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Synopsis 

This thesis investigates the problem of multiple damage detection in vibrating structural members 

using the dynamic response of the system. Changes in the loading patterns, 

weakening/degeneration of structures with time and influence of environment may cause cracks 

in the structure, especially in engineering structures which are developed for prolonged life. 

Hence, early detection of presence of damage can prevent the catastrophic failure of the 

structures by appropriately monitoring the response of the system. In recent times, condition 

monitoring of structural systems have attracted scientists and researchers to develop on line 

damage diagnostic tool. Primarily, the structural health monitoring technique utilizes the 

methodology for damage assessment using the monitored vibration parameters. In the current 

analysis, special attention has been focused on those methods capable of detecting multiple 

cracks present in system by comparing the information for damaged and undamaged state of the 

structure. In the current research, methodologies have been developed for damage detection of a 

cracked cantilever beam with multiple cracks using analytical, Finite Element Analysis (FEA), 

fuzzy logic, neural network, fuzzy neuro, MANFIS, Genetic Algorithm and hybrid techniques 

such as GA-fuzzy, GA-neural, GA-neuro- fuzzy. Analytical study has been performed on the 

cantilever beam with multiple cracks to obtain the vibration characteristics of the beam member 

by using the expressions of strain energy release rate and stress intensity factor. The presence of 

cracks in a structural member introduces local flexibility that affects its dynamic response. The 

local stiffness matrices have been measured using the inverse of local dimensionless compliance 

matrix for finding out the deviation in the vibrating signatures of the cracked cantilever beam 

from that of the intact beam. Finite Element Analysis has been carried out to derive the vibration 

indices of the cracked structure using the overall flexibility matrix, total flexibility matrix, 

flexibility matrix of the intact beam. From the research done here, it is concluded that the 

performance of the damage assessment methods depends on several factors for example, the 

number of cracks, the number of sensors used for acquiring the dynamic response, location and 

severity of damages. Different artificial intelligent model based on fuzzy logic, neural network, 

genetic algorithm, MANFIS and hybrid techniques have been designed using the computed 

vibration signatures for multiple crack diagnosis in cantilever beam structures with higher 

accuracy and considerably low computational time.  
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Crack diagnosis in vibrating structures has drawn a lot of attention from the science and 

engineering community in the last three decades. The presence of cracks in a structure, if 

undetected for longer period of time will lead to the failure of the system and may cause loss 

of life and loss of resources. Utilization of the dynamic response of the member is one of the 

technique, which has been widely accepted for crack diagnosis in different engineering 

systems. The present chapter emphasizes the various techniques that are being used for fault 

diagnosis. The background and motivation in the field of analysis of dynamically vibrating 

damaged structures has been depicted in the first section. The second part of this chapter 

describes the aims and objective of the research. The last part of the current chapter gives a 

brief description of each chapter of the thesis for the current research. 

1.1 Motivation for damage identification 
Engineering structures play a vital role in the lives of a modern community. They are 

normally designed to have longer life period. The failure or poor performance of engineering 

structures may lead to disruption of transportation system or may result in loss of lives and 

property. It is therefore, very important to ensure that the structural members perform safely 

and efficiently at all times by monitoring their structural integrity and undertaking 

appropriate remedial measures.  

Many techniques have been employed in the past for fault diagnosis. Some of these are visual 

(e.g. dye penetrant method) and other use sensors to detect local faults (e.g. acoustic 

emission, magnetic field, eddy current, radiographs and thermal fields). These methods are 

time consuming and cannot indicate that a structure is fault free without testing the entire 

structure in minute details. Furthermore, if a crack is buried deep within the structure it may 

not be detectable by these localized methods. Based on the changes in the modal parameters 

researchers have developed Artificial Intelligence (AI) based techniques for fault 

identification for single crack scenario. The AI techniques have been designed with an aim 

for faster and accurate estimation of fault present in the structures. 

Motivated by the above reasons, this thesis aims at exploring the use of AI techniques such 

as fuzzy, neural network, genetic algorithm and hybrid methods such as fuzzy-neuro, 

Chapter 1
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genetic-fuzzy, genetic-neural and genetic-neural-fuzzy for multiple crack diagnosis in 

engineering structures at an early stage by capturing the vibration parameters. 

1.2 Focus of the thesis 

The process of monitoring and identifying faults is of great importance in aerospace, civil 

and mechanical engineering. The structures associated with aerospace, civil or mechanical 

engineering must be free from cracks to ensure safe operation. Cracks in machine or any 

engineering systems may lead to catastrophic failure of the machine and must be detected 

early. 

In different engineering systems (e.g. steel structures, industrial machinery) beams are 

commonly used as structural members and are subjected to static and dynamic loads. Due to 

the loading and environment effect they may experience cracks, which drastically reduce the 

life cycle of the structural system. The cracks present in the system may be considered to 

develop the analytical model to study the effect of cracks on the modal response of the 

system. The damage in the beam member introduces the stiffness, which can be used along 

with the prevailing boundary conditions to formulate the vibration characteristic equation to 

obtain the mode shape, natural frequency of vibration, crack parameters such as relative 

crack severities and relative crack positions. The current analysis aims at development of a 

multi crack identification tool for intelligent condition monitoring of structures using the 

change in modal parameters of the structural member due to presence of cracks.  

For this purpose, a cantilever beam with uniform cross section has been considered, which 

act as a structural member in various engineering applications. The dynamic responses of the 

cantilever beam have been measured in the undamaged state, which act as references. 

Afterwards, multiple damages have been induced and sequential modal identification 

analysis has been performed at each damaged stage, aiming at finding adequate 

correspondence between the dynamic behavior and the presence of cracks in the structure. 

Comparison between different techniques based on the performance to identify the various 

cracks level have been carried out to find out the most suitable method, to identify multiple 

cracks in damaged structures. The aim is to use the dynamic response parameters to develop 

AI methods for structural health monitoring in multiple crack scenario.   
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In the present study, literature review has been carried out related to the domain of fault 

diagnosis in engineering applications. From the previous analysis, it is observed that the 

results obtained by the researchers have not been systematically used to develop tools for real 

applications such as multiple crack diagnosis. In the current investigation, an attempt has 

been made to design and develop a multiple crack diagnostic tool using the dynamic behavior 

of cracked and undamaged cantilever beam structure using theoretical analysis, finite element 

analysis, experimental analysis and artificial intelligence techniques. 

The different phases for the present study are listed below: 

1. Theoretical analysis for the cantilever structure with two transverse cracks has been 

performed to evaluate the modal parameters. 

2. Finite Element Analysis (FEA) has been carried out to measure the vibration parameters of 

the cracked and undamaged cantilever beam with different multiple crack configurations. 

3. Experimental set up has been developed and is being used to obtain the values of first three  

relative natural frequencies and average relative mode shape differences of the cracked 

cantilever member. 

4. The modal parameters such as natural frequencies and mode shapes obtained from 

theoretical, finite element and experimental analysis have been used to design and train the 

artificial intelligence techniques. The developed AI based methodologies utilizes the first 

three relative natural frequencies and first three average relative mode shape differences as 

the input parameters and relative crack locations and relative crack depths are the outputs 

from the AI model. 

The theoretical study has been developed for a cantilever beam with two transverse cracks to 

obtain the dynamic characteristics by utilizing the expressions of strain energy release rate 

and stress intensity factors. The presence of cracks produces the local flexibility at the 

vicinity of the crack locations and reduces the stiffness of the structure. With different 

boundary conditions the stiffness matrix has been derived to find out the effect of relative 

crack depths on the dimensionless compliances of the structure. The derived vibration 

signatures from theoretical, finite element and experimental analysis of the beam member 

have been used to design and train the AI model (fuzzy, neural network, genetic algorithm, 
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fuzzy-neuro, MANFIS, genetic-neuro, genetic-neuro-fuzzy model). Finally, relative crack 

locations and relative crack depths are the outputs from the model. 

The results obtained from the various methodologies such as theoretical, finite element, 

experimental, fuzzy, neural network, genetic algorithm and hybrid techniques like fuzzy-

neuro, MANFIS, genetic-neuro, genetic-neuro-fuzzy devised in the present research have 

been compared and a close agreement has been found. Concrete conclusions have been 

drawn from the results of respective sections. Experimental analysis has been carried out to 

validate the results from the different techniques cited above.  

1.3 Organization of the thesis 
 
The content of the thesis is organized as follows: 

The analyses carried out in the current research for fault identification in damaged structures 

are presented in fourteen chapters. 

Chapter 1 is the introductory one; it states about the effect of crack on the functionality of 

different engineering applications and also discuses about the methodologies being adopted 

by the scientific community to diagnose faults in different industrial applications. The 

motivation to carry out the research along with the focus of the current investigation is also 

explained in this chapter. 

Chapter 2 is the literature review section representing the state of the art in relation to 

published work from the field of damage detection using vibration analysis and fault 

detection using AI techniques. This section also expresses the classification of methodologies 

in the domain of fault detection and also explains the reasons behind the direction of the 

current research. 

Chapter 3 introduces the theoretical model to measure the vibration indicators (natural 

frequencies, mode shapes) by using SIF, strain energy release rate and laying down different 

boundary conditions. The crack developed in the structure generates flexibility at the vicinity 

of the crack which in turn, gives rise to a reduction in natural frequencies and the change in 

the mode shapes. This basis has been applied in the numerical analysis to identify the 
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presence of cracks in the cantilever structure and also to evaluate the crack locations and 

their severities. 

Chapter 4 of the thesis describes the finite element analysis being applied on the cracked 

beam element to measure the dynamic response of the multiple cracked cantilever beams, 

subsequently the measured values are used to identify the presence of cracks and crack 

parameters. The results from finite element method are compared with the results from 

experimental method and numerical analysis for validation.  

Chapter 5 shows the applicability of fuzzy inference system for fault diagnosis in cracked 

structure. The procedures required for developments of the fuzzy models are outlined in this 

chapter. The gauusian, triangular and trapezoidal membership function based intelligent 

model with their detail architecture are briefly discussed. The results from the fuzzy models 

are compared with the experimental results and discussions regarding the same have been 

presented.   

Chapter 6 introduces an inverse analysis based on the artificial neural network technique for 

effective identification of crack damage in a cracked cantilever structure containing multiple 

transverse cracks.  The multi layer perceptron with the input and output parameters are 

presented and explained in detail. The results from artificial neural network are presented and 

discussed to demonstrate the applicability of the AI model. 

Chapter 7 analyses the application of genetic algorithm method to design a damage 

diagnostic tool. Different evolutionary techniques form GA methodology are presented and 

discussed in length. Results for relative crack locations and relative crack depths from GA 

model are compared with experimental results for validation. Finally, the summary of the 

analysis of GA for crack prediction is presented. 

Chapter 8 discusses about the hybrid fuzzy-neuro model for estimation of crack parameters 

present in a structural system. The steps adopted to design the fuzzy layer and neural layer of 

the fuzzy-neuro system are presented. A discussion about the comparison of results from the 

Gaussian fuzzy-neuro, Trapezoidal fuzzy-neuro, Triangular fuzzy-neuro, numerical, finite 

element and experimental analysis is presented. 
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Chapter 9 outlines the working principles of multiple adaptive neuro fuzzy inference system 

(MANFIS) to identify the presence of cracks and predict the location of cracks and their 

depths. The adaptive system utilizes the modal parameters as inputs and finally, gives the 

output as relative crack locations and relative crack depths.  The predicted results from the 

MANFIS are compared with the results from theoretical, Gaussian fuzzy-neuro, GA, FEA, 

experimental analysis and a discussion about the comparison is presented. 

 

Chapter 10 describes a novel hybrid GA-fuzzy model designed for multiple crack diagnosis 

of beam structures. The design procedures of the first layer (GA model) and the second layer 

(fuzzy model) of the hybrid system are systematically explained with the detailed 

architecture of the proposed system. The discussions about the results from GA-fuzzy model 

and evaluation of the accuracy of its performance have been stated.  

 

Chapter 11 presents two intelligent inverse models i.e. two layer (GA-neural) and three layer 

(GA-neuro-fuzzy) hybrid intelligent system to identify both locations and severities of the 

damages in structural systems based on genetic algorithm, neural network, and fuzzy logic. 

Methods for development of the GA, neural and fuzzy segments of the hybrid intelligent 

models are outlined.  The predicted values for relative crack locations and relative crack 

depths from GA-neuro-fuzzy, GA-neural, GA-fuzzy, MANFIS, FEA, theoretical, 

experimental analysis are compared and the conclusions regarding its performance are 

depicted. 

Chapter 12 presents the experimental procedure along with the instruments used for 

validating the results from methodologies being adopted in the present analysis for multiple 

crack identification. The results from the developed experimental set-up have been obtained 

and presented for discussion. 

Chapter 13 provides a comprehensive review of the results obtained from all the techniques 

adopted in the current research. 

Chapter 14 discusses the conclusions drawn from the research carried out on the current topic 

and gives the recommendations for scope of future work in the same domain. 
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This chapter presents a state of the art about dynamic model based damage identification in 

structural systems. The main goal is to review the developments made by researchers during 

the past few decades. Issues addressed are historical context of the applicability of damage 

methods, general methods of classification, and a review of a selected group of methods. 

Finally, the applications of artificial intelligence techniques for crack diagnosis are discussed 

from the past and recent developments. 

2.1  Introduction 

The literature review section presents the analysis of the published work confined to the areas 

of structural health monitoring, damage detection algorithm, fault diagnostic methodologies 

and modal testing. The review begins with the description of different vibration analysis 

methods used for damage identification. Next, dynamics of cracked structures, fault 

identification methodologies to develop crack diagnostic tool using Finite Element Analysis 

(FEA) and wavelet technique are discussed. Following the artificial intelligence techniques 

(fuzzy logic, neural network, genetic algorithm, MANFIS and hybrid techniques) intelligent 

models for crack identification can be designed. The aim of the present investigation is to 

propose an artificial intelligent technique, which can be capable to predict the presence of 

multiple cracks in vibrating structures. The possible directions for research can be obtained 

from the analysis of the literature cited in this section.  

From the published works it is seen that the idea regarding fault finding in different systems 

varies widely. In spite of the fact that, there is a wide variation in development of fault 

diagnostic methodology next section presents the review of the literature pertaining to 

damage detection and fault identification. 

2.2 Methodologies for fault detection 

Researchers to date have focused on many methodologies for detection of fault in various 

segments of engineering structures. Vibration based methods are found to be effectively used 

Chapter 2 
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for health monitoring in faulty systems. The recent methods adapted for fault diagnosis are 

outlined below. 

Moore et al. [1] have proposed a new method to identify the size, location, and orientation of 

a single crack in a simply supported plate subjected to free vibration by employing finite 

element method and Markov-chain Monte-Carlo implementation of Bayes’ Rule. They have 

claimed that their approach can be effectively used to identify the crack present in real 

engineering system. Lang et al. [2] have applied the concept of transmissibility to the non-

linear case by introducing the transmissibility of Non-linear Output Frequency Response 

Functions. They have developed a NOFRF transmissibility-based technique for the detection 

and location of both linear and non-linear damage in MDOF structural systems. The results 

from their proposed technique have been verified by the numerical simulation and 

experimental analysis on a three storey building. Hein et al. [3] have presented a new method 

for identification of delamination in homogeneous and composite beams. They have used 

Haar wavelets and neural networks to establish the mapping relationship between 

frequencies, Haar series expansion of fundamental mode shapes of vibrating beam and 

delamination status. They have revealed that the simulations show the proposed complex 

method can detect the location of delaminations and identify the delamination extent with 

high precision. Huh et al. [4] have proposed a new local damage detection method for 

damaged structures using the vibratory power estimated from accelerations measured on the 

beam structure. A damage index is newly defined by them based on the proposed local 

damage detection method and is applied to the identification of structural damage. Numerical 

simulation and experiment are conducted for a uniform beam to confirm the validity of the 

proposed method. In the experiments, they have considered the damage as an open crack 

such as slit inflicted on the top surface of the beam. Salam et al. [5] have proposed a 

simplified formula for the stress correction factor in terms of the crack depth to the beam 

height ratio. They have used the proposed formula to examine the lateral vibration of an 

Euler-Bernoulli beam with a single edge open crack and compared the mode shapes for the 

cracked and undamaged beam to identify the crack parameters. Douka et al. [6] have 

presented a method for crack identification based on the sudden change in spatial variation of 

the transformed response of the beam structures using wavelet analysis. They have 
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established an intensity factor law for accurate prediction of crack size and the results from 

the proposed method has been validated experimentally. Nahvi et al. [7] have developed a 

technique for identification of crack in cantilever beam using analytical, finite element 

method based on measured natural frequencies and mode shapes of the beam structure. The 

results from the proposed method have been authenticated using the results obtained from 

experimental analysis. Tahaa et al. [8] have introduced a method to improve pattern 

recognition and damage detection by supplementing intelligent health monitoring with used 

fuzzy inference system. The Bayesian methodology is used to demarcate the levels of 

damage for developing the fuzzy system and is examined to provide damage identification 

using data obtained from finite element analysis for a pre-stressed concrete bridge. Mahamad 

et al. [9] have proposed an artificial neural network (ANN) based methodology to predict 

accurate remaining useful life (RUL) for a bearing system. The ANN model has been 

designed using measurements of hazard rates of root mean square and kurtosis from its 

present and previous state. Kong et al. [10] have proposed a fault diagnosis methodology 

using wavelet transformer fuzzy logic and neural network technique to identify the faults. 

They have found a good agreement between analytical and experimental results. Liu et al. 

[11] have taken the help of genetic algorithm (GA) for optimal sensor placement on a spatial 

lattice structure. They have taken the model strain energy (MSE) and modal assurance 

criterion (MAC) as the fitness function. A computational simulation of 12-bay plain truss 

model has been used as modified GA and the data were compared against the existing GA 

using the binary coding method and found better results through the modified GA. Sanza et 

al. [12] have presented a new technique for health monitoring of rotating machinery by 

integrating the capabilities of wavelet transform and auto associative neural network for 

analyzing the vibration signature. The proposed technique effectiveness has been evaluated 

using the numerical and experimental vibration data and the developed technique has 

demonstrated accurate results. Hoffman et al. [13] have employed a diagnostic technique 

based on neural network. As described in the paper, it is impossible to determine the degree 

of imbalance in a bearing system using single vibration feature and to overcome this problem 

they have used the neural network technique for processing of multiple features. For the 

purpose of fault detection of different bearing conditions they have employed different neural 

network technique and compared their performances. They have found that the developed 
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algorithm can be suitably used for identifying the presence of defects. Murigendrappa et al. 

[14] have proposed a technique based on measurement of change of natural frequency to 

detect cracks in long pipes containing fluid at different pressure. In their experimental 

analysis they have used aluminium & mild steel Pipes with water as the fluid and used 

pressure gauges to obtain the change in natural frequency which are subsequently used to 

locate the crack present on the pipes carrying fluids. Darpe et al. [15] have studied the 

unbalanced response of a cracked rotor with a single centrally situated crack subjected to 

periodic axial impulses using an electrodynamics exciter for both rotating & non rotating 

condition. They have found that the spectral response of the crack rotor with and without 

axial excitation is found to be distinctly different. They have concluded that the response of 

the rotor to axial impulse excitation can be used as a reliable diagnosis tool for rotor crack. 

Curry et al. [16] have proposed a closed loop system with the help of sensors to formulate a 

fault detection and isolation methodology based on fixed threshold. They have observed that 

the proposed technique has been capable of detecting and isolating failures for each of the 

particular sensors.  

The various techniques employed by the researchers in the domain of fault detection varies 

with their approach to identify the faults present in a system. The next section depicts the 

categorization of the different methods used for fault diagnosis in engineering systems. 

2.3  Analysis of different methodologies for crack detection  
In this current investigation, the various methods applied for crack identification in damaged 

dynamic structures have been described briefly. The different methods that have been 

proposed by various authors for damage identification are sectioned into four different 

categories such as: 

 

1 Classical method 

2 Finite Element Method  

3 AI method 

4 Miscellaneous methods. 
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2.3.1  Crack detection using classical methods 

In the current section, spatial variation of the transferred response, modal response methods, 

energy based method, analytical methods, algorithms based on vibration etc. used for 

locating the crack location and  its intensity in dynamically vibrating damaged structures 

have been discussed. The research papers connected to the above techniques are discussed 

below. 

Muller et al. [17] have proposed a method for crack detection in dynamic system. They have 

established a relation between shaft cracks in turbo rotors by applying a model-based method 

using the theory of Lyapunov exponents. In their research, they have studied chaotic motions 

and strange attractors in turbo rotors. Owolabi et al. [18] have carried out experimental 

investigations of crack location and crack intensity for fixed beams and simply supported 

beams made of Aluminum. They have measured the changes in the first three natural 

frequencies and the corresponding amplitudes to forecast the crack in a structure.  

Chinchalkar [19] has developed a generalized numerical method for fault finding using finite 

element approach. His approach is based on the measurement of first three natural 

frequencies of the cracked beam. The developed method of fault detection accommodates 

different boundary conditions and having wide variations in crack depth. Tada et al. [20] 

have established a platform to formulate compliance matrix in damaged structural members 

for estimating the crack location and crack depth. Loutridis et al. [21] have proposed a new 

technique for crack detection in beam based on instantaneous frequency and empirical mode 

decomposition. The dynamic behaviors of the structure have been investigated both 

theoretically and experimentally. They concluded that the variation of the instantaneous 

frequencies increases with increase in crack depth and this variation have been used for 

estimation of crack size.  

Song et al. [22] have described an exact solution methodology based on Laplace transform to 

analyze the bending free vibration of a cantilever laminated composite beam having surface 

cracks. They have used the Hamilton’s variational principle in conjunction with Timoshenko 

beam model to develop the technique for damage detection in crack structure. Ravi et al. [23] 

have carried out the modal analysis of an aluminium sheet having micro cracks. They have 

used compression loading to generate the micro cracks on the surface of the sheet and 
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monitored the deformation using the acoustic emission technique. Using the lines scans 

around the area of deformation; they have detected the effect of micro cracks and the modal 

parameters of the alumimiun sheet specimen. Law et al. [24] have proposed a time domain 

method for crack identification in structural member using strain or displacement 

measurement. They have modeled the open crack using Dirac delta function and evaluated 

the dynamic response based on modal superposition. They have validated the proposed 

identification algorithm by comparing the results from impact hammer tests on a beam with a 

single crack. Dado [25] has formulated a mathematical model to predict the crack location 

and their severities for beams with various end conditions such as pinned-pinned, clamped 

free, clamped-pin and clamped-clamped. They have developed the mathematical model, 

assuming the beam to be a rectangular Euler-Bernoulli beam. They have concluded that, 

though the assumption of the beam does not meet the requirements for real time application 

but the results obtained for the model developed can be used as a initial step to formulate 

crack identification methodology which can be used in general practice. Douka et al. [26] 

have studied the non-linear dynamic behavior of a cantilever beam both theoretically and 

experimentally. They have analyzed both the simulated and experimental response data by 

applying empirical mode decomposition and Hilbert transform method. They have concluded 

that the developed methodology can accurately analyze the nonlinearities caused by the 

presence of a breathing crack. Benfratello et al. [27] have presented both numerical and 

experimental investigations in order to assess the capability of non-Gaussianity measures to 

detect crack presence and position. They have used the skewness coefficient of the rotational 

degrees of freedom for the identification purpose of the crack in a damaged structure. 

Fledman [28] has introduced the application of Hilbert transform to non-stationary and 

nonlinear vibration system. He has demonstrated concepts of actual mechanical signals and 

utilizes the Hilbert transform for machine diagnostics and identification of mechanical 

systems. Routolo et al. [29] have analyzed the vibrational response of cracked beam due to 

harmonic forcing to evaluate the non linear characteristics. They have used the frequency 

response function to identify the location and depth of crack to set a basis for development of 

an experimental structural damaged identification algorithm.  

Behzad et al. [30] have devised a continuous model for flexural vibration of beams 

containing edge crack perpendicular to neutral plane of the beam. They have taken the 
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displacement field as a superposition of the Euler Bernoulli displacement and displacement 

due to the presence of crack. They have taken the crack displacement as the product of time 

function and exponential space function. The results obtained are in good agreement with the 

results obtained from finite element analysis. They have used the beam with horizontal and 

vertical edge crack. Prasad et al. [31] have investigated the effect of location of crack from 

free end to fixed end in a vibrating cantilever beam. They compared and analyzed crack 

growth rate at different frequencies using the experimental setup. Rezaee et al. [32] have 

used perturbation method for analysis of vibration of a simply supported beam with breathing 

crack. From the analysis it is observed that for a given crack location on the beam structure 

with the increase in the relative crack depth the stiffness of the beam decreases with time. 

Dimarogonas et al. [33] have proposed a technique for crack identification in cracked 

rotating shafts using the dynamic response of the system. They have stated that the change in 

the modal response is due to the local flexibility introduced due to the presence of crack and 

dissimilar moments of inertia. He has found that the system behaves non-linearly because of 

the crack present in the rotating shaft. The results obtained from the developed analytical 

method for the closing crack condition is based on the assumption of large static deflections 

commonly found in turbo machinery. Faverjon et al. [34] have used constitutive relation 

error updating method to develop a crack diagnosis tool in damaged beam structures.   

Mazanoglu et al. [35] have carried out vibration analysis of non-uniform Euler – Bernoulli 

beams with cracks using energy based method and Rayleigh – Ritz approximation method. 

They have measured the change in strain in the cracked beam due to bending. They have also 

analyzed the beam using finite element program and compared the obtained results with that 

of the analytical method and found the results to be in good agreement. Wang et al. [36] have 

studied a composite cantilever having a surface crack and found that the variation in the 

modal response depends on two parameters i.e. crack location and material properties. They 

have concluded that the change in frequency can be effectively used to locate the crack 

position and measure its severities. Al-said [37] has presented a crack diagnostic method 

using the change in natural frequencies for a stepped cantilever beam carrying concentrated 

masses. He has also applied finite element analysis to validate the results obtained from the 

proposed method. He has successfully used the developed algorithm to identify cracks 

present in overhead gantry and girder cranes.  Lee [38] has proposed a damage detection 
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methodology in beam structures using Newton-Rapson method and assuming the cracks 

present in the system as rotational springs. Yumin et al. [39] have analyzed cracked pipes to 

measure local flexibility matrix and stress intensity factor to develop an algorithm for 

damage identification. They have developed the method by dividing the cracked pipe into 

series of thin annuli. As described them, experimentally they have calculated the local 

flexibility matrix of the damaged pipes without calculating the Stress intensity factor. A 

modified version of the local flexibility has been proposed by Zou et al. [40] have studied the 

vibrational behavior of cracked rotor to design crack diagnostic model. They have described 

that, their developed method is suitable for the theoretical model. Cerri et al. [41] have 

investigated the vibrational characteristics of a circular arch both in damaged and undamaged 

state obtained from the theoretical model and compared the results with that of the 

experimental analysis to present a crack identification method. They have used the natural 

frequencies and vibration modes to develop the crack identification methodology by 

assuming the arch as a torsion spring at the cracked section. Nobile et al. [42] have presented 

a technique to find out the crack initiation and direction for circumfentially cracked pipes and 

cracked beams by adapting strain energy density factor. As stated by them, the strain energy 

density theory can be effectively used to analyze the different features of material damage in 

mixed mode crack propagation problem. Humar et al. [43] have investigated different 

vibration based crack identification techniques and find out the draw backs in them. The 

modal response parameters, stiffness, damping are directly affected by the presence of crack 

in the structure. According to them, most of the vibration based crack diagnosis techniques 

fail to perform when applied to real structures because of the inherent difficulties. They have 

presented computer simulation studies for some of the  commonly used methodologies and 

suggested the conditions under which they may or may not perform. They have concluded 

that, all the practical challenges present in a real system cannot be simulated through 

computer applications entirely making the vibration based crack estimation methods a 

challenging field. Viola et al. [44] have studied the dynamic behavior of multi-stepped and 

multi-damaged circular arches. They have analyzed the arches both in damaged and 

undamaged condition to find out the numerical solutions by using Euler characteristics 

exponent procedure, generalized differential quadrature method. Shin et al. [45] have 

analyzed of the vibration characteristics of circular arches having variable cross section. 
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They have presented the equation for deriving the natural frequencies of the system at 

different boundary conditions with the help of generalized differential quadrature method, 

differential transformation method and the results obtained from their proposed method have 

been compared with the previously published work. Cerri et al. [46] have investigated a 

hinged plane circular arch for development of a structural damage detection technique by 

studying the changes in the natural frequencies of the system. They have discussed two 

different approaches for crack detection. One of the approaches is based on comparison of 

the variation of natural frequencies obtained from the experimental and theoretical method 

and the other is based on search of an intersection joint of curves obtained by the modern 

equations. Labuschagne et al. [47] have studied Euler – Bernoulli, Timo Shenko and two 

dimensional elasticity theories for three models of cantilever beams. From the analysis of the 

vibration parameters, they have concluded that the Timo Shenko theory is close to the two 

dimensional theory for practical purpose and the application of Euler – Bernoulli theory is 

limited. Babu et al. [48] have presented a technique i.e. amplitude deviation curve, which is a 

modification of the operational deflection shape for crack identification in rotors. They have 

described that for the damage diagnosis in rotors the parameters used to characterize the 

cracks are very complicated. Xia et al. [49] have proposed a technique for damage detection 

by selecting subset of measurement points and corresponding modes. In their study, two 

factors have been used for detecting the cracks, the sensitivity of a residual vector to the 

structural damage and the sensitivity of the damage to the measured noise. They have 

claimed that, the developed method is independent of damage status and is capable of 

detecting damage using the undamaged state of structure. Douka et al. [50] have derived the 

affect of cracks on the anti resonances of a cracked cantilever beam using analytical and 

experimental methods. They have used the shift in the anti resonances to locate cracks in the 

structure. The results obtained from their theoretical model have been validated using the 

results obtained from experimentation of Plexiglas beams for crack diagnosis. Sinha [51] has 

analyzed the non linear dynamic behavior in a mechanical system using higher order spectra 

tools for the identification of presence of harmonics in signals obtained from the system. 

They have found that, misaligned rotating shaft and cracked shaft, exhibits non linear 

behavior due to the presence of higher harmonics present in the signal. According to them, 

the higher order spectra tools can be effectively used for condition monitoring of mechanical 
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systems. Patil et al. [52] have derived an algorithm for damage assesment in a slender Euler-

Bernoulli beam using variation in natural frequencies and transfer matrix method. They have 

assumed the cracks as rotational spring for development of the proposed technique for crack 

detection. Kim et al. [53] have presented a methodology for crack diagnosis in structures 

using the dynamic response of a two span continuous beam. During the development of the 

technique, they have reviewed two algorithms and eliminated the some of the assumptions 

and limitations in those methods. They have stated that, their methodology shows an 

improved accuracy in crack detection. Ebersbach et al. [54] have proposed a vibration based 

expert system for health monitoring of plant machinery, laboratory equipment to perform 

routine analysis. They have concluded that, their system can be used for high accuracy fault 

detection using the dynamic response of the system. Gounaris et al. [55] have presented a 

crack identification method in beam structures assuming the crack to be open and using 

eigenmodes of the structure. During the investigation, they have found out the relationship 

between the crack parameters and modal response. Finally, they have checked the 

authenticity of their method by comparing the eigenmodes for the damaged and undamaged 

beam in pre-plotted graphs. Shen et al. [56] have proposed a crack diagnostic procedure by 

measuring the natural frequencies and mode shapes. They have checked the robustness of 

their proposed method from the simulation results of a simply supported Bernoulli-Euler 

beam with one-side or symmetric crack. Ebrahimi et al. [57] have presented a new 

continuous model for bending analysis of a beam with a vertical edge crack which can be 

used for load–deflection and stress–strain assessment of the crack beam subject to pure 

bending. According to them, their proposed model assumes that the displacement field is a 

superposition of the classical Euler–Bernoulli beam’s displacement and of a displacement 

due to the crack. Their developed bending differential equation of the cracked beam has been 

calculated using static equilibrium equations. They have found a good agreement between 

the analytical results and finite element method. Jasinski et al. [58] have developed a method 

for analyzing higher order spectra for forecasting and identification of the degree of 

degradation of a sample’s dynamic properties. They have proposed residual bi-spectrum as a 

basis enabling to determine the initiation of a beam’s fatigue-related crack. They have 

developed an experimental set up for checking the robustness of their proposed technique for 

fatigue crack identification present in a system. Hasheminejad et al [59] have studied the free 
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vibration of cracked nano wires considering the effects of surface elasticity and residual 

surface stress. The Euler–Bernoulli beam theory has been used by them and the crack is 

modeled by a rotational spring representing the discontinuity in the slope and proportional to 

the crack severity. They have demonstrated examples to evaluate the influence of beam 

length, and crack position and severity on the calculated values of natural frequencies of an 

anodic alumina nano wire in the presence of surface effects. They have stated that, their 

proposed study may be of interest for the design, performance improvement, and health 

monitoring of nano wire-based components. Rubio et al. [60] have presented a flexibility 

expression for cracked shafts having elliptical cracks based on the polynomial fitting of the 

stress intensity factors, taking into account the size and shape of the elliptical cracks. They 

have calculated the static displacements in bending of the shaft for different boundary 

conditions. From the analysis of the results obtained from experimental set up and finite 

element analysis they have concluded that their methodology can be suitable used for 

analyzing the behavior of the cracked shaft. Argatov et al. [61] have considered a problem of 

detecting localized large-scale internal damage in structures with imperfect bolted joints. 

During their analysis, they have utilized the structural damping and an equivalent 

linearization of the bolted lap joint response to separate the combined boundary damage from 

localized large-scale internal damage. In their approach, they have illustrated the longitudinal 

vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different 

levels of damage. They have concluded that their proposed strategy can be utilized for 

estimation of internal damage severity in structures. Farshidi et al. [62] have investigated the 

non-contact EMA for evaluating the structural dynamics of a beam structure by exciting a 

cantilever beam using a collimated air impulse controlled by a solenoid valve. They have 

measured the reflected airwave from the beam surface by a microphone array. They have 

stated that the experimental tests demonstrate the effectiveness of their proposed 

methodology to both accurately and cost-effectively measure structural dynamics in 

translational and rotational degrees using a non-contact excitation and sensor mechanism. 

Casini et al. [63] have investigated the non-linear modal properties of a vibrating 2-degree of 

freedom system. They have found that, its non- linear frequencies are independent of the 

energy level and uniquely depend on the damage parameter. An analysis of the nonlinear 

normal modes has been performed by them for a wide range of damage parameter by 
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employing numerical procedures and Poincare maps. The influence of damage on the non-

linear frequencies has been investigated and modes in internal resonance, with a significantly 

different shape than that of modes on fundamental branch, have been proposed. Carr et al. 

[64] have studied the influence of a surface fatigue crack on vibration behavior of tee-welded 

plates and results are compared to the influence of machined through-thickness cuts on the 

dynamic response of cantilever beams. They have analyzed the influence of naturally grown 

fatigue cracks on the oscillation frequencies and compared to two and three-dimensional 

numerical modeling results. The results obtained from their analysis showed the ability of the 

experimental technique to detect fatigue cracks from relatively earlier than the other method 

studied. Ribeiro and Fontul [65] have studied the dynamic response of structure excited at a 

given set of coordinates using transmissibility concept to identify fault present in the 

structure. 

The finite element methods and wavelet analysis have been used for locating the size and 

severity of cracks and those are being discussed in the next section. 

2.3.2 Crack detection using finite element method  

Other than the classical methods the finite element methods is also applied by various 

researchers for crack detection in damaged structures, those have been described in this 

section.  

Saavedra et al. [66] have presented a theoretical and experimental vibration analysis of a 

multibeams structure containing transverse crack. They have derived a new cracked finite 

element stiffness matrix to analyse the vibrational behavior of crack systems with different 

boundary conditions. Qian et al. [67] have developed a finite element model for crack 

detection in a damaged beam using stress intensity factors. They have also validated their 

model with the experimental results obtained for a cantilever beam. According to them their 

method is also applicable to complex structures with crack. Andreausa et al. [68] have 

investigated the features of non-linear response of a crack beam using two dimensional finite 

element model (FEM). They have considered the behavior of the breathing crack as a 

frictionless contact problem. They have compared the linear dynamic response with the non-

linear dynamic response of the cantilever beam and presented a non-linear technique for 



   

19 

crack identification. Viola et al. [69] have developed a finite element model for a cracked 

Timoshenko beam for crack identification based on the changes in the dynamic behavior of 

the structure. They have derived the stiffness matrix and consistent mass matrix for 

developing the crack identification technique. Chondros et al. [70] have studied the torsional 

vibrational behavior of a circumferentially cracked cylindrical shaft using analytical and 

numerical finite element analysis; they have used HU-WASHIZU-BARR variational 

formulation to develop the analytical method for the cracked shaft. Ariaei et al. [71] have 

presented an analytical approach for determining the dynamic response of the undamped 

Euler-Bernoulli beams with breathing crack and subjected to the moving mass using discrete 

element technique and finite element method. They have observed that the presence of cracks 

alters the beam response patterns. Potirniche et al. [72] have developed a two dimensional 

finite element method to study the influence of local flexibility on the dynamic response of a 

structure. Narkis [73] has detected the crack by using inverse technique, that is, through the 

measurement of frequency of first two natural frequencies of a simply supported uniform 

beam. He has validated the developed method by comparing the results with the results from 

numerical finite element calculations. Ostachowicz et al. [74] have analyzed the forced 

vibrations of the beam and find out the impact of crack parameters such as crack position and 

its severity on the vibrational characteristics and discussed a basis for crack diagnosis. They 

have modeled the beam with triangular disk finite elements and assumed the crack to be a 

breathing crack. Zheng et al. [75] have analyzed the natural frequencies and mode shapes of 

a cracked and undamaged beam by developing an overall additional flexibility matrix using 

finite element method. They have also developed a shape function to compute the vibrational 

characteristics of the cracked beam. The gauss quadrature and least square method has been 

used by them to compute the overall additional flexibility matrix. The authors have 

constructed the shape function which can very well satisfy the local flexibility conditions of 

the crack locations.  Kisa et al. [76] have used finite element and component mode synthesis 

methods to analyze the free vibration of uniform and stepped cracked beam of circular cross 

section. They have used stress intensity factor and strain energy release rate functions to 

calculate the flexibility matrix and inverse of the compliance matrix taking into account 

inertia forces. According to them, crack depth and crack location have considerable affect on 

the natural frequencies and mode shapes of the cracked beam with non propagating open 
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cracks. Karthikeyan et al. [77] have proposed a technique for estimation of crack location and 

size in beam structure from the free and forced response of the beam. They have used finite 

element method to analyze the modal response for the beam structure with transverse open 

crack.. In this work they have included the effect of proportionate damping and used an 

external unit to harmonically excite the beam. They have used an iterative algorithm and 

regularization technique for locating the crack positions and size on the cracked beam and the 

results are in good agreement with other methods even in presence of error and noise. 

Hearndon et al. [78] have formulated a methodology using Euler-Bernoulli and Timo- 

shenko theories to analyze the affect of crack on dynamic properties of a cantilever beam 

subjected to bending. To evaluate the influence of crack location and size on the structural 

stiffness and calculation of transfer function a finite element model has been proposed by 

them. According to them the reduction in global component stiffness due to the crack is used 

to determine its dynamic response by a modal analysis computational model. In this work 

they have revealed that the natural frequencies decreases with increasing crack length. Al-

Said [79] has proposed an algorithm based on a mathematical model to identify crack 

location and depth in an Euler-Bernoulli beam carrying a rigid disk. He has applied 

Lagrange’s equation to develop the mathematical model for analyzing the lateral vibration of 

the beam model. The proposed method utilizes mode shapes of two uniform beams 

connected by mass less torsional spring to establish the trial function. The presented method 

utilizes the first three natural frequencies to estimate the crack parameters. Results from the 

presented technique have been authenticated using the finite element software. Shekhar et al. 

[80] has derived a method to calculate the vibration characteristics using model based on 

finite element analysis. Panigrahi [81] have performed a three dimensional non-linear finite 

element analysis to evaluate the normal and shear stress along the overlap zone in a fiber 

reinforced composite material. 

Excepting the classical, wavelet analysis and finite element methods, Artificial Intelligence 

Techniques are also being adapted by authors for damage identification. 
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2.3.3 Crack detection using AI technique 

In this section different types of Artificial Intelligence Techniques are analyzed in the field of 

crack detection in damaged structures. The methods are being sub grouped into five 

categories. 

a) Fuzzy Inference method 

b) Neural Network method 

c) Genetic Algorithm method 

d) MANFIS method 

e) Hybrid method 

i) Neuro-Fuzzy Technique 

ii) Genetic-fuzzy Technique 

iii) Genetic-neural Technique 

iv) Genetic-neural-fuzzy Technique 

 

2.3.3.1 Fuzzy inference method 
 
In this section various fuzzy inference methods used for crack identification are outlined. 

Hasanzadeh et al. [82] have introduced a non-phenomenological method to solve the inverse 

problems, especially for the case of AC field measurement (ACFM) technique to identify 

surface cracks in metals. Their method is based on a formal framework of aligning 

electromagnetic probe responses by using the concept of similarity measures created by a 

fuzzy recursive least square algorithm as a learning methodology. They have claimed that, 

the proposed technique provides a means to compensate for the lack of sufficient samples in 

available crack databases for prediction of crack in structures. They have shown that the 

combination of this fuzzy inference method and the method of the adaptation for different 

crack shapes provides sufficient means as a priori empirical knowledge for the training 

system. Chandrashekhar et al. [83] have shown that the geometric and measurement 

uncertainty cause considerable problem in the damage assessment. They have used Monte 

Carlo simulation to study the changes in the damage indicator due to uncertainty in the 

geometric properties of the beam. The results obtained from the simulation are used for 
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developing and testing the fuzzy logic system. In this paper they have addressed the 

uncertainty associated with the fuzzy logic system for structural damage detection. Kim et al. 

[84] have presented a computer based crack diagnosis system for concrete structures using 

Fuzzy set theory. They have used the crack symptoms and characteristics to build the rooms 

for the proposed fuzzy inference system. When they have applied the developed 

methodology to diagnose the crack the proposed system provided results similar to those 

obtained by experts system. Saravanan et al. [85] have proposed a technique based on the 

vibration signals acquired from the operating machines to effectively diagnose the conditions 

of inaccessible moving components inside the machine. The proposed technique has been 

designed using fuzzy classifier and decision tree to generate the rules automatically from the 

feature set. The developed fuzzy classifier has been tested with representative data and the 

results are found to be encouraging. Boutros et al. [86] have developed four condition 

monitoring indicators for detection of transient and gradual abnormalities using fuzzy logic 

approach. They have successfully tested and validated the fuzzy based technique in two 

different applications. Wu  [87] has proposed a novel  fuzzy robust wavelet support vector 

classifier (FRWSVC) based on a wavelet function and developed an adaptive Gaussian 

particle swarm optimization (AGPSO) algorithm to seek the optimal unknown parameter of 

the FRWSVC. The results obtained from experimentation are compared with that of the 

hybrid diagnosis model and are found to be closer. Sugumaran et al. [88] have presented the 

use of decision tree of a fuzzy classifier for selecting best few feature that will discriminate 

the fault condition of the bearing from given trained samples. The vibration signal from a 

piezoelectric transducer is captured for different types of fault condition of bearing and is 

used to build the fuzzy rules. The results drawn from the fuzzy classifier when compared 

with results from the experimental analysis, they are found to be close proximity. Miguel et 

al. [89] have developed a decision making module based on fuzzy logic for model based fault 

diagnosis applications. A fault detection and isolation system based on the input and output 

parameters have been successfully applied in laboratory equipments to reduce the 

uncertainties for the output parameter. Wada et al. [90] have proposed a fuzzy control 

method with triangular type membership functions using an image processing unit to control 

the level of granules inside a hopper. They stated that the image processing unit can be used 

as a detecting element and with the use of fuzzy reasoning methods good process responses 
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were obtained. Parhi [91] has developed a fuzzy inference based navigational control system 

for multiple robots working in a clumsy environment. They have been designed to navigate 

in an environment without hitting any obstacles along with other robots. Fox [92] has studied 

the use of fuzzy logic in medical diagnosis and raised a broad range of issues in connection 

to the role of information-processing techniques in the development of medical computing. 

Zimmermann [93] has applied fuzzy linear programming approach for solving linear vector 

maximum problem. The solutions are obtained by fuzzy linear programming. These are 

found to be efficient solutions then the numerous models suggested solving the vector 

maximum problem. Angelov et al. [94] have presented two new approaches for improving 

the performance of on line fuzzy classifier. They have used the developed fuzzy system for 

image classification in on line mode. Mohanta et al. [95] have developed a fuzzy Markov 

model to address the maintenance scheduling of a captive power plant by considering the 

various parameters affecting the failure repair cycle.  

2.3.3.2 Neural network method  

In this section different types of Neural network methods applied for crack identification are 

described. The Artificial Neural Networks (ANN) has been used as promising technique in 

the domain of inverse problem for fault identification. 

Schlechtingen et al. [96] have presented a comparison of results among the regression based 

model and two artificial neural network based approaches, which are a full signal 

reconstruction and an autoregressive normal behavior model used for condition monitoring 

of bearings in a wind turbine. From the comparison of results they have revealed all three 

models were capable of detecting incipient faults. They have concluded that the neural 

network model provides the best result with a faster computational time with comparison to 

regression based model. Ghate et al. [97] have proposed a multi layer perceptron neural 

network based classifier for fault detection in induction motors which is inexpensive, reliable 

by employing more readily available information such as stator current. They have used 

simple statistical parameters as input feature space and principal component analysis has 

been used for reduction of input dimensionality. They have also verified their methodology 

to noise and found the performance of the proposed technique encouraging. Eski et al. [98] 

have presented a  fault detection based on neural network for an experimental industrial 



   

24 

welding robot. Joint accelerations of robot have been considered by them as evaluation 

criteria. For this purpose, an experimental setup has been used to collect the related values 

and the accelerations of welding robot, which has six degrees of freedom, are analyzed. The 

results obtained show that the proposed RBNN has a robust stability to analyze the 

accelerations of manipulator joints during a prescribed trajectory. Fan et al. [99] have 

presented a  fault detection and diagnosis (FDD) strategy for local system of air handing unit. 

Their strategy consists of two stages which are the fault detection stage and the fault 

diagnosis stage, respectively. In the first stage, the neural network fault detection model has 

been used by them for generating estimates of sensor values and they are compared to actual 

values to produce residuals. The proposed neural network fault detection model has been 

trained using an abundance of characteristic information from the historical data in the 

HVAC system. They have claimed that the trained neural model can detect the abnormal 

condition in the system. Paviglianiti et al. [100] have devised a scheme for detecting and 

isolating sensor faults in industrial robot manipulators. They have adopted a procedure for 

decoupling of the disturbance effect from the effect of the fault generated in the system. The 

dynamics of the proposed scheme has been improved by using radial basis functions neural 

network. Wang et al. [101] have proposed a new fault diagnosis method by using the 

difference of AR coefficients with back propagation neural network.  The diagnosis results 

obtained by them are compared with the three methods, which include the difference of AR 

coefficients with BPNN, the AR coefficients with BPNN and the distance of AR coefficients 

method for various samples. They have found that the difference of AR coefficients with 

BPNN were superior to AR coefficients with BPNN and distance of AR coefficients 

methods. Suresh et al. [102] have presented a method considering the flexural vibration in a 

cantilever beam having transverse crack. They have computed modal frequency parameters 

analytically for various crack locations and depths and these parameters are used to train the 

neural network to identify the damage location and size. In this paper They have made a 

comparative study of the performance of two widely used neural network i.e. multi layer 

perception (MLP) network, radial basis function (RBF) network and shown the variation of 

actual output with the network output. Finally, they have concluded that the radial basis 

function network performance is better than multi layer perception network. Little et al. [103] 

have solved exactly a linearized version of the model and explicitly show that the capacity of 
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the memory is related to the number of synapses rather than the number of neurons. In 

addition, he has shown that in order to utilize this large capacity, the network must store the 

major part of the information in memory to generate patterns which evolve with time. 

Mehrjoo et al. [104] have presented a fault detection inverse algorithm to estimate the 

damage intensities of joints in truss bridge structure using back propagation neural network 

method. Agosto et al. [105] have applied neural network method with a combination of 

vibration and thermal damage detection signatures to develop a damage defection tool. They 

have applied the developed technique on sandwich composite for the purpose of crack 

detection. Saravanan et al. [106] have dealt with the robustness of an artificial neural 

network, wave let and proximal support vector machine based on fault diagnostic 

methodology for a gear box. They have used the proposed methodology for fault diagnosis in 

bevel gear box. Oberholster et al. [107] have presented a methodology for online structure 

health monitoring of axially flow for blades with the use of neural network. The developed 

neural network has been trained with the extracted vibration features from the experimental 

test structures. They have used frequency response function and finite element models for 

designing the neural network based technique. According to them the proposed technique can 

handle the online damage classification using sensor for the test structures. Wu et al. [108] 

have described a condition monitoring and fault identification techniques for rotating 

machineries using wavelet transform and neural network method. The sound emission from 

the gear set have been used along with continuous wavelet transform technique and feature 

selection of energy spectrum  to design the neural network based fault diagnostic tool. The 

experimental results from their methodology pointed out that the sound emission from the 

system can be used for effective fault diagnosis for condition monitoring.  Wu et al. [109] 

have investigated a fault diagnosis technique for internal combustion engine using discrete 

wavelet transform (DWT) and neural network. The DWT technique has been combined with 

feature selection of energy spectrum for the development of the purposed fault detection 

algorithm. Some of the activation functions used by researchers in designing of artificial 

neural network are presented in Table 2.1 given below. 
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Name Input/output Relation Symbol 
Hard Limit  

 

a=0             n<0 

a=1             n≥0 

 

Symmetrical Hard Limit a= -1           n<0 

a= +1          n≥0 

 

Hyperbolic tangent 
sigmoid 

 

 

 

 

2.3.3.3 Genetic algorithm method  

In the process of development of various methods for crack identification genetic algorithm 

is also used efficiently for accurate measurement of the damage location and depth and also 

fault detection in engineering systems. The genetic algorithm based methodologies are 

discussed in this section.  

Meruane et al. [110] have implemented an hybrid real-coded Genetic Algorithm with damage 

penalization to locate and quantify structural damage. The performance of five fundamental 

functions based on modal data is studied by them. In addition, the authors have proposed the 

use of a damage penalization that satisfactorily avoids false damage detection due to 

experimental noise or numerical errors. They have tested the effectiveness of the proposed 

technique on a tridimensional space frame structure with single and multiple damages 

scenarios and stated that this approach reaches a much more precise solution than 

conventional optimization methods. Nobahari et al. [111] have proposed an efficient 

optimization procedure using genetic algorithm to detect multiple damage in structural 

systems based on the changes in the natural frequency. They have applied finite element 

analysis to evaluate the required natural frequencies. Two numbers of bench mark tests have 

been utilized to demonstrate the computational advantages of the proposed method by them. 

Li  et al. [112] have presented a novel feature extraction and selection scheme for hybrid 

fault diagnosis of gearbox based on transform function, non-negative matrix factorization 

(NMF) and multi-objective evolutionary genetic algorithms. The transform function has been 

adapted to acquire the vibration signals for various fault condition of the gear system and the 

         en – e-n    a = 
en + e-n 

Table 2.1 Examples of Activation Functions used in ANN 
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non-negative matrix factorization (NMF) was employed to extract features from the time–

frequency representations. The genetic algorithm has been used for accurate classification of 

hybrid faults of gearbox. Results from the experiments as described by them revealed that the 

proposed feature extraction and selection scheme demonstrate to be an effective and efficient 

tool for hybrid fault diagnosis of gearbox. Fernando et al. [113] have dealt with the crack 

detection in structural elements by means of a genetic algorithm optimization method taking 

into  account the existence of contact between the interfaces of the crack. They have 

addressed bi- and three-dimensional models to handle the dynamics of a structural element 

with a transverse breathing crack. Physical experiments have been performed by them with a 

cantilever damaged beam and the resulting data are used as input in the fault diagnostic 

genetic algorithm. The benefits of applying automated fault detection and diagnosis to 

chillers include less expensive repairs, timely maintenance, and shorter downtimes. Han et al. 

[114] have employed feature selection (FS) techniques, such as mutual-information-based 

filter and genetic algorithm to help search for the important sensors in data driven chiller 

fault detection and diagnosis applications, to enhance the performance of fault identification 

technique.  The results shows that the eight features/sensors, centered around the core 

refrigeration cycle and selected by the proposed method, outperform the other three feature 

subsets by the linear discriminant analysis. Hussain et al. [115] have described a novel 

method for real time fault detection in gearboxes using adaptive features extraction algorithm 

to deal with non-stationary faulty signals. They have claimed that their proposed method is 

based on combination of conventional one-dimensional and multi-dimensional search 

methods, which showed high performance and accurate fault detection results compared with 

evolutionary algorithms like genetic algorithms. Singh et al. [116] have developed a two 

stage identification methodology, which identifies a number of cracks, their locations on a 

cracked shaft and its sizes. In the methodology they have utilized transverse forced responses 

of the shaft system at different frequencies of a harmonic excitation. A multi-objective 

genetic algorithm technique has been designed using the frequency response of the dynamic 

structure for crack detection in shaft like structures. Lei et al. [117] have proposed a new 

multidimensional hybrid intelligent diagnosis method to identify different categories and 

levels of gear damage automatically using Hilbert transform, wavelet packet transform 

(WPT) and empirical mode decomposition (EMD) methods to extract additional fault 
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characteristic information. They have used the extracted features of the system to develop the 

multidimensional features based genetic algorithm technique to identify gear faults. Sette et 

al. [118] have presented a method to simulate a complex production process using a neural 

network and the optimization by genetic algorithm for quality control of the end product in a 

manufacturing environment. He has applied this method to a spinning production process 

where   input parameters are machine settings and fiber quality, and the yarn strength, 

elongation are output parameters for the neural network model. He has used the genetic 

algorithm with a sharing function and a Pareto optimization to optimize the input parameters 

for obtaining the best yarns. According to him the results from this method are considerably 

better than current manual machine intervention. Xiang et al. [119] have proposed a new 

method for crack location and depth in a shaft by following rotating Rayleigh-Euler and 

Rayleigh-Timoshenko beam elements of B-spline wavelet on the interval. He has described 

that the cracked shaft is modeled by using wavelet-based elements to gain precise 

frequencies. According to him the 1st three frequencies are measured to locate the crack and 

the depths are detected by genetic algorithm. The robustness of the proposed method has 

been validated by some numerical examples and experimental cases and he has concluded 

that the method is capable of the detecting the crack in a shaft. He et al. [120] have studied 

the crack detection in a rotating machine shaft by using finite element method to optimize the 

problem and subsequently used genetic algorithm to search the solution. Their proposed 

method has been found to solve a wide range of inverse identification problem. Zhang et al. 

[121] have used genetic programming (GP) in finding faults in rotating machinery. They 

compared the solution through GP with other techniques like artificial neural network (ANN) 

and support vector machines (SVMs). They have found that GP demonstrates performance 

equal or better compared to ANN and SVMs. Zhang et al. [122] have studied the fault in 

rolling element bearing by the combination of genetic algorithm (GA) and fast kurtogram. 

For the initial analysis of the vibration signals of the bearing they have used fast kurtogram 

and subsequently for final optimization they have used GA The results of their combined 

applications of GA and kurtogram have been found to give better results over the other 

optimal resonance demodulation techniques. Baghmisheh et al. [123] have used genetic 

algorithm (GA) to monitor the changes in natural frequencies of a cantilever beam having 

crack. They have used an analytical model to formulate the crack beam structure and 
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numerical methods to obtain the natural frequencies. The depths and crack locations have 

been solved by using binary and continuous genetic algorithms BGA, CGA).  Perera et al. 

[124] have used genetic algorithm for solving multi objective optimization to detect damage. 

They have compared GA optimizations based on aggregating functions with pareto 

optimality. Friswell et al. [125] have combined genetic algorithm (GA) and eigen sensitivity 

method for determination of location of damage in structures. The GA has been used by them 

to optimize the discrete damage location variables. They have used eigen sensitivity method 

to optimize the damage extent. 

2.3.3.4 Multiple adaptive neuro fuzzy inference system (MANFIS) 

This section depicts, the literature review of published paper from the domain of applications 

of MANFIS technique in various fields and fault diagnosis. 

A neuro-fuzzy inference system, or equivalently, a neuro-fuzzy system is a fuzzy inference 

system which employs neural network learning techniques. Multiple adaptive neuro-fuzzy 

inference system (MANFIS) [l27, 128, 129] is an extension of a single-output neuro-fuzzy 

system, ANFIS, so that multiple outputs can be handled. A neuro-fuzzy system is a 

nonparametric regression tool, which models the regression relationship non-parametrically 

without reference to any pre-specified functional form, and it is capable of modeling highly 

nonlinear and approximately known systems.  

Cheng et al. [130] have optimize a multiple output system using the MANFIS neuro-fuzzy 

network for modeling the system and genetic algorithm has been used to optimize the 

multiple objective function. The validity of the technique has been performed using a 

practical problem. Buyukozkan et al. [131] have studied the performance of a new product 

development process (NPD) under uncertain conditions and given their effort to improve the 

quality of decision-making in NPD by following new iterative methodology. They have used 

fuzzy logic, neural networks and MANFIS technique for improvising the methodology for 

new product idea selection. Hengjie et al. [132] have presented a probabilistic fuzzy neural 

network (ProFNN) approach for handling randomness in the system by introducing the 

probability of input linguistic terms and providing linguistic meaning into the connectionist 
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architecture. The results from the proposed technique have been compared with that of  

multi-input–multi-output-ANFIS (MANFIS), self-organizing adaptive fuzzy neural control 

and Extreme Learning Machine for validation of the probabilistic fuzzy neural network. 

Vairappan et al. [133] have illustrated an improved adaptive neuro-fuzzy inference system 

(ANFIS) for the application of time-series prediction. The proposed improved version of 

ANFIS has introduced the application of self-feedback connections for modeling the 

temporal dependence. The effectiveness of the proposed methodology has been validated by 

using three benchmark time-series tests. Gholamian et al. [134] have presented a systematic 

design for multi objective problems using hybrid intelligent system to solve ill-structured 

situations. Fuzzy rules and neural networks are used in this systematic design and the 

developed hybrid system is established with the ability of mapping between objective space 

and solution space. The results obtained are authenticated on three test problems. Ellithy et 

al. [135] presented a methodology based on ANFIS to improve the damping of power 

systems in the presence of load model parameters uncertainty. The proposed ANFIS is 

trained over a wide range of typical load parameters to adapt the gains of the SVC stabilizer. 

They have claimed that the simulation results are showing encouraging trends in comparison 

to SVC stabilizer operating on other techniques. Güneri et al. [136] have developed a new 

approach to address the supplier selection problem. The proposed ANFIS model has been 

trained with parameters relating to supplier selection criteria. They have tested the results 

from their technique by comparing with the results of the multiple regression method, 

demonstrating that the ANFIS method performed well. Nagarajan et al. [137] in their study 

have proposed the design of Adaptive Neuro-Fuzzy Observer based sensor fault detection in 

a three-tank interacting level process. They have designed the fault detection algorithm with 

Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS) that uses a neural network to 

fix optimal shape and parameters for the membership functions and effective rule base for the 

fuzzy system. Fault detection is being performed by them estimating the states of the level 

process and comparing them with measured values. Jassar et al. [138] have established a 

technique to find out the temperature in heating space utilizing an adaptive neuro-fuzzy 

inference system. The proposed system has been developed by combining the fuzzy 

inference systems and  artificial neural networks. The results from the developed method 

have been cross verified by experimentation. Asensi et al. [139] have formulated a system 
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based on multiple adaptive neuro-fuzzy inference systems (MANFIS) to analyze the 

performance characteristics of analog circuit. Zhang et al. [140] have studied a dynamic 

system and developed an algorithm to identify the chaotic signals  present in a system by 

adopting  adaptive-neuro-fuzzy-inference system (ANFIS) and MANFIS methodology.  

Nguyen et al. [141] have used vibration analysis and fuzzy logic technique to develop a fault 

detection method in bearings. The parameters representing the condition of the system have 

been used to design the proposed technique based on Adaptive Network based Fuzzy 

Inference System (ANFIS) and Genetic Algorithm (GA). The results obtained from the 

developed model have been tested with other set of bearing data to exhibit the reliability of 

the chosen model. Lei et al. [142,143] have proposed a method for fault diagnosis of rolling 

element bearing system using multiple adaptive neuro-fuzzy inference systems (MANFIS) 

and empirical mode decomposition (EMD). The robustness of the developed mechanism has 

been checked by employing the same on different bearing systems.  

So in the subsequent section algorithm have been discussed used for  fault diagnosis using 

hybrid AI techniques such as Neuro-Fuzzy, Genetic-fuzzy Technique, Genetic-neural 

Technique and Genetic-neural-fuzzy Technique. 

2.3.3.5 Hybrid method 

Scientists have developed hybrid techniques by fusing the capabilities of various artificial 

intelligence methodologies such as fuzzy logic, neural network and genetic algorithm for 

condition monitoring of damaged structures. The hybrid methods can be sub grouped into 

four sections. 

i) Neuro- fuzzy Technique 

ii) Genetic-fuzzy Technique 

iii) Genetic-neural Technique 

iv)  Genetic-neural-fuzzy Technique 
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2.3.3.5.1 Neuro-fuzzy technique 

This section analyzes the application of Neuro-fuzzy technique in the domain of fault 
diagnosis. 

Salahshoor et al. [144] have devised an innovative data-driven fault detection and diagnosis 

methodology on the basis of a distributed configuration of three adaptive neuro-fuzzy 

inference system for an industrial power plant steam turbine. Each neuro-fuzzy classifier has 

been developed for a dedicated category of four steam turbine faults. A proper selection of 

four measured variables has been configured to feed each classifier with the most influential 

diagnostic information. A diverse set of test scenarios has been carried out to illustrate the 

successful diagnostic performances of the proposed fault detection system. Sadeghian et al. 

[145] have used nonlinear system identification method to predict and detect process fault of 

a cement rotary kiln. To identify the various operation points in the kiln, locally linear neuro-

fuzzy model trained by LOLIMOT algorithm has been adapted by the authors. Then, using 

this method, they have obtained three distinct models for the normal and faulty situations. At 

the end, they have checked the proposed technique with the validation data. Eslamloueyan et 

al. [146] have proposed a hierarchical artificial neural network (HANN) for isolating the 

faults of the Tennessee–Eastman process which is the simulation of a chemical plant created 

by the Eastman Chemical Company to provide a realistic industrial process for evaluating 

process control and monitoring methods. Fuzzy clustering algorithm has been used by them 

to divide the fault patterns space into a few sub-spaces. They have developed supervisor 

network along with the special neural networks to diagnose the fault present in the system. 

Simon et al. [147] have describes the pattern recognition based data analysis of an existing 

industrial batch dryer, and the comparison of three artificial intelligence techniques suited to 

perform classification tasks: neural networks, neuro-fuzzy and Takagi–Sugeno fuzzy models. 

They have found that the neural networks trained with the Bayesian regularization have 

shown the most robust classification performance with respect to other two methods. They 

have claimed that since the proposed method for pattern recognition is not case specific it can 

be directly used for the monitoring of a large variety of drying processes. Quteishat et al. 

[148] have proposed a modified fuzzy min-max network for improved performance when 

large hyper boxes are formed in the network. This methodology is used to facilitate the 

extraction of rule set from FMM to justify the predictions. The results from the developed 
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FMM have been authenticated with the sensor measurements collected from a power 

generation plant for fault diagnosis. Topcu et al. [149] have studied the optimum uses of 

pozzolans as supplementary cementing material for blended cement production. They have 

developed a system based on artificial neural network and fuzzy logic for predicting the 

strength parameters for different types of cement motars. Tran et al. [150] presented a fault 

diagnosis technique based on adaptive neuro-fuzzy inference system in combination with 

classification and regration tree. The ANFIS model has been trained with the results obtained 

from the least square algorithm. They have observed that the developed ANFIS model has 

the potential for fault diagnosis of induction motors. Fang et al. [151] have explored 

performance of a structural damage defection technique based on frequency response and 

neural network. In this paper they have investigated a tunable steepest discount algorithm 

using heuristics approach for improving the converging speed. From the analysis of the result 

of the proposed method for a cantilever beam they have concluded that the neural network 

technique can estimate the damage condition with high accuracy. Beena et al. [152] have 

proposed a new approach for fault detection in structural system using fuzzy logic technique 

and neural network based on hebbin-learning. They have used the continuum mechanics and 

finite element method to measure the vibration parameters because of structure damage. The 

developed technique works quite well for structural damage even in the presence of noise. 

Kuo et al. [153] have presented a symbiotic evolution based fuzzy neural diagnostic system 

for fault detection of a propeller shaft used in the marine propulsion system. The system 

auto-generates its own optimal fuzzy neural architecture for fault diagnosis. They have stated 

that the results from the hybrid fuzzy neural system have been found to be more closure with 

the real conditions than the other traditional methods. Ye et al. [154] have developed a new 

online diagnostic algorithm to find out the mechanical fault of electrical  machine using wave 

let packet decomposition method and  adaptive neuro fuzzy inference system. According to 

them the new integrated fault diagnostic system significantly reduces the seal complexity, 

and computational time of the system. They have validated results from the diagnostic 

technique for a 3-phase induction motor drive system. Kuo [155]  has proposed a fault 

detection system using data acquisition, feature extraction and pattern recognition for 

detecting faults of blades by applying multiple vibration sensors. The feature extraction 

algorithm has been developed based on back propagation artificial neural network. The fuzzy 



   

34 

logic technique has been employed to speed up the training speed. According to him the 

results from the system are very close to the results obtains from the experimental analysis. 

Zio et al. [156] have presented a fault diagnostic problem using neuro fuzzy approach. They 

have used this approach for the purpose of high rate of correct classification and to obtain an 

easily interpretable classification model. The efficiency of the approach has been verified by 

applying to a motor bearing system and the results obtained are quite encouraging.    Wang et 

al. [157] have presented the comparison of the performance for two fault diagnosis system 

that is recurrent neural networks and neuro fuzzy systems using two benchmark data sets. As 

described by them, it is found that the neuro fuzzy prognostic system is more reliable for 

machine health condition monitoring than the neural network fault diagnostic system. Zhang 

et al. [158] have proposed a bearing fault detection technique based on multi scale entropy 

and adaptive neuro fuzzy inference system (ANFIS) to measure the nonlinearity existing in a 

bearing system. They have conducted experiments on electrical motor bearing with three 

different fault categories and the results obtained from the experimentation have been used to 

design and train the ANFIS system for fault diagnosis.  

 2.3.3.5.2 Genetic-fuzzy technique 

The research papers reviewed from the domain of application of Genetic-fuzzy technique for 

crack and fault detection in structural and mechanical systems are presented in this section. 

Wu et al. [159] have presented a new version of fuzzy support vector machine to diagnose 

faults in automatic car assembly. The input and output variables have been described by them 

as fuzzy numbers in the fuzzy based system. They have shown that the modified GA helps 

the fuzzy support vector classifier machine to seek optimized parameters. The results from 

their methodology in car assembly for fault diagnosis confirm the feasibility and the validity 

of the diagnosis method. Pan et al. [160] have analyzed the effect of random delays in 

network controlled system by using fuzzy PID models. They have tuned the models by 

minimizing the time multiplied absolute error and squared model output with stochastic 

algorithms viz. the GA and particle swarm optimization. After analyzing the performance of 

the algorithm they have shown that random variation in network delay can be handled 

efficiently with fuzzy logic based PID models over other techniques as mentioned in the 
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paper. Pawar et al. [161] have devised a structural health monitoring methodology using 

genetic fuzzy system for online damage detection. They have used displacement and force 

based measurement deviations between damage and undamaged condition for building the 

rules and data pool for the fuzzy and genetic system respectively. The developed 

methodology has been applied for composite rotor blades and the results are found to be 

encouraging. Yuan et al. [162] have proposed an artificial immunization algorithm (AIA) to 

optimize the parameters obtained from support vector machines (SVM) generally used as 

machine learning tool for fault-diagnosis. They have used the proposed fault diagnosis model 

for a turbo pump rotor and found that the SVM optimized by AIA gives higher accuracy than 

the normal SVM.  

2.3.3.5.3 Genetic-neural technique 

The Genetic-neural techniques used by various authors for development of crack diagnostic 

tools are depicted in this section.  

Hajnayeb et al. [164] have designed a system based on artificial neural networks (ANNs) to 

diagnose different types of fault in a gear box. They have used experimental set of data to 

verify the effectiveness and accuracy of the proposed method. Their developed system has 

been optimized by eliminating unimportant features using a feature selection method. This 

method of feature selection has been compared with Genetic Algorithm (GA) results and is 

found to be in close agreement. Chen et al. [165] have proposed a robust fault diagnosis 

system of rotating machine adapting machine learning technology by employing a set of 

individual neural networks based on structured genetic algorithm. The frequency signals and 

the corresponding faults have been used to train the developed technique. They have stated 

that the advantage of using their approach is to obtain the optimal parameters automatically 

and improved performance in diagnosis accuracy. Firpi et al. [166] have used genetically 

programmed artificial feature (GPAF) for fault detection of a rotating machine part. They 

have extracted artificial features using GPAF algorithm while taking vibration data as a 

source of information. Samanta [167] has compared the performance of gear fault detection 

using artificial neural network (ANN) and support vector machines (SVMs) and has found 

that the classification accuracy of SVMs is better than ANN without genetic algorithm (GA) 

optimization while with GA optimization performance of both classifiers are comparable. 
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Jack et al. [168] have used support vector machines (SVMs) and artificial neural network 

(ANN) with genetic algorithm (GA) optimization technique to detect faults in rotating 

machinery. They have compared the performance of this classification and improve the 

overall performance by using GA based features selection process. 

2.3.3.5.4 Genetic-neural-fuzzy technique 

The literature reviewed from the published papers using Genetic-neural-fuzzy Technique for  

crack and fault detection in various systems are discussed in this section. 

Li et al. [169] have presented a novel enhanced genetic algorithm (EGA) technique to 

overcome the problems present in classical GA like slow convergence and time consumption 

and to provide a more efficient technique for system training and optimization. The 

developed method has been used to train a neural-fuzzy predictor for real-time gear system 

monitoring and found that their technique outperforms the classical GA in terms of 

convergence speed. Zheng et al. [170] have presented a method which combines the genetic 

algorithm and fuzzy logic to optimize the centers and widths of the radial basis function 

neural network (RBFNN) for structural health monitoring of a glass epoxy composite 

laminates. They have used the linear least-squared method to adjust the neural network 

connection weights. From the analysis of results they have concluded that the simulation 

demonstrates that the neural network based on genetic algorithm and fuzzy logic is robust 

and promising. Saridakis et al. [171] have studied the dynamic behavior of a shaft with two 

transverse cracks considered to the along arbitrary angular positions at some distance from 

the clamped end. They have developed a fuzzy logic based crack diagnosis model by using 

the effect of bending vibrations of the cracked shaft. Genetic algorithm and neural network 

have been used for the developed technique to reduce the computational time without any 

significant loss in accuracy. Kolodziejczyk et al. [172] have investigated the potential of 

various artificial intelligence techniques to predict the damage parameters mainly arising due 

to wearing out of the contact surfaces. The proposed technique has been designed using 

fuzzy logic, neural network and genetic algorithm. The results from the developed 

methodology are found to be closer to the experimental data. They have also optimized the 

proposed crack diagnose model to reach high robustness. 
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2.3.4 Miscellaneous methods and tools used for crack detection 

Excepting the various methods cited above miscellaneous methods and tools are also used for 

crack detection and some of them are briefly discussed in this section. 

Gordis  et al. [173] have developed two global–local algorithms for the analysis of quasi-

static crack propagation in a structure based on frequency domain structural synthesis. The 

crack propagation problem has been based on a simple two-layer finite element where the 

two layers are connected by inter-layer springs. At the end they have found that the 

synthesis-based algorithms are significantly outperform the traditional finite element 

solution. Bachschmid et al. [174] have used the model of a turbo-generator unit to perform a 

numerical sensitivity analysis, in which the vibrations of the shaft-line, and more in detail the 

vibrations of the shaft in correspondence to the bearings, have been calculated for all possible 

positions of the crack along the shaft-line, and for several different values of the depth of the 

crack. They have established a relation between the dynamic response and the position of 

crack location and depth present in the system. Jun has [175] proposed a diagnosis system 

using dynamic time warping (DTW) and discriminant analysis with oxidation–reduction 

potential (ORP) and dissolved oxygen (DO) values for fault detection in a swine wastewater 

treatment plant. Finally he has concluded that the ORP method out performs the other two 

methods which have been employed for fault identification in the system. Yiakopoulos et al. 

[176] have designed a K-means clustering approach  for the automated diagnosis of defective 

rolling element bearings. They have stated as K-means clustering is an unsupervised learning 

procedure, the method can be directly implemented to measured vibration data. Thus, the 

need for training the method with data measured on the specific machine under defective 

bearing conditions is eliminated. They have concluded that, the proposed system is an 

effective tool to detect faults in bearing systems. Cusido et al. [177] have paper proposed a 

different signal processing method, which combines wavelet and power spectral density 

techniques giving the power detail density as a fault factor. The method shows good 

theoretical and experimental results. Cao et al. [178] have developed a novel Laplacian 

scheme to form an improved damage identification algorithm. They have measured the 

modal curvature to develop the diagnostic method. The results from the proposed Laplacian 

scheme have been validated with experimental results. Fagerholt et al. [179] have described 
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an investigation on the fracture behavior of a cast aluminium alloy. They have used classical 

flow theory for modeling the fracture. They have also used Digital Image Correlation (DIC) 

to obtain information of the displacement and strain field in the specimen. The results from 

the numerical investigation are found to be in agreement with the experimental data. 

Karaagac et al. [180] have studied the effect of crack ratios and positions on the natural 

frequencies and buckling loads of a slender cantilever Euler beam with a single edge crack 

using the local flexibility concept. Experiments have been conducted by them to validate the 

numerical results. Rus et al. [181] have presented a work based on hyper singular shape 

sensitivity boundary integral equation for solution of the inverse problem for crack 

estimation. The accuracy and convergence of the sensitivity for the proposed method has 

been verified with the simulated/experimental results. Kyricazoglou et al. [182] have 

presented method to detect the damage in composite laminates by measuring and analyzing 

the slope deflection curve of composite beams in flexure. They have provided the damage 

mechanism and location of damage from comparison of dynamic results with the dynamic 

response from the damaged laminates. He suggested that slope deflection curve is a 

promising technique for detection initial damage in composites. Peng et al. [183] have 

introduced a new concept of non linear output frequency response functions (NOFRFS) to 

detect cracks in beams using frequency domain information. As stated by him the NOFRFS 

are a sensitive indicator of presence of cracks. He has suggested that this method establishes 

a basis for the application of NOFRF concept in fault diagnosis of structures. Friswell [184] 

has given an overview of the use of inverse method in the detection of crack location and size 

by using vibration data. He has suggested that in this method the uncertain parameters 

associated with the model have to be identified. In this work he has discussed a number of 

problems with this method for health monitoring, including modeling error, environmental 

efforts, damage localization and regularization. Zheng et al. [185] have presented a tool for 

vibrational stability analysis of cracked hollow beams. According to him each crack is 

assigned with a local flexibility coefficient which is a function of depth of crack. He has used 

least squared method to device the formulae for shallow cracks and deep cracks. In this work 

he has adapted Hamilton’s principle to formulate the governing equation by employing the 

flexibility coefficient of the cracks which serves as that of the rotational spring. Leontios et 

al. [186] have presented a new method of crack detection in beams based on Kurtosis. As 
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stated by him the location of the crack has been determined by the abrupt changes in spatial 

varitation of the analyzed response and the size of the crack is calculated by the estimation of 

Kurtosis. In this work the proposed method has been validated by experiments on crack 

Plexiglas beams. According to him the proposed Kurtosis-based prediction method is more 

attractive than the existing methods for crack detection due to low computational complexity. 

Bayissa et al. [187] have presented a new method for damage identification based on the 

statistical moments of the energy density function of the vibration responses in time-

frequency domain. According to this article the major advantage of this method is that the 

time-frequency analysis conducted using the wavelet transform provides a tool to 

characterize deterministic as well as random responses and can be used to detect slight 

changes in the response of local vibration. Finally he has suggested that the proposed method 

is more sensitive to damage than the other methods. Dilena et al. [188] have shown that the 

natural frequency and anti resonant frequency contains certain generalized Fourier 

coefficients of the stiffness variation due to damage. According to him the results of 

numerical simulations on rods with localized or diffused cracks are in good agreement with 

theory. He has concluded that the experimental results show that the inverse problem 

solution, noise and modeling errors on anti resonances amplified strongly than the natural 

frequency data used. Kim et al. [189] have developed a technique to address the problem of 

condition-based maintenance scheme in industrial machines by correctly measuring the 

remaining life of the machine component utilizing the support vector machine tool. As 

claimed by them, the results from their method have been very encouraging and can be used 

as a potential tool for prediction of remaining life of machineries. Jafari et al. [190] have 

discussed an approach for fracture density estimation in an oil well structure using an 

adaptive neuro-fuzzy inference system. They have stated that, the proposed method have 

produced results in close proximity with measured values. Bacha et al. [190] have presented 

a novel technique for fault classification in a power transformer using dissolved gas analysis 

and multi-layer support vector machine classifier. When the developed technique is 

compared with other methods; the proposed methodology performance in detecting the faults 

in the power transformer has been superior. Mandal et al. [192] have proposed a new leak 

detection technique to address the problem of false leak detection in pipelines carrying fluids 

by applying rough set theory and support vector machine (SVM). They have designed the 
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SVM using artificial bee colony algorithm and particle swarm optimization technique. They 

have found from the experimental analysis that, their method is capable of detecting leaks 

with higher accuracy. Rao et al. [193] have presented a method for crack identification in a 

cracked cantilever beam. They have identified the crack by analyzing the vibration signatures 

using continuous wavelet transform technique. The results obtained using this method has 

been validated both by analytical and experimental methods over a cantilever beam 

containing transverse surface crack. Quek et al. [194] have investigated and presented the 

sensitivity of wavelet technique in the detection of cracks in beam structures considering the 

effects of different crack characteristics, boundary conditions, and wavelet functions. From 

the analysis, they have concluded that the wavelet transform is a useful tool in detection of 

cracks in beam structures. Wang et al. [195] have studied the damage detection in structural 

systems using spatial wavelets technique. According to them, their technique is neither 

dependent on the complete analysis of the structure nor on the material properties nor prior 

stress states of the structure. They have also checked the authenticity of this new technique 

by numerical and analytical analysis. Loutridis et al. [196] have presented a method based on 

wavelet analysis using the sudden changes in the spatial variations of the dynamic response 

of the cracked structures. The proposed technique has been validated by analytically and 

experimentally. Gentile et al. [197] have investigated to develop a technique based on 

continuous wavelet transform for detecting the location of open crack in damaged beams by 

minimizing the measurement data and baseline information of the structure. Pieper [198] has 

suggested a control design for a flexible manipulator for position control using soft 

computing. Torres-Torriti [199] has proposed a novel approach using Kalman filter for 

localization of mobile robots in clumsy environment by minimizing Hausdorff distance. Rout 

et al. [200] have discussed about a methodology to simulate the real condition for optimized 

design of a manipulator. The design has been carried out using differential evolution 

optimization and orthogonal array technique. Samantaray et al. [201] have presented a bond 

graph model to simulate systems to validate the steady-state results obtained from the 

theoretical study. Panigrahi et al. [202] have proposed a new evolutionary algorithm method 

adopting Adaptive Particle Swarm Optimization to measure the parameters such as 

amplitude, phase and frequency of a power quality signal. Casanova et al. [203] have 

presented a new technique for 2D localisation of moving objects. They have used laser and 
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radio frequency in the system to find out the robot position and orientation. Packianather et 

al. [204] have investigated the effect of processing and geometric factor on the injection 

molding performance for polymer material using computational technique. 

2.4 Findings of the literature review 

By analyzing the reviewed literature as discussed in the above section, it is observed that 

analytical methods and artificial intelligence (AI) techniques exist for identification of single 

crack in structural members, but extension to multiple numbers of cracks to the author 

knowledge, are unsolved problems. Various types of AI methods such as fuzzy inference, 

neural network, genetic algorithm can be potentially used as the basis for development fault 

detection algorithms. But it is seen that, the capabilities of artificial intelligence techniques 

are not completely explored to design and develop intelligent model for multiple crack 

diagnosis. 

In the current research, a systematic effort has been made to develop AI based intelligent 

system for structural health monitoring of cantilever beam model using  fuzzy inference, 

neural network, genetic algorithm, MANFIS and hybrid techniques. The parameters required 

to design and train the AI model have been obtained by using the theoretical, finite element 

and experimental analysis of the cantilever beam structure. 

Publication 
• D. R. K. Parhi and Dash Amiya Kumar, Analysis of methodologies applied for 

diagnosis of fault in vibrating structures, Int. J. Vehicle Noise and Vibration, Vol. 5, 
No. 4, 2009, 271-286.  
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It has been observed that the presence of cracks in structures or in machine members lead to 

operational problem as well as premature failure. A number of researchers throughout the 

world are working on structural dynamics and particularly on dynamic characteristics of 

structures with crack. The dynamic characteristic comprises of natural frequencies; the 

amplitude responses due to vibration and the mode shapes. Due to presence of crack the 

dynamic characteristics of structure changes e.g. there is a reduction in natural frequencies, 

an increase in modal damping.  

3.1 Introduction 
In the recent times, the dynamic responses of cracked structure have been analyzed 

effectively by different researchers. The modal parameters are found to vary due to presence 

of crack in the structure and the intensity of variation is a function of crack intensity and 

position of crack. Engineers and scientists have emphasized the effect of crack on the natural 

frequencies and mode shapes of dynamically vibrating structure, which in turn can be 

efficiently utilized for developing crack identification algorithms. The focus of this chapter is 

to adopt a systematic approach to formulate a theoretical model to analyze the effect of 

multiple cracks on the modal response of the cantilever beam structure. Stress intensity factor 

and strain energy release rate from linear fracture mechanics theory have been employed to 

derive the dimensionless compliance matrices and subsequently the local stiffness matrices. 

The stiffness matrix has been utilized to find out the variation in the dynamic response of the 

multiple cracked beams in comparison to that of the undamaged beam. In the theoretical 

analysis different boundary conditions have been laid down to compute the natural 

frequencies and mode shapes for the cantilever beam structure with various crack depths and 

crack locations. The modal responses obtained from the theoretical analysis have been 

authenticated by comparing the results with that of the experimental analysis. 

 

Chapter 3 

EVALUATION OF DYNAMIC CHARACTERISTICS OF BEAM 
STRUCTURE WITH MULTIPLE TRANSVERSE CRACKS 



   

43 

3.2 Vibration characteristics of a multi cracked cantilever beam  
3.2.1 Theoretical analysis 

This section presents the approach adopted to build the theoretical model for measuring the 

modal characteristics i.e. natural frequencies and mode shapes of the cracked beam 

containing multiple transverse cracks for different relative crack depths and relative crack 

positions and undamaged beam structure. During the analysis of the theoretical results, it is 

observed that a noticeable change in the first three mode shapes have been marked at the 

vicinity of crack locations. The robustness of the proposed theoretical approach has been 

established by comparing the results with the experimental results. 

 
3.2.1.1   Evaluation of local flexibility of the damaged beam under axial and bending 

loading 

Fig. 3.1(a) presents a multi cracked cantilever beam, subjected to axial load (P1) and bending 

moment (P2). The loading provides a coupling effect resulting in both longitudinal and transverse 

motion of the beam. The beam contains two transverse cracks of depth ‘a1’ and ‘a2’ having width 

‘B’ and height ‘W’. Due to the cracks present in the beam a local flexibility will be introduced 

and a 2x2 matrix is considered, which represents the flexibility of the beam. Fig. 3.1(b) 

represents the cross sectional view of the cantilever beam model. 

At the cracked section strain energy release rate can be explained as [20]; 
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The expressions for F1 and F2 are as follows 

0.5
1 ))

2W
πatan(

πa
2W()

W
a(F =

⎭
⎬
⎫

⎩
⎨
⎧ −++

)2/cos(
))2/sin(1(37.0)a/W(02.2752.0 3

Wa
Wa

π
π

0.5
2 ))

2W
πatan(

πa
2W()

W
a(F =

⎭
⎬
⎫

⎩
⎨
⎧ −+

)2/cos(
))2/sin(1(199.0923.0 4

Wa
Wa

π
π

    
 

 

 

 

 

 

 

 

 

Assuming Ut be the strain energy due to the crack. The additional displacement along the 

force Pi according to Castigliano’s theorem is;  
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Fig.  3.1 Geometry of beam, (a) Cantilever beam, (b) Cross-sectional view of the beam.  
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Where J= 
a

Ut

∂
∂

the strain energy density function.  

Hence, from equations (3.1) and (3.3), we can have 

i
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0i

udaJ(a)
P

1

=
⎥
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⎤

⎢
⎢
⎣

⎡

∂
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∫           

Cij the flexibility influence co-efficient by definition is 

ij

a

0ij

2

j

i CdaJ(a)
PPP

u 1

=
∂∂

∂
=

∂
∂

∫                                                                   

and can be expressed as, ij

ξ

0

2
l1l2

ij

2

Cdξ)K(K
PPE

WB 1

=+
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∂
′ ∫         

Using equation (3.8) the compliance C11, C22, C12 (=C21) are as follows; 

∫
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The dimensionless form of the influence co-efficient will be; 

π
′

=
2
EBCC 1111   211212 C

12
BWECC =

π
′

= ; 
π

′
=

72
BWECC

2

2222                 

 

(3.6)

(3.7)

(3.8)

(3.10)

(3.9)

(3.11)

(3.12)
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The inversion of compliance matrix will lead to the formation of local stiffness matrix and 

can be written as; 

 ⎥
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=

−
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1211
1

2221

1211

KK
KK

CC
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K                    (3.13) 

The stiffness matrix for the first and second crack location can be obtained as follows: 
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The variations of dimensionless compliances with respect to relative crack depth have been 

shown in Fig. 3.2 and from the graph it is observed that the dimensionless compliance 

increases with increase in relative crack depths. 
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3.2.1.2  Vibration analysis of the multi cracked cantilever beam 

In the present section, a  cantilever beam (Fig. 3.3) with multiple crack with length ‘L’ width 

‘B’ and depth ‘W’, having cracks at distance ‘L1’ and ‘L2’ with crack depths ‘a1’and ‘a2’ 

respectively from the fixed end  has been analyzed. The amplitudes of longitudinal vibration 

have been taken as u1(x, t), u2(x, t), u3(x, t) and amplitudes of bending vibration have been 

considered as y1(x, t), y2(x, t), y3(x, t) for the section-1(before 1st crack), section-2 (in 

between cracks), section-3 (after the 2nd crack) respectively as shown in Fig.3.3.   

 

 

 

 

 

The following are the expressions of normal functions for the system  

)xKsin(A)xK(cosA)x(u u2u11 +=        (3.14a) 

)xKsin(A)xK(cosA)x(u u4u32 +=       (3.14b) 

)xKsin(A)xK(cosA)x(u u6u53 +=  

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y8y7y6y51 +++=   (3.14d) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y12y11y10y92 +++=   (3.14e) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y18y17y16y153 +++=
  

  

Where, 
L
xx = ,

L
uu = ,

L
yy = , ,

L
L1

1 =β
L
L2

2 =β  

(3.14c) 

(3.14f)

Fig. 3.3  Front view of the cracked cantilever beam 
L 

L1 

L2 

a2 a1 Section 1 Section 2 Section 3 
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u
u C

LK ω
= ,

2/1

u
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⎠
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⎜⎜
⎝

⎛
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= ,
2/1
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2

y C
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⎛ ω
= ,
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EIC ⎟⎟

⎠

⎞
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⎝

⎛
μ

= , μ = Aρ 

The constants Ai, (i=1, 18) are to be calculated using the laid down boundary conditions. The 

following are the boundary conditions for the cantilever beam; 

0)0(u1 = ;            3.15(a)  

0)0(1 =y ;            3.15(b)  

0)0(1 =′y ;            3.15(c)  

0)1(u3 =′ ;          3.15(d) 

0)1("y 3 = ;          3.15(e) 

0)1(y3 =′′′
          3.15(f) 

At the fractured section: 

)('u)('u 21 β=β ;          3.16(a)  

)(y)(y 1211 β=β ;         3.16(b)  

)(y)(y 1211 β′′=β′′ ;         3.16(c)  

)(y)(y 1211 β′′′=β′′′ ;         3.16(d)  

)('u)('u 2322 β=β ;         3.16(e)  

)(y)(y 2322 β=β ;         3.16(f)  

)(y)(y 2322 β′′=β′′ ;         3.16(g)  

)(y)(y 2322 β′′′=β′′′
;         3.16(h)  

 

The expression in equation (3.17) can be found out because of the discontinuity of axial 

deformation to the right and left of the first crack location at the distance L1 from the fixed 

end of the cantilever beam. Also at the cracked section, we have      

                              

)
dx

)L(dy
dx

)L(dy(k))L(u)L(u(k
dx

)L(duAE 1112
12111211

11 −′+−′=    (3.17) 
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Multiplying 
1211kkL

AE
′′

 on both sides of equation (3.17) we get ;                             

  

))(y)(y(M))(u)(u(M)(uMM 11121111221121 β′−β′+β′−β=β′               (3.18) 
 
The expression in equation (3.19) can be found out because of the discontinuity of slope to 

the left and right of the crack at the crack section.     

)
dx

)L(dy
dx

)L(dy(k))L(u)L(u(k
dx

)L(ydEI 1112
221112212

11
2

−′+−′=    (3.19) 

Multiplying 
2122

2 kkL
EI

′′
 on both sides of equation (3.19) we get; 

))(u)(u(M))(y)(y(M)(yMM 11123111241143 β−β+β′−β′=β″                          

Similarly considering the second crack we can have; 

+β−β=β′ ))(u)(u(M)(uMM 222362265 ))(y)(y(M 22235 β′−β′                               (3.21) 

+β′−β′=β″ ))(y)(y(M)(yMM 222382287 ))(u)(u(M 22237 β−β                              (3.22) 

Where 122111 kAEM,)kL(AEM ′=′= , )kL(EIM,)kL(EIM 21
2

4223 ′=′=  

,kAEM,)kL(AEM 236225 ′′=′′=  )kL(EIM),kL(EIM 32
2

8337 ′′=′′=  

By using the normal functions, equation (3.14a) to equation (3.14f) with the laid down boundary 

conditions as mentioned above, the characteristic equation of the system can be expressed as;
 

0Q =                      (3.23) 

This determinant is a function of natural frequency (ω), the relative locations of the crack 

( 1β , 2β ) and the local stiffness matrix (K) which in turn is a function of the relative crack 

depth (a1/W, a2/W).  

(3.20)
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Where Q is a 18x18 matrix and is expressed as 

 

 

 

 

    

 

 

 

 

Where; 

u1 kSinT = , u2 kCosT = ,   ,)k(CosT 2u3 β= )k(Sin 2uβ=4T , )k(CosT 1u5 β= , )1uβ= kSin(T6 ,    

)k(Cosh 1yβ=1G , ).k(Sinh 1y β=2G , )k(CoshG y3 = , )k(SinhG y4 = , 

  )1y5 k(CosG β= )k(Sin 1yβ=6G , )k(CosG y7 = , )k(SinG y8 = , )k(CoshG 2y9 β= , 

)k(Sinh 2yβ=10G , )k(CosG 2y11 β= , )k(Sin 2yβ=12G , )kL/(AEM 11′=1 , 122 k/AEM ′= , 

)kL/(EIM 223 ′= , )kL/(EIM 21
2
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[Q] = (3.24)
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236 k/AEM ′′= , )kL/(EIM 337 ′′= , )kL/(EIM 32
2

8 ′′= ,  6556 M/MM = , 

8778 M/MM = , 4u531 TkMTV −= , 3u542 TkMTV += , 11563 VMV = , 12564 VMV = ,

13565 VMV = , 14566 VMV = , 11VGkMV 9
2

y77 += , 12V += 10
2

y78 GkMV , 

13V += 11
2

y79 GkMV ,  14V −= 12
2

y710 GkMV ,  10y11 Gk V = , 9y12 Gk V = , 12y13 Gk V = , 

11y14 Gk V = , 37815 T MV = ,   47816 T MV =     

3.2.2  Numerical analysis 

The cantilever beam with multiple crack and undamaged condition has been considered for 

numerical analysis, to compute the relative natural frequencies and relative amplitude of 

vibration for different crack locations and crack severities. In the current investigation, the 

cantilever beam model used for the vibration analysis has the following dimensions.  

Length of the Beam     = 800mm 

Width of the beam     = 38mm 

Height of the Beam     = 6mm 

Relative crack depth (a1/W, a2/W)   = Varies from 0.083 to 0.416 

Relative crack location (L1/L, L2/L)   = Varies from 0.0625 to 0.9375 

3.2.2.1 Results of theoretical analysis 

The theoretical analysis has been carried out to obtain the mode shapes for the first three 

modes of the cracked aluminum cantilever beam model with different crack locations and 

crack severities using the equation (3.24). A comparison of mode shapes computed for both 

the multiple cracked and undamaged beam member along with the magnified using views at 

the vicinity of crack location have been presented in Fig. (3.4a to 3.4 c).  
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Fig. 3.4a Relative amplitude vs. relative distance from the fixed end  
(1st mode of vibration), a1/W=0.083, a2/W=0.333,L1/L=0.1875, L2/L=0.5625. 
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Fig. 3.4a1 Magnified view of fig. 3.4a at the vicinity of the 
crack location L1/L=0.1875. 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.175 0.18 0.185 0.19 0.195 0.2

numerical crack

numerical uncrack

Relative distance from fixed end 

undamaged 



   

53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

undamaged R
el

at
iv

e 
am

pl
itu

de
  

Fig. 3.4a2 Magnified view of fig. 3.4a at the vicinity of the 
crack location L2/L=0.5625. 

R
el

at
iv

e 
am

pl
itu

de
  

Fig. 3.4b Relative amplitude vs. relative distance from the fixed end (2nd 

mode of vibration), a1/W=0.083, a2/W=0.333,L1/L=0.1875, L2/L=0.5625. 
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Fig. 3.4b1 Magnified view of fig. 3.4b at the vicinity of the 
crack location L1/L=0.1875. 
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Fig. 3.4b2 Magnified view of fig. 3.4b at the vicinity of the 
crack location L2/L=0.5625. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.175 0.18 0.185 0.19 0.195 0.2

numerical crack

numerical uncrack

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

0.204

0.49 0.495 0.5 0.505 0.51

numerical crack

numerical uncrack

Relative distance from fixed end 

Relative distance from fixed end 

undamaged 

undamaged 



   

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
el

at
iv

e 
am

pl
itu

de
  

Fig. 3.4c Relative amplitude vs. relative distance from the fixed end (3rd

mode of vibration),a1/W=0.083,a2/W=0.333,L1/L=0.1875, L2/L=0.5625. 
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Fig.  3.4c1 Magnified view of fig. 3.4c at the vicinity of the 
crack location L1/L=0.1875. 
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Fig.  3.4c2 Magnified view of fig. 3.4c at the vicinity of the 
crack location L2/L=0.5625. 
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3.3  Analysis of experimental results 
The aluminum cantilever beam with dimension (800 x 38 x 6 mm) has been considered to 

carry out experiments for evaluating the relative amplitude of vibration. A number of 

experiments have been performed on the test specimens with various configurations of crack 

locations and crack depths to determine the first three mode shapes and natural frequencies. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1  Experimental results 

The mode shapes obtained from experimentation (Fig. 3.5) for relative crack locations (0.25, 

0.0625, 0.3125, 0.5625, 0.1875, 0.5) and relative crack depths (0.083, 0.166, 0.25, 0.333) 

have been compared with that of the numerical analysis for both cracked and undamaged 

beam. The comparisons are presented in Fig.3.6 to Fig. 3.8. 

Fig. 3.5   Schematic block diagram of experimental set-up 

1. Data acquisition    4. Power Distribution      7.  Modal vibration Exciter 
   (Accelerometer) 
 
2. Vibration analyser     5. Function generator 8. Cracked Cantilever beam 
  
3. Vibration indicator              6. Power amplifier       
    embedded with software                                                      
(PULSE Labshop)       

1

2 
3 

4

5 

6
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7
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Fig.3.6 (b)  Relative amplitude vs. relative distance from the fixed end 
(2nd mode of vibration), a1/W=0.166, L1/L= 0.0625, a2/W=0.25, L2/L=0.3125 
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Fig.3.6 (a)  Relative amplitude vs. relative distance from the fixed end 
(1st mode of vibration), a1/W=0.166, L1/L= 0.0625, a2/W=0.25, L2/L=0.3125 
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Fig.3.6 (c)  Relative amplitude vs. relative distance from the fixed end 
(3rd mode of vibration), a1/W=0.166, L1/L= 0.0625, a2/W=0.25, L2/L=0.3125 
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Fig.3.7 (a)  Relative amplitude vs. relative distance from the fixed end 
(1st mode of vibration), a1/W=0.083, L1/L=0.25, a2/W=0.333, L2/L=0.5625 
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Fig.3.7 (b)  Relative amplitude vs. relative distance from the fixed end  
(2nd mode of vibration), a1/W=0.083, L1/L=0.25, a2/W=0.333, L2/L=0.5625 
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Fig.3.7(c) Relative amplitude vs. relative distance from the fixed end  
(3rd  mode of vibration), a1/W=0.083, L1/L=0.25, a2/W=0.333, L2/L=0.5625 
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Fig.3.8 (a)  Relative amplitude vs. relative distance from the fixed end 
(1st mode of vibration), a1/W=0.166, L1/L=0.1875, a2/W=0.083, L2/L=0.5 
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Fig.3.8 (b) Relative amplitude vs. relative distance from the fixed end  
(2nd mode of vibration), a1/W=0.166, L1/L=0.1875, a2/W=0.083, L2/L=0.5 
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3.3.2.  Comparison between the results of numerical and experimental analyses 

The results obtained in the form of mode shapes from theoretical analysis and experimental 

analyses are compared in Fig.3.6 to Fig. 3.8. The results from the several recorded data set, 

ten numbers are presented in Table 3.1 for systematic comparison among the theoretical and 

experimental results.  

The relative natural frequency and relative mode shape difference used in the above analysis 

can be defined as follows. 

Relative natural frequency =  

Relative mode shape difference =  

 

Fig.3.8 (c)   Relative amplitude vs. relative distance from the fixed end  
(3rd  mode of vibration), a1/W=0.166, L1/L=0.1875, a2/W=0.083, L2/L=0.5 
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The first three columns of the Table 3.1 represents first three relative natural frequencies, where 

as the fourth, fifth and sixth number columns present the average relative mode shape difference 

for first three modes of vibration. The columns number seven, eight, nine and ten presents the 

relative crack depth for first crack position, relative crack location for first crack position, relative 

crack depth for second crack position, relative crack location for second crack position 

respectively obtained from numerical analysis. The columns number eleven, twelve, thirteen and 

fourteen present the relative crack depth for first crack position, relative crack location for first 

crack position, relative crack depth for second crack position, relative crack location for second 

crack position respectively obtained from experimental analysis. 
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3.4  Discussions 

This section explains the discussions made from the analysis of the results derived from 

theoretical and experimental section. The cracked cantilever beam containing multiple transverse 

cracks and cross sectional view of the cantilever beam structure are shown in  Fig. 3.1 (a) and 

Fig.3.1 (b) respectively. Fig.3.3 represents the front view of the cracked cantilever beam. The 

variation of relative crack depth with dimensionless compliances is shown in Fig. 3.2. It is 

observed that the due to decrease in local stiffness at the crack sections the dimensionless 

compliance increases with increase in relative crack depth. The graphs presented in Fig. 3.4a to 

Fig. 3.4c show the deviation of the first three mode shapes for the cracked and undamaged beam 

with magnified view at the vicinity of the crack locations obtained from theoretical analysis. 

From the magnified view (such as Fig. 3.4a1, Fig. 3.4a2), it is evident that there is a noticeable 

effect on the mode shapes due to presence of cracks in the cracked beam as compared to 

undamaged beam.  A significant variation in the mode shapes can be seen with increase in crack 

depth in Fig. 3.4a to Fig. 3.4c. A comparison of results for the intact and cracked beam derived 

from numerical analysis and experimental set up (Fig. 3.5) have been exhibited in Fig. 3.6 to Fig. 

3.8. The relative crack locations and relative crack depths corresponding to ten sets of first three 

natural frequencies and first three mode shape differences from numerical and experimental 

analysis are presented in Table 3.1. 

3.5  Summary 
The conclusions drawn from the above analysis are described in this section. Due to the presence 

of cracks the vibration parameters of the cracked beam such as natural frequencies and mode 

shapes shows a major deviation near the crack locations as compared to undamaged beam. This 

phenomenon can be seen in the magnified view. The vibration indices obtained from the 

numerical analysis have been validated using the results from experimental analysis and are 

found to be well in agreement.  The deviation in the dynamic response can be used as the basis 

for multiple crack identification in damaged structural members and the measured vibration 

parameters can also be used for design and development of inverse methodologies for fault 

diagnosis. The proposed method can be effectively used to develop artificial intelligent 

techniques for online structural health monitoring. In the subsequent sections various AI 

techniques have been employed to formulate intelligent supervision system for multiple crack 

diagnosis. 
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One form of damage that can lead to catastrophic failure of the beam structures are transverse 

cracks if undetected in their primary stages. However, it is difficult to locate a crack using 

visual inspection and it may be detected usually by non-destructive techniques such as x-ray, 

ultrasonic test etc. However, these techniques are found to be unsuitable for various 

engineering systems as they require periodic inspection. In last two decades, a lot of 

researches have been devoted and several models have been developed to predict the damage 

characteristics using the vibrational behavior of the damaged beam structures. Vibration 

based methods for detection of crack offer some advantages over conventional methods. This 

methodology can help to determine the location and size of the cracks from the vibration data 

collected from the cracked beam structure. The crack developed in the structure generates 

flexibility at the vicinity of the crack which in turn, gives rise to a reduction in natural 

frequencies and the change in the mode shapes. Hence, it may be possible to estimate the 

location and size of the cracks by measuring changes in the vibration parameters. Single 

crack detection in beam has been studied by scientists adopting analytical model of the 

structure. This chapter introduces finite element analysis for identification of multiple cracks 

present in structural systems. The results from the finite element analysis have been 

compared with that of the numerical analysis and experimental analysis to establish the 

robustness of the proposed finite element model. Finally, it is found that the finite element 

technique can be suitably used for multiple crack detection in damaged structures. 

4.1 Introduction 
Automation of fault identification in various engineering systems can be termed as the 

implementation of systematic approach to detect and quantify the presence of faults present 

in the system. Faulty beam has been a point of major concern for failure analysts of structural 

systems for overall safety and performance. The modal responses of the damaged members 

can be potentially used for estimating the damage parameters present in the beam members. 

In due course of development of different crack detection technique researchers have used 

energy based method, wavelet analysis, numerical techniques such as finite element method, 

Chapter 4 

ANALYSIS OF FINITE ELEMENT FOR MULTIPLE 
CRACK DETECTION 
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artificial intelligent methods, etc. In last few decades scientists have addressed the problem 

of detecting single crack present in beam model using finite element analysis and it is cited 

that the performance of FEA is better as compared to theoretical model developed for crack 

diagnosis. So, this technique can be used to detect the presence of multiple cracks with their 

crack features such as crack depth and crack location in systems using the vibration response 

of the system.  

In this present investigation for fault identification in a cracked beam containing multiple 

transverse cracks, finite element analysis has been carried out to identify crack depths and 

their positions. It has been established that a crack in a beam has an important effect on its 

dynamic behavior. Theoretical and experimental analyses have been done to validate the 

results obtained from the finite element analysis of the multi cracked cantilever beam 

structure. In the theoretical analysis the strain energy density function is used to evaluate the 

additional flexibility produced due to the presence of crack. Based on the flexibility a new 

stiffness matrix is deduced and subsequently that is used to calculate the natural frequencies 

and mode shapes of the cracked beam. The results from finite element method and 

experimental method are compared with the results from the numerical analysis for 

validation. The results are found to be in good agreement. 

This chapter has been organized into five sections. Introduction, Finite Element Analysis is 

explained in section 4.1 and 4.2 respectively. The analysis of cracked beam using finite 

element analysis (FEA) is discussed in section 4.2.1. In section 4.3, the results of the finite 

element analysis are compared with that of experimental and numerical results to exhibit the 

authenticity of the proposed methodology. In the concluding section 4.4 summaries are 

given. 

4.2 Finite element analysis 
The finite element analysis is a useful numerical technique that utilizes variational and 

interpolation methods for modeling and solving boundary value problems such as the one 

described in this current chapter. The finite element analysis is very systematic and can be 

useful for model with complex shape. So, the finite element model can be suitably employed 

for solving vibration based problems with different boundary conditions. Commercial finite 
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element packages are available to address the practical problems. During finite element 

analysis, the structure is approximated in two ways. First step is employed by dividing the 

structure into a number of small parts. The small parts are known as finite elements and the 

procedure adopted to divide the structure is called as discretization. Each element on the 

structure has usually associated with equation of motion and that can be easily approximated. 

The each element on the finite element model has end points, they are known as nodes. The 

nodes are used for connecting one element to other element. Collectively the finite element 

and nodes are called as finite element mesh or finite element grid. In the second level of 

approximation the equation of vibration for each finite element is determined and solved. The 

solution for each finite element brought together to generate the global mass and stiffness 

matrices describing the vibrational response of the whole structure. The displacement 

associated with the solution represents the motion of the nodes of the finite element mesh. 

This global mass and stiffness matrices represent the lumped parameter approximation of the 

structure and can be analyzed to obtain natural frequencies and mode shapes of damaged 

vibrating structures. 

 

4.2.1   Analysis of cracked beam using finite element analysis (FEA) 

In the following section FEA is analyzed for vibration analysis of a cantilever cracked beam 

(Fig. 4.1). The relationship between the displacement and the forces can be expressed as; 

          

 
 
 
Where overall flexibility matrix Covl  can be expressed as; 

  

The displacement vector in equation (4.1) is due to the crack. 

                         

 

 

Covl = 

R11 -R12 

-R21 R22 

(4.1) Covl 
uj – ui 

θj – θi 

Uj 

Øj 
=

Fig. 4.1 View of a crack beam element subjected to axial and bending forces.  

uj (Uj) 

L c 

θj (Øj) 

ui (Ui) 

θi (Øi) 

a1

L e 

(Crack depth) 
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The forces acting on the beam element for finite element analysis are shown in Fig. 4.1. 

Where,  

R11: Deflection in direction 1 due to load in direction 1 
R12= R21: Deflection in direction 1 due to load in direction 2  
R22: Deflection in direction 2 due to load in direction 2. 

Under this system, the flexibility matrix Cintact of the intact beam element can be expressed 

as; 

          

Where,                       

             

The displacement vector in equation (4.2) is for the intact beam. 

The total flexibility matrix Ctot of the damaged beam element can now be obtained by  

 

 

Through the equilibrium conditions, the stiffness matrix Kc of a damaged beam element can 

be obtained as [80]  

Kc=DCtot                 (4.4) 

Where D is the transformation matrix and expressed as; 

      

 

 

By solving the stiffness matrix Kc, the natural frequencies and mode shapes of the multi 

cracked cantilever beam can be obtained. This procedure has been adopted by ALGOR 

package to evaluate the natural frequencies and mode shapes of beam structures. In the 

current investigation, ALGOR (Version 19.3) has been used to calculate the vibration 

signatures of damaged and undamaged cantilever beam. The FEA model of the cantilever 

(4.2) Cintact 
uj – ui 

θj – θi 
=

Uj 

Øj 

Cintact = 
Le/EA       0

  0     Le/EI

-1 DT 

D = 

-1 0 
 0 -1 
 1  0 
 0  1 

Ctot   =  Cintact + Covl = 
-R12Le/EA+ R11

-R21 Le/EI+ R22
(4.3) 
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beam and the ALGOR generated cantilever beam model with 2nd mode of vibration are 

shown in the appendix section in Fig. A1 and Fig. A2 respectively. The results of the finite 

element analysis for the first three mode shapes of the cracked beam are compared with that 

of the numerical analysis and experimental analysis of the cracked beam and are presented in 

Fig. 4.2 to Fig. 4.4   and Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 (a)  Relative amplitude vs. relative distance from the fixed end 
(1st mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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Fig. 4.2 (b) Relative amplitude vs. relative distance from the fixed end  
(2nd mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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Fig. 4.2 (c)  Relative amplitude vs. relative distance from the fixed end 
(3rd mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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Fig. 4.3 (a) Relative amplitude vs. relative distance from the fixed end  
(1st mode of vibration), a1/W=0.25, L1/L=0.4375, a2/W=0.166, L2/L=0.625 
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Fig.4.3 (b)  Relative amplitude vs. relative distance from the fixed end 
(2nd mode of vibration), a1/W=0.25, L1/L=0.4375, a2/W=0.166, L2/L=0.625 
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Fig. 4.3 (c) Relative amplitude vs. relative distance from the fixed end  
(3rd mode of vibration), a1/W=0.25, L1/L=0.4375, a2/W=0.166, L2/L=0.625 
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Fig. 4.4 (b) Relative amplitude vs. relative distance from the fixed end  
(2nd mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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Fig.4.4 (a)  Relative amplitude vs. relative distance from the fixed end 
(1st mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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4.3  Results and discussions of finite element analysis 
 
This section presents an in depth analysis of the results obtained from finite element analysis 

and briefly discusses the outcome from the proposed methodologies. 

It is observed that, the presence of damage in the cantilever beam model have noticeable 

effect on the vibration characteristics of the beam. A beam element with a crack subjected to 

axial and bending forces for Finite Element Analysis has been presented in Figure 4.1. The 

displacement vector and force vector have been applied to calculate the overall matrix. The 

total flexibility matrix that is produced due to the presence of cracks on the cantilever beam 

has been derived, which is subsequently used to formulate the stiffness matrix for the multi 

cracked beam. Finally, the formulated matrices are used to calculate the first three natural 

frequencies and first three mode shapes of the cantilever beam structure. These vibration 

parameters obtained from the finite element analysis have been used to estimate the crack 

characteristics present on the structural member. The results from the FEA have been 

validated using the results from experimental and theoretical analysis for multiple crack 

identification. The results obtained from Finite Element Analysis (FEA), theoretical analysis 

and experimental analyses are compared and presented in Figure 4.2 to Fig. 4.4 (mode shape 

comparison). Table 4.1 presents results for relative crack locations and relative crack depths 

Fig.4.4 (c)  Relative amplitude vs. relative distance from the fixed end 
(3rd mode of vibration), a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625 
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obtained from FEA, numerical analysis and experimental analysis corresponds to ten set of 

relative deviation of first three natural frequencies and first three mode shape differences. 

The results are found to be well in agreement showing the effectiveness of the  

developed FEA methodology. 
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4.4  Summary 

 In this section, the conclusions obtained from the Finite Element Analysis are described 

below. 

In the present study a simple and efficient method to detect multiple cracks in a beam is 

presented. From the analysis of the vibration signatures it is observed that there is variation 

of mode shapes and natural frequencies for the cracked beam with respect to undamaged 

beam. The vibration responses i.e. the natural frequencies and mode shapes obtained from the 

FE analysis are found to be in close agreement with theoretical and experimental analysis. In 

the future the artificial intelligent techniques (Fuzzy, Neural network, Genetic Algorithm) 

and hybrid artificial intelligent techniques such as fuzzy-neuro technique can be used for 

detection of fault in dynamic vibrating structures. The proposed method can be utilized to 

model any practical engineering structure and on-line condition monitoring of damaged 

structures. 

Publication: 

• D.R.K. Parhi, Amiya Kumar Dash, Faults detection by finite element analysis of a 
multi cracked beam using vibration signatures, Int. J. Vehicle Noise and Vibration, 
Vol. 6, No. 1, 2010, 40-54.  
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Cracks present a serious threat to proper performance of structures and machines. Most of the 

failures are due to material fatigue and presence of cracks in structures. For this reason 

methods allowing early detection and localization of cracks have been the subject of 

intensive research for investigators. Many techniques have been adopted in the past to 

quantify and identify faults. Some of these are visual (e.g. dye penetrate methods) and others 

use sensors to detect local faults (e.g. magnetic field, eddy current, radiographs and thermal 

fields). These methods cannot indicate that a structure is fault-free without testing the entire 

structure in minute detail. Since the last two decades a number of experiments and theories 

have been developed to elucidate the phenomenon and determine the crack initiation and 

propagation conditions. In the current investigation a fuzzy logic based technique has been 

proposed for structural damage identification. The approach adopted in this chapter utilizes 

the induced vibration parameters of the beam structure using and inverse technique and  

predicts the position and severities of the multi crack present in the system. 

5.1 Introduction 
Basically, fuzzy logic (FL) is a multi valued logic, which allows interim values to be defined 

between linguistic expressions like yes/no, high/low, true/false. In the last few decades, 

researchers have used the FL methodology for applications such as feature extraction, 

classification and detection of geometrical features in objects etc. Fuzzy system has the 

capability to mimic the human behavior by following the different reasoning modes in order 

to make the computer program behave like humans. In traditional computing, actions are 

taken based on data with precision and certainty.  In soft computing, imprecise data are 

employed for decision making. The exploration of the imprecision and uncertainty underlies 

the remarkable human ability to understand various engineering applications.  FL can specify 

mapping rules in terms of words rather than numbers. Another basic concept in FL is the 

fuzzy if–then rule which is mostly used in development of fuzzy rule based systems.  FL can 

model nonlinear functions of arbitrary complexity to a desired degree of accuracy. FL is a 

Chapter 5 

ANALYSIS OF FUZZY INFERENCE SYSTEM FOR 
MULTIPLE CRACK DETECTION 
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convenient way to map an input space to an output space and is one of the tools used to 

model a multi-input, multi-output system. Hence the fuzzy approach can be effectively 

employed to develop a multi crack diagnostic tool using the vibration response of structures. 

In the current chapter, a multi crack identification algorithm using fuzzy inference system has 

been formulated and the performance has been evaluated. The fuzzy system for crack 

diagnosis has been designed with six inputs (first three relative natural frequencies and first 

three relative mode shape differences) and four outputs (relative first and second crack 

locations, relative first and second crack depths). A number of fuzzy linguistic terms and 

fuzzy membership functions (triangular, trapezoidal and Gaussian) have been used to 

develop the proposed crack detection methodology. The dynamic response obtained from the 

numerical, finite element and experimental analyses have been used to set up the rule base 

for designing of the fuzzy system. The performance of the proposed fuzzy based system for 

crack diagnosis have been compared with the results obtained from FEA, numerical and 

experimental analysis and it is observed that, the current fuzzy model can be implemented 

successfully for structural health monitoring.  

The current chapter is comprised of five different sections. Section 5.1 discusses about the 

introduction to Fuzzy Inference System and section 5.2 enumerates the systematic steps to be 

followed to design and develop a fuzzy logic system. The analysis of the fuzzy model used 

for multi crack identification has been explained in section 5.3. Section 5.4 discusses about 

the results obtained from the fuzzy logic model and finally, section 5.5 provides a summary 

of the fuzzy logic analysis applied for multiple crack detection in the damaged structure.  

5.2 Fuzzy inference system 
A fuzzy logic system (FLS) essentially takes a decision by nonlinear mapping of the input 

data into a scalar output, using fuzzy rules. The mapping can be done through input/output 

membership functions, fuzzy if–then rules, aggregation of output sets, and defuzzification. 

An FLS can be considered as a collection of independent multi-input, single-output systems. 

The FLS maps crisp inputs into crisp outputs. It can be seen from the figure that the FIS 

contains four components: the fuzzifier, inference engine, rule base, and defuzzifier. The rule 

base of the FLS system can be developed using the numeric data. Once the rules have been 
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established, the FLS can be viewed as a system that utilizes inputs and process them using 

the fuzzy rule database and fuzzy linguistic terms to get output vector. The fuzzifier takes 

input values and verifies the degree of association to each of the fuzzy sets via membership 

functions.  

 
The fuzzy system generally consists of five steps. They are as follows, 

Step 1 

Inputs to fuzzy system: The fuzzy system at first is fed with the input parameters and then 

the system recognizes the degree of association of the data with the corresponding fuzzy set 

through the membership functions.  

Step 2 

Application of fuzzy operator: After the fuzzification of the inputs, the fuzzy model 

measures the degree to which each of the antecedents satisfies for each rule of the fuzzy rule 

data base. If the rule has a more than one part, the fuzzy operator is employed to obtain a 

single value for the given rule. 

Step 3 

Application of method for fulfillment of rules: Method is applied to reshape the output of 

the membership functions, which is represented by a fuzzy set. The reshaping of the output is 

done by a function related to the antecedent. 

Step 4 

Aggregation of results: The results obtained from each rule are unified to get a decision 

from the system. Aggregation process leads to a combined fuzzy set as output.  

Step 5 

Defuzzification: In this process the defuzzification layer of the fuzzy system incorporate 

method like centroid, maxima etc in order to convert the fuzzy set into crisp value, which 

will be easier to analyze. 

5.2.1 Modeling of fuzzy membership functions 

One of the key features in designing a fuzzy inference system is to determine the fuzzy 

membership functions. The membership function defines the fuzzy set and also provides a 

measure of degree of imprecise dependencies or similarity of an element to a fuzzy set. The 

membership function can take any shape, but some commonly used examples for real 
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applications are Gaussian, triangular, trapezoidal, bell shape etc. In a fuzzy set, elements with 

non zero degree membership are known as support and elements with degree of one are 

known as core of the fuzzy set. The membership functions are generally represented as μF(x). 

Where, μ is the degree of weight of the element x to the fuzzy set F. The height or magnitude 

of the membership function is usually referred to zero to one. Hence, any element from the 

fuzzy set belongs to the set with a degree ranging from [0, 1].    

From the Fig. 5.1(a) (triangular membership function) the point ‘c’, ‘d’, ‘e’ represents the 

three vertices of the triangular membership function μF(x) of the fuzzy set ‘F’.  It is observed 

that the element at ‘c’ and ‘e’ is having membership degree equivalent to zero and the 

element at‘d’ is having membership degree equivalent to one. The mathematical 

representation of the fuzzy triangular membership function of μF(x) can be explained as 

follows.  

  

 

 

 

The mathematical representation of the fuzzy Gaussian membership function can be 

expressed as follows. Where c, w, n are the center, width and fuzzification factor 

respectively. The graphical presentation of the fuzzy Gaussian membership function can be 

seen in Fig. 5.1(b). 

  

 

 

 

 

 

 

 

x 

μF(x) 

c
0

d e 

1 

Fig. 5.1(a) Triangular membership function

μF(x) = 

0 if x ≤ c 

 (x- c) / (d- c) if c ≤x ≤ d 

 (e- x) / (e- d) if d ≤x ≤ e 

0 if x ≥ e 

1 

x

μF(x) 

0 c
Fig. 5.1(b) Gaussian membership function

μF (x, c, w, n ) = Exp [-0.5{(x - c) / w}n] 
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The trapezoidal membership function (Fig. 5.1 (c)) has two base points (0.2, 0.5) and two 

shoulder points (0.3, 0.4). A mathematical expression for the trapezoidal membership 

function is presented below. A graphical representation of the trapezoidal membership 

function has been shown in Fig. 5.1 (c).  

 
 

 

 

 

 

 

5.2.2 Modeling of fuzzy inference system using fuzzy rules 
 
The understanding of the input data and the output data for a real application is often vague 

due to the intricate dependencies of the input and output variables of the working domain. 

However, a good approximation of the input and output parameters is fairly favorable to 

address a complex problem, rather than going for a complex process, which will consume 

more time to get an exact result. Fuzzy inference system posses the approximation features 

by the help of fuzzy membership functions and fuzzy IF-THEN rules. In the process of 

development of a fuzzy model, the domain knowledge helps in selecting the appropriate 

membership functions and development of fuzzy rules. This membership functions are 

designed by using the suitable fuzzy linguistic terms and fuzzy rule base. The fuzzy rule base 

or the conditional statements are used for fuzzification of the input parameters and  

defuzzification of the output parameters. The fuzzy model can be designed with single input 

and multi output (SIMO), multi input and single output (MISO), multi input and multi output 

(MIMO). During the design of the fuzzy model, the fuzzy operations like fuzzy intersection, 

union and complement are used to develop the membership functions. Hence, the fuzzy 

model takes the input parameters from the application at a certain state of condition and 

using the rules it will provide a controlled action as desired by the system. A general model 

of a fuzzy inference system (FIS) is shown in Fig. 5.2. 

The inputs to the fuzzy model for crack detection in the current analysis comprises  

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;  

Fig.5.1(c) Trapezoidal membership function

x

1

0.2 0.3 0.4 0.5 

μF(x) 

μF(x, 0.2,0.3, 0.4, 0.5)= 

0 when x ≤ 0.2 
(x – 0.2) / (0.3 – 0.2) when 0.2 ≤ x ≤0.3

1 when 0.3 ≤ x ≤0.0.4

(0.5 – x) / (0.5 – 0.4) when 0.4 ≤ x ≤0.5
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Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;  

Relative second mode shape difference = “smd”; Relative third mode shape difference = “tmd” 

The linguistic term used for the outputs are as follows; 

Relative first crack location = “rcl1” Relative second crack location = “rcl2”  

Relative first crack depth = “rcd1” Relative second crack depth = “rcd2” 

 

 

 

 

 

 

 

 

 

 

5.2.3 Modelling of defuzzifier 

The final step in building of a fuzzy system is to convert the fuzzy output set into a crisp 

output. So, the input to the defuzzifier is the aggregate output fuzzy set and output is a single 

number. The crisp output represents the possible distribution of the inferred fuzzy control 

action. Selection of the defuzzification strategy depends on the features of the application. 

The relationship between the fuzzy output set (F), defuzzifier and crisp output (K0) can be 

established in the following equation;     

K0 = defuzzifier (F); 

There are several defuzzification methods used for development of fuzzy system. Some of 

them are listed below; 

 i- Centroid of the area,                ii- Mean of maximum 
iii- Weighted average method      iv- Height method 
 
 

 

Input Output

Knowledge base 

Database Rule base

Decision-making unit 

Defuzzification 

interface 
Fuzzification 

interface 

(Fuzzy) (Fuzzy)  

  (Crisp)  (Crisp)  

Fig. 5.2 Fuzzy inference system 

fnf 

snf 

tnf 

fmd 

smd 

tmd 

rcl1

rcl2 

rcd1 

rcd2
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5.3 Analysis of the fuzzy model used for crack detection 

The fuzzy models developed in the current analysis, based on triangular, Gaussian and 

trapezoidal membership functions have got six input parameters and four output parameters. 

The linguistic term used for the inputs are as follows; 

• Relative first natural frequency = “fnf”;  

• Relative second natural frequency = “snf”;  

• Relative third natural frequency = “tnf”;  

• Average relative first mode shape difference = “fmd”;  

• Average relative second mode shape difference = “smd”;  

• Average relative third mode shape difference = “tmd”. 

The linguistic term used for the outputs are as follows; 

• First relative crack location = “rcl1”  

• First relative crack depth = “rcd1” 

• Second relative crack location = “rcl2”  

• Second relative crack depth = “rcd2” 

The pictorial view of the triangular membership, Gaussian membership, trapezoidal 

membership fuzzy models are shown in Fig. Fig. 5.3 (a), Fig. 5.3 (b) and Fig. 5.3 (c) 

respectively. Some of the fuzzy linguistic terms and fuzzy rules (Twenty numbers) used to 

design and train the knowledge based fuzzy logic systems are represented in Table 5.1 and 

Table 5.2 respectively. The membership functions used in developing the fuzzy inference 

system for crack diagnosis are shown in Fig.5.4 to Fig.5.6. Ten membership functions have 

been used for each input parameters to the fuzzy model. In designing the output membership 

functions for the output parameters such as first relative crack location (rcl1) and second 

relative crack location (rcl2) forty six membership functions are taken whereas for first 

relative crack depth (rcd1) and second relative crack depth (rcd2) nineteen membership 

functions have been used. The defuzzification process of the triangular, Gaussian, trapezoidal 

membership functions are presented in Fig 5.7, Fig. 5.8 and Fig. 5.9 respectively by 

activating the rule no 3 and rule no 17 from Table 5.2. 
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5.3.1 Fuzzy mechanism for crack detection 

Based on the above fuzzy subsets, the fuzzy control rules are defined in a general form as 

follows: 

ijklmnijklmnijklmnijklmn

n mlkji

rcd2 is rcd2 andrcl2 is rcl2 and rcd1 is rcd1 andrcl1 is rcl1then 

  )  tmdis  tmdandsmd is smd andfmd is fmd and  tnfis  tnfand snf is snf and fnf is (fnf If

where i=1 to 10, j=1 to 10, k = 1 to 10, l= 1 to 10, m= 1 to 10, n= 1 to 10  

As “fnf”, “snf”, “tnf”, “fmd”, “smd”, “tmd” have ten membership functions each. From 

equation (4.1), two set of rules can be written 

(4.1)

Fig. 5.3(c) Trapezoidal fuzzy model 

fmd 
smd 
tmd 

fnf 
snf 
tnf 

rcl1 

rcd2 

Outputs Inputs 

Fuzzy Model 

 
rcl2 

rcd1 

Inputs Outputs 

Fig. 5.3(b) Gaussian fuzzy model 

Fuzzy Model 
fnf 
snf 
tnf 
fmd 
smd 
tmd rcd2 

rcl1 
rcd1 
rcl2 

Fig. 5.3(a) Triangular fuzzy model 

Inputs Outputs 

Fuzzy Model fnf 
snf 
tnf 
fmd 
smd 
tmd rcl2 

rcl1 

rcd1 

rcl2 
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ijklmnijklmn

n mlkji

rcd2 is rcd2 and rcd1 is rcd1then 

  )  tmdis  tmdandsmd is smd andfmd is fmd and  tnfis  tnfand snf is snf and fnf is (fnf If

ijklmnijklmn

n mlkji

rcl2 is rcl2 and rcl1 is rcl1then 

  )  tmdis  tmdandsmd is smd andfmd is fmd and  tnfis  tnfand snf is snf and fnf is (fnf If

According to the usual fuzzy logic control method [91,205], a factor ijklmnW is defined for the 

rules as follows: 

)moddif(μ Λ )moddif(μ Λ )(moddifμ Λ )(freqμ Λ )(freqμ Λ )(freqμ W ntmdmsmdlfmdktnfjsnfifnfijklmn nmlkji
=

Where freqi , freqj and freqk are the first , second and third relative natural frequencies of the 

cantilever beam with crack respectively ; moddifl, moddifm and moddifn  are the average first, 

second and third relative mode shape differences of the cantilever beam with crack 

respectively. By applying the composition rule of inference [91,205], the membership values 

of the relative crack location and relative crack depth, (location)rclv and (depth)rcdv (v=1,2) can 

be computed as; 

 
rcdv depth                )depth(   W )depth(

   rclv length          )location(   W )location(

ijklmnrcdvijklmnijklmnrcdv

ijklmnrclvijklmnijklmnrclv

∈∀μΛ=μ

∈∀μΛ=μ
     

 
The overall conclusion by combining the outputs of all the fuzzy rules can be written as 
follows: 

(depth)μ..........    (depth)μ ..........   (depth)μ(depth)μ

 (location)μ.....   (location)μ ....   (location)μ(location)μ

 10  10  10  10  10  10rcdvijklmnrcdv111111rcdvrcdv

  10  10  10  10  10  10rclvijklmnrclv111111rclvrclv

∨∨∨∨=

∨∨∨∨=

 The crisp values of relative crack location and relative crack depth are computed using the 

centre of gravity method [91,205] as:  

∫
∫

∫
∫

⋅

⋅⋅
==

⋅

⋅⋅
==

  d(depth)(depth)  μ

  d(depth)(depth)    μ(depth)  
 rcdackdepthrelativecr

on)  d(locati  (location)μ

on)  d(locati)  (location  μ (location 
rclionrack locatrelative c

2,1rcd 

2,1rcd 
2,1

2,1rcl 

2,1rcl 
2,1

  

  

 

(4.2)

(4.3) 

(4.4)

(4.5)
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Fig. 5.4(a1) Membership functions for relative 
natural frequency for first mode of vibration. 
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1.0 
     L1F4     L1F3    L1F2    L1F1    M1F1   M1F2   H1F1   H1F2   H1F3    H1F4 

Fig. 5.4(a2) Membership functions for relative natural 
frequency for second mode of vibration. 

  L2F4   L2F3    L2F2     L2F1   M2F1   M2F2    H2F1    H2F2    H2F3     H2F4 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970   0.976    0.982    0.988    0.994      1.0

1.0 

Fig. 5.4(a3) Membership functions for relative 
natural frequency for third mode of vibration. 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970    0.976   0.982     0.988   0.994       1.0 

1.0 
    L3F4     L3F3    L3F2    L3F1   M3F1    M3F2   H3F1    H3F2   H3F3     H3F4 

Fig. 5.4(a4) Membership functions for relative mode  
shape difference for first mode of vibration. 

 0.0,-1.0  -0.81818  -0.63636  -0.45454  -0.27272  -0.0909  0.09092  0.27272  0.45454 0.63636 0.81818   1.0  

1.0 
   S1M4    S1M3   S1M2    S1M1  M1M1  M1M2  H1M1  H1M2  H1M3   H1M4 

Fig. 5.4(a5) Membership functions for relative mode  
shape difference for second mode of vibration.

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818      1.0  

1.0 
     S2M4    S2M3   S2M2    S2M1   M2M1 M2M2  H2M1  H2M2  H2M3   H2M4 
 

Fig. 5.4(a6) Membership functions for relative mode  
shape difference for third mode of vibration. 

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818      1.0  

1.0 
    S3M4    S3M3   S3M2   S3M1  M3M1  M3M2  H3M1  H3M2  H3M3   H3M4 

Fig. 5.4(a7) (a) Membership functions for relative crack depth1. 
  0.0,0.01 0.0545  0.099  0.1435   0.188  0.2325 0.277  0.3215  0.366  0.4105  0.455  0.4995  0.5440  0.5885  0.633  0.6775  0.722 0.7665  0.8110   0.8555   0.9 

1.0 
S1D9 S1D8  S1D7   S1D6  S1D5 S1D4   S1D3  S1D2  S1D1  M1 D  L1D1  L1D2  L1D3  L1D4 L1D5   L1D6  L1D7  L1D8  L1D9 

Fig. 5.4(a7) (b) Membership functions for relative crack depth2. 

  0.0,0.01 0.0545  0.099  0.1435   0.188  0.2325 0.277  0.3215  0.366  0.4105  0.455  0.4995  0.5440  0.5885  0.633  0.6775  0.722  0.7665  0.8110   0.8555   0.9 

1.0
S2D9 S2D8  S2D7   S2D6  S2D5 S2D4   S2D3  S2D2  S2D1  M2 D  L2D1  L2D2  L2D3  L2D4 L2D5   L2D6  L2D7  L2D8  L2D9 

        0.0,.01     .0522     .0943      .1364     .1785     .2206     .2628    .3049      .3470      .3891     .4312     .4734     .5155      .5576    .5997     .6418      .6840     .7261     .7682     .8103      .8524     .8946      .9367    .9789 
                .0311      .0732     .1153      .1575     .1996     .2417     .2838     .3259     .3681     .4102     .4523      .4944      .5365    .5787     .6208     .6629     .7050      .7471     .7893     .8314     .8735      .9156     .9578      1.0 

        S1L22      S1L20     S1L18     S1L16     S1L14     S1L12     S1L10     S1L8       S1L6      S1L4       S1L2       M1L1      B1L1      B1L3      B1L5       B1L7      B1L9     B1L10     B1L12     B1L14    B1L16    B1L18     B1L20     
                 S1L21      S1L19    S1L17     S1L15     S1L13     S1L11      S1L9      S1L7       S1L5       S1L3       S1L1      M1L2      B1L2      B1L4       B1L6      B1L8      B1L11     B1L13    B1L15     B1L17   B1L19      B1L21    B1L22 
1.0 

Fig. 5.4(a8) (a) Membership functions for relative crack location1. 

Fig. 5.4(a8) (b)  Membership functions for relative crack location2. 

            S2L22      S2L20     S2L18     S2L16     S2L14     S2L12     S2L10     S2L8       S2L6      S2L4       S2L2       M2L1      B2L1      B2L3      B2L5       B2L7      B2L9     B2L10     B2L12     B2L14    B2L16    B2L18     B2L20     
                      S2L21      S2L19    S2L17     S2L15     S2L13     S2L11      S2L9      S2L7       S2L5       S2L3       S2L1     M2L2      B2L2      B2L4       B2L6      B2L8      B2L11     B2L13    B2L15     B2L17   B2L19      B2L21    B2L22

    0.0,.01     .0522     .0943      .1364     .1785     .2206     .2628    .3049      .3470      .3891     .4312     .4734     .5155      .5576    .5997     .6418      .6840     .7261     .7682     .8103      .8524     .8946      .9367    .9789 
                     .0311      .0732     .1153      .1575     .1996     .2417     .2838     .3259     .3681     .4102     .4523      .4944      .5365    .5787     .6208     .6629     .7050      .7471     .7893     .8314     .8735      .9156     .9578      1.0 

1.0 
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1.0 

Fig. 5.5(b1) Membership functions for relative 
natural frequency for first mode of vibration. 
 

     L1F4     L1F3    L1F2    L1F1    M1F1   M1F2   H1F1   H1F2   H1F3    H1F4 
  

0.0, 0.912  0.92    0.928     0.936   0.944    0.952    0.96     0.968     0.976   0.984   0.992      1.0 

Fig. 5.5(b2) Membership functions for relative natural 
frequency for second mode of vibration. 
 

  L2F4     L2F3    L2F2    L2F1   M2F1   M2F2    H2F1   H2F2   H2F3   H2F4 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970   0.976    0.982    0.988    0.994    1.0 

1.0 

Fig. 5.5(b3) Membership functions for relative natural 
frequency for third mode of vibration. 
 

   L3F4    L3F3    L3F2    L3F1   M3F1    M3F2   H3F1    H3F2   H3F3   H3F4 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970    0.976   0.982     0.988   0.994       1.0 

1.0 

  Fig.5.5(b4). Membership functions for relative mode  
  shape difference for first mode of vibration. 
 

   S1M4    S1M3   S1M2   S1M1 M1M1  M1M2  H1M1  H1M2  H1M3   H1M4 
  
 
 
 
 
 
     

 0.0,-1.0  -0.81818  -0.63636  -0.45454  -0.27272  -0.0909  0.09092  0.27272  0.45454  0.63636   0.81818        1.0  

1.0 

Fig. 5.5(b5). Membership functions for relative mode  
shape difference for second mode of vibration. 
 

     S2M4   S2M3   S2M2    S2M1  M2M1 M2M2  H2M1  H2M2  H2M3   H2M4 
 

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818   1.0  

1.0 

Fig.5.5(b6). Membership functions for relative mode  
shape difference for third mode of vibration. 
 

    S3M4    S3M3   S3M2   S3M1  M3M1  M3M2  H3M1  H3M2  H3M3   H3M4 

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818      1.0  

1.0 

 S1D9   S1D8 S1D7 S1D6   S1D5  S1D4  S1D3  S1D2  S1D1   M1D  L1D1   L1D2  L1D3  L1D4  L1D5  L1D6  L1D7   L1D8  L1D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105   0.455  0.4995  0.5440 0.5885 0.633  0.6775   0.722  0.7665 0.8110  0.8555    0.9 

1.0 

Fig. 5.5(b7) (a) Membership functions for relative crack depth1. 
S2D9  S2D8  S2D7  S2D6   S2D5  S2D4  S2D3  S2D2  S2D1   M2D  L2D1   L2D2  L2D3  L2D4  L2D5  L2D6  L2D7   L2D8  L2D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105   0.455  0.4995  0.5440 0.5885 0.633  0.6775   0.722  0.7665 0.8110  0.8555    0.9 

1.0 

Fig. 5.5(b7) (b) Membership functions for relative crack depth2. 
          S1L22     S1L20   S1L18    S1L16   S1L14    S1L12    S1L10     S1L8     S1L6      S1L4       S1L2     M1L1      B1L1      B1L3     B1L5      B1L7      B1L9     B1L10     B1L12     B1L14    B1L16   B1L18   B1L20     
                 S1L21     S1L19    S1L17    S1L15    S1L13     S1L11    S1L9      S1L7       S1L5      S1L3      S1L1     M1L2      B1L2      B1L4     B1L6      B1L8      B1L11    B1L13    B1L15    B1L17    B1L19    B1L21   B1L22 
 

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787     .6208     .6629    .7050      .7471     .7893    .8314     .8735     .9156     .9578      1.0 

1.0 

Fig. 5.5(b8) (a) Membership functions for relative crack location1. 

          S2L22     S2L20   S2L18    S2L16   S2L14    S2L12    S2L10     S2L8     S2L6      S2L4       S2L2     M2L1      B2L1      B2L3     B2L5      B2L7      B2L9     B2L10     B2L12     B2L14    B2L16   B2L18   B2L20     
                 S2L21     S2L19    S2L17    S2L15    S2L13     S2L11    S2L9      S2L7       S2L5      S2L3      S2L1     M2L2      B2L2      B2L4     B2L6      B2L8      B2L11    B2L13    B2L15    B2L17    B2L19    B2L21   B2L22 
 

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787     .6208     .6629    .7050      .7471     .7893    .8314     .8735     .9156     .9578      1.0 

1.0 

Fig. 5.5 (b8) (b) Membership functions for relative crack location2. 
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1.0 

   0.0,   .01      .0522         .0943        .1364        .1785        .2206       .2628        .3049        .3470        .3891      .4312        .4734        .5155       .5576       .5997       .6418        .6840       .7261       .7682       .8103       .8524        .8946        .9367       .9789 
                .0311         .0732        .1153        .1575       .1996         .2417        .2838       .3259       .3681       .4102       .4523        .4944         .5365      .5787       .6208       .6629       .7050        .7471        .7893       .8314       .8735        .9156        .9578         1.0 

Fig. 5.6 (c8) (a) Trapezodial membership functions for relative crack location1. 

      S1L22       S1L20      S1L18      S1L16      S1L14      S1L12      S1L10       S1L8       S1L6       S1L4        S1L2        M1L1       B1L1       B1L3      B1L5        B1L7       B1L9      B1L10      B1L12     B1L14     B1L16      B1L18     B1L20     
             S1L21       S1L19       S1L17      S1L15       S1L13      S1L11      S1L9        S1L7       S1L5       S1L3         S1L1       M1L2      B1L2        B1L4       B1L6       B1L8       B1L11     B1L13     B1L15      B1L17     B1L19     B1L21      B1L22 

   0.0,   .01      .0522         .0943        .1364        .1785        .2206       .2628        .3049        .3470        .3891      .4312        .4734        .5155       .5576       .5997       .6418        .6840       .7261       .7682       .8103       .8524        .8946        .9367       .9789 
                .0311         .0732        .1153        .1575       .1996         .2417        .2838       .3259       .3681      .4102      .4523      .4944        .5365     .5787      .6208      .6629      .7050       .7471        .7893       .8314       .8735       .9156       .9578        1.0

1.0 

Fig. 5.6 (c8) (b)Trapezodial membership functions for relative crack location2. 

      S2L22       S2L20      S2L18      S2L16      S2L14      S2L12       S2L10      S2L8       S2L6       S2L4         S2L2       M2L1       B2L1       B2L3      B2L5        B2L7        B2L9     B2L10      B2L12    B2L14      B2L16     B2L18      B2L20     
              S2L21      S2L19       S2L17      S2L15       S2L13       S2L11     S2L9        S2L7         S2L5      S2L3        S2L1        M2L2       B2L2       B2L4      B2L6       B2L8       B2L11      B2L13     B2L15      B2L17    B2L19    B2L21        B2L22 

Fig. 5.6 (c4) Trapezodial membership functions for
relative mode shape difference for first mode of vibration.

    1.0 

-1.0  -0.81818 -0.63636 -0.45454  -0.27272  -0.0909  0.09092   0.27272  0.45454   0.63636    0.81818     1.0  

S1M4      S1M3       S1M2      S1M1     M1M1     M1M2     H1M1      H1M2      H1M3      H1M4 

0.0, 

Fig. 5.6(c1) Trapezodial membership functions for
relative natural frequency for first mode of vibration.

1.0 

                  0.912  0.92      0.928         0.936        0.944     0.952         0.96        0.968        0.976       0.984      0.992      1.0 

       L1F4       L1F3        L1F2       L1F1       M1F1     M1F2      H1F1       H1F2       H1F3      H1F4 

0.0, 

Fig. 5.6(c3) Trapezodial membership functions for
relative natural frequency for third mode of vibration. 

1.0 

0.934 0.940      0.946     0.952       0.958       0.964        0.970       0.976      0.982       0.988      0.994        1.0

       L3F4        L3F3      L3F2        L3F1     M3F1     M3F2     H3F1       H3F2        H3F3      H3F4 

0.0, 

   1.0 

-1.0   -0.81818   -0.63636   -0.45454   -0.27272   -0.0909     0.09092     0.27272     0.45454     0.63636      0.81818       1.0  

   S2M4     S2M3     S2M2       S2M1      M2M1    M2M2     H2M1      H2M2     H2M3     H2M4 

Fig.5.6 (c5) Trapezodial membership functions for relative
mode shape difference for second mode of vibration. 

0.0, 0.0, 

Fig. 5.6(c6) Trapezodial membership functions for
relative mode shape difference for third mode of
vibration.

  1.0 

  -1.0   -0.81818   -0.63636   -0.45454   -0.27272    -0.0909   0.09092       0.27272          0.45454      0.63636        0.81818       1.0

  S3M4        S3M3       S3M2       S3M1      M3M1      M3M2     H3M1     H3M2      H3M3      H3M4 

Fig. 5.6 (c7) (a) Trapezodial membership functions for relative crack depth1. 

1.0

S1D9          S1D8         S1D7        S1D6         S1D5         S1D4          S1D3         S1D2         S1D1         M1D          L1D1       L1D2          L1D3        L1D4         L1D5         L1D6        L1D7        L1D8          L1D9 

   0.01    0.0545         0.099        0.1435         0.188         0.2325         0.277        0.3215        0.366        0.4105        0.455        0.4995        0.5440       0.5885         0.633        0.6775        0.722       0.7665        0.8110         0.8555         0.9 0.0,

Fig. 5.6 (c7) (b) Trapezodial membership functions for relative crack depth2. 

1.0 

S2D9        S2D8          S2D7         S2D6           S2D5        S2D4         S2D3         S2D2          S2D1         M2D          L2D1       L2D2        L2D3         L2D4          L2D5       L2D6         L2D7       L2D8          L2D9 

   0.01    0.0545         0.099        0.1435         0.188         0.2325         0.277        0.3215        0.366        0.4105        0.455        0.4995        0.5440       0.5885         0.633        0.6775        0.722       0.7665        0.8110         0.8555         0.9 0.0, 

0.0, 

Fig. 5.6 (c2) Trapezodial Membership functions for 
relative natural frequency for second mode of vibration.

    1.0

0.934  0.940   0.946     0.952       0.958       0.964        0.970        0.976        0.982       0.988         0.994        1.0 

 L2F4         L2F3        L2F2        L2F1      M2F1       M2F2        H2F1      H2F2       H2F3      H2F4 
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Membership 
Functions Name  

Linguistic 
Terms 

Description and range of the Linguistic terms 

L1F1,L1F2,L1F3,L1F4 fnf 1 to 4 Low ranges of relative natural frequency for first mode of vibration in 
descending order respectively  

M1F1,M1F2 fnf 5,6 Medium ranges of relative natural frequency for first mode of vibration 
in ascending order respectively 

H1F1,H1F2,H1F3,H1F4 fnf 7 to 10 Higher ranges of  relative natural frequency for first mode of vibration 
in ascending order respectively 

L2F1,L2F2,L2F3,L2F4 snf 1 to 4 Low ranges of relative natural frequency for second mode of vibration 
in descending order respectively 

M2F1,M2F2 snf 5,6 Medium ranges of relative natural frequency for second mode of 
vibration in ascending order respectively 

H2F1,H2F2,H2F3,H2F4 snf 7 to 10 Higher ranges of  relative natural frequencies for second mode of 
vibration in ascending order respectively 

L3F1,L3F2,L3F3,L3F4 tnf 1 to 4 Low ranges of relative natural frequencies for third mode of vibration 
in descending order respectively 

M3F1,M3F2 tnf 5,6 Medium ranges of relative natural frequencies for third mode of 
vibration in ascending order respectively 

H3F1,H3F2,H3F3,H3F4 tnf 7 to 10 Higher ranges of  relative natural frequencies for third mode of 
vibration in ascending order respectively 

S1M1,S1M2,S1M3,S1M4 fmd 1 to 4 Small ranges of  first relative mode shape difference in  descending 
order respectively 

M1M1,M1M2 fmd 5,6 medium ranges of  first relative mode shape difference in ascending 
order respectively 

H1M1,H1M2,H1M3,H1M4 fmd 7 to 10 Higher ranges of first  relative mode shape difference in ascending 
order respectively 

S2M1,S2M2,S2M3,S2M4 smd 1 to 4 Small ranges of  second relative mode shape difference in descending 
order respectively 

M2M1,M2M2 smd 5,6 medium ranges of  second relative mode shape difference in ascending 
order respectively 

H2M1,H2M2,H2M3,H2M4 smd 7 to10 Higher ranges of second  relative mode shape difference in ascending 
order respectively 

S3M1,S3M2,S3M3,S3M4 tmd 1 to 4 Small ranges of  third relative mode shape difference in descending 
order respectively 

M3M1,M3M2 tmd 5,6 medium ranges of  third relative mode shape difference in ascending 
order respectively 

H3M1,H3M2,H3M3,H3M4 tmd 7 to 10 Higher ranges of third  relative mode shape difference in ascending 
order respectively 

S1L1,S1L2……S1L22 rcl1 1 to 22 Small ranges of relative crack location in descending order respectively 

M1L1,M1L2 rcl1 23,24 Medium ranges of relative crack location in ascending order 
respectively 

B1L1,B1L2…….B1L22 rcl1 25 to 46 Bigger  ranges of relative crack location in ascending order 
respectively 

S1D1,S1D2……S1D9 rcd1 1 to 9 Small ranges of relative crack depth in descending order respectively 
M1D rcd110 Medium relative crack depth  
L1D1,L1D2……L1D9 rcd1 11 to 19 Larger  ranges of relative crack depth in ascending order respectively 
S2L1,S2L2……S2L22 rcl2 1 to 22 Small ranges of relative crack location in descending order respectively 

M2L1,M2L2 rcl2 23,24 Medium ranges of relative crack location in ascending order 
respectively 

B2L1,B2L2…….B2L22 rcl2 25 to 46 Bigger  ranges of relative crack location in ascending order 
respectively 

S2D1,S2D2……S2D9 rcd2 1 to 9 Small ranges of relative crack depth in descending order respectively
M2D rcd2 10 Medium relative crack depth
L2D1,L2D2……L2D9 rcd2 11 to 19 Larger  ranges of relative crack depth in ascending order respectively

Table 5.1 Description of fuzzy linguistic terms. 
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Sl. No. Examples of some rules used in the fuzzy model 
1 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is H1M2,smd is H2M4,tmd is H3M3, then 

rcd1 is S1D6,and rcl1 is S1L17 and  rcd2 is S2D4,and rcl2 is S2L6 

2 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is H1M1,smd is H2M1,tmd is H3M2, then 
rcd1 is S1D2,and rcl1 is S1L17 and  rcd2 is S2D1,and rcl2 is M2L2 

3 If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M2,tmd is H3M3, then 
rcd1 is M1D,and rcl1 is S1L17 and  rcd2 is S2D2,and rcl2 is B2L19 

4 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is H1M3,smd is H2M4,tmd is H3M4, then 
rcd1 is S1D6,and rcl1 is S1L11 and  rcd2 is S2D4,and rcl2 is M2L2 

5 If fnf is M1F1,snf is L2F2,tnf is L3F3,fmd is H1M1,smd is H2M1,tmd is H3M2, then 
rcd1 is S1D4,and rcl1 is S1L11 and  rcd2 is S2D1,and rcl2 is B2L13 

6 If fnf is L1F1,snf is L2F2,tnf is L3F3,fmd is H1M3,smd is M2M1,tmd is H3M4, then 
rcd1 is M1D,and rcl1 is S1L11 and  rcd2 is S2D7,and rcl2 is M2L2 

7 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M1,tmd is H3M1, then 
rcd1 is L1D1,and rcl1 is S1L11 and  rcd2 is S2D4,and rcl2 is B2L10 

8 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is H1M2,smd is H2M2,tmd is H3M2, then 
rcd1 is S1D6,and rcl1 is S1L6 and  rcd2 is S2D4,and rcl2 is B2L5 

9 If fnf is L1F1,snf is L2F4,tnf is L3F4,fmd is M1M1,smd is M2M1,tmd is M3M2, then 
rcd1 is S1D2,and rcl1 is S1L6 and  rcd2 is L2D1,and rcl2 is B2L5 

10 If fnf is M1F1,snf is L2F2,tnf is L3F1,fmd is M1M2,smd is M2M2,tmd is H3M1, then 
rcd1 is S1D1,and rcl1 is S1L6 and  rcd2 is S2D4,and rcl2 is B2L5 

11 If fnf is M1F1,snf is M2F1,tnf is M3F1,fmd is H1M3,smd is H2M3,tmd is H3M4, then 
rcd1 is S1D6,and rcl1 is S1L18 and  rcd2 is S2D5,and rcl2 is M2L2 

12 If fnf is M1F1,snf is L2F1,tnf is L3F1,fmd is H1M3,smd is H2M2,tmd is H3M3, then 
rcd1 is S1D4,and rcl1 is S1L17 and  rcd2 is S2D6,and rcl2 is S2L6 

13 If fnf is M1F2,snf is M2F1,tnf is M3F1,fmd is M1M1,smd is H2M1,tmd is H3M2, then 
rcd1 is S1D4,and rcl1 is S1L11 and  rcd2 is S2D4,and rcl2 is M2L2 

14 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is H1M4,smd is H2M1,tmd is H3M1, then 
rcd1 is S1D7,and rcl1 is S1L17 and  rcd2 is S2D6,and rcl2 is B2L16 

15 If fnf is M1F1,snf is L2F1,tnf is L3F2,fmd is S1M1,smd is S2M2,tmd is H3M1, then 
rcd1 is S1D2,and rcl1 is S1L11 and  rcd2 is S2D6,and rcl2 is B2L10 

16 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is H1M2,smd is S2M1,tmd is H3M2, then 
rcd1 is L1D1,and rcl1 is S1L17 and  rcd2 is S2D5,and rcl2 is M2L2 

17 If fnf is M1F1,snf is L2F3,tnf is L3F1,fmd is S1M2,smd is M2M1,tmd is S3M1, then 
rcd1 is S1D6,and rcl1 is S1L12 and  rcd2 is M2D,and rcl2 is M2L1 

18 If fnf is L1F1,snf is L2F1,tnf is L3F1,fmd is H1M2,smd is H2M2,tmd is H3M2, then 
rcd1 is S1D2,and rcl1 is S1L12 and  rcd2 is S2D4,and rcl2 is B2L13 

19 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is S1M2,smd is H2M3,tmd is H3M1, then 
rcd1 is S1D4,and rcl1 is S1L5 and  rcd2 is S2D6,and rcl2 is B2L6 

20 If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is S1M3,smd is S2M2,tmd is S3M3, then 
rcd1 is L1D1,and rcl1 is S1L5 and  rcd2 is S2D2,and rcl2 is B2L5 

   Table 5.2 Examples of twenty fuzzy rules used in fuzzy model. 
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 Fig. 5.7 Resultant values of relative crack depths and relative crack locations when Rules 3 
and 17 of  Table 5.2 are activated.

Inputs 
Rule no 3 of Table 5.2 is activated Rule no 17 of Table 5.2 is activated 

0.39142 

0.37871 

0.17251 

0.78026 
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Inputs 
Rule no 3 of Table 5.2 is activated Rule no 17 of Table 5.2 is activated 

  

Fig. 5.8 Resultant values of relative crack depth and relative crack location 
when Rules 3 and 17 of Table 5.2 are activated. 

Relative crack location 2 0.77569 

0.35025 Relative crack depth1 

Relative crack location1 0.17012 

Relative crack depth 2 0.36908 
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Inputs

0.36827 Relative crack depth 1 

0.37635 Relative crack depth 2 

Relative crack location 1 0.17834 

Fig. 5.9 Resultant values of relative crack depth and relative crack location from 
trapezoidal fuzzy model when Rules 3 and 17 of Table 5.2 are activated. 

Relative crack location 2 0.77956 

Rule no 17 of Table 5.2 is activatedRule no 3 of Table 5.2 is activated 
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5.3.2 Results of fuzzy model 

The results obtained from the proposed fuzzy system for multiple crack identification are 

presented in this section. 

The fuzzy model (Fig. 5.2) has been designed with six inputs (relative first three natural 

frequencies and relative first three mode shape differences) and four outputs (relative first 

and second crack location, relative first and second crack depth). Three types of membership 

functions ( triangular, Gaussian and trapezoidal) has been employed to develop the fuzzy 

model (Fig.5.4, Fig.5.5, Fig.5.6). Defuzzification (Fig.5.7, Fig.5.8, Fig.5.9) of the inputs 

using triangular, Gaussian and trapezoidal membership functions have been done by 

activating the rule no. 3 and rule no. 17 form the Table 5.2. The results obtained from 

numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy trapezoidal model and 

experimental analysis are compared in Table 5.3 (a) and Table 5.3 (b). Ten sets of data from 

the Table 5.3 (a), Table 5.3 (b) represents the first three relative natural frequencies and first 

three relative mode shape differences in the first six columns and rest of the columns 

represents the corresponding values of relative first and second crack locations and crack 

depths obtained from numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy 

trapezoidal model and experimental analysis. 

5.4 Discussions 

The fuzzy system designed in the current research has been adopted for multiple crack 

diagnosis in structural members. The various types of membership functions used for 

development of the knowledge based system are triangular (Fig. 5.1 (a)), Gaussian (Fig. 5.1 

(b)), trapezoidal  (Fig. 5.1 (c)). The different stages involved in designing of the proposed 

system are presented in Fig. 5.2. The various linguistic terms and some of the fuzzy rules 

used for developing the fuzzy crack diagnostic tool have been exhibited in Table 5.1 and 

Table 5.2 respectively. The different types of membership functions with the linguistic terms 

have been presented in Fig. 5.4 to Fig. 5.6 showing complete architecture.  The results 

obtained from fuzzy model with triangular, Gaussian and trapezoidal membership functions 

and experimental analyses are compared in Table 5.3 (a). The results from numerical, finite 

element and Gaussian fuzzy model analysis are shown in Table 5.3 (b) and the results are 

found to be in close proximity. From the analysis of the results presented in Table 5.3 (a), it 

is seen that the percentage deviation of the results of the triangular membership function 
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fuzzy model is 7.84%, for Gaussian membership function fuzzy model is 5.06% and for 

trapezoidal membership function fuzzy model is 7.02%. 
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5.5 Summary 

The fuzzy approach adopted in the current analysis has been studied and following 

conclusions are made. The presence of cracks in structural member has considerable effect 

on the dynamic response of the dynamic structure. The first three relative natural frequencies 

and first three relative mode shape differences are taken as inputs to the fuzzy model and 

relative crack locations and relative crack depths are the output parameters. The authenticity 

of the proposed approach has been established by comparing the results from the fuzzy 

models (Gaussian, trapezoidal, triangular) with that of the numerical, finite element and 

experimental analysis. The results are found to be well in agreement. From the analysis of the 

results obtained from the fuzzy models using various membership functions, it is observed 

that the fuzzy system based on Gaussian membership function provides better results in 

comparison to numerical, finite element analysis, trapezoidal and triangular fuzzy models. 

Hence, the proposed Gaussian fuzzy model can be effectively used as multiple crack 

diagnostic tools in dynamically vibrating structures. Since the fuzzy Gaussian model 

produces best results in terms of relative crack depths and relative crack locations in 

comparison to fuzzy triangular, fuzzy trapezoidal model, the results of fuzzy Gaussian model 

will be compared with other AI techniques discussed in next chapters to compare their 

performance in regard to Gaussian fuzzy model. 

Publications: 

• Amiya Kumar Dash, Dayal.R.Parhi, Development of an inverse methodology for 
crack diagnosis using AI technique,  International Journal of Computational Materials 
Science and Surface Engineering (IJCMSSE) 4(2), 2011, 143-167. 

• Das H. C., Dash A. K., Parhi D. R., Experimental Validation of Numerical and Fuzzy 
Analysis of a Faulty Structure, 5th International Conference on System of Systems 
Engineering (SoSE), 2010, Loughborough, U.K., 22-24 June, pp.1-6.  
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The presence of damage in general, in a structure undermines the viability of the structure 

and leads to shorter life time period and opens the way for complete failure of the system. 

Hence, development of an automated method to identify cracks accurately in an engineering 

application is desirable. As it is known that, the cracks present in a mechanical element 

increase the flexibility, decrease the vibration frequencies and modify the amplitude of 

vibration. Those changes can be potentially used to locate the crack positions and crack 

depths. So, it is of interest to design and develop an AI based technique for online multiple 

crack diagnosis to avoid catastrophic failure of structural system. In the current chapter an 

intelligent model has been designed using artificial neural network to detect presence of 

multiple cracks in structural members. The proposed neural model has been modeled with 

feed forward network trained with back propagation technique. Finally, the results from the 

model have been compared with the experimental results to establish the robustness of the 

proposed neural method. 

6.1 Introduction 

This section of the thesis provides an introduction to basic neural network architectures and 

learning rules. 

The complex biological neural network in a human body has highly interconnected set of 

neurons, facilitates for various kind of output such as thinking, breathing, driving etc. 

Generally the neurons are believed to store the biological neural functions and memory and 

learning of the neural system facilitates for establishment of new connections between the 

neurons. The most interesting feature of this artificial neural network (ANN) is the novel 

structure of the information processing system. It is composed of a large number of highly 

interconnected processing elements (neurons) working in parallel to solve specific 

applications, such as pattern recognition or data classification, through a learning process. 

Learning in biological systems involves adjustments to the synaptic weights that exist 

Chapter 6 

ANALYSIS OF ARTIFICIAL NEURAL NETWORK FOR 
MULTIPLE CRACK DETECTION 
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between the neurons. Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to recognize patterns and detect trends that are 

too complex to be noticed by either humans or other computer techniques. McCulloch and 

Pitts [207] have developed models of neural networks with several assumptions about how 

neurons worked. The proposed networks were considered to be binary devices with fixed 

thresholds based on simple neurons. Rosenblatt [208] has designed and developed the 

Perceptron. The developed Perceptron has three layers with the middle layer known as the 

association layer. This system could learn to connect or associate a given input to a random 

output unit. According to [206] a neural network is a large parallel distributed processor 

made up of simple processing units, called neurons, which have a natural tendency to store 

experimental knowledge and making it available for use. Some of the advantages of the ANN 

are depicted below. 

Adaptive learning: The ability of the neural system lies in the capacity to adapt to the 

changing environment by adjusting the synaptic weights and perform according to the 

situation. This feature makes the neural network a methodology to address industrial 

applications in dynamic environment.  

Self-Organization: An artificial neural network can produce results for inputs that are not 

used during training by creating its own representation of the information it receives during 

learning time. This capability helps in solving problem of higher complexities. 

Real Time Operation: The neural network is composed of a large number interconnected 

neurons working in parallel to solve a specific problem. Neural networks learn by example. 

For this special hardware devices are being designed and manufactured which take advantage 

of this capability.  

Fault Tolerance: In case of failure of a neuron in neural network system there will be a 

partial destruction of a network which leads to only deterioration of quality of output rather 

than collapsing the system as a whole.  

Research has been carried out in last few decades to develop system for online condition 

monitoring of structural systems. As the presence of cracks reduces the service life of the 

structures and also responsible for economic loss and in some of the cases may be loss of 

human life, the development of a fault diagnostic methodology is of paramount importance 
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for science community. Although at the present time different non destructive techniques 

(e.g. acoustic emission, sensor) are available for identification of crack present in a system, 

the response of the techniques are very poor in terms of accuracy and computational time for 

complex system. Moreover, development of a mathematical model for a complex system 

with changing environment becomes impossible. In this scenario, the use of ANN with its 

parallel computing and pattern recognition capabilities are well suitable to design an 

intelligent system for damage assessment in cracked structures with higher accuracy and 

faster computational time. In the recent times a lot of effort have been made by scientists to 

develop crack diagnostic tool using ANN. Schlechtingen et al. [96] have presented a 

comparison of results among the regression based model and two artificial neural network 

based approaches, which are a full signal reconstruction and an autoregressive normal 

behavior model used for condition monitoring of bearings in a wind turbine. From the 

comparison of results they have revealed all three models were capable of detecting incipient 

faults. They have concluded that the neural network model provides the best result with a 

faster computational time with comparison to regression based model. Ghate et al. [97] have 

proposed a multi layer perceptron neural network based classifier for fault detection in 

induction motors which is inexpensive, reliable by employing more readily available 

information such as stator current. They have used simple statistical parameters as input 

feature space and principal component analysis has been used for reduction of input 

dimensionality. They have also verified their methodology to noise and found the 

performance of the proposed technique encouraging.   

This section introduces a feed forward multilayer neural network trained with back 

propagation technique for online multiple damage detection in beam members. The proposed 

neural network system has been designed with six input parameters (first three relative 

natural frequencies, first three relative mode shape differences) and four output parameters 

(relative first crack location, relative first crack depth, relative second crack location and 

relative second crack depth). A comparison of results obtained from fuzzy, numerical, FEA, 

neural and experimental analysis have been carried out and it is observed that the developed 

neural network provides more accurate results as compared to other mentioned methods. The 

robustness of the neural system has been validated using the experimental set up. 
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The present chapter has been arranged into five different sections. The first section i.e. 

introduction (Section 6.1) gives a brief introduction to neural network algorithm. Section 6.2 

provides an in depth view of the feed forward neural network trained with back propagation 

technique. The analysis of the neural network model used for multiple crack diagnosis is 

presented in section 6.3. The results and discussions of the results obtained from the neural 

model and the summary of the chapter are described in section 6.4 and section 6.5 

respectively. 

6.2 Neural network technique 

Given this the description of neural network, it has been successfully implemented in many 

industrial applications such as industrial process control, sales forecasting, electronic noses, 

modeling, diagnosing the Cardiovascular System and etc.  The parallel computing capability 

and the ability to perform under changing environment make the neural network a potential 

tool to address applications, which are hard to solve using analytical or numerical methods.  

6.2.1 Model of a neural network 

 

 

 

 

 

 

A neuron which can be used in a dynamic environment is shown in Fig. 6.1. An artificial 

neuron is a device with many inputs and one output. The neuron has two modes of operation; 

the training mode and the using mode. In the training mode, the neuron can be trained to fire 

(or not), for particular input patterns. In the using mode, when a taught input pattern is 

detected at the input, its associated output becomes the current output. If the input pattern 

does not belong in the taught list of input patterns, the firing rule is used to determine 

whether to fire or not. 

Fig. 6.1 Neuron model  
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The main features of the neural model are as follows, 

1. The inputs to the neuron are assigned with synaptic weights, which in turn affect the 

decision making ability of the neural network. The inputs to the neuron are called weighted 

inputs. 

2. These weighted inputs are then summed together in an adder and if they exceed a pre-set 

threshold value, the neuron fires. In any other case the neuron does not fire. 

3. An activation function for limiting the amplitude of the output of a neuron. Generally the 

normalized amplitude range of the output of a neuron is given as the closed unit interval [0,1] 

or alternatively [-1,1]. 

Learning process of ANN: 

The learning for a neural network means following a methodology for modifying the weights 

to make the network adaptive in nature to changing environment. The learning rules may be 

broadly divided into three categories, 

1. Supervised learning: The supervised learning rule is provided with set of training data for 

proper network behavior. When the inputs are applied to the network, the outputs from the 

network are compared with the targets. Through the learning process the network will adjust 

the weights of the network in order to bring the outputs closer to the targets. 

2. Unsupervised learning: In this type of learning the network modifies the weights in 

response to the inputs to the network. This is suitable for applications requiring vector 

quantization.   

3. Reinforcement learning: In the reinforcement learning instead of being provided with the 

correct output, for each network input, the algorithm is only given a score. The score is the 

measure of network performance over some sequence of inputs. 

In mathematical terms, we can describe a neuron k by writing the following pair of 

equations: 

∑
1=

=
p

j
jkjk xwu
        (6.1) 
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( )kk ufy =          (6.2) 

Where x1, x2,…..,xp are the input signals; wk1, wk2,…..,wkp are the synaptic weights of 

neuron k; uk is the linear combined output; ( )⋅f  is the activation function; and yk is the 

output signal of the neuron.  

6.2.2  Use of back propagation neural network  

The back propagation technique (Fig. 6.2) can be used to train the multilayer networks. This 

technique is an approximate steepest gradient algorithm in which the performance of the 

network is based on  mean square error. In order to train the neural network, the weights for 

each input to the neural system should be so adjusted that the error between the actual output 

and desired output is minimum. The multilayer neural system would calculate the change in 

error due to increase or decrease in the weights. The algorithm first computes each error 

weight by computing the rate of the error changes with the change in synaptic weights. The 

error in each hidden layer just before the output layer in a direction opposite to the way 

activities propagate through the network have to be computed and fed to the network by back 

propagation algorithm to minimize the error in the actual output and desired output by 

adjusting the parameters of the network. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 

 

 

 

 

Fig. 6.2 Back propagation technique  
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6.3  Analysis of neural network model used for crack detection 

A back propagation neural model has been proposed for identification of multiple cracks (i.e. 

relative crack locations, relative crack depths) of a cantilever beam structure (Fig.6.3).The 

neural model has been designed with six input parameters and four output parameters.  

The inputs to the neural network model are fnf, snf, tnf, fmd, smd and tmd.   

The outputs from the neural model are as follows; 

first relative crack location = “rcl1” and first relative crack depth = “rcd1” 

second relative crack location = “rcl2” and first relative crack depth = “rcd2” 

The back propagation neural network has been made with one input layer, one output layer 

and eight hidden layers. The input layer contains six neurons, where as the output layer 

contains four neurons. The number of neurons in each hidden layers are different in order to 

give the neural network a diamond shape and for better convergence of results (Fig.6.4).   

The neurons associated with the input layer of the network represent the first three relative 

natural frequencies and first three average relative mode shape difference. The first relative 

crack location, first relative crack depth, second relative crack location, second relative crack 

depth are represented by the four neurons of the output layer of the neural network.   
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     Fig. 6.4 Multi Layer feed forward back propagation Neural model for damage detection 

Fig. 6.3 Neural model
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6.3.1  Neural model mechanism for crack detection 

The neural network used in the current investigation is a ten-layer feed forward neural 

network model trained with back propagation technique [206]. The chosen number of layers 

was found empirically to facilitate training. The first three relative natural frequencies and 

first three relative mode shape difference are the neurons representing the input layer of the 

network and relative crack locations and relative crack depths are represented by the four 

neurons of the output layer. The hidden layers i.e. 2nd,3rd,4th,5th,6th,7th and 8th layer of the 

network comprises 12 neurons,36 neurons,50 neurons, 150 neurons ,300 neurons,150 

neurons,50 neurons, 8 neurons respectively. The number of neurons in each hidden layer has 

been decided using the empirical relation. Fig. 6.4 depicts the neural network with its input 

and output signals.  

The proposed neural network model for multiple crack detection has been trained with 900 

patterns of data featuring various conditions of the structural system. Out of the several 

hundred testing data, some of them are presented in Table 6.1. During the training, the model 

is fed with six input parameters i.e. first three relative natural frequencies and first three 

mode shape differences (e.g. 0.9924, 0.9937, 0.9987, 0.0025, 0.0047, 0.0051). The outputs are 

relative crack depths and relative crack locations (e.g. 0.164, 0.23, 0.0622, and 0.3123).  

During training and during normal operation, the input patterns fed to the neural network 

comprise the following components: 

{ } frequency naturalfirst  ofdeviation  relative    y 1
1 =     (6.3(a)) 

{ } frequency natural second ofdeviation  relative    y 1
2 =    (6.3(b)) 

{ } frequency natural  thirdofdeviation  relative     y 1
3 =     (6.3(c))                

{ } shape modefirst  ofdeviation  relative     y 1
4 = difference               

{ } shape mode second ofdeviation  relative     y 1
5 = difference                           

{ } shape mode  thirdofdeviation  relative     y 1
6 = difference                              

(6.3(d)) 

(6.3(e)) 

(6.3(f)) 
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The outputs generated due to the distribution of the input to the hidden neurons are given by 

[206]: 

{ }( ) { }       yVf lay
j

lay
j =       (6.4) 

Where, 

{ } { } { }lay
j

i

1lay
i

lay
ji V   .yW =∑ −       (6.5)                

layer number (2 or 9) = lay   

label for jth neuron in hidden layer ‘lay’= j   

label for ith neuron in hidden layer ‘lay-1’= i  

Weight of the connection from neuron i in layer ‘lay-1’ to neuron j in layer ‘lay’= { }lay
jiW  

Activation function, chosen in this work as the hyperbolic tangent function = f (.), where,   

( )xf
ee
ee

xx

xx

=
+
−

−

−

         (6.6)       

In the process of training, the network output θactual, n (i=1 to 4) may differ from the desired 

output θdesired,n (n=1 to 4) as specified in the training pattern presented to the network. The 

measure of performance of the network is the instantaneous sum-squared difference between 

θdesired, n and θactual, n for the set of presented training patterns: 

( )2
patterns

training all
n,actualn,desired2

1Err ∑ −= θθ       (6.7) 

Where θactual, n (n=1) represents relative crack location (“rcl1”) 

            θactual, n (n=2) represents relative crack depth (“rcd1”) 

    θactual, n (n=3) represents relative crack location (“rcl2”) 

            θactual, n (n=4) represents relative crack depth (“rcd2”) 

During the development of the neural model, the error back propagation method is employed 

to train the network [206]. This method requires the computation of local error gradients in 
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order to determine appropriate weight corrections to reduce error. For the output layer, the 

error gradient { }10δ  is:  

{ } { }( )( )n,actualn,desired
10

1
10 Vf θθδ −′=         (6.8) 

Hence, the local gradient for neurons in hidden layer {lay} is given by: 

{ } { }( ) { } { } ⎟
⎠

⎞
⎜
⎝

⎛
δ′=δ ∑ ++

k

1lay
kj

1lay
k

lay
j

lay
j WVf                    (6.9) 

Synaptic weights are updated according to the following expressions: 

( ) ( ) ( )1tWtW1tW jijiji +Δ+=+                    (6.10) 

and  ( ) ( ) { } { }1lay
i

lay
jjiji ytW  1tW −ηδ+Δα=+Δ                   (6.11) 

Where 

Momentum coefficient (chosen statistically as 0.2 in this work)= α  

Learning rate (chosen statistically as 0.35 in this work) = η   

Iteration number, each iteration consisting of the presentation of a training  

pattern and correction of the weights = t  

Following expression shows, the final output from the neural network as;  

{ }( )10
nn,actual Vf=θ        (6.12) 

where { } { } { }∑=
i

9
i

10
ni

10
n yWV       (6.13) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training  

     pattern and correction of the weights. 
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6.3.2 Neural model for finding out crack depth and crack location 

The feed forward network has been trained with 900 different patterns of parameters to 

obtain the objective. Some of the test patterns are depicted in Table 6.1. The intelligent 

neural system has six numbers of input parameters in the input layer i.e. first three relative 

natural frequencies and first three average mode shape difference. The output layer has four 

outputs and they are first and second relative crack locations and first and second relative 

crack depths.  

 

 

 

Input to the NN model Output from the NN  
Relative 
first 
natural 
frequency 
(fnf) 

Relative 
second 
 natural 
frequency 
(snf) 

Relative 
third 
natural 
frequency 
(tnf) 

Average 
relative 
first mode 
shape 
differences
(fmd)

Average 
relative 
first mode 
shape 
differences
(fmd)

Average 
relative 
first mode 
shape 
differences
(fmd)

Relative  
first 
crack 
depth 
(rcd1) 

Relative  
first 
crack 
location 
(rcl1) 

Relative  
second 
crack 
depth 
(rcd2) 

Relative  
second 
crack 
location 
(rcl2) 

0.9924 0.9937 0.9987 0.0025 0.0047 0.0051 0.164 0.0622 0.23 0.3123 

0.9962 09973 0.9981 0.0154 0.026 0.0324 0.081 0.122 0.163 0.48 

0.9947 0.9965 0.9985 0.0068 0.0255 0.0287 0.23 0.3122 0.33 0.623 

0.9955 0.9972 0.9992 0.0037 0.0157 0.0253 0.331 0.23 0.22 0.872 

0.9974 0.9982 0.9996 0.0074 0.0097 0.0166 0.163 0.622 0.331 0.9372 

0.9934 0.9958 0.9978 0.0026 0.0035 0.0124 0.082 0.621 0.162 0.873 

0.9942 0.9964 0.9988 0.0012 0.0031 0.0049 0.161 0.24 0.332 0.23 

0.9918 0.9945 0.9992 0.0021 0.0041 0.0058 0.413 0.3124 0.22 0.6872 

0.9957 0.9979 0.9996 0.0015 0.0034 0.0064 0.081 0.22 0.414 0.8123 

0.9951 0.9977 0.9989 0.0019 0.0028 0.0059 0.23 0.123 0.332 0.872 

Table 6.1 Test patterns for NN model other than training data 
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6.4  Results and discussions of neural model 

The ten layer feed forward neural network model with back propagation technique for crack 

prediction is shown with the complete architecture in Fig.6.4. This has been designed to 

predict the relative crack locations and relative crack depths. The first three relative natural 

frequencies and first three average relative mode shape differences have been used as inputs 

to the input layer of the proposed network. These inputs are processed in the eight hidden 

layers and finally the output layer provides the results for relative crack locations and relative 

crack depths. The block diagram of the neural model with the input and output parameters 

are presented in Fig.6.3. Out of several hundred training patterns that have been used to train 

the neural model some of them along with the outputs from the model are shown in Table 

6.1. Experiments have been carried out to validate the results obtained from different 

analyses performed on the cracked cantilever beam. Comparison among the results obtained 

from neural model, fuzzy Gaussian model and experimental analysis are presented in Table 

6.2 (a). The results from theoretical, finite element and fuzzy Gaussian model have been 

expressed in Table 6.2 (b) and are found to be in close agreement. The different parameters 

presented in various columns of the Table 6.2 (a) and Table 6.2 (b) are expressed as, the first 

column relative first natural frequency (fnf), the second column relative second  natural 

frequency (snf), the third column relative of 3rd natural frequency (tnf), the fourth column 

relative first mode shape difference (fmd), the fifth column relative second mode shape 

difference (smd), the sixth column represents the relative third mode shape difference (tmd) 

as inputs and the rest columns represents the outputs as relative crack location and relative 

crack depth obtained from corresponding analyses. The percentage of deviation of the results 

from neural model with respect to experimental results observed during the analysis of the 

data given in Table 6.2 (a) is about 4.53%, which is better than the performance of fuzzy 

Gaussian model. A plot of graph for epochs vs mean squared error from NN has been shown 

in Fig. A3 of the appendix section showing the convergence of results. The graph for actual 

values vs predicted values from the neural model has been presented in Fig. A4 of appendix 

section showing the robustness of the neural network.  

 
 



   

110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ex
pe

rim
en

ta
l a

na
ly

si
s 

re
la

tiv
e1

st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” rc
l2

 

0.
51

 

0.
87

7 

0.
62

7 

0.
53

 

0.
53

 

0.
77

 

0.
62

7 

0.
77

 

0.
62

7 

0.
52

 

rc
d2

 

0.
27

 

0.
33

5 

0.
27

 

0.
41

8 

0.
27

 

0.
41

8 

0.
27

 

0.
26

 

0.
52

 

0.
16

9 

rc
l1

 

0.
12

7 

0.
12

7 

0.
37

7 

0.
12

7 

0.
28

 

0.
28

 

0.
37

6 

0.
27

 

0.
37

7 

0.
28

 

rc
d1

 

0.
52

 

0.
41

8 

0.
16

8 

0.
33

5 

0.
16

9 

0.
27

 

0.
41

8 

0.
52

 

0.
33

5 

0.
41

9 

   
   

   
Fu

zz
y 

G
au

ss
ia

n 
m

od
el

  
re

la
tiv

e1
st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” rc
l2

 

0.
45

 

0.
87

1 

0.
62

1 

0.
48

 

0.
47

 

0.
73

 

0.
62

3 

0.
73

 

0.
62

2 

0.
47

 

rc
d2

 

0.
21

 

0.
32

8 

0.
22

 

0.
41

2 

0.
21

 

0.
41

2 

0.
23

 

0.
22

 

0.
45

 

0.
16

2 

rc
l1

 

0.
12

1 

0.
12

2 

0.
37

2 

0.
12

1 

0.
22

 

0.
22

 

0.
37

3 

0.
22

 

0.
37

2 

0.
23

 

rc
d1

 

0.
46

 

0.
41

2 

0.
16

3 

0.
33

0 

0.
16

2 

0.
23

 

0.
41

5 

0.
47

 

0.
33

0 

0.
41

4 

 
N

eu
ra

l M
od

el
  

re
la

tiv
e 

1st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” 

 
rc

l2
 

0.
46

 

0.
87

3 

0.
62

2 

0.
49

 

0.
49

 

0.
73

 

0.
62

2 

0.
71

 

0.
62

1 

0.
46

 

rc
d2

 

0.
22

 

0.
33

0 

0.
23

 

0.
41

4 

0.
23

 

0.
41

4 

0.
22

 

0.
20

 

0.
46

 

0.
16

3 

rc
l1

 

0.
12

3 

0.
12

3 

0.
37

3 

0.
12

3 

0.
24

 

0.
24

 

0.
37

2 

0.
21

 

0.
37

1 

0.
22

 

rc
d1

 

0.
48

 

0.
41

4 

0.
16

4 

0.
33

2 

0.
16

4 

0.
24

 

0.
41

4 

0.
46

 

0.
32

9 

0.
41

3 

A
ve

ra
ge

 
R

el
at

iv
e 

 th
ird

  
m

od
e 

 sh
ap

e 
di

ff
er

en
ce

 
“t

m
d”

 

0.
00

42
 

0.
22

63
 

0.
08

32
 

0.
08

12
 

0.
01

41
 

0.
26

23
 

0.
01

19
 

0.
00

79
 

0.
02

92
 

0.
01

55
 

A
ve

ra
ge

 
R

el
at

iv
e 

se
co

nd
  

m
od

e 
 

sh
ap

e 
di

ff
er

en
ce

 
“s

m
d”

 

0.
00

36
 

0.
97

29
 

0.
01

4 

0.
00

41
 

0.
03

29
 

0.
34

28
 

0.
02

11
 

0.
00

25
 

0.
00

77
 

0.
00

23
 

A
ve

ra
ge

 
R

el
at

iv
e 

 
fir

st
  

m
od

e 
 

sh
ap

e 
di

ff
er

en
ce

 
“f

m
d”

 

0.
00

87
 

0.
00

36
 

0.
01

38
 

0.
00

14
 

0.
00

36
 

0.
29

36
 

0.
01

34
 

0.
00

17
 

0.
00

79
 

0.
00

57
 

R
el

at
iv

e 
 

th
ird

  
na

tu
ra

l  
fr

eq
ue

nc
y 

“t
nf

” 0.
99

93
 

0.
99

91
 

0.
99

87
 

0.
99

88
 

0.
98

78
 

0.
99

81
 

0.
98

69
 

0.
99

74
 

0.
98

81
 

0.
99

91
 

R
el

at
iv

e 
se

co
nd

 
na

tu
ra

l  
fr

eq
ue

nc
y 

“s
nf

” 0.
99

85
 

0.
99

89
 

0.
99

76
 

0.
99

91
 

0.
99

83
 

0.
99

72
 

0.
99

82
 

0.
99

73
 

0.
98

47
 

0.
99

74
 

R
el

at
iv

e 
 fi

rs
t  

na
tu

ra
l  

fr
eq

ue
nc

y 
“f

nf
” 0.
99

79
 

0.
99

62
 

0.
99

36
 

0.
99

76
 

0.
99

78
 

0.
99

87
 

0.
98

49
 

0.
99

89
 

0.
99

77
 

0.
99

88
 

 T
ab

le
 6

.2
 (a

) C
om

pa
ris

on
 o

f r
es

ul
ts

 b
et

w
ee

n 
ne

ur
al

 m
od

el
, f

uz
zy

 G
au

ss
ia

n 
m

od
el

 a
nd

 e
xp

er
im

en
ta

l  
   

   
   

   
   

   
   

   
 a

na
ly

si
s. 



   

111 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N
um

er
ic

al
 

re
la

tiv
e1

st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” rc
l2

 

0.
40

 

0.
86

6 

0.
61

6 

0.
43

 

0.
42

 

0.
66

 

0.
61

6 

0.
66

 

0.
61

7 

0.
44

 

rc
d2

 

0.
16

 

0.
32

4 

0.
16

 

0.
40

9 

0.
16

 

0.
40

7 

0.
18

 

0.
16

 

0.
43

 

0.
15

8 

rc
l1

 

0.
11

7 

0.
11

7 

0.
36

7 

0.
11

7 

0.
17

 

0.
19

 

0.
36

5 

0.
17

 

0.
36

6 

0.
17

 

rc
d1

 

0.
41

 

0.
40

7 

0.
15

7 

0.
32

5 

0.
15

9 

0.
18

 

0.
40

8 

0.
42

 

0.
32

4 

0.
40

8 

FE
A

 
re

la
tiv

e1
st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” rc

l2
 

0.
42

 

0.
86

8 

0.
61

8 

0.
45

 

0.
44

 

0.
68

 

0.
61

8 

0.
68

 

0.
61

9 

0.
45

 

rc
d2

 

0.
18

 

0.
32

6 

0.
18

 

0.
41

0 

0.
18

 

0.
40

9 

0.
19

 

0.
18

 

0.
44

 

0.
16

0 

rc
l1

 

0.
11

9 

0.
11

8 

0.
36

8 

0.
11

9 

0.
19

 

0.
20

 

0.
36

7 

0.
18

 

0.
36

8 

0.
19

 

rc
d1

 

0.
43

 

0.
40

9 

0.
15

9 

0.
32

7 

0.
16

1 

0.
19

 

0.
41

0 

0.
44

 

0.
32

6 

0.
41

0 

N
eu

ra
l M

od
el

  
re

la
tiv

e1
st
 c

ra
ck

 d
ep

th
 “

rc
d1

” 
1st

 c
ra

ck
 lo

ca
tio

n 
“r

cl
1”

 
2nd

 c
ra

ck
 d

ep
th

 “
rc

d2
”,

 
2nd

 c
ra

ck
 lo

ca
tio

n“
rc

l2
” rc
l2

 

0.
46

 

0.
87

3 

0.
62

2 

0.
49

 

0.
49

 

0.
73

 

0.
62

2 

0.
71

 

0.
62

1 

0.
46

 

rc
d2

 

0.
22

 

0.
33

0 

0.
23

 

0.
41

4 

0.
23

 

0.
41

4 

0.
22

 

0.
20

 

0.
46

 

0.
16

3 

rc
l1

 

0.
12

3 

0.
12

3 

0.
37

3 

0.
12

3 

0.
24

 

0.
24

 

0.
37

2 

0.
21

 

0.
37

1 

0.
22

 

rc
d1

 

0.
48

 

0.
41

4 

0.
16

4 

0.
33

2 

0.
16

4 

0.
24

 

0.
41

4 

0.
46

 

0.
32

9 

0.
41

3 

A
ve

ra
ge

 
R

el
at

iv
e 

 th
ird

  
m

od
e 

 sh
ap

e 
di

ff
er

en
ce

 
“t

m
d”

 

0.
00

42
 

0.
22

63
 

0.
08

32
 

0.
08

12
 

0.
01

41
 

0.
26

23
 

0.
01

19
 

0.
00

79
 

0.
02

92
 

0.
01

55
 

A
ve

ra
ge

 
R

el
at

iv
e 

se
co

nd
  

m
od

e 
 

sh
ap

e 
di

ff
er

en
ce

 
“s

m
d”

 

0.
00

36
 

0.
97

29
 

0.
01

4 

0.
00

41
 

0.
03

29
 

0.
34

28
 

0.
02

11
 

0.
00

25
 

0.
00

77
 

0.
00

23
 

A
ve

ra
ge

 
R

el
at

iv
e 

 
fir

st
  

m
od

e 
 

sh
ap

e 
di

ff
er

en
ce

 
“f

m
d”

 

0.
00

87
 

0.
00

36
 

0.
01

38
 

0.
00

14
 

0.
00

36
 

0.
29

36
 

0.
01

34
 

0.
00

17
 

0.
00

79
 

0.
00

57
 

R
el

at
iv

e 
 

th
ird

  
na

tu
ra

l  
fr

eq
ue

nc
y 

“t
nf

” 

0.
99

93
 

0.
99

91
 

0.
99

87
 

0.
99

88
 

0.
98

78
 

0.
99

81
 

0.
98

69
 

0.
99

74
 

0.
98

81
 

0.
99

91
 

R
el

at
iv

e 
se

co
nd

 
na

tu
ra

l  
fr

eq
ue

nc
y 

“s
nf

” 

0.
99

85
 

0.
99

89
 

0.
99

76
 

0.
99

91
 

0.
99

83
 

0.
99

72
 

0.
99

82
 

0.
99

73
 

0.
98

47
 

0.
99

74
 

R
el

at
iv

e 
 fi

rs
t  

na
tu

ra
l  

fr
eq

ue
nc

y 
“f

nf
” 

0.
99

79
 

0.
99

62
 

0.
99

36
 

0.
99

76
 

0.
99

78
 

0.
99

87
 

0.
98

49
 

0.
99

89
 

0.
99

77
 

0.
99

88
 

 T
ab

le
 6

.2
 (b

) C
om

pa
ris

on
 o

f r
es

ul
ts

 b
et

w
ee

n 
ne

ur
al

 m
od

el
, F

EA
 a

na
ly

si
s a

nd
 N

um
er

ic
al

 a
na

ly
si

s. 



   

112 

6.5  Summary 
 
This section expresses the final conclusions drawn from the analysis carried out in the 

present chapter. The neural network model has been designed on the basis of change of 

vibration signatures such as natural frequencies and modes shapes due to presence of cracks 

in structural members. The input parameters to the diamond shaped feed forward neural 

network model is the first three natural frequencies and first three average mode shapes. The 

outputs from the model are relative crack locations and relative crack depths. Hundreds of 

training patterns have been developed to train the neural model for crack prediction. The 

neural system has different numbers of neurons in all the ten layers for processing the inputs 

to the model. By adopting the back propagation algorithm, it is observed that the difference 

between the actual output and desired output has been successfully reduced.  The results 

derived from the proposed neural network have been compared with the results obtained 

from numerical, FEA, fuzzy Gaussian model and experimental analysis to check the 

effectiveness of the model. From the analysis of the performance of the developed neural 

system for multiple crack diagnosis, it is seen that, the model can predict the crack locations 

and their intensities very close to the actual results as compared to fuzzy Gaussian model. In 

the next chapters, the neural model have been used to fabricate various hybrid technique such 

as fuzzy- neuro, GA-neural and MANFIS methodology for online structural health 

monitoring. 

 
Publication 
 

• Dayal.R.Parhi, Amiya K. Dash, Application of neural network and finite element for 
condition monitoring of structures, Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering Science. Vol. 225, pp. 1329-
1339, 2011.  
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Machines and beam like structures require continuous monitoring for the fault identification 

for ensuring uninterrupted service. Different non destructive techniques (NDT) are generally 

used for this purpose, but they are costly and time consuming. Vibration based methods can 

be useful to detect cracks in structures using various artificial intelligence (AI) techniques. 

The modal parameters from the dynamic response of the structure are used for this purpose. 

In the current analysis, the vibration characteristics of a cracked cantilever beam having 

different crack locations and depths have been studied. Numerical and finite element 

methods have been used to extract the diagnostic indices (natural frequencies, mode shapes) 

from cracked and intact beam structure. An intelligent Genetic Algorithm (GA) based model 

has been designed to automate the fault identification and location process. Single point 

crossover and in some cases mutation procedure have been followed to find out the optimal 

solution from the search space.  The model has been trained in offline mode using the 

simulation and experimental results (initial data pool) under various healthy and faulty 

conditions of the structure. The outcome from the developed model shows that the system 

could not only detect the cracks but also predict their locations and severities. Good 

agreement between the simulation, experimental and GA model results confirms the 

effectiveness of the proposed model. 

7.1 Introduction 

Genetic algorithms are inspired by Darwin's theory for evolution. With the application of GA 

the solution to a problem has been evolved. The adoptions of natural process like 

reproduction, mutation [126] are the base for development of GA. Finding an optimization 

solution in various problems is the strength of this evolutionary algorithm. Hence GA has 

evolved as a potential tool for different optimization problems for a large variety of 

applications. In most of the optimization problems, the objective is to either 

maximizing/minimizing an objective function from the search space of arbitrary dimension. 

An algorithm which will examine every possible inputs in the search space in order to 

determine the element for which objective function is optimal is most desirable. GA follows 

Chapter 7 

ANALYSIS OF GENETIC ALGORITHM FOR 
MULTIPLE CRACK DETECTION 
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a heuristic way of searching the input space for optimal value that approximates without 

enumerating all the elements by exhaustive search. During application of GA, at the 

beginning a large population of random chromosomes is created. Subsequently the genes of 

the chromosomes are decoded to get different solution to the problem at hand. The genetic 

algorithms perform a randomized search in solution space using a genotypic. The steps 

followed in GA are systematically listed below. 

1. Each solution is encoded as a chromosome in a population (a binary, integer, or real-

valued string). Each string’s element represents a particular feature of the solution. 

2. The string is evaluated by a fitness function to determine the solution’s quality. Better-fit 

solutions survive and produce offspring. Less-fit solutions are removed from the population. 

3. Strings are evolved using mutation & recombination operators. 
 
4. New individuals created by these operators form next generation of solutions.  

This chapter has been organized into four sections. The introduction section describes the 

generalized features of the GA methodology in section 7.1. The analysis of the crack 

diagnostic tool using GA has been discussed in section 7.2. The results and discussions and 

summary of the chapter are presented in section 7.3 and 7.4 respectively. 

7.2.  Analysis of crack diagnostic tool using GA 
7.2.1.  Approach of GA for crack identification 

The generalized procedures of genetic algorithm are shown in He et al. [120]. Genetic 

algorithm is based on the mechanics of nature selection and natural genetics, which is 

designed to efficiently search large, non-linear, discrete and poorly understood search space, 

where expert knowledge is scarce or difficult to model and where traditional optimization 

techniques fail. The genetic algorithm consists of an array of gene values, its ‘chromosome’, 

and as in nature, an individual that is optimized for its environment is created by successive 

modification over a number of generations. Genetic algorithm have been frequently accepted 

as optimization methods in various fields, and have also proved their excellence in solving 

complicated, non-linear, discrete and poorly understood optimization problem. This is why 

we use it to solve our inverse problem for the multiple crack detection in a cracked cantilever 

beam.  
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The developed genetic methodology discusses the prediction of cracks in a cantilever beam 

containing multiple transverse cracks using the chromosomes representing the parameters of 

vibration responses. The parameters i.e. (natural frequencies, mode shapes, relative crack 

locations, relative crack depths) indirectly define the predicted values of cracks locations and 

crack depths. The vibration signatures from theoretical, FEA and experimental analysis are 

used to get the data pool for the GA methodology. The proposed GA model utilizes hundreds 

of chromosomes in the data pool to act as parents. Each parents consists of ten parameters 

such as  first three relative natural frequencies, first three average relative mode shapes, 

relative crack locations (two numbers), relative crack depths (two numbers). The steps used 

in the genetic algorithm have been presented in the form of flow chart in Fig. 7.3. The 

procedure followed to find out the crack depths and crack locations are systematically 

described below in stages. 

Stage 1: Data pool set for prediction of multiple cracks 

The calculated values of the fnf, snf, tnf, fmd, smd, tmd, relative crack location 1, relative 

crack location 2, relative crack depth 1, relative crack depth 2 from theoretical, finite element 

and experimental analysis are used for creating the initial data pool of predetermined size. 

Each individual data set from the created data pool represents the chromosomes of the GA 

model. In this investigation the field data set is used to find the optimized solution. The 

generated data pool set is the search space for the problem under study and relative crack 

locations, relative crack depths are the solutions from the developed methodology. 

The initial population with size n can be presented as follows: 

Initial Population = <P1, P2,…,Pn> 

Each structure have the elements p (i, j) which are simply an integer string of length L, in 

general. 

Each population members have 10-sets of genes which are represented by Element numbers 

1 to 10. 

   P1= { p 1, 1   p1, 2    p1, 3     p1, 4     p1, 5       p1, 6    p1, 7     p1, 8    p1, 9      p1, 10 } 

   P2= { p 2, 1   p2, 2    p2, 3     p2, 4     p2, 5       p2, 6    p2, 7     p2, 8    p2, 9      p2, 10 } 

   ....................................……………………………………………... 

   …………………………………………………………………....... 

  Pn= {  p n, 1   p n, 2    p n, 3     p n, 4     p n, 5       p n, 6    p n, 7     p n, 8    p n, 9      p n, 10  } 
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Where,  

 Element No. 1 (p1, 1 to pn, 1) represents the relative first natural frequency (fnf) 

   Element No. 2 (p1, 2 to pn, 2) represents the relative second natural frequency (snf) 

Element No. 3 (p1, 3 to p n, 3) represents the relative third natural frequency (tnf) 

Element No. 4 (p1, 4 to p n, 4) represents the average relative first mode shape (fmd) 

Element No. 5 (p1, 5 to p n, 5) represents the average relative second mode shape (smd) 

Element No. 6 (p1, 6 to p n, 6) represents the average relative third mode shape (tmd) 

Element No. 7 (p1, 7 to p n, 7) represents the relative crack location 1 (rcl1) 

Element No. 8 (p1, 8 to p n, 8) represents the relative crack depth 1 (rcd1) 

Element No. 9 (p1, 9 to p n, 9) represents the relative crack location 2 (rcl2) 

Element No. 10 (p1, 10 to p n, 10) represents the relative crack depth 2 (rcd2) 

The crack prediction technique using GA uses the natural frequencies, mode shapes, relative 

crack locations and relative crack depths to identify the crack locations and their severities. 

For better understanding of the method 10 population members have been shown in tabular 

form in Table 7.1. 

 

 
 
Sl. 
no.  

 
Some of the examples of initial data pool for the genetic algorithm model 

Relative 
first 
natural  
frequency  
 
 
“fnf” 

Relative 
second 
natural  
frequency  
 
 
“snf” 

Relative 
third 
natural  
frequency 
 
 
“tnf” 

Average 
Relative 
first mode 
shape 
difference  
 
“fmd” 

Average 
Relative 
second 
mode 
shape 
difference  
“smd” 

Average 
Relative 
third  
mode 
shape 
difference  
“tmd” 

Relative 
first 
crack 
depth 
 
 
“rcd1” 

Relative 
first 
crack 
location 
 
 
“rcl1” 
 
 

Relative 
second 
crack 
depth 
 
 
“rcd2” 

Relative 
second 
crack 
location 
 
 
“rcl2” 
 

1 0.9997 0.9959 0.9971 0. 0022 0. 0021 0.0072 0.169 0.127 0.168 0.877 

2 0.9993 0.9968 0.9989 0. 0053 0. 0034 0.0157 0.52 0.378 0.335 0.627 

3 0.9992 0.9977 0.9975 0. 0026 0. 0059 0.0132 0.419 0.128 0.337 0.877 

4 0.9858 0.9982 0.9869 0. 0201 0. 0189 0.0131 0.335 0.127 0.417 0.52 

5 0.9988 0.9857 0.9887 0.0075 0. 0077 0.0292 0.338 0.379 0.53 0.628 

6 0.9991 0.9987 0.9977 0. 0087 0. 0025 0. 0029 0.336 0.28 0.27 0.77 

7 0.9975 0.9993 0.9981 0.001 0. 0046 0.0862 0.28 0.127 0.169 0.378 

8 0.9974 0.9997 0.9995 0. 0011 0. 0052 0. 0124 0.169 0.27 0.420 0.52 

9 0.9972 0.9959 0.9886 0. 0032 0.0289 0.0114 0.29 0.29 0.418 0.79 

10 0.9936 0.9975 0.9989 0. 0154 0. 021 0.0146 0.27 0.27 0.28 0.53 

Table 7.1 Examples of initial data pool for the genetic algorithm model 
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Stage 2: objective function for crack localization: 

The optimize solution from a GA based methodology can be drawn by proper formulation of 

an objective function. The appropriate formulation of the objective function can lead to 

optimal solution. In the current analysis the minimization of the objective function gives the 

best result in the search space. So, the cracks can be properly quantified by the proposed GA 

knowledge based model with the help of objective function.   

The objective function used in the developed GA model is depicted below: 

= rcd2) rcl2, rcd1, (rcl1,function  Objective  
2

i,1xfld
2

i,1xfld
2

i,1xfld )tnftnf()snfsnf()fnffnf(( −− ++−  

+ 5.02
i,1xfld

2
i,1xfld

2
i,1xfld ))tmdtmd()smdsmd()fmdfmd( −− ++−

 fnffld= Relative first natural frequency of the field 

fnfx= Relative first natural frequency 

snffld= Relative second natural frequency of the field 

snfx = Relative second natural frequency 

tnffld = Relative third natural frequency of the field 

tnfx = Relative third natural frequency  

fmdfld = Average relative first mode shape difference of the field 

fmdx = Average relative first mode shape difference 

smdfld = Average relative second mode shape difference of the field 

smdx = Relative average second mode shape difference 

tmdfld = Average relative third mode shape difference of the field 

tmdx = Average relative third mode shape difference 

 i= number of iterations 

Stage 3: Crossover for offspring and their analysis  

In the present work the reproduction process has been introduced by using the cross over 

operation to produce the offspring by choosing the proper parent chromosomes from the 

search space. The chosen parent chromosomes are combined by single cross point with the 

encoded values of the gene information to produce two numbers of offspring chromosomes. 

Finally, the offspring chromosomes are analyzed to find the optimal solution. In the current 

developed GA based methodology the crossover of gene information leads to calculation of 

relative first natural frequency (fnf), relative second natural frequency (snf), relative third 

(7.1)
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natural frequency (tnf), average relative first mode shape (fmd), average relative second 

mode shape (smd), average relative third mode shape (tmd), relative crack location 1, relative 

crack location 2, relative crack depth 1, relative crack depth 2. The details of the crossover 

operation are exhibited in Figure 7.1. 

Cross over for fnf  
Parent 1                                                                                Offspring 1 
1 1 1 1 1 1 1 1 0 0
    Crossover point 
Parent2                                                                                  Offspring 2 

 

Cross over for snf  
Parent 1                                                                               Offspring 1 
1 1 1 1 1 1 1 1 1 0
    Crossover point 
Parent2                                                                                 Offspring 2 

 
 

Cross over for tnf  
Parent 1                                                                               Offspring 1 
1 1 1 1 1 1 1 1 0 1
     Crossover point 
Parent2                                                                                 Offspring 2 

 
 

Cross over for fmd  
Parent 1                                                                              Offspring 1 
1 0 1 1 1 1 0 1 0 1
    Crossover point 
Parent2                                                                                 Offspring 2 

 

Cross over for smd  
Parent 1                                                                               Offspring 1 
0 1 0 0 1 1 1 1 0 1
    Crossover point 
Parent2                                                                                 Offspring 2 

 

 
 
 

1  1  1  1  1  1  1  0  1  1 

1  1  1  1  0  1  1  0  1  1  1  1  1  1  0  1  1  1  0  0 

1  1  1  1  1  1  0  1  1  0 

1  1  1  1  1  0  0  1  1  0  1  1  1  1  1  0  1  1  1  0 

1  1  1  1  1  1  0  1  0  1 

1  1  1  1  1  0  0  1  0  1  1  1  1  1  1  0  1  1  0  1 

0 1 0 0 0 0 1 1 0  1 

0  0  1  0  1  0  1  1  0  1  0  0  0  1  1  1  0  1  0  1 

0  1  0  0  1  1  1  0  1  1 

0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 
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Cross over for tmd  
Parent 1                                                                               Offspring 1 
1 0 0 0 1 1 1 1 0 0
   Crossover point 
Parent2                                                                                 Offspring 2 

 
 

Cross over for rcl1  
Parent 1                                                                               Offspring 1 
0 0 1 0 0 0 0 1 1 0
   Crossover point 
Parent2                                                                                  Offspring 2 

 
 

Cross over for rcd1  
Parent 1                                                                               Offspring 1 
0 0 1 0 1 0 1 1 1 1
    Crossover point 
Parent2                                                                                 Offspring 2 

 
 

Cross over for rcl2  
Parent 1                                                                                Offspring 1 
0 1 1 0 0 0 0 0 1 1
   Crossover point 
Parent2                                                                                  Offspring 2 

 
 

Cross over for rcd2  
Parent 1                                                                                 Offspring 1 
0 1 0 0 1 0 1 0 0 0
    Crossover point 
Parent2                                                                                  Offspring 2 

 
 

 

 

Stage 4: Mutation of the genes  

The mutation process is followed to get new sequence of genes by altering the binary code of 

the existing genes. Hence this procedure introduces new genetic patterns in the search space. 

Then, the fitness of the chromosome with the muted genes is evaluated for finding the 

optimal solution. Natural selection will determine the fate of the mutated chromosome. If the 

fitness of the mutated chromosome is higher than the general population, it will survive and 

1  0  0  0  1  1  1  0  1  1 

0 0 1 1 1 0 1 0 1 1 0  0  1  1  1  0  1  1  0  0 

0  0  1  0  0  0  1  0  0  0 

0 1 0 0 1 0 1 0 0 0 0  1  0  0  1  0  0  1  1  0 

0  0  1  0  1  0  1  0  0  0 

0  1  0  0  1  0  1  0  0  0  0  1  0  0  1  0  1  1  1  1 

0  1  1  0  0  0  1  0  0  0 

1 1 0 0 1 0 1 0 0 0
1  1  0  0  1  0  0  0  1  1 

0  1  0  0  1  0  1  0  1  1 

0 1 1 0 1 0 1 0 1 1 0  1  1  0  1  0  1  0  0  0 

Fig.7.1 Single cross point, value encoding crossover for fnf, snf, tnf, fmd, smd, tmd, 

rcl1,rcd1,rcl2,rcd2 
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likely be allowed to mate with other chromosomes. If the genetic mutation produces an 

undesirable feature, then natural selection will ensure that the chromosome does not live to 

mate.  

In the current analysis, a new set for fnf,snf, tnf, fmd, smd, tmd, rcl1, rcd1, rcl2, rcd2 are 

produced from the mutation process by changing the sequence of binary code of the genes. 

For better understanding of the mutation process few examples are illustrated below in Fig. 

17; 

Mutation for fnf   Mutation  of fmd 

Parent 1          parent1                                                           

    

               

 

 Mutation for snf                         Mutation of smd 
 
Parent 1                                                                     
1 1 1 1 1 0 0 1 1 0
    Mutated gene       

1 0 1 1 1 0 1 0 1 1
 

Mutation for tnf       Mutation of tmd  

Parent 1          

1 1 1 1 1 0 0 1 0 1
Mutated gene       

1 0 0 1 1 1 1 0 1 1
 

 

Stage 5: Evaluation of fittest child   

The crossover and mutation process produce new chromosomes with newly formulated 

genes. These new chromosomes are evaluated to find the optimal solution. Out of the off 

springs from the crossover and the newly produced chromosome from the mutation process 

are compared with the results from data pool to find the fittest child. The evaluation of fittest 

child is computed using the equation (7.1). 

 

1 1 1 1 0 1 1 0 1 1

1 1 0 1 1 0 1 0 1 1

Mutated gene 

Fig.7.2 Mutation of genes for fnf, snf, tnf, fmd, smd, tmd  

Parent 1 

0 1 1 1 1 0 1 0 1 1 
Mutated gene 

0 0 1 0 1 1 0 0 1 1 

Parent 1 

0 0 1 1 1 0 1 0 1 1 
Mutated gene 

0 0 0 1 1 1 0 1 1 0 

0 0 1 0 1 0 1 1 0 1 
Mutated gene 

0 1 1 0 1 1 1 1 0 1 
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The applied genetic algorithm based model have six inputs (fnf, snf, tnf, fmd, smd, tmd) and 

have four outputs (relative crack location 1, relative crack location 2, relative crack depth 1, 

relative crack depth 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7.3 Flow chart for the proposed Genetic Algorithm 

Start

Inputs 

Finding the fittest parent from data pool using 
objective function 

Crossover/Mutation of parents to find off springs 

Fitness evaluation of off springs using objective 
function 

Evaluation of output from the off springs and 
parents 

Update of data pool as required 

Want to continue 

No
Yes 

End
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7.3 Results and discussion 
The analyses of the results obtained from genetic algorithm model have been expressed in the 

current section. It is observed that the presence of cracks have noticeable effects on the 

vibration characteristics of a structural member and the vibration parameters can be used to 

predict the crack locations  and their severities in cracked structures. Numerical, finite 

element and experimental analyses have been performed on the cantilever beam with 

different boundary conditions to extract the vibration signatures, which are later used for 

designing the GA system. A flow chart representing the various steps followed to design the 

GA model has been shown in Fig. 7.3. Experimental analysis has been carried out to validate 

the simulated results from the proposed crack diagnostic methodology. The use of single 

point crossover operator has been shown in Fig. 7.1 to find the optimal solution. In some 

cases the mutation operation (Fig. 7.2) has been presented to find the best fit child with in the 

search space for solution. Table 7.1 represents some of the examples of initial data pool used 

for the designing of the GA based model. The results for relative crack depths and relative 

crack locations from GA model,  neural network, fuzzy Gaussian model and experimental 

analysis are shown in Table 7.2 (a) and the results from GA model have  been proved to be 

the best to other AI techniques mentioned in the Table 7.2 (a). A comparison of results from 

GA model, finite element, numerical is presented in Table 7.2 (b) and the outcomes are found 

to be in agreement. The percentage of deviation of the predicted results from the GA model 

has been found as 4.33%. The graph for estimation error vs number of generations for the 

GA model has been shown in Fig. A5 of the Appendix section. 

 
7.4.   Summary 
The following conclusions can be made by analyzing the results obtained from the GA model 

for multiple crack diagnosis in cantilever beam structure. This section presents a technique 

for automatic detection of crack locations and their severities of structural members using 

GA based model. Analysis of vibration parameters i.e. (natural frequencies, mode shapes) of 

the cracked structure have been done through numerical, finite element and experimental 

analysis and the extracted vibration signatures are used to create the initial data pool of the 

GA system, for multiple crack identification. Single point cross over and mutation procedure 

have been followed to find out the best possible solution with in the search space. The first 
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three relative natural frequencies and first three average relative mode shape differences are 

used as inputs to the GA crack identification method. Relative crack depths and relative 

crack locations are the output parameters from the proposed GA based technique. A close 

agreement between the results from simulation, experimental and GA model shows the 

effectiveness of the developed methodology for multiple crack diagnosis. The developed GA 

model can be used for automated condition monitoring of structural systems.  

 

Publication: 

• D.R.K.Parhi, Amiya Kumar Dash, H.C. Das Formulation of a GA based methodology 
for multiple crack detection in a beam structure, Australian journal of structural 
engineering, Vol. 12 (2), pp. 59-71, 2011. 
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Integration of Neural networks (NN) and Fuzzy logic (FL) have brought researchers from 

various scientific and engineering domains for the need of developing adaptive intelligent 

systems to address real time applications. NN learns by adjusting the synaptic weights of 

neurons between layers. FL is a potential computing model based on the concept of fuzzy set, 

fuzzy rules, and fuzzy reasoning. It is known that fuzzy logic and NN have the ability to 

perceive the working environment and mimic the human behavior, thus the advantages of 

combining neural network and fuzzy logic are immense. There are different procedures to 

integrate NN and FL and mostly it depends on the types of application. The integration of 

NN and FL can be classified broadly into three categories namely concurrent model, 

cooperative model and fully fused model. In the current chapter fuzzy logic and neural 

network have been adopted to form a multiple crack identification tool for structural health 

monitoring. 

 
8.1 Introduction 
 

Fuzzy-Neuro hybrid computing technique is a potential tool for solving problems with 

complexity. If the parameters representing a system can be expressed in terms of linguistic 

rules, a fuzzy inference system can be build up. A neural network can be built, if data 

required for training from simulations are available. From the analysis of NN and FL it is 

observed that drawbacks of the two methods are complementary and therefore it is desirable 

to build an integrated system combining the two techniques. The learning capability is an 

advantage for NN, while the formation of linguistic rule base is an advantage for fuzzy logic. 

Hence, the hybrid fuzzy-neuro technique can be used for identifying cracks present in a 

structural system using vibration data. 

In this chapter, a novel identification algorithm (hybrid intelligent system) using inverse 

analysis of the vibration response of a cracked cantilever beam has been proposed. The crack 

identification algorithm utilizes the vibration signatures of the cracked beam derived from 

finite element and theoretical analysis. The hybrid model is designed to predict the crack 

Chapter 8 

ANALYSIS OF HYBRID FUZZY-NEURO SYSTEM 
FOR MULTIPLE CRACK DETECTION 
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locations and their severities by integrating the capabilities of fuzzy logic and neural network 

technique. The reliability of the proposed crack identification algorithm is established by 

comparing the results obtained from the experimental analysis. 

The current chapter has been arranged into five sections. The introduction section (Section 

8.1) presents a discussion about the hybrid intelligent technique such as fuzzy-neuro used for 

fault diagnosis. Section 8.2 depicts the analysis of the fuzzy and neural part of the hybrid 

intelligent system proposed for crack identification. The discussions made by analyzing the 

results obtained from fuzzy-neural model are depicted in section 8.4. The conclusions drawn 

from the current chapter is expressed in section 8.4. 

8.2 Analysis of the fuzzy-neuro model 

The current chapter introduces a hybrid intelligent method for prediction of crack locations 

and their intensities in a beam structure having multiple transverse cracks using inverse 

analysis. As the presence of cracks alters the dynamic behavior of the beam, the first three 

relative natural frequencies and first three average relative mode shape differences of the 

cracked and undamaged beam for different crack locations and depths are calculated using 

numerical, finite element and experimental analysis. The calculated modal frequencies, mode 

shapes, relative crack locations and relative crack depths are used to design the fuzzy neural 

model. The measured vibration signatures are used as inputs to the fuzzy segment of the 

hybrid model and initial relative crack depths and initial crack locations are the output 

parameters. The first three relative natural frequencies, first three average relative mode 

shape difference and the output from the fuzzy model are used as inputs to the neural part of 

the hybrid model and final crack depths and locations are the output parameters. The 

measured vibration signatures are used to formulate series of fuzzy rules and training patterns 

for the fuzzy and neural model. Finally, the validation of the proposed method is carried out 

dynamically by means of experimental results from the developed experimental setup. The 

fuzzy segment of the hybrid model for multiple crack prediction has been developed using 

triangular, Gaussian and trapezoidal membership functions. The triangular membership 

function based hybrid model, Gaussian membership function based hybrid model and 

trapezoidal membership function based hybrid model are shown in Fig.8.1, Fig.8.2, Fig.8.3 

respectively.  
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8.2.1 Analysis of the fuzzy segment of the fuzzy-neuro model 

The first layer of the fuzzy-neuro hybrid model i.e. the fuzzy segment has six inputs and four 

interim output parameters. The linguistic terms representing the inputs are fnf, snf, tnf, fmd, 

smd and tmd. The interim outputs from the fuzzy part of the hybrid crack diagnostic system 

are as follows;  

Initial first relative crack location = “rcl1initial”, Initial first relative crack depth = “rcd1initial” 

Initial second relative crack location = “rcl2initial”, Initial second relative crack depth = “rcd2initial” 

The different types of membership functions such as triangular, Gaussian and trapezoidal have 

been used for designing the fuzzy part of the fuzzy-neural model. The fuzzy rules  and fuzzy 

linguistics terms used for designing the fuzzy layer of the fuzzy-neuro model follows the rule and 

linguistics terms pattern mentioned in Table 5.1 and Table 5.2 of chapter 5. The fuzzy 

methodology to develop the fuzzy-neuro crack identification tool has been inherited from section 

5.2 and 5.3 of chapter 5. 

 

8.2.2 Analysis of the neural segment of fuzzy-neuro model  

The model of the neural segment has been discussed in this section. The neural model of the 

proposed fuzzy-neural hybrid system for crack diagnosis is a ten layer feed forward network 

trained with back propagation technique for multiple crack diagnosis in structural members. 

The results obtained from the fuzzy analysis will be used as inputs to the neural segment of 

the hybrid fuzzy-neuro model. The diamond shape neural network comprises of ten inputs 

and four output parameters. The various inputs to the neural network are fnf, snf, tnf, fmd, 

smd, tmd and initial first relative crack location (rcl1initial), initial first relative crack depth 

(rcd1initial), initial second relative crack location (rcl2initial), initial first relative crack depth 

(rcd2initial). The final outputs from the neural network are depicted below; 

final first relative crack location = “rcl1final”, final first relative crack depth = “rcd1final”, 

final second relative crack location = “rcl2final”, final second relative crack depth = “rcd2final” 

The number of neurons present in each layer (i.e. 2nd layer to 8th layer) of the neural model is 

twelve, thirty-six, fifty, one hundred fifty, three hundred, one hundred fifty, fifty and eight 

respectively. The numbers of neurons have been selected to make the neural model a 

diamond shape for better convergence of results. The complete working principle of the 

neural model has been described in sections 6.2 and 6.3 of chapter 6. 
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8.3 Results and discussions of fuzzy-neuro model 
This section depicts the analysis of the results obtained from the fuzzy-neuro model used for 

multiple crack identification in structural systems. 

 A comparison of results from the triangular membership based fuzzy-neural model (Fig 

8.1), Gaussian membership based fuzzy-neural model (Fig. 8.2), trapezoidal membership 

based fuzzy-neural model (Fig. 8.3) with that of the experimental analysis are presented in 

Table 8.1 (a). By studying the results mentioned in Table 8.1 (a), the deviation of Gaussian 

fuzzy-neural model from the actual results is found to be least as compared to triangular 

fuzzy-neural model, trapezoidal fuzzy-neural model. Again the results from the Gaussian 

fuzzy-neural model are compared with the outcome from GA, neural network and fuzzy 

Gaussian model in Table 8.1(b) and the results are in close agreement. Six numbers of inputs 

i.e. first three relative natural frequencies and first three relative mode shape differences 

have been considered to measure the relative crack locations and relative crack depths by the 

proposed fuzzy-neuro models. The corresponding outputs have been presented to evaluate 

the accuracy of the results from the various methodologies mentioned. The parameter 

presented in column number one to six in the Table 8.1(a) and Table 8.1(b) are first three 

relative natural frequencies and first three relative mode shape differences. The rest of the 

column represents the relative first crack location, relative second crack location, relative 

first crack depth and relative second crack depth obtained from the different methodologies 

being performed on the multiple cracked cantilever beam model. From the analysis of the 

results, it is found that the percentage of deviation of the prediction values of relative crack 

locations and relative crack depths for the triangular fuzzy-neuro model, Gaussian fuzzy-

neuro model and trapezoidal membership fuzzy-neuro model are 6.48%, 4% and 5% 

respectively. 
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8.4 Summary 

The following conclusions can be drawn by investigating the results from the fuzzy-neural 

analysis carried out for multiple crack identification.  

From the analysis, it has been observed that both crack locations and crack depths have 

noticeable effects on the modal parameters of the cracked beam. The hybrid intelligent model 

is developed with the computed values of modal parameters of the cracked beam with 

various crack depths and crack locations as inputs and final relative crack depths and final 

relative crack locations as output parameters. The authenticity of the hybrid system has been 

verified from the predicted values of the crack locations and depths by comparing the results 

from neural network model, GA, fuzzy Gaussian and experimental analysis. The Gaussian 

fuzzy neuro model produces best results in terms of relative crack depths and relative crack 

locations in comparison to triangular fuzzy neuro, trapezoidal fuzzy neuro model. This 

modular Gaussian fuzzy-neural architecture can be used as a non-destructive procedure for 

health monitoring of structures. Evolution algorithm has also been used in next chapters to 

develop hybrid system for easy diagnosis of faults in dynamically vibrating structures. Since 

the Gaussian fuzzy neuro model performance is better than the other two fuzzy-neuro model, 

in the next chapters the results from Gaussian fuzzy neuro model will be compared with 

other AI techniques (MANFIS, GA-fuzzy, GA-neural, GA-neuro-fuzzy) to compare their 

performance. 

 

Publication 
 

• Amiya Kumar Dash, D.R.K.Parhi, A vibration based inverse hybrid intelligent 
method for structural health monitoring, International Journal of Mechanical and 
Materials Engineering. Vol.6 (2), pp. 212-230, 2011. 
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The presence of a transverse crack in shaft, rotor and structures incurs a potential risk of 

destruction or collapse. This produces high costs of production and maintenance. Detection 

of multiple cracks in their early stages may save the system for use after repair. By 

monitoring the system, depending upon the type and severity of the cracks, it may be 

possible in some cases to extend the use of a flawed member without risking a catastrophic 

failure. This section of the thesis presents an inverse technique using multiple adaptive 

neuro-fuzzy-evolutionary system (MANFIS) methodology for identification of multiple 

transverse cracks present in structural members. The proposed MANFIS model utilizes six 

inputs the first three natural frequencies and first three mode shapes from the system  and 

provides outputs relative crack locations and relative crack depths, there by identifying the 

position and severities of the cracks. The developed technique has been found to be suitable 

for diagnosis of cracks present in the beam structures.  

The MANFIS system introduced in this chapter is comprises five layers. The first layer is an 

adaptive layer which has six inputs. The second and third layers are fixed layers. The fourth 

and fifth layers are adaptive layers. Relative first crack location, relative second crack 

location, relative first crack depth and relative second crack depth are the output parameters 

from the fifth layer of the MANFIS model.  MANFIS is an extended version of ANFIS to 

produce multiple real responses of the required system. This technique can be utilized 

effectively for modeling functions with nonlinearities and complexity without the application 

of accurate quantitative analyses. The Takagi and Sugeno’s model can be employed to 

extract the input and output pairs of data which are used to train the fuzzy logic system [205]. 

ANFIS has been developed by integrating the best features of Fuzzy Systems and Neural 

Networks. The fuzzy part represents the prior knowledge into a set of constraints (network 

topology) to reduce the optimization search space. The proposed MANFIS methodology has 

Chapter 9 

ANALYSIS OF MANFIS FOR MULTIPLE CRACK 

DETECTION
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been found to be in good agreement with the results from experimentation, there by showing 

its authenticity.  

9.1 Introduction 
 
A lot of research has been carried out by scientists to develop techniques for structural health 

monitoring. It is observed that the artificial intelligence techniques such as fuzzy inference 

system, neural network and genetic algorithm have been applied to design the more robust 

expert systems for crack diagnosis in damaged structures. Recently multiple adaptive neuro-

fuzzy-inference system has drawn attention of science community to design intelligent 

systems. The advantage of the MANFIS system is that, it integrates the positive features of 

both fuzzy logic and neural network and provides a more robust platform to develop systems 

for different engineering applications. 

The current chapter exhibits a methodology based on multiple adaptive neuro-fuzzy-

inference system which is an extension of ANFIS system to diagnose multiple cracks present 

in a cantilever beam model. The developed MANFIS model is comprising of five layers i.e. 

one input layer, three hidden layer and one output layer. Out of five layers, the input layer 

has been designed using fuzzy inference system and the rest four layers are designed using 

neural network. Various fuzzy linguistic terms and several hundred fuzzy rules have been 

developed from the derived values of first three relative natural frequencies, first three 

average relative mode shape difference, relative crack locations and relative crack depths to 

train the fuzzy layer of the MANFIS model. Similarly several hundred training patterns have 

been developed to design and train the neural based layers of the proposed system. The fuzzy 

segment uses the first three relative natural frequencies, first three average relative mode 

shape difference as the inputs and the hidden layer process the outputs from the fuzzy model. 

Finally relative crack locations and relative crack depths are outputs from the developed 

MANFIS model. It is observed that the predicted values of relative crack locations and 

relative crack depths from the formulated technique are well in agreement with the results 

from experimental analysis. The proposed methodology demonstrates its capability to be a 

suitable non destructive technique for fault identification in vibrating structures. 

The current chapter of the thesis has been divided into four sections. The first section, which 

is the introduction section of this chapter explain the use of MANFIS in advanced 
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computing. The analysis of the MANFIS applied for fault diagnosis has been discussed in 

section 9.2. The results obtained from MANFIS system has been compared with the results 

obtained from the methods discussed in the previous chapters and discussion about the same 

has been expressed in section 9.3. The conclusions made by analyzing the results from the 

MANFIS model have been explained in section 9.4. 

 
9.2 Analysis of multiple adaptive neuro-fuzzy inference system for crack 

detection 

The MANFIS (multiple adaptive neuro fuzzy inference system) technique is known as a 

multiple ANFIS system. It integrates the capabilities of the neural network and fuzzy logic. 

The ANFIS model used for designing the MANFIS model is a first order Takagi Sugeno 

Fuzzy Model [205]. In the present investigation, six parameters are used as inputs to the 

MANFIS system and four parameters are the outputs from the system. The inputs are (x1) 

fnf, (x2) snf, (x3) tnf, (x4) fmd, (x5) smd and (x6) tmd. The output parameters are as follows; 

First relative crack location = “rcl1”; First relative crack depth = “rcd1” 

Second relative crack location = “rcl2”; Second relative crack depth = “rcd2” 

In the current analysis, the MANFIS model has four output parameters; based on this logic 

the system has been fabricated.  
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The if then rules for the MANFIS architecture is defined as follows; 

IF x1 is Aj ,  x2 is Bk , x3 is Cm,  x4 is Dn , x5 is Eo ,  x6 is Fp 

THEN 

fe,i = pe,i x1 +  re,i x2 +  se,i x3 +  te,i x4 +  ue,i x5 +  ve,i x6 + ze,i   

 

Where; 

f1,i = rcl1,i =   p1,i x1 +  r1,i x2 +  s1,i x3 +  t1,i x4 +  u1,i x5 +  v1,i x6 + z1,i     ; for relative crack 

length1. 

f2,i = rcd1,i =   p2,i x1 +  r2,i x2 +  s2,i x3 +  t2,i x4 +  u2,i x5 +  v2,i x6 + z2,i    ; for relative crack 

depth1. 

f3,i = rcl2,i =   p1,i x1 +  r1,i x2 +  s1,i x3 +  t1,i x4 +  u1,i x5 +  v1,i x6 + z1,i     ; for relative crack 

length2. 

f4,i = rcd2,i =   p2,i x1 +  r2,i x2 +  s2,i x3 +  t2,i x4 +  u2,i x5 +  v2,i x6 + z2,i    ; for relative crack 

depth2. 

e = 1 to 4; j = 1 to q1; k = 1 to q2; m = 1 to q3 ; n = 1 to q4 ; o = 1 to q5 and p = 1 to q6 and 

i = 1 to q1.q2.q3.q4.q5.q6   

A, B, C, D, E and F are the fuzzy membership sets defined for the input variables x1 (fnf), 

x2(snf), x3(tnf), x4(fmd), x5(smd) and x6(tmd). q1, q2, q3, q4, q5 and q6 are the number of 

member ship functions for the fuzzy systems of the inputs x1, x2, x3, x4, x5 and x6 

respectively.  

“rcl1”, “rcl2”,“rcd1” and “rcd2” are the linear consequent functions defined in terms of the 

inputs (x1, x2, x3, x4, x5 and x6) .  p1,i , r1,i, s1,i ,t1,i ,u1,i ,v1,i , z1,i,p2,i , r2,i, s2,i ,t2,i ,u2,i , v2,i and 

z2,i are the consequent parameters of the ANFIS fuzzy model. In the ANFIS model nodes of 

the same layer have similar functions. The output signals from the nodes of the previous 

layer are the input signals for the current layer. The output obtained with the help of the node 

function will be the input signals for the subsequent layer. 

 

(9.1) 

(9.2) 
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Layer 1:  Every node in this layer is an adaptive node (square node) with a particular fuzzy 

membership function (node function) specifying the degrees to which the inputs satisfy the 

quantifier. For six inputs the outputs from nodes are given as follows; 

O1, g,e = μAg (x)    for g = 1, ……, q1                                              (for input x1) 

O1, g,e = μBg (x)    for g = q1+1, ……, q1+q2     (for input x2) 

O1, g,e = μCg (x)    for g = q1+q2+1, ……, q1+q2+q3    (for input x3) 

O1, g,e = μDg (x)    for g = q1+q2+q3+1, …, q1+q2+q3+q4   (for input x4) 

O1, g,e = μEg (x)    for g = q1+q2+q3+q4+1, …, q1+q2+q3+q4+q5   (for input x5) 

O1, g,e = μFg (x)    for g = q1+q2+q3+q4+q5+1, …, q1+q2+q3+q4+q5+q6 (for input x6) 

Here the membership functions for A, B, C, D, E and F considered are the bell shaped 

function. The membership function for A,B,C,D,E and F considered in “layer 1” are the bell 

shaped function (Fig. 9.1) and are defined as follows; 
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;  g = 1, ……, q1        

(9.3) 
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Fig. 9.1    Bell-shaped membership function 
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μBg(x)= g b2
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;  g = q1+1, ……, q1+q2     

μCg(x)= g b2
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;  g = q1+q2+1, ……, q1+q2+q3    

μDg(x)= g b2
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μEg(x)= g b2
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;  g = q1+q2+q3+q4+1, ……, q1+q2+q3+q4+q5  

μFg(x)= g b2
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;  g = q1+q2+q3+q4+q5+1, ., q1+q2+q3+q4+q5+q6  

Where ag,bg and cg are the parameters for the fuzzy membership function. The bell-shaped 

function changes its pattern as per the change of the parameters. This change will give the 

various contour of bell shaped function as needed in accord with the data set for the problem 

considered.  

Layer 2: Every node in this layer is a fixed node (circular) labeled as “Π”. The output 

denoted by  O2,i,e. The output is the product of all incoming signal. 

O2,i,e = wi ,e = μAg(x) μBg(x) μCg(x) μDg(x) μEg(x) μFg(x) ;     (9.5) 

for i = 1,…., q1.q2.q3.q4.q5.q6  and g = 1 ,….., q1+q2+q3+q4+q5+q6  

(9.4 (v)) 

(9.4 (vi)) 

(9.4 (iv)) 

(9.4 (iii)) 

(9.4 (ii)) 
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The output of each node of the second layer represents the firing strength ( degree of 

fulfillment) of the associated rule. The T-nom operator algebraic product { Tap(a,b) = ab}, 

has been used to obtain the firing strength (wi,e). 

Layer 3: Every node in this layer is a fixed node (circular) labeled as “N”. The output of the 

i th. node is calculated by taking the ratio of firing strength of i th. rule (wi,e) to the sum of all 

rules’ firing strength. 

 O3,i,e = 
∑

= = 4.q5.q6q1.q2.q3.qr

1-r
er,

ei,
e,i

w

w
  w        (9.6) 

This output gives a normalized firing strength. 

Layer 4:  Every node in this layer is an adaptive node (square node) with a node function. 

O4,i, e = e,iw  fe,i = e,iw  (pe,i x1 +  re,i x2 +  se,i x3 +  te,i x4 +  ue,i x5 +  ve,i x6 + ze,i )    (9.7)      

Where e,iw  is a normalized firing strength form (output) from layer 3 and  {pe,i , re,i , se,i , te,i, 

ue,i , ve,i , ze,i}is the parameter set for relative crack location(e=1,2) and relative crack depth 

(e=1,2). Parameters in this layer are referred to as consequent parameters.  

Layer 5: The single node in this layer is a fixed node (circular) labeled as “Σ”, which 

computes the overall output as the summation of all incoming signals.  

O5,1,e =  
∑

∑
=∑ =

=

=

4.q5.q6q1.q2.q3.qi

1-i
ei,

4.q5.q6q1.q2.q3.qi

1-i
ie,ei,4.q5.q6q1.q2.q3.qi

1-i
ie,ei,

  w

 f w
 f w           (9.8) 
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In the current developed ANFIS structure there are six dimensional space partition and has  

“q1 x q2 x q3 x q4 x q5 x q6” regions. Each region is governed by a fuzzy if then rule. The first 

layer (consists of premise or antecedent parameters) of the ANFIS is dedicated to fuzzy sub 

space. The parameters of the fourth layer are referred as consequent parameters and are used 

to optimize the network. During the forward pass of the hybrid learning algorithm node 

outputs go forward until layer four and the consequent parameters are identified by least 

square method. In the backward pass, error signals propagate backwards and the premise 

parameters are updated by a gradient descent method. The MANFIS architectures are 

presented in Fig. 9.2 (a) & Fig. 9.2 (b). 
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Fig. 9.2 (a) Multiple ANFIS (MANFIS) Model for crack detection 
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 Fig. 9.2 (b) Adaptive-Neuro-Fuzzy-Inference System (ANFIS) for crack detection 
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9.3 Results and discussions of MANFIS model 

The following discussions can be made from the analysis of the results of the multiple 

adaptive neuro-fuzzy inference system to predict the relative crack locations and relative 

crack depths.  

The simulation results in current analysis indicate that the impact of crack locations and 

depths on the vibrational characteristics of the cantilever beam is quiet evident. This is an 

important outcome of the numerical, finite element and experimental analysis which is used 

as a baseline for formulation of a multiple crack diagnostic tool using MANFIS technique. 

The Bell shaped membership function used for designing the ANFIS model has been shown 

in Fig. 9.1. The architecture of the proposed MANFIS model for multiple crack diagnosis 

and the detailed architecture showing the different layers of the ANFIS system for crack 

detection have been presented in Fig. 9.2 (a) and Fig. 9.2 (b) respectively. The suitability of 

the MANFIS technique has been checked by comparing the results with that of the Gaussian 

fuzzy-neuro model of chapter-8, GA model of chapter-7, experimental analysis of chapter-12 

and the comparison has been presented in Table 9.1 (a). The results obtained from MANFIS, 

numerical analysis and finite element analysis have been compared and presented in Table 

9.1 (b). Ten sets of inputs (relative first three natural frequencies and relative first three mode 

shape differences) out of the several hundred inputs have been considered for the above 

mentioned techniques and the corresponding outputs in terms of relative first crack location 

(rcl1), relative second crack location (rcl2), relative first crack depth (rcd1), relative second 

crack depth (rcd2) are presented in the Table 9.1 (a) and Table 9.1 (b).The first six columns 

of both the Table (Table 9.1 (a), Table 9.1 (b)) presents the inputs for the above mentioned 

methodologies i.e. relative 1st natural frequency (fnf), relative 2nd natural frequency (snf), 

relative 3rd natural frequency (tnf), relative 1st mode shape difference (fmd), relative 2nd 

mode shape difference (smd) and relative 3rd mode shape difference (tmd) respectively. The 

rest columns from the Table represent the outputs such as relative crack locations and relative 

crack depths from the respective techniques. From the analysis of the results presented in 

Tables 9.1(a) it is found that, the percentage deviation of the results of MANFIS is 2.53%. 
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9.4 Summary 
 

Based on the results from MANFIS technique the following conclusions are drawn for 

multiple crack diagnosis in the beam structure.  

In the current investigation a methodology based on measurement of natural frequencies and 

mode shapes of the system has been presented for identification of crack locations and their 

severities in a beam structure using MANFIS model having one input (fuzzy) layer, four 

hidden layers and one output layer. Analyzing the results obtained from experimental, finite 

element and numerical methods, it is clear that the natural frequencies and mode shapes 

shows a noticeable change due to presence of cracks on the beam structure. The first three 

relative natural frequencies and mode shapes differences from the numerical, finite element 

and experimental analysis are used as inputs to the fuzzy segment (input layer) of the 

MANFIS model. Relative crack locations and relative crack depths are the output from the 

developed model. The predicted results of the MANFIS model has been validated using the 

results from the developed experimental setup and the results are found to be in close 

agreement. From the analysis of the results obtained from the newly designed model it is 

observed that the MANFIS model predicts the position and severities of cracks with more 

accuracy than the other AI techniques discussed in this thesis and can be suitably utilized for 

online multiple crack diagnosis in the dynamically vibrating structures. 

 
Publications 

• Amiya Kumar Dash, Dayal R.Parhi, Development of a crack diagnostic application using 

MANFIS technique, International journal of acoustics and vibration (IJAV), In Press. 
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Detection faults before it affects the performance of the system become essential for 

efficient, reliable and safe operation in engineering systems. Traditional techniques for fault 

detection have limitations due to non accurate mathematical model used for simulating the 

actual conditions. Moreover, generation of an accurate mathematical model for a non linear 

system becomes very complex. Therefore, knowledge based system and evolutionary 

techniques become more appropriate to address modeling uncertainties. Fuzzy inference 

system is one of the knowledge based methodology, to resolve fault detection problem. 

Genetic algorithms (GAs) are search algorithm based on the mechanism of natural selection 

and genetic reproduction. It can be employed effectively to find the optimize solution in 

[163] many control systems. In the present study, genetic algorithm and fuzzy logic based 

hybrid technique (GA-fuzzy model) has been designed for diagnosis of multiple cracks in 

vibrating structures. The proposed method represents a suitable alternative method to neural 

network and genetic algorithm based method in the domain of fault diagnosis for damaged 

structures.  

10.1 Introduction 

The presence of vibrations on structures and machine components are used by engineers and 

scientists to formulate methodologies for identification of crack in damaged structures. So, 

the vibration parameters can be used to design techniques based on artificial intelligence for 

fault diagnosis. 

To develop a robust fault diagnostic tool based on genetic algorithm and fuzzy logic, the 

current chapter explores the use of dynamic responses of cracked and intact cantilever beam 

structure. Theoretical, finite element and experimental analyses have been carried out to find 

the combined impact of crack locations and crack depths on the vibrational characteristics 

(natural frequencies, mode shapes) of the cantilever beam. The calculated vibration 

signatures are used to design and train the GA-fuzzy model. The viability of the proposed 

Chapter 10
ANALYSIS OF GENETIC FUZZY MODEL FOR 

MULTIPLE CRACK DETECTION 
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technique has been investigated both analytically and experimentally for the cantilever beam 

containing multiple cracks.  

This chapter has been organized into four sections. Section 10.1, the introduction part of the 

current chapter gives an outline about the application of AI techniques used for fault 

detection. The analysis of the GA-fuzzy model has been described in section 10.2. Section 

10.2.1 and section 10.2.2 gives a detail picture about the GA methodology and fuzzy 

methodology adopted for developing the hybrid intelligent model. Section 10.3 explains 

about the results from the GA-fuzzy system and also explains the performance of the system 

in comparison to numerical, FEA, Gaussian fuzzy-neuro, MANFIS and experimental 

technique. The summary of the chapter is expressed in section 10.4.  

10.2 Analysis of genetic- fuzzy system for crack detection  

This section discusses about the mechanism of the proposed genetic-fuzzy system for 

identification of multiple cracks in structural members. To identify the locations and depths 

of multiple cracks in structural members, a new hybrid GA-fuzzy model has been designed. 

The computed vibration signatures from theoretical, finite element and experimental analysis 

are used to train the hybrid model. The first three relative natural frequencies, first three 

relative mode shape differences are used as inputs to the GA model and rcl1_interim, 

rcd1_interim, rcl2_interim, rcd2_interim are the outputs from the GA model. The fuzzy 

system takes the interim outputs from the GA model along with the first three relative natural 

frequencies, first three relative mode shape differences as inputs. Finally, rcl1_final, 

rcd1_final, rcl2_final, rcd2_final are the output parameters from the hybrid GA-fuzzy 

technique. A comparison of results obtained from theoretical, finite element, Gaussian fuzzy-

neuro, MANFIS, GA-fuzzy model and experimental analysis have been presented in Table 

10.4 (a), Table 10.4 (b) and the results are found to be in close agreement. The detail 

architecture of the hybrid GA- fuzzy (Gaussian membership based) model has been shown in 

Fig. 10.3. The proposed hybrid GA-fuzzy system can be used as a robust technique to 

identify multiple cracks in damaged structures. The mechanism of GA segment and the fuzzy 

segment of the hybrid model inherits the steps followed in section 7.2, section 5.3 

respectively. 
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10.2.1 Analysis of the GA segment of GA-fuzzy model 

This section presents the approach adopted for formulating the GA segment of the developed 

hybrid GA-fuzzy model to identify presence of multiple cracks in the cantilever beam model. 

The GA model has got six inputs such as fnf, snf, tnf, fmd, smd and tmd. The output 

parameters from the GA model are interim first relative crack location (rcl1_interim), interim 

first relative crack depth (rcd1_interim), interim second relative crack location (rcl2_interim) 

and interim first relative crack depth (rcd2_interim).  

The GA system utilizes reproduction, mutation and objective function to process the input 

parameters and provide interim outputs (interim relative crack locations and interim relative 

crack depths). The steps followed to formulate the GA model have been inherited from 

section 7.2 of the thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.1 Fuzzy Gaussian model for crack detection 

Inputs Outputs 

Fuzzy Model fnf 
snf 

tnf 

fmd 

smd 
tmd 

rcl2_final 

rcd1_final 

rcl1_final 

rcd2_final 

rcd1_interim 

rcl1_interim 

rcl2_interim 

rcd2_interim 
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10.2.2 Analysis of the fuzzy segment of GA-fuzzy model 

 

This section analyses the knowledge based fuzzy inference system used for designing the 

fuzzy model used to detect multiple cracks present in the cracked cantilever beam structure. 

The vibration signatures extracted from the healthy and faulty beam model using numerical, 

finite and experimental techniques have been used for formulation of the fuzzy rule base and 

fuzzy linguistic terms of the Gaussian membership based fuzzy inference system of the 

proposed hybrid system.  

 

The ten numbers inputs to the fuzzy layer of the hybrid GA-fuzzy system are fnf, snf, tnf, 

fmd, smd, tmd, interim first relative crack location (rcl1_interim), interim first relative crack 

depth (rcd1_interim), interim second relative crack location (rcl2_interim) and interim first 

relative crack depth (rcd2_interim). The  four numbers of output parameters from the fuzzy 

segment are final first relative crack location (rcl1_final), final first relative crack depth 

(rcd1_ final), final second relative crack location (rcl2_ final), final first relative crack depth 

(rcd2_ final).  

 

The Gaussian membership based fuzzy model with inputs and outputs has been shown in 

Fig.10.1. The membership functions used for fuzzification of the system are shown in Fig. 

10.2. Some of the fuzzy linguistic terms used for input and output parameters and fuzzy rules 

for development of the fuzzy segment are presented in Table 10.1, Table 10.2 and Table 10.3 

respectively.  

 

The detail architecture of the developed GA-fuzzy based intelligent system has been 

presented in Fig. 10.3. Subsequently, results from the developed intelligent hybrid system 

have been validated by experimental method.  The methodology for development of the 

fuzzy system has been adopted as explained in section 5.3 of the thesis. 
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Membership functions for input parameters 

Fig. 10.2(a2) Membership functions for relative 
natural frequency for second mode of vibration. 
 

  L2F4     L2F3    L2F2    L2F1   M2F1   M2F2    H2F1   H2F2   H2F3   H2F4 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970   0.976    0.982    0.988    0.994    1.0 

1.0 
     L1F4     L1F3    L1F2    L1F1    M1F1   M1F2   H1F1   H1F2   H1F3    H1F4 

1.0 

Fig. 10.2(a1) Membership functions for relative 
natural frequency for first mode of vibration. 

0.0, 0.912  0.92    0.928     0.936   0.944    0.952    0.96     0.968     0.976   0.984   0.992      1.0 

Fig. 10.2(a3) Membership functions for relative 
natural frequency for third mode of vibration. 

   L3F4    L3F3    L3F2    L3F1   M3F1    M3F2   H3F1    H3F2   H3F3   H3F4 

0.0,0.934 0.940   0.946    0.952    0.958   0.964    0.970    0.976   0.982     0.988   0.994       1.0 

1.0 

Fig. 10.2(a5) Membership functions for relative mode 
shape difference for second mode of vibration. 

     S2M4   S2M3   S2M2    S2M1  M2M1 M2M2  H2M1  H2M2  H2M3   H2M4 
 

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818   1.0  

1.0 

 0.0,-1.0  -0.81818  -0.63636  -0.45454  -0.27272  -0.0909  0.09092  0.27272  0.45454  0.63636   0.81818        1.0  

Fig. 10.2(a4) Membership functions for relative mode 
shape difference for first mode of vibration. 

   S1M4    S1M3   S1M2   S1M1 M1M1  M1M2  H1M1  H1M2  H1M3   H1M4 
1.0 

Fig. 10.2(a6) Membership functions for relative  
mode shape difference for third mode of vibration. 

    S3M4    S3M3   S3M2   S3M1  M3M1  M3M2  H3M1  H3M2  H3M3   H3M4 

   0.0,-1.0   -0.81818   -0.63636  -0.45454 -0.27272 -0.0909   0.09092   0.27272  0.45454  0.63636  0.81818      1.0  

1.0 

 S2D9   S2D8 S2D7 S2D6   S2D5  S2D4  S2D3  S2D2  S2D1   M2D  L2D1   L2D2  L2D3  L2D4  L2D5  L2D6  L2D7   L2D8  L2D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105   0.455  0.4995  0.5440 0.5885 0.633  0.6775   0.722  0.7665 0.8110  0.8555    0.9 

1.0 

Fig. 10.2a7 (b) Membership functions for interim relative crack depth2.

 S1D9   S1D8 S1D7 S1D6   S1D5  S1D4  S1D3  S1D2  S1D1   M1D  L1D1   L1D2  L1D3  L1D4  L1D5  L1D6  L1D7   L1D8  L1D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105   0.455  0.4995  0.5440 0.5885 0.633  0.6775   0.722  0.7665 0.8110  0.8555    0.9 

1.0 

Fig. 10.2a7 (a) Membership functions for interim relative crack depth1.

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787     .6208     .6629    .7050      .7471     .7893    .8314     .8735     .9156     .9578      1.0 

1.0 

          S1L22     S1L20   S1L18    S1L16   S1L14    S1L12    S1L10     S1L8     S1L6      S1L4       S1L2     M1L1      B1L1      B1L3     B1L5      B1L7      B1L9     B1L10     B1L12     B1L14    B1L16   B1L18   B1L20     
                 S1L21     S1L19    S1L17    S1L15    S1L13     S1L11    S1L9      S1L7       S1L5      S1L3      S1L1     M1L2      B1L2      B1L4     B1L6      B1L8      B1L11    B1L13    B1L15    B1L17    B1L19    B1L21   B1L22 

Fig. 10.2a8 (a) Membership functions for interim relative crack location1. 
          S2L22     S2L20   S2L18    S2L16   S2L14    S2L12    S2L10     S2L8     S2L6      S2L4       S2L2     M2L1      B2L1      B2L3     B2L5      B2L7      B2L9     B2L10     B2L12     B2L14    B2L16   B2L18   B2L20     
                 S2L21     S2L19    S2L17    S2L15    S2L13     S2L11    S2L9      S2L7       S2L5      S2L3      S2L1     M2L2      B2L2      B2L4     B2L6      B2L8      B2L11    B2L13    B2L15    B2L17    B2L19    B2L21   B2L22 

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787     .6208     .6629    .7050      .7471     .7893    .8314     .8735     .9156     .9578      1.0 

1.0 

Fig. 10.2a8 (b) Membership functions for interim relative crack location2. 
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Fig. 10.3 Genetic-Fuzzy system for fault detection 

Membership functions for output parameters 
 S3D9   S3D8 S3D7 S3D6   S3D5  S3D4  S3D3  S3D2  S3D1   M3D  L3D1   L3D2  L3D3  L3D4  L3D5  L3D6  L3D7   L3D8  L3D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105  0.455 0.4995 0.5440 0.5885 0.633 0.6775  0.722 0.7665 0.8110 0.8555    0.9 

1.0 

Fig. 10.2a9 (a) Membership functions for final relative crack depth1. 
 S4D9   S4D8 S4D7 S4D6   S4D5  S4D4  S4D3  S4D2  S4D1   M4D  L4D1   L4D2  L4D3  L4D4  L4D5  L4D6  L4D7   L4D8  L4D9 

  0.0,0.01 0.0545   0.099  0.1435  0.188  0.2325  0.277   0.3215  0.366  0.4105   0.455  0.4995  0.5440 0.5885 0.633  0.6775   0.722  0.7665 0.8110  0.8555    0.9 

1.0 

Fig. 10.2a9 (b) Membership functions for final relative crack depth2. 

1.0 

          S3L22     S3L20   S3L18    S3L16   S3L14    S3L12    S3L10     S3L8     S3L6      S3L4       S3L2     M3L1      B3L1      B3L3     B3L5      B3L7      B3L9     B3L10     B3L12     B3L14    B3L16   B3L18   B3L20     
                 S3L21     S3L19    S3L17    S3L15    S3L13     S3L11    S3L9      S3L7       S3L5      S3L3      S3L1     M3L2      B3L2      B3L4     B3L6      B3L8      B3L11    B3L13    B3L15    B3L17    B3L19    B3L21   B3L22 

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787    .6208     .6629    .7050      .7471     .7893   .8314     .8735     .9156     .9578      1.0

Fig. 10.2a10 (a) Membership functions for final relative crack location1. 
          S4L22     S4L20   S4L18    S4L16   S4L14    S4L12    S4L10     S4L8     S4L6      S4L4       S4L2     M4L1      B4L1      B4L3     B4L5      B4L7      B4L9     B4L10     B4L12     B4L14    B4L16   B4L18   B4L20     
                 S4L21     S4L19    S4L17    S4L15    S4L13     S4L11    S4L9      S4L7       S4L5      S4L3      S4L1     M4L2      B4L2      B4L4     B4L6      B4L8      B4L11    B4L13    B4L15    B4L17    B4L19    B4L21   B4L22 
 

        0.0,.01      .0522     .0943     .1364     .1785    .2206     .2628     .3049     .3470     3891     .4312     .4734     .5155     .5576    .5997     .6418     .6840     .7261    .7682      .8103    .8524      .8946    .9367    .9789 
                 .0311      .0732     .1153     .1575    .1996     .2417     .2838     .3259    .3681     .4102     .4523     .4944     .5365    .5787    .6208     .6629    .7050      .7471     .7893   .8314     .8735     .9156     .9578      1.0

1.0 

Fig. 10.2a10 (b) Membership functions for final relative crack location2. 
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Membership Functions Name  Linguistic 
Terms 

Description and range of the Linguistic terms 

L1F1,L1F2,L1F3,L1F4 fnf 1 to 4 Low ranges of relative natural frequency for first mode of vibration in 
descending order respectively  

M1F1,M1F2 fnf 5,6 Medium ranges of relative natural frequency for first mode of 
vibration in ascending order respectively 

H1F1,H1F2,H1F3,H1F4 fnf 7 to 10 Higher ranges of  relative natural frequency for first mode of vibration 
in ascending order respectively 

L2F1,L2F2,L2F3,L2F4 snf 1 to 4 Low ranges of relative natural frequency for second mode of vibration 
in descending order respectively 

M2F1,M2F2 snf 5,6 Medium ranges of relative natural frequency for second mode of 
vibration in ascending order respectively 

H2F1,H2F2,H2F3,H2F4 snf 7 to 10 Higher ranges of  relative natural frequencies for second mode of 
vibration in ascending order respectively 

L3F1,L3F2,L3F3,L3F4 tnf 1 to 4 Low ranges of relative natural frequencies for third mode of vibration 
in descending order respectively 

M3F1,M3F2 tnf 5,6 Medium ranges of relative natural frequencies for third mode of 
vibration in ascending order respectively 

H3F1,H3F2,H3F3,H3F4 tnf 7 to 10 Higher ranges of  relative natural frequencies for third mode of 
vibration in ascending order respectively 

S1M1,S1M2,S1M3,S1M4 fmd 1 to 4 Small ranges of  first relative mode shape difference in  descending 
order respectively 

M1M1,M1M2 fmd 5,6 medium ranges of  first relative mode shape difference in ascending 
order respectively 

H1M1,H1M2,H1M3,H1M4 fmd 7 to 10 Higher ranges of first  relative mode shape difference in ascending 
order respectively 

S2M1,S2M2,S2M3,S2M4 smd 1 to 4 Small ranges of  second relative mode shape difference in descending 
order respectively 

M2M1,M2M2 smd 5,6 medium ranges of  second relative mode shape difference in 
ascending order respectively 

H2M1,H2M2,H2M3,H2M4 smd 7 to10 Higher ranges of second  relative mode shape difference in ascending 
order respectively 

S3M1,S3M2,S3M3,S3M4 tmd 1 to 4 Small ranges of  third relative mode shape difference in descending 
order respectively 

M3M1,M3M2 tmd 5,6 medium ranges of  third relative mode shape difference in ascending 
order respectively 

H3M1,H3M2,H3M3,H3M4 tmd 7 to 10 Higher ranges of third  relative mode shape difference in ascending 
order respectively 

S1L1,S1L2……S1L22 rcl1 1 to 22 Small ranges of relative crack location in descending order 
respectively 

M1L1,M1L2 rcl1 23,24 Medium ranges of relative crack location in ascending order 
respectively 

B1L1,B1L2…….B1L22 rcl1 25 to 46 Bigger  ranges of relative crack location in ascending order 
respectively 

S1D1,S1D2……S1D9 rcd1 1 to 9 Small ranges of relative crack depth in descending order respectively 
M1D rcd110 Medium relative crack depth  
L1D1,L1D2……L1D9 rcd1 11 to 19 Larger  ranges of relative crack depth in ascending order respectively 
S2L1,S2L2……S2L22 rcl2 1 to 22 Small ranges of relative crack location in descending order 

respectively 
M2L1,M2L2 rcl2 23,24 Medium ranges of relative crack location in ascending order 

respectively 
B2L1,B2L2…….B2L22 rcl2 25 to 46 Bigger  ranges of relative crack location in ascending order 

respectively 
S2D1,S2D2……S2D9 rcd2 1 to 9 Small ranges of relative crack depth in descending order respectively
M2D rcd2 10 Medium relative crack depth
L2D1,L2D2……L2D9 rcd2 11 to 19 Larger  ranges of relative crack depth in ascending order respectively

Table 10.1 Description of fuzzy Linguistic terms for input parameters of fuzzy segment for GA-fuzzy 
Model 
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S3L1,S3L2……S3L22 (Interim) rcl11 to 22 Small ranges of relative crack location in descending order 
respectively 

M3L1,M3L2 (Interim) rcl123,24 Medium ranges of relative crack location in ascending order 
respectively 

B3L1,B3L2…….B3L22 (Interim) rcl125 to 46  Bigger  ranges of relative crack location in ascending order 
respectively 

S3D1,S3D2……S3D9 (Interim) rcd1 1 to 9 Small ranges of relative crack depth in descending order 
respectively 

M3D (Interim) rcd110 Medium relative crack depth  
L3D1,L3D2……L3D9 (Interim) rcd111 to 19 Larger  ranges of relative crack depth in ascending order 

respectively 
S4L1,S4L2……S4L22 (Interim) rcl2 1 to 22 Small ranges of relative crack location in descending order 

respectively 
M4L1,M4L2 (Interim) rcl2 23,24 Medium ranges of relative crack location in ascending order 

respectively 
B4L1,B4L2…….B4L22 (Interim) rcl2 25 to 46 Bigger  ranges of relative crack location in ascending order 

respectively 
S4D1,S4D2……S4D9 (Interim) rcd21 to 9 Small ranges of relative crack depth in descending order 

respectively
M4D (Interim) rcd2 10 Medium relative crack depth
L4D1,L4D2……L4D9 (Interim) rcd211 to 19 Larger  ranges of relative crack depth in ascending order 

respectively

 
 
Sl.No. Examples of some rules used in the fuzzy model 

1 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is H1M2,smd is H2M4,tmd is H3M3, then rcd1 is S1D6,and 
rcl1 is S1L17 and  rcd2 is S2D4,and rcl2 is S2L6, interim rcd1 is S3D4,and interim rcl1 is S3L15 and 
interim rcd2 is S4D5,and interim rcl2 is S4L8 

2 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is H1M1,smd is H2M1,tmd is H3M2, then rcd1 is S1D2,and 
rcl1 is S1L17 and  rcd2 is S2D1,and rcl2 is M2L2, interim rcd1 is S3D1,and interim rcl1 is S3L15 and 
interim rcd2 is S4D3,and interim rcl2 is M2L1 

3 If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M2,tmd is H3M3, then rcd1 is M1D,and 
rcl1 is S1L17 and  rcd2 is S2D2,and rcl2 is B2L19, interim rcd1 is M1D,and interim rcl1 is S3L15 and 
interim rcd2 is S4D3,and interim rcl2 is B4L21 

4 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is H1M3,smd is H2M4,tmd is H3M4, then rcd1 is S1D6,and 
rcl1 is S1L11 and  rcd2 is S2D4,and rcl2 is M2L2, interim rcd1 is S3D5,and interim rcl1 is S3L13 and  
interim rcd2 is S4D5,and interim rcl2 is M2L1 

5 If fnf is M1F1,snf is L2F2,tnf is L3F3,fmd is H1M1,smd is H2M1,tmd is H3M2, then rcd1 is S1D4,and 
rcl1 is S1L11 and  rcd2 is S2D1,and rcl2 is B2L13, interim rcd1 is S3D2,and interim rcl1 is S3L14 and  
interim rcd2 is S4D5,and interim rcl2 is B4L15 

6 If fnf is L1F1,snf is L2F2,tnf is L3F3,fmd is H1M3,smd is M2M1,tmd is H3M4, then rcd1 is M1D,and 
rcl1 is S1L11 and  rcd2 is S2D7,and rcl2 is M2L2, interim rcd1 is S3D1,and interim rcl1 is S3L13 and 
interim rcd2 is S4D5,and interim rcl2 is M3L1 

7 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M1,tmd is H3M1, then rcd1 is L1D1,and 
rcl1 is S1L11 and  rcd2 is S2D4,and rcl2 is B2L10, interim rcd1 is L3D3,and interim rcl1 is S3L13 and  
interim rcd2 is S4D7,and interim rcl2 is B4L15 

8 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is H1M2,smd is H2M2,tmd is H3M2, then rcd1 is S1D6,and 
rcl1 is S1L6 and  rcd2 is S2D4,and rcl2 is B2L5, interim rcd1 is S3D9,and  interim rcl1 is S3L3 and 
interim rcd2 is S4D7,and interim rcl2 is B4L7 

9 If fnf is L1F1,snf is L2F4,tnf is L3F4,fmd is M1M1,smd is M2M1,tmd is M3M2, then rcd1 is S1D2,and 
rcl1 is S1L6 and  rcd2 is L2D1,and rcl2 is B2L5, interim rcd1 is S3D1,and interim rcl1 is S3L8 and 
interim rcd2 is L4D4,and interim rcl2 is B4L7 

10 If fnf is M1F1,snf is L2F2,tnf is L3F1,fmd is M1M2,smd is M2M2,tmd is H3M1, then rcd1 is S1D1,and 
rcl1 is S1L6 and  rcd2 is S2D4,and rcl2 is B2L5, interim rcd1 is S3D3,and interim rcl1 is S3L7 and  
interim rcd2 is S4D6,and interim rcl2 is B4L3 

Table 10.2 Description of fuzzy Linguistic terms for output parameters of fuzzy segment for GA-
fuzzy Model 

Table 10.3 Examples of ten fuzzy rules used in fuzzy segment of GA-fuzzy Model 
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10.3 Results and discussions of GA-fuzzy model 
 
The current section of this chapter analyses the results obtained from the developed GA-

fuzzy inverse technique used for multiple crack diagnosis. 

The hybrid model has been designed with the vibration indices i.e. first three relative natural 

frequencies, first three relative mode shape differences, relative crack locations and relative 

crack depths obtained from numerical, finite element and experimental techniques. The 

proposed GA-fuzzy hybrid system comprises of two layers. The first layer is the GA model, 

where as the second layer is the fuzzy model. In the genetic algorithm section, the initial data 

pool has been created using the vibration signatures obtained from numerical, finite element, 

experimental analysis. Crossover operation has been followed as mentioned in Fig.7.1 of 

section 7.2 of chapter 7, for designing the GA model to find the best fit child with in the 

search space. In some of the cases mutation procedure (Fig. 7.2 of section 7.2) has been 

carried out to find the optimal solution. The inputs to the GA layer of the hybrid system are 

first three relative natural frequencies, first three relative mode shape differences. The interim 

outputs from the GA model are, rcl1_interim, rcd1_interim, rcl2_interim, rcd2_interim. The 

Gaussian membership based fuzzy segment (Fig. 10.1) of the hybrid model has been 

developed using the set of fuzzy rules, fuzzy linguistic terms, first three relative natural 

frequencies, first three relative mode shape differences and the interim outputs from the GA 

model. The description of the fuzzy linguistic terms for the input and output parameters are 

shown in Table 10.1 and Table 10.2 respectively. Table 10.3 represents ten numbers of the 

fuzzy rules out of the several hundred fuzzy rules used for designing the fuzzy membership 

functions. The detail architecture of the intelligent hybrid system (GA-Fuzzy model) has 

been shown in Fig. 10.3. The results obtained from the various analyses carried out on the 

cracked cantilever beam have been validated using the developed experimental set up. A 

comparison of results between GA- fuzzy model, Gaussian membership based fuzzy-neuro 

model, MANFIS model and experimental analysis have been presented in Table 10.4 (a). The 

predicted results for crack locations and crack depths from GA- fuzzy analysis, numerical 

analysis, finite element analysis have been presented in Table 10.4 (b). Six numbers of inputs 

i.e. first three relative natural frequencies and first three relative mode shape differences have 

been considered to measure the relative crack locations and relative crack depths by GA- 

fuzzy model and other techniques as mentioned for crack identification. The corresponding 
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outputs have been presented in Table 10.4 (a) and Table 10.4 (b) to measure the accuracy of 

the results from the various methodologies mentioned. During the analysis of the results, it is 

observed that the percentage of deviation of the prediction values for relative crack locations 

and relative crack depths of the Gaussian membership based GA- Fuzzy model is 2.36%. 

 

10.4 Summary 
 
The conclusions made by analyzing the results from the developed GA-fuzzy model have 

been presented in this section. 

In the current chapter a method for multiple crack prediction in beam like structures has been 

designed using genetic algorithm and fuzzy logic. It is found that the presence of cracks has a 

remarkable effect on the natural frequencies and mode shapes of the beam under 

consideration. Numerical, finite element and experimental analysis have been carried out to 

calculate the vibration signatures. The extracted vibration signatures are used to create the 

initial data pool and subsequently designing of the GA segment of the proposed hybrid 

system. Crossover and mutation operation have been used to find the best fit interim output 

from the GA system. The interim outputs from the GA model along with the first three 

natural frequencies and first three mode shape differences are used to develop the fuzzy layer 

of the hybrid system. From the analysis of the results obtained from GA- Fuzzy model, 

Gaussian membership based fuzzy-neuro model, MANFIS model, numerical analysis, finite 

element analysis and experimental analysis confirms that the developed method can identify 

the crack positions and their severities with higher accuracy. It is concluded that the proposed 

GA-fuzzy hybrid methodology can be used as an online crack diagnostic tool for vibrating 

structures. In next chapter genetic algorithm and neural network can be used to design a 

hybrid model for multiple crack detection in the domain of vibrating complex structures. The 

percentage of deviation in the prediction values of relative first crack location, relative 

second crack location, relative first crack depth, relative second crack depth for GA-fuzzy 

model is found to be 2.36%. 
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Researches in the field of damage or fault detection in engineering applications have been 

carried out for last few decades by engineers and scientists. In this regard, various techniques 

such as energy method, wavelet method, finite element method and many other numerical 

methods have been applied to design fault diagnostic tool. Besides the few methods as 

mentioned above, the knowledge based system has been evolved as one of the best technique 

for addressing problems with non linear characteristics. The knowledge based systems are 

generally designed with the help of artificial intelligent methods such as genetic algorithm, 

neural network, fuzzy inference system and etc. In due course for development of the system 

based on AI techniques, hybridization of artificial intelligent methodologies have been used 

successfully for automation of control system and other applications and to simulate the 

applications to match the real conditions. Hybridization of methodologies facilitates for 

integration of the best features of AI techniques, which enables to develop intelligent system 

for adapting to dynamic environment and to get the optimal solution. The search based 

algorithm GA, the adaptive neural network and rule based fuzzy logic can be fused together 

to design and train a multiple crack diagnostic tool for structural system. Intelligent hybrid 

systems (GA-neural model and GA-neuro-fuzzy model) have been presented in the current 

investigation for multiple crack diagnosis in structural system using the vibration 

characteristics obtained from theoretical, finite element, experimental analysis. Genetic 

algorithm, neural network, fuzzy logic have been used to design and develop the hybrid 

system. From the comparison of the results, obtained from theoretical, finite element, GA-

fuzzy model, GA-neural model, GA-neuro-fuzzy model and experimental analysis it is 

observed that the results from the GA-neuro-fuzzy model are in close proximity with the 

results obtained from the experimental analysis as compared to other methodologies 

mentioned above. The developed technique can be effectively used for online health 

monitoring of industrial systems. 

 

Chapter 11
ANALYSIS OF GENETIC-NEURO-FUZZY MODEL FOR 

MULTIPLE CRACK DETECTION 
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11.1 Introduction 

Over the years damage detection in structures is being given prior attention. The presence of 

cracks is one of the main causes of failure of the structural systems. So, early crack detection 

is important to avoid catastrophic failure. Different non-destructive inspection techniques are 

usually applied for detection of crack in engineering applications. In the current research, the 

vibration parameters of the cracked and undamaged beam structure has been considered for 

development of two layer (GA-neural) and three layer (GA-neuro-fuzzy) inverse intelligent 

system for multiple crack diagnosis in beam like structures.     

In this current section, efficient methods have been presented to identify both locations and 

severities of the damages in structural systems based on genetic algorithm, neural network, 

and fuzzy logic. The results from the proposed inverse methodologies have been validated by 

comparing with the results obtained from theoretical, finite element and experimental 

analysis. From the analysis of the results obtained from the two layer and three layer hybrid 

intelligent models, it is observed that these proposed methodologies can be used as an 

efficient online condition monitoring tool for faulty structures. 

The present chapter is arranged into four sections. An over view of fault detection 

methodologies and the application of GA, neural network and fuzzy logic for development of 

crack diagnostic tool have been explained in section 11.1. The section 11.2 describes the 

analysis of GA-neural and GA-neuro-fuzzy model used for fault detection. Results obtained 

from the proposed models have been compared with that of the theoretical, finite element, 

GA-fuzzy and experimental analysis in section 11.3 to exhibit the effectives of the 

methodology. The summary of the current chapter is discussed in section 11.4.  

 

11.2 Analysis of GA-neural and Genetic- neuro-fuzzy system for crack 
detection  

 
This section presents the analysis of the architecture of the proposed GA-neural and GA-

neuro-fuzzy model and provides a detail insight of the multiple crack diagnostic 

methodology. 

In the current section, multiple crack diagnostic hybrid techniques based on genetic 

algorithm, neural network, and fuzzy logic have been proposed for beam like structures. To 
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detect the cracks parameters and to find the relation between the cracks and the induced 

vibration parameters   theoretical, finite element and experimental methods are applied. The 

GA segment of the hybrid models monitors the changes in the vibration signatures due to the 

presence of multiple cracks and predicts the interim crack location and crack depths i.e. 

rcl1interim, rcd1interim, rcl2interim, rcd2interim for GA-neural system and rcl1interim1, rcd1interim1, 

rcl2interim1, rcd2interim1 for GA-neuro-fuzzy system. The interim out puts from the GA model 

along with the first three relative natural frequencies, first three relative mode shape 

differences are used as inputs to the neural segment of the hybrid system. Finally the outputs 

from the GA-neural hybrid system are rcl1final, rcd1final, rcl2final and rcd2final. Outputs from the 

neural model of GA-neruo-fuzzy system are rcl1interim2, rcd1interim2, rcl2interim2, rcd2interim2. The 

outputs from the neural segment with the first three relative natural frequencies, first three 

relative mode shape differences are used as inputs to the fuzzy model and the finally the 

output parameters from the GA-Neuro-fuzzy hybrid model are rcl1final, rcd1final, rcl2final and 

rcd2final. The effectiveness of the developed hybrid models have been established by 

comparing the results obtained from theoretical, finite element, GA-fuzzy model, GA-neural 

model, GA-neuro-fuzzy model and experimental analysis. The comparisons of results are 

presented in Table 11.1(a), Table 11.1(b), Table 11.1(c), Table 11.1(d).  The results are found 

to be encouraging for establishing the fact that, the intelligent two layer (GA-neural) and 

three layer (GA-neuro-fuzzy) hybrid models can predict the relative crack locations and their 

severities with higher accuracy. The detail architecture of the developed GA-neural and GA-

neuro-fuzzy models with all input and output parameters for all the segments have been 

shown in Fig. 11.1 and Fig.11.2 respectively. By analyzing the results from Table 11.1 (c) it 

is observed that, the GA-neural technique can detect fault in cracked beams effectively. From 

the analysis of the results shown in Table 11.1 (a), it can be concluded that the three layer 

hybrid network is capable of identifying faults in dynamically vibrating damaged beam 

structures better than the GA-neural model. The methodologies followed to formulate the GA 

segment; neural segment and fuzzy segment of the hybrid GA-neural and GA-neuro-fuzzy 

model have been inherited from section 7.2, 6.3 and section 5.3 respectively. 
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11.2.1 Analysis of the GA segment of GA-neural model 

In the current section, the working principle of GA part of the hybrid model has been 

analyzed. The GA part has been designed with six inputs i.e. fnf, snf, tnf, fmd, smd and tmd. 

The four output parameters from the GA model are relative first crack location (rcl1interim), 

relative first crack depth (rcd1interim), relative second crack location (rcl2interim), relative 

second crack depth (rcd2interim). The extracted vibration characteristics from numerical, finite 

element and experimental techniques such as relative natural frequencies, relative mode 

shape differences, relative crack locations and relative crack depths have been used to create 

the initial data pool of the GA system of the multiple crack diagnostic method. 

The mechanism followed to develop the GA model of the GA-neural crack diagnostic system 

has been inherited from section 7.2 of the thesis.  

 

11.2.2 Analysis of the GA segment of GA-neuro-fuzzy model 

There are six inputs and four output parameters used to formulate the GA part of the damage 

detection hybrid system. The inputs to the GA pert are fnf, snf, tnf, fmd, smd, tmd.  The first 

interim outputs from the GA model comprises of interim first relative crack location 

(rcl1interim1), interim first relative crack depth (rcd1interim1), interim second relative crack 

location (rcl2interim1) and interim first relative crack depth (rcd2interim1). The neural segment 

has got the interim outputs from the GA model along with the first three relative natural 

frequencies, first three relative mode shape differences as inputs.  

 

The mechanism adopted to form the GA segment of the proposed GA-neural-fuzzy model for 

crack diagnosis has been inherited from section 7.2 of Chapter 7.  

 

11.2.3 Analysis of the neural segment of GA-neural model 

This section describes the design principle of neural segment of the proposed hybrid crack 

diagnostic methodology. In the GA-neural model, the GA segment of the hybrid model will 

give the intermittent result for initial relative crack depths and initial relative crack locations. 

The neural segment of the GA-neural model has ten neurons representing fnf, snf, tnf, fmd, 

smd, tmd , interim first relative crack location (rcl1interim1), interim first relative crack depth 

(rcd1interim1), interim second relative crack location (rcl2interim1) and interim first relative crack 
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depth (rcd2interim1). The final outputs (four neurons) from the GA-neural model are final first 

relative crack location (rcl1final), final first relative crack depth (rcd1final), final second relative 

crack location (rcl2final) and final first relative crack depth (rcd2final). 

The neural network used in the GA-neural model is a ten-layer perceptron.  The neural 

network is trained to give outputs such as relative crack depths and relative crack locations. 

Fig. 11.1 depicts the GA-neural model with its input and output signals.  

11.2.4 Analysis of the neural segment of GA-neuro-fuzzy model 

The diamond shape neural model of the three layers intelligent multiple crack detection 

method has been designed with ten input and four output parameters. The ten inputs 

comprise of fnf, snf, tnf, fmd, smd, tmd and interim first relative crack location (rcl1interim1),  

interim first relative crack depth (rcd1interim1), interim second relative crack location 

(rcl2interim1), interim second relative crack depth (rcd2interim1).  

The final outputs from the neural segment of the GA-neural-fuzzy model are;  

final first relative crack location = “rcl1interim2” 

final first relative crack depth = “rcd1interim2” 

final second relative crack location = “rcl2interim2”  

final second relative crack depth = “rcd2interim2” 

Fig. 11.2 presents the GA-neural-fuzzy model with layer wise input and output signals. 

The complete architecture of the proposed neural model for multi crack diagnosis mentioned 

in section 11.2.3 and section 11.2.4 has been formulated using the steps from section 6.3 of 

the thesis.   

11.2.5 Analysis of the fuzzy segment of GA-neuro-fuzzy model 

The procedure followed to develop the fuzzy part of the GA-neural-fuzzy model used for 

crack identification is analyzed in the present section. 

The fuzzy layer has ten inputs and four outputs. The inputs to the fuzzy segment of the GA-

neuro-fuzzy model are fnf, snf, tnf, fmd, smd, tmd with the second interim output from the 

neural segment i.e. interim first relative crack location (rcl1interim2), interim first relative crack 

depth (rcd1interim2), interim second relative crack location (rcl2interim2), interim second relative 

crack depth (rcd2interim2). The final four outputs from the fuzzy segment of the GA-neural-

fuzzy model are final first relative crack location (rcl1final), final first relative crack depth 
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(rcd1 final), final second relative crack location (rcl2 final) and final second relative crack depth 

(rcd2 final). Fuzzy linguistic terms and fuzzy rule base of the fuzzy model have been made by 

using the vibration parameters derived from numerical, finite element, experimental analysis 

and the outputs (relative crack locations and relative crack depths) from the neural segment 

of the developed hybrid multiple crack diagnosis models. Fuzzification and defuzzification of 

the data have been carried out to get the final results of relative crack locations and relative 

crack depths. The mechanism used to fabricate the fuzzy segment has been adopted from 

section 5.3 of chapter 5. 

The pictorial view of the fuzzy segment of the proposed three layer inverse GA-neural-fuzzy 

model has been presented in Fig. 11.2. 

 

11.3 Results and discussions of GA-neural and GA-neuro-fuzzy    models 

This section presents and analyses the results from the developed GA-neural and GA-neuro-

fuzzy models during the vibration analysis of the cantilever beam structure for multiple crack 

diagnosis. 

From the analysis of the results it is found that the cracks present on the structure affects the 

vibration signatures of the beam structure. The extracted vibration features from the healthy 

and damaged beam structures can be used to design crack diagnostic tool. Theoretical, finite 

element and experimental analysis have been carried out on the cracked beam structure to 

measure the first three relative natural frequencies and first three average relative mode shape 

differences, which are subsequently used for designing of the GA, neural and fuzzy segment 

of the hybrid multiple crack diagnosis inverse technique. The creation of initial data pool, 

formation of fitness function, crossover and mutation operation to find the best fit solution 

from the search space have been inherited from section 7.2. The GA segment which is the 

first layer of the proposed hybrid systems have got six inputs (fnf, snf, tnf, fmd, smd, tmd). 

The interim outputs from the GA segment of the  GA-neural model are relative first crack 

location (rcl1interim), relative first crack depth(rcd1interim), relative second crack location 

(rcl2interim), relative second crack depth (rcd2interim) where as relative first crack location 

(rcl1interim1), relative first crack depth (rcd1interim1), relative second crack location (rcl2interim1), 

relative second crack depth (rcd2interim1) are the first interim outputs from the GA segment of 
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the GA-neuro-fuzzy model . The interim outputs from the GA model along with the first 

three relative natural frequencies and first three average relative mode shape differences have 

been used as inputs to the neural i.e. the second layer of the inverse hybrid intelligent models. 

The ten numbers of inputs to the neural system are processed in the diamond shape ten layer 

feed forward neural network trained with back propagation algorithm to give the results. The 

training patterns used for the neural model follow the same pattern as discussed in Table 6.1 

of chapter 6. The final results from the GA-neural model are relative first crack location 

(rcl1final), relative first crack depth (rcd1final), relative second crack location (rcl2final), relative 

second crack depth (rcd2final). The complete architecture of the GA-neural model with all the 

input and output parameters have been shown in Fig. 11.1. The four interim outputs from the 

neural segment of the GA-neuro-fuzzy model are relative first crack location (rcl1interim2), 

relative first crack depth (rcd1interim2), relative second crack location (rcl2interim2), relative 

second crack depth (rcd2interim2). The fuzzy Gaussian model i.e. the third layer of the GA-

neuro-fuzzy system has ten input and four output parameters and the fuzzy layer has been 

developed in accordance to the fuzzy mechanisms cited in chapter 10. The detail architecture 

of the GA-Neuro-Fuzzy model with inputs and output parameters are shown in Fig. 11.2. 

Finally the three layer (GA-neuro-fuzzy) proposed crack diagnostic method provides the 

results of rcl1final, rcd1final, rcl2final and rcd2final. An experimental set up has been developed to 

check the authenticity the results obtained from the proposed GA-neural and GA-neuro-fuzzy 

intelligent systems. A comparison of results among GA-neural model, GA-fuzzy model, 

MANFIS model and experimental analysis are presented in Table 11.1 (c). The results for 

relative crack depths and relative crack locations from numerical analysis, finite element 

analysis and GA-neural model have been presented in Table 11.1 (d).  Comparison of results 

from GA- neural-fuzzy model, GA- neural model, GA-fuzzy and experimental analysis is 

presented in Table 11.1(a) to establish the accuracy of the hybrid model. The predicted 

values of crack parameters from the GA- neural-fuzzy model, numerical analysis, finite 

element analysis are expressed in Table 11.1 (b). The first six columns of the Table 11.1 (a) 

to Table 11.1 (d)) represents the six numbers of inputs i.e. first three relative natural 

frequencies and first three relative mode shape differences to be used as inputs to the 

methodologies as mentioned above to measure the relative crack locations and relative crack 

depths. The corresponding outputs in terms of relative crack locations and relative crack 
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depths have been presented in rest of the columns of the Table 11.1 (a) to Table 11.1 (d). The 

comparison of results among the mentioned techniques has been done to measure the 

accuracy of the methodologies. From the analysis of the results mentioned in Table 11.1 (c) 

and Table 11.1 (a) it is observed that, the percentage of deviation of the prediction values for 

relative crack locations and relative crack depths of the GA- neural, GA-neuro-fuzzy models 

are 1.68%, 0.18% respectively. 

11.4 Summary 

This section depicts the conclusions drawn based on the results obtained from the GA-neural 

and GA-neuro-fuzzy analysis carried out on the beam structure. 

In the current analysis hybrid intelligent methods are presented for multiple cracks diagnosis 

in beam like structures based on the combination of genetic algorithm, neural network and 

fuzzy logic. The extracted vibration features for the cracked and undamaged beam structures 

using theoretical, finite element and experimental analysis have been used to design and train 

the GA, neural and fuzzy segments of GA-neural and GA-neuro-fuzzy model. The computed 

vibration parameters are used to set up the initial data pool of the GA model. Selection 

(evaluation of each solution), reproduction (crossover and mutation) and replacement of unfit 

population with new one have been used to find the optimal solution (interim outputs) from 

the search space for the GA segment of the hybrid models. The results obtained from GA-

neuro-fuzzy model, GA- neural model, GA-fuzzy model, MANFIS model, numerical 

analysis, finite element analysis and experimental analysis indicate that the proposed 

approaches i.e.  GA-neuro-fuzzy model and GA- neural model can be efficiently used for the 

analysis and diagnosis of multiple cracks present in beam structures. During the analysis of 

the results presented in Table 11.1 (c) and Table 11.1 (a) it is observed that, the percentage of 

deviation in the prediction values of relative first crack location, relative second crack 

location, relative first crack depth, relative second crack depth from GA-neural and GA-

neuro-fuzzy system are found to be 1.68% and 0.18% respectively. By analyzing the results 

from the proposed GA-Neural-Fuzzy and GA-neural methodologies, it is observed that the 

developed hybrid models can be used as online crack diagnostic tools for vibrating structures. 
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In future the proposed methodologies can be used for health monitoring of dynamically 

vibrating complex structures.  

Paper communicated to International Journal: 

1. D.R. Parhi, A.K. Dash, “Analyzing the GA, NN and FL for development of a hybrid 

vibration system for condition monitoring of cracked structure" Proceedings of the Institution 

of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 
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The experimental analysis has been carried out to measure the natural frequencies and mode 

shapes of the cracked beam structure. The experimental set up has been shown in Fig.12.1. 

Experiments have been performed on the cracked beam structures with different crack 

locations and crack depths to validate the results obtained from theoretical, finite element and 

other artificial intelligent techniques used for multiple crack detection as discussed in the 

previous chapters of the thesis. This chapter briefly describes the systematic procedures 

adopted for experimental investigation and the required instrumentation for measuring the 

vibration characteristics of the cantilever beam structures. 

 
13.1 Detail specifications of the vibration measuring instruments 
 
Experiments have been performed using the developed experimental set up (Fig. 12.1) for 

measuring the dynamic response (natural frequencies and amplitude of vibration) of the 

cantilever beam specimens made from Aluminum with dimension 800mm*38mm*6mm. 

During the experiment the cracked and undamaged beams have been vibrated at their 1st, 2nd 

and 3rd mode of vibration by using an exciter and a function generator. The vibrations 

characteristics of the beams correspond to 1st, 2nd and 3rd mode of vibration have been 

recorded by placing the accelerometer along the length of the beams. The signals from the 

accelerometer which contains the vibration parameters such as natural frequencies and mode 

shapes are analyzed and shown on the vibration indicator. The Table 12.1 shown below gives 

the detail specifications of the instruments used in the current experimental analysis.  
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SL NO Name of the Instrument Description 

 

 

 

1 

 

 

 

 

Vibration Analyzer 

 

Type  :  3560L 

Product Name : Pocket front end 
Make  :  Bruel & kjaer 
Frequency       : 7 Hz to 20 Khz 
Range 
ADC Bits : 16 
Simultaneous   
Channels  :     2 Inputs, 2 Tachometer 
Input Type : Direct/CCLD 

 

 

2 

 

 

Delta Tron Accelerometer 

 

Type           :  4513-001 
Make           :  Bruel & kjaer 
Sensitivity          :  10mv/g-500mv/g 
Frequency Range     :  1Hz-10KHz 
Supply voltage         :  24volts 
Operating temperature  
Range            : -500C to +1000c 

 

3 

 

Vibration indicator 

PULSE LabShop Software Version 12 

Make  :  Bruel & kjaer 

 

 

 

 

4 

 

 

 

 

Vibration Exciter 

Type   : 4808 
Permanent Magnetic Vibration Exciter 
Force rating 112N (25 lbf) sine peak  
(187 N (42 lbf) with cooling) 
Frequency  
Range  :  5Hz to 10 kHz 
First axial  
resonance  : 10 kHz 
Maximum bare table 
Acceleration :  700 m/s2 (71 g) 
Continuous 12.7 mm (0.5 in) 
peak-to-peak displacement with over travel stops 
Two high-quality, 4-pin Neutrik® Speakon® 
connectors 
Make             : Bruel & kjaer 

 

5 
 

Power Amplifier 

Type             :           2719  
Power Amplifier        :           180VA 
Make                       : Bruel & kjaer 

 

6 
 

Test specimen 

Cracked (Multiple crack) cantilever beams made 
from Aluminum with dimension 
800mmx38mmx6mm 
 

7 Power Distribution 220V power supply, 50Hz 

Table 12.1 Specifications of the instruments used in the experimental set up 
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8 

 

 

Function Generator 

 

Model   : FG200K   
Frequency 
Range   :  0.2Hz to 200 KHz      
VCG IN connector for Sweep Generation 
Sine, Triangle, Square, TTL outputs 
 
Output Level  :  15Vp-p into 600 ohms 
Rise/Fall Time :  <300nSec 
Make    :  Aplab 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.1 View of the experimental set-up 

1 

2

3 

4

5

6
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Fig.12.2 (a) Vibration analyzer 

12.2 Experimental procedure and its architecture 
 
The authenticity of the results obtained from theoretical, finite element and AI based 

techniques for multiple crack identification have been established by measuring the dynamic 

response of the undamaged and cracked Aluminum beam specimen through experimentation. 

The cracks at various locations with different depths in the beam were introduced by a saw 

perpendicular to the longitudinal axis of the beam. The test specimen made from Aluminum 

is of 800 mm length and has a cross section of 38mmx6 mm. The cantilever beam test sample 

was clamped at its one end by two clamping devices as shown in the Fig. 12.1. The free end 

of the beam specimen was excited by an appropriate signal from the function generator, 

which was amplified by the amplifier. The cantilever was excited at first three modes of 

vibration, and the corresponding natural frequencies and mode shapes were recorded by the 

hard ware support i.e. miniature accelerometer by suitable positioning, data acquisition 

system and tuning the vibration generator at the corresponding resonant frequencies. Finally, 

the analysis of the vibration parameters from the intact and cracked beam were done by the 

PULSE Labshop Software loaded in the laptop of the vibration analyzer. The pictorial views 

of the various instruments used in the current experimental analysis are shown in Fig. 12.2(a) 

to Fig. 12.2(h). The PCMCIA card is used to connect the vibration analyzer with the PULSE 

Labshop Software 
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Fig.12.2 (b) Data acquisition (accelerometer) 

Fig.12.2 (d) Function generator 

Fig.12.2 (c) Concrete foundation with beam specimen 
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 Fig.12.2 (g) Vibration indicator (PULSE labShop software) 

Fig.12.2 (f)  Vibration exciter 

Fig.12.2 (e) Power amplifier 
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12.3 Results and discussions of experimental analysis 
 

This section depicts the analysis of the results obtained from the developed experimental set 

up. 

The cracked beam with different crack depths and crack locations have been tested to obtain 

the mode shape and natural frequency to validate the results from the various techniques 

cited above. In chapter three Fig. 3.6 to Fig. 3.8 represents the comparison of mode shapes of 

a multiple cracked beam with crack parameters a1/W=0.166, L1/L= 0.0625, a2/W=0.25, 

L2/L=0.3125 from experimental and numerical analysis. The mode shape for an undamaged 

beam is also compared in the same figure i.e. Fig. 3.6 to Fig.3.8 to establish the fact that, the 

mode shape of an undamaged beam behaves differently than a cracked beam. Table 3.1 has 

been presented in chapter 3 to show the comparison of results from experimental and 

numerical analysis for a multiple cracked beam and the results are found to be in close 

agreement. The mode shapes obtained from the finite element analysis in chapter 4 for a 

multiple cracked cantilever structure (a1/W=0.166, L1/L=0.3125, a2/W=0.083, L2/L=0.625) is 

compared with the results from numerical and experimental analysis in Fig.4.2 to Fig.4.4. 

Ten sets of results for relative crack locations and relative crack depths have been presented 

in Table 4.1 in chapter 4 to show the comparison between the experimental and finite 

Fig.12.2 (h) PCMCIA card 
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element analysis. The results are found to be well in agreement. In chapter five, the results 

for relative crack locations and relative crack depths from experimental analysis is compared 

with that of the fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal model in Table 5.3 

and they are observed to be well in agreement. The results for relative crack locations and 

relative crack depths from the neural model as discussed in chapter six are compared with 

that of the experimental set up and presented in Table 6.2. The results are found to be in close 

proximity. The results of 1st, 2nd relative crack locations and relative crack depths for ten sets 

of different inputs from the GA model in chapter seven are compared with the results from 

experimental analysis in Table 7.2. The results are in good agreement. The results for relative 

crack depths and crack locations of the Gaussian based fuzzy-neuro, Triangular based fuzzy-

neuro, trapezoidal based fuzzy-neuro model are compared with the results from experimental 

analysis in table 8.1 in chapter eight and they are found to be in close agreement. The Table 

9.1 presents the comparison of results for relative crack locations and crack depths derived 

from the developed MANFIS technique with that of the experimental technique, showing the 

effectiveness of the MANFIS model. The predicted values of relative crack depths and crack 

locations from the GA-fuzzy, GA-neural and GA-neuro-fuzzy methodology have been 

compared with that of the experimental values in Table 10.4,Table 11.1(c) and Table 11.1(a) 

in chapter 10 and chapter 11 respectively and the values are in good agreement.   
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13.1  Introduction  

Investigation of the feasibility of the methods as mentioned in the thesis have been carried 

out, in the current chapter by systematically studying and presenting the performance of each 

methodology used for prediction of multiple crack in a  cracked cantilever beam structure. 

The vibration response of the multi cracked beam members have been considered to develop 

the crack diagnostic applications. The various techniques applied in the current research for 

identification of cracks in damaged structures are eleven in numbers and they are theoretical 

analysis (Chapter-3), finite element analysis (Chapter-4), Fuzzy Inference System (Chapter-

5), Artificial neural network (Chapter-6), Genetic Algorithm (Chapter-7), Fuzzy-Neuro 

technique (Chapter-8), MANFIS technique (Chapter-9), GA-fuzzy technique (Chapter-10), 

GA-neural and GA-neuro-fuzzy technique (Chapter-11), Experimental technique (Chapter-

12).  

13.2  Analysis of results 

In the present investigation, for development of multiple crack detection methodologies in 

structural systems eleven different techniques (Chapter 3 to chapter 12) have been employed 

as cited in the introduction section of the current chapter. Besides the eleven chapters, the 

thesis comprises of two other introductory chapters and they are chapter 1- Introduction and 

chapter 2-Literature review. This section depicts the analysis of the results from different 

chapters of the current research. 

Chapter one the introduction section of the thesis presents the motivation factors to carry out 

the present research along with the aim and objective of the present investigation. Finally, the 

outlines of the research work have been discussed. 

In chapter two various methodologies applied by researchers since last few decades for fault 

detection in engineering systems have been discussed. Applications of AI techniques for 

damage and fault diagnosis in different mechanical and electrical systems have also been 

Chapter 13 
RESULTS AND DISCUSSIONS 
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discussed. This section in particular, provides the knowledge for finalizing the direction of 

research.  

The analytical model used to compute the vibration parameters of multiple cracked and un-

crack cantilever beam structure (Fig. 3.1) and an in depth discussion of the theoretical model 

have been made in chapter three of the thesis. During the vibration analysis of the multi 

cracked cantilever beam (Fig. 3.3) the first three relative natural frequencies and first three 

relative mode shape differences of the cracked and undamaged beam have been measured. 

From the results it is evident that, the dimensionless compliances increase with increase with 

the relative crack depths, due to the introduction of local flexibility which have been 

established graphically in Fig. 3.2. Comparison of the mode shapes obtained from the 

numerical analysis for the cracked and undamaged beam have been shown in Fig. 3.4. A 

noticeable effect on the mode shapes of the cracked beam as compared to the undamaged 

beam at the vicinity of the crack locations can be seen in the magnified view of Fig. 3.4. The 

experimental validation of the results from the theoretical model has been carried out in this 

chapter by using the developed experimental set up as shown in Fig. 3.5. The comparison of 

the mode shapes from the experimental analysis with that of the numerical analysis for the 

cracked and undamaged beam are presented in Fig. 3.6 to Fig. 3.8 and they are found to be in 

close proximity. A comparison of relative crack locations and relative crack depths from the 

numerical and experimental analysis have been presented in Table 3.1, which shows the 

robustness of the analytical model developed for crack detection. 

In chapter four finite element analysis has been applied to measure the dynamic response 

(natural frequencies, mode shapes) of the cracked cantilever beam structure. A cracked beam 

element (Fig. 4.1) has been considered to perform the finite element analysis to evaluate the 

first three natural frequencies and first three mode shapes. The mode shapes of the cracked 

beam obtained from the finite element analysis has been compared with the theoretical and 

experimental method in Fig. 4.2 to Fig. 4.4, and they are found to be very close. A 

comparison of results for relative crack locations and relative crack depths from FEA, 

numerical analysis and experimental analysis have been shown in Table 4.1, and they are 

found to be in close agreement.   

Chapter five describes the steps used to design and develop fuzzy inference system to 

diagnose the damage parameters (locations, depths) present in beam like structures in section 
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5.2. The fuzzy models have been designed with the help of Gaussian membership function 

(Fig.5.1 (a)), triangular membership function (Fig.5.1 (b)) and trapezoidal membership 

functions (Fig.5.1(c)). Detail architecture of the fuzzy inference system with the input and 

output parameters are shown in Fig. 5.2. The fuzzy models used in the current research for 

prediction of crack locations and their severities are fuzzy Gaussian (Fig. 5.3 (a)), fuzzy 

triangular (Fig. 5.3 (b)) and fuzzy trapezoidal (Fig. 5.3 (c)) models. The fuzzification 

mechanism using the Gaussian, triangular and trapezoidal membership functions with fuzzy 

linguistic terms in details are graphically presented in Fig. 5.4, Fig. 5.5 and Fig. 5.6 

respectively. The fuzzy linguistic terms used for formulation of the fuzzy inference system is 

expressed in Table 5.1. Out of several hundred fuzzy rules used for fabrication of the fuzzy 

system for crack detection, twenty numbers are presented in Table 5.2. The defuzzification 

process adopted to predict the relative crack locations and relative crack depths by activating 

the rule no 3 and rule no 17 from Table 5.2 for Gaussian, triangular and trapezoidal fuzzy 

model are shown in Fig. 5.7,  Fig. 5.8 and Fig. 5.9 respectively. Center of gravity procedure 

has been followed to get the crisp value of the relative crack depths and crack locations. The 

results for the crack parameters such as relative crack locations and relative crack depths 

from the developed fuzzy models (Gaussian, triangular, trapezoidal) are compared with that 

of the numerical, finite element and experimental analysis for validation in Table 5.3 (a) and 

Table 5.3 (b). From the analysis of results in Table 5.3 (a), it is evident that the fuzzy 

Gaussian model provides the best results in comparison to other two fuzzy models, 

theoretical analysis and finite element analysis. 

Chapter six enumerates the development of an artificial neural network model trained with 

back propagation technique for multiple crack diagnosis in beam structures. The working 

principles with the main features of the neuron model (Fig. 6.1) and the back propagation 

technique (Fig. 6.2) have been discussed in section 6.2.1. A schematic diagram representing 

the proposed neural network model with input and output parameters is shown in Fig. 6.3. 

The working model of the ten layer neural network (Diamond shape) used in the current 

research for fault detection in beam members with the detail architecture has been exhibited 

in Fig. 6.4. Table 6.1 presents the test patterns required to train the neural model to predict 

the relative crack locations and relative crack depths. The results obtained from the neural 

model for predicting the crack locations and their severities are compared with the results 
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obtained from the fuzzy models described in the above chapter, theoretical, FEA and 

experimental analysis in Table 6.2 (a) and Table 6.2 (b). By analyzing the results provided in 

Table 6.2 (a, b), it can be concluded that the proposed neural network gives better results in 

comparison to the fuzzy techniques mentioned in the Table 6.2 (a, b).   

The genetic algorithm technique has been introduced in chapter seven for multiple damage 

detection in beam like members. The systematic procedures adopted to design the GA system 

for damage identification is presented in section 7.2. In the development of evolutionary 

algorithm natural process like crossover (Fig. 7.1) and mutation (Fig. 7.2) have been adopted 

to find the fittest solution from the search space. A flow chart (Fig. 7.3) has been presented in 

section 7.2 to show the flow of data in the developed GA model for crack diagnosis. Table 

7.1 presents the initial data pool created to train the GA model from theoretical, FEA and 

experimental methods. A comparison of results for relative crack depths and relative crack 

locations among the GA model, neural network, Gaussian fuzzy model, theoretical, FEA and 

experimental analysis have been carried out in Table 7.2 (a),Table 7.2 (b) and the results are 

in good agreement. From the analysis of the data provided in Table 7.2 (a), it is clear that, the 

proposed GA model provides more accurate results in comparison to other techniques such 

as neural and fuzzy models. 

A hybrid fuzzy-neuro technique has been proposed for multiple crack identification and is 

briefly discussed in chapter eight. The hybrid model has been designed by fusing the features 

of both fuzzy inference system and artificial neural network. Gaussian membership fuzzy-

neuro model (Fig. 8.1), triangular membership fuzzy-neuro model (Fig. 8.2) and trapezoidal 

membership fuzzy-neuro model (Fig. 8.3) have been designed in the current research to 

measure the crack locations and their severities. The fuzzy segment of the fuzzy-neuro model 

has six inputs (first three natural frequencies and first three mode shape difference) and four 

outputs (initial relative first and second crack locations). The neural network has ten inputs 

(first three natural frequencies and first three mode shape difference along with the initial 

output from the fuzzy model) and four outputs (final relative first and second crack 

locations). The outcome from the hybrid fuzzy-neuro model in the form of relative crack 

locations and relative crack depths have been compared with that of the experimental, GA 

model, neural model and Gaussian fuzzy model in Table 8.1 (a) and Table 8.1 (b)  . From the 
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data given in the Table 8.1 (a), it is observed that, the performance of Gaussian fuzzy-neuro 

model is best as compared to other techniques cited in the Table 8.1 (a). The proposed fuzzy-

neuro model can be potentially used as a condition monitoring tool in dynamically vibrating 

structures.  

The multiple adaptive neuro fuzzy inference system has been analyzed in chapter nine for 

checking the effectiveness of the MANFIS methodology in crack identification. The 

formulation of the MANFIS technique has been based on the data derived from the 

theoretical, FEA and experimental techniques. A bell shaped function (Fig. 9.1) has been 

used in the designing of the proposed model. The MANFIS system used for fault detection in 

damaged beams is also known as multiple ANFIS system and it is presented in Fig. 9.2 (a). 

The complete architecture of the MANFIS model used for multiple crack diagnosis in 

cantilever beam member with different layers has been shown in Fig. 9.2 (b). The superiority 

of the MANFIS technique has been established by comparing its predicted results with the 

outputs (relative crack locations and relative crack depths) from Gaussian fuzzy-neuro 

model, GA model, theoretical analysis, finite element analysis and experimental analysis in 

Table 9.1 (a) and Table 9.1 (b). 

The genetic fuzzy hybrid model (GA-fuzzy) for multiple crack detection has been discussed 

in chapter ten of the thesis. This damage identification system comprises of two segment i.e. 

genetic model (first layer) and fuzzy model (second layer). The hybrid model incorporates 

the characteristics of both genetic algorithm and fuzzy inference system. The genetic model 

has been designed using the crossover and mutation operator as shown in Fig. 7.1 and Fig. 

7.2 of chapter seven. The fuzzy segment model is based on Gaussian membership functions 

as shown in Fig. 10.1. The Gaussian membership functions for the input and output 

parameters used for designing of the fuzzy segment of the hybrid system for multiple crack 

diagnosis are presented in Fig. 10.2. The detail architecture of the proposed model is shown 

in Fig. 10.3. The fuzzy linguistic terms used for development of the fuzzy segment for the 

input and output parameters are shown in Table 10.1 and Table 10.2 respectively. Out of 

several hundred fuzzy rules, ten fuzzy rules are shown in Table 10.3. Finally, the relative 

crack depths and relative crack locations i.e. the outputs from the GA-fuzzy model have been 

compared with the results from MANFIS model, Gaussian fuzzy-neuro model, theoretical 
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analysis, finite element analysis and experimental analysis in Table 10.4 (a) and Table 10.4 

(b). From the comparison, it is observed that the GA-fuzzy gives least error output from the 

actual as compared to other techniques cited in the Table 10.4 (a, b). 

Chapter eleven discusses about two layers (GA-neural) and three layers (GA-neuro-fuzzy) 

hybridized techniques based on genetic algorithm, neural network and fuzzy logic. The GA-

neuro-fuzzy and GA-neural model have been devised to diagnose multiple transverse cracks 

present in beam like structures. The proposed intelligent models integrate the capabilities of 

genetic algorithm, artificial neural network and fuzzy inference system.  The first layer of the 

proposed models is a GA model. The first layer has been designed based on the steps 

followed in chapter seven of the thesis using the crossover and mutation operations. Initial 

data pool has been created to train the GA model in off line mode. A suitable objective 

function has been formulated to find the best fit solution from the search space. The detail 

architecture of the GA-neural and GA-neuro-fuzzy model has been shown in Fig. 11.1 and 

Fig. 11.2 respectively. The GA segment has six inputs (first three relative natural frequencies 

and first three relative mode shape differences) and four outputs (first interim relative first 

and second crack locations, first interim relative first and second crack depths for GA-neuro-

fuzzy model and interim relative first and second crack locations, interim relative first and 

second crack depths for GA-neural model). The neural model is a multi layer perceptron 

trained with back propagation technique and it has been designed following the 

methodologies mentioned in chapter six of the thesis. The outputs from the GA model along 

with the first three relative natural frequencies and first three relative mode shape differences 

are act as inputs to the neural segment (first layer with ten neurons) of the hybrid models. 

The final outputs from GA-neural model are final relative first and second crack location, 

final relative first and second crack depth. The interim outputs from the neural model of the 

GA-neuro-fuzzy system are second interim relative first and second crack locations, second 

interim relative first and second crack depths (last layer with four neurons). The fuzzy 

Gaussian model, which is the third layer of the proposed GA-neuro-fuzzy crack diagnostic 

method, has been designed following the steps used in chapter five and chapter ten of the 

thesis. The outputs from the neural system with the first three relative natural frequencies and 

first three relative mode shape differences are used as inputs to the fuzzy system and finally 
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the outputs from the fuzzy segment are  final relative first and second crack locations, final 

relative first and second crack depths. The results for relative crack depths and relative crack 

locations from the GA-neuro-fuzzy model have been compared with that of the GA-neural 

model, GA-fuzzy model, theoretical analysis, finite element analysis and experimental 

analysis in Table 11.1(a) to Table 11.1(d). By analyzing the data exhibited, it is revealed that, 

the three layer GA-neuro-fuzzy technique is faster and accurate in predicting the multiple 

crack parameters as compared to the other methods mentioned in the Table 11.1 (a) and 

Table 11.1 (c). Hence, the GA-neuro-fuzzy system can be effectively used as crack 

diagnostic tool in vibrating structural members. 

The experimental analysis for validation of the results obtained from GA-neuro-fuzzy model 

GA-neural model, GA-fuzzy model, MANFIS model, fuzzy-neuro models, neural model, 

fuzzy models, theoretical analysis, finite element analysis has been discussed in chapter 

thirteen. The schematic view and photo graphic view of the experimental set up with all the 

instruments and test specimen is shown in Fig. 3.5 and Fig. 12.1 respectively. The developed 

experimental set up comprises of the following instruments; 1- Vibration analyzer, 2- 

Accelerometer, 3- Concrete foundation with test specimen, 4- Function Generator,  5- Power 

Amplifier, 6- Modal Vibration Exciter, 7- Vibration indicator (embedded with PULSE 

Labshop software, 8- PCMCIA card and are given in Fig. 12.2(a) to Fig. 12.2(h) respectively. 

Section 12.2 presents the procedures adopted to carry out the experiments to evaluate the 

natural frequencies and mode shapes of multi cracked and undamaged cantilever beam 

structures. Efforts have made to reduce the effect of external parameter such as noise on the 

vibration signatures of the cracked beam during experimentation. 

The author contributions, conclusions drawn from the current research and future directions 

for further investigation of the present analysis for development of multi crack diagnostic 

tool have been explained in the next chapter. 
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In the current investigation, identification and quantification of cracks present in structural 

members from the measured dynamic response has been addressed. In the quest, to design 

and develop a multiple crack diagnostic tool a vibrating structural member with multiple 

transverse cracks has been considered. During the analysis, analytical method, finite element 

method and experimental method have been adopted to simulate the actual working 

condition. The measured natural frequencies and mode shapes at different modes of 

vibration, which are known as sensitive structural integrity indicators have been used to 

develop inverse methodologies based AI techniques such as fuzzy logic, neural network, 

genetic algorithm, fuzzy-neuro, MANFIS, GA-fuzzy, GA-neural, GA-neuro-fuzzy 

techniques for prediction of relative crack locations and relative crack depths.  

From the analysis and discussion of the results from the various methodologies cited in the 

chapters above, the following contributions and conclusions have been depicted in section 

14.1, 14.2 and section 14.3 respectively.  

14.1  Contributions 

It is a fact that, the cracks present in structural systems induces a local flexibility, which is a 

function of crack parameters such as crack depths and crack locations. This flexibility 

changes the structural integrity sensitive indicators like frequency response and amplitude of 

vibration. In previous research, in the domain of crack identification of damaged structures 

the researchers have studied the effect of crack on the natural frequencies and mode shapes, 

where as in the current research effort has been made to design artificial intelligent inverse 

models to predict the crack locations and their severities present in structural systems using 

the natural frequencies and mode shapes.  

Chapter 14 

CONCLUSIONS AND FUTURE WORK
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In the current investigation for designing multiple crack identification tool an analytical 

model has been developed using stress intensity factors and strain energy release rate to 

evaluate the changes made to the vibration indicators due to the cracks present in the 

damaged structures. Finite element analysis and experimental analysis have also been carried 

out on the cracked beam member to find out the influence of cracks on the vibration 

signatures of the beam. Different AI models have been formulated for multiple crack 

identification using fuzzy inference system, artificial neural network, genetic algorithm and 

various hybrid techniques such as fuzzy-neuro, MANFIS, GA-fuzzy, GA-neural and GA-

neuro-fuzzy 

14.2  Conclusions 

The conclusions are drawn on the basis of results obtained from various analyses as 

discussed above are depicted below. 

 Theoretical and finite element analyses have been presented to identify characteristics 

(natural frequencies, mode shapes) of the system response that is directly attributed to 

the presence of transverse cracks.  

 During the analysis it is observed that, the change in frequency response due to the 

presence of cracks (least crack depth ratio) is not so prominent, thereby decreasing 

the chances of identifying the cracks accurately. But the crack depths have substantial 

effect on the mode shapes of the vibrating structures even with the presence of small 

crack depths. So, it can be concluded that the cracks can be efficiently identified with 

their locations and severities if change in frequency response and change in mode 

shapes both are taken into account.  

 The deviations in mode shape contours at the vicinity of the crack locations are very 

significant and can be seen during the comparison of mode shapes obtained from the 

numerical analysis performed on the cracked and intact beam in Fig. 3.4. From the 

observations of the mode shapes of the cracked cantilever beam with different crack 

locations and crack depths, a significant pattern has been identified i.e. the magnitude 

of deviation in mode shapes increases with increase in crack depths.  
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 Experimentations on the cracked cantilever beams with different configuration of 

crack depths and crack locations have been performed to compare the modal 

parameters obtained from the analytical and finite element model (Fig. 4.2 to Fig. 4.4) 

and the results are found to be in close agreement.  

 The vibration signatures from the first three modes of the cantilever beam model and 

the corresponding relative crack depths and crack locations have been used as the 

platform to design the fuzzy inference system for multiple crack identification in 

structural members. 

 The fuzzy system has six inputs and four outputs. The fuzzy models are based on 

fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal membership functions. From 

the analysis of results, it has been found that, the proposed fuzzy inverse technique 

predicts the relative crack locations and their severities faster and more accurately 

than the theoretical and finite element analysis. Experimental data have also been 

used to check the authenticity of the results from the fuzzy models.  

 From the analysis of the results of the three fuzzy models for relative crack depths 

and relative crack locations, it is observed that the fuzzy model with Gaussian 

membership function yields better results than the fuzzy model with triangular 

membership function, fuzzy model with trapezoidal membership function.  Hence, 

the fuzzy Gaussian model was found to be most suitable to diagnose cracks in online 

mode for cracked vibrating engineering applications.  

 A multi layer artificial neural network model with six inputs and four outputs has 

been fabricated for crack diagnosis in damaged beam structures. The training patterns 

for the proposed neural model have been derived from theoretical, finite element and 

experimental analysis. The results predicted by the neural network for relative crack 

locations and relative crack depths are quiet nearer to the experimental results, 

thereby establishing the fact that the neural model can be successfully used for 

multiple crack detection in damaged beam structures.  

 From the comparison of results (relative crack depths and relative crack locations) 

among the fuzzy models and neural model, it is clear that the predicted results from 

neural system are closer to the actual results as compared to the developed fuzzy 

models. 
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 Genetic algorithm has been adopted to develop a crack diagnostic model in structural 

members. The GA model comprises of six inputs and four output parameters. The 

proposed evolutionary algorithm provides results for crack locations and their depths 

in close proximity to the experimental results.  

 From the analysis of its performance it can be stated that, the GA model can be used 

as a robust multiple crack identification tool in industrial environment. When the 

results are compared with that of the fuzzy and neural models, it is observed that the 

GA gives better results as compared to fuzzy and neural model used for crack 

identification.  

 A fuzzy-neuro analysis has been carried out to design a hybrid technique for damage 

detection in beam structures. Three fuzzy-neuro models have been designed with 

Gaussian, triangular and trapezoidal membership functions. The fuzzy-neuro models 

have been designed for prediction of relative crack location and their depths of the 

cracks present in the damaged structures. 

 From the analysis of the results, the performance of fuzzy-neuro model (based on 

Gaussian membership function) gives results with better accuracy than the 

independent GA, neural and fuzzy system designed for multiple crack identification. 

Hence, the fuzzy-neuro model can be used as a condition monitoring tool for faulty 

structures. 

 Multiple adaptive neuro fuzzy inference system has been applied to develop a fault 

identification tool in cracked structures.  Based on the observations of the predicted 

results from the MANFIS model, it is revealed that, the MANFIS technique can 

identify the crack parameters with higher accuracy as compared to fuzzy-neuro, 

fuzzy, neural and GA model and the results are in close proximity with the 

experimental analysis. So, the developed crack diagnostic method is capable of 

identifying faults in a faulty system.  

 The GA-fuzzy two layer hybrid methodology has been designed with six input and 

four output parameters. By analyzing the results from GA-fuzzy model, it is noticed 

that the GA-fuzzy results are more accurate in comparison to GA, neural, fuzzy, 

fuzzy-neuro and MANFIS technique. So, the developed GA-fuzzy technique can be 

used efficiently and effectively for structural health monitoring in online mode.  
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 The genetic algorithm and neural network have been adopted to develop a hybrid 

method (GA-Neural) for multiple damage identification in cracked beam members. 

The predicted results for relative crack depths and relative crack locations from the 

GA-neural model demonstrate its applicability for multiple crack diagnosis.  

 By comparing the results from the GA-neural model with that of the GA-fuzzy, 

MANFIS and experimental technique, it is observed that, GA-neural model delivers 

results in close proximity to the actual working condition as regard to other AI 

techniques mentioned earlier. The proposed methodology can be successfully used for 

condition monitoring of vibrating structures.  

 A three layer (GA-neuro-fuzzy) hybrid intelligent system has been proposed to 

identify both locations and severities of the damages in structural systems based on 

the dynamic response of cracked vibrating cantilever structure. The calculated 

vibration parameters from theoretical, finite element and experimental analysis are 

used to develop the initial data pool of the GA model, training patterns of the neural 

segment and to design the fuzzy membership functions.  

 The results from the proposed inverse methodology have been validated by 

comparing with the results obtained from theoretical, finite element and experimental 

analysis. The results obtained from GA-neuro-fuzzy technique confirms that the 

developed method can identify the crack positions and their severities with higher 

accuracy as compared to all other AI based techniques discusses earlier in the thesis 

and the proposed methodology can be used as an efficient online condition 

monitoring tool for faulty structures.  

 Finally, the GA-neuro-fuzzy model is found to be best suitable artificial intelligent 

model to identify multiple cracks in damaged vibrating structures with least error.  

 The developed crack diagnostic intelligent system can be utilized for online condition 

monitoring of turbine shafts, cantilever type bridges, cantilever type cranes used for 

mega structures, mechanical structures, beam like structures, marine structures, 

engineering applications, etc.  
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14.3  Future work    

•  The artificial intelligent techniques may be developed to diagnose faults in 

complex engineering structures.  

• The application of the artificial intelligent techniques may be extended for 

multiple damage detection in bi material and composite material elements. 

• More robust hybrid techniques may be developed and employed for fault 

detection of various vibrating parts in dynamic systems such as cone crusher, 

railway tracks, over head cranes, oil rigs, turbine shafts etc. 

• The artificial intelligence techniques may be embedded and integrated with 

the vibrating systems to make on line condition monitoring easier. 
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Fig. A1 FEA model of the cantilever beam model 

Fig. A2 ALGOR generated 2nd mode vibration of the cantilever beam model 
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Fig. A3 plot of graph for epochs vs mean squared error from NN  
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Fig. A5 Plot of graph for Estimation Error vs Number of Generations 
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Fig. A4 Plot of graph for actual value vs predicted value 
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