM free DA. Implementation in standard cell based ASIC library 

of proposed architecture shows about 37% power savings and about 31% area savings in 

8-point 1-D DCT architecture. FPGA implementation is also done and it shows the 

considerable FPGA resource reduction in proposed DCT architecture. Using row-column 

approach, 2-D DCT and 2-D SDHT are also implemented and hardware utilizations are 

summarized.       
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Chapter 4 
Efficient JPEG Image Compression 

Architecture 

4.1 Introduction 

JPEG image compression is a standard image compression algorithm widely used for 

image compression in high end electronic circuits and systems as well as in battery 

powered devices such as digital camera. It uses steps in between 8x8 block wise DCT and 

binary stream storage in buffer memory such as quantization, zig-zag reordering and 

Huffman coding. To proceed from one step to another, memory is required to store block 

processed image data. Moreover, it uses Huffman code table for Huffman coding 

implementation where base code of DC and AC coefficients are stored as it makes 

hardware simple and high performing.  

In this chapter, a simple hardware is presented for DCT to quantization to reduce the 

memory requirements in the intermediate stages by exploiting some of the flexibilities in 

JPEG implementation. Simulations have been performed to check the image quality by 

introducing the step to reduce the memory. Further, correctness of hardware 

implementation is demonstrated through comparisons of MATLAB and hardware 

outputs.  The Huffman coding is implemented by employing the strategies to store the 

Huffman code table with reduced memory requirements.   

 

4.2 Normalization matrix for hardware simplification in JPEG 

JPEG coding procedure has been described in Section 2.6. 8x8 DCT, quantization and 

Huffman coding are three major steps followed in its implementation. Data from DCT 

output is quantized by a quantizer. Quantization is performed by dividing each DCT 

coefficient by a quantizer step size followed by rounding to nearest integer (Eq. 4.1). 
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where, F(u,v) is the DCT coefficients and Q(u,v) is the quantization matrix (also called 

normalization matrix). JPEG committee recommends to use a typical normalization 

matrix explained in Section 2.6, although users are free to use their own matrix. If that 

matrix is used for the quantization, then each coefficients must use a divider for the 

quantization along with 64 memory locations to store 64 quantization levels [19], [68–

71]. A quantization matrix that can do the quantization without use of divider (or 

multiplier) and memory while maintaining the quality of image will be good choice for 

the hardware implementation. We have quantized the DCT coefficients in JPEG image 

compression by the following normalization matrix which is given as, 
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16 16 16 16 32 64 64 64
16 16 16 32 32 64 64 64
16 16 32 32 32 64 64 64
32 32 32 64 128 128 128 128
64 64 64 64 128 128 128 128
128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128

nQ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

This matrix can further be scaled to achieve high compression, i.e., 

n n qualityQ Q′ = ×    

 where, quality is scaling parameter. Quantization using matrix Qn can be performed by 

only shifting operations and this matrix is chosen by observing the fact that low spatial 

frequency contents, which are in top left region of DCT coefficients have the high visual 

information. Therefore, less quantization will preserve the image quality whereas bottom 

right regions of DCT coefficients (high frequencies) have very less visual information  

and can be discarded  by high quantization.  MATLAB simulations  have  been carried 

out for  the  performance  comparisons of quantization matrix Qn and the typical (normal) 

(4.1)
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 (a)                                                                         (b) 

    
                          (c)                                                                       (d) 

Fig. 4.1 PSNR against compression ratio for   (a) 448x448 Lena,  (b) 256x256 

Cameraman,  (c) 512x512 Crowd and  (d) 512x512 Barbara Images 

quantization matrix. PSNR against compression ratio for four standard images are plotted 

in Fig. 4.1. Fig. 4.2 shows the original and reconstructed images obtained by using both 

modified table and typical table (provided by JPEG) for normalization. Both the results 

(almost same PSNR and good visual qualities of images obtained) suggest that modified 

normalization matrix for the hardware simplification can be used in JPEG image 

compression. Moreover, in hardware implementation, there will be less round off error 

using modified table as it requires only bit shifting to perform quantization, whereas 

typical matrix will give more round off error because of fractional value obtained after 

division (fractional value representation has more accuracy at higher bit number of bits 

used for its representation).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.2 Original and reconstructed images using normal quantization matrix and 
modified matrix (a) 448x448 Lena,  (b) 256x256 Cameraman, (c) 512x512 Crowd 

and (d) 512x512 Barbara 
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4.3 Efficient Architecture from DCT to Quantization and Re-ordering 

An hardware efficient architecture for the computation of 2-D DCT, quantization and zig-

zag ordering of the quantized coefficients is shown in Fig. 4.3. The 2-D DCT is computed 

by row-column decomposition method.  When second 1-D DCT is being computed, 

timing and control will generate the eight addresses to store the eight transform 

coefficients each clock cycle in specified address (or register). For example, the first set 

of  eight addresses generated will be  0, 2, 3, 9, 10, 20, 21, 35 (TABLE 4.1). Coefficients 

are stored in memory/registers after conditional shifting. First 8 outputs from the second 

1-D DCT need to be divided by 16, 16, 16, 16, 32, 64, 128 and 128 for quantization 

which is done by shifting DCT coefficients right by 4, 4, 4, 4, 5, 6, 7, 8 and 8 bits. 

Similarly other coefficients from the second  1-D DCT  are  shifted  according  Qn  before 

storage in memory/registers. To synthesize the HDL code to have registers for storage, 

stored quantized coefficients, each at one clock cycle, are brought to output. 

 

Fig. 4.3 DCT to Zig-zag re-ordering Architecture  

TABLE 4.1 
ZIG-ZAG ORDER SEQUENCE MATRIX 

0 1 5 6 14 15 27 28 
2 4 7 13 16 26 29 42 
3 8 12 17 25 30 41 43 
9 11 18 24 31 40 44 53 
10 19 23 32 39 45 52 54 
20 22 33 38 46 51 55 60 
21 34 37 47 50 56 59 61 
35 36 48 49 57 58 62 63 
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They are brought to the output in zig-zag order. Addresses for memory/registers are 

generated by 8-bits counter which counts from 0 to 63. This is because coefficients are 

stored in zig-zag order in increasing address of memory/registers from 0 to 63 which 

were generated for storage.        

This architecture reduces a large number of memory/registers bits in different way. 

From 8-bits input data,   1-D DCT can produce 11-bits coefficients. These 1-D DCT 

coefficients when transformed to 2-D DCT by second 1-D DCT, can produce 14-bits 

output. If the quantization is performed after the 2-D DCT, then there is need of 64x14 

bits of memory/registers to store 64 DCT coefficients. These bits are not required in the 

proposed architecture as outputs of second 1-D DCT are connected to the memory 

locations (or stored in registers) before shifting (quantization) as in Fig. 4.4. Only 64x10 

bits of memory/registers are required to store quantized DCT coefficients completely, 

eliminating memory for the storage of 2-D DCT coefficients. Here, 10-bits of quantized 

coefficients are taken as minimum division is 16 (4-bits shift). Another memory/registers 

saving is achieved in the zig-zag ordering buffer. Instead of use of large memory for 

getting quantized coefficients in zig-zag re-order only 8 numbers of 8-bits registers are 

required to generate the 8 addresses in each clock cycle (TABLE 4.2). At each clock 

cycle, the contents of these 8 registers are changed by timing and control circuitry.  The 

additional 8-bits  counter is required for accessing quantized  and  stored coefficients in 

 

 

Fig. 4.4 2-D DCT Coefficients storage in 64x10 bits registers after shifting 
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TABLE 4.2 
CLOCK CYCLE OPERATIONS FOR THE COMPUTATION OF 2-D DCT TO ZIG-ZAG ORDERING 

 

locations 0 to 63. TABLE 4.3 lists the total memory/registers bits and latencies required 

in literature by Agostini et al. [19] and proposed hardware architecture for the 

computation of quantization and zig-zag order only. A total of 1336 bits have been saved 

in quantization and zig-zag ordering along with 896 bits in 2-D DCT coefficients storage 

(TABLE 4.4). Because both implementation platforms are different, logic cells cannot be 

compared. But from the simplicity of the proposed architecture, hardware savings can be 

predicted which is further shown in implementation details in next Section where FPGA 

implementation details and hardware utilization is shown. For the scaling to get more 

compression, quantization step-size can be changed by adding one multiplier at the 

output of zig-zag buffer without changing any internal hardware.   
 

TABLE 4.3 
MEMORY BITS AND LATENCY COMPARISONS FOR THE QUANTIZATION AND  

ZIG-ZAG BUFFER IN PROPOSED HARDWARE SCHEME WITH EXISTING 

 Memory bits Latency 

Agostini et al. [19] 2048 (768+1280)      70 

Proposed Hardware 712      72 

 

TABLE 4.4 
MEMORY/REGISTERS SAVINGS ACHIEVED IN PROPOSED DCT TO ZIG-ZAG ARCHITECTURE 

 In Quantization  and Zig-zag buffer In storing 2-D DCT Coeffs. 

No. of Bits saved 1336 896 
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FPGA/ASIC implementation results and discussions 

The 1-D DCT implementation is performed for the compressed DA based algorithm 

proposed by Chungan et al. [58] (explained in section 3.4.1), but shifting is performed by 

division operator (/) in VHDL code to reduce the error due to sign extension. 

Quantization is performed by both wiring (each LSB removal is equal to division by 2) 

and division operator in two different implementations. 8-bits input, 14-bits internal word 

representation and 12-bits DA precision have been used for the implementation. 

Implementation is carried out in Xilinx XC2VP30 FPGA device in Virtex-II Pro board as 

well as Synopsys DC using TSMC CLN65GPLUS 65 nm technology library. FPGA 

implementation results are tabulated in TABLE 4.5.  Total of 3070 slices are used in 

FPGA implementation of DCT to zig-zag order when division is performed by using 

operator (/) whereas wiring to shift for quantization uses 2856 slices. From the results of 

2-D DCT implementations, it can be seen that quantization and zig-zag ordering are 

realized by additional 635 slices and 633 registers which are very less as compared to 

previous literature mentioned in previous section. Register savings lead to low power 

consumption as well as area savings. The total cell area in the synthesis of VHDL code in 

Synopsys DC is 30527.64 µm2 in only 2-D DCT and 39015.36 µm2 in DCT to zig-zag. 

TABLE 4.6 shows the Synopsys DC implementation results for total cell area and power 

consumption in different implementations. 

 

TABLE 4.5 
HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG  

ORDERING ARCHITECTURE IMPLEMENTED IN FPGA 

FPGA Chip: Xilinx XC2VP30 

 # of 4 input 
LUTs 

# of slices 
# of slice   
Flip Flops 

Clock Freq. 
(MHz) 

Power      
(W) 

Only 2-D DCT 4502 2435 868 48.4 14.97 

Zig-zag ordered using 
division operator for 
quantization 

5276 3070 1501 31.1 16.58 

Zig-zag ordered using wire 
shifting for quantization 

4986 2856 1409  40 16.53 
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TABLE 4.6 
HARDWARE UTILIZATION POWER DISSIPATION FOR DCT TO ZIG-ZAG  

ORDERING ARCHITECTURE IMPLEMENTED IN ASIC LIBRARY 

TSMC CLN65GPLUS 65 nm technology 
(clock frequency = 500 MHz) 

     Total cell area 
Total Dynamic Power 

(global operating 
voltage 1.1v) 

Min. Slack at 
500MHz 

Only 2-D DCT 30527.64 µm2 6.78 mW 0.477 ns 

Zig-zag ordered using division 
operator for quantization 

39015.36 µm2 10.05 mW 0.01 ns 

Zig-zag ordered using wire 
shifting for quantization 

38133.30 µm2 10.07 mW 0.059 ns 

 

Functional Verification through simulation and Hardware results 

For the functional verification, a sample 8x8 image data in the range -128 to 127 has been 

taken which is given by, 

 -95 -96 99 98 94 100  57  54

108 103 99 98 94   80  57  39

107 102  -2  -3 94   80  58 -60

104   99 96 96  -7  -20  58  41

    2   -3  -6  -5  -7  -19 -41 -58

  -1   -5  -8  -6  -8  -19  60  42

  -3   -7  -9  -7  -8  -19 -40 -57

  -4   -7 -10  -8  -8  -19 -4

sD =

0 -57

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and its 2-D DCT MATLAB output is shown in Fig. 4.5.  After quantizing the DCT 

coefficients by the modified quantization table followed by Zig-zag ordering, the 

coefficients are shown in Fig. 4.6. Prototyping  on  Xilinx Virtex-II  FPGA board for the 

implementation of shifting done by division operator architecture,  2-D DCT  outputs  

obtained  through ChipScope pro is shown in Fig. 4.7. Fig. 4.8 shows the   quantized and 

zig-zag ordered coefficients. 25 MHz clock frequency (obtained through DCM) is used as 

synthesized deign shows maximum frequency of 31.1 MHz. Small error is observed in 

hardware implementation is because of truncation in the number of bits representation. 
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Fig. 4.5 MATLAB Simulation results for 2-D DCT of sample data Ds 

 

Fig. 4.6 Quantized and zig-zag ordered coefficients of Ds                                 
(arranged in left to right and top to bottom order) 

 

Fig. 4.7 2-D DCT coefficients of Ds obtained through Xilinx ChipScope Logic 
Analyzer 
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Fig. 4.8 Quantized and Zig-zag ordered 2-D DCT coefficients of Ds obtained through 
Xilinx ChipScope Logic Analyzer 

4.4 Huffman Coding Architecture Implementation in FPGA for JPEG 

Huffman coding is a variable length code used in image compression for the removal of 

data redundancy. It is done by encoding more frequent occurring symbols (data) with less 

number of bits and less frequent symbols with more number of bits. Optimized code for 

the data is obtained. For the hardware implementation, use of Huffman code table makes 

the hardware simple and high performing [19]. JPEG uses a code table (called Huffman 

code table) to do the Huffman coding [1, 15, 69–71]. The architecture of Huffman coding 

has been explained in Section 2.6 (JPEG baseline image coding). Since FPGA has more 

dedicated memory (RAMs/ROMs), it is a good choice for Huffman coding 

implementation. The following steps are to be carried out for the implementation after 

quantization of DCT coefficients. 

1) Storing Huffman code tables for DC and AC coefficients separately in memory 

2) Category selection 

3) Bringing the DC coefficient difference base code from the DC base code table 

4) Extending the DC base code with binary value of DC difference coefficient 

5) Bringing the AC coefficient base code from the AC base code table 

6) Extending the AC base code with binary value of AC coefficient 

7) Repetition from step 5 until all AC coefficients are encoded     
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The Huffman code tables for DC and AC coefficients are given in Appendix A and 

Appendix B respectively. DC code table is small and coding is done simply by 

addressing the proper location in DC base code memory whose address is given by 

category of the coefficient. TABLE 4.7 shows the category for different DCT coefficients 

range. The AC coefficient base code table is addressed by an additional variable namely 

run. It is the number of zeros preceding the particular AC coefficient. If there are 16 zeros 

preceding a coefficient, it is encoded by a special code whose value is “111111110111”. 

The end of block is encoded using “1010”. Fig. 4.9 shows the sequence of code formed 

by the encoding of DCT coefficients according to JPEG Huffman code table. The code 

lengths of AC base code are variable and therefore efficient storage of  code tables in 

memory can save the memory space. Sun et al.[71] have constructed the efficient way of 

memory for AC coefficients storage. They have used 8-bits for each (run, cat.) pair 

storage. In our design, only 7-bits are used for each (run, cat.) savings 160 memory bits. 

Fig 4.10 shows RTL  schematic of Huffman  coding algorithm implemented in Xilinx 

FPGA. It consists 

 

TABLE 4.7 
CATEGORY OF DCT COEFFICIENTS 

Category Quantized DCT Coefficients Range
0 - 
1 -1, 1 
2 -3, -2,  2,3 
3 -7,...-4,  4,...7 
4 -15, ...-8,  8, ...15 
5 -31, ...-16,  16,...31 
6 -63, ...-32,  32, ...63 
7 -127, ... -64,  64, ... 127 
8 -255, ...-128,  128, ...255 
9 -511,... -256,  256, ...511 
10 -1023, ...-512,  512, ...1023 
11 -2047,... -1024,  1024,... 2047 

 

DC base 

code 

Binary value of DC 

Coeff. 

AC base code/Special 

Code (“11111110111”)

Binary value of AC 

Coeff.

•  •   • 1010 

Fig. 4.9 Coding Sequence of DCT coefficients in JPEG 
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RTL Schematic of Huffman Code table in Xilinx FPGA  

 
(a) 

 
(b) 

Fig. 4.10 RTL Schematic of Huffman Coding implemented in Xilinx FPGA (a) Top 
module and (b) Detail schematic 
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of the following 7 individual modules. 

1) Category selection module (catSelect_1) 

2) Memory module for storing DC base code (dcBasecodeMemory_1) 

3) DCT coefficient code module (dctCoeffCode_1) 

4) Run module (run_1) 

5) Address formation module (makeAddress_1) 

6) Memory module for storing AC base code table (acBaseCodeMemory_1) and 

7) Control module (control_1) 

1) Category Selection Module 

The category selection module takes input as 11-bits quantized DCT (represented by x) 

coefficients and gives the category of the coefficient as output in the rising clock edge. It 

is implemented by a simple logic which detects position of last ‘1’ from LSB occurring in 

the input data. The position number is the category. The negative data input is converted 

into the equivalent positive number before finding the category. Fig. 4.11 shows the tip 

level interface of the circuit and Fig. 4.12 shows the simulation output result in Xilinx 

ISE 10.1.    

 

Fig. 4.11 Top Level Interface of Category selection module 

 

Fig. 4.12 Simulation output of Category selection module 
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2)Memory Module for storing DC base code 

It consists of two different ROMs where DC base code and its length are stored. Size of 

base code ROM is12x3-bits and size of the its length is 12x4-bits. It takes the category of  

the DC coefficients and gives the DC base code and its length simultaneously in the 

rising clock edge. The length is required when forming the final code. Fig. 4.13 shows 

the RTL schematic and Fig. 4.14 shows the simulation output.  

 

 
(a) 

 
(b) 

Fig. 4.13 RTL Schematic of DC base code module (a) Top interface and (b) Details 

 

Fig. 4.14 Simulation result of DC base code module 
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3)DCT coefficient Code Module 

DCT coefficient code module makes the proper code of the data obtained after 

quantization. Fig. 4.15 shows the RTL schematic. It is performed by subtracting ‘1’ from 

the input data if MSB is ‘1’ otherwise same (input) data is the output. One subtractor is 

used here. DC_data is a controlling signal input which selects quantized DC coefficient 

as input if its value is ‘1’ else it selects AC coefficients. Fig. 4.16 shows the simulation 

result. 

 
(a) 

 
(b) 

Fig. 4.15 RTL Schematic of DCT Coefficient code module (a) Top interface and (b) 
Details 

 

Fig. 4.16 Simulation result of DCT coefficient code module 
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4)Run Module 

It takes the quantized DCT coefficients, counts the number of zero coefficients received 

and gives the same output if non-zero coefficient is received with the number of zeros 

(‘run_out’) preceding this coefficient and the a valid data signal (‘valid_data’) indicating 

that the current coefficient is a non-zero. Input data to this module is recognized by 

‘receive_data’ signal. Special code valid signal ‘scode_valid_out’ is inserted ‘1’ when 

non-zero coefficients received in a row exceeds 16. A counter counts the total 

coefficients received. If count reaches 63 (all current block AC coefficients have been 

received), an end of block signal ‘eob_out’ is inserted high. Fig. 4.17 shows the top level 

view of RTL schematic and Fig. 4.18 shows the simulation result.   

 

Fig. 4.17 RTL Schematic of Run Module (top view) 

 
(a) 

Fig. 4.18 Simulation result of run module for received AC coefficients (a) 1 to 21 
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(b) 

 
(c) 

Fig. 4.18 (continued) (b) 22 to 45 and (c) 46 to 63 

5)Address formation Module 

The AC base code table is stored in continuous memory locations from 0 to 161. Address 

formation module takes ‘run’ (from run module output) and ‘cat’ (from category 

selection module) of the AC coefficients and gives the 8-bits ‘address’ (as total of 161 

locations in AC base code table have to be addressed) as output for the AC base code 

table. It is an asynchronous circuit as the address output should available as soon as ‘cat’ 

input changes. Each additional ‘run’ increments the ‘address’ by 10 times and each 

additional ‘cat’ increments it by one location, i.e., 

address=(run × 10) + cat 

Fig. 4.19 shows the RTL schematic and Fig. 4.20 shows the simulation results. 
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(a) 

 
(b) 

Fig. 4.19 RTL Schematic of Address formation module (a) top view (b) detail view 

 
Fig. 4.20 Simulation result from address formation module 

6)Memory Module for Storing AC base Code Table 

There are two ROMs used for the implementation (shown in Fig. 4.21). One is having 

size 161x7 and it stores the AC base code. Here, 7-bits storage have been used as a 

maximum of 7-bits (right most) out of 16-bits length are different. Left most 9-bits are 

either not required or are all ‘1’s (see Appendix B). The more than 7-bits base code 

required is extended by adding extra ‘1’s to it. For example, if base code is 

“1111110011” (10-bits) then “1110011” is stored in memory, i.e., 

Complete AC base code= “111” (extension bits) & ”1110011” (from ROM)  

The second ROM (size 161x4) stores the code length of the corresponding AC base code. 

The module takes the input address from the address formation module and gives base 

code as output and its length at rising clock edge (shown in Fig. 4.22). 
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(a) 

 
(b) 

Fig. 4.21 RTL Schematic of Memory module for AC base code storage (a) top view 
and (b) detail view 

 

Fig. 4.22 Simulation result from AC base code memory module 
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7)Control Module 

The control module controls all the coding activity. It is implemented using FSM. The 

top interface is shown in Fig. 4.23. The state of the FSM changes according to the input 

control data received. There is a buffer register named ‘buff_reg’ of bit-widths 201 where 

all the codes received are buffered. The initial state of the controller is ‘init’ at reset and 

on receiving ‘data_valid’ signal, it starts buffering of data in ‘buff_reg’ register. If 

‘DC_data_valid’ control signal is received, it goes to ‘dcbase’ state. In this state, it takes 

the extended DC base code data (in ‘dcbasecode’ register) at each clock cycle as shown 

in Fig 4.24(a). The extended 9-bits DC base code is formed by taking 3-bits DC base 

code from DC base code memory through ‘DC_basecode_in’ interface and its length 

through ‘len_DC_basecode_in’ interface. Soon after completion of base code, the FSM 

goes to ‘dccoeff’ state where it stores the binary value of DC coefficient having length 

equal to its category. The total number of data stored in the buffer register is shown 

through ‘code_len_count’ register status. At the end of ‘dccoeff’ state, the value of 

‘code_len_count’ is 9 as it has 5-bits as DC base code and 4-bits as DC coefficient code 

value.  

On receiving ‘AC_data_valid’ signal high, the controller goes to AC base code state 

‘acbase’ followed by AC coefficient code state ‘accoeff’ (shown in Fig. 4.24(b)). The 

same thing is done here as described for DC base code and DC coefficient code. The 

length of AC base code received from memory (through ‘AC_basecode_in’ bus) is 7-bits 

and it is extended by adding ‘1’s to form the total length 16 in ‘ext_AC_basecode_in’ 

register. However, only required length obtained through ‘len_AC_basecode_in’ is taken 

into consideration for storing bits in buffer register. 

When ‘scode_valid’ signal is inserted high, it goes to ‘acspl’ state and stores 12-bits 

special code (“11111110111”) in buffer register in 12 clock cycles (Fig. 4.24(c)). When 

all AC coefficients are encoded, which is indicated by inserting ‘eob_valid’ signal high, 

the controller goes to state ‘eob’ (Fig. 4.24(d)) and it stores “1010” bit streams. At the 

end of this state, ‘code_done’ signal is inserted high. This state is followed by data output 

state ‘dataout’ where buffered data are brought to the output. Here, one bit data per clock 

cycle is considered for the implementation, although desired number of bits per clock 

cycle can be taken to output depending on throughput requirements.     
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Fig. 4.23 RTL Schematic of control module (top view) 

 

 
(a) 

Fig. 4.24 Simulation results of control module (a) DC coefficient coding 



Chapter‐4                                                                       Efficient JPEG Image compression Architecture 
 

90 
 

 
(b) 

 

 
(c) 

Fig. 4.24 (continued), (b) AC coefficient coding, (c)Special code 
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(d) 

Fig. 4.24 (continued), (d) Buffered Output as bit stream 

Design Summary of Huffman Coding Implementation 

Fig. 4.25 shows the advanced HDL synthesis report of the complete Huffman coding   

 

Fig. 4.25 Macro Statistics of Advance HDL Synthesis of Complete Huffman Coding 
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TABLE 4.8 
DESIGN SUMMARY OF HUFFMAN CODING IMPLEMENTED IN FPGA  

FPGA Chip: Xilinx XC2VP30 

Module 
#  of 

Slices 
# of Slice 
Flip Flops 

# of 4 i/p 
LUTs 

Max. 
Freq.(MHz) 

$Dynamic 
Power 
(mW) 

BRAMs 

Category 
Selection 

16 4         
(IOB FF) 27 5.759 ns 

(Max. delay) 5.2 – 

*DC base code 
memory 

4 7 7 3.615 ns    
(Max. delay) 2 – 

DCT coeff. Code 15 – 26 9.74 ns 
(Max. delay) 29.34 – 

Run 29 32 55 307 4.13 – 

Address 
Formation 

6 – 10 8.40 ns 
(Max. delay) 22.5 – 

AC base code 
memory 

– – – – 3.14 2 

   **Control 366 229 668 177.17 13.9 – 

Complete design 439 273 802 149.535 29.13 2 

       $ Total power in each case = Dynamic power + 103.13 (Quiescent power) 
       *Distributed memory (SRAM) in LUTS have been used for DC base code storage 
         ** 201 Flip Flops have been used for buffer register 

implementation and TABLE 4.8 shows the hardware utilization and power consumption 

report in Xilinx XC2VP30 FPGA device module wise. Here, total power is sum of 

dynamic power and quiescent power which is 103.13 mW for this device. Also, DC base 

code module uses SRAMs of LUTs as distributed ROM to store the DC base code table. 

In this particular implementation, the buffer register width is taken as 201 bits.   

Comparison 

We have compared our proposed implementation with the existing one and TABLE 4.9 

and TABLE 4.10 show the comparison results in terms of memory uses. Agostini et al. 

[19] use 176x21 bits in AC code table and 12x13 bits in DC code table. In our method, 
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only 161x11 bits in AC and 12x7 bits in DC code table have been used which saves a 

memory storage of 1997 bits. Sun et al.[71] have used strategy to save the memory in 

code table implementation. They have used 8 bits per AC code table entry. In our 

proposed strategy, only 7 bits per entry have been used. Thus, the proposed Huffman 

design is efficient and simple. 

TABLE 4.9 
COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION 

 IN TERMS OF TOTAL MEMORY USES IN TABLE STORAGE 

Memory uses In DC code table In AC code table 

Agostini et al. [19] 12x13 bits 176x21 bits 

Proposed 12x7 bits 161x11 bits 

 

TABLE 4.10 
COMPARISON OF PROPOSED HUFFMAN CODING IMPLEMENTATION 

 IN TERMS OF NO. OF BITS  PER AC TABLE ENTRIES 

Memory uses No. of bits in each AC table entry in 161 locations 

Sun et al. [71] 8 bits per entry 

Proposed 7 bits per entry 

 

4.5 Conclusions 

Simulation results for two quantization tables, normal and modified (for hardware 

simplification), confirm that normalization table that is suitable for hardware 

simplification can be used in JPEG baseline image compression. A simple FSM based 

architecture for the computation of 2-D DCT, quantization and zig-zag ordering for JPEG 

image compression is proposed using quantization matrix suitable for hardware design. It 

eliminates the 64x13 bits memory requirement for storing the 2-D DCT coefficients as 

well as another memory requirements for storing the quantized DCT coefficients for zig-

zag ordering. Hardware output obtained from FPGA is compared with MATLAB 

simulation to check the correctness of the implemented design. Huffman coding is 

implemented using Huffman code table. By employing the strategies, memory 

requirements to store the AC and DC Huffman code table have been reduced. 
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Chapter 5 
Direct Computation of 8x8 2-D DCT 

Coefficients Equation and Its Hardware 
Architecture  

5.1 Introduction 

The 8x8 2-D DCT is used in image compression algorithms (JPEG) as well as in video 

compression standard such as MPEG-x and H.26x. It is a highly complex algorithm and 

its hardware implementation requires a large number of adders and multipliers. Hardware 

reduction has been the active area of research from the long time.  To reduce the 

hardware, row-column decomposition is the conventional approach to implement 2-D 

DCT where 1-D DCT is taken to rows followed by 1-D DCT to columns with 

intermediate results stored in transposition memory.  A further hardware saving is 

obtained by using distributed arithmetic (DA) algorithm which replaces multiplication 

with additions.  The disadvantage of row-column approach is that it requires a large 

transposition memory to store intermediate 1-D DCT results. This results in high circuit 

cost, more power consumption and reduced accuracy as final results are obtained after 

two times DA precision have been applied (first time for 1-D DCT computation and 

second time for 2-D DCT computation from 1-D DCT). To increase the precision, all 

intermediate operations need to be done with higher bit-width causing the proportionate 

increase in size of adders and transposition memory. For low cost consumer products and 

portable devices; a more regular and simpler circuit is required that has low area and low 

power dissipation. Row-column decomposition technique is also unsuitable for the 

applications requiring transmission in limited bandwidth as all DCT coefficients need to 

be calculated in advance for sending, though it is sent one by one. To reduce the circuit 

cost, direct recursive computation of 2-D DCT is done using recursive kernel in which 
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DCT coefficients are computed one by one at regular clock cycles. The disadvantage of 

recursive kernel is that accuracy is reduced to a large extent due to round-off error. Errors 

are introduced with the increase of recursive cycles because each processed register 

values requires higher number of bits for its representation. Fixed size of register in VLSI 

makes it non-practical.  

Therefore, non-recursive computation of DCT coefficients which has hardware 

overhead as low as recursive kernel or even lower is a better choice in VLSI architecture 

design for the realization of DCT computation. In this chapter, we have proposed non-

recursive VLSI architecture for 8x8 2-D DCT that performs direct computation of 2-D 

DCT without any transposition memory with the following additional advantages. 

1) Fractional value multiplication is used two times at last stage only and all 

intermediate stages are free of error. 

2) To increase accuracy, only one register bit-width and one multiplier bit-width 

need to be changed (almost negligible hardware overhead). 

3) Critical/Important DCT coefficients can be calculated first instead of 

calculating entire 64 DCT coefficients for transmitting in limited bandwidth 

capacity channel. 

By using this architecture, JPEG image compression has been implemented which 

requires only one additional register, one multiplier and Huffman coding circuitry 

bypassing intermediate memory stages to store DCT coefficients. 

5.2 Equation for Direct computation of 2-D DCT 

Direct computation of 2-D DCT coefficients has advantages that it can be implemented in 

hardware without transposition memory and most important DCT coefficients can be 

computed first without computing all 2-D DCT coefficients. Moreover, in row-column 

approach, 1-D DCT circuitry uses the 16 times DCT computations for 8x8 data (8 times 

for row DCT and 8 times for column DCT) as shown in Fig. 5.1(a). In terms of hardware 

requirements, direct computation can be performed by using control and arithmetic 

circuitry (Fig. 5.1(b)). The design of control circuitry for direct computation plays an 

important role as it affects the arithmetic circuit requirements and also the accuracy of 

final coefficients obtained.  Here, we derive  a novel  approach to  compute  the 2-D DCT  
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(a) 

 

 

 

 

(b) 

Fig. 5.1 2-D DCT computation (a) using 1-D DCT and transposition memory        
and (b) without transposition memory 

coefficients in direct method having a simple control circuitry and less arithmetic circuit 

units. 
The 8x8 2-D DCT for a set of 2-D data xሺi, jሻ with 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7 is given by, 

( ) ( ) ( ) ( )
7 7

0 0

2 (2 1) (2j 1),   x i, j cos cos
8 16 16i j

i u vF u v C u C v π π
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ += ×∑∑      

where u, v= 0,1,…,7, and C(u), C(v)= 1/ 2 for u, v= 0 and C(u), C(v)= 1, otherwise. For 

the direct computation of 2-D DCT, recursive computation is the preferred choice. But, 

hardware implementation of recursive algorithm requires higher number of precisions in 

the datapath that leads to proportionate increment of area and cost of the design. 

Therefore, non-recursive algorithm to compute 2-D DCT is better suitable for the 

dedicated hardware design. Here, we develop the hardware implementation model for the 

direct computation of 2-D DCT in non-recursive way. DC coefficient F(0,0) is, 

8-point          
1-D DCT 

Memory       
(64×(n+3) bits  

RAM/Registers)     

8-point          
1-D DCT 

Intermediate ResultRow DCT            
(8-times 1-D DCT 
computations) 
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(8-times 1-D DCT 
computations) 
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Control      
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x1 

x2 

xm 

n

n

n

Data      
Buffer 
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Circuits 

2-D 
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(5.1)
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Let, 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

7 7

0 0

7 7

0 0

7 7

0 0
7 7

0 0

 ,0 1,        ,1 2,

 , 2 3,      ,3 4,

 , 4 5,       ,5 6,

 ,6 7  and   ,7 8   

i i

i i

i i

i i

X i sumc X i sumc

X i sumc X i sumc

X i sumc X i sumc

X i sumc X i sumc

= =

= =

= =

= =

= =

= =

= =

= =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

where, sumci means sum of values in column i. Therefore DC coefficient F(0,0), from 

(5.2), can be written as, 

( )1(0,0) 1 2 3 4 5 6 7 8
8

F sumc sumc sumc sumc sumc sumc sumc sumc= + + + + + + +  

 

F(1,1) is written as, 

( )

( ) ( )

( ) ( )

7

0

2 12(1,1) cos
8 16

3( ,0) ( ,7) cos ( ,1) ( ,6) cos
16 16

5 7( , 2) ( ,5) cos ( ,3) ( , 4) cos
16 16

i

i
F

X i X i X i X i

X i X i X i X i

π

π π

π π

=

⎛ ⎞+⎛ ⎞
= ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

 

 

Here, trigonometric property, cos( ) cos( )π ϕ ϕ− = −  has been used in (5.1). Equation 

(5.4) can be further written as, 

(5.2)

(5.3)

(5.4)
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3 5 7(1,1) cos ( )cos ( )cos ( ) cos
16 16 16 16

                                                                                                              cos
16

F A B E C I D Mπ π π π

π

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

× ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

where, symbols A, B, C, ...  represents the values given in TABLE 5.1 in terms of inputs. 
TABLE 5.1 

SHORT NOTATIONS OF  IMAGE DATA VALUES 

             Image data values 

notations 
n1=(c1-c2) -(c3-c4) 
n2=(c1-c2)+(c3-c4) 
n3=(c1+c2)-(c3+c4) 
n4=(c1+c2)+(c3+c4) 

c1 c2 c3 c4 n1 n2 n3 n4 
X(0,0) X(0,7) X(7,0) X(7,7) A Ap pA pAp 
X(1,0) X(1,7) X(6,0) X(6,7) B Bp pB pBp 
X(2,0) X(2,7) X(5,0) X(5,7) C Cp pC pCp 
X(3,0) X(3,7) X(4,0) X(4,7) D Dp pD pDp 
X(0,1) X(0,6) X(7,1) X(7,6) E Ep pE pEp 
X(1,1) X(1,6) X(6,1) X(6,6) F Fp pF pFp 
X(2,1) X(2,6) X(5,1) X(5,6) G Gp pG pGp 
X(3,1) X(3,6) X(4,1) X(4,6) H Hp pH pHp 
X(0,2) X(0,5) X(7,2) X(7,5) I Ip pI pIp 
X(1,2) X(1,5) X(6,2) X(6,5) J Jp pJ pJp 
X(2,2) X(2,5) X(5,2) X(5,5) K Kp pK pKp 
X(3,2) X(3,5) X(4,2) X(4,5) L Lp pL pLp 
X(0,3) X(0,4) X(7,3) X(7,4) M Mp pM pMp 
X(1,3) X(1,4) X(6,3) X(6,4) N Np pN pNp 
X(2,3) X(2,4) X(5,3) X(5,4) O Op pO pOp 
X(3,3) X(3,4) X(4,3) X(4,4) P Pp pP pPp 

 

Further, the trigonometric property given by, 

{ }1cos cos cos( ) cos( )
2

m n m n m n× = − + +  

can be used in (5.4) to simplify the computation. Therefore, (5.5) becomes,  

( )
( ) ( ) ( )

( ) ( )

cos 0 cos
411,1

8 3cos cos
8 8

A F K P B E C I H N L O
F

A B E G J L O P C I D M F H N K

π

π π

⎡ ⎤⎛ ⎞+ + + + + + + + + − − +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ + + + + + − + + + + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 

(5.5)
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( ) ( ) ( ) ( ) ( )1 3cos 0 2 cos 3 cos 4 co1 s
8 4 8 8

A ACC ACC AC CC Cπ π π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

where, ACCi’s in (5.6) are used to represent the accumulated input signal values. 

Following the procedure above, other DCT coefficients can be computed one by one in 

serial fashion or in parallel according to the requirements by the non-recursive equation 

which is given as, 

1 11 cos( 1) 2 cos( 2)
8 8

( , )
1 13 cos( 3) 4 cos( 4)
8 8

ACC ACC
F u v R

ACC ACC

β β

β β

⎡ ⎤⎛ ⎞ ⎛ ⎞× + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞× + ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 

where, 1β , 2β , 3β and 4β represents the cosine angles. 1ACC , 2ACC , 3ACC , 4ACC

and R values are required to compute DCT coefficients which are listed in TABLE 5.3 

whereas TABLE 5.2 lists the short notations used in TABLE 5.3. Angle Group column in 

TABLE 5.3 represents the four cosine angles 1β , 2β , 3β and 4β whose values are listed 

in TABLE 5.4. Let us take an example to calculate F(3,1). From generalized equation 

(5.7) and with the help of TABLE 5.3 and 5.4, F(3,1) can be written as, 

( )
( ) ( )

( ) ( ) ( )

1 17 cos 0 (S8 S9) cos / 4
8 8

3,1 1
1 1S10 S11 cos / 8 (S12 S13) cos 3 / 8
8 8

S
F

π

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞× + + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= ×
⎢ ⎥⎛ ⎞ ⎛ ⎞+ × + + ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 

For the ‘Angle Group 3’  case, one extra value “c” is added along with four accumulators. 

From (5.7), it is evident that the required DCT coefficients can be calculated with very 

high precision as all internal values are preserved accurately because of non-floating type 

operations involved. Also, to further increase the accuracy, only one register which 

contains cosine values in fractional format for the multiplication and one multiplier bit-

width need to be changed. The DCT coefficients can be calculated in any order by 

exploiting pipelining and parallelism with throughput and hardware cost trade-off.  

 
 

(5.6)

(5.7)
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TABLE 5.2 
SHORT NOTATIONS OF  TERMS 

          Term 
 no

ta
tio

n 

           Term 
 no

ta
tio

n 
 

 

             Term 

no
ta

tio
n 

A F K P+ + +  S0 pA pM pC pO− − + S36 pLp pNp pOp pIp− + −   S71 

A B E G+ + +  S1 pJ pH pL pF− + − S37 pAp pBp pCp pDp− − +   S72 

J L O P+ + −  S2 pO pD pP pC− + − S38 pNp pOp pPp pMp+ − −  S73 

B E C I+ + +  S3 pE pI pF pJ− + − S39 pEp pFp pGp pHp− − +  S74 

H N L O+ − −  S4 pA pM pB pN− − + S40 pJp pKp pLp pIp+ − −   S75 

C I D M+ + +  S5 pK pH pL pG+ − − S41 pAp pDp pEp pHp− − +   S76 

F H N K− − −  S6 pB pN pD pP− − + S42 pLp pMp pPp pIp+ − −   S77 

E L N C− − −  S7 pI pG pK pE− + − S43 pBp pCp pFp pGp− − +   S78 

A G D K− − −  S8 pB pF pJ pN− − + S44 pKp pNp pOp pJp+ − −  S79 

M J P F+ + −  S9 pC pG pK pO− − + S45 pCp pNp pOp pBp+ − −   S80 

A G C H− − −  S10 pA pE pI pM− − + S46 pEp pHp pIp pLp− − +   S81 

I J P N− − +  S11 pD pH pL pP− − + S47 pAp pDp pFp pGp− − +   S82 

B O D K+ + +  S12 Ap Dp Ep Hp− + − S48  pJp pKp pMp pPp− − +   S83 

E F M L+ − +  S13 Jp Kp Np Op− + − S49 pCp pNp pOp pBp+ − −  S84 

H I O B+ + −  S14 Ap Dp Fp Gp− + − S50 pEp pHp pIp pLp− − +  S85 

A J D F− + −  S15 Ip Lp Np Op− − + S51 pAp pDp pEp pHp− − +  S86 

G P K M+ − −  S16 Bp Cp Ep Hp− + − S52 pLp pMp pPp pIp+ − −  S87 

D F E B− + −  S17 Kp Mp Pp Jp+ − − S53 pBp pCp pFp pGp− − +  S88 

L K M O+ + −  S18 Bp Cp Fp Gp− − + S54 pKp pNp pOp pJp+ − −  S89 

A J C N− + −  S19 Ip Lp Mp Pp− − + S55 pA pE pI pM+ + +   S90 

H G P I− − −  S20 Ep Fp Gp Hp− − + S56 pB pF pJ pN+ + +   S91 

G J M D− + −  S21 Ip Jp Kp Lp− − + S57 pC pG pK pO+ + +   S92 

C H B L− − −  S22 Ap Bp Cp Dp− − + S58 pD pH pL pP+ + +   S93 

E O I N+ − +  S23 Mp Np Op Pp− − + S59 pAp pEp pIp pMp+ + +  S94 

C H F K− − +  S24 Ap Dp Fp Gp− − + S60 pBp pFp pJp pNp+ + +  S95 

I N D M− − −  S25 Lp Np Op Ip− + − S61 pCp pGp pKp pOp+ + +  S96 

A P B L− − −  S26 Ap Dp Ep Hp− − + S62 pDp pHp pLp pPp+ + +  S97 

G J E O+ − −  S27 Kp Np Op Jp+ − − S63 sumc1 sumc8−  c1mc8 

pA pM pB pN− + −  S28 Bp Cp Fp Gp− + − S64 sumc2 sumc7−  c2mc7 

pG pK pH pL− + −  S29 Lp Mp Pp Ip− + − S65 sumc3 sumc6−  c3mc6 

pA pM pC pO− + −  S30 Cp Ep Hp Bp+ − − S66 sumc4 sumc5−  c4mc5 

pF pJ pH pL− − +  S31 Kp Mp Pp Jp− + − S67 sumc1 sumc8+  c1pc8 

pB pN pD pP− + −  S32 pAp pDp pMp pPp− − + S68 sumc2 sumc7+  c2pc7 

pE pI pG pK− − +  S33 pFp pGp pJp pKp− − + S69 sumc3 sumc6+  c3pc6 

pC pO pD pP− − +  S34 pBp pCp pEp pHp− + − S70 sumc4 sumc5+  c4pc5 

pE pI pF pJ− − +  S35      
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TABLE 5.3 
ACCUMULATOR VALUES AND COSINE ANGLES REQUIRED IN GENERALISED EQUATION (5.7) FOR ALL AC 

COEFFICIENTS CALCULATION 
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TABLE 5.4 

 ANGLE GROUP VALUES USED IN TABLE 5.3 

 
Angle Group 

( 1, 2, 3, 4)β β β β  

1 (0, / 4, / 8, 3 / 8)π π π  

2 ( / 16, 3 / 16, 5 / 16, 7 / 16)π π π π  

3 ( / 4, / 4, / 4, / 4)π π π π  

4 ( / 8, / 8, 3 / 8, 3 / 8)π π π π  

 

5.3 Non-recursive VLSI architecture of 2-D DCT 

Based on equation (5.7) derived above, the non-recursive architecture for computing 2-D 

DCT coefficients has the components as shown in Fig. 5.2 along with the clock latency of 

each components. Since sum of all eight columns are required, it is done by the 

accumulator (adder). One accumulator can do the accumulation of column values from 

the data buffer,  but it requires 64  clock latency. Therefore, to  reduce the clock latency, 

eight parallel accumulators have been used that gives the sums in eight clock latency.   

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Architectural components of direct 2-D DCT computation 
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These values are stored in registers of size n-bits. For this design in particular for 8-bits 

input data, 11-bits registers have been used. Data selector module takes appropriate 

address of the data inside the data buffer to make available four parallel data at each 

clock cycle to the adder stage 1. In next clock cycle, four more data comes from the data 

buffer to the adder stage 1 and the result of successive additions are applied to adder 

stage 2. So the clock latency for this stage is 2 clock cycles. MUX will select the data 

either from the column sum registers or from the adder stage 2 and further two successive 

samples are added in adder and shifter stage which consists of a register and adder as 

shown in Fig. 5.3. Binary values of cosine in fractional form are stored in one and only 

register and each ACCi’s values are multiplied with a multiplier. Since, the ACCi’s 

values are available after every two clock cycles, four multiplications are performed in 8 

clock cycles and results are accumulated. The initial eight clock cycles are used to get the 

column sum and once it is available, the remaining computations are done in total 12 

clock cycles, i.e., successive DCT coefficients are obtained after every 12 clock cycles.     

Complete Architecture Design 

Fig. 5.4 depicts the one cell component used in proposed architecture of Fig. 5.5. This 

basic cell adds four data values applied to its four inputs with different sign (positive or 

negative) and the appropriate sign is selected by multiplexer whose select line is 

controlled by timing and controller module in Fig. 5.5. From the data buffer, 16 pixels 

values are obtained in one clock cycle. These 16 pixel values are given to four basic 

adder modules. The four data sums obtained from the four basic modules are  applied 

further to same type of basic module cell to get addition of these four values.  

 

 

 

Fig. 5.3 Adder and shifter stage in the architecture 

         
ADDER 

 
REGISTER 

Input rate R 
Output rate R/2 
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Fig. 5.4 A basic cell to add four inputs with different sign 

 

Fig. 5.5 Proposed non-recursive VLSI architecture for the direct computation of 2-D 
DCT 
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E.g., let 4 values out of 16 from data buffer are x(0,1), x(0,6), x(7,1) and x(7,6).  These 

values applied to basic adder module with proper sign controlled by timing and control 

module will result in  

E = x(0,1)–x(0,6) –x(7,1)+x(7,6) 

Similarly, others 12 values are given by, 

L = x(3,2) –x(3,5) –x(4,2)+x(4,5) 

N = x(1,3)–x(1,4) –x(6,3)+x(6,4) 

and    
C = x(2,0)–x(2,7) –x(5,0)+x(5,7) 

These four results when applied to second stage basic adder cell results,  

S7 = E–L–N–C 

with proper sign extension.   

Other values, e.g., S8, S9, S10, S11 and S12, required for F(3,1) are calculated in next 

clock cycle. S7 is the ACC1 for F(3,1). ACC2 is sum of S9 and S10. REGISTER 1 is 

used to hold one value (S8) and next value coming through (S9) is added or subtracted by 

the ACCUMULATOR 2 with add/sub signal from timing and control circuitry. Sum of 

columns is calculated by the ACCUMULATOR 1 where a counter is used to get the pixel 

values from data buffer. Counter output is given as the address in data buffer. MUX 1 is 

used to select the data from ACCUMULATOR 1 or basic cell module in second stage. 

MUX 2 is used to change the sign of ACCs as and when required. REGISTER 2 stores 

the cosine values in binary fractional format (e.g., fractional value of ( )cos / 4π . In every 

two clock cycle, REGISTER 2 contents are changed and multiplied in the  

MULTIPLIER.  ACCUMULATOR 3 accumulates four values, e.g.,  S7×(1/8cos(0)), 

(S8+S9)×(1/8cos(π/4) ), (S10+S11)×(1/8cos(π/8) ) and (S12+S13)×(1/8cos(3π/8)). 

SIFTER performs multiplication by √2 where ACCUMULATOR 3 output is shifted and 

added. SHIFTER reduces the hardware by performing multiplication with less precision 

by addition of shifted values. Multiplier can be used instead of shifter for higher 
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precision. Finally MUX 3 selects the values direct from ACCUMULATOR 3 or after one 

multiplication. 

VLSI/FPGA Implementation 

The proposed architecture is implemented using 0.18 µm TSMC CMOS standard cell 

technology library. The industry standard Synopsys Design Compiler (DC) tool has been 

used for the synthesis of architecture  described in VHDL language. 12-bits precision for 

the cosine values are used in REGISTER 2. For the multiplication by √2, shifting 

operation is performed. TABLE 5.5 shows the comparison of proposed implementation 

with other existing methods for 2-D DCT computation. The proposed architecture has the 

lowest area in terms of gate counts (15.4 K) and low power consumption as well (11 mW 

at 100 MHz). 

 

TABLE 5.5 
COMPARISON OF DIFFERENT 2-D DCT ARCHITECTURES  

 Shams et 
al. [57] 

Chen et al. 
[59] 

Chen et 
al. [31] 

Sun et al. 
[52] 

Chen et 
al. [64] 

Jian et al. 
[98] 

Proposed 

Method Row-
column 

Row-
column 

Direct 
recursive 

Row-
column 

Direct 
recursive 

Direct 
Non-
recursive 

Direct 
Non-
recursive 

Technology 0.18 µm 0.18 µm NA 2 µm NA 0.6 µm 0.18 µm 
ROM words No No No Yes No No No 
RAM words No No No Yes No No No 

# of 
Multipliers 

0 0 4/6 0 Yes 0 1 

Gate Counts 
(NAND2) 

22.5 K 
(approx) 

22.2 K NA 18.25 K 
(16x16 
DCT) 

NA 28.5 K 15.4 K 

Throughput High High Low Low Low Moderate Low 
Accuracy Moderate Moderate NA Very 

high 
Low NA Very high 

Power 
consumption 

Low 
(0.194 

mW for 
8x1 DCT) 

Moderate 
(39 mW 
@125 
MHz) 

NA Very 
high 
(0.36 W  
@14.3 
MHz) 

NA NA Low 
(11 mW 
@100 
MHz) 

Design 
complexity 

Low 
 

Moderate High Low Moderate High Low 

Note: Gate Count is 1/4 of transistor count as one 2-input NAND gate requires 4 transistors 
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Layout of the Design 

Additional registers (64x8 bits) for the data buffer have been used with 8-bits data input 

for storing 64 data values in 64 clock cycles. The gate level design mapped in 0.18 µm 

TSMC library is obtained after synthesis from the DC in verilog form. The layout of the 

design is performed in Cadence SOC encounter tool. Fig. 5.6 shows the automatic layout 

generated.      

DCT coefficients Calculation in Any order 

Although throughput is low, it calculates the DCT coefficients in any order. Hence, it 

finds more importance in applications like image and video compressions. In the 

mentioned applications, only few low order DCT coefficients are important (carry much 

of the visual information) and others are quantized to zero value.  In JPEG image 

compression, quantized DCT coefficients are rearranged in zig-zag order [15]. In terms of 

hardware implementation of JPEG and MPEG, additional storage (to store 64 DCT 

coefficients) and reordering circuitry (control circuit) are required as shown in Fig. 5.7(a) 

[19, 69–71]. Moreover, quantization table which consists of 64 memory locations (ROM) 

as quantization levels are also used (Fig 5.7(b)).  This burden can be overcome by getting  

 

 

Fig. 5.6 Layout of proposed 2-D DCT design with 64x8 bits registers for the data 
buffer 
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(a) 

 
(b) 

 
(c) 

Fig. 5.7 JPEG Image and MPEG video compression flow with (a) general DCT 
model, (b) quantizer circuit and (c) proposed DCT model 

zig-zag ordered coefficients directly from the proposed architecture with the control 

circuitry designed to obtain coefficients in zig-zag order. Also, instead of using 64xW 

size of ROM for quantization level of coefficient, one register of width W is used and its 

value is changed by the same control circuitry at the time of getting final DCT output. 

Since image can be reconstructed with few low order DCT coefficients, low bandwidth 

can be used for the transmission of images by calculating few low order DCT coefficients 

with the help of proposed architecture model. Fig. 5.7(c) shows the simple model used in 

the proposed design. 
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Low Hardware overhead for higher Precision 

In DA based DCT computation, for getting 1-D DCT results with higher accuracy even 

without having input width unchanged, DA precision needs to be increased. This leads to 

increase in bit-width of adders and consequently the area of chip[57, 59]. The proposed 

architecture has all intermediate operations performed in fixed point format. The only 

fractional values used in the computation are the cosine values stored in a single register 

and it is multiplied with the accumulated value by a multiplier. Therefore, to increase the 

accuracy of the DCT coefficients, only one register bit-width and one multiplier input bit-

width has to be changed. Thus, a negligible hardware overhead is required for high 

accuracy.   

Simulation and Image Reconstruction  

An image consists of huge amount data. Therefore, to simulate the modelled 

architecture for different images with different precision is time consuming. MATLAB 

model of the architecture is designed and data samples are compared with the DCT 

output obtained from the VHDL simulation in Xilinx ISE 10.1 with the MATLAB. The 

similarity of outputs confirm that MATLAB model of the design is exact. Using the 

MATLAB model, two standard test images named Lena and Peppers data are DCT 

transformed. For the reconstruction of the images, Inverse DCT (IDCT) is performed 

using MATLAB double precision floating point data (Fig. 5.8). The original and 

reconstructed images are shown in Fig. 5.9. PSNR is the objective quality image metric. 

It is better suited for objective quality measurement of design modelled in hardware as it  

 

 

 

 

 

Fig. 5.8 Image processing using proposed 2-D DCT architecture model in MATLAB 

Hardware 
Model of 

DCT 
architecture 

in MATLAB 

Original    
Image 

Processed 
Image data 

Inverse DCT 
in MATLAB 

using  
double 

precision 
floating 

point data 

Reconstructed 
Image 
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                           (a)                                                               (b) 

 
                     (c)                                                               (d) 

Fig. 5.9 Original, (a) and (c), and reconstructed, (b) and (d), images using proposed 
non-recursive 2-D DCT architecture model 

focuses on error introduced by the truncation [57]. Fig. 5.10 depicts the PSNR 

comparison performances for proposed architecture with other existing at different 

internal bit-width. In the proposed architecture, bit-width of register which stores the 

cosine floating point data is considered. The proposed architecture has very high 

accuracy in terms of PSNR as all internal computations are in fixed point. PSNR up to 56 

dB has been obtained with the proposed architecture model which was obtained in [52] 

using 16x16 transform whereas all other transform based on 8x8 has PSNR a maximum 

up to 50 dB.   
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Fig. 5.10 PSNR with different internal bit-width precision used 

FPGA prototyping for Silicon validation 

The proposed architecture is prototyped in Xilinx FPGA for the silicon validation. 

TABLE 5.6 shows the hardware resource utilization in XC2VP30 device on Virtex-II pro 

board and its comparison with other architectures. Since no transposition memory is used, 

it has low register (379 numbers) utilization.  These registers are used to store 

intermediate calculations and also states of the timing and control circuitry. 

TABLE 5.6 
 FPGA IMPLEMENTATION AND COMPARISON RESULT OF PROPOSED 

NON-RECURSIVE 2-D DCT ARCHITECTURE WITH DA 

FPGA-chip 
Xilinx XC2VP30 

2-D DCT Architecture implemented 
using row-column in DA 

Proposed non-recursive 
2-D DCT Architecture 

 
# of four input 

LUTs 
4502 3370 

# of slices 
 

2435 1747 

# of Slice Flip 
Flops 

868 379 

Max. Frequency 
(MHz) 

48.4 58.6 

power 
consumption 

 14.97 W 
              0.79 W 

                   Note: The proposed architecture uses one 18X18 Multiplier 
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A sample 8x8 data which is given by,  

-95 -96 99 98 94 100 57 54
108 103 99 98 94 80 57 39
107 102 -2 -3 94 80 58 -60
104 99 96 96 -7 -20 58 41
2 -3 -6 -5 -7 -19 -41 -58
-1 -5 -8 -6 -8 -19 60 42
-3 -7 -9 -7 -8 -19 -40 -57
-4 -7 -10 -8 -8 -19 -40 -57

Di

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

is taken for the functional verification. These data are stored in block RAM of the Xilinx 

FPGA XC2VP30 device on Virtex-II pro board. The device is programmed by bit-file 

generated from the ISE tool. The hardware output is obtained from device using 

ChipScope Pro logic analyser tool through USB cable.  Fig. 5.11 shows the output from 

the device in zig-zag order with 50 MHz clock frequency (digital clock manager is used 

to get 50 MHz frequency  from 100 MHz available on the  Virtex-II pro board). The DCT  

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.11 Zig-zag order DCT coefficients (a) 1 to 21, (b) 22 to 42 and (c) 43 to 64 
obtained from Xilinx xc2vp30 device using ChipScope pro logic analyser 
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output from the MATLAB model used for the image transform and reconstruction for 

PSNR measurement is given by,     

180 58 -59 19 -12 28 -11 17
251 -45 -69 4 -11 10 24 12
-19 -92 -105 -9 4 -7 56 8
-73 -141 -49 -77 15 22 44 12

( )
-57 -28 -52 -79 11 30 39 -6
1 -29 -13 -34 -4 27 5 4
-25 -81 2 43 -17 -4 -17 22
-119 5 -63 93 -14 -40 11 6

DCT Di

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The MATLAB output, same as obtained through the hardware, confirms the silicon 

validation of the proposed 2-D DCT architecture. The quantized DCT coefficients 

obtained from the hardware by using JPEG standard quantization level [15] is shown in 

Fig. 5.12. It is obtained by inserting an additional 16-bits register and a multiplier only in 

the 2-D DCT circuitry. The quantized output is obtained in next clock cycle from the 

DCT coefficients because of the use of a register between DCT and multiplier.    

 
(a) 

 
(b) 

 

(c) 

Fig. 5.12 Zig-zag ordered DCT coefficients along with Quantization  (a) 1 to 10, (b) 
11 to 20, (c) 21 to 30 
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(d) 

 
(e) 

 
(f) 

Fig. 5.12 (continued), (d) 31 to 40, (e) 41 to 51 and (f) 51 to 64 obtained from Xilinx 
xc2vp30 device using ChipScope pro logic analyzer 

5.4 JPEG Image Compression Architecture using Proposed              
Non-recursive 2-D DCT 

The non-recursive 2-D DCT architecture proposed in the previous section is used for the 

JPEG image compression architecture. Since, this 2-D DCT architecture gives quantized 

and zig-zag ordered coefficients, the only other module used here is Huffman coding 

architecture (explained in previous chapter). The 2-D DCT architecture gives quantized 

DCT coefficients at 12 clock cycles per coefficient. The developed Huffman coding 

architecture performs Huffman coding and stores the codes in memory at each clock 

cycle. For small quantized (DCT) coefficients, base code length will be small along with 

coefficients code itself. Therefore, for less than 12-bits encoding per coefficient, same 

clock cycle can drive both the 2-D DCT module and Huffman coding module. However, 

if Huffman coding length is bigger (more than 12-bits per coefficient value), then clock 

of Huffman coding can be halved for correct functioning. Here, since coefficients are 

small, same clock has been used in both the module. The signals required to indicate the 

valid AC and DC coefficients are generated from the DCT module by inserting those 
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signals high and low at the appropriate time with the help of 1-bit register for each signal 

(no additional hardware overhead). Fig. 5.13(a) shows the JPEG compression model 

using proposed non-recursive 2-D DCT architecture. The complete removal of 

intermediate stages for storage of DCT coefficients for quantization and zig-zag ordering 

is illustrated using proposed model. Fig. 5.13(b) shows the RTL schematic of the 

architecture in Xilinx FPGA. The same sample data used in the DCT and quantization is 

used here. Fig. 5.14 shows the simulation and hardware outputs from FPGA (same in all  

 

 

 

 

(a) 

 
(b) 

Fig. 5.13 Architecture of JPEG compression using proposed non-recursive 2-D DCT 
(a) block diagram and (b) RTL Schematic in Xilinx   
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Fig. 5.14 Bit stream of 8x8 sample JPEG processed data using non-recursive 2-D 
DCT architecture model in MATLAB (top), VHDL simulation (middle) and 

Hardware output through Xilinx ChipScope Pro (bottom) 

three cases). The simulation output from the MATLAB is one that has been used for 

image reconstruction using proposed non-recursive  2-D DCT architecture model. The 

clock frequency used here for testing on Xilinx Virtex-II pro board is 10 MHz. TABLE 

5.7 shows the hardware utilization summary in FPGA. It can be noted that additional 8-

bits 64 buffer has been used for the sample data storage apart from JPEG main circuitry. 

TABLE 5.7 
 FPGA IMPLEMENTATION RESULTS OF COMPLETE JPEG USING  

PROPOSED NON-RECURSIVE 2-D DCT 

FPGA-chip: Xilinx XC2VP30 

                    Used Available Utilization 

# of four input LUTs 4427 27392 16% 

# of slices 
 

2325 13696 16% 

# of Slice Flip Flops 1137 27392 4% 

# of BRAMs 3 136 2% 

# of MULT18x18s       2 136 1% 

Max. Frequency 
(MHz) 

37.92 – – 

Power consumption 140 mW – – 
 



Chapter‐5                Direct Computation of 8x8 2‐D DCT Coefficients Equation and Its Hardware Architecture 
 

117 
 

5.5 Conclusions 

 A novel non-recursive VLSI architecture for the direct computation of 2-D DCT is 

proposed and implemented in 0.18 µm ASIC library as well as in FPGA. Implementation 

results show that the proposed architecture is area and power efficient when compared 

with other architectures which compute 2-D DCT either by direct or row-column method. 

Although the architecture has low throughput, it has very high accuracy in terms of 

PSNR. High accuracy is due to preserving all internal calculations in integer format. To 

further increase the accuracy, hardware overhead is negligibly small. The proposed 

architecture can calculate DCT coefficients in any order finding it more suitable for 

image and video compression applications where few low order DCT coefficients are 

enough for the reconstruction of images. Complete JPEG architecture is implemented 

using this non-recursive DCT architecture and Huffman coding with complete removal of 

intermediate storages in different stages like quantization and zig-zag ordering. FPGA 

prototyping has been done for the silicon validation in Xilinx FPGA. Hardware output is 

same as obtained from MATLAB and VHDL simulations. 
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Chapter 6 
Summary and Conclusions 

6.1 Summary 

In the implementation of image compression algorithms, hardware platform provides the 

faster speed than their software counterpart. Also, there is maximum energy efficiency 

obtained when the design is implemented in dedicated hardware. For the portable devices 

running on battery, there is a need to reduce the power as well as silicon area in the 

hardware circuitry (to reduce the cost). Architecture exploration is one of the 

optimization steps in VLSI where different architectures are explored to obtain the 

required specification at the lowest silicon area.  

In the proposed work, the image compression algorithms specially DCT, DHT, 

Huffman coding and JPEG are explored and implemented for the purpose of reduced 

silicon area and power. 

Chapter-1 introduces the topic along with motivation and work done so far in the 

DCT, DHT and Huffman coding architecture implementations. 

Chapter-2 briefs the basics of image compression and image quality metric. The 

energy compaction property of DCT has been studied with the image compression and 

decompression using selected DCT coefficients. It is found that first 15 zig-zag ordered 

DCT coefficients are enough for the image reconstruction while providing extra 

compression. So, the circuit which computes 2-D DCT coefficients one by one will be a 

good choice for DCT based image compression. The separable DHT has been used for 

image compression and decompression in JPEG style and it is found that it performs 

almost same as DCT at very high compression. 
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Chapter-3 introduces the efficient hardware implementation algorithm called DA. 

Both ROM based and ROM free approaches have been used for the DHT 

implementation. ROM free DA requires less hardware than ROM based DA and has 

more accuracy. Efficient ROM free 1-D DCT architecture is proposed and implemented 

using DA approach which has 31% area improvement and 37 %  power improvement 

than the conventional. 

Chapter-4 is dedicated towards the removal of intermediate stages which requires a 

significant amount of ROMs and registers to store DCT coefficients in quantization and 

zig-zag ordering in JPEG image compression. Also, Huffman coding architecture has 

been implemented using the strategies to save the memory in the storage of Huffman 

code tables. 

Chapter-5 presents a novel non-recursive architecture for the computation of 2-D 

DCT coefficients without intermediate transposition memory. The architecture is 

implemented in FPGA as well as in 0.18 µm ASIC library. The comparative result shows 

that the architecture is area efficient in terms of gate counts. The architecture has 

excellent image quality in terms of PSNR. The additional feature of this architecture is 

that it can compute the 2-D DCT coefficients in any order (zig-zag ordering has been 

implemented in the current work). Using this architecture, the complete JPEG image 

compression architecture is implemented. The only additional components required till 

zig-zag ordering are one 13-bits register and one 13x13 multiplier to perform 

quantization. Huffman coding is integrated without the buffer in between quantized DCT 

coefficients and Huffman coding module. The prototyping in Xilinx FPGA of the 

complete JPEG architecture and comparison of the results obtained from MATLAB and 

VHDL simulations (same in all cases) validated the designed JPEG. 

6.2 General Conclusions      

The following are the conclusions from the research carried out: 

1) Presented direct non-recursive computation approach is the most suitable design 

for hardware implementation when high image quality is required at low cost 

hardware. The quantized and zig-zag ordered coefficients obtained through this 
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non-recursive architecture completely removes the intermediate stages like 

memory for storing quantization table and DCT coefficients at different stages 

resulting in low cost image compression architecture. 

2) For the applications requiring only DCT coefficients with high throughput, 

proposed efficient ROM DA based 1-D DCT circuitry can be used which has low 

area and low power consumption than the conventional ROM free DA. 

3) SDHT can be employed in the system where high compression of image is 

required at high compression. It has same performance as DCT in terms of PSNR 

while hardware is significantly lower than DCT.  

4) The modified quantization table suitable for hardware simplification has the same 

performance in terms of PSNR as default one provided by JPEG. However, it has 

no storage requirement in memory and FSM based design approach leads to 

memory reduction in storage of DCT coefficients for zig-zag ordering and 

quantization. 

5) The Huffman coding architecture has been implemented with the reduced 

memory for the storage of Huffman code tables and it encodes the coefficients 

bit-by-bit at each clock cycle resulting in efficient design. 

 

6.3 Future Scope       

The non-recursive equation for the direct computation of 2-D DCT coefficients is very 

much suitable for the image and video compression architectures design as it computes 

the 2-D DCT coefficients in any order. The future scope can be to optimize the 

architecture using this equation for the high throughput image compression using pipeline 

design technique. 
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Appendix. A 

TABLE A.1 
*BASE CODES FOR DC COEFFICIENTS 

Category Codeword 
0 00 
1 010 
2 011 
3 100 
4 101 
5 110 
6 1110 
7 11110 
8 111110 
9 1111110 
10 11111110 
11 111111110 

 

*Source : R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd.Ed.,Prentice Hall, 2002. 
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Appendix. B 

 
TABLE A.2 

*BASE CODES FOR AC COEFFICIENTS 
(Run, 
Cat.) 

AC Codeword (Run, 
Cat.) 

AC Codeword (Run, 
Cat.) 

AC Codeword (Run, 
Cat.) 

AC Codeword 

0,0  1010 (eob)     
0,1 00 4,1 111011 8,1 11111010 12,1 1111111010 
0,2 01 4,2 1111111000 8,2 111111111000000 12,2 1111111111011010 
0,3 100 4,3 1111111110010111 8,3 1111111110110111 12,3 1111111111011011 
0,4 1011 4,4 1111111110011000 8,4 1111111110111000 12,4 1111111111011100 
0,5 11010 4,5 1111111110011001 8,5 1111111110111001 12,5 1111111111011101 
0,6 111000 4,6 1111111110011010 8,6 1111111110111010 12,6 1111111111011110 
0,7 1111000 4,7 1111111110011011 8,7 1111111110111011 12,7 1111111111011111 
0,8 1111110110 4,8 1111111110011100 8,8 1111111110111100 12,8 1111111111100000 
0,9 1111111110000010 4,9 1111111110011101 8,9 1111111110111101 12,9 1111111111100001 
0,10 1111111110000011 4,10 1111111110011110 8,10 1111111110111110 12,10 1111111111100010 
1,1 1100 5,1 1111010 9,1 111111000 13,1 11111111010 
1,2 111001 5,2 1111111001 9,2 1111111110111111 13,2 1111111111100011 
1,3 1111001 5,3 1111111110011111 9,3 1111111111000000 13,3 1111111111100100 
1,4 111110110 5,4 1111111110100000 9,4 1111111111000001 13,4 1111111111100101 
1,5 11111110110 5,5 1111111110100001 9,5 1111111111000010 13,5 1111111111100110 
1,6 1111111110000100 5,6 1111111110100010 9,6 1111111111000011 13,6 1111111111100111 
1,7 1111111110000101 5,7 1111111110100011 9,7 1111111111000100 13,7 1111111111101000 
1,8 1111111110000110 5,8 1111111110100100 9,8 1111111111000101 13,8 1111111111101001 
1,9 1111111110000111 5,9 1111111110100101 9,9 1111111111000110 13,9 1111111111101010 
1,10 1111111110001000 5,10 1111111110100110 9,10 1111111111000111 13,10 1111111111101011 
2,1 11011 6,1 1111011 10,1 111111001 14,1 111111110110 
2,2 11111000 6,2 11111111000 10,2 1111111111001000 14,2 1111111111101100 
2,3 1111110111 6,3 1111111110100111 10,3 1111111111001001 14,3 1111111111101101 
2,4 1111111110001001 6,4 1111111110101000 10,4 1111111111001010 14,4 1111111111101110 
2,5 1111111110001010 6,5 1111111110101001 10,5 1111111111001011 14,5 1111111111101111 
2,6 1111111110001011 6,6 1111111110101010 10,6 1111111111001100 14,6 1111111111110000 
2,7 1111111110001100 6,7 1111111110101011 10,7 1111111111001101 14,7 1111111111110001 
2,8 1111111110001101 6,8 1111111110101100 10,8 1111111111001110 14,8 1111111111110010 
2,9 1111111110001110 6,9 1111111110101101 10,9 1111111111001111 14,9 1111111111110011 
2,10 1111111110001111 6,10 1111111110101110 10,10 1111111111010000 14,10 1111111111110100 
3,1 111010 7,1 11111001 11,1 1111111010 15,1 1111111111110101 
3,2 111110111 7,2 11111111001 11,2 1111111111010001 15,2 1111111111110110 
3,3 11111110111 7,3 1111111110101111 11,3 1111111111010010 15,3 1111111111110111 
3,4 1111111110010000 7,4 1111111110110000 11,4 1111111111010011 15,4 1111111111111000 
3,5 1111111110010001 7,5 1111111110110001 11,5 1111111111010100 15,5 1111111111111001 
3,6 1111111110010010 7,6 1111111110110010 11,6 1111111111010101 15,6 1111111111111010 
3,7 1111111110010011 7,7 1111111110110011 11,7 1111111111010110 15,7 1111111111111011 
3,8 1111111110010100 7,8 1111111110110100 11,8 1111111111010111 15,8 1111111111111100 
3,9 1111111110010101 7,9 1111111110110101 11,9 1111111111011000 15,9 1111111111111101 
3,10 1111111110010110 7,10 1111111110110110 11,10 1111111111011001 15,10 1111111111111110 

   15,0  111111110111 
(Spl. Code) 

 

*Source : R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd.Ed.,Prentice Hall, 2002. 
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