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Abstract 

 

Due to environmental and economical constraints, it is difficult to build new power lines 

and to reinforce the existing ones. The continued growth in demand for electric power 

must therefore to a great extent be met by increased loading of available lines. A 

consequence of this is reduction of power system damping, leading to a risk of poorly 

damped power oscillations between generators. This thesis proposes the use of controlled 

active and reactive power to increase damping of such electro-mechanical oscillations. 

The focus of this thesis is a FACTS device known as the Unified Power Flow Controller 

(UPFC). With its unique capability to control simultaneously real and reactive power flows 

on a transmission line as well as to regulate voltage at the bus where it is connected, this 

device creates a tremendous quality impact on power system stability. These features turn 

out to be even more significant because UPFC can allow loading of the transmission lines 

close to their thermal limits, forcing the power to flow through the desired paths. This 

providdes the power system operators much needed flexibility in order to satisfy the 

demands. 

A power system with UPFC is highly nonlinear. The most efficient control method for such 

a system is to use nonlinear control techniques to achieve system oscillation damping. The 

nonlinear control methods are independent of system operating conditions. Advanced 

nonlinear control techniques generally require a system being represented by purely 

differential equations whereas a power system is normally represented by a set of 

differential and algebraic equations.  

In this thesis, a new method to generate a dynamic modeling for power network is 

introduced such that the entire power system with UPFC can be represented by purely 

differential equation. This representation helps us to convert the nonlinear power system 

equations into standard parametric feedback form. Once the standard form is achieved, 

conventional and advanced nonlinear control techniques can be easily implemented.  



   

A comprehensive approach to the design of UPFC controllers (AC voltage control, DC 

voltage control and damping control) is presented. The damping controller is designed 

using nonlinear control technique by defining an appropriate Lyapunov function. The 

analytical expression of the nonlinear control law for the UPFC is obtained using back 

stepping method. Then, combining the nonlinear control strategy with the linear one for the 

other variables, a complete linear and nonlinear stabilizing controller is developed. 

Finally, an adaptive method for estimating the uncertain parameters is derived. This 

relaxes the need for approximating the uncertain parameters like damping coefficient, 

transient synchronous reactance etc., which are difficult to be measured precisely.  

 The developed controller provides robust dynamic performance under wide variations in 

loading condition and system parameters, and provides a significant improvement in 

dynamic performance in terms of peak deviations. The proposed controller is tested on 

different multi-machine power systems and found to be more effective than existing ones.  
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Chapter 1 

 

Introduction 

 

The available power generating plants are often located at distant locations for 

economic, environmental and safety reasons. For instance, it becomes cheaper to install 

a thermal power station at pit-head instead of transporting coal to load centers. Hydro 

power is generally available in remote areas and a nuclear plant may be located at a 

place away from urban areas. Additionally, modern power systems are highly 

interconnected. Sharing of generation reserves, exploiting load diversity and economy 

gained from the use of large efficient units without sacrificing reliability are the 

advantages of interconnection. Thus power must consequently be transmitted over long 

distances. To meet the load and electric market demands, new lines should be added to 

the system, but due to environmental reasons, the installation of electric power 

transmission lines are often restricted. Hence, the utilities are forced to rely on already 

existing infra-structure instead of building new transmission lines. In order to maximize 

the efficiency of generation, transmission and distribution of electric power, the 

transmission networks are very often pushed to their physical limits, where outage of 

lines or other equipment could result in the rapid failure of the entire system. 

The power system may be thought of as a nonlinear system with many lightly damped 

electromechanical modes of oscillation. The three modes of electromechanical 

oscillations are: 

 Local plant mode oscillations 

 Inter-area mode oscillations 

 Torsional modes between rotating plant 

In local mode, one generator swings against the rest of the system at 1.0 to 2.0 Hz. The 

impact of the oscillation is localized to the generator and the line connecting it to the 
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grid. The rest of the system is normally modeled as a constant voltage source whose 

frequency is assumed to remain constant. This is known as the SIMB model 

Inter-area mode of oscillations is observed over a large part of the network. It involves 

two coherent groups of generators swinging against each other at 1Hz or less. This 

complex phenomenon involves many parts of the system with highly non-linear dynamic 

behavior. The damping characteristic of the inter-area mode is dictated by the tie-line 

strength, the nature of the loads and the power flow through the interconnection and the 

interaction of loads with the dynamics of generators and their associated controls.  

Torsional mode oscillations is associated with a turbine generator shaft system in the 

frequency range of 10-45 Hz. Usually these modes are excited when a multi-stage 

turbine generator is connected to the grid system through a series compensated line. A 

mechanical torsional mode of the shaft system interacts with the series capacitor at the 

natural frequency of the electrical network. The shaft resonance appears when network 

natural frequency equals synchronous frequency minus torsional frequency.    

If the damping of these modes becomes too small, it can impose severe constraints on 

the system‟s operation. It is thus important to be able to determine the nature of those 

modes, find stability limits and in many cases use controls to prevent instability. The 

poorly damped low frequency electromechanical oscillations occur due to inadequate 

damping torque in some generators, causing both local-mode oscillations and inter-area 

oscillations (0.2 Hz to 2.5 Hz) [1], [2].  

The basic function of an excitation system is to provide direct current to the synchronous 

machine field winding. In addition, the excitation system performs control functions 

essential to the satisfactory performance of the power system by controlling the field 

voltage and there by the field current. The control functions include the control of 

voltage and reactive power flow, and the enhancement of system stability. Excitation 

system helps to improve synchronizing torque where as under heavy loading conditions 

it introduces negative damping. This is because the excitation system introduces a large 
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phase lag at low system frequencies just above the natural frequency of the excitation 

system. Thus it can often be assumed that the voltage regulator introduces negative 

damping. These are the situations in which dynamic stability is of concern. 

The traditional approach employs power system stabilizers (PSS) on generator excitation 

control systems in order to damp those oscillations. PSSs are effective but they are 

usually designed for damping local modes. In large power systems, they may not provide 

enough damping for inter-area modes. So, more efficient substitutes are needed other 

than PSS. 

In late 1980s, the Electric Power Research Institute (EPRI) had introduced a new 

technology program known as Flexible AC Transmission System (FACTS) [3]. The 

main idea behind this program is to increase controllability and optimize the utilization 

of the existing power system capacities by reliable and high-speed power electronic 

devices. The latest generation of FACTS controllers is based on the concept of the solid 

state synchronous voltage sources (SVSs) introduced by L. Gyugyi in the late 1980s [4]. 

The SVS behaves as an ideal synchronous machine, i.e., it generates three-phase 

balanced sinusoidal voltages of controllable amplitude and phase angle with fundamental 

frequency. It can internally generate both inductive and capacitive reactive power. If 

coupled with an appropriate energy storage device, i.e., DC storage capacitor, battery 

etc., SVS can exchange real power with the AC system. The SVS can be implemented 

by the use of the voltage source converters (VSC). 

The major advantages of SVS-based compensators over mechanical and conventional 

thyristor compensators are:  

 Improved operating and performance characteristics  

 Uniform use of same power electronic device in different compensation and 

control applications 

 Reduced equipment size and installation labor. 
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The SVS can be used as shunt or series compensator. If operated as a reactive shunt 

compensator, it is called static synchronous compensator (STATCOM); and if operated 

as a reactive series compensator, it is called static synchronous series compensator 

(SSSC). A special arrangement of two SVSs, one connected in series with the AC 

system and the other one connected in shunt with common DC terminals, is called 

Unified Power Flow Controller (UPFC). The UPFC is a combination of the two in a 

single device. UPFC is the most promising device in the FACTS concept. It has the 

ability to adjust all the three control parameters, i.e., the bus voltage, transmission line 

reactance and phase angle between two buses, either simultaneously or independently. A 

UPFC performs this through the control of the in-phase voltage, quadrature voltage and 

shunt compensation. 

1.1 Review of literature 

In this section a literature survey of topics related to power system operation, modeling 

and control is highlighted. A power system may be thought to be a large interconnected 

system with many lightly damped electro-mechanical oscillations. During such 

oscillations, mechanical kinetic energy is exchanged between synchronous generators as 

electric power flows through the network. The oscillations can be seen in many 

variables, where the rotor velocities of the generators and the power flows in the network 

are the most important. The rotor velocity variation causes strain to mechanical parts in 

the power plant and should be limited. The power flow oscillations may amount to the 

entire rating of a power line. As they are superimposed on the stationary line flow, they 

limit the transfer capacity by requiring increased safety margins. Power system stability 

is defined as the ability of an electrical power system, for a given initial operating 

condition, to regain a state of operating equilibrium after being subjected to physical 

disturbance [1], [6]. 
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A. Conventional methods  

As a convenient approach to control synchronous generator and stabilize power systems, 

excitation controller design has drawn sizable consideration [7], [8]. The operation of 

excitation control continues to maintain generator voltage and reactive power output. A 

high response exciter is helpful in adding synchronizing torque. However, on account of 

performing, it introduces negative damping. An efficient method to meet the conflicting 

exciter behavior with respect to system stability is to assign a PSS. The elementary usage 

of power system stabilizer is to supplement damping to the generator rotor oscillations 

by governing its excitation employing auxiliary stabilizing signals [9], [10], [11]. The 

PSS classically uses shaft speed, active power output or bus frequency as input [12]. The 

stabilizer shown in Figure 1.1 consists of two lead-lag filters. These are used to 

compensate for the phase lag introduced by the AVR and the field circuit of the 

generator. Other filter sections are usually added to reduce the impact on torsional 

dynamics of the generator, and to prevent voltage errors due to a frequency offset. The 

lead-lag filters are tuned so that speed oscillations give a damping torque on the rotor. 

By varying the terminal voltage the PSS affects the power flow from the generator, 

which efficiently damps local modes. Figure 1.1 shows the block diagram representation 

of a conventional PSS. Where SK  is the stabilizer gain, while wT  and 1 4 to T T  are the 

time constants of washout and lead-lag filters respectively. The PSS output is added to 

the difference between reference refV  and actual value actV  of the terminal voltage. 

 

 

Figure 1.1: Block diagram of conventional power system stabilizer 
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A difficulty of PSS tuning, except for the trade-off with voltage regulation, is that the 

dynamics that should be compensated by the lead-lag filters vary with the operating 

point and the network reactance [12].  

The effect of PSS on inter-area modes differs from the local modes in two ways. Firstly, 

the achievable damping of inter-area modes is less than that of local modes. Secondly, 

inter-area modes are affected mainly through modulation of voltage sensitive loads. This 

makes assumptions on load characteristics critical both for investigations and for field 

tuning [13], [14]. Damping of both local and inter-area modes requires suitable phase 

compensation over a wider frequency range, which may be difficult to achieve and 

therefore, other efficient substitutes are needed in addition to PSS. 

B. FACTS devices 

In the late 1980s, the Electric Power Research Institute (EPRI) formulated the vision of 

the FACTS in which various power-electronics based controllers regulate power flow 

and transmission voltage, and they mitigate dynamic disturbances. Generally, the main 

objectives of FACTS are to increase the useable transmission capacity of lines and 

control power flow over designated transmission routes. Hingorani and Gyugyi [5] and 

Hingorani [15], [16] proposed the concept of FACTS and Edris et al. [17] proposed 

terms and definitions for different FACTS controllers. Due to recent advances in power 

electronics, the FACTS devices have gained a great interest during the last few years. 

There are two generations for realization of power electronics-based FACTS controllers: 

the first generation employs conventional thyristor-switched capacitors and reactors, and 

quadrature tap-changing transformers, and the second generation employs gate turn-off 

(GTO) thyristor-switched converters as voltage source converters (VSCs). The first 

generation has resulted in the Static VAR Compensator (SVC), the Thyristor- Controlled 

Series Capacitor (TCSC), and the Thyristor-Controlled Phase Shifter (TCPS) [18], [19]. 

The second generation has produced the Static Synchronous Compensator (STATCOM), 

the Static Synchronous Series Compensator (SSSC), the Unified Power Flow Controller 
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(UPFC), and the Interline Power Flow Controller (IPFC) [20], [21], [22], [23]. The two 

groups of FACTS controllers have distinctly different operating and performance 

characteristics. 

(a) First generation FACTS 

First generation FACTS employs capacitor and reactor banks with fast solid-state 

switches in traditional shunt or series circuit arrangements. The thyristor switches 

control the on and off periods of the fixed capacitor and reactor banks and thereby 

realize a variable reactive impedance. Except for losses, they cannot exchange real 

power with the system. 

Static VAR Compensator (SVC) 

The SVC is a reactive shunt device that uses its reactive capability to alter the bus 

voltage. It enables a regulated voltage support. An SVC for continuous control contains 

a thyristor switched capacitor bank in parallel with a bank of phase angle controlled 

reactors and is connected to the transmission voltage level via a transformer. 

The SVC influences electro-mechanical oscillations like the PSS: it changes the line 

transfer (by controlling V ) as well as modulates voltage sensitive loads. Depending on 

which of these effects dominate, the SVC is placed either at the midpoint of a long 

transmission line or near the load centre. 

It is known that the SVCs with an auxiliary injection of a suitable signal can 

considerably improve the dynamic stability performance of a power system [24]–[36]. In 

the literature, SVCs have been applied successfully to improve the transient stability of a 

synchronous machine [24]. Hammad [25] presented a fundamental analysis of the 

application of SVC for enhancing the power systems stability. Then, the low frequency 

oscillation damping enhancement via SVC has been analyzed [26], [27], [28], [29]. It 

shows that the SVC enhances the system damping of local as well as inter-area 

oscillation modes. Self-tuning and model reference adaptive stabilizers for SVC control 
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have been also proposed and designed [30], [31], [32]. Robust SVC controllers based on

H , uncertainty representation cannot treat situations where a nominal stable system 

becomes unstable after being perturbed [35]. Moreover, the pole-zero cancellation 

structured singular value , and Quantitative Feedback Theory QFT has been presented 

to enhance system damping [33], [34]. However, the importance and difficulties in the 

selection of weighting functions of H optimization problem have been reported. In 

addition, the additive and/or multiplicative phenomenon associated with this approach 

produces closed loop poles whose damping is directly dependent on the open loop 

system (nominal system) [36]. Apart from the above-mentioned disadvantage, the major 

disadvantage of SVC is that its maximum compensation current depends upon the 

system voltage. During fault, compensation decreases due to voltage drop which is an 

unhealthy situation. Maximum capacitive VAR output decreases with the square of 

voltage decrease. 

Controllable Series Capacitor (CSC) 

The Controllable Series Capacitor (CSC) is connected in series with long transmission 

lines. In the first place its presence is motivated by the need to effectively shorten the 

line electrically, which increases the power transfer capability. 

A CSC affects electro-mechanical oscillations by modulating the transfer reactance of a 

line. The impact of this control action increases with line loading [37], which is a 

desirable property. The CSC is more effective than the SVC for damping purposes [37], 

which is explained by how they are connected. The series device affects the entire line 

flow, and the shunt device only changes a part [38]. While fixed series capacitors are 

common, only a few CSCs are currently in operation. An important reason is the 

constructional difficulties with a main circuit on line potential. The voltage rating of a 

CSC is typically a fraction of the normal voltage drop over the line where it is installed. 

As this is far less than the voltage resulting from a three-phase short-circuit on the line, 

protection circuits that by-pass the compensator are critically important. Due to the low 
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number of CSCs in operation, no statements about the measurements commonly used by 

damping controllers can be made. The major disadvantage is that sustained oscillation 

below the fundamental system frequency can be caused by series capacitive 

compensation. The phenomenon, referred to as sub-synchronous resonance (SSR). 

High Voltage Direct Current Link   

In a High Voltage Direct Current (HVDC) link the AC voltage is rectified, transmitted as 

DC, and converted back to AC. The absence of reactive transmission losses makes 

HVDC the preferred technique for connections with submarine cables longer than 30 km 

and for overhead lines longer than 600 km [1]. The DC transmission also provides an 

asynchronous connection between two power systems, which is of particular value when 

the systems have different frequencies such as 50 and 60 Hz. 

An HVDC link is controlled at the rectifier and the inverter through their firing angles 

and through the tap changer of the transformer at each converter station. The control 

system operates in a number of control modes, where certain variables are held constant. 

The ability to directly affect power flow makes HVDC links very powerful for damping 

of electro-mechanical oscillations.  

The active power modulation is typically controlled by the frequency at the converter 

station(s) [40], [41], the frequency of a nearby generator [13] or a line flow [1]. Since the 

converters are line commutated, reactive power consumption is associated with the 

active power flows. The dependence between the modulations of active and reactive 

power is governed by the control mode. It may either support the active power 

modulation or counteract it [41]. 

(b) Second generation of FACTS 

The technologies described above are in operation today, but new power electronic 

devices with a potential for damping of electro-mechanical oscillations are constantly 

suggested [3]. The voltage source converter (VSC) type FACTS controller group 
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employs self-commutated DC to AC converters, using GTO thyristors, which can 

internally generate capacitive and inductive reactive power for transmission line 

compensation, without the use of capacitor or reactor banks. The converter with energy 

storage device can also exchange real power with the system in addition to the 

independently controllable reactive power. The VSC can be used uniformly to control 

transmission line voltage, impedance, and angle by providing reactive shunt 

compensation, series compensation, and phase shifting, or to control directly the real and 

reactive power flow in the line [23]. 

Static Synchronous Compensator (STATCOM) 

The emergence of FACTS devices and in particular GTO thyristor-based STATCOM 

has enabled such technology to be proposed as serious competitive alternatives to 

conventional SVC [42]. From the viewpoint of power system dynamic stability, the 

STATCOM provides better damping characteristics than the SVC as it is able to 

transiently exchange active power with the system. The effectiveness of the STATCOM 

to control the power system voltage was presented [43]. However, the effectiveness of 

the STATCOM to enhance the angle stability has not been addressed. Abido [44] 

presented a singular value decomposition (SVD) based approach to assess and measure 

the controllability of the poorly damped electromechanical modes by STATCOM 

different control channels. It was observed that the electromechanical modes are more 

controllable via phase modulation channel. It was also concluded that the STATCOM-

based damping stabilizers extend the critical clearing time and enhance greatly the power 

system transient stability. Haque [45] demonstrated that by the use of energy function, a 

STATCOM can to provide additional damping torque to the low frequency oscillations 

in a power system. 

Static Synchronous Series Compensator (SSSC) 

The SSSC has been applied to different power system studies to improve the system 

performance. There has been some work done to utilize the characteristics of the SSSC 
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to enhance power system stability [46], [47]. Wang [46] investigated the damping 

control function of an SSSC installed in power systems. The linearized model of the 

SSSC integrated into power systems was established and methods to design the SSSC 

damping controller were proposed. Kumkratug and Haque [47] demonstrated the 

capability of the SSSC to control the line flow and to improve the power system 

stability. A control strategy of an SSSC to enlarge the stability region has been derived 

using the direct method. The effectiveness of the SSSC to extend the critical clearing 

time has been confirmed though simulation results on a single-machine infinite bus 

system. 

Unified Power Flow Controller (UPFC) 

The UPFC, which was proposed by L. Gyugyi in 1991 [5], [48], [49], is superior to the 

FACTS devices in terms of performance. UPFCs have been chosen in recent days to 

unify the bus bar voltage regulation ability of STATCOM and power flow control 

capability of SSSC in a single device. It is primarily used for independent control of real 

and reactive power in transmission lines for a flexible, reliable and economic operation 

and loading of power system. Further, the UPFC can be used for voltage support, 

transient stability improvement and damping of low frequency power system 

oscillations. The elementary ideas on how bus bar voltage regulation, reactive power 

compensation, and power flow control can be obtained by a UPFC [49], [50]. The 

interest measure of FACTS is shown in Figure 1.2. The literature survey carried out in 

[58] shows that the number of publications, applications of FACTS to power system 

stability in particular, has a tremendous increment. From Figure 1.2, it is clear that the 

interest in the 2
nd

 generation of FACTS has drastically increased while the interest in the 

1
st
 generation has decreased. 

The response time of second generation FACTS devices are shorter than that of first 

generation FACTS devices, mainly due to the fast switching times provided by the 

IGBTs of voltage converter. The typical dynamic response times of first generation 

FACTS devices are of the order of few milliseconds where as that of second generation 
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FACTS devices are in the range of microseconds.  

Table 1.1 shows the performance analysis of FACTS devices. First column of Table 1.1 

shows that series compensator is good for load flow control. Second column of the same 

table shows shunt compensator is good for voltage stability. Third column of Table 1.1 

shows that all FACTS devices are good enough for the case of transient stability. A 

combination of shunt and series can better perform load flow control, voltage stability 

and transient stability. From the above analysis it is clear that UPFC is one of the most 

promising devices in FACTS concept. 

  

 

Figure 1.2: Statistics for FACTS applications to power system stability 

 

Table 1.1: Performance Analysis of FACTS devices [20] 
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Many approaches have been achieved to the modeling and control of the UPFC. The 

foremost recurrent approach continues to model the UPFC as a power injection model 

[51], [52]. The power injection model ignores the dynamics of the UPFC and employs 

the UPFC active and reactive power injection as the control inputs into the power 

system. In the case where UPFC dynamics are involved, the superior approach to 

controlling the UPFC is to use PI control [53], [54], [55]. However PI control is less 

productive in damping oscillations that include multiple modes. For multiple mode 

damping, many lead-lag blocks are necessary that demand extra coordinated tuning. 

Another drawback is PI control shows poor performance as the system conditions shift 

from the operating point at which the controller was tuned. FACTS devices have been 

examined in [56],[57] using energy functions to formulate the controllers and compute 

the critical clearing time. This method is not suitable for controller formation since it 

constrains the assessment of the derivatives of power system bus voltages and angles as 

well as needs numerical differentiators or approximations. A feedback linearization 

based UPFC is explained in [10]. The nonlinear dynamic model is transformed into a 

linear one by coordinate transformation. From thence, the linear control technique is 

used in the transformed linear model. However, the details of the dynamic models must 

be known exactly when the exact feedback linearization techniques are used. It is very 

difficult to perform this task because errors and external disturbances are inherent in 

power systems. To overcome the above-mentioned challenges, the following 

contributions are made in this thesis. 

1.2 Research objective 

Though technological barriers exist, as in most technology areas, it is important to 

overcome them by developing proper understanding of the process with related 

attributes. The next chapters explain the various efforts directed for improving the inter-

area oscillation damping applied to multi-machine power system. Exhaustive literature 

review reveals that the nonlinear controllers are least explored out of different methods. 
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Similarly, current work emphasizes the nonlinear control technique applied to multi-

machine power system.  

Based on these guiding principles, the objectives of the current research are as follows: 

 Explore the existing methods and models for power system stability study.  

 Develop an advanced nonlinear controller for transient stability improvement 

using UPFC as a stabilizing device.  

 Derive an adaptive law for uncertain parameters which are otherwise difficulty to 

be measured precisely.   

 Develop the software program to simulate small scale and transient phenomena. 

1.3 Thesis outline 

The other chapters of this thesis are organized as follows: 

Chapter 2 gives an overview of basic operation, modeling and interfacing of power 

system components. In order to implement computer control of a power system, it is 

imperative to gain a clear understanding of the representation of the power system 

components. This chapter explains the mathematical models for synchronous generators, 

associated excitation systems, interconnecting transmission network including static loads 

and other devices such as UPFC. The chapter explains the basic operation and 

characteristics of different power system components. The basic knowledge of these 

devices is essential for controller development in the subsequent chapters 

Chapter 3 deals with the Lead-Lag control design for multi-machine power system with 

UPFC. This chapter explores the conventional methods available for oscillation damping. 

A procedure for linearizing power system equations including UPFC is explained in this 

chapter. Phillips-Heffron model explained in this section helps to study the impact of 

control functions of the UPFC up on system oscillation stability. The eigen-values 

corresponding to electromechanical mode of oscillation are identified using participation 
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factor method. The procedure for calculating the controllability index is explained in this 

chapter. The most relevant control signal is used for the development of damping 

controller. Along with simulation results the advantages and disadvantages of the 

traditional methods are also outlined.  

Chapter 4 introduces the dynamic modeling and adaptive control of single machine-infinite 

bus (SMIB) system with UPFC. A new method to generate a nonlinear dynamic 

representation of the power network is introduced to enable more sophisticated control 

design. The dynamic model is developed using generator terminal currents. The developed 

dynamic representation helps to convert nonlinear power system equations into standard 

parametric feedback form. Once the new representation is obtained, suitable adaptive laws 

for control signal and uncertain parameters are derived. Simulation results are given to 

validate the theoretical conjectures. The main disadvantage of this method is the 

assumption of infinite bus. The infinite bus assumption required for this approach is not 

valid for large multi-machine systems when the fault affects the power system. The 

adaptive law derived in this section is used in the sixth chapter to improve the efficiency of 

the controller.  

Chapter 5 provides the dynamic modeling and nonlinear control of multi-machine power 

system with UPFC. First part of this chapter deals with a new nonlinear dynamic modeling 

for power system with UPFC to enable more sophisticated control design. Once the new 

modeling is obtained, an advanced nonlinear control design using back stepping 

methodology is explained in the second part of the chapter. The effectiveness of this 

approach is presented in a case study on a two-machine power system.  

 Chapter 6 introduces an integrated linear-nonlinear control of multi-machine power 

system with UPFC. This chapter begins with the disadvantages of the method developed 

in the previous chapter. Design of an integrated linear-nonlinear controller is explained 

to fully utilize the multi-functional UPFC. An adaptive law for uncertain parameters is 

derived in the second part of the chapter which is otherwise very difficult to be measured 

precisely. In the case studies, we explore all the three degrees of freedom for UPFC, 
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namely AC voltage control, DC voltage control and oscillation damping using newly 

developed hybrid controller.  

Chapter 7 provides conclusion and suggestions for future work. It is a summary of the 

work done and concluded the present study. It explains the importance of the proposed 

dynamic representation for the development of nonlinear controller. Moreover, some 

suggestions on the extensions to potential topics for future research are proposed. 

1.4 Conclusions 

This chapter highlights the reasons for inter-connections and the difficulties that occur 

while constructing a new transmission line. The full utilization of the transmission lines 

without proper controllers could result in the rapid failure of the entire system. The 

chapter also explains the consequences of the low frequency inter-area mode of 

oscillations. Section 1.1 provides the insight into various past developments in the area 

of power system stability. For the sake of simplicity, it is divided into two main sections. 

Section A focuses on the brief history of conventional methods. Section B describes 

FACTS devices. This section is divided into two sub-sections. The first sub-section 

explains the existing techniques and the second sub-section explains the emerging ones.  

The interest measure of FACTS shows the importance of UPFC. It is the most promising 

device in the FACTS concept. It has the ability to adjust the three control parameters, 

i.e., the bus voltage, transmission line reactance and phase angle between two buses, 

either simultaneously or independently, and how a UPFC performs these functions are 

explained in the next chapter.   
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Chapter 2 

 

Basic Operation, Modeling and Interfacing of Power 
System Components 

2.1 Introduction 

In order to implement computer control of a power system, it is imperative to gain a 

clear understanding of the basic operation and representation of the power system 

components. In the first part of this chapter, we briefly review the basic operation of 

UPFC and PWM techniques used for VSCs. Voltage-source converter is the building 

block of UPFC. The UPFC consists of two voltage-source converters. These back-to-back 

converters are operated from a common DC link provided by a DC storage capacitor. The 

basics of the VSCs are briefly discussed in the beginning of the chapter. 

In the second part, development of the mathematical models of power system 

components is explained.  Before the power systems network can be solved, it must first 

be modeled. Single phase representation is used for balanced system. In this section, we 

present simple models for generators, loads, transmission lines, UPFC, etc. The interface 

of the UPFC with the power network is explained at the end of this chapter. 

2.2 Basic operation of UPFC 

UPFC is a device placed between two buses referred to as the UPFC sending bus and the 

UPFC receiving bus. It consists of two voltage-source converters, as illustrated in Figure 

2.1. The back-to-back converters, labeled “shunt converter” and “series converter” in the 

figure, are operated from a common DC link provided by a DC storage capacitor. The 

shunt converter is primarily used to provide active power demand of the series converter 

through the common DC link. Shunt converter can also generate or absorb reactive power, 

if it is desired, and thereby it provides independent shunt reactive compensation for the line. 



  

   

19 

 

Series converter provides the main function of the UPFC by injecting a voltage with 

controllable magnitude and phase angle in series with the line. For the fundamental 

frequency model, the VSCs are replaced by two controlled voltage sources [60]. The 

UPFC is placed on the high-voltage transmission lines. This arrangement requires step-

down transformers in order to allow the use of power electronics devices for the UPFC. 

 

Figure 2.1: Basic Circuit Configuration of the UPFC  

 

Applying the Pulse Width Modulation (PWM) technique to the two VSCs the following 

equations for magnitudes of shunt and series injected voltages are obtained 
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SH dc
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The phase angles of SHV  and SRV  are 
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The series converter injects an AC voltage ( )SR SR S SRV V      in series with the 

transmission line. Series voltage magnitude SRV  and its phase angle SR  with respect to 

the sending bus are controllable in the range of max0 SR SRV V   and 00 360SR   

respectively. The shunt converter injects controllable shunt voltage such that the real 

component of the current in the shunt branch balance the real power demanded by the 

series converter. The real power can flow freely in either direction between the AC 

terminals. On the other hand, the reactive power cannot flow through the DC link. It is 

absorbed or generated locally by each converter. The shunt converter operated to 

exchange the reactive power with the AC system provides the possibility of independent 

shunt compensation for the line. If the shunt injected voltage is regulated to produce a 

shunt reactive current component that will keep the sending bus voltage at its pre-

specified value, then the shunt converter is operated in the Automatic Voltage Control 

Mode. Shunt converter can also be operated in the VAR control mode. In this case shunt 

reactive current is produced to meet the desired inductive or capacitive VAR request. 

The basics of VSCs and PWM techniques are briefly discussed in the next section.  

A. Basic concepts of voltage source converters and PWM technique 

The typical three-phase VSC is shown in Figure 2.2 [5]. It is made of six valves, (1-1‟) 

to (6-6‟) each consisting of a gate turn off device (GTO) paralleled with a reverse diode, 

and a DC capacitor. The designated order 1 to 6 represents the sequence of valve 

operation in time. It consists of three-phase legs, which operates in concert, 120 degrees 

apart. An AC voltage is generated from a DC voltage through sequential switching of the 

GTOs. Being an AC voltage source with low internal impedance, a series transformer is 

essential to ensure that the DC capacitor is not short-circuited and discharged rapidly 

into a capacitive load such as transmission line. The DC voltage always has one polarity 

and the DC current can flow in either direction. Controlling the angle of the converter 

output voltage with respect to the AC system voltage controls the real power exchange 

between the converter and the AC system. 



  

   

21 

 

 

Figure 2.2: Three Phase Voltage Source-Converter 

 

The real power flows from the DC side to AC side (inverter operation) if the converter 

output voltage is controlled to lead the AC system voltage. If the converter output 

voltage is made to lag the AC system voltage, the real power will flow from the AC side 

to DC side (rectifier operation). Inverter action is carried out by the GTOs while the 

rectifier action is carried out by the diodes.  

Controlling the magnitude of the converter output voltage controls the reactive power 

exchange between the converter and the AC system. The converter generates reactive 

power for the AC system if the magnitude of the converter output voltage is greater than 

the magnitude of the AC system voltage. If the magnitude of the converter output 

voltage is less than that of the AC system, the converter will absorb reactive power. The 

converter output voltage can be controlled using various control techniques. Pulse Width 

Modulation (PWM) techniques can be designed for the lowest harmonic content. It 

should be mentioned that these techniques require large number of switching per cycle 

leading to higher converter losses. Therefore, PWM techniques are currently considered 

unpractical for high voltage applications. However, it is expected that recent 

developments on power electronic switches will allow practical use of PWM controls on 

such applications in the near future. Due to their simplicity many authors, viz., [58], 

[59], [60], have used PWM control techniques in their UPFC studies. Hence, the same 

approach is used in this thesis. 
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When sinusoidal PWM technique is applied, turn on and turn off signals for GTOs are 

generated comparing a sinusoidal reference signal RV  of amplitude RA  with a saw tooth 

carrier waveform CV  of amplitude CA  as shown in Figure 2.4 [5]. The frequency of the 

saw tooth waveform establishes the frequency at which GTOs are switched.  

 Consider a phase-leg as shown in Figure 2.3. In Figure 2.4, R CV V  results in a turn on 

signal for the device 1 and gate turn off signal for the device 4 and R CV V  results in a 

turn off signal for the device 1 and gate turn on signal for the device 4. The fundamental 

frequency of the converter output voltage is determined by the frequency of the 

reference signal. Controlling the amplitude of the reference signal controls the width of 

the pulses. In two-level or multilevel converters, there is only one turn-on, turn-off per 

device per cycle. With these converters, the AC output voltage can be controlled, by 

varying the width of the voltage pulses, and / or the amplitude of the DC bus voltage. It 

goes without saying that more pulses means more switching losses, so that the gains 

from the use of PWM have to be sufficient to justify an increase in switching losses.  

For FACTS technology with high power in the tens of megawatts and converter voltage 

in KVs and tens of KVs, low frequencies in the few hundred Hertz or may be the low 

kilohertz range may seem feasible and worth considering. The least cost and simplest 

controllable three-phase converter would seem to be a six-valve converter with one turn-

off device / diode per valve. In FACTS applications, there will usually be a need for a 

transformer between the converter valves and the AC system; there is therefore a certain 

flexibility provided by the transformer turn ratio to match the available device current 

and voltage rating.  
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Figure 2.3: A Phase-leg 

 

The amplitude modulation index is defined as ratio of RA  to CA  

R

C

A
m

A
                                                                                                                     (2.3) 

For 1m   the peak magnitude of the fundamental frequency component of the converter 

output voltage can be expressed as 

 
2

dcmV
V                                                                                                              (2.4) 

 

 

Figure 2.4: PWM Waveforms 
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B. Power flow on a transmission line 

The knowledge of power flow on a transmission line is helpful to understand the 

characteristics of the UPFC. Therefore in this section, power flow on a transmission line 

between two buses S and R (line sending and receiving buses), as shown in Figure 2.5, is 

reviewed. For the system shown in Figure 2.5, the RMS phasor voltages of the sending 

and receiving buses are S S SV V    and R R RV V   , LineI  is the phasor current on the 

line, R and X are resistance and reactance of the line respectively.  

 

 

Figure 2.5: Transmission Line 

 

The complex power injected into the sending bus is given by 

*

S S S S LineS P jQ V I                 (2.5) 

where SP  and SQ  are the real and reactive powers injected into the sending bus, * 

denotes conjugate complex value. Using Ohm‟s law, line current can be written as 

( )( )S R
Line S R

V V
I V V G jB

R jX


   


            (2.6) 

  where 
2 2

R
G

R X



 is line conductance and  

2 2

X
B

R X



is line susceptance. 

Taking the complex conjugate of (2.5) and using (2.6) the following expression can be 

obtained 

* 2 *( )( )S S S S S RS P jQ V V V G jB               (2.7) 
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Using Euler‟s identity, which states that (cos sin )V V j     , to write 

* ( )( ) ( )S R S S R R S R S RV V V V V V         (cos( ) sin( ))S R S R S RV V j       (2.8) 

and separating real and imaginary parts of (2.7) the following expressions for the real 

and reactive powers injected into the sending bus are obtained 
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       (2.9) 

Similarly, the real and reactive powers received at the receiving bus are 
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The power losses on the line are given by 

2 2

2 2

( ) 2 cos( )

( ) 2 cos( )

Loss S R S R S R S R

Loss S R S R S R

P P P G V V V V G

Q B V V V V B

 

 

      


   
          (2.11)

 

For typical transmission line X R . Therefore, the conductance G is usually neglected 

and susceptance  B is replaced by
1

B
X

  . Using these approximations, the expression 

for real power transmitted over the line from the sending to the receiving bus becomes 

sin( ) sinS R S R
S R S R

V V V V
P P

X X
                  (2.12) 

where S R     is called the power angle. 
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It can be seen from equation (2.12) that the amount of the real power transmitted over 

the line can be increased by 
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 increasing the magnitude of the voltages at either end, i.e., voltage support, 

 reducing the line reactance, i.e., line compensation, and 

 increasing the power angle, i.e., phase shift. 

Power flow can be reversed by changing the sign of the power angle, i.e., a positive 

power angle corresponds to a power flow from the sending to the receiving bus, while a 

negative power angle corresponds to a power flow from the receiving to the sending bus. 

Hence, the four parameters that affect real and reactive power flow are SV , RV , X  and .  

C. Series converter: Four modes of operation 

As mentioned earlier, the UPFC can control, independently or simultaneously, all 

parameters that affect power flow on the transmission line. This is illustrated in the 

phasor diagrams shown in Figure 2.6 [5]. 

Voltage regulation is shown in Figure 2.6 (a). The magnitude of the sending bus voltage 

SV  is increased (or decreased) by injecting a voltage 1V , in phase (or out of phase) with 

SV . Similar regulation can be accomplished with a transformer tap changer. Series 

reactive compensation is shown in Figure 2.6 (b). It is obtained by injecting a voltage 2 ,V  

orthogonal to the line current LineI . The effective voltage drop across the line impedance 

X  is decreased (or increased) if the voltage 2V  lags the current LineI  by 090  (or 2V  leads 

current  LineI  by 090 ). A desired phase shift is achieved by injecting a voltage 3V , that 

shifts SV  by   while keeping its magnitude constant as shown in Figure 2.6 (c). 
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                 (a)                              (b)                                  (c)                         (d)  

Figure 2.6: Phasor Diagrams 

 

Simultaneous control of terminal voltage, line impedance and phase angle allow the 

UPFC to perform multifunctional power flow control. The magnitude and the phase 

angle of the series injected voltage 1 2 3SRV V V V   , shown in Figure 2.6 (d), are selected 

in such a way as to produce a line current that will result in the desired real and reactive 

power flow on the transmission line. Therefore, the UPFC series converter can be 

operated in four modes: 

 direct voltage injection mode, 

 line impedance compensation mode, 

 phase angle regulation mode, and 

 automatic power flow control mode. 

D. Automatic power flow control mode 

The automatic power control mode cannot be achieved with conventional compensators. 

In order to show how line power flow can be affected by the UPFC operated in the 

automatic power flow mode, UPFC is placed at the beginning of the transmission line 

connecting buses S  and R  as shown in Figure 2.7 [5]. Line conductance is neglected. 

UPFC is represented by two ideal voltage sources of controllable magnitude and phase 
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angle. Bus S  and fictitious bus 1S  shown in Figure 2.7 represent UPFC sending and 

receiving buses respectively. 

 

                     

Figure 2.7: Transmission line with UPFC 

 

In this case, the complex power received at the receiving end of the line is given by 

* *( )S SR R
R Line R

V V V
S V I V

jX

 
                   (2.14) 

where ( )SR SR S SEV V     . The complex conjugate of this complex power is 

* *( )S SR R
S R

V V V
S P jQ V

jX

 
              (2.15) 

Performing simple mathematical manipulations and separating real and imaginary 

components of (2.15) the following expressions for real and the reactive powers received 

at the receiving end of the line are 

0

2

0

sin sin( ) ( ) ( , )

cos( ) cos( ) ( ) ( , )

S R SR R
SR SR SR

S R SR RR
SR SR SR

V V V V
P P P

X X

V V V VV
Q Q Q

X X X

     

     


    


       


        (2.16) 

For 0SRV   the above equations (2.16) are identical to equation (2.12) and the second 

equation of (2.13), these equations represent the real and reactive powers of the 

uncompensated system. It was stated before that the UPFC series voltage magnitude can 
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be controlled between 0 and maxSRV , and its phase angle can be controlled between 0 and 

360 degrees at any power angle .  It can be seen from (2.16) that the real and reactive 

power received at bus R  for the system with the UPFC installed can be controlled 

between 

max max
0 0

max max
0 0

( ) ( )

( ) ( )

SR R SR R

SR R SR R

V V V V
P P P

X X

V V V V
Q Q Q

X X

 

 


   


    


               (2.17) 

Rotation of the series injected voltage phasor with RMS value of  maxSRV from 0
0
 to 360

0
 

allows the real and the reactive power flow to be controlled within the boundary circle 

with a radius of maxSR RV V

X
  and a center at 0 0( ( ), ( )).P Q   This circle is defined by the 

following equation 

2 2 2max
0 0( ( , ) ( ( )) ( ( , ) ( )) ( )SR R

SR SR SR SR

V V
P P Q Q

X
             (2.18) 

Consider Figure 2.8, which illustrates the case when the transmission angle is zero          

( 0  ). With 0SRV  , P , rQ , ( and sQ )are all zero, i.e., the system is at standstill at the 

origin of the rQ , P coordinates. The circle around the origin of the   ,rQ P plane is the 

loci of the corresponding rQ  and P values, obtained as the voltage phasor SRV  is rotated 

a full revolution ( 0 360SR  ) with its maximum magnitude maxSRV . The area within this 

circle defines all P  and rQ values obtainable by controlling the magnitude SRV  and SR  

of the phasor SRV . In other words, the circle in the  ,rQ P  defines all P  and rQ  values 

attainable with the UPFC of a given rating. 
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Figure 2.8: P-Q relationship with a UPFC at  = 0
0
, 30

0
 

 

 

 

Figure 2.9: P-Q relationship with a UPFC at  = 0
0
, 30

0
, 60

0
 and 90

0
  

 

Figure 2.9 shows plots of the reactive power Q  demanded at the receiving bus versus the 

transmitted real power P  as a function of the series voltage magnitude SRV  and phase 

angle SR  at four different power angles    i.e.  = 0
0
, 30

0
, 60

0
 and 90

0
, with S RV V V 
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o30
o60

o90
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, 
2

1
V

X
  and max 0.5SR RV V

X
  [5]. The capability of UPFC to independently control real and 

reactive power flow at any transmission angle is clearly illustrated in Figure 2.9. 

2.3 Modeling of power system components 

Studies of electrical power systems are based on the simulation of actual phenomena 

using models behaving exactly in the identical way as the elements in the physical 

system. Component modeling thus becomes very important. In research, it is necessary 

to have models permitting precise and detailed simulation. The different parameters must 

be accessible and the models are required to follow the physical process as closely and 

faithfully as possible. Then it is required to solve mathematical equations governing 

these phenomena. Modeling of active elements such as, generator is relatively difficult 

while that of passive elements such as transmission line, inductive VAR compensator, 

etc., is easier. Passive circuit elements are mostly modeled by their parameters in the 

equivalent circuits while the active power system components are modeled by their 

operation in steady, transient and sub-transient state. The overall power system 

representation includes models for the following individual components 

 Synchronous generators, and the associated excitation systems  

 Interconnecting transmission network 

 static loads  

 Other devices such as FACTS 

The model used for each component should be appropriate for transient stability analysis, 

and the system equations must be organized in a form suitable for applying numerical 

methods. As we will see in what follows, the complete system model consists of a set of 

differential equations and algebraic equations. The transient stability analysis is thus a 

differential algebraic initial-value problem. 
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A. Synchronous machine modeling 

Park‟s equations for a synchronous machine in which the effects of rotor damping are 

represented by two short-circuited damper windings may be expressed by [61]  

0i i  


               (2.19) 

0 0

1
( ( ) / )i mi ei i i

i

P P D
M

   


            (2.20) 

' ' '

'

1
[ ( ) ]qi fdi di di di qi

doi

E E X X I E
T



            (2.21) 

'' ' '' '' ' '

''

1
[ ( ) ]qi fdi di di di qi qi qi

doi

E E X X I E E E
T

 

               (2.22) 

'' '' ''

''

1
[( ) ]di qi qi qi di

qoi

E X X I E
T



                    (2.23) 

The algebraic equations are 

''

'' ''

0

qi

d a d d q q

E
E r I E X I





               (2.24) 

''
'' ''

0

di
q a q q d d

E
E r I E X I





               (2.25) 

'' '' '' ''( )e d d q q q d d qT E I E I X X I I              (2.26) 

Following a disturbance, currents are induced in the machine rotor circuits. Some of these 

induced rotor currents decay more rapidly than others. Machine parameters that influence 

rapidly decaying components are called the sub-transient parameters while those 

influencing the slowly decaying components are called the transient parameters and those 

influencing sustained components are the synchronous parameters. 
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In most of the research articles the effect of rotor damper windings are neglected. In that 

case the differential equations (2.19)-(2.21) along with the algebraic equations (2.27)-(2.29) 

describe the synchronous machine. Throughout this thesis we follow the third order 

representation. The algebraic equation with this representation is given by  

d a d q qE r I X I                (2.27) 

' '

q a q q d dE r I E X I              (2.28) 

' '[ ( ) ]e q q d d qT E X X I I             (2.29) 

Power system exciter can be modeled as [55]  

1
( ( ))fdi fdi Ai refi Ti

Ai

E E K V V
T



             (2.30) 

AiK and AiT are the exciter gain and time constant. 

B. Load modeling 

The power system loads, other than motors represented by equivalent circuits, can be 

treated in several ways during the transient period. The commonly used representations are 

static impedance or admittance to ground, constant currents at fixed power factor, constant 

real and reactive power, or a combination of these representations. The constant power load 

is either equal to the scheduled real and reactive bus load or is a percentage of the specified 

values in the case of a combined representation. The parameters associated with the static 

impedance and constant current representations are obtained from the scheduled bus loads 

and the bus voltages calculated from a load flow solution for the power system prior to a 

disturbance. The initial value of current for a constant current representation is obtained 

from 

0 *

Li Li
Li

Ti

P jQ
I

V


            (2.31) 
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where LiP  and LiQ  are the scheduled bus loads, and  TiV  is the calculated bus voltage. The 

current  0LiI   flows from bus i  to ground, that is, to bus 0. The magnitude and power factor 

angle of  0LiI   remain constant. The static admittance 0iy  used to represent the load at bus 

,i can be obtained from  

0 0 0( )Ti i LiV V y I             (2.32) 

where TiV is the calculated bus voltage and 0V  is the ground voltage, equal to zero. 

Therefore,  

0
0

Li
i

Ti

I
y

V
             (2.33) 

Multiplying both the dividend and divisor of above equation by *

TiV   and separating the real 

and imaginary components, 

0 2( )

Li
i

Ti

P
g

V
 and 0 2( )

Li
i

Ti

Q
b

V
   where   0 0 0i i iy g jb    

C. Transmission network representation 

In stability studies it has been found adequate to represent the net work as a collection of 

lumped resistances, inductances, and capacitances and to neglect the short-lived electrical 

transients in the transmission system [62]. As a consequence of this fact, the terminal 

constraints imposed by the network appear as a set of algebraic equations which may be 

conveniently solved by matrix methods. The network admittance matrix may be written in 

partitioned form as 

1 12

21 2

y y
Y

y y

 
  
 

          (2.34) 

In the portioned matrix, the subscript 1 is associated with nodes to which controlled sources 

are connected and subscript 2 refers to those not connected to controlled sources. For the 

analysis no information about nodes associated with subscript 2 is necessary, and for this 
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reason they are eliminated by a series of single row and column reductions in accordance 

with 

1

1 12 2 21RY y y y y             (2.35) 

The resultant network equations in terms of the reduced admittance matrix are 

RI Y V              (2.36) 

These may be written in expanded form as  

NN NMN N

MN MMM M

Y YI V

Y YI V

    
     

    
            (2.37) 

where the subscripts denote 

    N   nodes connected to synchronous machines represented in detail by Park‟s equations 

    M  nodes behind transient reactance of machines represented by fixed voltages. 

D. Axis transformation 

Equations (2.19)-(2.21) describe an individual machine with respect to its own reference 

frame. In general the reference frame of each machine is different from that of any other 

machine as well as from the common reference frame rotating at synchronous speed. 

Consequently, it is necessary to perform axis transformation at each connection node in 

order to relate the components of voltages and currents expressed in the ,d q  reference 

axis of each machine to the synchronously rotating reference axis ,D Q  of the network 

[62]. Phasor relations between the two reference frames are shown in Figure 2.10. On its 

basis, the transformation of ,de
qe to ,De

Qe  and of ,di qi  to ,Di Qi  may be stated as 

cos sin

sin cos

d D

q Q

e e

e e

 

 

    
    

     ;

          
cos sin

sin cos

D d

Q q

i i

i i

 

 

    
    
    

      (2.38) 
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Figure 2.10: Axis-Transformation Phasor diagram 

 

E. UPFC modeling 

In order to simulate a power system that contains a UPFC, the UPFC needs to be modeled 

for steady-state and dynamic operations. The UPFC model needs to be interfaced with the 

power system model. Hence, in this section modeling and interfacing of the UPFC with the 

power network are described.  

UPFC steady state model 

Neglecting UPFC losses, during steady-state operation it neither absorbs nor injects real 

power with respect to the system. For steady-state operation, the DC link voltage remains 

constant at its pre-specified value. In the case of a lossless DC link, the real power supplied 

to the shunt converter *( )SH e SH SHP R V I  satisfies the real power demanded by the series 

converter *( )SR e SR LineP R V I  

SH SRP P             (2.39) 
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Figure 2.11: UPFC single line diagram  

 

*SH SH S SHI Z V V             (2.40) 

*Line SR S SR RI Z V V V              (2.41) 

where 

 SH SH SHZ R j L  , SR SR SRZ R j L  , ( )
2 2

SH dc
SH SH

m V
V    and ( )

2 2

SR dc
SR SR

m V
V    

Based on the above equation, the UPFC single-line diagram under a steady state condition 

is given by figure below 

 

 

Figure 2.12: Steady-state diagram of two machine system 
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The constraint 0SH SRP P   in figure implies that: 

 No real power is exchanged between the UPFC and the system, thus the DC link 

voltage remains constant, and 

 The two sources are mutually dependent.  

Depending upon the UPFC control strategy and function, its various power flow models 

can be deduced from the above equation and figure as follows. 

UPFC load flow model 

The load flow model discussed here assumes that the UPFC is operated to keep (i) real 

and reactive power flows at the receiving bus and (ii) sending bus voltage magnitude at 

their pre-specified values [58]. In this case UPFC can be replaced by an “equivalent 

generator” at the sending bus (PV-type bus using load flow terminology) and a “load” at 

the receiving bus (PQ-type bus) as shown in Figure 2.13. Neglecting UPFC losses, 

SH SRP P  pre-specified value. SR  and SRm determine SRP  (as well as SHP ) and RV  

respectively. Further, SH  and SHm  determine SHQ and dcV  respectively. To calculate the 

UPFC control variable for the given power flow condition, a power flow analysis is 

performed where the UPFC is modeled as given in Figure 2.13 (b). Then, the power flow 

analysis results are used to solve the UPFC steady-state equations to determine SR , SH  , 

SRm  and SHm .  

                            

Figure 2.13: UPFC power flow model 
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  (2.42) 

The above equation is nonlinear and it can be written as  

0F S                (2.43) 

where  1 2 3 4( ), ( ), ( ), ( )
T

S R S RF f P f P f Q f Q and  , , ,
T

S R S RS P P Q Q  

To obtain the load flow solution for the power network with the UPFC an iterative 

procedure is needed. Power demanded at the receiving bus is set to the desired real and 

reactive powers at that bus. Its solution is best obtained by an iterative numerical 

approach as 

1 ( 1)k ku u j S                (2.44) 

where   , , ,
T

SH SH SR SRu m m  ,   S F S    and j  is the jacobian matrix. 

UPFC power injection model 

In this section, a general power injection model is derived for series-shunt connected 

FACTS devices (UPFC). This model, which is referred to as the injection model, is valid 

for load flow and angle stability analysis, UPFC inject a voltage in series with a line 

through a series transformer. The active power involved in the series injection is taken from 

the line through a shunt transformer. UPFC generates or absorbs the needed reactive power 

locally by the switching operation of its converters. Figure 2.14 shows a general equivalent 

diagram of a series-shunt-connected device UPFC. 

 



  

   

40 

 

                  

Figure 2.14: Equivalent circuit and Phasor diagram of UPFC 

 

In Figure 2.14, X is the effective reactance seen from the line side of the series 

transformer. For UPFC SRX X , here SRX  is the reactance of series transformer.  SHX

represents the reactance of shunt transformer [52]. Further, SRV is the induced series voltage, 

and SHI represents a current source. '

iV is a fictitious voltage behind the series reactance. 

Figure 2.14 also shows the phasor diagram of the equivalent circuit diagram. The 

magnitude of SRV  is controllable by UPFC. The angle SR  is controllable by UPFC from 0  

to  2 .  It is shown in [52] and [67] that the equivalent circuit diagram of  Figure 2.14 can 

be modeled as the dependent loads injected at nodes i and .j This model is called injection 

model and the general configuration is shown in Figure 2.15: 

 

 

Figure 2.15: Injection model for UPFC 

 

The expressions for S iP , S iQ , S jP , S jQ   are given below[67] 
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          (2.46) 

It is seen that  S i S jP P  which is expected, since UPFC does not generate or absorb active 

power when losses are ignored 

UPFC dynamic model 

Figure 2.16 shows a schematic diagram for UPFC, where SHX  and SRX  are the reactance of 

the shunt and series transformers respectively. All the variables used in UPFC model are 

denoted in Figure 2.16. Per unit system and MKS units are jointly used in modeling. The 

AC system uses per unit system with its variables calculated based on the system-side BS  

and BV  (base value), while the DC variables are expressed in MKS units. We first consider 

the UPFC DC link capacitor charging dynamics. The DC currents 1dI , 2dI  (see Figure 2.16) 

and the capacitor voltage and current have the following relation with harmonics neglected: 

1 2

dc
dc

dc d d

dV
I C

dt

I I I





  

          (2.47) 

If we assume the inverters are ideal, the real power exchange with the AC system is  

( SHP and SRP  are in pu): 

 1

2

/

/

SH dc d B

SR dc d B

P V I S

P V I S





          (2.48) 
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Figure 2.16: Transmission line with UPFC 

 

From equations (2.47) and (2.48), we have: 

( )dc
dc SH SR B

dV
CV P P S

dt
           (2.49) 

From AC system, we know that SHP  and SRP can be calculated by (see Figure 2.16): 

 

* *

* *

2

( ) ( ( ) )

( ) ( ( ) )
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S SH
SH e SH SH e SH

SH

S SR R
e SR L e SR

SR L

V V
P R V I R V
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V V V
P R V I R V

j X X

 
 




   
 

        (2.50) 

Applying modern PWM control technique [63] to the two-voltage source converters, the 

relations between the inverter DC- and AC-side voltages can be expressed by: 

2 2 

2 2 

SH dc
SH

B

SR dc
SR

B

m V
V

V

m V
V

V






 


          (2.51) 
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where coefficients SHm  and SRm  represent the PWM control effects in order to maintain 

desired inverter AC-side voltages SHV  and SRV  respectively. The desired SHm  and SRm  are 

UPFC main control outputs. SHV and  SRV are in pu and BV  is the AC system base voltage. 

The phase angles of SHV  and  SRV are denoted as SH  and SR  respectively. Finally, taking 

the series transformer ratio as 1:1, and rewriting equations (2.47)- (2.51), the UPFC power 

frequency model used in dynamic study is: 

( )dc
dc SH SR B

dV
CV P P S

dt
           (2.52) 

where
*( ( ) ),S SH

SH e SH

SH

V V
P R V

jX


 *( ( ) ),

( )

S SR R
SR e SR

SR L

V V V
P R V

j X X

 



 ( / ) ( ),SH SH dc B S SHV m V V      

( / ) ( ).SR SR dc B S SRV m V V      

Here there are two network interface (complex) equations. The desired ,SHm ,SRm SH and 

SR can be obtained from UPFC main control system. Therefore, based on equation (2.52) 

together with UPFC control system equations and AC network interface equations we can 

analyze UPFC dynamics without difficulty. The first three equations (2.47)-(2.49) are for 

state variable dcV calculation and the latter 2 equations (2.50)-(2.51) are for network 

interface calculation. It is clear that the UPFC power frequency model derived above can fit 

various control strategies and multi-machine power system stability analysis. 

2.4 Interfacing UPFC with power network 

The interface of the UPFC with the power network is shown in Figure 2.17 [60]. In order 

to get the network solution (bus voltages and the currents) an iterative approach is used. 

The UPFC sending and receiving bus voltages SV and RV can be expressed as a function 

of generator internal voltages GE and the UPFC injection voltages SHV and SRV . Control 

output and (2.59) determine the UPFC injection voltage magnitudes SHV and SRV . 
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However, the phase angles of the injected voltages, SH and SR , are unknown since they 

depend on the phase angle of the sending bus voltage, S , which is the result of the 

network solution. Necessary computations are shown below. 

 

 

Figure 2.17: Interface of UPFC with power network 

 

Reducing the bus admittance matrix to generator internal buses and UPFC terminal 

buses, the following equation can be written 

GG GU G G

UG UU U U

Y Y E I

Y Y V I

    
    

     
          (2.53) 

where: 

GGY - reduced admittance matrix connecting the generator current injection to the internal 

generator voltages, 

GUY - admittance matrix component which gives the generator currents due to the 

voltages at UPFC buses 

UGY - admittance matrix component which gives UPFC currents in terms of the generator 

internal voltages 

UUY - admittance matrix connecting UPFC currents to the voltages at UPFC buses 
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GE - vector of generator internal bus voltages 

UV - vector of UPFC AC bus voltages 

GI - vector of generator current injections 

UI - vector of UPFC currents injected to the power network. 

The second equation of (2.53) is of the form 

U UG G UU UI Y E Y V            (2.54) 

Neglecting series and shunt transformer resistances, the following equations can be 

written for the UPFC currents injected into the power network (see Figure 2.17) 

1U SH LineI I I               (2.55) 

2U LineI I             (2.56) 

S SH
SH

SH

V V
I

jX


 ;      

( )

SR S R
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V V V
I

j X X

 



;        (2.57)                           

Combining the above equations the following equation can be obtained 

U U U C CI W V W V            (2.58) 
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Equating (2.54) with (2.58) the following equation can be written 

1 1( ) ( )U U UU UG G U UU C C G G C CV W Y Y E W Y W V L E L V            (2.59) 



  

   

46 

 

Substitution of (2.59) into (2.53) gives 

1 1

G G G C C

U G G C C

I M E M V

I M E M V

  


 
         (2.60)

 

where 

1( )G U UU UGL W Y Y  ; 1( )C U UU CL W Y W   ; G GG GU GM Y Y L  ; 1G UG UU GM Y Y L   

C GU CM Y L ; 1C UU CM Y L  
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1 1
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M M
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M M

 
  
 

 

The above equation becomes 

I MV            (2.61) 

And by applying d-q transformation [1] to equation (2.61) the following equation is 

obtained 

dq dq dqI M V             (2.62) 

UPFC DC link equation (2.52) can now be written in d-q frame as 

( )dc
dc SHd SHd SHq SHq SRd Lined SRq Lineq B

dV
CV V I V I V I V I S

dt
         (2.63) 

or 

1 2 1 2( ( ) ( ) )dc
dc SHd U d SHd SRd U d SHq U q SHq SRq U q B

dV
CV V I V V I V I V V I S

dt
          (2.64) 

where  
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SH dc
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V
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sin( )
2 2

SR dc
SRd SR

B

m V
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V
 ; cos( )

2 2

SR dc
SRq SR

B

m V
V

V


 

2.5 Conclusion 

In the first part, brief description of UPFC is provided. PWM techniques used for VSCs 

are explained in the next section. The basic knowledge of these methods is essential for 

controller development in the subsequent chapters. 

In the modeling part, mathematical representation of different power system components 

are provided. It contains the model of synchronous generator with excitation system and 

load models. An overview of network model is provided as it enables key system 

elements to be connected. The power injection model as well as dynamic model for 

UPFC is also provided.  

In next chapter, a multi-machine test system is described. The overall differential and 

algebraic equations describing models of different power system components developed 

in this chapter are first combined, and then linearized around an operating point. 

Conventional control techniques are then used on the linearized system.  
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Chapter 3 

 

Lead-Lag Control Design for Multi-Machine Power 
System with UPFC 

3.1 Introduction 

Chapter 2 provided a general introduction to the power system components, including a 

discussion of the basic concepts, modeling and interfacing with the power network. In 

this chapter, the various control strategies applied to electromechanical oscillation 

damping is considered in detail beginning with a Lead-Lag controller. Knowledge of the 

characteristics and modeling of individual system components as presented in Chapter 2 

is helpful in this regard. Describing the small signal performance of a multi-machine 

power system by a set of differential equations of the form 
•

[ ] [ ][ ] [ ][ ]x A x B u   allows 

standard control theory to be used in dynamic stability studies.  

3.2 Linearization 

The linearized model of the power system including UPFC is derived in this section. 

This model can be used for small signal analysis and damping controller design. The 

model derived following the approach described in [6] is explained here.  

The behavior of a dynamic system, such as a power system, may be described by a set of 

n  first order nonlinear ordinary differential equations of the following form: 

 1 2 1 2( , ,...... ; , ,... ; )i i n rx f x x x u u u t


           1,2,...i n        (3.1) 

where n  is the order of the system and r  is the number of inputs. This can be written in 

the following form by using vector-matrix notation: 

( , , )x f x u t


              (3.2) 
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where 

 1 2 ....
T

nx x x x ,        1 2 ....
T

nu u u u ,             1 2 ....
T

nf f f f  

The column vector x  is referred to as the state vector, and its entries ix  as state 

variables. The column vector u  is the vector of inputs to the system. These are the 

external signals that influence the performance of the system. Time is denoted by t , and 

the derivative of a state variable x  with respect to time is denoted by x


. If the 

derivatives of the state variables are not explicit functions of time, the system is said to 

be autonomous. In this case, the above equation simplifies to 

( , ).x f x u


            (3.3) 

We are often interested in output variables which can be observed on the system. These 

may be expressed in terms of the state variables and the input variables in the following 

form: 

( , )y g x u            (3.4) 

where 

 1 2 .... ,
T

ny y y y                                   

 1 2 ....
T

ng g g g  

The column vector y  is the vector of outputs, and g  is a vector of nonlinear functions 

relating state and input variables to output variables.  

We now describe the procedure for linearizing equation (3.3). Let 0x  be the initial state 

vector and 0u  the input vector corresponding to the equilibrium point about which the 

small signal performance is to be investigated. Since 0x  and 0u  satisfy equation (3.3), we 

have 

0 0 0( , ) 0x f x u


            (3.5) 
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Let us perturb the system from the above state, by letting  

0x x x  ,  0u u u    

where the prefix   denotes a small deviation.  The new state must satisfy equation (3.5). 

Hence 

0x x x
  

   0 0[( ), ( )]f x x u u           (3.6) 

As the perturbations are assumed to be small, the linear functions ( , )f x u can be 

expressed in terms of Taylor‟s series expansion. With terms involving second and higher 

order powers of  x and u  neglected, we may write 

0 0 0[( ), ( )]ii i ix x x f x x u u
  

         

0 0 1

1

( , ) ......i i
i n

n

f f
f x u x x

x x

 
    

 
1

1

.......i i
r

r

f f
u u

u u

 
   
 

     (3.7) 

Since 0 0 0( , )i ix f x u


 , we obtain 

1 1

1 1

...... .......i i i i
i n r

n r

f f f f
x x x u u

x x u u

    
        

   
        1,2,.... .i n    (3.8) 

In a similar manner from equation (3.4), we have 

1 1

1 1

...... .......
j j j j

i n r

n r

g g g g
y x x u u

x x u u

   
        

   
 1,2,.... .j m    (3.9) 

Therefore, the linearized forms of equations (3.3) and (3.4) are 

 x A x B u


                     y C x D u                   (3.10) 

where 

1 1

1

1

....

.... .... ....

....

n

n n

n

f f

x x

A

f f

x x

  
  
 

  
 
  
   

        

1 1

1

1

....

.... .... ....

....

r

n n

r

f f

u u

B

f f

u u

  
  
 

  
 
  
   

             

1 1

1

1

....

.... .... ....

....

n

m m

n

g g

x x

C

g g

x x
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1 1

1

1

....

.... .... ....

....

r

m m

r

g g

u u

D

g g

u u

  
  
 

  
 
  
   

 

The above partial derivatives are evaluated at the equilibrium point about which the 

small perturbation is being analyzed. 

In equation (3.10),  

 x  is the state vector of dimension n  

 y   is the output vector of dimension m  

 u  is the input vector of dimension r  

 A is the n n  plant matrix 

 B  is the n r  input matrix 

 C is the m n output matrix 

 D  is the m r feed forward matrix 

Eigen-values of the matrix A ,  ,i i nij    where 1....i n , are the roots of the 

characteristic polynomial 

( )p   | I A  |          (3.11)  

where: I is an n n  identity matrix. Complex eigen-values always appear in pairs of 

complex conjugate numbers. 

Lyapunov’s stability criteria: 

The stability in the small of a nonlinear system is given by the roots of the characteristic 

equation of the system of first approximations, i.e, by the eigen values of A : 

(1) When the eigen values have negative real parts, the original system is 

asymptotically stable. 
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(2) When at least one of the eigen values has a positive real part, the original system 

is unstable. 

(3) When the eigen values have real parts equal to zero, it is not possible on the basis 

of the first approximation to say anything in general.   

The stability in large can find out using Lyapunov second method. The second method 

attempts to determine stability directly by using suitable functions which are defined in 

the state space. The sign of the Lyapunov function and the sign of its time derivative 

with respect to the system state equation are considered. 

 

The equilibrium of equation (3.3) is stable if there exists a positive definite function

1 2( , ,..., )nV x x x  such that its total derivative V


 with respect to equation (3.3) is not 

positive. 

 

The equilibrium of equation (3.3) is asymptotically stable if there is a positive definite 

function 1 2( , ,..., )nV x x x  such that its total derivative V


 with respect to equation (3.3) is 

negative definite. 

The system is stable in that region in which V


is negative semi definite, and 

asymptotically stable if V


 is negative definite. 

The stability in the large of power systems is the subject of the fifth and sixth chapters. 

This chapter is concerned with the stability in the small of power systems, and this is 

given by the eigen values of  A .  
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Table 3.1: Stability criteria for a linear system [64] 

Unstable 

If 0i  for any simple root or if 0i  for any 

repeated root 

Stable i.s. Lyapunov 

If 0i  for all simple roots and if 0i  for all 

repeated root 

Asymptotically 

stable 

If 0i  for all roots 

 

3.3 Linearized model for a two-machine power system 

The linearized model of the power network including UPFC, as shown in Figure 3.1, is 

derived in this section. This model can be used for small signal analysis and damping 

controller design. The operating points at which the equations are linearized are given in 

Table 3.2. These steady state values are obtained after conducting load flow analysis 

using Newton-Raphson method. 

Consider n-machine power system. Using two axis model generator differential 

equations can be written as follows 

0i i  


              (3.12) 

0 0

1
( ( ) / )

2
i mi ei i i

i

P P D
H

   


           (3.13) 

' ' '

'

1
[ ( ) ]qi fdi di di di qi

doi

E E X X I E
T



            (3.14) 

1
( ( ))fdi fdi Ai refi Ti

Ai

E E K V V
T



             (3.15) 
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( )SH SR B
dc

dc

P P S
V

CV

 
           (3.16) 

Where SHP  is real power supplied to the shunt converter and  SRP  is the real power 

demanded by the series converter 

 

 

Figure 3.1: Sample power system with UPFC 

 

The algebraic equations are 

di qi qiV X I            (3.17) 

' '

qi qi di diV E X I            (3.18) 

ei di di qi qiT V I V I                          1...i n        (3.19) 

From network interfacing we get  

dq dq dqI M V             (3.20) 

Linearizing (3.20) around the operating point and separating d and q components, the 

following expressions for generator and UPFC currents can be obtained 
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'

1 3 4 6 7 8 9

'

1 3 4 6 7 8 9

'

1 3 4 6 7 8 9

'

1 3 4 6 7 8 9

d q dc SH SH SR SR

q q dc SH SH SR SR

Ud q dc SH SH SR SR

Uq q dc SH SH SR SR

I A A E A V A m A A m A

I Q Q E Q V Q m Q Q m Q

I D D E D V D m D D m D

I R R E R V R m R R m R

  

  

  

  

          

          

          
          

   (3.21) 

 

Table 3.2: System parameters and initial conditions 

1 0.5P pu  1 0.3Q pu  1 0.33LX pu  2 0.33LX pu  0.1SRX pu  

3 0.2B pu  4 1.0G pu  4 0.4B pu  1 0.341rad   2 0.086rad   

4 0.0   3 1.018V pu  4 1.0V pu  ' 0.11dX pu  1 10 /M MJ MVA  

1 0.0D   1.2dX pu  0.1SHX pu  2 0.8P pu  2 10 /M MJ MVA  

3 0.3G pu  3 0.037rad   1 0.1tX pu  2 0.1tX pu  4.0AK   

0.01AT s  0.8qX pu  60f HZ  ' 5.044doT S   

 

where 

1 3 4 6 7 8 9'

1 3 4 6 7 8 9'

1 3 4 6 7'

; ; ; ; ; ;

; ; ; ; ; ;

; ; ; ;

d d d d d d d

q dc SH SH SR SR

q q q q q q q

q dc SH SH SR SR

Ud Ud Ud Ud U

q dc SH

I I I I I I I
A A A A A A A

E V m m

I I I I I I I
Q Q Q Q Q Q Q

E V m m

I I I I I
D D D D D

E V m

  

  



      
      
      

      
      
      

    
    

   
8 9

1 3 4 6 7 8 9'

; ;

; ; ; ; ; ;

d Ud Ud

SH SR SR

Uq Uq Uq Uq Uq Uq Uq

q dc SH SH SR SR

I I
D D

m

I I I I I I I
R R R R R R R

E V m m

 

  









   
   


      
             

 

Linearizing  
dcV


 (3.16) and substituting UPFC injected currents d and q components 

given by (3.21) the following equation can be written 

'

1 3 4 6 7 8 9dc q dc SH SH SR SRV L L E L V L m L L m L  


               (3.22) 

where 
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1 11 1 22 1 3 11 3 22 3 4 11 4 22 4 6 11 6 22 6 6

7 11 7 22 7 7 8 11 8 22 8 8 9 11 9 22 9 9

11 22 6 7 8 9

; ; ;

; ;

; ; ; ; ;dc dc dc dc dc dc

Ud Uq SH SH SR SR

L K R K D L K R K D L K R K D L K R K D K

L K R K D K L K R K D K L K R K D K

V V V V V V
K K K K K K

I I m m 

        


        


           
      

 AVR is represented by simplified first order transfer function. The function of governors 

are neglected ( 0miP  ).  Linearizing (3.12) to (3.15) the following equations can be 

obtained 

'

1 2 3 4 6 7 8 9

' '

1 3 4 5 6 7 8 9

'

1 3 4 5 6 7 8 9

q dc SH SH SR SR

q q dc fd SH SH SR SR

fd q dc fd SH SH SR SR

W W W E W V W m W W m W

E N N E N V N E N m N N m N

E S S E S V S E S m S S m S

    

  

  








                

                

                

  (3.23)
 

1 2T d qV P V P V                                 

'

1 3 4 6 7 8 9q dc SH SH SR SRM M E M V M m M M m M                    (3.24) 

where 

1 1 1 2 1( )W U Q U A   ; 2 ( )dampW D  ; 3 0 1 3 2 3( )qW I U Q U A    ; 4 1 4 2 4( )W U Q U A   ;  

6 1 6 2 6( )W U Q U A   ;     7 1 7 2 7( )W U Q U A   ;         8 1 8 2 8( )W U Q U A   ; 

9 1 9 2 9( )W U Q U A   ;    
'

1 0 0( )d d qU I X V  ;     
'

2 0 0( )q d dU I X V     

0dI , 0qI , 0dV  and 0qV  are  all steady state values and can be calculated using load flow 

analysis 

'

1 1( )d dN X X A   ;     '

3 3( )d dN I X X A    ;    '

4 4( )d dN X X A   ;    5 1N  ; 

'

6 6( )d dN X X A   ;  '

7 7( )d dN X X A   ;  '

8 8( )d dN X X A   ;  '

9 9( )d dN X X A  

 

0

1

0

q i

T i

V
P

V
 ;     0

2

0

d i

T i

V
P

V
 ;    ' '

1 1 1 2 1d dM PX Q P X A  ;    ' '

3 1 3 2 3( )d dM PX Q P I X A   ; 

' '

4 1 4 2 4d dM PX Q P X A  ;    ' '

6 1 6 2 6d dM PX Q P X A  ;         ' '

7 1 7 2 5d dM PX Q P X A  ; 
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' '

8 1 8 2 8d dM PX Q P X A  ;      ' '

9 1 9 2 9d dM PX Q P X A   

1 1AS K M  ;     3 3AS K M  ;     4 4AS K M  ;     5 1S   ;      6 6AS K M  ;  

7 7AS K M  ;    8 8AS K M  ;      9 9AS K M   

0

1 2 3 4 6 7 8 9

'
' '

1 3 4 5 6 7 8 9

1 3 4 6 7 8 9

1 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0

0

0

0 0

0

SH

q
do q

dc

dc
fd

A fd

I
mM W W W W W W W W

EN N N N N N N NT E
VL L L L L L L

V
ES S S S S S S S

T E




 












 
 

            
      
      
                      

  

SH

SR

SR

m



 
 
 
 
 
 

  (3.25) 

The eigen-values for the simple two-machine/UPFC power system are given in Table 

3.3. 

 

Table 3.3: System states and eigen-values 

 

 

The UPFC is treated as an external controller installed in the network and its effect is 

included in the network current-voltage equation. Here the dynamics of the UPFC, 
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mainly the DC capacitor, are included by expressing line current explicitly. Thus the 

final form of the linearized model is obtained. 

3.4 Participation factor 

Right eigen Vectors 

For any eigen value i , the n-column vector i  which satisfies A   is called the right 

eigen vector of „A‟ associated with the eigen value i    

1 1

2 2
[ ]

. .

i i

i i

i

ni ni

A

 

 


 

   
   
   
   
   
   

                                    (3.26) 

Left eigen Vectors 

For any eigen value i , the  „n‟ row vector iw which satisfies i i iw A w is called the left 

eigen vector of  A  associated with the eigen value i    

    1 2 1 2... ...i i in i i i inw w w A w w w  

Participation factor corresponding to eigen value i  is given by 

1 1 1

2 2 2

1
. .

i i i

i i i

ni ni in

P w

P w
P

P w







   
   
    
   
   
   

                         (3.27) 

The element ki ki ikP w is termed the participation factor. It is a measure of the relative 

participation of the K
th

 state variable in the i
th

 mode. The eigen value corresponding to 

electromechanical mode of oscillation is -0.5878± j 7.3234. This is achieved using the 

above-mentioned participation factor method. 
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3.5 Controllability index  

Equation (3.25) can be arranged into the following form  

0

23 2

31 32 33 3

0 0 0j
j

j j j j k k

k

W D u

X
X


 

 







 
       
       
             
             

A B

A A A B

j

j K kA B u

X





 
 

   
 
  

   (3.28) 

Then any control function of the UPFC is 

( )k C Cu T s y                

j

T

C jy C

X





 
 

  
 
  

       (3.29) 

which can be power flow control, voltage control, transient stability control or damping 

control. Therefore, the impact of these control functions of the UPFC upon system 

oscillation stability can be studied by computing system oscillation modes from the 

linearized model.  

Another application of the linearized model derived above is the selection of the most 

efficient input control signal of the UPFC from SHm , SRm , SH and  SR to apply a 

damping control function. Once it is decided that a damping controller is added as one of 

the secondary control functions of the UPFC, there are four candidates, namely, ,SHm

,SRm SH and SR   to be considered to superimpose damping control. The signal 

which can achieve effective damping control at minimum control cost is most efficient. 

Since this selection is made at open-loop condition before the installation of the damping 

controller and only the input control signal changes, the following controllability index 

( ) T

i i i Kb W B  can be used [59], where iW is the left eigenvector of the state matrix „ A ‟ 

corresponding to the oscillation mode i . In [59], it has been proved that  

1

2 2 23 33 3 2
( ) ( ) ( )

i i bki i i k i k i
b K w B A I A B w              (3.30) 
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where 2iw is second element of iW and its module does not change with the different 

selection of the input control signal of the UPFC. Hence, ( )bki iK 
 
can replace ( )i ib 

 
to 

be used as the controllability index. In the case that the frequency of power system 

oscillations is known to be Ni i   [39], [59], ( )bki NiK 
 

can be used as the 

approximation of  ( )bki iK     so that eigen solution of the system state matrix is avoided 

in the selection. To demonstrate these applications of a UPFC integrated into a two-area 

power system is presented below. 

Table 3.4 shows that the controllability index of SR is zero, hence SR  cannot be used for 

damping control purpose. Out of the balance three control signals, SRm  shows the highest 

controllability index. Here onwards, in this thesis SRm  is selected as the control signal of 

UPFC for stability enhancement.       

 

Table 3.4: Computational results to select the best input control signal 

ku  bkiK  

SHm  0.0214 

SRm  0.1386 

SH  0.0163 

SR  0.0000 

 

To tackle the inter-area oscillation, we have to introduce a damping controller into 

UPFC. Table 3. presents the results of computing bkiK  which show that the most 

efficient input control signal is k SRu m . Hence the damping controller is chosen to be 

2 4

1 3

(1 ) (1 )

1 1 (1 ) (1 )

w I
SR C

w D

sT K sT sT
m y

sT sT sT sT

 


   
       (3.31) 
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The speed deviation signal ∆ω is used as an input to the damping controller. The 

transfer-function block diagram of the damping controller is shown in Figure 3.2. The 

optimum parameters for the damping controllers are determined using genetic algorithm. 

 

 

Figure 3.2: Block diagram of damping controller 

3.6 Genetic algorithm 

Genetic algorithms are probabilistic search approaches which are founded on the idea of 

evolutionary processes. They are global search algorithms based on the concept of 

natural genetics and the Darwinian survival-of-the-fittest code [65]. Each individual has 

an associated fitness measure, typically representing an objective value. The fittest 

individuals in a population will produce fitter offspring which is then implemented in 

order to generate the next population. Then selected individuals are chosen for 

reproduction or crossover at each generation, with an appropriate mutation factor to 

randomly modify the genes of an individual, in order to develop the new population. The 

result is a set of individuals based on the original subjects leading to subsequent 

populations with better individual fitness. In this work, GA is used for optimizing the 

control variables of (3.31). 

In an optimization process to find the optimal parameter values, which results in a 

maximum or minimum of a function, is called an objective function. Objective function 

is a mathematical expression describing a relationship of the optimization parameters 

that uses the optimization parameters as inputs. In this chapter, an eigen value based 

objective function is considered. The main objective is to damp the power system 

oscillations. This can be achieved by maximizing the damping ratio ( ) of the 
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electromechanical mode of oscillation. For thi  eigen value i i nij    , the damping 

ratio ( ) is given by  

2 2

i
i

i ni




 





          (3.32) 

Hence the objective function „J‟ is given by  

max( )iJ              (3.33) 

So the objective is to maximize „J‟ such that to satisfy the following eight inequality 

constraints.  

min max

I I IK K K  ;   min max

w w wT T T  ;   m i n m a x

1 1 1T T T  ;   m i n m a x

2 2 2T T T  ; min max

3 3 3T T T  ;    

min max

4 4 4 ;T T T  min max

D D DT T T   

Details of the GA parameters are given in Table 3.. The genetic operators used in this 

work are extracted from standard GA procedure which includes selection using roulette 

wheel, crossovers and mutation [65]. In this work, the rates for crossovers and mutation 

are chosen as 80% and 1% respectively. This was chosen through experimentation as it 

provides sufficient solution diversity. The population size and maximum generations are 

limited to 100 to avoid more complexity. 

 

Table 3.5: Parameters used in Genetic Algorithm 

Parameters Value/Type 

Population size 100 

Maximum generations 100 

Selection operator Roulette wheel 

Crossover probability 0.8 

Mutation probability 0.01 

Termination method Maximum generations 
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 The parameters obtained after optimization are 

15.1IK  ;     0.01DT s ;     10.0wT s ;     1 0 . 9T s ;     2 0.12T s ;     3 0.9T s ;     

4 0.11 .T s
 

The eigen-values corresponding to electromechanical mode of oscillation after 

implementing the Lead-Lag damping controller is given in Table 3.: 

 

Table 3.6: Eigen-values for the electromechanical modes 

 
Eigen value 

Damping 

ratio 
Frequency (Hz) 

Without Lead-Lag control -0.5878±j7.323 0.08 1.221 

With Lead-Lag control -1.103±j7.67 0.142 1.22 

 

 

 

Figure 3.3: Linearized Phillips-Heffron model of power system with UPFC 
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3.7 Phillips-Heffron model 

Pictorial representation of the linearized dynamic model of (3.25) can be shown by  

Figure 3.3. Here only one input control signal is demonstrated. ku  could be ,SHm ,SRm  

SH or ,SR the linearization of the input control signals of the UPFC. Details of this 

model are given in Appendix A. 

3.8 Results and discussion 

For control validation, the two-area power system shown in Figure 3.1 is used, where 

three phase to ground fault is injected close to bus 4 at point F at time t = 0.5s. Fault is 

removed after 0.15s by disconnecting the circuit breakers at both the ends. The UPFC 

placed at bus 3 is activated after fault clearance. The software program to simulate the 

power system and the controller has been written in FORTRAN in house and graphs are 

plotted using MATLAB software. RK4 numerical integration method is used to solve the 

differential equations with an integration step of 0.001 second. Performance analysis 

with and without damping controller are shown in the following figures.  

 

 

Figure 3.4: Load angle variation 
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Figure 3.5: Angular speed variation 

 

Figure 3.4 shows the load angle variation between generator-1 and 2, i.e., ( 1 2  ). 

Figure 3.5 shows the angular speed variation of the generator-1. Both show a 

considerable improvement in the electromechanical oscillation damping with the 

proposed Lead-Lag controller. 

 

 

Figure 3.6: Terminal voltage variation 
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Figure 3.7: Terminal voltage variation 

 

Terminal voltage variation of the bus 3 is shown in Figure 3.6, terminal voltage variation 

of bus 4 is shown Figure 3.7 and the injected UPFC real power is shown in Figure 3.8. 

 

 

Figure 3.8: Injected UPFC real power variation 

 

From Figure 3.4 to Figure 3.8 we can see that the suggested Lead-Lag controller behaves 

very well in improving transient stability when the system is subject to a large 

disturbance. The Lead-Lag controller can damp angle swings much more quickly than 
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without any control. As exhibited in figure, the injected UPFC power during fault is 21% 

of the steady state power flow value. This is slightly more than the acceptable limit.  

The experiment is repeated for different operating points with Lag / Lead power factors. 

The operating points are 1 1.0,  0.8,  0.2P pu . The results are shown below 

  

 

Figure 3.9: Load angle variation at 1 11.0,   0.3P Q 
 

 

 

Figure 3.10: Load angle variation at 1 11.0,   0.3P Q    
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Figure 3.11: Load angle variation at 1 10.8,   0.3P Q   

 

 

Figure 3.12: Load angle variation at 1 10.8,   0.3P Q    

 

 

Figure 3.13: Load angle variation at 1 10.2,   0.3P Q   
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Figure 3.14: Load angle variation at 1 10.2,   0.3P Q  
 

 

The generator with leading power factor can absorb reactive power; causing an increase 

in the load angle difference between the two generators. Leading power factor reduce 

generator terminal voltage. Even though leading power factor operation is effective and 

economic means for descending the higher voltage at low load it reduces the stability of 

the generator considerably.  

We have considered modulation index of series converter, SRm  as the input control signal 

in the above discussions. The examining of variation of load angle with other control 

signals SHm and SH  is also done. The signal SR is not considered as the oscillation mode 

is not controllable with it. The results are shown in Figure 3.15. Analysis of figure shows 

the correctness of the selection of the input control signal SRm  as it provides the 

smoothest damping to the load angle variation. 
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Figure 3.15: Load angle variation with SH , SHm , SRm
 

The experiment is repeated for open circuit study. In the open circuit study, one of the 

transmission lines is disconnected after 0.5s without any fault. The load angle variation 

for this case is shown in Figure 3.16. Experiments for input mechanical power 

excursions are also conducted. Figure 3.17 and Figure 3.18 shows the variation of load 

angles corresponding to 10% and 20% reduction in the input mechanical power. Figure 

3.19 shows the load angle variation when the loads at bus bar 3 are disconnected 

suddenly after 0.5s of the simulation.  

 

 

Figure 3.16: Load angle variation with one line open after 0.5s 
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Figure 3.17: Load angle variation with 10% reduction in input mechanical power 

 

 

Figure 3.18: Load angle variation with 20% reduction in input mechanical power 

 

 

Figure 3.19: Load angle variation with loads at bus bar 3 is disconnected at 0.5s 
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3.9 Conclusion 

This chapter has presented the development of a mathematical model of the small-signal 

dynamic performance of a two-area power system. Electromechanical mode of 

oscillation is identified using participation factor method. The most suitable control 

signal of the UPFC for oscillation damping is identified using controllability index 

method. The parameters of the developed Lead-Lag damping controller are optimized 

using genetic algorithm. Simulation results illustrate the effectiveness of the suggested 

method.  
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Chapter 4 

 

Dynamic Modeling and Adaptive Control of Single 
Machine-Infinite Bus System with UPFC  

4.1 Introduction 

Chapter 3 has proposed to linearize the differential-algebraic equation network and 

eliminate the algebraic equations through step-by-step procedure. Then, linear control 

method is applied to the linearized power system. This approach, however, tacitly 

assumes that the network variables remain in the neighbourhood of the desired operating 

point. This is not true. Continuous load change would be experienced by the generators 

in a power system in their daily operation and when there is a fault in the power system, 

drastic changes can occur. As the system conditions shift from the operating point at 

which the controller was optimized, the developed Lead-Lag controller shows poor 

performance. 

Hence, we include developing a nonlinear dynamic approximation of the power network, 

using UPFC as a controller, augmenting UPFC with nonlinear adaptive control based on 

back stepping for oscillation damping, and using an adaptive control law to approximate 

uncertain parameters that contribute significantly to the stability of the power system. To 

introduce the design concept, we initially design a controller for a single generator power 

system with UPFC using the standard back-stepping design method. The feasibility of 

the proposed technique is validated using simulation on a single machine to infinite bus 

system. This approach is extended to multiple generators in the next two chapters. 
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4.2 Power system modeling 

Representation of power system with UPFC 

Figure 4.1 shows the schematic diagram of a single-machine infinite bus system 

connected with UPFC. The main constituents are converters, transformers and a DC link 

capacitor. General pulse width modulation technique is adopted for the VSC. A third 

order nonlinear mathematical model describes the generator as explained in section 

2.3.1. While deriving the algebraic equations, resistance of transformer, transmission 

lines, convertor and generator, etc., are neglected. The transients of the transmission 

lines are also ignored. 

 

 

Figure 4.1: Single machine infinite bus power system 

        

In Figure 4.1, TV


 
and  IV


 

are the generator terminal and infinite-bus voltages 

respectively. The algebraic equations are 

  e Td d Tq qP V I V I                (4.1) 

where   Td q qV X I ;      ' '  Tq q d dV E X I  ;      ' '( ) q q d d dE E X X I    

d SHd SRdI I I  ;           q SHq SRqI I I  ;            2 2( ) ( )T Td TqV V V     



  

   

77 

 

where qE  and 
'

qE are the voltage back of q-axis synchronous reactance and  q-axis 

component of voltage back of transient reactance of the generator respectively;  SHdI , 

SHqI ,
 SRdI  and SRqI  are the d-q components of the shunt (

SHI


) and series (
SRI


) currents of 

the UPFC respectively; dI  and qI represent the d-q components of the generator terminal 

current I

. 

  tj X T SV I V
  

              (4.2) 

  Lj X   SH S SR SR IV V V I V
    

           (4.3) 

Here 1 2

1 2

( )L L
L

L L

X X
X

X X



 i.e. the equivalent reactance of the parallel combination of the 

transmission lines  1LX  and 2LX .  SHdV , SHqV are the d-q components of the voltage 

injected by the shunt ( SHV


 ) and series ( SRV


) converters of the UPFC respectively. 

According to [55], 

0 0 0

0 0 0

0 0 0

0 0 0

SHd SHdSH

SHq SHqSH
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    (4.4) 

Subsequent manipulation besides rearrangement gives 

'
sin( )

2
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SHd
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X E X m V
I

X X
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Equations (4.9)-(4.11) give the non-linear dynamic representation of the generator [1], 

[66]. Equation (4.12) shows the dynamic model of the UPFC [55]. The nominal loading 

condition and system parameters are mentioned in the Table 4.1. The initial values are 

calculated by conducting load-flow analysis using Newton – Raphson method. 

0  


             (4.9) 

0 0

0

[ ( )]
2

m eP P D
H

  




 
           (4.10) 

' ' '

'

1
[ ( ) ]q fd d d d q

do

E E X X I E
T



              (4.11) 

3
[cos( ) sin( ) ]

4

SH
dc SH SHd SH SHq

dc

m
V I I

C
 



   
3

[cos( ) sin( ) ]
4

SR
SR SRd SR SRq

dc

m
I I

C
    (4.12) In this 

equivalent D , dX  and '

dX are understood as uncertain parameters because the damping 

coefficient exists hard to be precisely evaluated and the reactance dX  and  '

dX will vary 

slowly on account of the saturation issue. 

 

Table 4.1: System parameters and initial conditions 

1 1.2P pu  1.0TV pu  1.0IV pu  ' 0.3dX pu  60f HZ  

1.0dX pu  0.6qX pu  ' 5.044doT S  1 0.0D   8 /M MJ MVA  

0.1tX pu  1 0.3LX pu  
2 0.3LX pu  0.1SRX pu  0.1SHX pu  

10.0dcV pu  2.0dcC pu  0.0SRm   0131.5SR   0.1935SHm pu  

052.76SH       

 

New dynamic representation of power network 

Equations (4.1)-(4.8) contain algebraic equations while (4.9)-(4.12) has the differential 
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equations. Together they form an approximate representation of power system. But it is 

difficult to achieve a controller design in this environment. Therefore, it is better to use 

an appropriate set to replace the set of algebraic equations. Taking derivatives [67] of the 

generator terminal current equations d SHd SRdI I I   and q SHq SRqI I I   for obtaining dI


 

and 
qI


 terms is a method to have a dynamical representation of the network. Thus we 

have 

'

'

d d d d
q dc

q dc

I I I I
E V

t E V




    
   

   
 d d d d

SH SH SR SR

SH SH SR SR

I I I I
m m

m m
 

 

      
  

   
  (4.13) 

'

'

q q q q

q dc

q dc

I I I I
E V

t E V




    
   

   
 

q q q q

SH SH SR SR

SH SH SR SR

I I I I
m m

m m
 

 

      
  

   
  (4.14) 

Solving equations (4.13) and (4.14) we obtain a new set of dynamic equations as 

11 12 13 11 12 13 14'

21 22 23 21 22 23 24

SH

d SH

q

q SR

dc

SR

m

I a a a b b b b
E

a a a b b b bI m
V










 


 





 
   
    
                       
     

 

     (4.15) 

Parameters 11 24......a b  are shown in the Appendix B. The expression for dI


 and 
qI


 thus 

obtained is a nonlinear dynamic system in continuous time with control inputs SHm


, SH


,

SRm


 and SR


. The formation of these equations not only avoid the need for solving 

difficult nonlinear algebraic equations but also help us to convert the nonlinear system 

described by equations (4.9)-(4.11) into standard parametric feed-back form without 

losing the nonlinear characteristics of the power system. Once the control inputs are 

defined, the UPFC control parameters SHm , SH , SRm and SR can be obtained by integrating 
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the control inputs. By substituting the values of 


, '

qE


 and dcV


from equations (4.9)-

(4.12) into (4.15) we obtain  

1

11 12 13 141 2

21 22 23 242 3

4

( )

( )

d

q

u

I b b b bC x u

b b b bC x uI
u





 
  

               
   

 

       (4.16) 

According to equation (4.16) there are four choices of input control signals which can be 

used to superimpose on the damping function of the UPFC. Since converter 2 does the 

main function of UPFC by injecting a voltage SRV with a controllable magnitude and 

phase angle, the control signals SHm  and  SH  of the shunt controller are not important. 

Again unlike conventional controller, where magnitude of the injected series voltage will 

remain constant with a variable phase angle, here the authors are interested for a constant 

phase angle with a variable voltage magnitude for controller design. Therefore, the 

above equation becomes 

1 13 3

2 23 3

( )

( )

d

q

I C x b u

I C x b u





  

  

            (4.17)
 

4.3 Controller design 

The UPFC is designed with an aim to control two quantities of the generator, the load 

angle  and speed , to a reference value 0  and 0 , the pre-fault power angle and speed 

of the generator respectively. The controller needs to be adaptive to uncertain parameters 

throughout the simulation such that these parameters will not influence the efficiency of 

the controller. First step needed to undertake for the controller design is the following 

coordinate transformation for equation (4.9)-(4.11) 

0 0 0[ ,   ,   ( ) / 2 ]m ex P P H                 (4.18) 
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With 
'

e q qP E I [66], the new coordinate will satisfy 

1 2

2 3 2 2

3 1 3 3T

x x

x x x

x C gu











 


  

   

        
  (4.19) 

where 2
2

D

H
    , and '

3 d dX X    are the uncertain parameters.  

'

'0
1 2' '

( )
2

q fd q q

T q

do do

I E I E
C E C x

H T T

  
   

 
;        

'

0 2

2

q iE b
g

H


  ;           

0

'2

d q

do

I I

HT


   

With the introduction of the following functions  

1 1( ) 0f x  ;  1 1( ) 1x  ;  1 1( ) 0x  ;  2 1 2( , ) 0f x x  ;  2 1 2( , ) 1x x  ;  2 1 2 2( , )x x x   

3 1 2 3 1( , , ) Tf x x x C ; 3 1 2 3( , , )x x x g  ; 3 1 2 3( , , ) .x x x    

The standard parametric feedback form [68] as shown in (4.20) can be obtained from 

equation (4.19) 

1 1 1 1( ,.., ) ( ,.., ) ( ,.., )T

i i i i i i i i ix f x x x x x x x  


            (1 )i n      (4.20) 

Here n  represents the order of the system which equals to three for our case; and 

1 3.nx u 
 

 In power systems, the system dynamics may have been well known at the beginning but 

experience unpredictable parameter variations as the control operation goes on. These 

unknown variations in plant parameters are defined as the uncertain parameters. 

Damping ratio, transient and sub-transient reactance etc are the examples of such 

uncertain parameters of power system study. Without continuous "redesign" of the 

controller, the initially appropriate controller design may not be able to control the 

changing plant well. Generally, the basic objective of adaptive control is to maintain 

consistent performance of a system in the presence of uncertainty or unknown variation 
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in plant parameters. Since such parameter uncertainty or variation occurs in many 

practical problems, adaptive control is useful in many industrial contexts. 

Adaptive law for uncertain parameters 

We look to attain an adaptive law for the uncertain parameters i  in this part. Let us 

define i  as the error between the uncertain parameters i  and its estimated value i


. 

Therefore it can be represented as 

1( ,..., )i i i i ix x     


           ( 1,2,... )i n         (4.21) 

where 1 1( ,..., ) ( ,..., )i i i i ix x x x x  . 

 Equation (4.22) represents the error dynamic for i   

1( ,..., )i i i ix x  
  

 


             (4.22) 

Using partial differentiation, 1( ,..., )i ix x


 can be expressed as  

1 1 2

1 2

( ,.. ) ..i i i
i i i

i

x x x x x
x x x

  

     

   
  

         (4.23) 

Substituting (4.23) in (4.22) and using (4.20) and (4.21), error dynamic can be written as  

1 1 1

1

[ ( ,.., ) ( ,.., )
i

i
i i k k k k k

k k

f x x x x x
x


  
 






  





 

                         1 1( ,.., )( ( ,..., ) )]T i
k k k k k k ix x x x x

t


   


   




      (4.24) 

Now by selecting the update laws  
i


 to cancel all known quantities [69], gives  

a) the adaptive law for uncertain parameter as  

1 1 1

1

[ ( ,.., ) ( ,.., )
i

i
i k k k k k

k k

f x x x x x
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83 

 

                           1 1( ,.., )( ( ,..., ))]T i
i k i i i ix x x x x

t


  


  




     (4.25) 

b) error dynamics as 

1

1

( ,.., )
i

Ti
i k k k

k k

x x
x


  





 


            (4.26)

 

thus an influential inequality can be derived as  

2

1

1 1

[ ( ,.., ) ]
n n

T T

i i i i i i

i i

d
x x

dt
    

 

 
  

 
          (4.27) 

here i is a positive constant. Further, the proof of the inequality is given in [69]. 

 

Figure 4.2: Structure of parameter estimator 

 

The structure of the uncertain parameter is shown in Figure 4.2. In each step, estimator 

generates an error variable and a new estimate. This value of the parameter is used for 

next iteration of the power system. 

Adaptive law for control inputs 

The objective of our suggested controller is to design the control input 1 3nx u   such that 

the system states ix  can be driven to the small neighbourhood of a given equilibrium 

point, say 0 and 0 , where 0  and 0  are the pre-fault stable operating points of the 

generator. The control law can be defined in such a way that all the system states will be 

forced to advance to its steady state value with this input. This steady state value is taken 

as the reference and represented as *

ix . This can be achieved using the following back 
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stepping formation. We first examine controlling 1x to a constant reference *

1x . 

*

1 1 1x x x             (4.28) 

The dynamics of 1x are given by 
1 1 0x x
 

   and using (4.20) 

1 1 1 1 1 2 1 1 1( ) ( ) ( )Tx f x x x x  


           (4.29) 

Now taking 2x as a “virtual” control input, we can describe the error as 

2 2 2 1 1( , )x x x             (4.30) 

where *

2 1 1 2( , )x x    is derived from (4.29) as 2 1 1 1 1 1 1 1 1

1 1

1
( , ) ( ) ( )

( )

Tx f x x
x

    


       for 

some function 1( )   is still to be defined.  The dynamics of 2x are given by  

2 2
2 2 1 1

1 1

x x x
x

 




    
  

 


2 1 2 2 1 2 3 2 1 2 2( , ) ( , ) ( , )Tf x x x x x x x      

                                          2 2
1 1 1 1 2 1 1 1 1

1 1

( ( ) ( ) ( ) )Tf x x x x
x

 
   



 
   
 

    (4.31) 

This is obtained by substituting values of 2x


and 1x


using (4.20) where now the virtual 

control input is 3x , and hence we define the error as 

3 3 3 1 2 1 2( , , , )x x x x               (4.32) 

where  3  2 1 2 1 2 2 1 2

2 1 2

1
{ ( , , , ) ( , )

( , )
x x f x x

x x
  


     

                                                    2 2
1 1 1 1 2 1 1 1 1

1 1

( ( ) ( ) ( ) ) }Tf x x x x
x

 
   



 
   
 

  

The dynamics of 3x are given by 

3 3 3 3
3 3 1 2 1 2

1 2 1 2

x x x x
x x

   
 

 

        
    

   
        (4.33) 
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3 3 1 2 3 3 1 2 3 4 3 1 2 3 3( , , ) ( , , ) ( , , )Tx f x x x x x x x x x x  
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1 1 1 1 2 1 1 1
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    (4.34) 

where 4 3x u , suppose that 1( ,., ) 0i ix x   holds for all 1,2,..,i n  then we can define the 

control input as [69] 

3 1
3

3 3 1 3 1 3 3 1 3 3 1 3 3
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      (4.35) 

The functions ( )i   selected are given in the Appendix B.  The block diagram 

representation of the proposed controller is shown in Figure 4.3. With the control input 

defined as in (4.35) and adaptive law in (4.25) the system (4.20) is globally asymptotic 

stable at 0ix  . In other words ix  converges to *

ix and all the closed-loop signals like 

system states and estimation errors ( i ) will be bounded. The proof for the same is given 

in [69]. Further, we can see that all the variables and system states can be defined 

independently. 

  

 

Figure 4.3: Block diagram representation of nonlinear adaptive control 
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4.4 Results and discussion 

The advantage of the designed controller is proved by performing the computer 

verification on a single-machine infinite bus system. The aim of the controller is the 

damping of the generator oscillations after the fault is cleared. For comparing, the 

generator is first fitted with conventional controller. The details are given in [55]. Figure 

4.4 displays the block diagram image of the conventional controller where the input to 

the damping controller is the deviations in generator speed.  

 

 

Figure 4.4: Conventional controller 

 

The damping controller for Figure 4.4 is made using the equation 3.31. The reference 

setting of the power flow controller is modulated by its output. Therefore, an increased 

electric power output is secured in phase with the speed variation. The parameters of this 

controller have been optimized using Genetic Algorithm for better operation. The details 

of the Genetic Algorithm have been explained in section 3.6. The main objective is to 

damp the power oscillations by maximizing the damping ratio of the electromechanical 

mode of oscillation.  

The parameters obtained after optimization are 
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7.1DK  ;     0.01DT s ;     9.5wT s ;     1 0.9T s ;     2 0.73T s ;     3 0.9T s ;     4 0.6 .T s
 

Secondly, the above-mentioned controller is changed by the suggested adaptive control 

whose parameters are determined by trial and error method. In both these examples, the 

generator is modeled by the third-order approximation with ,  and 
'

qE  as state 

variables. The loads are represented by constant impedance model. The fault studied in 

the simulation is that the system runs without any fault for 0.2 seconds. Next a three-

phase to ground fault occurs on one of the transmission lines at mark F as shown in 

Figure 4.1 and persists for 0.15 seconds. Finally, the fault is cleared by disconnecting the 

faulted line by opening the circuit breakers at both ends. Simulation results are shown in 

Figure 4.5 to Figure 4.12. RK4 numerical integration method is used to solve the 

differential equations with an integration step of 0.001 second.  

Figure 4.5 shows the variation of rotor angle and Figure 4.6 variation of speed of the 

generator at an operating condition Pe = 1.2 pu With the proposed adaptive controller, 

the generator load angle increases from an initial value of 56.69
0
 to a maximum value of 

84.58
0
 and then returns back to initial value.  

 

 

Figure 4.5: Load angle variation of generator at Pe = 1.2, Qe=0.4 pu 
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Here the system gets stabilized within 1.25 seconds and thus the proposed controller 

gains an advantage over the conventional controller. The maximum angle, number of 

major oscillations and settling time, all have a smaller value in the presence of new 

controller. The suggested controller can damp angle swings and angular speed variations 

faster than the conventional controller due to its adaptive characteristics. 

 

 

Figure 4.6: Speed variation of generator at Pe=1.2, Qe=0.4 pu 

 

Figure 4.7 shows the changes in the generator terminal voltage for a period of three 

seconds. The quick convergence of the terminal voltage of the generator to an acceptable 

range can be seen. The acceptable range is ±10% of its steady state reading. The active 

power flow on the tie line between generator and infinite bus is shown in Figure 4.8. 

Apparently, the proposed controller damps the power oscillations quickly and efficiently 

by reducing the time of oscillation. Hence, there is an improvement in the dynamic 

stability of power system. 

Figure 4.9 and Figure 4.10 display injected real power and voltage of the UPFC with 

proposed controller. As exhibited in figure, the injected power during fault is less than 

10 % of the steady state power flow value. 
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Figure 4.7: Terminal voltage variation of VS at Pe=1.2, Qe=0.4 pu 

 

 

Figure 4.8: Variation of real power transfer from generator at Pe=1.2, Qe=0.4 pu 

 

Similarly, injected voltage is also getting reduced considerably. Consequently, the 

required rating of the transformers and converters gets significantly minimized as 

compared to that of conventional controller. Note that in case of UPFC, shunt and series 

active powers are related to each other. Since a UPFC with no loss does not generate or 

absorb active power, Pshunt and Pseries will be equal in magnitude and opposite in polarity. 
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Figure 4.9: Injected UPFC real power at Pe=1.2, Qe=0.4 pu 

 

 

Figure 4.10: Injected UPFC voltage at Pe=1.2, Qe=0.4 pu 

 

Figure 4.11 and Figure 4.12 show the evaluation results of the uncertain parameters of 

the generator. Initial value is taken as zero for these two uncertain parameters. From the 

figure, it can be observed that the suggested estimator converges very quickly and finally 

becomes constant.   
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Figure 4.11: Variation of uncertain parameter 2  at Pe=1.2, Qe=0.4 pu 

 

 

 

Figure 4.12: Variation of uncertain parameter 3  at Pe=1.2, Qe=0.4 pu 

 

The designed controller with same initial parameters is now subjected to a new operating 

condition to show that the proposed controller is independent of any particular operating 

point. Here with Pe = 0.1 pu, the dynamic performance is shown in Figure 4.13 and 

Figure 4.14. The results show that the proposed controller behaves satisfactorily in 

damping rotor oscillations. Secondly, no appreciable difference in controller 

performance between the two cases (Pe = 0.1and Pe = 1.2) are observed when using 
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proposed controller. This proves that the proposed controller works well over a wide 

range of operating condition. 

 

 

Figure 4.13: Load angle variation of the generator at Pe =0.1 pu 

 

 

 

Figure 4.14: Real power variation of the generator at Pe =0.1 pu 

 

A third case experimented here is the performance of the proposed controller with two 

topologies: one by disconnecting the faulted line and the other with original topology. 
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When we implement the proposed controller, it reveals that there is not much difference 

between these two topologies. This comparison between the two cases for the generator 

load angle is shown in Figure 4.15.  

 

 

Figure 4.15: Load angle variation with different topologies at Pe=1.2, Qe=0.4 pu 

 

To show the effectiveness of the proposed controller, several studies with different 

loading conditions and various fault locations were performed and all results show 

similar trends.  However, due to space limitations, only one set of result is given here. 

Figure 4.16 shows the load angle variation of the generator for a fault at the middle of 

the transmission line. The fault is cleared after four cycles without changing the original 

topology. Simulation results show the robustness of our approach.  
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Figure 4.16: Load angle variation at different fault location with Pe=1.2, Qe=0.4 pu 

 

We have considered modulation index of series converter, SRm  as the input control signal 

in the above discussions. The examining of variation of load angle with other control 

signals SHm and SH  is also done. The signal SR is not considered as the oscillation mode 

is not controllable with it. The results are shown in Figure 4.17. Analysis of figure shows 

the correctness of the selection of the input control signal SRm  as it provides the 

smoothest damping to the load angle variation. 

 

 

Figure 4.17: Load angle variation with SRm , SH , SHm  at Pe=1.2,Qe=0.4pu 
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4.5 Conclusion 

The major contributions of this chapter are:  

 A new dynamic representation of the power network has been introduced with the 

identification of the generator as a third order model and UPFC as the stabilizing 

device. 

 The conversion of nonlinear equations into standard parametric feedback form is 

explained in a simple way. 

 After obtaining the standard form, a new recursive method is explained for the 

design of a nonlinear robust adaptive controller to mitigate generator oscillation. 

 An adaptive control law for uncertain parameters is introduced to avoid the 

deterioration of the controller performance. 

 For a given UPFC lower injected real power and voltage can be achieved with the 

proposed controller. Hence, only a comparatively lower rating UPFC is required.  

The effectiveness of the approach can be seen in the simulation results.   
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Chapter 5 

 

Dynamic Modeling and Nonlinear Control of Multi-
Machine Power System with UPFC 

5.1 Introduction 

In Chapter 4, a single-machine infinite bus model is used to apply nonlinear adaptive 

control schemes. However, the infinite bus assumption required for this approach is not 

valid for large multi-machine systems when fault affects the power system. The over 

parameterization problem that usually appears in the adaptive method will be more 

predominant with multi-machine power systems.  

To overcome the above-mentioned challenges, this chapter attempts a nonlinear control 

procedure based on back stepping method for stability enhancement of a two-machine 

power system. A dynamic modeling approach involving only differential equation is due 

presented. The proposed modeling is a complementary scheme of solving the 

differential-algebraic equations; for which achieving the control design has always been 

a challenge. A relevant Lyapunov function is defined in the proposed technique to derive 

the control signal. The control signal for the UPFC is derived with an aim to mitigate the 

generator oscillations developing from perturbations. Simulation results on multi-

machine power systems illustrate the effectiveness of the suggested method.  

5.2 Nonlinear dynamic representation 

Power system without UPFC 

The system analyzed is shown in Figure 5.1. It has one low frequency inter-area mode. 

Generators are represented as classical model with internal voltages behind transient 

reactance assumed constant. This representation is adequate for the control formulation 
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since only the generator speed variations are of concern. While deriving the equations, 

resistance of power system components are ignored. Mechanical input power and loads 

are assumed to be constants. Power system‟s differential equations are given below: 
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             1,..i n         (5.1) 

Here n  is the number of generators (n = 2 ). In the above equation i nV   and i n   are the 

bus voltage and phase angle, respectively. ,i i nB   represents the reactance of the 

admittance matrix. iE is the thi machine internal voltage.  

The bus voltages and phase angles of all the power system buses are constrained by the 

following set of algebraic power balance equations 
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        (5.2) 

j jV E ; j j   for 1 j n  . In addition, N  is the number of non-generator buses in the 

power system.  

UPFC power injection model  

In the proposed approach UPFC is selected as the FACTS device which behaves as a 

controller to damp system oscillations. According to the power injection theory, the 

effect of UPFC is that it injects real and reactive power to the connecting buses. As 

shown in Figure 5.1, the shunt portion of the UPFC is connected to the bus 3 and series 

portion is connected between buses 3 and 4.  
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Figure 5.1: Sample two area power system 

 

The injected real and reactive powers at buses 3 and 4, as explained in section 2.3.5 

(2.46), are given by [67] 
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        (5.3) 

where 3( )SR SRV    is the output voltage from the series transformer of UPFC. The 

above equations can be written as  
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       (5.4) 

where  1 cos( )SR SRu V   and   2 sin( )SR SRu V  are the control signals to the UPFC. 

Power system with UPFC 

Power injection model neglects the dynamics of UPFC. Hence, power system‟s 

differential equations are same as (5.1). The algebraic power balance equation at buses 3 

and 4 are now modified. The new equations including injected powers of UPFC are  
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Dynamic representation          

For the given power system, (5.1) and (5.5) form the set of algebraic-differential 

equations. For the advanced control design, it is desirable to substitute the set of 

algebraic equations with a more appropriate set of differential equations. We employ 

network power balance equations to derive the nonlinear dynamical model of the power 

system.  The benefit of this approach is that the same method can be applied to other 

FACTS devices too. We can achieve this, by taking the derivative of (5.5) as explained 

by (5.6)  

3 4 3 4 1 2 1 2

3 4 3 4 1 2 1 2

3 4 3 4 1 2 1 2

3 4 3 4 1 2 1 2

* * * * * * * * 0

* * * * * * * * 0

i i i i i i i i i

i i i i i i i i i

P P P P P P P P P
V V u u

t V V u u

Q Q Q Q Q Q Q Q Q
V V u u

t V V u u

   
   

   
   

       

       

        
                 


                 

           

(5.6) 

where i = 3,4;  Solving (5.5),  we can get the new set of differential equation as 
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     (5.7a) 

Parameters 11 44......a a , 11 42......b b  and 11 42........g g  are shown in the Appendix C. In (5.7a) 1u


 

as well as 2u


 are the control inputs. Our next aim is to define the control inputs. Once 
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the control inputs are defined, the UPFC parameters  1u  and 2u  can be obtained by 

integrating the control inputs. Equation (5.7a) can be written in the simplified form as 

[ ] [ ][ ] [ ]A x B G u
                    (5.7b)  

from this we can get 1[ ] [ ] [ ]A B C   and 1[ ] [ ] [ ]A G K   where  C and K are 4 × 2 

matrices. By defining 1 1r u


 , 2 2r u


  and using equation (5.1) and (5.7) we get the new 

nonlinear dynamic representation as 
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      (5.8) 

5.3 Nonlinear control design 

In the two-area network, generator-1 is the machine being analyzed in detail. Therefore, 

a swing equation of generator-1 is important for the electromechanical oscillation 

damping. Firstly, we introduce the following coordinate transformation 
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where 0  and 0  are  the pre-fault load angle  and speed of generator-1. The choice of  

3x  renders the generator dynamic equation (5.1) in back stepping forms as will be 

explained later.  Derivative of 3x  is  

3 3 1 3 3 1 3 1 3sin( ) cos( )( )x V V     
   

                              (5.10a) 

Substitute values of 3V


, 3


 and 1


 from equation (5.8). We have 

3 1 1 1 2 2T T Tx f g r g r


                  (5.10b) 

where 1 11 1 3 31 3 1 3sin( ) cos( )Tg K K V       ; 2 12 1 3 32 3 1 3sin( ) cos( )Tg K K V         

and      1 1 0 11 1 3 3 1 3 31( ) sin( ) cos( )(1 )Tf C V C             

                                                            2 0 12 1 3 32 3 1 3( )( sin( ) cos( ))C C V          

Assumption: Constant phase angle control 

Control of UPFC injected power is essential for oscillation damping. One way of 

achieving this is by varying SRV under constant phase angle SR . Then for SR  around ± 

90
0
, maximum active power is injected for a given SRV . This requires that 

1 cos( )SR SRu V  = 0 and thus 1u


= 0. With this assumption let us start the design 

considering 1 1u r


  = 0 thereby decreasing the number of inputs required in (5.10b).  

By using equations (5.1), (5.9) and (5.10), a new set of state equation can be constructed 

as 
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where 2 2r u


  is the control input, 1 1/mP M  and  13 1 1( ) /B E M  are constants instead of 

functions of states. Our next aim is define the control input 2r . This can be achieved by 

defining an appropriate Lyapunov function. In equation (5.11) the control gain 2Tg  is 

bounded away from zero. Without loss of generality it will be assumed that 2 0Tg  . The 

controller design is explained as follows. 

Introducing K  as design constants, we introduce 1 2 1z x K x   and 2 3 3( )sz x x  , which 

results in  

1 2 1 1x x z K x



              (5.12) 

Differentiate 1z  we get, 1 2 1z x K x

  

   now substitute the value of  1x


 and  2x


from (5.11) 
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             (5.13) 

similarly  

2 1 2 2 3( )T T sz f g r x
 

            (5.14) 

Now choose a Lyapunov function 
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               (5.15) 

Substituting the values 1x


 and 1z


,  then by rearranging we get 
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1 1 1 2 3 2 2 1
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             (5.16) 

The system will be asymptotically stable if RHS of the equation (5.16) is negative. This 

can be achieved by assuming 
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11
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with this the equation (5.16) become 

2 2 2

1 1 2( ) 0f T S

d
L K x K z K z

dt
           

We have to select the design constants ( K , TK , SK ) in such a way that the eigen-values 

of the linear system have negative real parts. 

Now by equating (5.14) and (5.18) we have  
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            (5.19) 

By differentiating equation (5.17), and using (5.12), (5.13) and the relation 2 3 3( )sz x x  , 

we can get  

1 13 11
3 2 3

13 1 1 1
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[ (1 ) ( )( )]
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s T T

P B EM
x x K K x K K

B E M M
 



           (5.20) 

5.4 Results and discussion 

For control substantiation, the system in Figure 5.1 is chosen where three phase to 

ground fault is injected close to bus 4 (as shown by the point F in Figure 5.1) at t = 0.5s. 

Fault is removed after 4 cycles (0.0667s) without changing the topology. The UPFC 

placed at bus 3 is activated after fault clearance. The design constants selected are

0.1K  ; 0.2TK   and 90SK  . Simulation results are compared with the Lead-Lag 

controller explained in Chapter 3. System parameters and initial conditions are same as 

given in Table 3.2. 
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Figure 5.2 shows the variation of rotor angle of the generator-1 with respect to generator 

2 (δ12). With the proposed controller, the generator load angle increases from an initial 

value of 14.6
0
 (0.255rad) to a maximum value of 19.8

0
 (0.345rad) and then returns back 

to initial value. Here the system gets stabilized within two seconds and thus the proposed 

controller gains an advantage over the conventional controller where it takes four 

seconds for the same. Angular speed variation of generator-1 is shown in Figure 5.3. 

 

 

Figure 5.2: Load angle variation of generator-1 at Pe=0.5, Qe=0.3pu 

 

 

Figure 5.3: Speed Variation of generator-1 at Pe=0.5, Qe=0.3pu 
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Figure 5.4 shows the active power variation of generator-1 over a time period of 3.6s. 

The number of major oscillations and settling time has a smaller value in the presence of 

new controller. The terminal voltage variation of generator is shown in Figure 5.5. On 

employing the proposed nonlinear control, it is confirmed that there is no unnecessary 

side effect on the generator terminal voltage.   

 

 

Figure 5.4: Active power Variation of generator-1 at Pe=0.5, Qe=0.3pu 

 

 

Figure 5.5: Terminal voltage variation of generator-1 at Pe=0.5, Qe=0.3pu 
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5.5 Conclusion 

In this chapter, a nonlinear dynamic representation for a two-area power system with 

UPFC as stabilizing controller was proposed. The proposed model is free from algebraic 

equations. This representation is necessary for converting the nonlinear power system 

equations into standard parametric feedback form. A nonlinear control scheme is 

proposed for the UPFC which is faster in damping inter-area oscillation. The simulation 

results support the analytical approach and prove effective of the designed controller.    
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Chapter 6 

 

Integrated Linear-Nonlinear Control of Multi-Machine 
Power System with UPFC 

6.1 Introduction 

In Chapter 5, the dynamics of UPFC is neglected. The power injection model neglects 

the dynamics of UPFC. However, when a power system is in its dynamic state, the 

energy stored in the DC capacitor of a UPFC changes. Hence, the active power absorbed 

by the shunt part is not equal to the active power converted back to the system by its 

series part. Therefore, when we describe the dynamics of a power system with a UPFC 

installed, the dynamics of the DC-link capacitor could not be neglected [60]. 

Secondly, A UPFC is a multifunctional device. AC voltage control, DC voltage control 

and damping control are the main functions of the UPFC. In Chapter 5, we explored only 

one degree of freedom of UPFC, i.e., damping control. The full utilization of the UPFC 

has not been achieved in Chapter 5.  

Motivated by the above observation, a new integrated linear-nonlinear (Hybrid) control 

procedure for a multi-machine power system is presented in this chapter. AC voltage 

control and DC voltage control have been achieved using a single multivariable, 

proportional–integral (PI) controller. This multi-input multi-output controller avoids the 

negative interaction between AC and DC voltage regulators. The nonlinear control signal 

for oscillation damping is derived using a relevant Lyapunov function as explained in 

Chapter 5. Finally, the adaptive law derived in Chapter 4 is used to adapt uncertain 

parameters of the generator. The block diagram representation of the proposed control 

scheme is shown in Figure 6.1. It consists of an uncertain parameter estimator and an 

integrated control signal generation portion. With the control input and adaptive law as 

shown in section 6.2-D, the system is globally asymptotically stable. In other words, all 
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the closed-loop signals like system states will be bounded. Simulation results on multi-

area power systems illustrate the effectiveness of the suggested method.  

 

 

Figure 6.1: Proposed hybrid controller 

6.2 System under study 

The system analyzed is shown in Figure 6.2. Here, the generators are represented by a 

third-order model [66]. In the proposed approach UPFC behaves as a controller for AC 

voltage regulation, DC voltage regulation and to damp system oscillations. Mechanical 

input power and loads are assumed to be constants. 

 

Figure 6.2: Sample two generator power system 
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A. Power system model 

Power system‟s differential equations are given below [1], [66]. 
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      1,..i n          (6.1)   

Here n is the number of generators.  In the above equation , sin( )ei i i n i i n i i nP B EV      , 

where i nV   and i n   are the bus voltage and phase angle, respectively.  ijB  represents the 

reactance of the admittance matrix. iE is the thi machine internal voltage.  

The dynamic model of UPFC is [60] 

( )dc
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             (6.2) 
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where  SH SH SHV V  and SR SRV V  SR are the output voltage from the shunt and  series 

transformer of UPFC respectively. / 2SH SH dcV m V ; / 2SR SR dcV m V . In this dcV  is the 

voltage across the DC- link capacitor, SHm , SRm and SH , SR are the amplitude 

modulation ratios and phase angles of the control signal of each VSC, respectively, 

which are the input control signals to the UPFC.  From (6.2) we can derive that 

  3 3 4 4 3 3

1
sin( ) sin( ) sin( )dc SH SH SH SR SR SR SR

dc dc

V B V V B V V V
C V

     


         (6.3) 

The bus voltages and phase angles of all the power system buses are constrained by the 

following set of algebraic power balance equations: 
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  (6.4) 

where LiP and LiQ are the active and reactive loads on the thi  bus and j jV E ; j j   for 

1 j n  . In addition, N is the number of non-generator buses in the power system. 

1/SH SHB jX ; 21/ ( )SR SR LB j X X  .  

B. Nonlinear dynamic model 

For the given power system, (6.1)-(6.4) form the set of algebraic-differential equations. 

Algebraic equations can be replaced by a set of differential equations as explained in 

section 5.2 by taking derivative of power balance equation. 
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   (6.5) 

where 1,...,i n n N   ;  Differentiating (6.4) as explained by (6.5)  we can get the new 

set of differential equation as 
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Parameters 11 44......a a , 11 43......b b  and 11 44........g g  are shown in the Appendix D. In (6.6a) 

SHm


, SRm


, SH


 as well as SR


 are the control inputs. Our aim is to define the control 

inputs. Once the control inputs are defined, the UPFC parameters  SHm , SRm , SH  and 

SR  can be obtained by integrating the control inputs. Equation (6.6a) can be written in 

the simplified form as  

[ ] [ ][ ] [ ]A x B G u
                              (6.6b) 

from this we can get 
1[ ] [ ] [ ]A B C   and 

1[ ] [ ] [ ]A G K   where  4 3C R  ; 4 4K R  . By 

defining 1 SHr m


 , 2 SHr 


 , 3 SRr m


 and 4 SRr 


 ; and using equation (6.1), (6.3) and (6.6) 

we get the new nonlinear dynamic representation as shown in (6.7): 
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C. Problem formulation  

In the two-area network, generator-1 is the machine being analyzed in detail, where as 

generator-2 is the machine away from the point of interest. Swing equations of 

generator-1 are adequate for the control formulation since only the generator speed 

variations are of concern. Let us start with the following coordinate transformation 

1 0 1 0 3 1 3[ ,   ,    sin( )]V                 (6.8) 

where 0  and 0  are  the pre fault load angle  and speed of generator-1. The choice of  

3x  renders the generator dynamic equation (6.1) in back stepping forms as explained in 

Chapter 5.  Derivative of 3x  is 

3 3 1 3 3 1 3 1 3sin( ) cos( )( )x V V     
   

             (6.9)  

Substitute values of 3V


, 3


 and 1


 from (6.7). We have 

3 1 1 1 2 2 3 3 4 4Tx f L r L r L r L r


               (6.10) 

where 

1 11 1 3 31 3 1 3sin( ) cos( )L K K V       ;  2 12 1 3 32 3 1 3sin( ) cos( )L K K V        

3 13 1 3 33 3 1 3sin( ) cos( )L K K V       ;  4 14 1 3 34 3 1 3sin( ) cos( )L K K V        

By using equations (6.1), (6.7) and (6.9) a new set of state equation can be constructed as 
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           (6.11)  

The above equation can be written as  

( , )x F x u


              (6.12) 



  

   

115 

 

D. Controller design 

In (6.12), there are four control variables. These variables are 1r , 2r , 3r  and 4r . It is 

discussed in detail in the subsequent sections. 

Control strategy for variables 1r and 2r of the shunt part of UPFC 

The shunt part converter of a UPFC is able to provide reactive power compensation for 

the transmission system so as to regulate the voltage magnitude 3V  of node 3 (see Figure 

6.2). In order to keep 3V  basically constant in the dynamic process, SHm may be 

controlled by the strategy of proportional and integral (PI) control to regulate the voltage 

deviation of 3V  from its expected reference value 3 .refV
 
As a result, the control law for 

the amplitude modulation index SHm  of shunt VSC can be logically given as 

1
1 3 3( )( )I

SH P ref

K
m K V V

s
             (6.13) 

The shunt part of a UPFC supplies active power to the DC-link capacitor dcC  to meet the 

demand of the series part. It is known that the direction of the exchange active power 

flow ( ShuntP ) between shunt VSC and the AC power system can be changed by means of 

regulating the variable SH  , so as to control the active power getting into or out of the 

DC capacitor. In order to keep the DC capacitor voltage constant during the dynamic 

process, it is reasonable to adopt a conventional PI controller to regulate the dynamics of 

dcV  relative to its reference value dcrefV . That is, the control law for the variable SH  of the 

shunt part converter of a UPFC is in the form 

2
2( )( )I

SH P dcref dc

K
K V V

s
             (6.14) 

To avoid negative interactions among these controllers a multivariable controller is 

designed where the multivariable PI control law is 
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3 3 3 3ref refSH I

P

dcref dc dcref dcSH

V V V Vm C
C

V V V Vs

       
              

      (6.15)  

where PC , 2 2

IC R  . The parameters of the multivariable PI controller are derived using 

the genetic algorithm explained in [65]. The parameters obtained are  

9.4 0.004

1.8 0.9
PC

 
  
 

;    
8.75 0.008

2.1 2.0
IC

 
  
   

We can even develop multivariable PID controller. The details are given below. Since 

PID controller increases the noise level in practical application, most of the power 

system researchers are using PI controller. Even though there is a little improvement in 

the simulation results with PID, results with PI controller are shown in this thesis.  

1
1 1 3 3( )( )I

SH P D ref

K
m K sK V V

s
   

             

2
2 2( )( )I

SH P D dcref dc

K
K sK V V

s
      

   
3 3 3 3 3 3ref ref refSH I

P D

dcref dc dcref dc dcref dcSH

V V V V V Vm C
C sC

V V V V V Vs

          
                    

 

7.4 0.39

0.35 4.9
PC

 
  
 

; 
6.35 0.05

0.1 2.9
IC

 
  
 

; 
5.75 0.15

0.1 6.09
DC

 
  
   

Control strategy for variables 3r and 4r of the series part of UPFC 

As shown in Figure 6.2, the series part of a UPFC generates an AC voltage source, 

whose magnitude and phase angles are restricted in the following set 

2

max{( , ) 0 ,0 2 }SR SR SR SR SRS V R V V         

Control of UPFC injected power is essential for oscillation damping. One way of 

achieving this is by varying SRV under constant phase angle .SR  This requires that 

4 0SR r


   



  

   

117 

 

 With this assumption let us start the nonlinear control design by rewriting (6.11) as 

1 2

1 13 1
2 3 2 2

1 1

3 3 4

( )m

T

x x

P B E
x x x

M M

x f L x













  




 

          (6.16) 

where 1 1 1 2 2( )T Tf f L r L r    and  4 3x r  is the virtual control input, 2 1 1 0/( )D M    is 

considered as an uncertain parameter, 1 1/mP M  and  13 1 1( ) /B E M  are constants instead of 

functions of states. by assigning 1 1( ) 0f x  ; 1 1( ) 1x  ; 1 1( ) 0x  ; 1 0  ; 

2 1 2 1 1( , ) /mf x x P M ; 2 1 2 13 1 1( , ) ( ) /x x B E M   ;  2 1 2 2( , )x x x  ;   2 1 1 0/( )D M   ;   

3 1 2 3( , , ) Tf x x x f ;  3 1 2 3 3( , , )x x x L  ;   4 3x r  ;   3 1 2 3( , , ) 0x x x  ;    3 0   

equation (6.16) can be transformed into standard parametric feedback form as shown 

1 1 1 1( ,.., ) ( ,.., ) ( ,.., )T

i i i i i i i i ix f x x x x x x x  


     (1 )i n     (6.17) 

Here n  represents the order of the system which equals to three for our case; and 

1 3nx r  . It can be inferred that if , i  and i  are all smooth functions.  Now the objective 

of our suggested controller is to design the control input 3.r  Equation (6.16) thus 

becomes a special case of strict feedback form where back stepping can be used for the 

controller design.  

A power system with a UPFC is a typical nonlinear system. Thus in order to achieve 

better control effectiveness, the control law for modulation index SRm  should be designed 

by adopting a nonlinear control approach. This can be achieved by defining an 

appropriate Lyapunov function. In equation (6.16) the control gain 3L  is bounded away 

from zero. Without loss of generality it will be assumed that 3 0L  . Now using the same 

control technique explained in Chapter 5 section 3, the control signal can be derived. 

Introducing K as design constant, we write 1 2 1z x K x   which results in 
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1 1 1x z K x



              (6.18)  

Differentiate 1z  we get, 1 2 1z x K x

  

   now substitute the value of  2x


 from (6.16) 

1 1
1 2 2 3

1 1

( )mP K
z K x x

M M
 



              (6.19) 

where 1 13 1K B E    

by defining 2 3 3( )sz x x  , we have 

1 1
1 2 2 2 3

1 1

( ) ( )m
s

P K
z K x z x

M M
 



              (6.20) 

similarly  

2 3 3 3T sz f L r x
 

             (6.21) 

Now choose a Lyapunov function 
2 2 2

1 1 2

2 2 2
f

x z z
L     

 
1 1 1 1 2 2( )f

d
L x x z z z z

dt

  

              (6.22) 

2 1 1 1
1 1 1 2 2 3 2 2 1

1 1 1

( ) [ ( ) ] [ ]m
f s

P K Kd
L K x z x K x x z z z

dt M M M
  



            (6.23) 

The system will be asymptotically stable if RHS of the equation (6.23) is negative. This 

can be achieved by assuming 

11
3 1 2 2 1

1 1

[ ( ) ]m
s T

PM
x x K x K z

K M
              (6.24) 

 1
2 1 2

1

S

K
z z K z

M



            (6.25) 

with this the equation (6.23) become 
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2 2 2

1 1 2( ) 0f T S

d
L K x K z K z

dt
          

We have to select the design constants ( K , TK , SK ) in such a way that the eigen-values 

of the linear system have negative real parts. 

Now by equating (6.21) and (6.25) we have  

1
3 1 2 3

3 1

1
[ ]s T s

K
r z K z f x

L M



            (6.26) 

By differentiating equation (6.24) and using (6.16), (6.19) and the relation 2 3 3( ),  sz x x

we can get  

  11 1
3 2 2 2 3 2

1 1 1

1 ( )( ) ( )m
s T T

PM K
x x K K x K K

K M M
   

   
         

  
   (6.27) 

To sum up, we have completed the hybrid controller design for a UPFC. The hybrid 

control strategy is proposed in combination with equations (6.15) and (6.26). 

Adaptive law for uncertain parameter 

Since the damping coefficient iD
 
is hard to be exactly measured, it is considered as 

uncertain parameter. Initial value of this uncertain parameter is considered as zero. This 

step is needed only to improve the efficiency of the controller. The adaptive law derived 

in Chapter 4 section 3 can be used here. The adaptive law for uncertain parameter is 

given by (4.25) and error dynamics is given by (4.26)  

1 1 1

1

[ ( ,.., ) ( ,.., )
i

i
i k k k k k

k k

f x x x x x
x


 







  





1 1( ,.., )( ( ,..., ))]T i

i k i i i ix x x x x
t


  


  





 
(6.28) 

1

1

( ,.., )
i

Ti
i k k k

k k

x x
x


  





 


          (6.29) 

In each iteration, the estimator generates an error variable and a new estimate for the 

unknown parameter. The accuracy of the estimator is reduced considerably during faults 
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but improved quickly after fault clearance. The reduction in the accuracy is because of 

the complexity of the tracking task. The other reason is the selection of initial condition. 

The initial value of the unknown parameter is chosen to be zero, indicating no prior 

parameter knowledge. The accuracy of the estimator also depends on the value of 

adaption gain selected. For better accuracy, we need to choose adaption gain as small as 

possible, but a very small value of adaption gain will induce chattering in the presence of 

time delays. 

6.3 Results and discussion 

The block diagram representation of the proposed controller is shown in Figure 6.1. 

Together with hybrid control design for UPFC and adaptive law for uncertain parameter 

the system (6.17) is globally asymptotic stable and  all the closed-loop signals like the 

system states and estimation errors ( i ) will be bounded. 

A. Dynamic performance of two-generator power system with proposed 

control 

The nonlinear simulation to check the performance of the controllers is done on a two-

area power system as shown in Figure 6.2. System parameters and initial conditions are 

same as given in Table 3.2. The design constants selected are 0.1K  , 0.2TK   and

90SK  . In Figure 6.3, the reference AC voltage, 3refV , is changed at 0.5s of the 

simulation from 1.018 to 1.0 pu. From Figure 6.3, it can be seen that performance of the 

AC voltage regulation is satisfactory. Corresponding load angle variation is shown in 

Figure 6.4. 

The control performance of the DC voltage controller is shown in Figure 6.5. In the 

simulation the reference DC voltage, dcrefV , is changed at 0.5s of the simulation from 1.0 

to 1.125 p. u. Load angle variation during the time of DC voltage change is shown in 

Figure 6.6. Performance of the DC voltage regulation is satisfactory.  
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Figure 6.3: Voltage (V3) variation with PI AC voltage regulator at Pe=0.5, Qe=0.3pu 

 

 

Figure 6.4: Load angle variation during AC voltage regulation at Pe=0.5, Qe=0.3pu 

 

 

Figure 6.5: DC voltage variation using PI DC voltage controller at Pe=0.5, Qe=0.3pu  
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Figure 6.6: Load angle variation during DC voltage regulation at Pe=0.5, Qe=0.3pu 

 

Further, performance of the damping controller is analyzed. A three phase to ground 

fault occurs on point F. The fault cleared after 0.15s by opening of the faulted line. The 

UPFC placed at bus 3 is activated after fault clearance. Figure 6.7 shows the load angle 

variation between the two machines (δ12). Figure 6.8 - Figure 6.11 show the changes in 

the angular speed, real power, terminal voltage (V3) and uncertain parameter of the 

generator-1, respectively. The results are compared against the traditional Lead-Lag 

controller derived in Chapter 3. The eigen value for the inter-area mode is improved 

from   -1.103 ± j 7.67 (Lead-Lag control) to -1.58 ± j 7.32 with the proposed hybrid 

controller. 

 

Figure 6.7: Load angle variation with damping controller at Pe=0.5, Qe=0.3pu 



  

   

123 

 

 

Figure 6.8: Speed variation with damping controller at Pe=0.5, Qe=0.3pu 

 

 

Figure 6.9: Real power variation with damping controller at Pe=0.5, Qe=0.3pu 

 

 

Figure 6.10: Voltage (V3) variation with damping controller at Pe=0.5, Qe=0.3pu   
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Figure 6.11: Uncertain parameter ( 2 ) variation at Pe=0.5, Qe=0.3pu   

 

 

Figure 6.12: DC voltage variation with damping controller at Pe=0.5, Qe=0.3pu   

 

The above figures show that the stability of the system is improved considerably. 

Control performance for the damping controller, DC voltage regulator and AC voltage 

regulator are satisfactory with the three UPFC controllers installed and being in joint 

operation. 

The designed controller with same parameters is now subjected to new operating 

conditions that show the proposed controller is independent of any particular operating 
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point. Angular speed variation of the generator-1 at Pe = 1.2 pu, Pe = 1.0 pu, Pe = 0.8 pu, 

Pe = 0.5 pu and Pe = 0.2 pu are shown in Figure 6.14 - Figure 6.17, respectively. 

The hybrid controller shows robust dynamic performance under wide variations in 

loading condition, and provides a significant improvement in dynamic performance in 

terms of peak deviations. 

 

 

Figure 6.13: Speed variation with damping controller at Pe = 1.2, Qe=0.3pu 

 

 

 

Figure 6.14: Speed variation with damping controller at Pe = 1.0, Qe=0.3pu 
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Figure 6.15: Speed variation with damping controller at Pe = 0.8, Qe=0.3pu 

 

 

Figure 6.16: Speed variation with damping controller at Pe = 0.5, Qe=0.3pu 

 

 

Figure 6.17: Speed variation with damping controller at Pe = 0.2, Qe=0.3pu 
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The load angle variation at different operating points with Lag / Lead power factors are 

shown below. The operating points are 1 1.0,  0.8,  0.2P pu . 

 

 

Figure 6.18: Load angle variation at Pe=1.0, Qe=0.3pu 

 

 

Figure 6.19: Load angle variation at Pe=1.0, Qe=-0.3pu 
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Figure 6.20: Load angle variation at Pe=0.8, Qe=0.3pu 

 

 

Figure 6.21: Load angle variation at Pe=0.8, Qe=-0.3pu 

 

 

Figure 6.22: Load angle variation at Pe=0.2, Qe=0.3pu 
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Figure 6.23: Load angle variation at Pe=0.2, Qe=-0.3pu 

 

B. Dynamic performance of three machine-nine bus system with proposed control 

The same controller is experimented on a three-machine nine bus WSCC power system 

[6]. The shunt transformer of the UPFC is connected to bus 9 and series transformer 

between buses 9 and 6. The single-line diagram of the test system is as shown in Figure 

6.24.  

Selection of UPFC Suitable Location:  

The locations of the UPFC device in the power system are obtained on the basis of static 

and/or dynamic performances. There are several methods for finding locations of UPFC 

in vertically integrated systems but little attention has been devoted to power, systems 

under network contingency. It is proposed to improve the performance of the system by 

selecting suitable locations for UPFC using all of its benefits under network 

contingencies. For a given contingency the possible locations of UPFC are analyzed. A 

contingency may involve a line having UPFC. Thus a location for UPFC is selected 

based on the best performance of the system. This UPFC may take care of many network 

contingencies. The following are the major steps involved in the approach for selection 

of UPFC location under a given network contingency. 

Step I: Identify the transmission corridors for the given network. 
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Step 2: Select some transmission lines as suitable locations for each transmission 

corridor. 

Step 3: Perform the power flow/dynamic stability analysis with UPFC connected in 

selected line for each transmission corridor for a given network contingency. 

Step 4: Compute settling time from the dynamic performance graph. 

Step 5: Prepare a list indicating location of UPFC, the value of settling time. 

Step 6: From the above list we can identify the most suitable location for UPFC, 

which gives quicker settling. 

The main advantage of keeping UPFC, between bus bars 9 and 6 is that the control of 

heavily loaded generator (G2) can be achieved. The locally measured signals from 

generator 2 can be used easily for simulation. Inter-area mode of oscillations can be 

easily damped as the UPFC is placed between transmission lines.   

 

Table 6.1: System eigen-values for the electromechanical modes  

UPFC with Lead-

Lag control 

Eigen-values Damping ratio Frequency (Hz) 

-0.89 ± j 12.66 0.0702 2.01 

-0.77 ± j 8.78 0.0876 1.397 

UPFC with 

Hybrid Control 

   

-1.61 ± j 12.37 0.1293 1.97 

-1.22 ± j 8.54 0.142 1.357 
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Figure 6.24: Three machine nine bus system 

 

The eigen-values for the electromechanical mode of oscillation is given in Table 6.1.  A 

computer simulation was performed on the test system.  The fault considered here is a 

three phase to ground fault near bus 4 and cleared by opening the line between the buses 

4–9 after an interval of 83ms. Several studies with various fault locations and different 

loading conditions were performed. However, due to limitations in space, only one set of 

results is presented here. Figure 6.25 - Figure 6.27 show the angular speed variation of 

the generators. The real power variations of the generators are shown in Figure 6.28 to 

Figure 6.30. Figure 6.31 and Figure 6.32 show the load angle variation of generator-2 

and generator-3 with respect to generator-1. 
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Figure 6.25: Speed variation at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

 

Figure 6.26: Speed variation at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

 

Figure 6.27: Speed variation at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 
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Figure 6.28: Power variation P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

 

Figure 6.29: Power variation at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

 

Figure 6.30: Power variation at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 
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Figure 6.31: Load angle (δ12) at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

 

Figure 6.32: Load angle (δ13) at P1 = 0.72, Q1=0.27, P2 = 1.63, Q2=0.1, P3 = 0.85, Q3= -0.11pu 

 

C. Dynamic performance of four-generator two-area power system with 

proposed control 

For inter-area mode analysis, the two-area and four machine test system shown in Figure 

6.33, is considered [1]. A nonlinear simulation was performed for a large disturbance. A 

three phase to ground fault at bus 9 was applied for 100 ms. This is shown by the point 

„F‟ in the Figure 6.33. The fault is cleared from the faulted line by opening the line 

between buses 8 and 9. Figure 6.34 - Figure 6.37 display a comparison between the 
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nonlinear simulations of the proposed hybrid controller with Lead-Lag controller 

examined for up to 10s. It is seen that the responses are very satisfactory.  

 

 

Figure 6.33: Four generator power system 

 

 

Figure 6.34: Load angle ariation (δ13) at P1 = 7.0, Q1=1.85, P2 = 7.0, Q2=2.35, P3 = 

7.2, Q3= 1.76, P4 = 7.0, Q4=2.02pu 

 

Table 6.2 shows the improvement in the eigen-values of the electromechanical modes 

with the proposed controller. It can be seen from the Table 6.2 that the controller 

improves the damping of the inter-area mode between area 1 and area 2 only. Other local 

modes between generators of the same group are untouched which is very desirable to 

avoid interaction through action of controllers. 
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Table 6.2: System eigen-values for the electromechanical modes 

UPFC with 

Lead-Lag  

control 

Eigen-values 
Damping 

ratio 

Frequency 

(Hz) 

-0.63 ± j 3.47 0.1786 0.55 

-0.472 ± j 6.78 0.07 1.08 

-0.502 ± j 6.91 0.073 1.1 

    

UPFC with 

Hybrid control 

-0.968 ± j 3.17 0.292 0.5 

-0.478 ± j 6.74 0.07 1.07 

-0.508 ± j6.90 0.072 1.099 

 

 

 

Figure 6.35: Load angle variation (δ23) at P1 = 7.0, Q1=1.85, P2 = 7.0, Q2=2.35, P3 = 

7.2, Q3= 1.76, P4 = 7.0, Q4=2.02pu 
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Figure 6.36: Terminal voltage variation (V9) at P1 = 7.0, Q1=1.85, P2 = 7.0, Q2=2.35, 

P3 = 7.2, Q3= 1.76, P4 = 7.0, Q4=2.02pu 

 

 

Figure 6.37:  Capacitor DC voltage (Vdc) at P1 = 7.0, Q1=1.85, P2 = 7.0, Q2=2.35, P3 = 

7.2, Q3= 1.76, P4 = 7.0, Q4=2.02pu 

 

The above nonlinear computer analysis shows that the integrated linear and nonlinear 

control scheme is faster in damping inter-area oscillations and efficient in achieving 

voltage regulation.  
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The load angle variation with hybrid PID controller is shown below. Figure 6.38 shows 

that the PID hybrid controller is giving better result than PI hybrid controller. In Figure 

6.39 the ripple content in the DC voltage is reduced considerably. Due to increase in the 

noise level while using PID for practical application, most of the researches are avoiding 

PID for power applications. 

 

 

Figure 6.38: Load angle variation (δ13) with PI and PID controller 

 

 

Figure 6.39:  Capacitor DC voltage (Vdc) 
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Chapter 7 

 

Conclusions and Future Work 

 

A general nonlinear dynamical model for power systems with UPFC as a stabilizing 

controller is introduced. This representation is appropriate to model a nonlinear power 

network with different FACTS devices. The advantage of this approach is that no algebraic 

equations are involved in the control design while the nonlinear behavior is retained. As 

demonstrated in Chapters 4, 5 and 6, this representation helps us to convert the nonlinear 

power system equations into standard parametric feedback form. Once the standard form is 

achieved, conventional and advanced nonlinear control techniques can be easily 

implemented. The net result is a power system dynamic representation that can be used for 

the design of a sophisticated FACTS damping controller. 

A nonlinear control scheme is developed to stabilize and damp the oscillations resulting 

from a disturbance such as a three phase to ground fault. The nonlinear control scheme is 

independent of the operating point. We target the stability of the generators by defining an 

appropriate Lyapunov function. The analytical expression of the nonlinear control law for 

the UPFC is obtained using back stepping method. Then, combining the nonlinear control 

strategy with the linear one for the other variables, a complete linear and nonlinear 

stabilizing controller is obtained. 

Finally, an adaptive law for estimating the uncertain parameters is derived to relax the need 

for approximating uncertain parameters such as damping coefficient, which is difficult to 

be measured precisely.  

The small signal analysis shows that the damping ratio of the electro-mechanical mode has 

been improved from 0.142 to 0.211 with the new controller for a two area power system. 
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This improvement in the damping ratio reduces the settling time from 3.67s of the 

conventional control to 2.59s with the designed hybrid control.  

In case of two-area four generators power system damping ratio of the inter-area mode 

between area-1 and area-2 has been improved from 0.1786 to 0.292 with a corresponding 

reduction in settling time. The settling time is reduced from 6.29s to 4.23s. Dynamic 

performance also shows a similar trend. Both these result shows that the proposed control 

strategy is more effective in improving system stability. 

The linear control methods are applied to the linearized power system. This method, 

however, tacitly assumes that the network variables remain in the neighbourhood of the 

desired operating point. This is not true. Continuous load change would be experienced 

by the generators in a power system in their daily operation and when there is a fault in 

the power system, drastic changes can occur. As the system conditions shift from the 

operating point at which the controller was optimized, the linear controllers show poor 

performance. The linearized controllers can deliver best results in the loading conditions 

at which they are designed.  

In future, studies may focus on design and implementation of a nonlinear control scheme 

with several FACTS devices in a multi-machine power system. The 68 bus NYPS-NETS 

test power system can be used for this purpose. Advanced random search on-line dynamic 

controllers like PSO, can be used for optimization.   

Secondly, a hardware setup can be used to fully understand the dynamic performance of the 

multiple FACTS devices, which would validate software simulation.  
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Appendix A. 
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Appendix B. 

 

Computation of parameters in Chapter 4 

SRL SR LX X X  ;    '

SRLTd SR L t dX X X X X    ;       '

TSHd t SH dX X X X   ;  '

Td t dX X X  ;            

DT TSHd SRL SH TdX X X X X  ;            TSHq t SH qX X X X    

SRLTq SR L t qX X X X X    ;       Tq t qX X X  ;            QT TSHq SRL SH TqX X X X X    

11 ( sin( )) /SH I DTa X V X ;        12 ( ) /SRL SH DTa X X X  ;           22 0a   

13 ( sin( ) sin( ) ) / 2SH SH SRL SR SR SH DTa m X m X X    ;       21 ( cos( )) /SH I QTa X V X ;  

23 ( cos( ) cos( )) / 2SRL SH SH SH SR SR QTa X m X m X   ;   11 ( sin( )) / 2SRL dc SH DTb X V X  ; 

12 ( cos( )) / 2SRL SH dc SH DTb X m V X  ;      13 ( sin( )) / 2SH dc SR DTb X V X  ; 

14 ( cos( )) / 2SH SR dc SR DTb X m V X  ;         21 ( cos( )) / 2SRL dc SH QTb X V X ; 

22 ( sin( )) / 2SRL SH dc SH QTb X m V X  ;        23 ( cos( )) / 2SH dc SR QTb X V X ; 

24 ( sin( )) / 2SH SR dc SR QTb X m V X   

The functions ( )i   selected 

1 1 1
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c x
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In this 1c , 2c , 3c ,   and   are all positive constants 
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Appendix C. 

  
Computation of parameters in Chapter 5 

11 3 3 31 1 3 1 34 4 3 42 sin( ) sin( )a G V B E B V        ;  

12 34 3 3 4 34 1 3 4 2 3 4sin( ) ( sin( ) cos( ))a B V B u u           ;    21 43 4 4 3sin( )a B V    ; 

13 31 3 1 3 1 34 3 4 3 4cos( ) cos( )a B V E B V V        34 4 1 3 4 2 3 4( cos( ) sin( ))B V u u      ; 

14 34 3 4 3 4 34 4 1 3 4 2 3 4cos( ) ( cos( ) sin( ))a B V V B V u u            ;

22 4 4 42 2 4 2 43 3 4 32 sin( ) sin( )a G V B E B V         34 1 3 4 2 3 4( sin( ) cos( ))B u u       

23 43 4 3 4 3cos( )a B V V      34 4 1 3 4 2 3 4( cos( ) sin( ))B V u u      ; 

24 42 4 2 4 2 43 4 3 4 3cos( ) cos( )a B V E B V V        34 4 1 3 4 2 3 4( cos( ) sin( ))B V u u       

31 3 3 31 1 3 1 33 32 cos( ) 2a B V B E B V       34 4 3 4 34 1cos( )B V B u   ; 

32 34 3 3 4cos( )a B V    ; 33 31 3 1 3 1 34 3 4 3 4sin( ) sin( )a B V E B V V         

34 34 3 4 3 4sin( )a B V V    ; 41 43 4 4 3cos( )a B V    ; 

42 4 4 42 2 4 2 43 3 4 32 cos( ) cos( )a B V B E B V           

                                                             44 4 34 1 3 4 2 3 42 ( cos( ) sin( ))B V B u u        

43 43 4 3 4 3 34 4 1 3 4sin( ) ( sin( )a B V V B V u        2 3 4cos( ))u    

44 42 4 2 4 2 43 4 3 4 3sin( ) sin( )a B V E B V V         34 4 1 3 4 2 3 4( sin( ) cos( ))B V u u       

11 31 3 1 3 1cos( )b B V E     ; 12 21 32 41 0b b b b    ;   22 42 4 2 4 2cos( )b B V E     ; 

31 31 3 1 3 1sin( )b B V E    ; 42 42 4 2 4 2sin( )b B V E   
11 34 4 3 4 21 42sin( )g B V g g       ;

12 34 4 3 4 41 22cos( )g B V g g      ;  31 34 3g B V 
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Appendix D. 

  
Computation of parameters in Chapter 6 

11 3 3 31 1 3 1 4 3 4 342 sin( ) sin( )( )SRa G V B E V B B                                                        

                                 3 3sin( ) sin( )SH SH SH SR SR SRB V B V       ;   34 11/ LB jX ; 

12 3 3 4 34sin( )[ ]SRa V B B    ;   14 3 4 3 4 34cos( )[ ]SRa V V B B     ; 

13 31 3 1 3 1 3 4 3 4 34cos( ) cos( )[ ]Ra B V E V V B B          

                                                       3 3 3 3cos( ) cos( )SH SH SH SR SR SRB V V B V V      ; 

21 4 4 3 34sin( )[ ]Ra V B B    ;     23 4 3 4 3 43cos( )[ ]SRa V V B B     ; 

22 4 4 42 2 4 2 3 4 3 432 sin( ) sin( )[ ]SRa G V B E V B B          4sin( )SR SR SRB V   ; 

24 42 4 2 4 2 4 3 4 3 43 4 4cos( ) cos( )[ ] cos( )SR SR SR SRa B V E V V B B B V V            ; 

31 3 33 3 31 1 3 1 4 3 4 342 [ ] cos( ) cos( )[ ]SRa V B B B E V B B           

                                                         3 3cos( ) cos( )SH SH SH SR SR SRB V B V      ; 

32 3 3 4 34cos( )[ ]SRa V B B    ;     34 3 4 3 4 34sin( )[ ]SRa V V B B    ; 

33 31 3 1 3 1 3 4 3 4 34sin( ) sin( )[ ]SRa B V E V V B B          

                                                           3 3 3 3sin( ) sin( )SH SH SH SR SR SRB V V B V V       ; 

41 4 4 3 43cos( )[ ]SRa V B B    ;    43 4 3 4 3 34sin( )[ ]SRa V V B B    ; 

42 4 44 4 42 2 4 2 3 4 3 432 [ ] cos( ) cos( )[ ]SRa V B B B E V B B                                                   

                                                                                                    4cos( )SR SR SRB V   ; 

44 42 4 2 4 2 4 3 4 3 34sin( ) sin( )[ ]SRa B V E V V B B          4 4sin( )SR SR SRB V V   ; 
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11 31 3 1 3 1cos( )b B V E     ; 12 21 32 41 0b b b b    ;   22 42 4 2 4 2cos( )b B V E     ; 

13 3 3 3 3( sin( ) sin( )) / 2SH SH SH SR SR SRb m B V m B V       ; 

23 4 4( sin( )) / 2SR SR SRb m B V    ; 

31 31 3 1 3 1sin( )b B V E    ; 33 3 3 3 3( cos( ) cos( )) / 2SH SH SH SR SR SRb m B V m B V       ; 

42 42 4 2 4 2sin( )b B V E    ; 43 4 4( cos( )) / 2SR SR SRb m B V     ; 

11 3 3( sin( )) / 2SH dc SHg B V V    ;  12 3 3cos( )SH SH SHg B V V     ; 

13 3 3( sin( )) / 2SR dc SRg B V V     ; 14 3 3cos( )SR SR SRg B V V    ; 

23 4 4( sin( )) / 2SR dc SRg B V V    ; 24 4 4cos( )SR SR SRg B V V     ;  21 22 0g g  ; 

31 3 3( cos( )) / 2SH dc SHg B V V    ; 32 3 3sin( )SH SH SHg B V V     

33 3 3( cos( )) / 2SR dc SRg B V V     ; 34 3 3sin( )SR SR SRg B V V     ; 

43 4 4( cos( )) / 2SR dc SRg B V V     ; 44 4 4sin( )SR SR SRg B V V     ;   41 42 0g g  ; 

1 11 1 3 31 3 1 3sin( ) cos( )L K K V       ; 2 12 1 3 32 3 1 3sin( ) cos( )L K K V       ; 

3 13 1 3 33 3 1 3sin( ) cos( )L K K V       ; 4 14 1 3 34 3 1 3sin( ) cos( )L K K V         

 1 1 0 11 1 3 3 1 3 31( ) sin( ) cos( )(1 )Tf C V C             

2 0 12 1 3 32 3 1 3( )( sin( ) cos( ))C C V          13 1 3 33 3 1 3( sin( ) cos( ))C C V        

                      
 3 3 4 4 3 3sin( ) sin( ) sin( )SH SH SH SR SR SR SR

dc dc

B V V B V V V

C V
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