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Synopsis

This thesis investigates the problem of multiple damage detection in vibrating structural members
using the dynamic response of the system. Changes in the loading patterns,
weakening/degeneration of structures with time and influence of environment may cause cracks
in the structure, especially in engineering structures which are developed for prolonged life.
Hence, early detection of presence of damage can prevent the catastrophic failure of the
structures by appropriately monitoring the response of the system. In recent times, condition
monitoring of structural systems have attracted scientists and researchers to develop on line
damage diagnostic tool. Primarily, the structural health monitoring technique utilizes the
methodology for damage assessment using the monitored vibration parameters. In the current
analysis, special attention has been focused on those methods capable of detecting multiple
cracks present in system by comparing the information for damaged and undamaged state of the
structure. In the current research, methodologies have been developed for damage detection of a
cracked cantilever beam with multiple cracks using analytical, Finite Element Analysis (FEA),
fuzzy logic, neural network, fuzzy neuro, MANFIS, Genetic Algorithm and hybrid techniques
such as GA-fuzzy, GA-neural, GA-neuro- fuzzy. Analytical study has been performed on the
cantilever beam with multiple cracks to obtain the vibration characteristics of the beam member
by using the expressions of strain energy release rate and stress intensity factor. The presence of
cracks in a structural member introduces local flexibility that affects its dynamic response. The
local stiffness matrices have been measured using the inverse of local dimensionless compliance
matrix for finding out the deviation in the vibrating signatures of the cracked cantilever beam
from that of the intact beam. Finite Element Analysis has been carried out to derive the vibration
indices of the cracked structure using the overall flexibility matrix, total flexibility matrix,
flexibility matrix of the intact beam. From the research done here, it is concluded that the
performance of the damage assessment methods depends on several factors for example, the
number of cracks, the number of sensors used for acquiring the dynamic response, location and
severity of damages. Different artificial intelligent model based on fuzzy logic, neural network,
genetic algorithm, MANFIS and hybrid techniques have been designed using the computed
vibration signatures for multiple crack diagnosis in cantilever beam structures with higher

accuracy and considerably low computational time.
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Nomenclature

ar, a = depth of crack

A = cross-sectional area of the beam

A (i=11018) = unknown coefficients of matrix A

B = width of the beam

Ci = Axial compliance

Ci=Cy = Coupled axial and bending compliance

Cxn = Bending compliance

Cu = Dimensionless form of C11

Co=Cy = Dimensionless form of C12= C21

Co = Dimensionless form of C22

Ci = Axial compliance for first crack position

Ci= G = Coupled axial and bending compliance for first crack position
Ca = Bending compliance for first crack position

Ch = Axial compliance for second crack position

Ch= Gy = Coupled axial and bending compliance for second crack position
Co = Bending compliance for second crack position

E = young’s modulus of elasticity of the beam material

Fia=1,2 = experimentally determined function

1] = variables
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J = strain-energy release rate

Kiii=1,2 = stress intensity factors for P; loads
Kj; = local flexibility matrix elements
K’ = Stiffness matrix for first crack position
K" = Stiffness matrix for second crack position
L = length of the beam
L, = location (length) of the first crack from fixed end
L, = location (length) of the second crack from fixed end
Le = Length of the crack from one end of the beam
Lc = Length of crack element
M; (i=1.4) = compliance constant
P; (=12 = axial force (i=1), bending moment (i=2)
Q = stiffness matrix for free vibration.
Ui (i=12) = normal functions (longitudinal) u;(x)
X = co-ordinate of the beam
y = co-ordinate of the beam
Vi (i=12) = normal functions (transverse) yi(x)
W = depth of the beam
® = natural circular frequency
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B

B2

= relative first crack location (L;/L)

= relative second crack location (L,/L)

= mass-density of the beam

= aggregate (union)

= minimum (min) operation

= for every
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Chapter 1
INTRODUCTION

Crack diagnosis in vibrating structures has drawn a lot of attention from the science and
engineering community in the last three decades. The presence of cracks in a structure, if
undetected for longer period of time will lead to the failure of the system and may cause loss
of life and loss of resources. Utilization of the dynamic response of the member is one of the
technique, which has been widely accepted for crack diagnosis in different engineering
systems. The present chapter emphasizes the various techniques that are being used for fault
diagnosis. The background and motivation in the field of analysis of dynamically vibrating
damaged structures has been depicted in the first section. The second part of this chapter
describes the aims and objective of the research. The last part of the current chapter gives a
brief description of each chapter of the thesis for the current research.

1.1 Motivation for damage identification

Engineering structures play a vital role in the lives of a modern community. They are
normally designed to have longer life period. The failure or poor performance of engineering
structures may lead to disruption of transportation system or may result in loss of lives and
property. It is therefore, very important to ensure that the structural members perform safely
and efficiently at all times by monitoring their structural integrity and undertaking

appropriate remedial measures.

Many techniques have been employed in the past for fault diagnosis. Some of these are visual
(e.g. dye penetrant method) and other use sensors to detect local faults (e.g. acoustic
emission, magnetic field, eddy current, radiographs and thermal fields). These methods are
time consuming and cannot indicate that a structure is fault free without testing the entire
structure in minute details. Furthermore, if a crack is buried deep within the structure it may
not be detectable by these localized methods. Based on the changes in the modal parameters
researchers have developed Artificial Intelligence (AI) based techniques for fault
identification for single crack scenario. The Al techniques have been designed with an aim

for faster and accurate estimation of fault present in the structures.

Motivated by the above reasons, this thesis aims at exploring the use of Al techniques such

as fuzzy, neural network, genetic algorithm and hybrid methods such as fuzzy-neuro,



genetic-fuzzy, genetic-neural and genetic-neural-fuzzy for multiple crack diagnosis in

engineering structures at an early stage by capturing the vibration parameters.

1.2  Focus of the thesis

The process of monitoring and identifying faults is of great importance in aerospace, civil
and mechanical engineering. The structures associated with aerospace, civil or mechanical
engineering must be free from cracks to ensure safe operation. Cracks in machine or any
engineering systems may lead to catastrophic failure of the machine and must be detected

early.

In different engineering systems (e.g. steel structures, industrial machinery) beams are
commonly used as structural members and are subjected to static and dynamic loads. Due to
the loading and environment effect they may experience cracks, which drastically reduce the
life cycle of the structural system. The cracks present in the system may be considered to
develop the analytical model to study the effect of cracks on the modal response of the
system. The damage in the beam member introduces the stiffness, which can be used along
with the prevailing boundary conditions to formulate the vibration characteristic equation to
obtain the mode shape, natural frequency of vibration, crack parameters such as relative
crack severities and relative crack positions. The current analysis aims at development of a
multi crack identification tool for intelligent condition monitoring of structures using the

change in modal parameters of the structural member due to presence of cracks.

For this purpose, a cantilever beam with uniform cross section has been considered, which
act as a structural member in various engineering applications. The dynamic responses of the
cantilever beam have been measured in the undamaged state, which act as references.
Afterwards, multiple damages have been induced and sequential modal identification
analysis has been performed at each damaged stage, aiming at finding adequate
correspondence between the dynamic behavior and the presence of cracks in the structure.
Comparison between different techniques based on the performance to identify the various
cracks level have been carried out to find out the most suitable method, to identify multiple
cracks in damaged structures. The aim is to use the dynamic response parameters to develop

Al methods for structural health monitoring in multiple crack scenario.



In the present study, literature review has been carried out related to the domain of fault
diagnosis in engineering applications. From the previous analysis, it is observed that the
results obtained by the researchers have not been systematically used to develop tools for real
applications such as multiple crack diagnosis. In the current investigation, an attempt has
been made to design and develop a multiple crack diagnostic tool using the dynamic behavior
of cracked and undamaged cantilever beam structure using theoretical analysis, finite element

analysis, experimental analysis and artificial intelligence techniques.

The different phases for the present study are listed below:

1. Theoretical analysis for the cantilever structure with two transverse cracks has been
performed to evaluate the modal parameters.

2. Finite Element Analysis (FEA) has been carried out to measure the vibration parameters of
the cracked and undamaged cantilever beam with different multiple crack configurations.

3. Experimental set up has been developed and is being used to obtain the values of first three
relative natural frequencies and average relative mode shape differences of the cracked
cantilever member.

4. The modal parameters such as natural frequencies and mode shapes obtained from
theoretical, finite element and experimental analysis have been used to design and train the
artificial intelligence techniques. The developed Al based methodologies utilizes the first
three relative natural frequencies and first three average relative mode shape differences as
the input parameters and relative crack locations and relative crack depths are the outputs
from the Al model.

The theoretical study has been developed for a cantilever beam with two transverse cracks to
obtain the dynamic characteristics by utilizing the expressions of strain energy release rate
and stress intensity factors. The presence of cracks produces the local flexibility at the
vicinity of the crack locations and reduces the stiffness of the structure. With different
boundary conditions the stiffness matrix has been derived to find out the effect of relative
crack depths on the dimensionless compliances of the structure. The derived vibration
signatures from theoretical, finite element and experimental analysis of the beam member

have been used to design and train the Al model (fuzzy, neural network, genetic algorithm,



fuzzy-neuro, MANFIS, genetic-neuro, genetic-neuro-fuzzy model). Finally, relative crack

locations and relative crack depths are the outputs from the model.

The results obtained from the various methodologies such as theoretical, finite element,
experimental, fuzzy, neural network, genetic algorithm and hybrid techniques like fuzzy-
neuro, MANFIS, genetic-neuro, genetic-neuro-fuzzy devised in the present research have
been compared and a close agreement has been found. Concrete conclusions have been
drawn from the results of respective sections. Experimental analysis has been carried out to

validate the results from the different techniques cited above.

1.3 Organization of the thesis
The content of the thesis is organized as follows:

The analyses carried out in the current research for fault identification in damaged structures

are presented in fourteen chapters.

Chapter 1 is the introductory one; it states about the effect of crack on the functionality of
different engineering applications and also discuses about the methodologies being adopted
by the scientific community to diagnose faults in different industrial applications. The
motivation to carry out the research along with the focus of the current investigation is also

explained in this chapter.

Chapter 2 is the literature review section representing the state of the art in relation to
published work from the field of damage detection using vibration analysis and fault
detection using Al techniques. This section also expresses the classification of methodologies
in the domain of fault detection and also explains the reasons behind the direction of the

current research.

Chapter 3 introduces the theoretical model to measure the vibration indicators (natural
frequencies, mode shapes) by using SIF, strain energy release rate and laying down different
boundary conditions. The crack developed in the structure generates flexibility at the vicinity
of the crack which in turn, gives rise to a reduction in natural frequencies and the change in

the mode shapes. This basis has been applied in the numerical analysis to identify the

4



presence of cracks in the cantilever structure and also to evaluate the crack locations and

their severities.

Chapter 4 of the thesis describes the finite element analysis being applied on the cracked
beam element to measure the dynamic response of the multiple cracked cantilever beams,
subsequently the measured values are used to identify the presence of cracks and crack
parameters. The results from finite element method are compared with the results from

experimental method and numerical analysis for validation.

Chapter 5 shows the applicability of fuzzy inference system for fault diagnosis in cracked
structure. The procedures required for developments of the fuzzy models are outlined in this
chapter. The gauusian, triangular and trapezoidal membership function based intelligent
model with their detail architecture are briefly discussed. The results from the fuzzy models
are compared with the experimental results and discussions regarding the same have been

presented.

Chapter 6 introduces an inverse analysis based on the artificial neural network technique for
effective identification of crack damage in a cracked cantilever structure containing multiple
transverse cracks. The multi layer perceptron with the input and output parameters are
presented and explained in detail. The results from artificial neural network are presented and

discussed to demonstrate the applicability of the Al model.

Chapter 7 analyses the application of genetic algorithm method to design a damage
diagnostic tool. Different evolutionary techniques form GA methodology are presented and
discussed in length. Results for relative crack locations and relative crack depths from GA
model are compared with experimental results for validation. Finally, the summary of the

analysis of GA for crack prediction is presented.

Chapter 8 discusses about the hybrid fuzzy-neuro model for estimation of crack parameters
present in a structural system. The steps adopted to design the fuzzy layer and neural layer of
the fuzzy-neuro system are presented. A discussion about the comparison of results from the
Gaussian fuzzy-neuro, Trapezoidal fuzzy-neuro, Triangular fuzzy-neuro, numerical, finite

element and experimental analysis is presented.
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Chapter 9 outlines the working principles of multiple adaptive neuro fuzzy inference system
(MANFIS) to identify the presence of cracks and predict the location of cracks and their
depths. The adaptive system utilizes the modal parameters as inputs and finally, gives the
output as relative crack locations and relative crack depths. The predicted results from the
MANFIS are compared with the results from theoretical, Gaussian fuzzy-neuro, GA, FEA,

experimental analysis and a discussion about the comparison is presented.

Chapter 10 describes a novel hybrid GA-fuzzy model designed for multiple crack diagnosis
of beam structures. The design procedures of the first layer (GA model) and the second layer
(fuzzy model) of the hybrid system are systematically explained with the detailed
architecture of the proposed system. The discussions about the results from GA-fuzzy model

and evaluation of the accuracy of its performance have been stated.

Chapter 11 presents two intelligent inverse models i.e. two layer (GA-neural) and three layer
(GA-neuro-fuzzy) hybrid intelligent system to identify both locations and severities of the
damages in structural systems based on genetic algorithm, neural network, and fuzzy logic.
Methods for development of the GA, neural and fuzzy segments of the hybrid intelligent
models are outlined. The predicted values for relative crack locations and relative crack
depths from GA-neuro-fuzzy, GA-neural, GA-fuzzy, MANFIS, FEA, theoretical,
experimental analysis are compared and the conclusions regarding its performance are

depicted.

Chapter 12 presents the experimental procedure along with the instruments used for
validating the results from methodologies being adopted in the present analysis for multiple
crack identification. The results from the developed experimental set-up have been obtained

and presented for discussion.

Chapter 13 provides a comprehensive review of the results obtained from all the techniques

adopted in the current research.

Chapter 14 discusses the conclusions drawn from the research carried out on the current topic

and gives the recommendations for scope of future work in the same domain.



Chapter 2
LITERATURE REVIEW

This chapter presents a state of the art about dynamic model based damage identification in
structural systems. The main goal is to review the developments made by researchers during
the past few decades. Issues addressed are historical context of the applicability of damage
methods, general methods of classification, and a review of a selected group of methods.
Finally, the applications of artificial intelligence techniques for crack diagnosis are discussed

from the past and recent developments.
2.1  Introduction

The literature review section presents the analysis of the published work confined to the areas
of structural health monitoring, damage detection algorithm, fault diagnostic methodologies
and modal testing. The review begins with the description of different vibration analysis
methods used for damage identification. Next, dynamics of cracked structures, fault
identification methodologies to develop crack diagnostic tool using Finite Element Analysis
(FEA) and wavelet technique are discussed. Following the artificial intelligence techniques
(fuzzy logic, neural network, genetic algorithm, MANFIS and hybrid techniques) intelligent
models for crack identification can be designed. The aim of the present investigation is to
propose an artificial intelligent technique, which can be capable to predict the presence of
multiple cracks in vibrating structures. The possible directions for research can be obtained

from the analysis of the literature cited in this section.

From the published works it is seen that the idea regarding fault finding in different systems
varies widely. In spite of the fact that, there is a wide variation in development of fault
diagnostic methodology next section presents the review of the literature pertaining to

damage detection and fault identification.
2.2  Methodologies for fault detection

Researchers to date have focused on many methodologies for detection of fault in various

segments of engineering structures. Vibration based methods are found to be effectively used
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for health monitoring in faulty systems. The recent methods adapted for fault diagnosis are

outlined below.

Moore et al. [1] have proposed a new method to identify the size, location, and orientation of
a single crack in a simply supported plate subjected to free vibration by employing finite
element method and Markov-chain Monte-Carlo implementation of Bayes’ Rule. They have
claimed that their approach can be effectively used to identify the crack present in real
engineering system. Lang et al. [2] have applied the concept of transmissibility to the non-
linear case by introducing the transmissibility of Non-linear Output Frequency Response
Functions. They have developed a NOFRF transmissibility-based technique for the detection
and location of both linear and non-linear damage in MDOF structural systems. The results
from their proposed technique have been verified by the numerical simulation and
experimental analysis on a three storey building. Hein et al. [3] have presented a new method
for identification of delamination in homogeneous and composite beams. They have used
Haar wavelets and neural networks to establish the mapping relationship between
frequencies, Haar series expansion of fundamental mode shapes of vibrating beam and
delamination status. They have revealed that the simulations show the proposed complex
method can detect the location of delaminations and identify the delamination extent with
high precision. Huh et al. [4] have proposed a new local damage detection method for
damaged structures using the vibratory power estimated from accelerations measured on the
beam structure. A damage index is newly defined by them based on the proposed local
damage detection method and is applied to the identification of structural damage. Numerical
simulation and experiment are conducted for a uniform beam to confirm the validity of the
proposed method. In the experiments, they have considered the damage as an open crack
such as slit inflicted on the top surface of the beam. Salam et al. [5] have proposed a
simplified formula for the stress correction factor in terms of the crack depth to the beam
height ratio. They have used the proposed formula to examine the lateral vibration of an
Euler-Bernoulli beam with a single edge open crack and compared the mode shapes for the
cracked and undamaged beam to identify the crack parameters. Douka et al. [6] have
presented a method for crack identification based on the sudden change in spatial variation of

the transformed response of the beam structures using wavelet analysis. They have



established an intensity factor law for accurate prediction of crack size and the results from
the proposed method has been validated experimentally. Nahvi et al. [7] have developed a
technique for identification of crack in cantilever beam using analytical, finite element
method based on measured natural frequencies and mode shapes of the beam structure. The
results from the proposed method have been authenticated using the results obtained from
experimental analysis. Tahaa et al. [8] have introduced a method to improve pattern
recognition and damage detection by supplementing intelligent health monitoring with used
fuzzy inference system. The Bayesian methodology is used to demarcate the levels of
damage for developing the fuzzy system and is examined to provide damage identification
using data obtained from finite element analysis for a pre-stressed concrete bridge. Mahamad
et al. [9] have proposed an artificial neural network (ANN) based methodology to predict
accurate remaining useful life (RUL) for a bearing system. The ANN model has been
designed using measurements of hazard rates of root mean square and kurtosis from its
present and previous state. Kong et al. [10] have proposed a fault diagnosis methodology
using wavelet transformer fuzzy logic and neural network technique to identify the faults.
They have found a good agreement between analytical and experimental results. Liu et al.
[11] have taken the help of genetic algorithm (GA) for optimal sensor placement on a spatial
lattice structure. They have taken the model strain energy (MSE) and modal assurance
criterion (MAC) as the fitness function. A computational simulation of 12-bay plain truss
model has been used as modified GA and the data were compared against the existing GA
using the binary coding method and found better results through the modified GA. Sanza et
al. [12] have presented a new technique for health monitoring of rotating machinery by
integrating the capabilities of wavelet transform and auto associative neural network for
analyzing the vibration signature. The proposed technique effectiveness has been evaluated
using the numerical and experimental vibration data and the developed technique has
demonstrated accurate results. Hoffman et al. [13] have employed a diagnostic technique
based on neural network. As described in the paper, it is impossible to determine the degree
of imbalance in a bearing system using single vibration feature and to overcome this problem
they have used the neural network technique for processing of multiple features. For the
purpose of fault detection of different bearing conditions they have employed different neural

network technique and compared their performances. They have found that the developed



algorithm can be suitably used for identifying the presence of defects. Murigendrappa et al.
[14] have proposed a technique based on measurement of change of natural frequency to
detect cracks in long pipes containing fluid at different pressure. In their experimental
analysis they have used aluminium & mild steel Pipes with water as the fluid and used
pressure gauges to obtain the change in natural frequency which are subsequently used to
locate the crack present on the pipes carrying fluids. Darpe et al. [15] have studied the
unbalanced response of a cracked rotor with a single centrally situated crack subjected to
periodic axial impulses using an electrodynamics exciter for both rotating & non rotating
condition. They have found that the spectral response of the crack rotor with and without
axial excitation is found to be distinctly different. They have concluded that the response of
the rotor to axial impulse excitation can be used as a reliable diagnosis tool for rotor crack.
Curry et al. [16] have proposed a closed loop system with the help of sensors to formulate a
fault detection and isolation methodology based on fixed threshold. They have observed that
the proposed technique has been capable of detecting and isolating failures for each of the

particular sensors.

The various techniques employed by the researchers in the domain of fault detection varies
with their approach to identify the faults present in a system. The next section depicts the

categorization of the different methods used for fault diagnosis in engineering systems.

2.3 Analysis of different methodologies for crack detection

In this current investigation, the various methods applied for crack identification in damaged
dynamic structures have been described briefly. The different methods that have been
proposed by various authors for damage identification are sectioned into four different

categories such as:

1 Classical method
2 Finite Element Method
3 Al method

4 Miscellaneous methods.
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2.3.1 Crack detection using classical methods

In the current section, spatial variation of the transferred response, modal response methods,
energy based method, analytical methods, algorithms based on vibration etc. used for
locating the crack location and its intensity in dynamically vibrating damaged structures
have been discussed. The research papers connected to the above techniques are discussed
below.

Muller et al. [17] have proposed a method for crack detection in dynamic system. They have
established a relation between shaft cracks in turbo rotors by applying a model-based method
using the theory of Lyapunov exponents. In their research, they have studied chaotic motions
and strange attractors in turbo rotors. Owolabi et al. [18] have carried out experimental
investigations of crack location and crack intensity for fixed beams and simply supported
beams made of Aluminum. They have measured the changes in the first three natural
frequencies and the corresponding amplitudes to forecast the crack in a structure.
Chinchalkar [19] has developed a generalized numerical method for fault finding using finite
element approach. His approach is based on the measurement of first three natural
frequencies of the cracked beam. The developed method of fault detection accommodates
different boundary conditions and having wide variations in crack depth. Tada et al. [20]
have established a platform to formulate compliance matrix in damaged structural members
for estimating the crack location and crack depth. Loutridis et al. [21] have proposed a new
technique for crack detection in beam based on instantaneous frequency and empirical mode
decomposition. The dynamic behaviors of the structure have been investigated both
theoretically and experimentally. They concluded that the variation of the instantaneous
frequencies increases with increase in crack depth and this variation have been used for
estimation of crack size.

Song et al. [22] have described an exact solution methodology based on Laplace transform to
analyze the bending free vibration of a cantilever laminated composite beam having surface
cracks. They have used the Hamilton’s variational principle in conjunction with Timoshenko
beam model to develop the technique for damage detection in crack structure. Ravi et al. [23]
have carried out the modal analysis of an aluminium sheet having micro cracks. They have

used compression loading to generate the micro cracks on the surface of the sheet and
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monitored the deformation using the acoustic emission technique. Using the lines scans
around the area of deformation; they have detected the effect of micro cracks and the modal
parameters of the alumimiun sheet specimen. Law et al. [24] have proposed a time domain
method for crack identification in structural member using strain or displacement
measurement. They have modeled the open crack using Dirac delta function and evaluated
the dynamic response based on modal superposition. They have validated the proposed
identification algorithm by comparing the results from impact hammer tests on a beam with a
single crack. Dado [25] has formulated a mathematical model to predict the crack location
and their severities for beams with various end conditions such as pinned-pinned, clamped
free, clamped-pin and clamped-clamped. They have developed the mathematical model,
assuming the beam to be a rectangular Euler-Bernoulli beam. They have concluded that,
though the assumption of the beam does not meet the requirements for real time application
but the results obtained for the model developed can be used as a initial step to formulate
crack identification methodology which can be used in general practice. Douka et al. [26]
have studied the non-linear dynamic behavior of a cantilever beam both theoretically and
experimentally. They have analyzed both the simulated and experimental response data by
applying empirical mode decomposition and Hilbert transform method. They have concluded
that the developed methodology can accurately analyze the nonlinearities caused by the
presence of a breathing crack. Benfratello et al. [27] have presented both numerical and
experimental investigations in order to assess the capability of non-Gaussianity measures to
detect crack presence and position. They have used the skewness coefficient of the rotational
degrees of freedom for the identification purpose of the crack in a damaged structure.
Fledman [28] has introduced the application of Hilbert transform to non-stationary and
nonlinear vibration system. He has demonstrated concepts of actual mechanical signals and
utilizes the Hilbert transform for machine diagnostics and identification of mechanical
systems. Routolo et al. [29] have analyzed the vibrational response of cracked beam due to
harmonic forcing to evaluate the non linear characteristics. They have used the frequency
response function to identify the location and depth of crack to set a basis for development of
an experimental structural damaged identification algorithm.

Behzad et al. [30] have devised a continuous model for flexural vibration of beams

containing edge crack perpendicular to neutral plane of the beam. They have taken the
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displacement field as a superposition of the Euler Bernoulli displacement and displacement
due to the presence of crack. They have taken the crack displacement as the product of time
function and exponential space function. The results obtained are in good agreement with the
results obtained from finite element analysis. They have used the beam with horizontal and
vertical edge crack. Prasad et al. [31] have investigated the effect of location of crack from
free end to fixed end in a vibrating cantilever beam. They compared and analyzed crack
growth rate at different frequencies using the experimental setup. Rezaee et al. [32] have
used perturbation method for analysis of vibration of a simply supported beam with breathing
crack. From the analysis it is observed that for a given crack location on the beam structure
with the increase in the relative crack depth the stiffness of the beam decreases with time.

Dimarogonas et al. [33] have proposed a technique for crack identification in cracked
rotating shafts using the dynamic response of the system. They have stated that the change in
the modal response is due to the local flexibility introduced due to the presence of crack and
dissimilar moments of inertia. He has found that the system behaves non-linearly because of
the crack present in the rotating shaft. The results obtained from the developed analytical
method for the closing crack condition is based on the assumption of large static deflections
commonly found in turbo machinery. Faverjon et al. [34] have used constitutive relation
error updating method to develop a crack diagnosis tool in damaged beam structures.
Mazanoglu et al. [35] have carried out vibration analysis of non-uniform Euler — Bernoulli
beams with cracks using energy based method and Rayleigh — Ritz approximation method.
They have measured the change in strain in the cracked beam due to bending. They have also
analyzed the beam using finite element program and compared the obtained results with that
of the analytical method and found the results to be in good agreement. Wang et al. [36] have
studied a composite cantilever having a surface crack and found that the variation in the
modal response depends on two parameters i.e. crack location and material properties. They
have concluded that the change in frequency can be effectively used to locate the crack
position and measure its severities. Al-said [37] has presented a crack diagnostic method
using the change in natural frequencies for a stepped cantilever beam carrying concentrated
masses. He has also applied finite element analysis to validate the results obtained from the
proposed method. He has successfully used the developed algorithm to identify cracks

present in overhead gantry and girder cranes. Lee [38] has proposed a damage detection
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methodology in beam structures using Newton-Rapson method and assuming the cracks
present in the system as rotational springs. Yumin et al. [39] have analyzed cracked pipes to
measure local flexibility matrix and stress intensity factor to develop an algorithm for
damage identification. They have developed the method by dividing the cracked pipe into
series of thin annuli. As described them, experimentally they have calculated the local
flexibility matrix of the damaged pipes without calculating the Stress intensity factor. A
modified version of the local flexibility has been proposed by Zou et al. [40] have studied the
vibrational behavior of cracked rotor to design crack diagnostic model. They have described
that, their developed method is suitable for the theoretical model. Cerri et al. [41] have
investigated the vibrational characteristics of a circular arch both in damaged and undamaged
state obtained from the theoretical model and compared the results with that of the
experimental analysis to present a crack identification method. They have used the natural
frequencies and vibration modes to develop the crack identification methodology by
assuming the arch as a torsion spring at the cracked section. Nobile et al. [42] have presented
a technique to find out the crack initiation and direction for circumfentially cracked pipes and
cracked beams by adapting strain energy density factor. As stated by them, the strain energy
density theory can be effectively used to analyze the different features of material damage in
mixed mode crack propagation problem. Humar et al. [43] have investigated different
vibration based crack identification techniques and find out the draw backs in them. The
modal response parameters, stiffness, damping are directly affected by the presence of crack
in the structure. According to them, most of the vibration based crack diagnosis techniques
fail to perform when applied to real structures because of the inherent difficulties. They have
presented computer simulation studies for some of the commonly used methodologies and
suggested the conditions under which they may or may not perform. They have concluded
that, all the practical challenges present in a real system cannot be simulated through
computer applications entirely making the vibration based crack estimation methods a
challenging field. Viola et al. [44] have studied the dynamic behavior of multi-stepped and
multi-damaged circular arches. They have analyzed the arches both in damaged and
undamaged condition to find out the numerical solutions by using Euler characteristics
exponent procedure, generalized differential quadrature method. Shin et al. [45] have

analyzed of the vibration characteristics of circular arches having variable cross section.
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They have presented the equation for deriving the natural frequencies of the system at
different boundary conditions with the help of generalized differential quadrature method,
differential transformation method and the results obtained from their proposed method have
been compared with the previously published work. Cerri et al. [46] have investigated a
hinged plane circular arch for development of a structural damage detection technique by
studying the changes in the natural frequencies of the system. They have discussed two
different approaches for crack detection. One of the approaches is based on comparison of
the variation of natural frequencies obtained from the experimental and theoretical method
and the other is based on search of an intersection joint of curves obtained by the modern
equations. Labuschagne et al. [47] have studied Euler — Bernoulli, Timo Shenko and two
dimensional elasticity theories for three models of cantilever beams. From the analysis of the
vibration parameters, they have concluded that the Timo Shenko theory is close to the two
dimensional theory for practical purpose and the application of Euler — Bernoulli theory is
limited. Babu et al. [48] have presented a technique i.e. amplitude deviation curve, which is a
modification of the operational deflection shape for crack identification in rotors. They have
described that for the damage diagnosis in rotors the parameters used to characterize the
cracks are very complicated. Xia et al. [49] have proposed a technique for damage detection
by selecting subset of measurement points and corresponding modes. In their study, two
factors have been used for detecting the cracks, the sensitivity of a residual vector to the
structural damage and the sensitivity of the damage to the measured noise. They have
claimed that, the developed method is independent of damage status and is capable of
detecting damage using the undamaged state of structure. Douka et al. [50] have derived the
affect of cracks on the anti resonances of a cracked cantilever beam using analytical and
experimental methods. They have used the shift in the anti resonances to locate cracks in the
structure. The results obtained from their theoretical model have been validated using the
results obtained from experimentation of Plexiglas beams for crack diagnosis. Sinha [51] has
analyzed the non linear dynamic behavior in a mechanical system using higher order spectra
tools for the identification of presence of harmonics in signals obtained from the system.
They have found that, misaligned rotating shaft and cracked shaft, exhibits non linear
behavior due to the presence of higher harmonics present in the signal. According to them,

the higher order spectra tools can be effectively used for condition monitoring of mechanical
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systems. Patil et al. [52] have derived an algorithm for damage assesment in a slender Euler-
Bernoulli beam using variation in natural frequencies and transfer matrix method. They have
assumed the cracks as rotational spring for development of the proposed technique for crack
detection. Kim et al. [53] have presented a methodology for crack diagnosis in structures
using the dynamic response of a two span continuous beam. During the development of the
technique, they have reviewed two algorithms and eliminated the some of the assumptions
and limitations in those methods. They have stated that, their methodology shows an
improved accuracy in crack detection. Ebersbach et al. [54] have proposed a vibration based
expert system for health monitoring of plant machinery, laboratory equipment to perform
routine analysis. They have concluded that, their system can be used for high accuracy fault
detection using the dynamic response of the system. Gounaris et al. [55] have presented a
crack identification method in beam structures assuming the crack to be open and using
eigenmodes of the structure. During the investigation, they have found out the relationship
between the crack parameters and modal response. Finally, they have checked the
authenticity of their method by comparing the eigenmodes for the damaged and undamaged
beam in pre-plotted graphs. Shen et al. [56] have proposed a crack diagnostic procedure by
measuring the natural frequencies and mode shapes. They have checked the robustness of
their proposed method from the simulation results of a simply supported Bernoulli-Euler
beam with one-side or symmetric crack. Ebrahimi et al. [57] have presented a new
continuous model for bending analysis of a beam with a vertical edge crack which can be
used for load—deflection and stress—strain assessment of the crack beam subject to pure
bending. According to them, their proposed model assumes that the displacement field is a
superposition of the classical Euler—Bernoulli beam’s displacement and of a displacement
due to the crack. Their developed bending differential equation of the cracked beam has been
calculated using static equilibrium equations. They have found a good agreement between
the analytical results and finite element method. Jasinski et al. [58] have developed a method
for analyzing higher order spectra for forecasting and identification of the degree of
degradation of a sample’s dynamic properties. They have proposed residual bi-spectrum as a
basis enabling to determine the initiation of a beam’s fatigue-related crack. They have
developed an experimental set up for checking the robustness of their proposed technique for

fatigue crack identification present in a system. Hasheminejad et al [59] have studied the free
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vibration of cracked nano wires considering the effects of surface elasticity and residual
surface stress. The Euler—Bernoulli beam theory has been used by them and the crack is
modeled by a rotational spring representing the discontinuity in the slope and proportional to
the crack severity. They have demonstrated examples to evaluate the influence of beam
length, and crack position and severity on the calculated values of natural frequencies of an
anodic alumina nano wire in the presence of surface effects. They have stated that, their
proposed study may be of interest for the design, performance improvement, and health
monitoring of nano wire-based components. Rubio et al. [60] have presented a flexibility
expression for cracked shafts having elliptical cracks based on the polynomial fitting of the
stress intensity factors, taking into account the size and shape of the elliptical cracks. They
have calculated the static displacements in bending of the shaft for different boundary
conditions. From the analysis of the results obtained from experimental set up and finite
element analysis they have concluded that their methodology can be suitable used for
analyzing the behavior of the cracked shaft. Argatov et al. [61] have considered a problem of
detecting localized large-scale internal damage in structures with imperfect bolted joints.
During their analysis, they have utilized the structural damping and an equivalent
linearization of the bolted lap joint response to separate the combined boundary damage from
localized large-scale internal damage. In their approach, they have illustrated the longitudinal
vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different
levels of damage. They have concluded that their proposed strategy can be utilized for
estimation of internal damage severity in structures. Farshidi et al. [62] have investigated the
non-contact EMA for evaluating the structural dynamics of a beam structure by exciting a
cantilever beam using a collimated air impulse controlled by a solenoid valve. They have
measured the reflected airwave from the beam surface by a microphone array. They have
stated that the experimental tests demonstrate the effectiveness of their proposed
methodology to both accurately and cost-effectively measure structural dynamics in
translational and rotational degrees using a non-contact excitation and sensor mechanism.
Casini et al. [63] have investigated the non-linear modal properties of a vibrating 2-degree of
freedom system. They have found that, its non- linear frequencies are independent of the
energy level and uniquely depend on the damage parameter. An analysis of the nonlinear

normal modes has been performed by them for a wide range of damage parameter by
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employing numerical procedures and Poincare maps. The influence of damage on the non-
linear frequencies has been investigated and modes in internal resonance, with a significantly
different shape than that of modes on fundamental branch, have been proposed. Carr et al.
[64] have studied the influence of a surface fatigue crack on vibration behavior of tee-welded
plates and results are compared to the influence of machined through-thickness cuts on the
dynamic response of cantilever beams. They have analyzed the influence of naturally grown
fatigue cracks on the oscillation frequencies and compared to two and three-dimensional
numerical modeling results. The results obtained from their analysis showed the ability of the
experimental technique to detect fatigue cracks from relatively earlier than the other method
studied. Ribeiro and Fontul [65] have studied the dynamic response of structure excited at a
given set of coordinates using transmissibility concept to identify fault present in the

structure.

The finite element methods and wavelet analysis have been used for locating the size and

severity of cracks and those are being discussed in the next section.

2.3.2 Crack detection using finite element method

Other than the classical methods the finite element methods is also applied by various
researchers for crack detection in damaged structures, those have been described in this

section.

Saavedra et al. [66] have presented a theoretical and experimental vibration analysis of a
multibeams structure containing transverse crack. They have derived a new cracked finite
element stiffness matrix to analyse the vibrational behavior of crack systems with different
boundary conditions. Qian et al. [67] have developed a finite element model for crack
detection in a damaged beam using stress intensity factors. They have also validated their
model with the experimental results obtained for a cantilever beam. According to them their
method is also applicable to complex structures with crack. Andreausa et al. [68] have
investigated the features of non-linear response of a crack beam using two dimensional finite
element model (FEM). They have considered the behavior of the breathing crack as a
frictionless contact problem. They have compared the linear dynamic response with the non-

linear dynamic response of the cantilever beam and presented a non-linear technique for
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crack identification. Viola et al. [69] have developed a finite element model for a cracked
Timoshenko beam for crack identification based on the changes in the dynamic behavior of
the structure. They have derived the stiffness matrix and consistent mass matrix for
developing the crack identification technique. Chondros et al. [70] have studied the torsional
vibrational behavior of a circumferentially cracked cylindrical shaft using analytical and
numerical finite element analysis; they have used HU-WASHIZU-BARR variational
formulation to develop the analytical method for the cracked shaft. Ariaei et al. [71] have
presented an analytical approach for determining the dynamic response of the undamped
Euler-Bernoulli beams with breathing crack and subjected to the moving mass using discrete
element technique and finite element method. They have observed that the presence of cracks
alters the beam response patterns. Potirniche et al. [72] have developed a two dimensional
finite element method to study the influence of local flexibility on the dynamic response of a
structure. Narkis [73] has detected the crack by using inverse technique, that is, through the
measurement of frequency of first two natural frequencies of a simply supported uniform
beam. He has validated the developed method by comparing the results with the results from
numerical finite element calculations. Ostachowicz et al. [74] have analyzed the forced
vibrations of the beam and find out the impact of crack parameters such as crack position and
its severity on the vibrational characteristics and discussed a basis for crack diagnosis. They
have modeled the beam with triangular disk finite elements and assumed the crack to be a
breathing crack. Zheng et al. [75] have analyzed the natural frequencies and mode shapes of
a cracked and undamaged beam by developing an overall additional flexibility matrix using
finite element method. They have also developed a shape function to compute the vibrational
characteristics of the cracked beam. The gauss quadrature and least square method has been
used by them to compute the overall additional flexibility matrix. The authors have
constructed the shape function which can very well satisfy the local flexibility conditions of
the crack locations. Kisa et al. [76] have used finite element and component mode synthesis
methods to analyze the free vibration of uniform and stepped cracked beam of circular cross
section. They have used stress intensity factor and strain energy release rate functions to
calculate the flexibility matrix and inverse of the compliance matrix taking into account
inertia forces. According to them, crack depth and crack location have considerable affect on

the natural frequencies and mode shapes of the cracked beam with non propagating open
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cracks. Karthikeyan et al. [77] have proposed a technique for estimation of crack location and
size in beam structure from the free and forced response of the beam. They have used finite
element method to analyze the modal response for the beam structure with transverse open
crack.. In this work they have included the effect of proportionate damping and used an
external unit to harmonically excite the beam. They have used an iterative algorithm and
regularization technique for locating the crack positions and size on the cracked beam and the
results are in good agreement with other methods even in presence of error and noise.
Hearndon et al. [78] have formulated a methodology using Euler-Bernoulli and Timo-
shenko theories to analyze the affect of crack on dynamic properties of a cantilever beam
subjected to bending. To evaluate the influence of crack location and size on the structural
stiffness and calculation of transfer function a finite element model has been proposed by
them. According to them the reduction in global component stiffness due to the crack is used
to determine its dynamic response by a modal analysis computational model. In this work
they have revealed that the natural frequencies decreases with increasing crack length. Al-
Said [79] has proposed an algorithm based on a mathematical model to identify crack
location and depth in an Euler-Bernoulli beam carrying a rigid disk. He has applied
Lagrange’s equation to develop the mathematical model for analyzing the lateral vibration of
the beam model. The proposed method utilizes mode shapes of two uniform beams
connected by mass less torsional spring to establish the trial function. The presented method
utilizes the first three natural frequencies to estimate the crack parameters. Results from the
presented technique have been authenticated using the finite element software. Shekhar et al.
[80] has derived a method to calculate the vibration characteristics using model based on
finite element analysis. Panigrahi [81] have performed a three dimensional non-linear finite
element analysis to evaluate the normal and shear stress along the overlap zone in a fiber

reinforced composite material.

Excepting the classical, wavelet analysis and finite element methods, Artificial Intelligence

Techniques are also being adapted by authors for damage identification.
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2.3.3 Crack detection using Al technique

In this section different types of Artificial Intelligence Techniques are analyzed in the field of
crack detection in damaged structures. The methods are being sub grouped into five

categories.

a) Fuzzy Inference method

b) Neural Network method

c¢) Genetic Algorithm method

d) MANFIS method

e) Hybrid method
1) Neuro-Fuzzy Technique
i1) Genetic-fuzzy Technique
iii) Genetic-neural Technique

iv) Genetic-neural-fuzzy Technique

2.3.3.1 Fuzzy inference method

In this section various fuzzy inference methods used for crack identification are outlined.

Hasanzadeh et al. [82] have introduced a non-phenomenological method to solve the inverse
problems, especially for the case of AC field measurement (ACFM) technique to identify
surface cracks in metals. Their method is based on a formal framework of aligning
electromagnetic probe responses by using the concept of similarity measures created by a
fuzzy recursive least square algorithm as a learning methodology. They have claimed that,
the proposed technique provides a means to compensate for the lack of sufficient samples in
available crack databases for prediction of crack in structures. They have shown that the
combination of this fuzzy inference method and the method of the adaptation for different
crack shapes provides sufficient means as a priori empirical knowledge for the training
system. Chandrashekhar et al. [83] have shown that the geometric and measurement
uncertainty cause considerable problem in the damage assessment. They have used Monte
Carlo simulation to study the changes in the damage indicator due to uncertainty in the

geometric properties of the beam. The results obtained from the simulation are used for
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developing and testing the fuzzy logic system. In this paper they have addressed the
uncertainty associated with the fuzzy logic system for structural damage detection. Kim et al.
[84] have presented a computer based crack diagnosis system for concrete structures using
Fuzzy set theory. They have used the crack symptoms and characteristics to build the rooms
for the proposed fuzzy inference system. When they have applied the developed
methodology to diagnose the crack the proposed system provided results similar to those
obtained by experts system. Saravanan et al. [85] have proposed a technique based on the
vibration signals acquired from the operating machines to effectively diagnose the conditions
of inaccessible moving components inside the machine. The proposed technique has been
designed using fuzzy classifier and decision tree to generate the rules automatically from the
feature set. The developed fuzzy classifier has been tested with representative data and the
results are found to be encouraging. Boutros et al. [86] have developed four condition
monitoring indicators for detection of transient and gradual abnormalities using fuzzy logic
approach. They have successfully tested and validated the fuzzy based technique in two
different applications. Wu [87] has proposed a novel fuzzy robust wavelet support vector
classifier (FRWSVC) based on a wavelet function and developed an adaptive Gaussian
particle swarm optimization (AGPSO) algorithm to seek the optimal unknown parameter of
the FRWSVC. The results obtained from experimentation are compared with that of the
hybrid diagnosis model and are found to be closer. Sugumaran et al. [88] have presented the
use of decision tree of a fuzzy classifier for selecting best few feature that will discriminate
the fault condition of the bearing from given trained samples. The vibration signal from a
piezoelectric transducer is captured for different types of fault condition of bearing and is
used to build the fuzzy rules. The results drawn from the fuzzy classifier when compared
with results from the experimental analysis, they are found to be close proximity. Miguel et
al. [89] have developed a decision making module based on fuzzy logic for model based fault
diagnosis applications. A fault detection and isolation system based on the input and output
parameters have been successfully applied in laboratory equipments to reduce the
uncertainties for the output parameter. Wada et al. [90] have proposed a fuzzy control
method with triangular type membership functions using an image processing unit to control
the level of granules inside a hopper. They stated that the image processing unit can be used

as a detecting element and with the use of fuzzy reasoning methods good process responses
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were obtained. Parhi [91] has developed a fuzzy inference based navigational control system
for multiple robots working in a clumsy environment. They have been designed to navigate
in an environment without hitting any obstacles along with other robots. Fox [92] has studied
the use of fuzzy logic in medical diagnosis and raised a broad range of issues in connection
to the role of information-processing techniques in the development of medical computing.
Zimmermann [93] has applied fuzzy linear programming approach for solving linear vector
maximum problem. The solutions are obtained by fuzzy linear programming. These are
found to be efficient solutions then the numerous models suggested solving the vector
maximum problem. Angelov et al. [94] have presented two new approaches for improving
the performance of on line fuzzy classifier. They have used the developed fuzzy system for
image classification in on line mode. Mohanta et al. [95] have developed a fuzzy Markov
model to address the maintenance scheduling of a captive power plant by considering the

various parameters affecting the failure repair cycle.

2.3.3.2 Neural network method
In this section different types of Neural network methods applied for crack identification are
described. The Artificial Neural Networks (ANN) has been used as promising technique in

the domain of inverse problem for fault identification.

Schlechtingen et al. [96] have presented a comparison of results among the regression based
model and two artificial neural network based approaches, which are a full signal
reconstruction and an autoregressive normal behavior model used for condition monitoring
of bearings in a wind turbine. From the comparison of results they have revealed all three
models were capable of detecting incipient faults. They have concluded that the neural
network model provides the best result with a faster computational time with comparison to
regression based model. Ghate et al. [97] have proposed a multi layer perceptron neural
network based classifier for fault detection in induction motors which is inexpensive, reliable
by employing more readily available information such as stator current. They have used
simple statistical parameters as input feature space and principal component analysis has
been used for reduction of input dimensionality. They have also verified their methodology
to noise and found the performance of the proposed technique encouraging. Eski et al. [98]

have presented a fault detection based on neural network for an experimental industrial
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welding robot. Joint accelerations of robot have been considered by them as evaluation
criteria. For this purpose, an experimental setup has been used to collect the related values
and the accelerations of welding robot, which has six degrees of freedom, are analyzed. The
results obtained show that the proposed RBNN has a robust stability to analyze the
accelerations of manipulator joints during a prescribed trajectory. Fan et al. [99] have
presented a fault detection and diagnosis (FDD) strategy for local system of air handing unit.
Their strategy consists of two stages which are the fault detection stage and the fault
diagnosis stage, respectively. In the first stage, the neural network fault detection model has
been used by them for generating estimates of sensor values and they are compared to actual
values to produce residuals. The proposed neural network fault detection model has been
trained using an abundance of characteristic information from the historical data in the
HVAC system. They have claimed that the trained neural model can detect the abnormal
condition in the system. Paviglianiti et al. [100] have devised a scheme for detecting and
isolating sensor faults in industrial robot manipulators. They have adopted a procedure for
decoupling of the disturbance effect from the effect of the fault generated in the system. The
dynamics of the proposed scheme has been improved by using radial basis functions neural
network. Wang et al. [101] have proposed a new fault diagnosis method by using the
difference of AR coefficients with back propagation neural network. The diagnosis results
obtained by them are compared with the three methods, which include the difference of AR
coefficients with BPNN, the AR coefficients with BPNN and the distance of AR coefficients
method for various samples. They have found that the difference of AR coefficients with
BPNN were superior to AR coefficients with BPNN and distance of AR coefficients
methods. Suresh et al. [102] have presented a method considering the flexural vibration in a
cantilever beam having transverse crack. They have computed modal frequency parameters
analytically for various crack locations and depths and these parameters are used to train the
neural network to identify the damage location and size. In this paper They have made a
comparative study of the performance of two widely used neural network i.e. multi layer
perception (MLP) network, radial basis function (RBF) network and shown the variation of
actual output with the network output. Finally, they have concluded that the radial basis
function network performance is better than multi layer perception network. Little et al. [103]

have solved exactly a linearized version of the model and explicitly show that the capacity of
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the memory is related to the number of synapses rather than the number of neurons. In
addition, he has shown that in order to utilize this large capacity, the network must store the
major part of the information in memory to generate patterns which evolve with time.
Mehrjoo et al. [104] have presented a fault detection inverse algorithm to estimate the
damage intensities of joints in truss bridge structure using back propagation neural network
method. Agosto et al. [105] have applied neural network method with a combination of
vibration and thermal damage detection signatures to develop a damage defection tool. They
have applied the developed technique on sandwich composite for the purpose of crack
detection. Saravanan et al. [106] have dealt with the robustness of an artificial neural
network, wave let and proximal support vector machine based on fault diagnostic
methodology for a gear box. They have used the proposed methodology for fault diagnosis in
bevel gear box. Oberholster et al. [107] have presented a methodology for online structure
health monitoring of axially flow for blades with the use of neural network. The developed
neural network has been trained with the extracted vibration features from the experimental
test structures. They have used frequency response function and finite element models for
designing the neural network based technique. According to them the proposed technique can
handle the online damage classification using sensor for the test structures. Wu et al. [108]
have described a condition monitoring and fault identification techniques for rotating
machineries using wavelet transform and neural network method. The sound emission from
the gear set have been used along with continuous wavelet transform technique and feature
selection of energy spectrum to design the neural network based fault diagnostic tool. The
experimental results from their methodology pointed out that the sound emission from the
system can be used for effective fault diagnosis for condition monitoring. Wu et al. [109]
have investigated a fault diagnosis technique for internal combustion engine using discrete
wavelet transform (DWT) and neural network. The DWT technique has been combined with
feature selection of energy spectrum for the development of the purposed fault detection
algorithm. Some of the activation functions used by researchers in designing of artificial

neural network are presented in Table 2.1 given below.
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Table 2.1 Examples of Activation Functions used in ANN

Name Input/output Relation Symbol

Hard Limit a=0 n<0 —I_
a=1 n>0

Symmetrical Hard Limit | a=-1 n<0 —.I__
a=+1 n=>0

Hyperbolic tangent n_

igmoid a= ——
S g en + e-n

2.3.3.3 Genetic algorithm method

In the process of development of various methods for crack identification genetic algorithm
is also used efficiently for accurate measurement of the damage location and depth and also
fault detection in engineering systems. The genetic algorithm based methodologies are

discussed in this section.

Meruane et al. [110] have implemented an hybrid real-coded Genetic Algorithm with damage
penalization to locate and quantify structural damage. The performance of five fundamental
functions based on modal data is studied by them. In addition, the authors have proposed the
use of a damage penalization that satisfactorily avoids false damage detection due to
experimental noise or numerical errors. They have tested the effectiveness of the proposed
technique on a tridimensional space frame structure with single and multiple damages
scenarios and stated that this approach reaches a much more precise solution than
conventional optimization methods. Nobahari et al. [111] have proposed an efficient
optimization procedure using genetic algorithm to detect multiple damage in structural
systems based on the changes in the natural frequency. They have applied finite element
analysis to evaluate the required natural frequencies. Two numbers of bench mark tests have
been utilized to demonstrate the computational advantages of the proposed method by them.
Li et al. [112] have presented a novel feature extraction and selection scheme for hybrid
fault diagnosis of gearbox based on transform function, non-negative matrix factorization
(NMF) and multi-objective evolutionary genetic algorithms. The transform function has been

adapted to acquire the vibration signals for various fault condition of the gear system and the
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non-negative matrix factorization (NMF) was employed to extract features from the time—
frequency representations. The genetic algorithm has been used for accurate classification of
hybrid faults of gearbox. Results from the experiments as described by them revealed that the
proposed feature extraction and selection scheme demonstrate to be an effective and efficient
tool for hybrid fault diagnosis of gearbox. Fernando et al. [113] have dealt with the crack
detection in structural elements by means of a genetic algorithm optimization method taking
into account the existence of contact between the interfaces of the crack. They have
addressed bi- and three-dimensional models to handle the dynamics of a structural element
with a transverse breathing crack. Physical experiments have been performed by them with a
cantilever damaged beam and the resulting data are used as input in the fault diagnostic
genetic algorithm. The benefits of applying automated fault detection and diagnosis to
chillers include less expensive repairs, timely maintenance, and shorter downtimes. Han et al.
[114] have employed feature selection (FS) techniques, such as mutual-information-based
filter and genetic algorithm to help search for the important sensors in data driven chiller
fault detection and diagnosis applications, to enhance the performance of fault identification
technique. The results shows that the eight features/sensors, centered around the core
refrigeration cycle and selected by the proposed method, outperform the other three feature
subsets by the linear discriminant analysis. Hussain et al. [115] have described a novel
method for real time fault detection in gearboxes using adaptive features extraction algorithm
to deal with non-stationary faulty signals. They have claimed that their proposed method is
based on combination of conventional one-dimensional and multi-dimensional search
methods, which showed high performance and accurate fault detection results compared with
evolutionary algorithms like genetic algorithms. Singh et al. [116] have developed a two
stage identification methodology, which identifies a number of cracks, their locations on a
cracked shaft and its sizes. In the methodology they have utilized transverse forced responses
of the shaft system at different frequencies of a harmonic excitation. A multi-objective
genetic algorithm technique has been designed using the frequency response of the dynamic
structure for crack detection in shaft like structures. Lei et al. [117] have proposed a new
multidimensional hybrid intelligent diagnosis method to identify different categories and
levels of gear damage automatically using Hilbert transform, wavelet packet transform

(WPT) and empirical mode decomposition (EMD) methods to extract additional fault

27



characteristic information. They have used the extracted features of the system to develop the
multidimensional features based genetic algorithm technique to identify gear faults. Sette et
al. [118] have presented a method to simulate a complex production process using a neural
network and the optimization by genetic algorithm for quality control of the end product in a
manufacturing environment. He has applied this method to a spinning production process
where  input parameters are machine settings and fiber quality, and the yarn strength,
elongation are output parameters for the neural network model. He has used the genetic
algorithm with a sharing function and a Pareto optimization to optimize the input parameters
for obtaining the best yarns. According to him the results from this method are considerably
better than current manual machine intervention. Xiang et al. [119] have proposed a new
method for crack location and depth in a shaft by following rotating Rayleigh-Euler and
Rayleigh-Timoshenko beam elements of B-spline wavelet on the interval. He has described
that the cracked shaft is modeled by using wavelet-based elements to gain precise
frequencies. According to him the 1% three frequencies are measured to locate the crack and
the depths are detected by genetic algorithm. The robustness of the proposed method has
been validated by some numerical examples and experimental cases and he has concluded
that the method is capable of the detecting the crack in a shaft. He et al. [120] have studied
the crack detection in a rotating machine shaft by using finite element method to optimize the
problem and subsequently used genetic algorithm to search the solution. Their proposed
method has been found to solve a wide range of inverse identification problem. Zhang et al.
[121] have used genetic programming (GP) in finding faults in rotating machinery. They
compared the solution through GP with other techniques like artificial neural network (ANN)
and support vector machines (SVMs). They have found that GP demonstrates performance
equal or better compared to ANN and SVMs. Zhang et al. [122] have studied the fault in
rolling element bearing by the combination of genetic algorithm (GA) and fast kurtogram.
For the initial analysis of the vibration signals of the bearing they have used fast kurtogram
and subsequently for final optimization they have used GA The results of their combined
applications of GA and kurtogram have been found to give better results over the other
optimal resonance demodulation techniques. Baghmisheh et al. [123] have used genetic
algorithm (GA) to monitor the changes in natural frequencies of a cantilever beam having

crack. They have used an analytical model to formulate the crack beam structure and
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numerical methods to obtain the natural frequencies. The depths and crack locations have
been solved by using binary and continuous genetic algorithms BGA, CGA). Perera et al.
[124] have used genetic algorithm for solving multi objective optimization to detect damage.
They have compared GA optimizations based on aggregating functions with pareto
optimality. Friswell et al. [125] have combined genetic algorithm (GA) and eigen sensitivity
method for determination of location of damage in structures. The GA has been used by them
to optimize the discrete damage location variables. They have used eigen sensitivity method

to optimize the damage extent.

2.3.3.4 Multiple adaptive neuro fuzzy inference system (MANFIS)

This section depicts, the literature review of published paper from the domain of applications

of MANFIS technique in various fields and fault diagnosis.

A neuro-fuzzy inference system, or equivalently, a neuro-fuzzy system is a fuzzy inference
system which employs neural network learning techniques. Multiple adaptive neuro-fuzzy
inference system (MANFIS) [127, 128, 129] is an extension of a single-output neuro-fuzzy
system, ANFIS, so that multiple outputs can be handled. A neuro-fuzzy system is a
nonparametric regression tool, which models the regression relationship non-parametrically
without reference to any pre-specified functional form, and it is capable of modeling highly

nonlinear and approximately known systems.

Cheng et al. [130] have optimize a multiple output system using the MANFIS neuro-fuzzy
network for modeling the system and genetic algorithm has been used to optimize the
multiple objective function. The validity of the technique has been performed using a
practical problem. Buyukozkan et al. [131] have studied the performance of a new product
development process (NPD) under uncertain conditions and given their effort to improve the
quality of decision-making in NPD by following new iterative methodology. They have used
fuzzy logic, neural networks and MANFIS technique for improvising the methodology for
new product idea selection. Hengjie et al. [132] have presented a probabilistic fuzzy neural
network (ProFNN) approach for handling randomness in the system by introducing the

probability of input linguistic terms and providing linguistic meaning into the connectionist
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architecture. The results from the proposed technique have been compared with that of
multi-input-multi-output-ANFIS (MANFIS), self-organizing adaptive fuzzy neural control
and Extreme Learning Machine for validation of the probabilistic fuzzy neural network.
Vairappan et al. [133] have illustrated an improved adaptive neuro-fuzzy inference system
(ANFIS) for the application of time-series prediction. The proposed improved version of
ANFIS has introduced the application of self-feedback connections for modeling the
temporal dependence. The effectiveness of the proposed methodology has been validated by
using three benchmark time-series tests. Gholamian et al. [134] have presented a systematic
design for multi objective problems using hybrid intelligent system to solve ill-structured
situations. Fuzzy rules and neural networks are used in this systematic design and the
developed hybrid system is established with the ability of mapping between objective space
and solution space. The results obtained are authenticated on three test problems. Ellithy et
al. [135] presented a methodology based on ANFIS to improve the damping of power
systems in the presence of load model parameters uncertainty. The proposed ANFIS is
trained over a wide range of typical load parameters to adapt the gains of the SVC stabilizer.
They have claimed that the simulation results are showing encouraging trends in comparison
to SVC stabilizer operating on other techniques. Gtineri et al. [136] have developed a new
approach to address the supplier selection problem. The proposed ANFIS model has been
trained with parameters relating to supplier selection criteria. They have tested the results
from their technique by comparing with the results of the multiple regression method,
demonstrating that the ANFIS method performed well. Nagarajan et al. [137] in their study
have proposed the design of Adaptive Neuro-Fuzzy Observer based sensor fault detection in
a three-tank interacting level process. They have designed the fault detection algorithm with
Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS) that uses a neural network to
fix optimal shape and parameters for the membership functions and effective rule base for the
fuzzy system. Fault detection is being performed by them estimating the states of the level
process and comparing them with measured values. Jassar et al. [138] have established a
technique to find out the temperature in heating space utilizing an adaptive neuro-fuzzy
inference system. The proposed system has been developed by combining the fuzzy
inference systems and artificial neural networks. The results from the developed method

have been cross verified by experimentation. Asensi et al. [139] have formulated a system
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based on multiple adaptive neuro-fuzzy inference systems (MANFIS) to analyze the
performance characteristics of analog circuit. Zhang et al. [140] have studied a dynamic
system and developed an algorithm to identify the chaotic signals present in a system by

adopting adaptive-neuro-fuzzy-inference system (ANFIS) and MANFIS methodology.

Nguyen et al. [141] have used vibration analysis and fuzzy logic technique to develop a fault
detection method in bearings. The parameters representing the condition of the system have
been used to design the proposed technique based on Adaptive Network based Fuzzy
Inference System (ANFIS) and Genetic Algorithm (GA). The results obtained from the
developed model have been tested with other set of bearing data to exhibit the reliability of
the chosen model. Lei et al. [142,143] have proposed a method for fault diagnosis of rolling
element bearing system using multiple adaptive neuro-fuzzy inference systems (MANFIS)
and empirical mode decomposition (EMD). The robustness of the developed mechanism has

been checked by employing the same on different bearing systems.

So in the subsequent section algorithm have been discussed used for fault diagnosis using
hybrid AI techniques such as Neuro-Fuzzy, Genetic-fuzzy Technique, Genetic-neural

Technique and Genetic-neural-fuzzy Technique.

2.3.3.5 Hybrid method

Scientists have developed hybrid techniques by fusing the capabilities of various artificial
intelligence methodologies such as fuzzy logic, neural network and genetic algorithm for
condition monitoring of damaged structures. The hybrid methods can be sub grouped into

four sections.

1) Neuro- fuzzy Technique
i1) Genetic-fuzzy Technique
i11) Genetic-neural Technique

Iv) Genetic-neural-fuzzy Technique
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2.3.3.5.1 Neuro-fuzzy technique

This section analyzes the application of Neuro-fuzzy technique in the domain of fault
diagnosis.

Salahshoor et al. [144] have devised an innovative data-driven fault detection and diagnosis
methodology on the basis of a distributed configuration of three adaptive neuro-fuzzy
inference system for an industrial power plant steam turbine. Each neuro-fuzzy classifier has
been developed for a dedicated category of four steam turbine faults. A proper selection of
four measured variables has been configured to feed each classifier with the most influential
diagnostic information. A diverse set of test scenarios has been carried out to illustrate the
successful diagnostic performances of the proposed fault detection system. Sadeghian et al.
[145] have used nonlinear system identification method to predict and detect process fault of
a cement rotary kiln. To identify the various operation points in the kiln, locally linear neuro-
fuzzy model trained by LOLIMOT algorithm has been adapted by the authors. Then, using
this method, they have obtained three distinct models for the normal and faulty situations. At
the end, they have checked the proposed technique with the validation data. Eslamloueyan et
al. [146] have proposed a hierarchical artificial neural network (HANN) for isolating the
faults of the Tennessee—Eastman process which is the simulation of a chemical plant created
by the Eastman Chemical Company to provide a realistic industrial process for evaluating
process control and monitoring methods. Fuzzy clustering algorithm has been used by them
to divide the fault patterns space into a few sub-spaces. They have developed supervisor
network along with the special neural networks to diagnose the fault present in the system.
Simon et al. [147] have describes the pattern recognition based data analysis of an existing
industrial batch dryer, and the comparison of three artificial intelligence techniques suited to
perform classification tasks: neural networks, neuro-fuzzy and Takagi—Sugeno fuzzy models.
They have found that the neural networks trained with the Bayesian regularization have
shown the most robust classification performance with respect to other two methods. They
have claimed that since the proposed method for pattern recognition is not case specific it can
be directly used for the monitoring of a large variety of drying processes. Quteishat et al.
[148] have proposed a modified fuzzy min-max network for improved performance when
large hyper boxes are formed in the network. This methodology is used to facilitate the

extraction of rule set from FMM to justify the predictions. The results from the developed
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FMM have been authenticated with the sensor measurements collected from a power
generation plant for fault diagnosis. Topcu et al. [149] have studied the optimum uses of
pozzolans as supplementary cementing material for blended cement production. They have
developed a system based on artificial neural network and fuzzy logic for predicting the
strength parameters for different types of cement motars. Tran et al. [150] presented a fault
diagnosis technique based on adaptive neuro-fuzzy inference system in combination with
classification and regration tree. The ANFIS model has been trained with the results obtained
from the least square algorithm. They have observed that the developed ANFIS model has
the potential for fault diagnosis of induction motors. Fang et al. [151] have explored
performance of a structural damage defection technique based on frequency response and
neural network. In this paper they have investigated a tunable steepest discount algorithm
using heuristics approach for improving the converging speed. From the analysis of the result
of the proposed method for a cantilever beam they have concluded that the neural network
technique can estimate the damage condition with high accuracy. Beena et al. [152] have
proposed a new approach for fault detection in structural system using fuzzy logic technique
and neural network based on hebbin-learning. They have used the continuum mechanics and
finite element method to measure the vibration parameters because of structure damage. The
developed technique works quite well for structural damage even in the presence of noise.
Kuo et al. [153] have presented a symbiotic evolution based fuzzy neural diagnostic system
for fault detection of a propeller shaft used in the marine propulsion system. The system
auto-generates its own optimal fuzzy neural architecture for fault diagnosis. They have stated
that the results from the hybrid fuzzy neural system have been found to be more closure with
the real conditions than the other traditional methods. Ye et al. [154] have developed a new
online diagnostic algorithm to find out the mechanical fault of electrical machine using wave
let packet decomposition method and adaptive neuro fuzzy inference system. According to
them the new integrated fault diagnostic system significantly reduces the seal complexity,
and computational time of the system. They have validated results from the diagnostic
technique for a 3-phase induction motor drive system. Kuo [155] has proposed a fault
detection system using data acquisition, feature extraction and pattern recognition for
detecting faults of blades by applying multiple vibration sensors. The feature extraction

algorithm has been developed based on back propagation artificial neural network. The fuzzy
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logic technique has been employed to speed up the training speed. According to him the
results from the system are very close to the results obtains from the experimental analysis.
Zio et al. [156] have presented a fault diagnostic problem using neuro fuzzy approach. They
have used this approach for the purpose of high rate of correct classification and to obtain an
easily interpretable classification model. The efficiency of the approach has been verified by
applying to a motor bearing system and the results obtained are quite encouraging. Wang et
al. [157] have presented the comparison of the performance for two fault diagnosis system
that is recurrent neural networks and neuro fuzzy systems using two benchmark data sets. As
described by them, it is found that the neuro fuzzy prognostic system is more reliable for
machine health condition monitoring than the neural network fault diagnostic system. Zhang
et al. [158] have proposed a bearing fault detection technique based on multi scale entropy
and adaptive neuro fuzzy inference system (ANFIS) to measure the nonlinearity existing in a
bearing system. They have conducted experiments on electrical motor bearing with three
different fault categories and the results obtained from the experimentation have been used to

design and train the ANFIS system for fault diagnosis.

2.3.3.5.2 Genetic-fuzzy technique

The research papers reviewed from the domain of application of Genetic-fuzzy technique for

crack and fault detection in structural and mechanical systems are presented in this section.

Wu et al. [159] have presented a new version of fuzzy support vector machine to diagnose
faults in automatic car assembly. The input and output variables have been described by them
as fuzzy numbers in the fuzzy based system. They have shown that the modified GA helps
the fuzzy support vector classifier machine to seek optimized parameters. The results from
their methodology in car assembly for fault diagnosis confirm the feasibility and the validity
of the diagnosis method. Pan et al. [160] have analyzed the effect of random delays in
network controlled system by using fuzzy PID models. They have tuned the models by
minimizing the time multiplied absolute error and squared model output with stochastic
algorithms viz. the GA and particle swarm optimization. After analyzing the performance of
the algorithm they have shown that random variation in network delay can be handled

efficiently with fuzzy logic based PID models over other techniques as mentioned in the
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paper. Pawar et al. [161] have devised a structural health monitoring methodology using
genetic fuzzy system for online damage detection. They have used displacement and force
based measurement deviations between damage and undamaged condition for building the
rules and data pool for the fuzzy and genetic system respectively. The developed
methodology has been applied for composite rotor blades and the results are found to be
encouraging. Yuan et al. [162] have proposed an artificial immunization algorithm (AIA) to
optimize the parameters obtained from support vector machines (SVM) generally used as
machine learning tool for fault-diagnosis. They have used the proposed fault diagnosis model
for a turbo pump rotor and found that the SVM optimized by AIA gives higher accuracy than
the normal SVM.

2.3.3.5.3 Genetic-neural technique

The Genetic-neural techniques used by various authors for development of crack diagnostic
tools are depicted in this section.

Hajnayeb et al. [164] have designed a system based on artificial neural networks (ANNs) to
diagnose different types of fault in a gear box. They have used experimental set of data to
verify the effectiveness and accuracy of the proposed method. Their developed system has
been optimized by eliminating unimportant features using a feature selection method. This
method of feature selection has been compared with Genetic Algorithm (GA) results and is
found to be in close agreement. Chen et al. [165] have proposed a robust fault diagnosis
system of rotating machine adapting machine learning technology by employing a set of
individual neural networks based on structured genetic algorithm. The frequency signals and
the corresponding faults have been used to train the developed technique. They have stated
that the advantage of using their approach is to obtain the optimal parameters automatically
and improved performance in diagnosis accuracy. Firpi et al. [166] have used genetically
programmed artificial feature (GPAF) for fault detection of a rotating machine part. They
have extracted artificial features using GPAF algorithm while taking vibration data as a
source of information. Samanta [167] has compared the performance of gear fault detection
using artificial neural network (ANN) and support vector machines (SVMs) and has found
that the classification accuracy of SVMs is better than ANN without genetic algorithm (GA)

optimization while with GA optimization performance of both classifiers are comparable.
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Jack et al. [168] have used support vector machines (SVMs) and artificial neural network
(ANN) with genetic algorithm (GA) optimization technique to detect faults in rotating
machinery. They have compared the performance of this classification and improve the

overall performance by using GA based features selection process.

2.3.3.5.4 Genetic-neural-fuzzy technique

The literature reviewed from the published papers using Genetic-neural-fuzzy Technique for

crack and fault detection in various systems are discussed in this section.

Li et al. [169] have presented a novel enhanced genetic algorithm (EGA) technique to
overcome the problems present in classical GA like slow convergence and time consumption
and to provide a more efficient technique for system training and optimization. The
developed method has been used to train a neural-fuzzy predictor for real-time gear system
monitoring and found that their technique outperforms the classical GA in terms of
convergence speed. Zheng et al. [170] have presented a method which combines the genetic
algorithm and fuzzy logic to optimize the centers and widths of the radial basis function
neural network (RBFNN) for structural health monitoring of a glass epoxy composite
laminates. They have used the linear least-squared method to adjust the neural network
connection weights. From the analysis of results they have concluded that the simulation
demonstrates that the neural network based on genetic algorithm and fuzzy logic is robust
and promising. Saridakis et al. [171] have studied the dynamic behavior of a shaft with two
transverse cracks considered to the along arbitrary angular positions at some distance from
the clamped end. They have developed a fuzzy logic based crack diagnosis model by using
the effect of bending vibrations of the cracked shaft. Genetic algorithm and neural network
have been used for the developed technique to reduce the computational time without any
significant loss in accuracy. Kolodziejczyk et al. [172] have investigated the potential of
various artificial intelligence techniques to predict the damage parameters mainly arising due
to wearing out of the contact surfaces. The proposed technique has been designed using
fuzzy logic, neural network and genetic algorithm. The results from the developed
methodology are found to be closer to the experimental data. They have also optimized the

proposed crack diagnose model to reach high robustness.
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2.3.4 Miscellaneous methods and tools used for crack detection

Excepting the various methods cited above miscellaneous methods and tools are also used for

crack detection and some of them are briefly discussed in this section.

Gordis et al. [173] have developed two global-local algorithms for the analysis of quasi-
static crack propagation in a structure based on frequency domain structural synthesis. The
crack propagation problem has been based on a simple two-layer finite element where the
two layers are connected by inter-layer springs. At the end they have found that the
synthesis-based algorithms are significantly outperform the traditional finite element
solution. Bachschmid et al. [174] have used the model of a turbo-generator unit to perform a
numerical sensitivity analysis, in which the vibrations of the shaft-line, and more in detail the
vibrations of the shaft in correspondence to the bearings, have been calculated for all possible
positions of the crack along the shaft-line, and for several different values of the depth of the
crack. They have established a relation between the dynamic response and the position of
crack location and depth present in the system. Jun has [175] proposed a diagnosis system
using dynamic time warping (DTW) and discriminant analysis with oxidation—-reduction
potential (ORP) and dissolved oxygen (DO) values for fault detection in a swine wastewater
treatment plant. Finally he has concluded that the ORP method out performs the other two
methods which have been employed for fault identification in the system. Yiakopoulos et al.
[176] have designed a K-means clustering approach for the automated diagnosis of defective
rolling element bearings. They have stated as K-means clustering is an unsupervised learning
procedure, the method can be directly implemented to measured vibration data. Thus, the
need for training the method with data measured on the specific machine under defective
bearing conditions is eliminated. They have concluded that, the proposed system is an
effective tool to detect faults in bearing systems. Cusido et al. [177] have paper proposed a
different signal processing method, which combines wavelet and power spectral density
techniques giving the power detail density as a fault factor. The method shows good
theoretical and experimental results. Cao et al. [178] have developed a novel Laplacian
scheme to form an improved damage identification algorithm. They have measured the
modal curvature to develop the diagnostic method. The results from the proposed Laplacian

scheme have been validated with experimental results. Fagerholt et al. [179] have described
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an investigation on the fracture behavior of a cast aluminium alloy. They have used classical
flow theory for modeling the fracture. They have also used Digital Image Correlation (DIC)
to obtain information of the displacement and strain field in the specimen. The results from
the numerical investigation are found to be in agreement with the experimental data.
Karaagac et al. [180] have studied the effect of crack ratios and positions on the natural
frequencies and buckling loads of a slender cantilever Euler beam with a single edge crack
using the local flexibility concept. Experiments have been conducted by them to validate the
numerical results. Rus et al. [181] have presented a work based on hyper singular shape
sensitivity boundary integral equation for solution of the inverse problem for crack
estimation. The accuracy and convergence of the sensitivity for the proposed method has
been verified with the simulated/experimental results. Kyricazoglou et al. [182] have
presented method to detect the damage in composite laminates by measuring and analyzing
the slope deflection curve of composite beams in flexure. They have provided the damage
mechanism and location of damage from comparison of dynamic results with the dynamic
response from the damaged laminates. He suggested that slope deflection curve is a
promising technique for detection initial damage in composites. Peng et al. [183] have
introduced a new concept of non linear output frequency response functions (NOFRFS) to
detect cracks in beams using frequency domain information. As stated by him the NOFRFS
are a sensitive indicator of presence of cracks. He has suggested that this method establishes
a basis for the application of NOFRF concept in fault diagnosis of structures. Friswell [184]
has given an overview of the use of inverse method in the detection of crack location and size
by using vibration data. He has suggested that in this method the uncertain parameters
associated with the model have to be identified. In this work he has discussed a number of
problems with this method for health monitoring, including modeling error, environmental
efforts, damage localization and regularization. Zheng et al. [185] have presented a tool for
vibrational stability analysis of cracked hollow beams. According to him each crack is
assigned with a local flexibility coefficient which is a function of depth of crack. He has used
least squared method to device the formulae for shallow cracks and deep cracks. In this work
he has adapted Hamilton’s principle to formulate the governing equation by employing the
flexibility coefficient of the cracks which serves as that of the rotational spring. Leontios et

al. [186] have presented a new method of crack detection in beams based on Kurtosis. As
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stated by him the location of the crack has been determined by the abrupt changes in spatial
varitation of the analyzed response and the size of the crack is calculated by the estimation of
Kurtosis. In this work the proposed method has been validated by experiments on crack
Plexiglas beams. According to him the proposed Kurtosis-based prediction method is more
attractive than the existing methods for crack detection due to low computational complexity.
Bayissa et al. [187] have presented a new method for damage identification based on the
statistical moments of the energy density function of the vibration responses in time-
frequency domain. According to this article the major advantage of this method is that the
time-frequency analysis conducted using the wavelet transform provides a tool to
characterize deterministic as well as random responses and can be used to detect slight
changes in the response of local vibration. Finally he has suggested that the proposed method
is more sensitive to damage than the other methods. Dilena et al. [188] have shown that the
natural frequency and anti resonant frequency contains certain generalized Fourier
coefficients of the stiffness variation due to damage. According to him the results of
numerical simulations on rods with localized or diffused cracks are in good agreement with
theory. He has concluded that the experimental results show that the inverse problem
solution, noise and modeling errors on anti resonances amplified strongly than the natural
frequency data used. Kim et al. [189] have developed a technique to address the problem of
condition-based maintenance scheme in industrial machines by correctly measuring the
remaining life of the machine component utilizing the support vector machine tool. As
claimed by them, the results from their method have been very encouraging and can be used
as a potential tool for prediction of remaining life of machineries. Jafari et al. [190] have
discussed an approach for fracture density estimation in an oil well structure using an
adaptive neuro-fuzzy inference system. They have stated that, the proposed method have
produced results in close proximity with measured values. Bacha et al. [190] have presented
a novel technique for fault classification in a power transformer using dissolved gas analysis
and multi-layer support vector machine classifier. When the developed technique is
compared with other methods; the proposed methodology performance in detecting the faults
in the power transformer has been superior. Mandal et al. [192] have proposed a new leak
detection technique to address the problem of false leak detection in pipelines carrying fluids

by applying rough set theory and support vector machine (SVM). They have designed the
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SVM using artificial bee colony algorithm and particle swarm optimization technique. They
have found from the experimental analysis that, their method is capable of detecting leaks
with higher accuracy. Rao et al. [193] have presented a method for crack identification in a
cracked cantilever beam. They have identified the crack by analyzing the vibration signatures
using continuous wavelet transform technique. The results obtained using this method has
been validated both by analytical and experimental methods over a cantilever beam
containing transverse surface crack. Quek et al. [194] have investigated and presented the
sensitivity of wavelet technique in the detection of cracks in beam structures considering the
effects of different crack characteristics, boundary conditions, and wavelet functions. From
the analysis, they have concluded that the wavelet transform is a useful tool in detection of
cracks in beam structures. Wang et al. [195] have studied the damage detection in structural
systems using spatial wavelets technique. According to them, their technique is neither
dependent on the complete analysis of the structure nor on the material properties nor prior
stress states of the structure. They have also checked the authenticity of this new technique
by numerical and analytical analysis. Loutridis et al. [196] have presented a method based on
wavelet analysis using the sudden changes in the spatial variations of the dynamic response
of the cracked structures. The proposed technique has been validated by analytically and
experimentally. Gentile et al. [197] have investigated to develop a technique based on
continuous wavelet transform for detecting the location of open crack in damaged beams by
minimizing the measurement data and baseline information of the structure. Pieper [198] has
suggested a control design for a flexible manipulator for position control using soft
computing. Torres-Torriti [199] has proposed a novel approach using Kalman filter for
localization of mobile robots in clumsy environment by minimizing Hausdorff distance. Rout
et al. [200] have discussed about a methodology to simulate the real condition for optimized
design of a manipulator. The design has been carried out using differential evolution
optimization and orthogonal array technique. Samantaray et al. [201] have presented a bond
graph model to simulate systems to validate the steady-state results obtained from the
theoretical study. Panigrahi et al. [202] have proposed a new evolutionary algorithm method
adopting Adaptive Particle Swarm Optimization to measure the parameters such as
amplitude, phase and frequency of a power quality signal. Casanova et al. [203] have

presented a new technique for 2D localisation of moving objects. They have used laser and
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radio frequency in the system to find out the robot position and orientation. Packianather et
al. [204] have investigated the effect of processing and geometric factor on the injection

molding performance for polymer material using computational technique.
2.4 Findings of the literature review

By analyzing the reviewed literature as discussed in the above section, it is observed that
analytical methods and artificial intelligence (AI) techniques exist for identification of single
crack in structural members, but extension to multiple numbers of cracks to the author
knowledge, are unsolved problems. Various types of Al methods such as fuzzy inference,
neural network, genetic algorithm can be potentially used as the basis for development fault
detection algorithms. But it is seen that, the capabilities of artificial intelligence techniques
are not completely explored to design and develop intelligent model for multiple crack

diagnosis.

In the current research, a systematic effort has been made to develop Al based intelligent
system for structural health monitoring of cantilever beam model using fuzzy inference,
neural network, genetic algorithm, MANFIS and hybrid techniques. The parameters required
to design and train the Al model have been obtained by using the theoretical, finite element

and experimental analysis of the cantilever beam structure.

Publication
e D. R. K. Parhi and Dash Amiya Kumar, Analysis of methodologies applied for

diagnosis of fault in vibrating structures, Int. J. Vehicle Noise and Vibration, Vol. 5,
No. 4, 2009, 271-286.
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Chapter 3

EVALUATION OF DYNAMIC CHARACTERISTICS OF BEAM
STRUCTURE WITH MULTIPLE TRANSVERSE CRACKS

It has been observed that the presence of cracks in structures or in machine members lead to
operational problem as well as premature failure. A number of researchers throughout the
world are working on structural dynamics and particularly on dynamic characteristics of
structures with crack. The dynamic characteristic comprises of natural frequencies; the
amplitude responses due to vibration and the mode shapes. Due to presence of crack the
dynamic characteristics of structure changes e.g. there is a reduction in natural frequencies,

an increase in modal damping.

3.1 Introduction

In the recent times, the dynamic responses of cracked structure have been analyzed
effectively by different researchers. The modal parameters are found to vary due to presence
of crack in the structure and the intensity of variation is a function of crack intensity and
position of crack. Engineers and scientists have emphasized the effect of crack on the natural
frequencies and mode shapes of dynamically vibrating structure, which in turn can be
efficiently utilized for developing crack identification algorithms. The focus of this chapter is
to adopt a systematic approach to formulate a theoretical model to analyze the effect of
multiple cracks on the modal response of the cantilever beam structure. Stress intensity factor
and strain energy release rate from linear fracture mechanics theory have been employed to
derive the dimensionless compliance matrices and subsequently the local stiffness matrices.
The stiffness matrix has been utilized to find out the variation in the dynamic response of the
multiple cracked beams in comparison to that of the undamaged beam. In the theoretical
analysis different boundary conditions have been laid down to compute the natural
frequencies and mode shapes for the cantilever beam structure with various crack depths and
crack locations. The modal responses obtained from the theoretical analysis have been

authenticated by comparing the results with that of the experimental analysis.

42



3.2 Vibration characteristics of a multi cracked cantilever beam

3.2.1 Theoretical analysis

This section presents the approach adopted to build the theoretical model for measuring the
modal characteristics i.e. natural frequencies and mode shapes of the cracked beam
containing multiple transverse cracks for different relative crack depths and relative crack
positions and undamaged beam structure. During the analysis of the theoretical results, it is
observed that a noticeable change in the first three mode shapes have been marked at the
vicinity of crack locations. The robustness of the proposed theoretical approach has been

established by comparing the results with the experimental results.

3.2.1.1 Evaluation of local flexibility of the damaged beam under axial and bending

loading

Fig. 3.1(a) presents a multi cracked cantilever beam, subjected to axial load (P,) and bending
moment (P,). The loading provides a coupling effect resulting in both longitudinal and transverse
motion of the beam. The beam contains two transverse cracks of depth ‘a;” and ‘a,’ having width
‘B’ and height ‘“W’. Due to the cracks present in the beam a local flexibility will be introduced
and a 2x2 matrix is considered, which represents the flexibility of the beam. Fig. 3.1(b)

represents the cross sectional view of the cantilever beam model.

At the cracked section strain energy release rate can be explained as [20];

1-v? ) ..
J =%(K11 +K,, )*, Where % = EV (for plane strain condition); (3.1a)
= %(for plane stress condition) (3.1b)

The Stress intensity factors Kj;, Ki» are of mode I (opening of the crack) for load P, and P

respectively. The values of stress intensity factors from earlier studies [20] are;

3]
WB

Jra(F, (%))= K., %\/E (F, (%))= K, (3.2)
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The expressions for F; and F, are as follows

N
a. 2W. ma s [0.752+2.02(a/W)+0.37(1-sin(az/2W))’
Fl(W) =( ma tam(ZW)) { cos(arz/2W) } > (3.3)
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Figure 3.1 (b)

Fig. 3.1 Geometry of beam, (a) Cantilever beam, (b) Cross-sectional view of the beam.

Assuming U; be the strain energy due to the crack. The additional displacement along the

force P; according to Castigliano’s theorem is;

ou,
o (3.4)
: : t 10U,
The form of strain energy will have, U, = '[ Jda= j P da (3.5)
a
0 0
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ou . : .
Where J= a—‘ the strain energy density function.
a

Hence, from equations (3.1) and (3.3), we can have

o7
— | J(a)da |=u;
o { J1@ } 1
C;; the flexibility influence co-efficient by definition is

ou;
aP 6P oP,

0’
E" OP,0P, |

p+Ky)*dE=C;

Using equation (3.8) the compliance C,;, Caz, Ci2 (=Cy)) are as follows;

_BW

= J 2R (9) dg

4|
e EUTOE

B 1271
Co=Co=prw j EF, (D), (8)de

_ T2n
Co= T j EF, (&), (8)dg

The dimensionless form of the influence co-efficient will be;

— BE' — EBW — — E'BW?
C,=C,— C,=C,———=C,; szzczzﬁ
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The inversion of compliance matrix will lead to the formation of local stiffness matrix and

can be written as;

-1
K=|:C11 C12j| =|:K11 K12:| (3.13)
C, Cy K, K,

The stiffness matrix for the first and second crack location can be obtained as follows:

’ ' ' y -1 " " " n -1
Ko l:kjl ka} _ {C’” Cjz} and K= k% ko _ Cn G
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Fig. 3.2 Relative Crack Depth (a;/W) vs. Dimensionless Compliance ((In (Cilinirn)

The variations of dimensionless compliances with respect to relative crack depth have been
shown in Fig. 3.2 and from the graph it is observed that the dimensionless compliance

increases with increase in relative crack depths.
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3.2.1.2 Vibration analysis of the multi cracked cantilever beam

In the present section, a cantilever beam (Fig. 3.3) with multiple crack with length ‘L’ width

‘B’ and depth ‘W’, having cracks at distance ‘L;” and ‘L,” with crack depths ‘a;’and ‘a,’

respectively from the fixed end has been analyzed. The amplitudes of longitudinal vibration

have been taken as u;(x, t), ux(x, t), us(x, t) and amplitudes of bending vibration have been

considered as yi(x, t), ya(X, t), y3(x, t) for the section-1(before 1% crack), section-2 (in

between cracks), section-3 (after the 2™ crack) respectively as shown in Fig.3.3.

v

Section 1 1 a1 Section 2‘ Ia2 Section 3

L;

A
\ 4

L, ’I

L
Fig. 3.3 Front view of the cracked cantilever beam

The following are the expressions of normal functions for the system
1,(X)=A, cos(K X)+A, sin(K X)

1,(X)=A, cos (K X)+A, sin(K X)

U,(X)=A, cos(K X)+A, sin(K, X)

¥, (X)=A; cosh (K X)+A, sinh(K,X) + A, cos(K, X)+A, sin(K,X)
¥,(X)=A, cosh(K X)+A,, sinh(K,X) + A, cos(K,X)+A,, sin(K,X)

¥;(X)=A,; cosh(K X)+A, sinh(K,X) +A,; cos (K X)+A,; sin(K,X)

Where, Xx=—,u=

= |
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L E 1/2 12 172 EI 1/2
K,=——=,C,=[=| K, =|Z=| ,c,=|=]| ,u=ap
C p C n

The constants A;, (i=1, 18) are to be calculated using the laid down boundary conditions. The

following are the boundary conditions for the cantilever beam,;

u,(0)=0; 3.15(a)
y:1(0)=0; 3.15(b)
y:(0)=0; 3.15(c)
ui(1)=0; 3.15(d)
y'; (1)=0; 3.15(e)
y5(1)=0 3.15(f)
At the fractured section:

u', (B)=u', (B); 3.16(a)
Y (B)=y,(B); 3.16(b)

yiB)=y,(B); 3.16(c)
yiBN=y3(B). 3.16(d)
u, (B2)=1's (B2), 3.16(e)
Y.(B2)=y5(B2). 3.16(f)
V3(B)=y3(B2). 3.16(g)
V2 (B2)=¥3(B2). 3.16(h)

The expression in equation (3.17) can be found out because of the discontinuity of axial
deformation to the right and left of the first crack location at the distance L; from the fixed

end of the cantilever beam. Also at the cracked section, we have

dy,(L,) dy, (L))
dx dx

AE———= =Xk}, (u,(L,)—u, (L)) +ki,(

du, (L) ) (3.17)
X

48



Multiplying on both sides of equation (3.17) we get ;

r1,r
1112

MM, 1 (B1) =M, (w2 (B —ur () +M, (¥, (B) -y, () (3.18)

The expression in equation (3.19) can be found out because of the discontinuity of slope to

the left and right of the crack at the crack section.

szl(Ll) -

EI 2 b (uy (L) —u, (L) + ko, (
dx

dy,(L,) _ dy, (L))
d

L) (3.19)

Multiplying % on both sides of equation (3.19) we get;

22721

MMy, (B)=M,(y, B)-y, (B)+M, =) - (Br) (3.20)

Similarly considering the second crack we can have;
M Mgus (B2) = M (us(B2) — u2(B2) + My (v, (B2) -, (B2) (3:21)

MM, y, (B2)=M,(y; (B) =y, (B2)+ M, (us(B2)—u2 (B2) (3.22)
Where M, = AE/(Lk/,),M, = AE/k/, ,M, =EI/(Lk},),M, = EI/(L’k})
Ms = AE/(Lkgz)sMé = AE/kgs D M7 = EI/(Lkga)aMs = EI/(LZkgz)

By using the normal functions, equation (3.14a) to equation (3.14f) with the laid down boundary

conditions as mentioned above, the characteristic equation of the system can be expressed as;

Q=0 (3.23)

This determinant is a function of natural frequency (®), the relative locations of the crack

(B1,B2) and the local stiffness matrix (K) which in turn is a function of the relative crack

depth (a;/W, a,/W).
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Where Q is a 18x18 matrix and is expressed as

o o 0o o o o O O O O O O 1 0 0 O 0 |

1 0 1 o o0 0 O 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 O 0 0 0 0 0 0 0 0 O O 0

o o0 o o0 o0 0 ©0 0 0 0 0 0 0 0 0 0 -T T

0o 0 0 06 0 0 0 0 G G -G-GO 0 0 0 0 0

o 0 0o 06 0 0 0 0O G G G -GO 0 0 0 0 0

o 0 0 06 0 0 0 0 0 O O 0 -TLT, T -TL,O 0

G G G G -G -G,-G, -G, 0 0O 0 0 0 0 0 0 0 0

G G -G -G -G -GG G 0 o0 o0 o0 0 0 0O 0 0 O
Q= |G, 6, 6, -G, -G, -G, -G, G, 0 0 0 0 0 0 0 0 0 0 |(3.24)

o o 0o 0 06 06 0 0 0 O O o0 0 0 -T,T, T, -T

0 0 0 G, G, G, G, -G, -G, -G, -G, 0 0 0 0 0 0

0 0 0 G G, -G, -G,-G -G,G, G, 0 0 0 0 0

0 0 0 G, G G, -G,-G,-G, -G, G, 0 0 0 0 0

-S, =S, S, -S S, S, -S,S 0 0 S -ST, T, 0 0

S, & =S =S =S =S, S S 0 0 S5 Sig =S5 =S¢ 0 0

0 Vi Vv, -V Y, -V -V V-V 0 ViV, -T, T,

L 0 Vi Vo Vo =V =V -V Vi -V, 0 Vis Vs —Vis _Vle_

Where;

T, =Sink., T, = Cosku, T, = Cos(kuf2), T, = Sin(kuB2), T, = Cos(kup1), T, = Sin(kup1),

G, = Cosh(kyB1),G, =Sinh(ky B1) ,G, = Cosh(ky),G, = Sinh(k,),

G, = Cos(ksp1) G, =Sin(k,p1),G, =Cos(ky), Gy = Sin(ky),G, = Cosh(k,p2),

G,, =Sinh(k,B2), G,, =Cos(k,p2), G, =Sin(k,p2), M, =AE/Lk!), M,=AE/k),,

M, :EI/(Lk'zz), M, :EI/(sz'Zl), M,=M,/M,, M,,=M;/M,, S =T,-M k.T,,
Sz =T +M1kuT5 ,S3 = Mlzsnas4 = M12812785 = MIZSI3 986 = M12SI4 S7 = M3kY2G1 + S11 >
S, =M.k,’G, +S,,,S, =M,k,’G, +S;,S,, =M,k,’G, - S,

S =EYG2 5 S, = EyGl ’Sl3 :EYG6 S, = EYGS ’SIS =M,,T; ’Sl() =M;,Tg My = AE/(Lklzlz) >
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M, = AE/K",, M, = EI/(LK",), M, = EI/(L*k%), M, =M, /M,,
M., =M, /M,,V, =T, -M.k.T,,V, =T, + M. k.T,,V, =M. V,,,V, =M. V,,,
Vo=M,V,,V, =M,V,,V, =M. k,’G, +V,,,V, =M, k,’G,, +V,,,

V, =M, k,’G,, +V;, V,=M,k,’G,,-V,, V,=k,G,, V,,=k,G,, V,=k,G,,,

V14 :kYGn > V15 = M78T3’ V16 = M78T4

3.2.2 Numerical analysis

The cantilever beam with multiple crack and undamaged condition has been considered for
numerical analysis, to compute the relative natural frequencies and relative amplitude of
vibration for different crack locations and crack severities. In the current investigation, the

cantilever beam model used for the vibration analysis has the following dimensions.

Length of the Beam = 800mm

Width of the beam =38mm

Height of the Beam = 6mm

Relative crack depth (a;/W, a/W) = Varies from 0.083 to 0.416
Relative crack location (L;/L, L,/L) = Varies from 0.0625 to 0.9375

3.2.2.1 Results of theoretical analysis

The theoretical analysis has been carried out to obtain the mode shapes for the first three
modes of the cracked aluminum cantilever beam model with different crack locations and
crack severities using the equation (3.24). A comparison of mode shapes computed for both
the multiple cracked and undamaged beam member along with the magnified using views at

the vicinity of crack location have been presented in Fig. (3.4a to 3.4 ¢).
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Fig. 3.4a Relative amplitude vs. relative distance from the fixed end
(1St mode of vibration), a;/W=0.083, a,/W=0.333,L,/L=0.1875, L,/LL=0.5625.
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Fig. 3.4al Magnified view of fig. 3.4a at the vicinity of the
crack location L1/L=0.1875.
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Fig. 3.4a2 Magnified view of fig. 3.4a at the vicinity of the
crack location L,/L=0.5625.
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Fig. 3.4b Relative amplitude vs. relative distance from the fixed end (2™
mode of vibration), a;/W=0.083, a,/W=0.333,L,/L=0.1875, L,/L=0.5625.
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Fig. 3.4b1 Magnified view of fig. 3.4b at the vicinity of the
crack location L;/L=0.1875.
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Fig. 3.4b2 Magnified view of fig. 3.4b at the vicinity of the
crack location L,/L.=0.5625.
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Fig. 3.4c Relative amplitude vs. relative distance from the fixed end (3rd
mode of vibration),a;/W=0.083,a,/W=0.333,L,/L=0.1875, L,/L=0.5625.
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Fig. 3.4cl Magnified view of fig. 3.4c at the vicinity of the
crack location L;/L=0.1875.
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Fig. 3.4c2 Magnified view of fig. 3.4c at the vicinity of the
crack location L,/L=0.5625.

56



3.3 Analysis of experimental results
The aluminum cantilever beam with dimension (800 x 38 x 6 mm) has been considered to
carry out experiments for evaluating the relative amplitude of vibration. A number of

experiments have been performed on the test specimens with various configurations of crack

locations and crack depths to determine the first three mode shapes and natural frequencies.

1. Data acquisition 4. Power Distribution 7. Modal vibration Exciter
(Accelerometer)
2. Vibration analyser 5. Function generator 8. Cracked Cantilever beam
3. Vibration indicator 6. Power amplifier
embedded with software
(PULSE Labshop)

Fig. 3.5 Schematic block diagram of experimental set-up

3.3.1 Experimental results

The mode shapes obtained from experimentation (Fig. 3.5) for relative crack locations (0.25,
0.0625, 0.3125, 0.5625, 0.1875, 0.5) and relative crack depths (0.083, 0.166, 0.25, 0.333)
have been compared with that of the numerical analysis for both cracked and undamaged

beam. The comparisons are presented in Fig.3.6 to Fig. 3.8.
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Fig.3.6 (a)

Relative amplitude vs. relative distance from the fixed end

(1* mode of vibration), a;/W=0.166, L;/L=0.0625, a,/W=0.25, L,/L.=0.3125
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Fig.3.6 (b)

Relative amplitude vs. relative distance from the fixed end

(2ncl mode of vibration), a;/W=0.166, L;/L=0.0625, a,/W=0.25, L,/L=0.3125
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Fig.3.6 (c)  Relative amplitude vs. relative distance from the fixed end
(3rd mode of vibration), a;/W=0.166, L;/L= 0.0625, a,/W=0.25, L,/L=0.3125
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Fig.3.7 (a) Relative amplitude vs. relative distance from the fixed end
(1** mode of vibration), a;/W=0.083, L;/L=0.25, a,/W=0.333, L,/L=0.5625
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Fig.3.7 (b) Relative amplitude vs. relative distance from the fixed end
(2nd mode of vibration), a;/W=0.083, L;/L=0.25, a,/W=0.333, L,/L=0.5625
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Fig.3.7(c) Relative amplitude vs. relative distance from the fixed end
(3rd mode of vibration), a;/W=0.083, L;/L=0.25, a,/W=0.333, L,/L=0.5625
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Fig.3.8 (a) Relative amplitude vs. relative distance from the fixed end
(1St mode of vibration), a;/W=0.166, L;/L.=0.1875, a,/W=0.083, L,/L=0.5
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Fig.3.8 (b) Relative amplitude vs. relative distance from the fixed end
(2nd mode of vibration), a;/W=0.166, L;/L=0.1875, a,/W=0.083, L,/L=0.5
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Fig.3.8 (c) Relative amplitude vs. relative distance from the fixed end
(3rd mode of vibration), a;/W=0.166, L;/L=0.1875, a,/W=0.083, L,/L=0.5

3.3.2. Comparison between the results of numerical and experimental analyses

The results obtained in the form of mode shapes from theoretical analysis and experimental
analyses are compared in Fig.3.6 to Fig. 3.8. The results from the several recorded data set,
ten numbers are presented in Table 3.1 for systematic comparison among the theoretical and

experimental results.

The relative natural frequency and relative mode shape difference used in the above analysis

can be defined as follows.

(Natural frequency of cracked beam)
(Natural frequency of undamaged beam)

Relative natural frequency =

Relative mode shape difference =

(Modal amplitude of undamaged beam — Modal amplitude of cracked beam)

Modal amplitude of undamaged beam
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The first three columns of the Table 3.1 represents first three relative natural frequencies, where

as the fourth, fifth and sixth number columns present the average relative mode shape difference

for first three modes of vibration. The columns number seven, eight, nine and ten presents the
relative crack depth for first crack position, relative crack location for first crack position, relative

crack depth for second crack position, relative crack location for second crack position

respectively obtained from numerical analysis. The columns number eleven, twelve, thirteen and

fourteen present the relative crack depth for first crack position, relative crack location for first

crack position, relative crack depth for second crack position, relative crack location for second

crack position respectively obtained from experimental analysis.
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3.4 Discussions

This section explains the discussions made from the analysis of the results derived from
theoretical and experimental section. The cracked cantilever beam containing multiple transverse
cracks and cross sectional view of the cantilever beam structure are shown in Fig. 3.1 (a) and
Fig.3.1 (b) respectively. Fig.3.3 represents the front view of the cracked cantilever beam. The
variation of relative crack depth with dimensionless compliances is shown in Fig. 3.2. It is
observed that the due to decrease in local stiffness at the crack sections the dimensionless
compliance increases with increase in relative crack depth. The graphs presented in Fig. 3.4a to
Fig. 3.4c show the deviation of the first three mode shapes for the cracked and undamaged beam
with magnified view at the vicinity of the crack locations obtained from theoretical analysis.
From the magnified view (such as Fig. 3.4al, Fig. 3.4a2), it is evident that there is a noticeable
effect on the mode shapes due to presence of cracks in the cracked beam as compared to
undamaged beam. A significant variation in the mode shapes can be seen with increase in crack
depth in Fig. 3.4a to Fig. 3.4c. A comparison of results for the intact and cracked beam derived
from numerical analysis and experimental set up (Fig. 3.5) have been exhibited in Fig. 3.6 to Fig.
3.8. The relative crack locations and relative crack depths corresponding to ten sets of first three
natural frequencies and first three mode shape differences from numerical and experimental

analysis are presented in Table 3.1.

3.5 Summary

The conclusions drawn from the above analysis are described in this section. Due to the presence
of cracks the vibration parameters of the cracked beam such as natural frequencies and mode
shapes shows a major deviation near the crack locations as compared to undamaged beam. This
phenomenon can be seen in the magnified view. The vibration indices obtained from the
numerical analysis have been validated using the results from experimental analysis and are
found to be well in agreement. The deviation in the dynamic response can be used as the basis
for multiple crack identification in damaged structural members and the measured vibration
parameters can also be used for design and development of inverse methodologies for fault
diagnosis. The proposed method can be effectively used to develop artificial intelligent
techniques for online structural health monitoring. In the subsequent sections various Al
techniques have been employed to formulate intelligent supervision system for multiple crack

diagnosis.
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Chapter 4

ANALYSIS OF FINITE ELEMENT FOR MULTIPLE
CRACK DETECTION

One form of damage that can lead to catastrophic failure of the beam structures are transverse
cracks if undetected in their primary stages. However, it is difficult to locate a crack using
visual inspection and it may be detected usually by non-destructive techniques such as x-ray,
ultrasonic test etc. However, these techniques are found to be unsuitable for various
engineering systems as they require periodic inspection. In last two decades, a lot of
researches have been devoted and several models have been developed to predict the damage
characteristics using the vibrational behavior of the damaged beam structures. Vibration
based methods for detection of crack offer some advantages over conventional methods. This
methodology can help to determine the location and size of the cracks from the vibration data
collected from the cracked beam structure. The crack developed in the structure generates
flexibility at the vicinity of the crack which in turn, gives rise to a reduction in natural
frequencies and the change in the mode shapes. Hence, it may be possible to estimate the
location and size of the cracks by measuring changes in the vibration parameters. Single
crack detection in beam has been studied by scientists adopting analytical model of the
structure. This chapter introduces finite element analysis for identification of multiple cracks
present in structural systems. The results from the finite element analysis have been
compared with that of the numerical analysis and experimental analysis to establish the
robustness of the proposed finite element model. Finally, it is found that the finite element

technique can be suitably used for multiple crack detection in damaged structures.

4.1 Introduction

Automation of fault identification in various engineering systems can be termed as the
implementation of systematic approach to detect and quantify the presence of faults present
in the system. Faulty beam has been a point of major concern for failure analysts of structural
systems for overall safety and performance. The modal responses of the damaged members
can be potentially used for estimating the damage parameters present in the beam members.
In due course of development of different crack detection technique researchers have used

energy based method, wavelet analysis, numerical techniques such as finite element method,
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artificial intelligent methods, etc. In last few decades scientists have addressed the problem
of detecting single crack present in beam model using finite element analysis and it is cited
that the performance of FEA is better as compared to theoretical model developed for crack
diagnosis. So, this technique can be used to detect the presence of multiple cracks with their
crack features such as crack depth and crack location in systems using the vibration response

of the system.

In this present investigation for fault identification in a cracked beam containing multiple
transverse cracks, finite element analysis has been carried out to identify crack depths and
their positions. It has been established that a crack in a beam has an important effect on its
dynamic behavior. Theoretical and experimental analyses have been done to validate the
results obtained from the finite element analysis of the multi cracked cantilever beam
structure. In the theoretical analysis the strain energy density function is used to evaluate the
additional flexibility produced due to the presence of crack. Based on the flexibility a new
stiffness matrix 1s deduced and subsequently that is used to calculate the natural frequencies
and mode shapes of the cracked beam. The results from finite element method and
experimental method are compared with the results from the numerical analysis for

validation. The results are found to be in good agreement.

This chapter has been organized into five sections. Introduction, Finite Element Analysis is
explained in section 4.1 and 4.2 respectively. The analysis of cracked beam using finite
element analysis (FEA) is discussed in section 4.2.1. In section 4.3, the results of the finite
element analysis are compared with that of experimental and numerical results to exhibit the
authenticity of the proposed methodology. In the concluding section 4.4 summaries are

given.

4.2  Finite element analysis

The finite element analysis is a useful numerical technique that utilizes variational and
interpolation methods for modeling and solving boundary value problems such as the one
described in this current chapter. The finite element analysis is very systematic and can be
useful for model with complex shape. So, the finite element model can be suitably employed

for solving vibration based problems with different boundary conditions. Commercial finite
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element packages are available to address the practical problems. During finite element
analysis, the structure is approximated in two ways. First step is employed by dividing the
structure into a number of small parts. The small parts are known as finite elements and the
procedure adopted to divide the structure is called as discretization. Each element on the
structure has usually associated with equation of motion and that can be easily approximated.
The each element on the finite element model has end points, they are known as nodes. The
nodes are used for connecting one element to other element. Collectively the finite element
and nodes are called as finite element mesh or finite element grid. In the second level of
approximation the equation of vibration for each finite element is determined and solved. The
solution for each finite element brought together to generate the global mass and stiffness
matrices describing the vibrational response of the whole structure. The displacement
associated with the solution represents the motion of the nodes of the finite element mesh.
This global mass and stiffness matrices represent the lumped parameter approximation of the
structure and can be analyzed to obtain natural frequencies and mode shapes of damaged

vibrating structures.

4.2.1 Analysis of cracked beam using finite element analysis (FEA)
In the following section FEA is analyzed for vibration analysis of a cantilever cracked beam

(Fig. 4.1). The relationship between the displacement and the forces can be expressed as;

Uj— Uj

= Covl (4 1)
Gj - Gi (%]

Where overall flexibility matrix Coy can be expressed as;
Rll -R12
C0v1 =
'RZI R22

The displacement vector in equation (4.1) is due to the crack.
L

——
u; (Ui) V 4 a,(Crack depth
— R — ) u(U)
0; (9;
@\ > 0,9

Le
Fig. 4.1 View of a crack beam element subjected to axial and bending forces.
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The forces acting on the beam element for finite element analysis are shown in Fig. 4.1.

Where,

Ri1: Deflection in direction 1 due to load in direction 1
Ri>= Ry;: Deflection in direction 1 due to load in direction 2
Ry,: Deflection in direction 2 due to load in direction 2.

Under this system, the flexibility matrix Cin,et Of the intact beam element can be expressed

as; Uj— Uj Uj
= Cintact (4 2)
0;— 6 0j '

Where, Le/EA 0
Cintact =

0 Le/El

The displacement vector in equation (4.2) is for the intact beam.

The total flexibility matrix Cyy of the damaged beam element can now be obtained by

Ctot = Cintact+ Covl = (43)

Le/EA+ R] 1 -R12
_R21 Le/El+ R22

Through the equilibrium conditions, the stiffness matrix K. of a damaged beam element can

be obtained as [80]

K=DCy D" (4.4)
Where D is the transformation matrix and expressed as;
-1 0
10 -1
D=11
0 1

By solving the stiffness matrix Kc, the natural frequencies and mode shapes of the multi
cracked cantilever beam can be obtained. This procedure has been adopted by ALGOR
package to evaluate the natural frequencies and mode shapes of beam structures. In the
current investigation, ALGOR (Version 19.3) has been used to calculate the vibration

signatures of damaged and undamaged cantilever beam. The FEA model of the cantilever
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beam and the ALGOR generated cantilever beam model with 2" mode of vibration are
shown in the appendix section in Fig. Al and Fig. A2 respectively. The results of the finite
element analysis for the first three mode shapes of the cracked beam are compared with that
of the numerical analysis and experimental analysis of the cracked beam and are presented in

Fig. 4.2 to Fig. 4.4 and Table 4.1.
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Fig.4.2 (a) Relative amplitude vs. relative distance from the fixed end
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Fig. 4.2 (b) Relative amplitude vs. relative distance from the fixed end
(2Ild mode of vibration), a;/W=0.166, L;/L.=0.3125, a,/W=0.083, L,/L=0.625
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4.3  Results and discussions of finite element analysis

This section presents an in depth analysis of the results obtained from finite element analysis
and briefly discusses the outcome from the proposed methodologies.

It is observed that, the presence of damage in the cantilever beam model have noticeable
effect on the vibration characteristics of the beam. A beam element with a crack subjected to
axial and bending forces for Finite Element Analysis has been presented in Figure 4.1. The
displacement vector and force vector have been applied to calculate the overall matrix. The
total flexibility matrix that is produced due to the presence of cracks on the cantilever beam
has been derived, which is subsequently used to formulate the stiffness matrix for the multi
cracked beam. Finally, the formulated matrices are used to calculate the first three natural
frequencies and first three mode shapes of the cantilever beam structure. These vibration
parameters obtained from the finite element analysis have been used to estimate the crack
characteristics present on the structural member. The results from the FEA have been
validated using the results from experimental and theoretical analysis for multiple crack
identification. The results obtained from Finite Element Analysis (FEA), theoretical analysis
and experimental analyses are compared and presented in Figure 4.2 to Fig. 4.4 (mode shape

comparison). Table 4.1 presents results for relative crack locations and relative crack depths
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relative deviation of first three natural frequencies and first three mode shape differences.

The results are found to be well in agreement showing the effectiveness of the

developed FEA methodology.
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4.4  Summary

In this section, the conclusions obtained from the Finite Element Analysis are described

below.

In the present study a simple and efficient method to detect multiple cracks in a beam is
presented. From the analysis of the vibration signatures it is observed that there is variation
of mode shapes and natural frequencies for the cracked beam with respect to undamaged
beam. The vibration responses i.e. the natural frequencies and mode shapes obtained from the
FE analysis are found to be in close agreement with theoretical and experimental analysis. In
the future the artificial intelligent techniques (Fuzzy, Neural network, Genetic Algorithm)
and hybrid artificial intelligent techniques such as fuzzy-neuro technique can be used for
detection of fault in dynamic vibrating structures. The proposed method can be utilized to
model any practical engineering structure and on-line condition monitoring of damaged

structures.
Publication:

e D.R.K. Parhi, Amiya Kumar Dash, Faults detection by finite element analysis of a

multi cracked beam using vibration signatures, Int. J. Vehicle Noise and Vibration,
Vol. 6, No. 1, 2010, 40-54.
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Chapter 5

ANALYSIS OF FUZZY INFERENCE SYSTEM FOR
MULTIPLE CRACK DETECTION

Cracks present a serious threat to proper performance of structures and machines. Most of the
failures are due to material fatigue and presence of cracks in structures. For this reason
methods allowing early detection and localization of cracks have been the subject of
intensive research for investigators. Many techniques have been adopted in the past to
quantify and identify faults. Some of these are visual (e.g. dye penetrate methods) and others
use sensors to detect local faults (e.g. magnetic field, eddy current, radiographs and thermal
fields). These methods cannot indicate that a structure is fault-free without testing the entire
structure in minute detail. Since the last two decades a number of experiments and theories
have been developed to elucidate the phenomenon and determine the crack initiation and
propagation conditions. In the current investigation a fuzzy logic based technique has been
proposed for structural damage identification. The approach adopted in this chapter utilizes
the induced vibration parameters of the beam structure using and inverse technique and

predicts the position and severities of the multi crack present in the system.

5.1 Introduction

Basically, fuzzy logic (FL) is a multi valued logic, which allows interim values to be defined
between linguistic expressions like yes/no, high/low, true/false. In the last few decades,
researchers have used the FL methodology for applications such as feature extraction,
classification and detection of geometrical features in objects etc. Fuzzy system has the
capability to mimic the human behavior by following the different reasoning modes in order
to make the computer program behave like humans. In traditional computing, actions are
taken based on data with precision and certainty. In soft computing, imprecise data are
employed for decision making. The exploration of the imprecision and uncertainty underlies
the remarkable human ability to understand various engineering applications. FL can specify
mapping rules in terms of words rather than numbers. Another basic concept in FL is the
fuzzy if-then rule which is mostly used in development of fuzzy rule based systems. FL can

model nonlinear functions of arbitrary complexity to a desired degree of accuracy. FL is a
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convenient way to map an input space to an output space and is one of the tools used to
model a multi-input, multi-output system. Hence the fuzzy approach can be effectively

employed to develop a multi crack diagnostic tool using the vibration response of structures.

In the current chapter, a multi crack identification algorithm using fuzzy inference system has
been formulated and the performance has been evaluated. The fuzzy system for crack
diagnosis has been designed with six inputs (first three relative natural frequencies and first
three relative mode shape differences) and four outputs (relative first and second crack
locations, relative first and second crack depths). A number of fuzzy linguistic terms and
fuzzy membership functions (triangular, trapezoidal and Gaussian) have been used to
develop the proposed crack detection methodology. The dynamic response obtained from the
numerical, finite element and experimental analyses have been used to set up the rule base
for designing of the fuzzy system. The performance of the proposed fuzzy based system for
crack diagnosis have been compared with the results obtained from FEA, numerical and
experimental analysis and it is observed that, the current fuzzy model can be implemented

successfully for structural health monitoring.

The current chapter is comprised of five different sections. Section 5.1 discusses about the
introduction to Fuzzy Inference System and section 5.2 enumerates the systematic steps to be
followed to design and develop a fuzzy logic system. The analysis of the fuzzy model used
for multi crack identification has been explained in section 5.3. Section 5.4 discusses about
the results obtained from the fuzzy logic model and finally, section 5.5 provides a summary

of the fuzzy logic analysis applied for multiple crack detection in the damaged structure.

5.2  Fuzzy inference system

A fuzzy logic system (FLS) essentially takes a decision by nonlinear mapping of the input
data into a scalar output, using fuzzy rules. The mapping can be done through input/output
membership functions, fuzzy if-then rules, aggregation of output sets, and defuzzification.
An FLS can be considered as a collection of independent multi-input, single-output systems.
The FLS maps crisp inputs into crisp outputs. It can be seen from the figure that the FIS
contains four components: the fuzzifier, inference engine, rule base, and defuzzifier. The rule

base of the FLS system can be developed using the numeric data. Once the rules have been
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established, the FLS can be viewed as a system that utilizes inputs and process them using
the fuzzy rule database and fuzzy linguistic terms to get output vector. The fuzzifier takes
input values and verifies the degree of association to each of the fuzzy sets via membership

functions.

The fuzzy system generally consists of five steps. They are as follows,

Step 1

Inputs to fuzzy system: The fuzzy system at first is fed with the input parameters and then
the system recognizes the degree of association of the data with the corresponding fuzzy set
through the membership functions.

Step 2

Application of fuzzy operator: After the fuzzification of the inputs, the fuzzy model
measures the degree to which each of the antecedents satisfies for each rule of the fuzzy rule
data base. If the rule has a more than one part, the fuzzy operator is employed to obtain a
single value for the given rule.

Step 3

Application of method for fulfillment of rules: Method is applied to reshape the output of
the membership functions, which is represented by a fuzzy set. The reshaping of the output is
done by a function related to the antecedent.

Step 4

Aggregation of results: The results obtained from each rule are unified to get a decision
from the system. Aggregation process leads to a combined fuzzy set as output.

Step 5

Defuzzification: In this process the defuzzification layer of the fuzzy system incorporate
method like centroid, maxima etc in order to convert the fuzzy set into crisp value, which
will be easier to analyze.

5.2.1 Modeling of fuzzy membership functions

One of the key features in designing a fuzzy inference system is to determine the fuzzy
membership functions. The membership function defines the fuzzy set and also provides a
measure of degree of imprecise dependencies or similarity of an element to a fuzzy set. The

membership function can take any shape, but some commonly used examples for real
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applications are Gaussian, triangular, trapezoidal, bell shape etc. In a fuzzy set, elements with
non zero degree membership are known as support and elements with degree of one are
known as core of the fuzzy set. The membership functions are generally represented as pg(X).
Where, u is the degree of weight of the element X to the fuzzy set F. The height or magnitude
of the membership function is usually referred to zero to one. Hence, any element from the

fuzzy set belongs to the set with a degree ranging from [0, 1].

From the Fig. 5.1(a) (triangular membership function) the point ‘c’, ‘d’, ‘e’ represents the
three vertices of the triangular membership function pr(X) of the fuzzy set ‘F’. It is observed

that the element at ‘c’ and ‘e’ is having membership degree equivalent to zero and the

element at‘d’ is having membership degree equivalent to one. The mathematical

representation of the fuzzy triangular membership function of pr(X) can be explained as

follows. ue(x) 4
0ifx<c {
(x-¢)/(d-c)ifc<x<d
pr(x) = .
(e-x)/(e-d)ifd<x<e
S O le Z (] O C d e > X

Fig. 5.1(a) Triangular membership function

The mathematical representation of the fuzzy Gaussian membership function can be
expressed as follows. Where ¢, w, n are the center, width and fuzzification factor
respectively. The graphical presentation of the fuzzy Gaussian membership function can be

seen in Fig. 5.1(b).

MF(X) A
| 7™
Ue (X, ¢, w,n) = Exp[-0.5{(x-c)lw}"] .

c

Fig. 5.1(b)  Gaussian membership function
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The trapezoidal membership function (Fig. 5.1 (c¢)) has two base points (0.2, 0.5) and two
shoulder points (0.3, 0.4). A mathematical expression for the trapezoidal membership
function is presented below. A graphical representation of the trapezoidal membership

function has been shown in Fig. 5.1 (c). A
- pr(X)
0 when x 0.2 1
(x—0.2)/(0.3-0.2) when 0.2 <x <0.3
1 when 0.3 <x<0.0.4

(0.5-x%)/(0.5-0.4) when 0.4 <x <0.5

He(X, 0.2,0.3,0.4,0.5)=

—» y

0.2 03 04 05
Fig.5.1(c) Trapezoidal membership function

5.2.2 Modeling of fuzzy inference system using fuzzy rules

The understanding of the input data and the output data for a real application is often vague
due to the intricate dependencies of the input and output variables of the working domain.
However, a good approximation of the input and output parameters is fairly favorable to
address a complex problem, rather than going for a complex process, which will consume
more time to get an exact result. Fuzzy inference system posses the approximation features
by the help of fuzzy membership functions and fuzzy IF-THEN rules. In the process of
development of a fuzzy model, the domain knowledge helps in selecting the appropriate
membership functions and development of fuzzy rules. This membership functions are
designed by using the suitable fuzzy linguistic terms and fuzzy rule base. The fuzzy rule base
or the conditional statements are used for fuzzification of the input parameters and
defuzzification of the output parameters. The fuzzy model can be designed with single input
and multi output (SIMO), multi input and single output (MISO), multi input and multi output
(MIMO). During the design of the fuzzy model, the fuzzy operations like fuzzy intersection,
union and complement are used to develop the membership functions. Hence, the fuzzy
model takes the input parameters from the application at a certain state of condition and
using the rules it will provide a controlled action as desired by the system. A general model
of a fuzzy inference system (FIS) is shown in Fig. 5.2.

The inputs to the fuzzy model for crack detection in the current analysis comprises

Relative first natural frequency = “fnf”; Relative second natural frequency = “snf”;
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Relative third natural frequency = “tnf”; Relative first mode shape difference = “fmd”;
Relative second mode shape difference = “smd”; Relative third mode shape difference = “tmd”
The linguistic term used for the outputs are as follows;

Relative first crack location = “rcl1” Relative second crack location = “rcl2”

Relative first crack depth = “rcd1” Relative second crack depth = “rcd2”

N e > 1C] |

1) e

Knowledge base

‘ Database Rule base |
tnf * ; e 1C 12

Fuzzification Defuzzification

Input Output
. interface interface
(Crisp) (Crisp
fimd m—

e 1 |
SIT1(] e (Fuzzy) = _ _ (AFuzzy)
> Decision-making unit <
tmd =— —rcd2

Fig. 5.2 Fuzzy inference system

5.2.3 Modelling of defuzzifier

The final step in building of a fuzzy system is to convert the fuzzy output set into a crisp
output. So, the input to the defuzzifier is the aggregate output fuzzy set and output is a single
number. The crisp output represents the possible distribution of the inferred fuzzy control
action. Selection of the defuzzification strategy depends on the features of the application.
The relationship between the fuzzy output set (F), defuzzifier and crisp output (Ko) can be
established in the following equation;

Ky = defuzzifier (F);

There are several defuzzification methods used for development of fuzzy system. Some of
them are listed below;

i- Centroid of the area, 1i- Mean of maximum
i11- Weighted average method  iv- Height method
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5.3  Analysis of the fuzzy model used for crack detection

The fuzzy models developed in the current analysis, based on triangular, Gaussian and

trapezoidal membership functions have got six input parameters and four output parameters.

The linguistic term used for the inputs are as follows;
e Relative first natural frequency = “fnf”;
e Relative second natural frequency = “snf”;
e Relative third natural frequency = “tnf”;
e Average relative first mode shape difference = “fimd”;
e Average relative second mode shape difference = “smd”;
e Average relative third mode shape difference = “tmd”.
The linguistic term used for the outputs are as follows;
e First relative crack location = “rcll1”
e First relative crack depth = “red1”
e Second relative crack location = “rcl2”

e Second relative crack depth = “rcd2”

The pictorial view of the triangular membership, Gaussian
membership fuzzy models are shown in Fig. Fig. 5.3 (a), Fig

respectively. Some of the fuzzy linguistic terms and fuzzy rules

membership, trapezoidal
. 5.3 (b) and Fig. 5.3 (¢)

(Twenty numbers) used to

design and train the knowledge based fuzzy logic systems are represented in Table 5.1 and

Table 5.2 respectively. The membership functions used in developing the fuzzy inference

system for crack diagnosis are shown in Fig.5.4 to Fig.5.6. Ten membership functions have

been used for each input parameters to the fuzzy model. In designing the output membership

functions for the output parameters such as first relative crack

location (rcll) and second

relative crack location (rcl2) forty six membership functions are taken whereas for first

relative crack depth (rcdl) and second relative crack depth (rcd2) nineteen membership

functions have been used. The defuzzification process of the triangular, Gaussian, trapezoidal

membership functions are presented in Fig 5.7, Fig. 5.8 and Fig. 5.9 respectively by

activating the rule no 3 and rule no 17 from Table 5.2.
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Inputs Outputs

fnf rcll
snf
tnf rcdl
fmd rcl2
smd
tmd rcl2
Fig. 5.3(a) Triangular fuzzy model
Inputs Outputs
fnf "
snf re
tnf rcdl
fmd rcl2
smd
tmd rcd2
Fig. 5.3(b) Gaussian fuzzy model
Inputs Outputs
fnf
snf — rcll
tnf

rcdl
rcl2
rcd2

fmd _— >
smd ——»
tmd ——»

Fig. 5.3(c) Trapezoidal fuzzy model

5.3.1 Fuzzy mechanism for crack detection

Based on the above fuzzy subsets, the fuzzy control rules are defined in a general form as

follows:

If (fnf is fnf; and snf is snf; and tnf is tnf, and fmd is fmd ;and smd is smd  and tmd is tmd )

then rcll is rell . and redl is redl and rcl2 is rcl2 and red2 is red2 (4.1)
where i=1 to 10, j=1to 10, k=1to 10,1=1to 10, m=1 to 10, n=1 to 10

ijklmn ijkimn

As “fnf”, “snf”, “tnf”, “fmd”, “smd”, “tmd” have ten membership functions each. From

equation (4.1), two set of rules can be written
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If (fnf is fof; and snf is snf; and tnf is tnf, and fmd is fmd,and smd is smd,, and tmd is tmd,)

and red2 is red2,,., (4.2)

If (fnf is fof; and snf is snf; and tnf is tnf, and fmd is fmd,and smd is smd, and tmd is tmd,)

then redl1is redl.

ijklmn

then rcllis rell. and rcl2 is rcl2

ijklmn

According to the usual fuzzy logic control method [91,205], a factor W,

ijklmn

ijklmn
is defined for the
rules as follows:

= l’lfnfI (freqi) A Msnf| (freq_]) A p‘tnfk (freqk) A Hfmd1 (mOddlfI) A p‘smdm (mOddlfm) A l’ltmdn (mOddlfn)

Where freq; | freq; and freqy are the first , second and third relative natural frequencies of the

Wi
cantilever beam with crack respectively ; moddif], moddif,,, and moddif;, are the average first,
second and third relative mode shape differences of the cantilever beam with crack
respectively. By applying the composition rule of inference [91,205], the membership values
of the relative crack location and relative crack depth, (location),, and (depth).qav (v=1,2) can
be computed as;

(location) = Wy, A Hetvitmn (location) erclv

vlength
ercdv (4.3)

MrClVijklmn

HTCdVijkImn (depth) = Wijklmn A HTCdVijkImn (depth)

vdepth

The overall conclusion by combining the outputs of all the fuzzy rules can be written as
follows:

M (location)=p . (location) v....v Horetviigon (location) v ..... (location)

\Y4
urclvm 1010 10 10 10

4.4)
Hea (depth) = 1, (depth) v V Hredviimn (depth) v......... V Hredvio 10 10 10 10 10 (d€Pt)

The crisp values of relative crack location and relative crack depth are computed using the

centre of gravity method [91,205] as:

j(location * My, (location) - d(location)

relative crack location = rcli2 = : :
j U, (location) - d(location)

relativecrackdepth = rcd .[ (depth) - 4 ,(depth) - d(depth)
= 1,2 =
J-l“lrcd 1»(depth) - d(depth)

(4.5)
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L1F4 LIF3 LIF2 LIFl MIFl MIF2 HIF1 HIF2 HIF3 HIF4

2999990994

0.0,0.912 0.92 0928 0.936 0.944 0952 0.96 0968 0.976 0.984 0.992
Fig. 5.4(al) Membership functions for relative
natural frequency for first mode of vibration.

L3F4 L3F3 L3F2 L3F1 M3Fl M3F2 H3F1 H3F2 H3F3 H3F4

L2F4 L2F3 L2F2 L2F1 M2F1 M2F2 H2F1 H2F2 H2F3 H2F4

P 99.99.9.9.9.9.0N

0.0,0.9340.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994
Fig. 5.4(a2) Membership functions for relative natural
frequency for second mode of vibration.

10 SIM4 SIM3 SIM2 SIMI MIMI MIM2 HIM1 HIM2 HIM3 HIM4

0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0

0.0,0.9340.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994 1.0
Fig. 5.4(a3) Membership functions for relative
natural frequency for third mode of vibration.

S2M4  S2M3 S2M2  S2M1 M2MI1 M2M2 H2M1 H2M2 H2M3 H2M4

Fig. 5.4(a4) Membership functions for relative mode
shape difference for first mode of vibration.

S3M4  S3M3 S3M2 S3MI1 M3M1 M3M2 H3M1 H3M2 H3M3 H3M4
1.0

0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272-0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0
Fig. 5.4(a6) Membership functions for relative mode
shape difference for third mode of vibration.

0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0
Fig. 5.4(a5) Membership functions for relative mode
shape difference for second mode of vibration.

S1D9 SID8 S1D7 SID6 S1D5S1D4 S1D3 S1D2 SID1 M1 D LIDI LID2 L1D3 LID4L1DS L1D6 LID7 L1D8 L1D9

0.0.0.01 0.0545 0.099 0.1435 0.188 0.23250.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 5.4(a7) (a) Membership functions for relative crack depthl.

S2D9 S2D8 S2D7 S2D6 S2D5 S2D4 S2D3 S2D2 S2D1 M2 D L2D1 L2D2 1L2D3 L2D4 L2D5 L12D6 L2D7 L2D8 L2D9

0.0.0.01 0.0545 0.099 0.1435 0.188 0.23250.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 5.4(a7) (b) Membership functions for relative crack depth?2.

BIL9 BIL10 BIL12 BIL14 BILI6 BILI8 BIL20

SIL10 SIL8 SIL6 S1L4 SI1L2 MIL1 BILlI BIL3 BIL5 BIL7
BIL11 BIL13 BIL15 BIL17 BIL19 BIL21 BIL22

SIL16 SIL14 SILI12
MIL2 BIL2 BIL4 BIL6 BIL8

SIL20 SILI8
SIL15 SIL13 SIL1l  SIL9 SIL7  SIL5  SIL3  SILI1

SIL19 SIL17

S1L22
SIL21

9367 9789

0.0,01 .0522 .0943 .1364 .1785 2206 .2628 .3049 3470 3891 4312 4734 5155 5576 .5997 .6418 .6840 7261 7682 8103  .8524 .8946
1.0

0311 0732 1153 1575 1996 2417 2838 3259 3681 4102 4523 4944 5365 .5787 .6208 .6629 .7050 .7471 7893 .8314 .8735 9156 9578

Fig. 5.4(a8) (a) Membership functions for relative crack location].

B2L9 B2L10 B2L12 B2L14 B2L16 B2LI8
B2L11 B2L13 B2L15 B2L17 B2LI19

B2L20

S2L10 S2L8  S2L6  S2L4  S2L2 M2L1  B2LI  B2L3 B2L5  B2L7
B21.21 B2L22

S2L16  S2L14  S2L12
S2L9 S2L7  S2L5  S2L3  S2L1  M2L2  B2L2 B2L4 B2L6  B2L8

S2L15 S2L13  S2L11

2022 S2L20 S2LI18
S2L21  S2L19 S2L17

8103 .8524 8946  .9367 .9789

0.0,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 3470 3891 4312 4734 5155 5576 .5997 .6418  .6840 7261 .7682
9156 9578 1.0

0311 .0732 1153 1575 .1996 2417 2838 3259 3681 4102 4523 4944 5365 .5787 .6208 .6629 .7050 .7471 7893 .8314 .8735

Fig. 5.4(a8) (b) Membership functions for relative crack location2.
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L1F4 LI1F3 LIF2 LIFl MIFl MIF2 HIF1 HIF2 HIF3 HIF4 L2F4 L2F3 L2F2 L2F1 M2F1 M2F2 H2F1 H2F2 H2F3 H2F4

0.0,0.912 0.92 0.928 0.936 0.944 0.952 096 0968 0976 0.984 0.992 1.0

Fig. 5.5(b1) Membership functions for relative
natural frequency for first mode of vibration.

0.0,0.9340.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.9838 0.994 1.0
Fig. 5.5(b2) Membership functions for relative natural
frequency for second mode of vibration.

L3F4 L3F3 L3F2 L3F1 M3F1 M3F2 H3F1 H3F2 H3F3 H3F4 SIM4 SIM3 SIM2 SIMI MIMI MIM2 HIMI HIM2 HIM3 HIM4

0.0,0.934 0.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994 1.0 0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 10
Fig. 5.5(b3) Membership functions for relative natural Fig.5.5(b4). Membership functions for relative mode
frequency for third mode of vibration. shape difference for first mode of vibration.

S2M4 S2M3 S2M2 S2M1 M2M1 M2M2 H2M1 H2M2 H2M3 H2M4 S3M4 S3M3 S3M2 S3MI1 M3MI M3M2 H3MI H3M2 H3M3 H3M4
1.0

0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272-0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0 0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272-0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0

Fig. 5.5(b5). Membership functions for relative mode Fig.5.5(b6). Membership functions for relative mode
shape difference for second mode of vibration. shape difference for third mode of vibration.

S1D9 SID8 S1D7 S1D6 S1D5 S1D4 S1D3 S1D2 S1DI MID L1DI L1D2 L1D3 L1D4 L1D5 L1D6 L1D7 L1D8 L1D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 5.5(b7) (a) Membership functions for relative crack depthl.

S2D9 S2D8 S2D7 S2D6 S2DS S2D4 S2D3 S2D2 S2D1 M2D L2D1 L2D2 L2D3 L2D4 L2D5 L2D6 L2D7 L2D8 L2D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 5.5(b7) (b) Membership functions for relative crack depth2.

S1L22 S1L20 S1L18 S1L16 S1L14 S1L12 S1L10 S1L8 S1L6 SiL4  S1L2 MIL1  BI1L1 BIL3 BILS BIL7 BIL9 BIL10 BIL12 BIlL14 BI1L16 BIL18 BI1L20
SiL21 S1L19 S1L17 S1L15 S1L13  siLll siL9  siL7  SiLs  S1L3  S1L1 MIL2 BlL2 BlL4 B1L6 B1L8 Bl1L11 B1L13 B1L15 B1L17 B1L19 BI1L21 BI1L22

R

00,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 4312 .4734 5155 5576 .5997 .6418 .6840 .7261 .7682 .8103 .8524  .8946 .9367 .9789
.0311 0732 .1153 1575 .1996 .2417 .2838 3259 .3681 .4102 4523 4944 5365 .5787 6208 .6629 .7050 .7471 7893 .8314 8735 9156 .9578 1.0

Fig. 5.5(b8) (a) Membership functions for relative crack location]1.

S2L.22 S2L.20 S2L18 S2L16 S2L14 S2L12 S2L10 S2L8 S2L6 S2L4  Ss2L.2 M2L1 B2L1 B2L3 B2L5 B2L7 B2L9 B2L10 B2LI12

B2L14 B2L16 B2L18 B2L20
S2L21 S2L19 S2L17 S2L15 S2L13 S2L11 S2L9 S2L7  S2L5  S2L3  S2L1  M2L2  B2L2 B2L4 B2L6 B2L8

B2L11 B2L13 B2L15 B2L17 B2L19 B2L21 B2L22

0.0,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 4312 4734 5155 5576 .5997 .6418 .6840 .7261 .7682 .8103 .8524 .8946 .9367 .9789
.0311 0732 .1153 1575 .1996 2417 2838 .3259 .3681 4102 4523 4944 5365 5787 .6208 .6629 .7050 .7471 .7893 .8314 8735 9156 .9578 1.0

Fig. 5.5 (b8) (b) Membership functions for relative crack location2.
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LIF4 LIF3 LIF2 LIFl MIF1 MIF2 HIF1 HIF2 HIF3 HIF4 L2F4 L2F3 L2F2 L2F1  M2F1 M2F2 H2F1  H2F2  H2F3 H2F4

0-0,0.912 092 0928 0.936 0944  0.952 0.96 0.968 0976 0984 0992 1.0 0.0, 0.934 0.940 0.946 0.952 0958  0.964 0.970 0.976 0.982 0988 0.994 1.0

Fig. 5.6(cl) Trapezodial membership functions for Fig. 5.6 (c2) Trapezodial Membership functions for

relative natural frequency for first mode of vibration. relative natural frequency for second mode of vibration.
L3F4 L3F3  L3F2 L3F1 M3Fl M3F2 H3Fl H3F2 H3F3  H3F4 SIM4  SIM3 SIM2  SIMI  MIM1 MIM2 HIM1 HIM2 HIM3 HIM4
1.0 1.0
0.0,0.9340.940  0.946 0952 0958 0964 0970 0976 0982 0988 0994 1.0 0.0,.1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0
Fig. 5.6(c3) Trapezodial membership functions for Fig. 5.6 (c4) Trapezodial membership functions for
relative natural frequency for third mode of vibration. relative mode shape difference for first mode of vibration.
S2M4  S2M3 S2M2 S2M1 M2M1 M2M2  H2M1 H2M2 H2M3 H2M4
S3M4 S3M3 S3M2 S3M1 M3M1  M3M2 H3M1 H3M2 H3M3 H3M4
10 10
0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 027272 045454 0.63636 081818 1.0 0.0, -1.0 -0.81818 -0.63636 -0.45454 -027272 -0.0909 0.09092 027272 045454 063636 081818 1.0
Fig.5.6 (c5) Trapezodial membership functions for relative  Fig. 5.6(c6) Trapezodial membership functions for
mode shape difference for second mode of vibration. relative mode shape difference for third mode of
vibration.

S1D9 SID8 S1D7 S1D6 SIDS S1D4 S1D3 S1D2 SID1 MID LID1 L1D2 L1D3 L1D4 L1D5 L1D6 LID7 L1D8 LID9

0.0.0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440  0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 5.6 (c7) (a) Trapezodial membership functions for relative crack depthl.

S$2D9 S2D8 S$2D7 $2D6 S2D5 S2D4 S2D3 S2D2 S2D1 M2D L2D1 L2D2 L2D3 L2D4 L2D5  L2D6 L2D7  L2D8 L2D9

0.0.0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440  0.5885 0.633 0.6775 0.722  0.7665 0.8110 0.8555 0.9
Fig. 5.6 (c7) (b) Trapezodial membership functions for relative crack depth2.

SI1L22  S1L20 SIL18 SILI6 SILI4 SILI2 SIL10  SIL8 SIL6  SIL4 S1L2 MILI BIL1 BIL3  BILS BIL7 BIL9 BIL1I0 BILI2 BIL14 BILI6 BILIS BIL20
SI1L21 SIL19  SIL17 SIL15  SIL13  SIL1l  SIL9 SIL7  SIL5  SIL3 SILI  MIL2 BIL2 BIL4 BIL6 BIL8 BILIl BILI3 BILI5 BILI7 BIL19 BIL21 BIL22

R

0.0, .01  .0522 .0943 1364 1785 2206 2628 .3049 .3470 3891 4312 4734 S155 5576 5997 6418 6840 7261 7682 8103 .8524 .8946 9367 9789
L0311 0732 1153 5751996 2417 2838 3259 3681 4102 4523 4944 5365 5787 .6208  .6629 7050 7471 .7893 8314 8735 9156 9578 1.0

Fig. 5.6 (¢8) (a) Trapezodial membership functions for relative crack locationl.

S2L22  S2L20 S2L18  S2L16  S2L14  S2L12  S2L10  S2L8  S2L6  S2L4 S2L2  M2L1  B2Ll  B2L3 B2L5 B2L7 B2L9 B2L10 B2L12 B2L14 B2L16 B2L18 B2L20
S2L21  S2L19  S2L17  S2L15  S2L13  S2L11 S2L9 S2L7 S2L5  S2L3 S2L1 M2L2  B2L2 B2L4 B2L6 B2L8 B2L11 B2L13 B2L15 B2L17 B2L19 B2L21 B2L22

QA

0.0, .01 .0522 0943 1364 1785 2206 2628 3049 .3470 3891 4312 4734 5155 5576 .5997 6418 6840 7261 7682 8103 8524 8946 9367 9789
L0311 0732 1153 157511996 2417 2838 3259 3681 4102 4523 4944 5365 5787 6208 16629 7050 7471 7893 8314 8735 9156 9578 1.0

Fig. 5.6 (c8) (b)Trapezodial membership functions for relative crack location?2.
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Table 5.1 Description of fuzzy linguistic terms.

Membership Linguistic | Description and range of the Linguistic terms
Functions Name Terms
L1FLLIF2.L1F3.L1F4 fnf | o4 Low ranges of relative ngtural frequency for first mode of vibration in
’ ’ ’ descending order respectively
MIFLMILE2 nf 56 Medium ranges of relative natural frequency for first mode of vibration
’ in ascending order respectively
HIFLHIF2.H1F3 H1F4 inf 710 Higher ranges of relative .natural frequency for first mode of vibration
’ ’ ’ in ascending order respectively
LOF1L2F2 L2F3.L2F4 snf |4 Low ranges of relative natqral frequency for second mode of vibration
’ ’ ’ in descending order respectively
M2F1.M2F2 snf 56 Medium ranges of relative natural frequency for second mode of
’ vibration in ascending order respectively
H2F1 H2F2.H2F3 H2F4 snf 7 10 Highe}r ranges of . relative natural. frequencies for second mode of
’ ’ ’ vibration in ascending order respectively
L3F1.L3F2. L3F3.L3F4 tnf | o4 Low ranges of relative natqral frequencies for third mode of vibration
’ ’ ’ in descending order respectively
M3FLM3F2 tnf 56 Mediqm ranges of relative naturgl frequencies for third mode of
’ vibration in ascending order respectively
H3F 1 H3F2.H3F3. H3F4 tnf 710 H.ighe.r ranges of . relative nature.ll frequencies for third mode of
’ ’ ’ vibration in ascending order respectively
SIMI.SIM2.SIMA.S M4 fmd | o4 Small ranges of first relative mode shape difference in descending
’ ’ ’ order respectively
MIMI.MIM?2 fmd 56 medium ranges of first relative mode shape difference in ascending
’ order respectively
HIMI H1M2.H 1 M3.H1M4 fmd 7 10 Higher ranges of first relative mode shape difference in ascending
’ ’ ’ order respectively
SOMI.SIM2.S2M3.S2M4 smd | o4 Small ranges of second relative mode shape difference in descending
’ ’ ’ order respectively
MIMI.M2M2 smd 56 medium ranges of second relative mode shape difference in ascending
’ order respectively
HOM1 H2M2.H2M3.H2MA4 smd 710 Higher ranges of second relative mode shape difference in ascending
’ ’ ’ order respectively
S3MI.S3IM2.S3M3.S3IM4 tmd | o4 Small ranges of third relative mode shape difference in descending
’ ’ ’ order respectively
M3MI M3M2 tmd 56 medium ranges of third relative mode shape difference in ascending
’ order respectively
H3M1H3M2 H3M3 H3M4 tmd 7 10 Higher ranges of third relative mode shape difference in ascending
’ ’ ' order respectively
SIL1,S1L2...... S1L.22 rcll o Small ranges of relative crack location in descending order respectively
MILIMIL2 rcll 2324 Medium ranges of relative crack location in ascending order

respectively

BIL1.BIL2....... BIL22 rell 254046 Bigger. ranges of relative crack location in ascending order
respectively

SIDI,SID2...... S1D9 redl |09 Small ranges of relative crack depth in descending order respectively

MID redlqo Medium relative crack depth

LID1,LID2...... L1D9 redl ;19 | Larger ranges of relative crack depth in ascending order respectively

S2L1,S2L2...... S21.22 rel2 | wm Small ranges of relative crack location in descending order respectively

M2L1.M2L2 rcl2 2324 Medium ranges of relative crack location in ascending order

respectively

B2LI.B2L2....... B2L22 rel2 2510 46 ils)ieci ivelryanges of relative crack location in ascending order
S2D1,S2D2...... S2D9 rcd2 |00 Small ranges of relative crack depth in descending order respectively
M2D red2 o Medium relative crack depth

L2D1,L2D2...... L2D9 rcd2 1119 | Larger ranges of relative crack depth in ascending order respectively
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Table 5.2 Examples of twenty fuzzy rules used in fuzzy model.

Sl. No. | Examples of some rules used in the fuzzy model

1 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is HIM2,smd is H2M4,tmd is H3M3, then
rcedl is S1D6,and rcll is S1L17 and rcd2 is S2D4,and rcl2 is S2L6

2 If fnf is L1F4,snf is L2F4,tnf is L3F4,fimd is HIM1,smd is H2M1,tmd is H3M2, then
rcdl is S1D2,and rcll is S1L17 and rcd2 is S2D1,and rcl2 is M21L2

3 If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M2,tmd is H3M3, then
redl is M1D,and rcll is S1L17 and red2 is S2D2,and rcl2 is B2L19

4 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is HIM3,smd is H2M4,tmd is H3M4, then
rcdl is S1D6,and rcll is S1L11 and rcd2 is S2D4,and rcl2 is M2L2

5 If fnf is M1F1,snf is L2F2,tnf is L3F3,fmd is HIM1,smd is H2M1,tmd is H3M2, then
rcdl is S1D4,and rcll is S1L11 and rcd2 is S2D1,and rcl2 is B2L13

6 If fnf is L1F1,snf is L2F2.tnf is L3F3,fimd is HIM3,smd is M2M1,tmd is H3M4, then
redl is M1D,and rcll is SIL11 and red2 is S2D7,and rcl2 is M2L2

7 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M1,tmd is H3M1, then
redl is L1D1,and rell is S1L11 and red2 is S2D4,and rcl2 is B2L10

8 If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is HIM2,smd is H2M2,tmd is H3M2, then
rcdl is S1D6,and rcll is S1L6 and rcd2 is S2D4,and rcl2 is B2L5

9 If fnf is L1F1,snf is L2F4,tnf is L3F4,fmd is M1IM]1,smd is M2M1,tmd is M3M2, then
rcdl is S1D2,and rcll is S1L6 and red2 is L2D1,and rcl2 is B2L5

10 If fnf is M1F1,snf is L2F2,tnf is L3F1,fmd is M1M2,smd is M2M2,tmd is H3M1, then
redl is S1D1,and rcll is S1L6 and red2 is S2D4,and rcl2 is B2L5

11 If fnf is M1F1,snf is M2F1,tnf is M3F1,fimd is HIM3,smd is H2M3,tmd is H3M4, then
rcdl is S1D6,and rcll is S1L18 and rcd2 is S2D5,and rcl2 is M2L2

12 If fnf is M1F1,snf is L2F1,tnf is L3F1,fimd is HIM3,smd is H2M2,tmd is H3M3, then
rcdl is S1D4,and rcll is S1L17 and rcd2 is S2D6,and rcl2 is S2L6

13 If fnf is M1F2,snf is M2F1 tnf is M3F1,fimd is M1IM1,smd is H2M1,tmd is H3M2, then
redl is S1D4,and rcll is SIL11 and rcd2 is S2D4,and rcl2 is M2L2

14 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is HIM4,smd is H2M1,tmd is H3M1, then
rcdl is S1D7,and rcll is S1L17 and rcd2 is S2D6,and rcl2 is B2L16

15 If fnf is M1F1,snf is L2F1,tnf is L3F2,fmd is SIM1,smd is S2M2,tmd is H3M1, then
rcdl is S1D2,and rcll is S1L11 and rcd2 is S2D6,and rcl2 is B2L10

16 If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is HIM2,smd is S2M1,tmd is H3M2, then
redl is L1D1,and rcll is S1L17 and rcd2 is S2D5,and rcl2 is M21L2

17 If fnf is M1F1,snf is L2F3,tnf is L3F1,fmd is SIM2,smd is M2M1,tmd is S3M1, then
rcdl is S1D6,and rcll is S1L12 and red2 is M2D,and rcl2 is M2L1

18 If fnf is L1F1,snf is L2F1,tnf is L3F1,fmd is HIM2,smd is H2M2,tmd is H3M2, then
rcdl is S1D2,and rcll is S1L12 and rcd2 is S2D4,and rcl2 is B2L13

19 If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is SIM2,smd is H2M3,tmd is H3M1, then
rcdl is S1D4,and rcll is SILS and rcd2 is S2D6,and rcl2 is B2L6

20 If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is SIM3,smd is S2M2,tmd is S3M3, then

rcdl is L1D1,and rcll is S1L5 and red2 is S2D2,and rcl2 is B2LS
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5.3.2 Results of fuzzy model

The results obtained from the proposed fuzzy system for multiple crack identification are
presented in this section.

The fuzzy model (Fig. 5.2) has been designed with six inputs (relative first three natural
frequencies and relative first three mode shape differences) and four outputs (relative first
and second crack location, relative first and second crack depth). Three types of membership
functions ( triangular, Gaussian and trapezoidal) has been employed to develop the fuzzy
model (Fig.5.4, Fig.5.5, Fig.5.6). Defuzzification (Fig.5.7, Fig.5.8, Fig.5.9) of the inputs
using triangular, Gaussian and trapezoidal membership functions have been done by
activating the rule no. 3 and rule no. 17 form the Table 5.2. The results obtained from
numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy trapezoidal model and
experimental analysis are compared in Table 5.3 (a) and Table 5.3 (b). Ten sets of data from
the Table 5.3 (a), Table 5.3 (b) represents the first three relative natural frequencies and first
three relative mode shape differences in the first six columns and rest of the columns
represents the corresponding values of relative first and second crack locations and crack
depths obtained from numerical, finite element, fuzzy triangular, fuzzy Gaussian, fuzzy
trapezoidal model and experimental analysis.

5.4  Discussions

The fuzzy system designed in the current research has been adopted for multiple crack
diagnosis in structural members. The various types of membership functions used for
development of the knowledge based system are triangular (Fig. 5.1 (a)), Gaussian (Fig. 5.1
(b)), trapezoidal (Fig. 5.1 (c)). The different stages involved in designing of the proposed
system are presented in Fig. 5.2. The various linguistic terms and some of the fuzzy rules
used for developing the fuzzy crack diagnostic tool have been exhibited in Table 5.1 and
Table 5.2 respectively. The different types of membership functions with the linguistic terms
have been presented in Fig. 5.4 to Fig. 5.6 showing complete architecture. The results
obtained from fuzzy model with triangular, Gaussian and trapezoidal membership functions
and experimental analyses are compared in Table 5.3 (a). The results from numerical, finite
element and Gaussian fuzzy model analysis are shown in Table 5.3 (b) and the results are
found to be in close proximity. From the analysis of the results presented in Table 5.3 (a), it

is seen that the percentage deviation of the results of the triangular membership function
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fuzzy model is 7.84%, for Gaussian membership function fuzzy model is 5.06% and for

trapezoidal membership function fuzzy model is 7.02%.
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5.5 Summary

The fuzzy approach adopted in the current analysis has been studied and following
conclusions are made. The presence of cracks in structural member has considerable effect
on the dynamic response of the dynamic structure. The first three relative natural frequencies
and first three relative mode shape differences are taken as inputs to the fuzzy model and
relative crack locations and relative crack depths are the output parameters. The authenticity
of the proposed approach has been established by comparing the results from the fuzzy
models (Gaussian, trapezoidal, triangular) with that of the numerical, finite element and
experimental analysis. The results are found to be well in agreement. From the analysis of the
results obtained from the fuzzy models using various membership functions, it is observed
that the fuzzy system based on Gaussian membership function provides better results in
comparison to numerical, finite element analysis, trapezoidal and triangular fuzzy models.
Hence, the proposed Gaussian fuzzy model can be effectively used as multiple crack
diagnostic tools in dynamically vibrating structures. Since the fuzzy Gaussian model
produces best results in terms of relative crack depths and relative crack locations in
comparison to fuzzy triangular, fuzzy trapezoidal model, the results of fuzzy Gaussian model
will be compared with other Al techniques discussed in next chapters to compare their

performance in regard to Gaussian fuzzy model.

Publications:

e Amiya Kumar Dash, Dayal.R.Parhi, Development of an inverse methodology for
crack diagnosis using Al technique, International Journal of Computational Materials
Science and Surface Engineering (IJCMSSE) 4(2), 2011, 143-167.

e Das H. C., Dash A. K., Parhi D. R., Experimental Validation of Numerical and Fuzzy
Analysis of a Faulty Structure, 5th International Conference on System of Systems
Engineering (SoSE), 2010, Loughborough, U.K., 22-24 June, pp.1-6.
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Chapter 6

ANALYSIS OF ARTIFICIAL NEURAL NETWORK FOR
MULTIPLE CRACK DETECTION

The presence of damage in general, in a structure undermines the viability of the structure
and leads to shorter life time period and opens the way for complete failure of the system.
Hence, development of an automated method to identify cracks accurately in an engineering
application is desirable. As it is known that, the cracks present in a mechanical element
increase the flexibility, decrease the vibration frequencies and modify the amplitude of
vibration. Those changes can be potentially used to locate the crack positions and crack
depths. So, it is of interest to design and develop an Al based technique for online multiple
crack diagnosis to avoid catastrophic failure of structural system. In the current chapter an
intelligent model has been designed using artificial neural network to detect presence of
multiple cracks in structural members. The proposed neural model has been modeled with
feed forward network trained with back propagation technique. Finally, the results from the
model have been compared with the experimental results to establish the robustness of the

proposed neural method.

6.1 Introduction

This section of the thesis provides an introduction to basic neural network architectures and

learning rules.

The complex biological neural network in a human body has highly interconnected set of
neurons, facilitates for various kind of output such as thinking, breathing, driving etc.
Generally the neurons are believed to store the biological neural functions and memory and
learning of the neural system facilitates for establishment of new connections between the
neurons. The most interesting feature of this artificial neural network (ANN) is the novel
structure of the information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in parallel to solve specific
applications, such as pattern recognition or data classification, through a learning process.

Learning in biological systems involves adjustments to the synaptic weights that exist
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between the neurons. Neural networks, with their remarkable ability to derive meaning from
complicated or imprecise data, can be used to recognize patterns and detect trends that are
too complex to be noticed by either humans or other computer techniques. McCulloch and
Pitts [207] have developed models of neural networks with several assumptions about how
neurons worked. The proposed networks were considered to be binary devices with fixed
thresholds based on simple neurons. Rosenblatt [208] has designed and developed the
Perceptron. The developed Perceptron has three layers with the middle layer known as the
association layer. This system could learn to connect or associate a given input to a random
output unit. According to [206] a neural network is a large parallel distributed processor
made up of simple processing units, called neurons, which have a natural tendency to store
experimental knowledge and making it available for use. Some of the advantages of the ANN

are depicted below.

Adaptive learning: The ability of the neural system lies in the capacity to adapt to the
changing environment by adjusting the synaptic weights and perform according to the
situation. This feature makes the neural network a methodology to address industrial
applications in dynamic environment.

Self-Organization: An artificial neural network can produce results for inputs that are not
used during training by creating its own representation of the information it receives during
learning time. This capability helps in solving problem of higher complexities.

Real Time Operation: The neural network is composed of a large number interconnected
neurons working in parallel to solve a specific problem. Neural networks learn by example.
For this special hardware devices are being designed and manufactured which take advantage
of this capability.

Fault Tolerance: In case of failure of a neuron in neural network system there will be a
partial destruction of a network which leads to only deterioration of quality of output rather
than collapsing the system as a whole.

Research has been carried out in last few decades to develop system for online condition
monitoring of structural systems. As the presence of cracks reduces the service life of the
structures and also responsible for economic loss and in some of the cases may be loss of

human life, the development of a fault diagnostic methodology is of paramount importance
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for science community. Although at the present time different non destructive techniques
(e.g. acoustic emission, sensor) are available for identification of crack present in a system,
the response of the techniques are very poor in terms of accuracy and computational time for
complex system. Moreover, development of a mathematical model for a complex system
with changing environment becomes impossible. In this scenario, the use of ANN with its
parallel computing and pattern recognition capabilities are well suitable to design an
intelligent system for damage assessment in cracked structures with higher accuracy and
faster computational time. In the recent times a lot of effort have been made by scientists to
develop crack diagnostic tool using ANN. Schlechtingen et al. [96] have presented a
comparison of results among the regression based model and two artificial neural network
based approaches, which are a full signal reconstruction and an autoregressive normal
behavior model used for condition monitoring of bearings in a wind turbine. From the
comparison of results they have revealed all three models were capable of detecting incipient
faults. They have concluded that the neural network model provides the best result with a
faster computational time with comparison to regression based model. Ghate et al. [97] have
proposed a multi layer perceptron neural network based classifier for fault detection in
induction motors which is inexpensive, reliable by employing more readily available
information such as stator current. They have used simple statistical parameters as input
feature space and principal component analysis has been used for reduction of input
dimensionality. They have also verified their methodology to noise and found the

performance of the proposed technique encouraging.

This section introduces a feed forward multilayer neural network trained with back
propagation technique for online multiple damage detection in beam members. The proposed
neural network system has been designed with six input parameters (first three relative
natural frequencies, first three relative mode shape differences) and four output parameters
(relative first crack location, relative first crack depth, relative second crack location and
relative second crack depth). A comparison of results obtained from fuzzy, numerical, FEA,
neural and experimental analysis have been carried out and it is observed that the developed
neural network provides more accurate results as compared to other mentioned methods. The

robustness of the neural system has been validated using the experimental set up.
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The present chapter has been arranged into five different sections. The first section i.e.
introduction (Section 6.1) gives a brief introduction to neural network algorithm. Section 6.2
provides an in depth view of the feed forward neural network trained with back propagation
technique. The analysis of the neural network model used for multiple crack diagnosis is
presented in section 6.3. The results and discussions of the results obtained from the neural
model and the summary of the chapter are described in section 6.4 and section 6.5

respectively.

6.2 Neural network technique

Given this the description of neural network, it has been successfully implemented in many
industrial applications such as industrial process control, sales forecasting, electronic noses,
modeling, diagnosing the Cardiovascular System and etc. The parallel computing capability
and the ability to perform under changing environment make the neural network a potential

tool to address applications, which are hard to solve using analytical or numerical methods.

6.2.1 Model of a neural network

P, L W,
Po— 1 Wa | W n a
o ‘ o
p,—
W | Activation

Neuron i
function

Fig. 6.1 Neuron model

A neuron which can be used in a dynamic environment is shown in Fig. 6.1. An artificial
neuron is a device with many inputs and one output. The neuron has two modes of operation;
the training mode and the using mode. In the training mode, the neuron can be trained to fire
(or not), for particular input patterns. In the using mode, when a taught input pattern is
detected at the input, its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is used to determine

whether to fire or not.
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The main features of the neural model are as follows,

1. The inputs to the neuron are assigned with synaptic weights, which in turn affect the
decision making ability of the neural network. The inputs to the neuron are called weighted
inputs.

2. These weighted inputs are then summed together in an adder and if they exceed a pre-set
threshold value, the neuron fires. In any other case the neuron does not fire.

3. An activation function for limiting the amplitude of the output of a neuron. Generally the
normalized amplitude range of the output of a neuron is given as the closed unit interval [0,1]

or alternatively [-1,1].
Learning process of ANN:

The learning for a neural network means following a methodology for modifying the weights
to make the network adaptive in nature to changing environment. The learning rules may be

broadly divided into three categories,

1. Supervised learning: The supervised learning rule is provided with set of training data for
proper network behavior. When the inputs are applied to the network, the outputs from the
network are compared with the targets. Through the learning process the network will adjust
the weights of the network in order to bring the outputs closer to the targets.

2. Unsupervised learning: In this type of learning the network modifies the weights in
response to the inputs to the network. This is suitable for applications requiring vector
quantization.

3. Reinforcement learning: In the reinforcement learning instead of being provided with the
correct output, for each network input, the algorithm is only given a score. The score is the

measure of network performance over some sequence of inputs.

In mathematical terms, we can describe a neuron k by writing the following pair of

equations:

p
U = Zwijj
=

(6.1)
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v = f(u,) (6.2)

Where x1, x2,.....,xp are the input signals; wkl, wk2,.....,wkp are the synaptic weights of
neuron k; uk is the linear combined output; f() is the activation function; and yy is the

output signal of the neuron.

6.2.2 Use of back propagation neural network

The back propagation technique (Fig. 6.2) can be used to train the multilayer networks. This
technique is an approximate steepest gradient algorithm in which the performance of the
network is based on mean square error. In order to train the neural network, the weights for
each input to the neural system should be so adjusted that the error between the actual output
and desired output is minimum. The multilayer neural system would calculate the change in
error due to increase or decrease in the weights. The algorithm first computes each error
weight by computing the rate of the error changes with the change in synaptic weights. The
error in each hidden layer just before the output layer in a direction opposite to the way
activities propagate through the network have to be computed and fed to the network by back
propagation algorithm to minimize the error in the actual output and desired output by

adjusting the parameters of the network.

Z]—>

Input <

Fig. 6.2 Back propagation technique
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6.3  Analysis of neural network model used for crack detection

A back propagation neural model has been proposed for identification of multiple cracks (i.e.
relative crack locations, relative crack depths) of a cantilever beam structure (Fig.6.3).The

neural model has been designed with six input parameters and four output parameters.
The inputs to the neural network model are fnf, snf, tnf, fmd, smd and tmd.

The outputs from the neural model are as follows;

first relative crack location = “rcl1” and first relative crack depth = “rcd1”

second relative crack location = “rcl2” and first relative crack depth = “rcd2”

The back propagation neural network has been made with one input layer, one output layer
and eight hidden layers. The input layer contains six neurons, where as the output layer
contains four neurons. The number of neurons in each hidden layers are different in order to
give the neural network a diamond shape and for better convergence of results (Fig.6.4).
The neurons associated with the input layer of the network represent the first three relative
natural frequencies and first three average relative mode shape difference. The first relative
crack location, first relative crack depth, second relative crack location, second relative crack

depth are represented by the four neurons of the output layer of the neural network.
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Fig. 6.3 Neural model
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Fig. 6.4 Multi Layer feed forward back propagation Neural model for damage detection
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6.3.1 Neural model mechanism for crack detection

The neural network used in the current investigation is a ten-layer feed forward neural
network model trained with back propagation technique [206]. The chosen number of layers
was found empirically to facilitate training. The first three relative natural frequencies and
first three relative mode shape difference are the neurons representing the input layer of the
network and relative crack locations and relative crack depths are represented by the four
neurons of the output layer. The hidden layers i.e. 2“‘1,3“1,4“‘,5th,6th,7th and 8™ layer of the
network comprises 12 neurons,36 neurons,50 neurons, 150 neurons ,300 neurons,150
neurons,50 neurons, 8 neurons respectively. The number of neurons in each hidden layer has
been decided using the empirical relation. Fig. 6.4 depicts the neural network with its input

and output signals.

The proposed neural network model for multiple crack detection has been trained with 900
patterns of data featuring various conditions of the structural system. Out of the several
hundred testing data, some of them are presented in Table 6.1. During the training, the model
is fed with six input parameters i.e. first three relative natural frequencies and first three
mode shape differences (e.g. 0.9924, 0.9937, 0.9987, 0.0025, 0.0047, 0.0051). The outputs are
relative crack depths and relative crack locations (e.g. 0.164, 0.23, 0.0622, and 0.3123).

During training and during normal operation, the input patterns fed to the neural network

comprise the following components:

y?} = relative deviation of first natural frequency (6.3(a))
yg} = relative deviation of second natural frequency (6.3(b))
ygl} = relative deviation of third natural frequency (6.3(c))
ygl} = relative deviation of first mode shape difference (6.3(d))
yg} = relative deviation of second mode shape difference (6.3(e))
yg} = relative deviation of third mode shape difference (6.3(9))
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The outputs generated due to the distribution of the input to the hidden neurons are given by

[206]:

£(viet)=yie! (6.4)
Where,

{la } {la —1} _ {la }
LWy = v (6.5)

layer number (2 or 9) = lay
label for j" neuron in hidden layer ‘lay’= j

label for i™ neuron in hidden layer ‘lay-1"=1

Weight of the connection from neuron 1 in layer ‘lay-1’ to neuron j in layer ‘lay’ZWilaY}

n

Activation function, chosen in this work as the hyperbolic tangent function = f (.), where,

eX _ e—x
_f 6.6
pentity (6.6)

In the process of training, the network output O,cual, n (=1 to 4) may differ from the desired
output Ogesiredn (n=1 to 4) as specified in the training pattern presented to the network. The

measure of performance of the network is the instantaneous sum-squared difference between

Odesired, n and O,crual, n fOr the set of presented training patterns:

1

2
Err = E )y (edesired,n - eactual,n ) (6.7)
all training

patterns

Where Oqcual, n (n=1) represents relative crack location (“rell”)
Oactual, n (n=2) represents relative crack depth (“rcd1”)
Oactual, n (Nn=3) represents relative crack location (“rcl2”)
Oactual, n (n=4) represents relative crack depth (“rcd2”)

During the development of the neural model, the error back propagation method is employed

to train the network [206]. This method requires the computation of local error gradients in
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order to determine appropriate weight corrections to reduce error. For the output layer, the

error gradient o 10} is:

[x 7110
5{1 } = f (Vl{ }Xedesired,n - eactual,n) (6.8)

Hence, the local gradient for neurons in hidden layer {lay} is given by:

51 =f ’(Vf"“‘”{Z SE”“}WEJ‘”“}j (6.9)
K

Synaptic weights are updated according to the following expressions:

W (t+1) =W, (t)+ AW, (t+1) (6.10)

and AW, (t+1)=aAW, (t)+nd!™yl (6.11)

Where

Momentum coefficient (chosen statistically as 0.2 in this work)= o
Learning rate (chosen statistically as 0.35 in this work) =n

Iteration number, each iteration consisting of the presentation of a training
pattern and correction of the weights =t

Following expression shows, the final output from the neural network as;
- v 10} 12
eacmal,n =f Vn (6- )

where Vélo} = ngo}yl{g} (6.13)

1
1 = learning rate (chosen empirically as 0.35 in this work)
t = iteration number, each iteration consisting of the presentation of a training

pattern and correction of the weights.
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Table 6.1 Test patterns for NN model other than training data

Input to the NN model Output from the NN
Relative |Relative |Relative |Average |Average |Average |Relative |Relative | Relative | Relative
first second third relative relative relative first first second |second
natural natural | natural first mode |first mode | first mode | crack crack crack crack
frequency | frequency | frequency |shape shape shape depth  |location |depth |location
(fnf) (snf) (tnf) differences | differences |differences |(rcdl) |(rcll) (red2) | (rcl2)
(fmd) (fmd) (fmd)
0.9924 10.9937 10.9987 |0.0025 0.0047 0.0051 0.164 |0.0622 [0.23 0.3123
0.9962 09973 0.9981 |0.0154 0.026 0.0324 0.081 ]0.122 |0.163 |0.48
0.9947 10.9965 |0.9985 |0.0068 0.0255 0.0287 0.23 0.3122 |0.33 0.623
0.9955 10.9972 10.9992 |0.0037 0.0157 0.0253 0.331 ]0.23 0.22 0.872
0.9974 10.9982 10.9996 |0.0074 0.0097 0.0166 0.163 ]0.622 (0.331 |0.9372
0.9934 10.9958 |0.9978 |0.0026 0.0035 0.0124 0.082 ]0.621 |0.162 |0.873
0.9942  10.9964 |0.9988 |0.0012 0.0031 0.0049 0.161 |0.24 0.332 |0.23
0.9918 10.9945 (0.9992 |0.0021 0.0041 0.0058 0.413 |0.3124 |0.22 0.6872
0.9957 10.9979 10.9996 0.0015 0.0034 0.0064 0.081 |0.22 0.414 10.8123
0.9951 10.9977 10.9989 |0.0019 0.0028 0.0059 0.23 0.123 10.332 |0.872

6.3.2 Neural model for finding out crack depth and crack location

The feed forward network has been trained with 900 different patterns of parameters to

obtain the objective. Some of the test patterns are depicted in Table 6.1. The intelligent

neural system has six numbers of input parameters in the input layer i.e. first three relative

natural frequencies and first three average mode shape difference. The output layer has four

outputs and they are first and second relative crack locations and first and second relative

crack depths.
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6.4 Results and discussions of neural model

The ten layer feed forward neural network model with back propagation technique for crack
prediction is shown with the complete architecture in Fig.6.4. This has been designed to
predict the relative crack locations and relative crack depths. The first three relative natural
frequencies and first three average relative mode shape differences have been used as inputs
to the input layer of the proposed network. These inputs are processed in the eight hidden
layers and finally the output layer provides the results for relative crack locations and relative
crack depths. The block diagram of the neural model with the input and output parameters
are presented in Fig.6.3. Out of several hundred training patterns that have been used to train
the neural model some of them along with the outputs from the model are shown in Table
6.1. Experiments have been carried out to validate the results obtained from different
analyses performed on the cracked cantilever beam. Comparison among the results obtained
from neural model, fuzzy Gaussian model and experimental analysis are presented in Table
6.2 (a). The results from theoretical, finite element and fuzzy Gaussian model have been
expressed in Table 6.2 (b) and are found to be in close agreement. The different parameters
presented in various columns of the Table 6.2 (a) and Table 6.2 (b) are expressed as, the first
column relative first natural frequency (fnf), the second column relative second natural
frequency (snf), the third column relative of 3™ natural frequency (tnf), the fourth column
relative first mode shape difference (fmd), the fifth column relative second mode shape
difference (smd), the sixth column represents the relative third mode shape difference (tmd)
as inputs and the rest columns represents the outputs as relative crack location and relative
crack depth obtained from corresponding analyses. The percentage of deviation of the results
from neural model with respect to experimental results observed during the analysis of the
data given in Table 6.2 (a) is about 4.53%, which is better than the performance of fuzzy
Gaussian model. A plot of graph for epochs vs mean squared error from NN has been shown
in Fig. A3 of the appendix section showing the convergence of results. The graph for actual
values vs predicted values from the neural model has been presented in Fig. A4 of appendix

section showing the robustness of the neural network.
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6.5 Summary

This section expresses the final conclusions drawn from the analysis carried out in the
present chapter. The neural network model has been designed on the basis of change of
vibration signatures such as natural frequencies and modes shapes due to presence of cracks
in structural members. The input parameters to the diamond shaped feed forward neural
network model is the first three natural frequencies and first three average mode shapes. The
outputs from the model are relative crack locations and relative crack depths. Hundreds of
training patterns have been developed to train the neural model for crack prediction. The
neural system has different numbers of neurons in all the ten layers for processing the inputs
to the model. By adopting the back propagation algorithm, it is observed that the difference
between the actual output and desired output has been successfully reduced. The results
derived from the proposed neural network have been compared with the results obtained
from numerical, FEA, fuzzy Gaussian model and experimental analysis to check the
effectiveness of the model. From the analysis of the performance of the developed neural
system for multiple crack diagnosis, it is seen that, the model can predict the crack locations
and their intensities very close to the actual results as compared to fuzzy Gaussian model. In
the next chapters, the neural model have been used to fabricate various hybrid technique such
as fuzzy- neuro, GA-neural and MANFIS methodology for online structural health

monitoring.

Publication

e Dayal.R.Parhi, Amiya K. Dash, Application of neural network and finite element for
condition monitoring of structures, Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science. Vol. 225, pp. 1329-
1339, 2011.
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Chapter 7

ANALYSIS OF GENETIC ALGORITHM FOR
MULTIPLE CRACK DETECTION

Machines and beam like structures require continuous monitoring for the fault identification
for ensuring uninterrupted service. Different non destructive techniques (NDT) are generally
used for this purpose, but they are costly and time consuming. Vibration based methods can
be useful to detect cracks in structures using various artificial intelligence (Al) techniques.
The modal parameters from the dynamic response of the structure are used for this purpose.
In the current analysis, the vibration characteristics of a cracked cantilever beam having
different crack locations and depths have been studied. Numerical and finite element
methods have been used to extract the diagnostic indices (natural frequencies, mode shapes)
from cracked and intact beam structure. An intelligent Genetic Algorithm (GA) based model
has been designed to automate the fault identification and location process. Single point
crossover and in some cases mutation procedure have been followed to find out the optimal
solution from the search space. The model has been trained in offline mode using the
simulation and experimental results (initial data pool) under various healthy and faulty
conditions of the structure. The outcome from the developed model shows that the system
could not only detect the cracks but also predict their locations and severities. Good
agreement between the simulation, experimental and GA model results confirms the

effectiveness of the proposed model.

7.1 Introduction

Genetic algorithms are inspired by Darwin's theory for evolution. With the application of GA
the solution to a problem has been evolved. The adoptions of natural process like
reproduction, mutation [126] are the base for development of GA. Finding an optimization
solution in various problems is the strength of this evolutionary algorithm. Hence GA has
evolved as a potential tool for different optimization problems for a large variety of
applications. In most of the optimization problems, the objective is to either
maximizing/minimizing an objective function from the search space of arbitrary dimension.
An algorithm which will examine every possible inputs in the search space in order to

determine the element for which objective function is optimal is most desirable. GA follows
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a heuristic way of searching the input space for optimal value that approximates without
enumerating all the elements by exhaustive search. During application of GA, at the
beginning a large population of random chromosomes is created. Subsequently the genes of
the chromosomes are decoded to get different solution to the problem at hand. The genetic
algorithms perform a randomized search in solution space using a genotypic. The steps

followed in GA are systematically listed below.

1. Each solution is encoded as a chromosome in a population (a binary, integer, or real-
valued string). Each string’s element represents a particular feature of the solution.

2. The string is evaluated by a fitness function to determine the solution’s quality. Better-fit
solutions survive and produce offspring. Less-fit solutions are removed from the population.

3. Strings are evolved using mutation & recombination operators.

4. New individuals created by these operators form next generation of solutions.

This chapter has been organized into four sections. The introduction section describes the
generalized features of the GA methodology in section 7.1. The analysis of the crack
diagnostic tool using GA has been discussed in section 7.2. The results and discussions and
summary of the chapter are presented in section 7.3 and 7.4 respectively.

7.2. Analysis of crack diagnostic tool using GA

7.2.1. Approach of GA for crack identification

The generalized procedures of genetic algorithm are shown in He et al. [120]. Genetic
algorithm is based on the mechanics of nature selection and natural genetics, which is
designed to efficiently search large, non-linear, discrete and poorly understood search space,
where expert knowledge is scarce or difficult to model and where traditional optimization
techniques fail. The genetic algorithm consists of an array of gene values, its ‘chromosome’,
and as in nature, an individual that is optimized for its environment is created by successive
modification over a number of generations. Genetic algorithm have been frequently accepted
as optimization methods in various fields, and have also proved their excellence in solving
complicated, non-linear, discrete and poorly understood optimization problem. This is why
we use it to solve our inverse problem for the multiple crack detection in a cracked cantilever

beam.
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The developed genetic methodology discusses the prediction of cracks in a cantilever beam
containing multiple transverse cracks using the chromosomes representing the parameters of
vibration responses. The parameters i.e. (natural frequencies, mode shapes, relative crack
locations, relative crack depths) indirectly define the predicted values of cracks locations and
crack depths. The vibration signatures from theoretical, FEA and experimental analysis are
used to get the data pool for the GA methodology. The proposed GA model utilizes hundreds
of chromosomes in the data pool to act as parents. Each parents consists of ten parameters
such as first three relative natural frequencies, first three average relative mode shapes,
relative crack locations (two numbers), relative crack depths (two numbers). The steps used
in the genetic algorithm have been presented in the form of flow chart in Fig. 7.3. The
procedure followed to find out the crack depths and crack locations are systematically
described below in stages.
Stage 1: Data pool set for prediction of multiple cracks
The calculated values of the fnf, snf, tnf, fmd, smd, tmd, relative crack location 1, relative
crack location 2, relative crack depth 1, relative crack depth 2 from theoretical, finite element
and experimental analysis are used for creating the initial data pool of predetermined size.
Each individual data set from the created data pool represents the chromosomes of the GA
model. In this investigation the field data set is used to find the optimized solution. The
generated data pool set is the search space for the problem under study and relative crack
locations, relative crack depths are the solutions from the developed methodology.
The initial population with size n can be presented as follows:
Initial Population = <Py, P»,...,P,>
Each structure have the elements p ;, j) which are simply an integer string of length L, in
general.
Each population members have 10-sets of genes which are represented by Element numbers
1 to 10.

P={p11 pL2 pL3 Pr4 PuLs Pre Pr7 PLs PLo Prio}

Py={p21 P22 P23 P24 D25 P2e6 P27 DPos P29 DPoio}

Pn:{pn,l Pn2 Pn3 Pn4 Pns5s Pné6 Pn7 Pns8 Pno pn,lo}
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Where,

Element No. 1 (pi1,1to pa, 1) represents the relative first natural frequency (fnf)

Element No. 2 (p1,2to pn,2) represents the relative second natural frequency (snf)

Element No. 3 (p;,3to p n, 3) represents the relative third natural frequency (tnf)

Element No. 4 (p1,4to p n, 4) represents the average relative first mode shape (fmd)

Element No. 5 (p1,5to p n, 5) represents the average relative second mode shape (smd)

Element No. 6 (p1,6t0 p n, 6) represents the average relative third mode shape (tmd)

Element No. 7 (p1,7to p », 7) represents the relative crack location 1 (rcll)

Element No. 8 (p1,sto p n, 3) represents the relative crack depth 1 (rcdl)

Element No. 9 (p1,9to p n, 9) represents the relative crack location 2 (rcl2)

Element No. 10 (pi1, 10to p n, 10) represents the relative crack depth 2 (rcd2)

The crack prediction technique using GA uses the natural frequencies, mode shapes, relative

crack locations and relative crack depths to identify the crack locations and their severities.

For better understanding of the method 10 population members have been shown in tabular

form in Table 7.1.

Table 7.1 Examples of initial data pool for the genetic algorithm model

Some of the examples of initial data pool for the genetic algorithm model

S1.

NO. ["Relative Relative Relative Average Average Average Relative | Relative Relative Relative
first second third Relative Relative Relative first first second second
natural natural natural first mode | second third crack crack crack crack
frequency | frequency | frequency shape mode mode depth location depth location

difference | shape shape
difference | difference
“fnf” “snf” “tnf” “fmd” “smd” “tmd” “rcdl” “rcll” “rcd2” “rcl2”

1 0.9997 0.9959 0.9971 0. 0022 0. 0021 0.0072 0.169 0.127 0.168 0.877

2 0.9993 0.9968 0.9989 0. 0053 0. 0034 0.0157 0.52 0.378 0.335 0.627

3 0.9992 0.9977 0.9975 0. 0026 0. 0059 0.0132 0.419 0.128 0.337 0.877

4 0.9858 0.9982 0.9869 0. 0201 0.0189 0.0131 0.335 0.127 0.417 0.52

5 0.9988 0.9857 0.9887 0.0075 0. 0077 0.0292 0.338 0.379 0.53 0.628

6 0.9991 0.9987 0.9977 0. 0087 0. 0025 0. 0029 0.336 0.28 0.27 0.77

7 0.9975 0.9993 0.9981 0.001 0. 0046 0.0862 0.28 0.127 0.169 0.378

8 0.9974 0.9997 0.9995 0. 0011 0. 0052 0.0124 0.169 0.27 0.420 0.52

9 0.9972 0.9959 0.9886 0. 0032 0.0289 0.0114 0.29 0.29 0.418 0.79

10 0.9936 0.9975 0.9989 0.0154 0. 021 0.0146 0.27 0.27 0.28 0.53
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Stage 2: objective function for crack localization:

The optimize solution from a GA based methodology can be drawn by proper formulation of
an objective function. The appropriate formulation of the objective function can lead to
optimal solution. In the current analysis the minimization of the objective function gives the
best result in the search space. So, the cracks can be properly quantified by the proposed GA
knowledge based model with the help of objective function.

The objective function used in the developed GA model is depicted below:

Objective function (rcll, rcdl, rcl2, red2) =

((fnfaa — fnfi.i)® + (snfaa - snfiri)” + (tnfaa - tnfi,i)? a0

+ (fmdna — fmd1.i)* + (smdna - smdx1.i)* + (tmdaa - tmdxi)*)*?

fnfpe= Relative first natural frequency of the field

fnf,= Relative first natural frequency

snfpq= Relative second natural frequency of the field

snfy = Relative second natural frequency

tnfpq = Relative third natural frequency of the field

tnf; = Relative third natural frequency

fmdgg = Average relative first mode shape difference of the field

fmd, = Average relative first mode shape difference

smdgpq = Average relative second mode shape difference of the field

smdy = Relative average second mode shape difference

tmdgg = Average relative third mode shape difference of the field

tmdy = Average relative third mode shape difference

i= number of iterations

Stage 3: Crossover for offspring and their analysis

In the present work the reproduction process has been introduced by using the cross over
operation to produce the offspring by choosing the proper parent chromosomes from the
search space. The chosen parent chromosomes are combined by single cross point with the
encoded values of the gene information to produce two numbers of offspring chromosomes.
Finally, the offspring chromosomes are analyzed to find the optimal solution. In the current
developed GA based methodology the crossover of gene information leads to calculation of

relative first natural frequency (fnf), relative second natural frequency (snf), relative third
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natural frequency (tnf), average relative first mode shape (find), average relative second
mode shape (smd), average relative third mode shape (tmd), relative crack location 1, relative

crack location 2, relative crack depth 1, relative crack depth 2. The details of the crossover

operation are exhibited in Figure 7.1.

Cross over for fnf
Parent 1

Offspring 1

LefefefufufufifiJolo] [afafafa]a]a]a]ofa]q]
Crossover point

Parent2 |||]|::> I Offspring 2

[1]z]z]alola]1lo]1]1] [a[alililolzl1]2]o]0]

Cross over for snf
Parent 1

Offspring 1

[1jrfrfifr]t

Crossover point 4

Parent2 \

Lfrjtjo][afaf2]1]1]1
A

|||]|::> r Offspring 2

of1[1]0]
A

4 A

[1]af1]1]a]0

lolalsfo| mraalaalolz]1]z]0]

Cross over for tnf
Parent 1

Offspring 1

[fafafufufs

1jtjof1]

Crossover point4

[1fafalafa]1fofafofq]

Parent2 v |||]|::> IOffspring 2

alalafalalololalola] roTaTalaloli[: o]1]

Cross over for fmd

Parent 1 Offspring 1

Lefolufififiloftjolt] 14T o o oo falalolt]
Crossover point

Parent2 |||]|::> IOffspring 2

[oJof1]o]1]0

a2 lol1] rereTeTaa ao 1 o]

Cross over for smd
Parent 1

Offspring 1

loj1jofof1]1

. y
Crossover point T

Parent2 \

[oft]t]1]1]o

1[1Jof1] [o]z]oJoJss]a]o]a]q]
4 |||]|::> IOffspring 2
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Cross over for tmd

Parent 1 Offspring 1

Lilofolofifrif1fofo] [1TofoTofa]1 [aToTaTa]
Crossover point T I

Parent2 v |||]|:> Offspring 2

Loloftftfrfoftfoft]tfgTo a2 20z 1]0]0]

Cross over for rcll
Parent 1 Offspring 1
|0|0|1|0|0|0‘0|1|1|0| loJoJ1]o]o]o]1]o]o]0]
Crossover point
Parent2 v |||]|::> vOffspring 2

lof1[ofof1]o[1]0]0[0][o]1]o]o 2 0]0]1]1]0]

Cross over for rcd1

Parent 1 Offspring 1
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Crossover point

Parent2 |||]|::> Offspring 2
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Cross over for rcl2

Parent 1 Offspring 1

loft]tjolofofofoft]1] T3 Ts]o[o] o alela]o]
Crossover point A

Parent2 |]|]|::> v Offspring 2

1[1]o]o]1]o[1]0]0]0
[ foro o RO 0 oo 0 To T2 7]

Cross over for rcd2

Parent 1 Offspring 1

loftfojoftf[oft]ofofo] oTzTolo[1]o]alolT]T]
Crossover point

Parent2 |||]|::> IOffspring 2

Loftftfoftfoft]ol1[1] [ofz[1]o]1]o0]1]0]0]0]

Fig.7.1 Single cross point, value encoding crossover for fnf, snf, tnf, fmd, smd, tmd,
rcll,redl,rcl2,red2
Stage 4: Mutation of the genes
The mutation process is followed to get new sequence of genes by altering the binary code of
the existing genes. Hence this procedure introduces new genetic patterns in the search space.
Then, the fitness of the chromosome with the muted genes is evaluated for finding the
optimal solution. Natural selection will determine the fate of the mutated chromosome. If the

fitness of the mutated chromosome is higher than the general population, it will survive and
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likely be allowed to mate with other chromosomes. If the genetic mutation produces an
undesirable feature, then natural selection will ensure that the chromosome does not live to
mate.

In the current analysis, a new set for fnf,snf, tnf, fmd, smd, tmd, rcll, rcdl, rcl2, rcd2 are
produced from the mutation process by changing the sequence of binary code of the genes.
For better understanding of the mutation process few examples are illustrated below in Fig.
17;

Mutation for fnf Mutation of fmd

Parent 1 parentl

Lifrfrfrjofufujofuft] [oJoft]JoftJoJ1[1]o0]1]
Mutated gene

Mutated gene
|1|1|0|1|1|0|1|0|1|1|‘0‘1‘1‘0‘1‘1‘1‘1‘0‘1‘
Mutation for snf Mutation of smd
Parent 1 Parent 1
Leitjefifrjojoftfrfoffofiftftfifolt]of1]1]
Mutated gene Mutated gene

Ltjoftfrfrfofifoftft][oJoJiJot]tJoJo]1]1]

Mutation for tnf Mutation of tmd

Parent 1 Parent 1
Lifrfrfrfrfofoftjolt] [ofolt[t[rfoft]o]1]1]
Mutated gene Mutated gene

L1jofoftfiftfifof1]t] [oJoJoJi]t[1]of1]1]o0]

Fig.7.2 Mutation of genes for fnf, snf, tnf, fmd, smd, tmd

Stage 5: Evaluation of fittest child

The crossover and mutation process produce new chromosomes with newly formulated
genes. These new chromosomes are evaluated to find the optimal solution. Out of the off
springs from the crossover and the newly produced chromosome from the mutation process
are compared with the results from data pool to find the fittest child. The evaluation of fittest

child is computed using the equation (7.1).
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The applied genetic algorithm based model have six inputs (fnf, snf, tnf, fmd, smd, tmd) and
have four outputs (relative crack location 1, relative crack location 2, relative crack depth 1,

relative crack depth 2).

-/
Inputs
/' p

v

Finding the fittest parent from data pool using
objective function

v

Crossover/Mutation of parents to find off springs

v

Fitness evaluation of off springs using objective
function

v

Evaluation of output from the off springs and
parents

v

Update of data pool as required

v

Want to continue

Yes
No

End

Fig.7.3 Flow chart for the proposed Genetic Algorithm
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7.3 Results and discussion

The analyses of the results obtained from genetic algorithm model have been expressed in the
current section. It is observed that the presence of cracks have noticeable effects on the
vibration characteristics of a structural member and the vibration parameters can be used to
predict the crack locations and their severities in cracked structures. Numerical, finite
element and experimental analyses have been performed on the cantilever beam with
different boundary conditions to extract the vibration signatures, which are later used for
designing the GA system. A flow chart representing the various steps followed to design the
GA model has been shown in Fig. 7.3. Experimental analysis has been carried out to validate
the simulated results from the proposed crack diagnostic methodology. The use of single
point crossover operator has been shown in Fig. 7.1 to find the optimal solution. In some
cases the mutation operation (Fig. 7.2) has been presented to find the best fit child with in the
search space for solution. Table 7.1 represents some of the examples of initial data pool used
for the designing of the GA based model. The results for relative crack depths and relative
crack locations from GA model, neural network, fuzzy Gaussian model and experimental
analysis are shown in Table 7.2 (a) and the results from GA model have been proved to be
the best to other Al techniques mentioned in the Table 7.2 (a). A comparison of results from
GA model, finite element, numerical is presented in Table 7.2 (b) and the outcomes are found
to be in agreement. The percentage of deviation of the predicted results from the GA model
has been found as 4.33%. The graph for estimation error vs number of generations for the

GA model has been shown in Fig. A5 of the Appendix section.

7.4. Summary

The following conclusions can be made by analyzing the results obtained from the GA model
for multiple crack diagnosis in cantilever beam structure. This section presents a technique
for automatic detection of crack locations and their severities of structural members using
GA based model. Analysis of vibration parameters i.e. (natural frequencies, mode shapes) of
the cracked structure have been done through numerical, finite element and experimental
analysis and the extracted vibration signatures are used to create the initial data pool of the
GA system, for multiple crack identification. Single point cross over and mutation procedure

have been followed to find out the best possible solution with in the search space. The first
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three relative natural frequencies and first three average relative mode shape differences are
used as inputs to the GA crack identification method. Relative crack depths and relative
crack locations are the output parameters from the proposed GA based technique. A close
agreement between the results from simulation, experimental and GA model shows the
effectiveness of the developed methodology for multiple crack diagnosis. The developed GA

model can be used for automated condition monitoring of structural systems.

Publication:

e D.R.K.Parhi, Amiya Kumar Dash, H.C. Das Formulation of a GA based methodology
for multiple crack detection in a beam structure, Australian journal of structural
engineering, Vol. 12 (2), pp. 59-71, 2011.
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Chapter 8

ANALYSIS OF HYBRID FUZZY-NEURO SYSTEM
FOR MULTIPLE CRACK DETECTION

Integration of Neural networks (NN) and Fuzzy logic (FL) have brought researchers from
various scientific and engineering domains for the need of developing adaptive intelligent
systems to address real time applications. NN learns by adjusting the synaptic weights of
neurons between layers. FL is a potential computing model based on the concept of fuzzy set,
fuzzy rules, and fuzzy reasoning. It is known that fuzzy logic and NN have the ability to
perceive the working environment and mimic the human behavior, thus the advantages of
combining neural network and fuzzy logic are immense. There are different procedures to
integrate NN and FL and mostly it depends on the types of application. The integration of
NN and FL can be classified broadly into three categories namely concurrent model,
cooperative model and fully fused model. In the current chapter fuzzy logic and neural
network have been adopted to form a multiple crack identification tool for structural health

monitoring.

8.1 Introduction

Fuzzy-Neuro hybrid computing technique is a potential tool for solving problems with
complexity. If the parameters representing a system can be expressed in terms of linguistic
rules, a fuzzy inference system can be build up. A neural network can be built, if data
required for training from simulations are available. From the analysis of NN and FL it is
observed that drawbacks of the two methods are complementary and therefore it is desirable
to build an integrated system combining the two techniques. The learning capability is an
advantage for NN, while the formation of linguistic rule base is an advantage for fuzzy logic.
Hence, the hybrid fuzzy-neuro technique can be used for identifying cracks present in a
structural system using vibration data.

In this chapter, a novel identification algorithm (hybrid intelligent system) using inverse
analysis of the vibration response of a cracked cantilever beam has been proposed. The crack
identification algorithm utilizes the vibration signatures of the cracked beam derived from

finite element and theoretical analysis. The hybrid model is designed to predict the crack
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locations and their severities by integrating the capabilities of fuzzy logic and neural network
technique. The reliability of the proposed crack identification algorithm is established by

comparing the results obtained from the experimental analysis.

The current chapter has been arranged into five sections. The introduction section (Section
8.1) presents a discussion about the hybrid intelligent technique such as fuzzy-neuro used for
fault diagnosis. Section 8.2 depicts the analysis of the fuzzy and neural part of the hybrid
intelligent system proposed for crack identification. The discussions made by analyzing the
results obtained from fuzzy-neural model are depicted in section 8.4. The conclusions drawn

from the current chapter is expressed in section 8.4.

8.2  Analysis of the fuzzy-neuro model

The current chapter introduces a hybrid intelligent method for prediction of crack locations
and their intensities in a beam structure having multiple transverse cracks using inverse
analysis. As the presence of cracks alters the dynamic behavior of the beam, the first three
relative natural frequencies and first three average relative mode shape differences of the
cracked and undamaged beam for different crack locations and depths are calculated using
numerical, finite element and experimental analysis. The calculated modal frequencies, mode
shapes, relative crack locations and relative crack depths are used to design the fuzzy neural
model. The measured vibration signatures are used as inputs to the fuzzy segment of the
hybrid model and initial relative crack depths and initial crack locations are the output
parameters. The first three relative natural frequencies, first three average relative mode
shape difference and the output from the fuzzy model are used as inputs to the neural part of
the hybrid model and final crack depths and locations are the output parameters. The
measured vibration signatures are used to formulate series of fuzzy rules and training patterns
for the fuzzy and neural model. Finally, the validation of the proposed method is carried out
dynamically by means of experimental results from the developed experimental setup. The
fuzzy segment of the hybrid model for multiple crack prediction has been developed using
triangular, Gaussian and trapezoidal membership functions. The triangular membership
function based hybrid model, Gaussian membership function based hybrid model and
trapezoidal membership function based hybrid model are shown in Fig.8.1, Fig.8.2, Fig.8.3

respectively.
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8.2.1 Analysis of the fuzzy segment of the fuzzy-neuro model

The first layer of the fuzzy-neuro hybrid model i.e. the fuzzy segment has six inputs and four
interim output parameters. The linguistic terms representing the inputs are fnf, snf, tnf, fmd,
smd and tmd. The interim outputs from the fuzzy part of the hybrid crack diagnostic system
are as follows;

Initial first relative crack location = “rcll;ni”, Initial first relative crack depth = “redlinitial”
Initial second relative crack location = “rcl2,y.1”, Initial second relative crack depth = “red2iyiiar”
The different types of membership functions such as triangular, Gaussian and trapezoidal have
been used for designing the fuzzy part of the fuzzy-neural model. The fuzzy rules and fuzzy
linguistics terms used for designing the fuzzy layer of the fuzzy-neuro model follows the rule and
linguistics terms pattern mentioned in Table 5.1 and Table 5.2 of chapter 5. The fuzzy

methodology to develop the fuzzy-neuro crack identification tool has been inherited from section

5.2 and 5.3 of chapter 5.

8.2.2 Analysis of the neural segment of fuzzy-neuro model

The model of the neural segment has been discussed in this section. The neural model of the
proposed fuzzy-neural hybrid system for crack diagnosis is a ten layer feed forward network
trained with back propagation technique for multiple crack diagnosis in structural members.
The results obtained from the fuzzy analysis will be used as inputs to the neural segment of
the hybrid fuzzy-neuro model. The diamond shape neural network comprises of ten inputs
and four output parameters. The various inputs to the neural network are fnf, snf, tnf, fmd,
smd, tmd and initial first relative crack location (rcllinita), initial first relative crack depth
(rcdlinitial), 1nitial second relative crack location (rcl2iyisar), initial first relative crack depth

(rcd2initiar)- The final outputs from the neural network are depicted below;

final first relative crack location = “rcllgn,”, final first relative crack depth = “red1ina”,

final second relative crack location = “rcl2gn,”, final second relative crack depth = “red2fina”
The number of neurons present in each layer (i.e. 2" layer to 8" layer) of the neural model is
twelve, thirty-six, fifty, one hundred fifty, three hundred, one hundred fifty, fifty and eight
respectively. The numbers of neurons have been selected to make the neural model a
diamond shape for better convergence of results. The complete working principle of the

neural model has been described in sections 6.2 and 6.3 of chapter 6.
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8.3 Results and discussions of fuzzy-neuro model

This section depicts the analysis of the results obtained from the fuzzy-neuro model used for
multiple crack identification in structural systems.

A comparison of results from the triangular membership based fuzzy-neural model (Fig
8.1), Gaussian membership based fuzzy-neural model (Fig. 8.2), trapezoidal membership
based fuzzy-neural model (Fig. 8.3) with that of the experimental analysis are presented in
Table 8.1 (a). By studying the results mentioned in Table 8.1 (a), the deviation of Gaussian
fuzzy-neural model from the actual results is found to be least as compared to triangular
fuzzy-neural model, trapezoidal fuzzy-neural model. Again the results from the Gaussian
fuzzy-neural model are compared with the outcome from GA, neural network and fuzzy
Gaussian model in Table 8.1(b) and the results are in close agreement. Six numbers of inputs
i.e. first three relative natural frequencies and first three relative mode shape differences
have been considered to measure the relative crack locations and relative crack depths by the
proposed fuzzy-neuro models. The corresponding outputs have been presented to evaluate
the accuracy of the results from the various methodologies mentioned. The parameter
presented in column number one to six in the Table 8.1(a) and Table 8.1(b) are first three
relative natural frequencies and first three relative mode shape differences. The rest of the
column represents the relative first crack location, relative second crack location, relative
first crack depth and relative second crack depth obtained from the different methodologies
being performed on the multiple cracked cantilever beam model. From the analysis of the
results, it is found that the percentage of deviation of the prediction values of relative crack
locations and relative crack depths for the triangular fuzzy-neuro model, Gaussian fuzzy-
neuro model and trapezoidal membership fuzzy-neuro model are 6.48%, 4% and 5%

respectively.
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8.4 Summary

The following conclusions can be drawn by investigating the results from the fuzzy-neural

analysis carried out for multiple crack identification.

From the analysis, it has been observed that both crack locations and crack depths have
noticeable effects on the modal parameters of the cracked beam. The hybrid intelligent model
is developed with the computed values of modal parameters of the cracked beam with
various crack depths and crack locations as inputs and final relative crack depths and final
relative crack locations as output parameters. The authenticity of the hybrid system has been
verified from the predicted values of the crack locations and depths by comparing the results
from neural network model, GA, fuzzy Gaussian and experimental analysis. The Gaussian
fuzzy neuro model produces best results in terms of relative crack depths and relative crack
locations in comparison to triangular fuzzy neuro, trapezoidal fuzzy neuro model. This
modular Gaussian fuzzy-neural architecture can be used as a non-destructive procedure for
health monitoring of structures. Evolution algorithm has also been used in next chapters to
develop hybrid system for easy diagnosis of faults in dynamically vibrating structures. Since
the Gaussian fuzzy neuro model performance is better than the other two fuzzy-neuro model,
in the next chapters the results from Gaussian fuzzy neuro model will be compared with
other AI techniques (MANFIS, GA-fuzzy, GA-neural, GA-neuro-fuzzy) to compare their

performance.

Publication

e Amiya Kumar Dash, D.R.K.Parhi, A vibration based inverse hybrid intelligent
method for structural health monitoring, International Journal of Mechanical and
Materials Engineering. Vol.6 (2), pp. 212-230, 2011.
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Chapter 9

ANALYSIS OF MANFIS FOR MULTIPLE CRACK
DETECTION

The presence of a transverse crack in shaft, rotor and structures incurs a potential risk of
destruction or collapse. This produces high costs of production and maintenance. Detection
of multiple cracks in their early stages may save the system for use after repair. By
monitoring the system, depending upon the type and severity of the cracks, it may be
possible in some cases to extend the use of a flawed member without risking a catastrophic
failure. This section of the thesis presents an inverse technique using multiple adaptive
neuro-fuzzy-evolutionary system (MANFIS) methodology for identification of multiple
transverse cracks present in structural members. The proposed MANFIS model utilizes six
inputs the first three natural frequencies and first three mode shapes from the system and
provides outputs relative crack locations and relative crack depths, there by identifying the
position and severities of the cracks. The developed technique has been found to be suitable

for diagnosis of cracks present in the beam structures.

The MANFIS system introduced in this chapter is comprises five layers. The first layer is an
adaptive layer which has six inputs. The second and third layers are fixed layers. The fourth
and fifth layers are adaptive layers. Relative first crack location, relative second crack
location, relative first crack depth and relative second crack depth are the output parameters
from the fifth layer of the MANFIS model. MANFIS is an extended version of ANFIS to
produce multiple real responses of the required system. This technique can be utilized
effectively for modeling functions with nonlinearities and complexity without the application
of accurate quantitative analyses. The Takagi and Sugeno’s model can be employed to
extract the input and output pairs of data which are used to train the fuzzy logic system [205].
ANFIS has been developed by integrating the best features of Fuzzy Systems and Neural
Networks. The fuzzy part represents the prior knowledge into a set of constraints (network

topology) to reduce the optimization search space. The proposed MANFIS methodology has
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been found to be in good agreement with the results from experimentation, there by showing

its authenticity.

9.1 Introduction

A lot of research has been carried out by scientists to develop techniques for structural health
monitoring. It is observed that the artificial intelligence techniques such as fuzzy inference
system, neural network and genetic algorithm have been applied to design the more robust
expert systems for crack diagnosis in damaged structures. Recently multiple adaptive neuro-
fuzzy-inference system has drawn attention of science community to design intelligent
systems. The advantage of the MANFIS system is that, it integrates the positive features of
both fuzzy logic and neural network and provides a more robust platform to develop systems
for different engineering applications.

The current chapter exhibits a methodology based on multiple adaptive neuro-fuzzy-
inference system which is an extension of ANFIS system to diagnose multiple cracks present
in a cantilever beam model. The developed MANFIS model is comprising of five layers i.e.
one input layer, three hidden layer and one output layer. Out of five layers, the input layer
has been designed using fuzzy inference system and the rest four layers are designed using
neural network. Various fuzzy linguistic terms and several hundred fuzzy rules have been
developed from the derived values of first three relative natural frequencies, first three
average relative mode shape difference, relative crack locations and relative crack depths to
train the fuzzy layer of the MANFIS model. Similarly several hundred training patterns have
been developed to design and train the neural based layers of the proposed system. The fuzzy
segment uses the first three relative natural frequencies, first three average relative mode
shape difference as the inputs and the hidden layer process the outputs from the fuzzy model.
Finally relative crack locations and relative crack depths are outputs from the developed
MANFIS model. It is observed that the predicted values of relative crack locations and
relative crack depths from the formulated technique are well in agreement with the results
from experimental analysis. The proposed methodology demonstrates its capability to be a
suitable non destructive technique for fault identification in vibrating structures.

The current chapter of the thesis has been divided into four sections. The first section, which

is the introduction section of this chapter explain the use of MANFIS in advanced
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computing. The analysis of the MANFIS applied for fault diagnosis has been discussed in
section 9.2. The results obtained from MANFIS system has been compared with the results
obtained from the methods discussed in the previous chapters and discussion about the same
has been expressed in section 9.3. The conclusions made by analyzing the results from the

MANFIS model have been explained in section 9.4.

9.2  Analysis of multiple adaptive neuro-fuzzy inference system for crack
detection

The MANFIS (multiple adaptive neuro fuzzy inference system) technique is known as a
multiple ANFIS system. It integrates the capabilities of the neural network and fuzzy logic.
The ANFIS model used for designing the MANFIS model is a first order Takagi Sugeno
Fuzzy Model [205]. In the present investigation, six parameters are used as inputs to the
MANFIS system and four parameters are the outputs from the system. The inputs are (x1)

fnf, (x2) snf, (x3) tnf, (x4) fmd, (x5) smd and (x6) tmd. The output parameters are as follows;

First relative crack location = “rcl1”; First relative crack depth = “rcd1”

Second relative crack location = “rcl2”’; Second relative crack depth = “rcd2”

In the current analysis, the MANFIS model has four output parameters; based on this logic

the system has been fabricated.
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The if then rules for the MANFIS architecture is defined as follows;
IF x1is Aj, x21is By, x3is Cp, x4 1s Dy , x5 1S B, X6 is F,
THEN 9.1)

fei=peiXl + 1ei X2+ Sei X3+ teix4 + Ui X5+ Vi X6 + 7

Where;

fij=rclli= prixl+ r;x2+ s1;x3+ tix4+ u; x5+ vi;x6+z; ;forrelative crack
lengthl.

fi=redl,i= paixl+ 1rix2+ s2;x3+ tri x4+ upi x5+ vy X6 +2zp; ; for relative crack
depthl.

fi=rcl2,i= prixl+ r;x2+ s1;x3+ tix4+ u; x5+ vi;x6+z; ;forrelative crack
length?2.

fui=rcd2,i= poixl+ 1ix2+ s2;x3+ tri x4+ upi x5+ vy X6 +7p; ; for relative crack
depth2.

e=1to4;j=1toq;k=1togym=1toqs;n=1toqa;0=1togsandp=1to q¢ and
1=110 (19293949596

A, B, C, D, E and F are the fuzzy membership sets defined for the input variables x1 (fnf),
x2(snf), x3(tnf), x4(fmd), x5(smd) and x6(tmd). qi, q2, 3, g4, g5 and ge¢ are the number of
member ship functions for the fuzzy systems of the inputs x1, x2, x3, x4, x5 and x6

respectively.

“rcll”, “rcl2”,“rcd1” and “rcd2” are the linear consequent functions defined in terms of the
inputs (x1, x2, x3, x4, x5 and X6) . puii, U1, S1i,tii >ULi »Vii s Z1i-P2i » T2, S2.i »t2.i 5U2,i , V2.i and
2, are the consequent parameters of the ANFIS fuzzy model. In the ANFIS model nodes of
the same layer have similar functions. The output signals from the nodes of the previous
layer are the input signals for the current layer. The output obtained with the help of the node

function will be the input signals for the subsequent layer.
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Layer 1: Every node in this layer is an adaptive node (square node) with a particular fuzzy
membership function (node function) specifying the degrees to which the inputs satisfy the

quantifier. For six inputs the outputs from nodes are given as follows;

O ge=Hag (x) forg=1,...... ,ql (for input Xl)\
O1, g =UBg (x) forg=ql+l,...... ,ql+q2 (for input x2)
O1,ge = Hcg (x) forg=ql+q2+1, ...... , ql+q2+q3 (for input x3)
(9.3)
O1,gc = Upg (x) for g=ql+q2+q3+1, ..., ql+q2+q3+q4 (for input x4)
O1,gc = UEg (x) for g=ql+q2+q3+qgd+l, ..., ql+q2+q3+q4+qS (for input x5)
O1,gc = Mg (x) for g =ql+q2+q3+qd+q5+1, ..., ql+q2+q3+qd+q5+q6  (for input x6)

Here the membership functions for A, B, C, D, E and F considered are the bell shaped
function. The membership function for A,B,C,D,E and F considered in “layer 1™ are the bell
shaped function (Fig. 9.1) and are defined as follows;

A
MF
0.1 r-------- .
i Slope=-b/2a,
05 f-ees — L ,
0.0 Cg‘lag Cg ngrag X g

2a,

Fig. 9.1 Bell-shaped membership function

Hag(X)= Sres 8T L ,ql (9.4 (1))
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HBg(X): 2 bg
X—C
1+
a,
_ 1
HCg(X)_ )\ be
X—C
1+ j
a,
B 1
HDg(X)_ ,be
X—C
1+ j
a,
_ 1
MEg(X)_ ) bg
X—C
1+ £ J
a,
1
qu(X): S, be
X—C
1+ & J
a

9

2

b

g=ql+q2+1, ...... , q1+q2+q3

g =ql+q2+q3+1, ..., ql+q2+q3+q4

g =ql+q2+q3+qgd+1, ...... , q1+q2+q3+q4+q5

g = ql+q2+q3+q4+q5+1, ., ql+q2+q3+qd4+q5+q6

(9.4 (ii))

(9.4 (iii))

(9.4 (iv))

9.4 ()

(9.4 (vi))

Where ag,b, and ¢, are the parameters for the fuzzy membership function. The bell-shaped

function changes its pattern as per the change of the parameters. This change will give the

various contour of bell shaped function as needed in accord with the data set for the problem

considered.

Layer 2: Every node in this layer is a fixed node (circular) labeled as “II”. The output

denoted by O,;.. The output is the product of all incoming signal.

Ozie = Wi e = Hag(X) HBg(X) Heg(X) Hpg(X) MEg(X) HFg(X) ;

fori=1,...., 919293949596 and g=1,....., ql+q2+q3+q4+q5+q6
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The output of each node of the second layer represents the firing strength ( degree of
fulfillment) of the associated rule. The T-nom operator algebraic product { T,y(a,b) = ab},

has been used to obtain the firing strength (wi).

Layer 3: Every node in this layer is a fixed node (circular) labeled as “N”. The output of the
i th. node is calculated by taking the ratio of firing strength of i th. rule (wi,) to the sum of all

rules’ firing strength.

Osje= W, =i 9.6)

ie r=ql.q2.q3.q4.95.q6

r,e
r-1

This output gives a normalized firing strength.

Layer 4: Every node in this layer is an adaptive node (square node) with a node function.

Osi,e= Wi, fei™ Wi, (Pei X1 + Tei X2+ Sei X3+ tei X4+ Uei XS+ VeiX6+2e;) (9.7)
Where W, is a normalized firing strength form (output) from layer 3 and {pe.;, e , Se,i » e,

Uei , Vei » Zei}is the parameter set for relative crack location(e=1,2) and relative crack depth

(e=1,2). Parameters in this layer are referred to as consequent parameters.

Layer 5: The single node in this layer is a fixed node (circular) labeled as “X”, which

computes the overall output as the summation of all incoming signals.

i=ql.q2.q3.94.95.96

i=q1.q2Aq3.q4Aq5.q6_ Wi,e fe,i

Os1e= > w. . f. = ! (9.8)

- i,e e, i=ql.q2.q3.q4.95.q6
i-
w.

ie

i-1
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In the current developed ANFIS structure there are six dimensional space partition and has
“UXQXQ3Xqax(sXqe regions. Each region is governed by a fuzzy if then rule. The first
layer (consists of premise or antecedent parameters) of the ANFIS is dedicated to fuzzy sub
space. The parameters of the fourth layer are referred as consequent parameters and are used
to optimize the network. During the forward pass of the hybrid learning algorithm node
outputs go forward until layer four and the consequent parameters are identified by least
square method. In the backward pass, error signals propagate backwards and the premise
parameters are updated by a gradient descent method. The MANFIS architectures are

presented in Fig. 9.2 (a) & Fig. 9.2 (b).

ANFIS Layer Output Layer

X6

H_J

Input Layer

Fig. 9.2 (a) Multiple ANFIS (MANFIS) Model for crack detection
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9.3 Results and discussions of MANFIS model

The following discussions can be made from the analysis of the results of the multiple
adaptive neuro-fuzzy inference system to predict the relative crack locations and relative

crack depths.

The simulation results in current analysis indicate that the impact of crack locations and
depths on the vibrational characteristics of the cantilever beam is quiet evident. This is an
important outcome of the numerical, finite element and experimental analysis which is used
as a baseline for formulation of a multiple crack diagnostic tool using MANFIS technique.
The Bell shaped membership function used for designing the ANFIS model has been shown
in Fig. 9.1. The architecture of the proposed MANFIS model for multiple crack diagnosis
and the detailed architecture showing the different layers of the ANFIS system for crack
detection have been presented in Fig. 9.2 (a) and Fig. 9.2 (b) respectively. The suitability of
the MANFIS technique has been checked by comparing the results with that of the Gaussian
fuzzy-neuro model of chapter-8, GA model of chapter-7, experimental analysis of chapter-12
and the comparison has been presented in Table 9.1 (a). The results obtained from MANFIS,
numerical analysis and finite element analysis have been compared and presented in Table
9.1 (b). Ten sets of inputs (relative first three natural frequencies and relative first three mode
shape differences) out of the several hundred inputs have been considered for the above
mentioned techniques and the corresponding outputs in terms of relative first crack location
(rcll), relative second crack location (rcl2), relative first crack depth (rcdl), relative second
crack depth (rcd2) are presented in the Table 9.1 (a) and Table 9.1 (b).The first six columns
of both the Table (Table 9.1 (a), Table 9.1 (b)) presents the inputs for the above mentioned
methodologies i.e. relative 1% natural frequency (fnf), relative 2™ natural frequency (snf),
relative 3™ natural frequency (tnf), relative 1* mode shape difference (fmd), relative 2™
mode shape difference (smd) and relative 3™ mode shape difference (tmd) respectively. The
rest columns from the Table represent the outputs such as relative crack locations and relative
crack depths from the respective techniques. From the analysis of the results presented in

Tables 9.1(a) it is found that, the percentage deviation of the results of MANFIS is 2.53%.
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9.4 Summary

Based on the results from MANFIS technique the following conclusions are drawn for

multiple crack diagnosis in the beam structure.

In the current investigation a methodology based on measurement of natural frequencies and
mode shapes of the system has been presented for identification of crack locations and their
severities in a beam structure using MANFIS model having one input (fuzzy) layer, four
hidden layers and one output layer. Analyzing the results obtained from experimental, finite
element and numerical methods, it is clear that the natural frequencies and mode shapes
shows a noticeable change due to presence of cracks on the beam structure. The first three
relative natural frequencies and mode shapes differences from the numerical, finite element
and experimental analysis are used as inputs to the fuzzy segment (input layer) of the
MANFIS model. Relative crack locations and relative crack depths are the output from the
developed model. The predicted results of the MANFIS model has been validated using the
results from the developed experimental setup and the results are found to be in close
agreement. From the analysis of the results obtained from the newly designed model it is
observed that the MANFIS model predicts the position and severities of cracks with more
accuracy than the other Al techniques discussed in this thesis and can be suitably utilized for

online multiple crack diagnosis in the dynamically vibrating structures.

Publications
Amiya Kumar Dash, Dayal R.Parhi, Development of a crack diagnostic application using

MANFIS technique, International journal of acoustics and vibration (IJAV), In Press.
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Chapter 10

ANALYSIS OF GENETIC FUZZY MODEL FOR
MULTIPLE CRACK DETECTION

Detection faults before it affects the performance of the system become essential for
efficient, reliable and safe operation in engineering systems. Traditional techniques for fault
detection have limitations due to non accurate mathematical model used for simulating the
actual conditions. Moreover, generation of an accurate mathematical model for a non linear
system becomes very complex. Therefore, knowledge based system and evolutionary
techniques become more appropriate to address modeling uncertainties. Fuzzy inference
system is one of the knowledge based methodology, to resolve fault detection problem.
Genetic algorithms (GAs) are search algorithm based on the mechanism of natural selection
and genetic reproduction. It can be employed effectively to find the optimize solution in
[163] many control systems. In the present study, genetic algorithm and fuzzy logic based
hybrid technique (GA-fuzzy model) has been designed for diagnosis of multiple cracks in
vibrating structures. The proposed method represents a suitable alternative method to neural
network and genetic algorithm based method in the domain of fault diagnosis for damaged

structures.

10.1 Introduction

The presence of vibrations on structures and machine components are used by engineers and
scientists to formulate methodologies for identification of crack in damaged structures. So,
the vibration parameters can be used to design techniques based on artificial intelligence for

fault diagnosis.

To develop a robust fault diagnostic tool based on genetic algorithm and fuzzy logic, the
current chapter explores the use of dynamic responses of cracked and intact cantilever beam
structure. Theoretical, finite element and experimental analyses have been carried out to find
the combined impact of crack locations and crack depths on the vibrational characteristics
(natural frequencies, mode shapes) of the cantilever beam. The calculated vibration

signatures are used to design and train the GA-fuzzy model. The viability of the proposed
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technique has been investigated both analytically and experimentally for the cantilever beam

containing multiple cracks.

This chapter has been organized into four sections. Section 10.1, the introduction part of the
current chapter gives an outline about the application of Al techniques used for fault
detection. The analysis of the GA-fuzzy model has been described in section 10.2. Section
10.2.1 and section 10.2.2 gives a detail picture about the GA methodology and fuzzy
methodology adopted for developing the hybrid intelligent model. Section 10.3 explains
about the results from the GA-fuzzy system and also explains the performance of the system
in comparison to numerical, FEA, Gaussian fuzzy-neuro, MANFIS and experimental

technique. The summary of the chapter is expressed in section 10.4.

10.2 Analysis of genetic- fuzzy system for crack detection

This section discusses about the mechanism of the proposed genetic-fuzzy system for
identification of multiple cracks in structural members. To identify the locations and depths
of multiple cracks in structural members, a new hybrid GA-fuzzy model has been designed.
The computed vibration signatures from theoretical, finite element and experimental analysis
are used to train the hybrid model. The first three relative natural frequencies, first three
relative mode shape differences are used as inputs to the GA model and rcll interim,
rcdl_interim, rcl2 interim, rcd2 interim are the outputs from the GA model. The fuzzy
system takes the interim outputs from the GA model along with the first three relative natural
frequencies, first three relative mode shape differences as inputs. Finally, rcll final,
rcdl final, rcl2 final, rcd2 final are the output parameters from the hybrid GA-fuzzy
technique. A comparison of results obtained from theoretical, finite element, Gaussian fuzzy-
neuro, MANFIS, GA-fuzzy model and experimental analysis have been presented in Table
10.4 (a), Table 10.4 (b) and the results are found to be in close agreement. The detail
architecture of the hybrid GA- fuzzy (Gaussian membership based) model has been shown in
Fig. 10.3. The proposed hybrid GA-fuzzy system can be used as a robust technique to
identify multiple cracks in damaged structures. The mechanism of GA segment and the fuzzy
segment of the hybrid model inherits the steps followed in section 7.2, section 5.3

respectively.
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10.2.1 Analysis of the GA segment of GA-fuzzy model

This section presents the approach adopted for formulating the GA segment of the developed
hybrid GA-fuzzy model to identify presence of multiple cracks in the cantilever beam model.
The GA model has got six inputs such as fnf, snf, tnf, fmd, smd and tmd. The output
parameters from the GA model are interim first relative crack location (rcll_interim), interim
first relative crack depth (rcd1 _interim), interim second relative crack location (rcl2_interim)

and interim first relative crack depth (rcd2_interim).

The GA system utilizes reproduction, mutation and objective function to process the input
parameters and provide interim outputs (interim relative crack locations and interim relative
crack depths). The steps followed to formulate the GA model have been inherited from

section 7.2 of the thesis.

Inputs Outputs
redl_interim
rcd2 interim ——

fnf Fuzzy Model

snf — » rcdl final

tnf ~y rcll final

5 rcd2 final
fmd —_ > -

5 rcl2 final
smd —» -

tmd —
rcll interim

rcl2_interim >

Fig. 10.1 Fuzzy Gaussian model for crack detection
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10.2.2 Analysis of the fuzzy segment of GA-fuzzy model

This section analyses the knowledge based fuzzy inference system used for designing the
fuzzy model used to detect multiple cracks present in the cracked cantilever beam structure.
The vibration signatures extracted from the healthy and faulty beam model using numerical,
finite and experimental techniques have been used for formulation of the fuzzy rule base and
fuzzy linguistic terms of the Gaussian membership based fuzzy inference system of the

proposed hybrid system.

The ten numbers inputs to the fuzzy layer of the hybrid GA-fuzzy system are fnf, snf, tnf,
fmd, smd, tmd, interim first relative crack location (rcll interim), interim first relative crack
depth (rcdl_interim), interim second relative crack location (rcl2_interim) and interim first
relative crack depth (rcd2 interim). The four numbers of output parameters from the fuzzy
segment are final first relative crack location (rcll final), final first relative crack depth
(rcdl_ final), final second relative crack location (rcl2_ final), final first relative crack depth

(rcd2_ final).

The Gaussian membership based fuzzy model with inputs and outputs has been shown in
Fig.10.1. The membership functions used for fuzzification of the system are shown in Fig.
10.2. Some of the fuzzy linguistic terms used for input and output parameters and fuzzy rules
for development of the fuzzy segment are presented in Table 10.1, Table 10.2 and Table 10.3

respectively.

The detail architecture of the developed GA-fuzzy based intelligent system has been
presented in Fig. 10.3. Subsequently, results from the developed intelligent hybrid system
have been validated by experimental method. The methodology for development of the

fuzzy system has been adopted as explained in section 5.3 of the thesis.
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Membership functions for input parameters

L1F4 LIF3 LI1F2 LIF1 MIF1 MIF2 HIFl HIF2 HIF3 HIF4 L2F4 L2F3 L2F2 L2F1 M2F1 M2F2 H2F1 H2F2 H2F3 H2F4

0.0,0.912 0.92 0928 0.936 0.944 0.952 0.96 0.968 0.976 0.984 0992 1.0
Fig. 10.2(al) Membership functions for relative
natural frequency for first mode of vibration.

0.0,0.9340.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994 1.0

Fig. 10.2(a2) Membership functions for relative

natural frequency for second mode of vibration.

L3F4 L3F3 L3F2 L3F1 M3F1 MB3F2 H3F1 H3F2 H3F3 H3F4 SIM4 SIM3 SIM2 SIMI MIMI MIM2 HIMI HIM2 HIM3 HIM4

0.0,0.934 0.940 0.946 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994 1.0 0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272 -0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0
Fig. 10.2(a3) Membership functions for relative  Fig. 10.2(a4) Membership functions for relative mode
natural frequency for third mode of vibration. shape difference for first mode of vibration.

S2M4 S2M3 S2M2  S2M1 M2M1 M2M2 H2M1 H2M2 H2M3 H2M4 S3M4  S3M3 S3M2 S3MI1 M3MI1 M3M2 H3M1 H3M2 H3M3 H3M4

0.0-1.0 -0.81818 -0.63636 -0.45454 -0.27272-0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0 0.0,-1.0 -0.81818 -0.63636 -0.45454 -0.27272-0.0909 0.09092 0.27272 0.45454 0.63636 0.81818 1.0

Fig. 10.2(a5) Membership functions for relative mode Fig. 10.2(a6) Membership functions for relative
shape difference for second mode of vibration. mode shape difference for third mode of vibration.

S1D9 SID8 S1D7 S1D6 S1D5 S1D4 S1D3 S1D2 S1D1I MI1D L1DI L1D2 L1D3 L1D4 L1DS L1D6 L1D7 L1D8 L1D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 10.2a7 (a) Membership functions for interim relative crack depthl.

S2D9 S2D8 S2D7 S2D6  S2DS5 S2D4 S2D3 S2D2 S2D1 M2D L2D1 L2D2 L2D3 L2D4 L2D5 L2D6 L2D7 L2D8 L2D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 10.2a7 (b) Membership functions for interim relative crack depth2.

S1L22 S1L20 S1L18 S1L16 S1L14 S1L12 S1L10 S1L8 S1L6 SiL4  SiL2 MIL1 BiLl BIL3 BIL5 BIL7 BIL9 BI1L10 BIL12 BIlL14 BI1L16 BI1L18 BI1L20
SiL21 S1L19 S1L17 S1L15 S1L13 S1Lll Sik9  siL7  SiL5  S1L3  SiLl MIL2 BlL2 BlL4 BI1L6 BI1L8 B1L11 B1L13 BI1L15S BI1L17 BI1L19 BI1L21 BI1L22

" LR ELKAULLLARCUALALAALLENAG

0.0,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 4312 4734 5155 5576 .5997 6418 .6840 .7261 .7682 .8103 .8524 .8946 .9367 .9789
.0311  .0732 1153 1575 .1996 .2417 .2838 3259 .3681 .4102 .4523 4944 5365 .5787 .6208 .6629 .7050 .7471 .7893 .8314 .8735 .9156 .9578 1.0

Fig. 10.2a8 (a) Membership functions for interim relative crack locationl.

S2L22 S2L20 S2L18 S2L16 S2L14 S2L12 S2L10 S2L.8 S2L6 S2L4  S2L.2 M2L1 B2L1 B2L3 B2L5 B2L7 B2L9 B2L10 B2L12 B2L14 B2L16 B2L18 B2L20
S2L21 S2L19 S2L17 S2L15 S2L13 S2L11 S2L9 S2L7  S2L5  S2L3 S2L1  M2L2  B2L2 B2L4 B2L6 B2L8 B2L11 B2L13 B2L15 B2L17 B2L19 B2L21 B2L22

AU,

0.0,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 .4312 4734 5155 5576 .5997 .6418 .6840 .7261 .7682 .8103 .8524 .8946 .9367 .9789
0311 .0732 1153 1575 .1996 .2417 .2838 .3259 .3681 .4102 .4523 4944 5365 .5787 .6208 .6629 .7050 .7471 .7893 .8314 .8735 9156 .9578 1.0

o

Fig. 10.2a8 (b) Membership functions for interim relative crack location2.
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Membership functions for output parameters

S3D9 S3D8 S3D7 S3D6 S3D5 S3D4 S3D3 S3D2 S3D1 M3D L3D1 L3D2 L3D3 L3D4 L3D5 L3D6 L3D7 L3D8 L3D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 10.2a9 (a) Membership functions for final relative crack depthl.

S4D9 S4D8 S4D7 S4D6 S4D5 S4D4 S4D3 S4D2 S4D1 M4D L4D1 L4D2 L4D3 L4D4 L4D5S L4D6 L4D7 L4D8 L4D9

0.0,0.01 0.0545 0.099 0.1435 0.188 0.2325 0.277 0.3215 0.366 0.4105 0.455 0.4995 0.5440 0.5885 0.633 0.6775 0.722 0.7665 0.8110 0.8555 0.9

Fig. 10.2a9 (b) Membership functions for final relative crack depth2.

S3L22 S3L20 S3L18 S3L16 S3L14 S3L12 S3L10 S3L8 S3L6 S3L4  S3L2 M3L1 B3L1 B3L3 B3L5 B3L7 B3L9 B3L10 B3L12 B3L14 B3L16 B3L18 B3L20
S3L21 S3L19 S3L17 S3L15 S3L13 S3L11 S3L9 S3L7  S3L5  S3L3  S3L1 M3L2 B3L2 B3L4 B3L6 B3L8 B3L11 B3L13 B3L15 B3L17 B3L19 B3L21 B3L22

AU RCUEAARL AU

0.0,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 .4312 4734 5155 5576 .5997 .6418 .6840 .7261 .7682 .8103 .8524  .8946 .9367 .9789
0311  .0732 .1153 1575 .1996 .2417 .2838 .3259 .3681 .4102 .4523 4944 5365 .5787 .6208 .6629 .7050 .7471 .7893 .8314 .8735 .9156 .9578 1.0

Fig. 10.2a10 (a) Membership functions for final relative crack locationl.

S4L22 SAL20 SAL18 SAL16 S4L14 SAL12 S4L10 S4L8 SAL6 SAL4  SAL2 MAL1  B4Ll BAL3 BALS BAL7 B4L9 B4L10 B4L12 B4L14 B4L16 B4L18 BA4L20
S4L21 SAL19 SAL17 SAL15 SAL13 S4L11 S4L9 SAL7  SALS SAL3  SALL M4L2 B4L2 B4L4 B4L6 B4L8 B4L11l B4L13 B4L1S B4L17 B4L19 B4L21 B4L22

UULAULALCCLLLCLACLLLLLLLLLLALALLAL

00,01 .0522 .0943 .1364 .1785 .2206 .2628 .3049 .3470 3891 4312 4734 5155 5576 .5997 .6418 .6840 .7261 .7682 .8103 .8524  .8946 .9367 .9789
.0311 .0732 1153 1575 .1996 .2417 .2838 3259 .3681 .4102 4523 4944 5365 .5787 6208 .6629 .7050 .7471 7893 .8314 8735 9156 .9578 1.0

o

Fig. 10.2a10 (b) Membership functions for final relative crack location2.

Parent 1 finf —»,
Cililo ] TiTololx0] o
A
fnf —> Crossover Point
Parent 2 ! tnf —» Fuzzy Controller
snf —» —> I‘Cll_fmal
|1|1|1|1 1|1|0|1|1|0| I'Cll_imerim
tnf —»| GA erl_interim R —> erl_ﬁnal
Controller 112 _interim
fmd —> > —> I'Clz_fmal
Offspring 1 rcd2 _interim

A\ 4

smd—| [1]1]o]1]1]1]0]1[1]0] Interim

Outputs fnd—

—> I’Cd2_fma1

tmd = Offspring 2
[1]1]1[1]1]1]o0]0]1]0] smd—»

tmd —»|

Fig. 10.3 Genetic-Fuzzy system for fault detection
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Table 10.1 Description of fuzzy Linguistic terms for input parameters of fuzzy segment for GA-fuzzy

Model
Membership Functions Name | Linguistic | Description and range of the Linguistic terms
Terms

L1F1,L1F2,L1F3,L1F4 fnf | 4 Low ranges of relative natural frequency for first mode of vibration in
descending order respectively

MI1F1,M1F2 nf 56 Medium ranges of relative natural frequency for first mode of
vibration in ascending order respectively

H1F1,HIF2,HIF3,HIF4 nf 710 Higher ranges of relative natural frequency for first mode of vibration
in ascending order respectively

L2F1,L2F2,L.2F3,L2F4 snf |4 Low ranges of relative natural frequency for second mode of vibration
in descending order respectively

M2F1,M2F2 snf 56 Medium ranges of relative natural frequency for second mode of
vibration in ascending order respectively

H2F1,H2F2,H2F3,H2F4 snf 74 10 Higher ranges of relative natural frequencies for second mode of
vibration in ascending order respectively

L3F1,L3F2,L3F3,L3F4 tnf | o4 Low ranges of relative natural frequencies for third mode of vibration
in descending order respectively

M3F1,M3F2 tnf 56 Medium ranges of relative natural frequencies for third mode of
vibration in ascending order respectively

H3F1,H3F2,H3F3,H3F4 tnf 7 10 Higher ranges of relative natural frequencies for third mode of
vibration in ascending order respectively

SIMI1,S1M2,S1M3,S1M4 fmd | o4 Small ranges of first relative mode shape difference in descending
order respectively

MIMI,MIM2 fmd 56 medium ranges of first relative mode shape difference in ascending
order respectively

HIM1,HIM2,HIM3 HIM4 fmd 7 10 Higher ranges of first relative mode shape difference in ascending
order respectively

S2M1,S2M2,S2M3,S2M4 smd | o4 Small ranges of second relative mode shape difference in descending
order respectively

M2M1,M2M2 smd 56 medium ranges of second relative mode shape difference in
ascending order respectively

H2M1,H2M2,H2M3 , H2M4 smd 7010 Higher ranges of second relative mode shape difference in ascending
order respectively

S3M1,S3M2,S3M3,S3M4 tmd |04 Small ranges of third relative mode shape difference in descending
order respectively

M3M1,M3M2 tmd 54 medium ranges of third relative mode shape difference in ascending
order respectively

H3M1,H3M2,H3M3, H3M4 tmd 74 10 Higher ranges of third relative mode shape difference in ascending
order respectively

S1L1,S1L2...... S1L22 rell | o, Small ranges of relative crack location in descending order
respectively

MI1L1,M1L2 rcll 2324 Medium ranges of relative crack location in ascending order

respectively

BI1L1,BI1L2....... B1L22

rell 25046

Bigger ranges of relative crack location in ascending order
respectively

S1D1,S1D2...... S1D9 redl 19 Small ranges of relative crack depth in descending order respectively

MID redly Medium relative crack depth

L1DL,L1D2...... L1D9 redl 11019 Larger ranges of relative crack depth in ascending order respectively

S2L1,S2L2...... S2L.22 rel2 o2 Small ranges of relative crack location in descending order
respectively

M2L1,M2L2 rcl2 2304 Medium ranges of relative crack location in ascending order

respectively

B2L1,B2L2....... B2L22

rcl2 254 46

Bigger ranges of relative crack location in ascending order
respectively

S2D1,S2D2...... S2D9

rcd?2 1409

Small ranges of relative crack depth in descending order respectively

M2D

rcd2 10

Medium relative crack depth

L2D1,L2D2...... L2D9

red2 14019

Larger ranges of relative crack depth in ascending order respectively
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Table 10.2 Description of fuzzy Linguistic terms for output parameters of fuzzy segment for GA-

fuzzy Model

S3L1,S3L2...... S3L22 | (Interim) rcll; 2 Small ranges of relative crack location in descending order
respectively

M3L1,M3L2 (Interim) r(:1123,24 Medium ranges of relative crack location in ascending order
respectively

B3L1,B3L2....... B3L22 | (Interim) rcllys 46 Bigger ranges of relative crack location in ascending order
respectively

S3D1,S3D2...... S3D9 (Interim) rcd1 | 9 Small ranges of relative crack depth in descending order
respectively

M3D (Interim) red1 g Medium relative crack depth

L3D1,L3D2...... L3D9 (Interim) redl 19 Larger ranges of relative crack depth in ascending order
respectively

S4L1,84L2...... S41.22 (Interim) rcl2 | 2 Small ranges of relative crack location in descending order
respectively

M4L1,M4L2 (Interim) rcl2 5354 Medium ranges of relative crack location in ascending order
respectively

B4L1,B4L2....... B41.22 (Interim) rel2 2540 46 Bigger ranges of relative crack location in ascending order
respectively

S4D1,84D2...... S4D9 (Interim) rcd2 0 9 Small ranges of relative crack depth in descending order
respectively

M4D (Interim) rcd2 1o Medium relative crack depth

L4D1,L4D2...... L4D9 (Interim) rcd2;; 19 Larger ranges of relative crack depth in ascending order
respectively

Table 10.3 Examples of ten fuzzy rules used in fuzzy segment of GA-fuzzy Model

S1.No.

Examples of some rules used in the fuzzy model

1

If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is HIM2,smd is H2M4,tmd is H3M3, then rcdl is S1D6,and
rcll is S1IL17 and rcd2 is S2D4,and rcl2 is S2L6, interim rcd1 is S3D4,and interim rcll is S3L15 and
interim rcd2 is S4D5,and interim rcl2 is S4L8

If fnf is L1F4,snf is L2F4,tnf is L3F4,fimd is HIM1,smd is H2M1,tmd is H3M2, then rcdl is S1D2,and
rell is S1L17 and rcd2 is S2D1,and rcl2 is M2L2, interim redl is S3D1,and interim rcll is S3L15 and
interim rcd2 is S4D3,and interim rcl2 is M2L1

If fnf is L1F3,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M2,tmd is H3M3, then rcdl is M1D,and
rcll is SIL17 and rcd2 is S2D2,and rcl2 is B2L19, interim rcdl is M1D,and interim rcll is S3L15 and
interim rcd2 is S4D3,and interim rcl2 is B41L.21

If fnf is H1F2,snf is H2F1,tnf is H3F1,fmd is HIM3,smd is H2M4,tmd is H3M4, then rcdl is S1D6,and
rcll is SIL11 and red2 is S2D4,and rcl2 is M2L2, interim redl is S3D5,and interim rcll is S3L13 and
interim rcd2 is S4D5,and interim rcl2 is M2L1

If fnf is M1F1,snf is L2F2,tnf is L3F3,fmd is HIM1,smd is H2M1,tmd is H3M2, then rcdl is S1D4,and
rcll is S1L11 and rcd2 is S2D1,and rcl2 is B2L13, interim rcd1 is S3D2,and interim rcll is S3L14 and
interim rcd2 is S4D5,and interim rcl2 is B4L15

If fnf is L1F1,snf is L2F2,tnf is L3F3,fimd is HIM3,smd is M2M1,tmd is H3M4, then rcdl is M1D,and
rcll is SIL11 and red2 is S2D7,and rcl2 is M2L2, interim redl is S3D1,and interim rcll is S3L13 and
interim rcd2 is S4D5,and interim rcl2 is M3L1

If fnf is L1F4,snf is L2F4,tnf is L3F4,fmd is M1M2,smd is H2M1,tmd is H3M1, then rcdl is L1D1,and
rcll is SIL11 and rcd2 is S2D4,and rcl2 is B2L10, interim rcdl is L3D3,and interim rcll is S3L13 and
interim rcd2 is S4D7,and interim rcl2 is B4L15

If fnf is H1F1,snf is M2F2,tnf is M3F1,fmd is HIM2,smd is H2M2,tmd is H3M2, then rcdl is S1D6,and
rcll is S1L6 and rcd2 is S2D4,and rcl2 is B2L5, interim rcdl is S3D9,and interim rcll is S3L3 and
interim rcd2 is S4D7,and interim rcl2 is B4L7

If fnf is L1F1,snf is L2F4,tnf is L3F4,fmd is MIM1,smd is M2M1,tmd is M3M2, then rcdl is S1D2,and
rcll is S1L6 and rcd2 is L2D1,and rcl2 is B2L5, interim redl is S3D1,and interim rcll is S3L8 and
interim rcd2 is L4D4,and interim rcl2 is B4L7

10

If fnf is M1F1,snf is L2F2,tnf is L3F1,fmd is MIM2,smd is M2M2,tmd is H3M1, then rcdl is S1D1,and
rcll is S1L6 and rcd2 is S2D4,and rcl2 is B2L5, interim rcdl is S3D3,and interim rcll is S3L7 and
interim rcd2 is S4D6,and interim rcl2 is B4L3
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10.3 Results and discussions of GA-fuzzy model

The current section of this chapter analyses the results obtained from the developed GA-
fuzzy inverse technique used for multiple crack diagnosis.

The hybrid model has been designed with the vibration indices i.e. first three relative natural
frequencies, first three relative mode shape differences, relative crack locations and relative
crack depths obtained from numerical, finite element and experimental techniques. The
proposed GA-fuzzy hybrid system comprises of two layers. The first layer is the GA model,
where as the second layer is the fuzzy model. In the genetic algorithm section, the initial data
pool has been created using the vibration signatures obtained from numerical, finite element,
experimental analysis. Crossover operation has been followed as mentioned in Fig.7.1 of
section 7.2 of chapter 7, for designing the GA model to find the best fit child with in the
search space. In some of the cases mutation procedure (Fig. 7.2 of section 7.2) has been
carried out to find the optimal solution. The inputs to the GA layer of the hybrid system are
first three relative natural frequencies, first three relative mode shape differences. The interim
outputs from the GA model are, rcll_interim, rcd1_interim, rcl2_interim, rcd2_interim. The
Gaussian membership based fuzzy segment (Fig. 10.1) of the hybrid model has been
developed using the set of fuzzy rules, fuzzy linguistic terms, first three relative natural
frequencies, first three relative mode shape differences and the interim outputs from the GA
model. The description of the fuzzy linguistic terms for the input and output parameters are
shown in Table 10.1 and Table 10.2 respectively. Table 10.3 represents ten numbers of the
fuzzy rules out of the several hundred fuzzy rules used for designing the fuzzy membership
functions. The detail architecture of the intelligent hybrid system (GA-Fuzzy model) has
been shown in Fig. 10.3. The results obtained from the various analyses carried out on the
cracked cantilever beam have been validated using the developed experimental set up. A
comparison of results between GA- fuzzy model, Gaussian membership based fuzzy-neuro
model, MANFIS model and experimental analysis have been presented in Table 10.4 (a). The
predicted results for crack locations and crack depths from GA- fuzzy analysis, numerical
analysis, finite element analysis have been presented in Table 10.4 (b). Six numbers of inputs
i.e. first three relative natural frequencies and first three relative mode shape differences have
been considered to measure the relative crack locations and relative crack depths by GA-

fuzzy model and other techniques as mentioned for crack identification. The corresponding
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outputs have been presented in Table 10.4 (a) and Table 10.4 (b) to measure the accuracy of
the results from the various methodologies mentioned. During the analysis of the results, it is
observed that the percentage of deviation of the prediction values for relative crack locations

and relative crack depths of the Gaussian membership based GA- Fuzzy model is 2.36%.

10.4 Summary

The conclusions made by analyzing the results from the developed GA-fuzzy model have
been presented in this section.
In the current chapter a method for multiple crack prediction in beam like structures has been
designed using genetic algorithm and fuzzy logic. It is found that the presence of cracks has a
remarkable effect on the natural frequencies and mode shapes of the beam under
consideration. Numerical, finite element and experimental analysis have been carried out to
calculate the vibration signatures. The extracted vibration signatures are used to create the
initial data pool and subsequently designing of the GA segment of the proposed hybrid
system. Crossover and mutation operation have been used to find the best fit interim output
from the GA system. The interim outputs from the GA model along with the first three
natural frequencies and first three mode shape differences are used to develop the fuzzy layer
of the hybrid system. From the analysis of the results obtained from GA- Fuzzy model,
Gaussian membership based fuzzy-neuro model, MANFIS model, numerical analysis, finite
element analysis and experimental analysis confirms that the developed method can identify
the crack positions and their severities with higher accuracy. It is concluded that the proposed
GA-fuzzy hybrid methodology can be used as an online crack diagnostic tool for vibrating
structures. In next chapter genetic algorithm and neural network can be used to design a
hybrid model for multiple crack detection in the domain of vibrating complex structures. The
percentage of deviation in the prediction values of relative first crack location, relative
second crack location, relative first crack depth, relative second crack depth for GA-fuzzy
model is found to be 2.36%.
Paper Accepted in International Journal

1. A.K. Dash, D.R. Parhi, “Analysis of an intelligent hybrid system for fault diagnosis
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Chapter 11

ANALYSIS OF GENETIC-NEURO-FUZZY MODEL FOR
MULTIPLE CRACK DETECTION

Researches in the field of damage or fault detection in engineering applications have been
carried out for last few decades by engineers and scientists. In this regard, various techniques
such as energy method, wavelet method, finite element method and many other numerical
methods have been applied to design fault diagnostic tool. Besides the few methods as
mentioned above, the knowledge based system has been evolved as one of the best technique
for addressing problems with non linear characteristics. The knowledge based systems are
generally designed with the help of artificial intelligent methods such as genetic algorithm,
neural network, fuzzy inference system and etc. In due course for development of the system
based on Al techniques, hybridization of artificial intelligent methodologies have been used
successfully for automation of control system and other applications and to simulate the
applications to match the real conditions. Hybridization of methodologies facilitates for
integration of the best features of Al techniques, which enables to develop intelligent system
for adapting to dynamic environment and to get the optimal solution. The search based
algorithm GA, the adaptive neural network and rule based fuzzy logic can be fused together
to design and train a multiple crack diagnostic tool for structural system. Intelligent hybrid
systems (GA-neural model and GA-neuro-fuzzy model) have been presented in the current
investigation for multiple crack diagnosis in structural system using the vibration
characteristics obtained from theoretical, finite element, experimental analysis. Genetic
algorithm, neural network, fuzzy logic have been used to design and develop the hybrid
system. From the comparison of the results, obtained from theoretical, finite element, GA-
fuzzy model, GA-neural model, GA-neuro-fuzzy model and experimental analysis it is
observed that the results from the GA-neuro-fuzzy model are in close proximity with the
results obtained from the experimental analysis as compared to other methodologies
mentioned above. The developed technique can be effectively used for online health

monitoring of industrial systems.
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11.1 Introduction

Over the years damage detection in structures is being given prior attention. The presence of
cracks is one of the main causes of failure of the structural systems. So, early crack detection
is important to avoid catastrophic failure. Different non-destructive inspection techniques are
usually applied for detection of crack in engineering applications. In the current research, the
vibration parameters of the cracked and undamaged beam structure has been considered for
development of two layer (GA-neural) and three layer (GA-neuro-fuzzy) inverse intelligent
system for multiple crack diagnosis in beam like structures.

In this current section, efficient methods have been presented to identify both locations and
severities of the damages in structural systems based on genetic algorithm, neural network,
and fuzzy logic. The results from the proposed inverse methodologies have been validated by
comparing with the results obtained from theoretical, finite element and experimental
analysis. From the analysis of the results obtained from the two layer and three layer hybrid
intelligent models, it is observed that these proposed methodologies can be used as an
efficient online condition monitoring tool for faulty structures.

The present chapter is arranged into four sections. An over view of fault detection
methodologies and the application of GA, neural network and fuzzy logic for development of
crack diagnostic tool have been explained in section 11.1. The section 11.2 describes the
analysis of GA-neural and GA-neuro-fuzzy model used for fault detection. Results obtained
from the proposed models have been compared with that of the theoretical, finite element,
GA-fuzzy and experimental analysis in section 11.3 to exhibit the effectives of the

methodology. The summary of the current chapter is discussed in section 11.4.

11.2 Analysis of GA-neural and Genetic- neuro-fuzzy system for crack
detection

This section presents the analysis of the architecture of the proposed GA-neural and GA-
neuro-fuzzy model and provides a detail insight of the multiple crack diagnostic
methodology.

In the current section, multiple crack diagnostic hybrid techniques based on genetic

algorithm, neural network, and fuzzy logic have been proposed for beam like structures. To
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detect the cracks parameters and to find the relation between the cracks and the induced
vibration parameters theoretical, finite element and experimental methods are applied. The
GA segment of the hybrid models monitors the changes in the vibration signatures due to the
presence of multiple cracks and predicts the interim crack location and crack depths i.e.
tCl Linterim, 1€ linterim, TCl2interim, T€d2interim for GA-neural system and rclliperimi, 1€d1interimi,
1C12interim1, 1€d2interim1 for GA-neuro-fuzzy system. The interim out puts from the GA model
along with the first three relative natural frequencies, first three relative mode shape
differences are used as inputs to the neural segment of the hybrid system. Finally the outputs
from the GA-neural hybrid system are rcllinar, r¢d1finat, 1€12fina and red2pq, Outputs from the
neural model of GA-neruo-fuzzy system are rcllinerim2, 1¢d linterim2, T€12interim2, T€d2interim2. The
outputs from the neural segment with the first three relative natural frequencies, first three
relative mode shape differences are used as inputs to the fuzzy model and the finally the
output parameters from the GA-Neuro-fuzzy hybrid model are rcllfipal, r€d1final, 1¢12na and
rcd2na. The effectiveness of the developed hybrid models have been established by
comparing the results obtained from theoretical, finite element, GA-fuzzy model, GA-neural
model, GA-neuro-fuzzy model and experimental analysis. The comparisons of results are
presented in Table 11.1(a), Table 11.1(b), Table 11.1(c), Table 11.1(d). The results are found
to be encouraging for establishing the fact that, the intelligent two layer (GA-neural) and
three layer (GA-neuro-fuzzy) hybrid models can predict the relative crack locations and their
severities with higher accuracy. The detail architecture of the developed GA-neural and GA-
neuro-fuzzy models with all input and output parameters for all the segments have been
shown in Fig. 11.1 and Fig.11.2 respectively. By analyzing the results from Table 11.1 (c) it
is observed that, the GA-neural technique can detect fault in cracked beams effectively. From
the analysis of the results shown in Table 11.1 (a), it can be concluded that the three layer
hybrid network is capable of identifying faults in dynamically vibrating damaged beam
structures better than the GA-neural model. The methodologies followed to formulate the GA
segment; neural segment and fuzzy segment of the hybrid GA-neural and GA-neuro-fuzzy

model have been inherited from section 7.2, 6.3 and section 5.3 respectively.
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11.2.1 Analysis of the GA segment of GA-neural model

In the current section, the working principle of GA part of the hybrid model has been
analyzed. The GA part has been designed with six inputs i.e. fnf, snf, tnf, fmd, smd and tmd.
The four output parameters from the GA model are relative first crack location (rcllinterim),
relative first crack depth (rcdlinerim), relative second crack location (rcl2inerim), relative
second crack depth (rcd2ineerim). The extracted vibration characteristics from numerical, finite
element and experimental techniques such as relative natural frequencies, relative mode
shape differences, relative crack locations and relative crack depths have been used to create
the initial data pool of the GA system of the multiple crack diagnostic method.

The mechanism followed to develop the GA model of the GA-neural crack diagnostic system

has been inherited from section 7.2 of the thesis.

11.2.2 Analysis of the GA segment of GA-neuro-fuzzy model

There are six inputs and four output parameters used to formulate the GA part of the damage
detection hybrid system. The inputs to the GA pert are fnf, snf, tnf, fmd, smd, tmd. The first
interim outputs from the GA model comprises of interim first relative crack location
(rcllinterim1), interim first relative crack depth (rcdlinerimi), interim second relative crack
location (rcl2iperimi) and interim first relative crack depth (rcd2ingerimi). The neural segment
has got the interim outputs from the GA model along with the first three relative natural

frequencies, first three relative mode shape differences as inputs.

The mechanism adopted to form the GA segment of the proposed GA-neural-fuzzy model for

crack diagnosis has been inherited from section 7.2 of Chapter 7.

11.2.3 Analysis of the neural segment of GA-neural model

This section describes the design principle of neural segment of the proposed hybrid crack
diagnostic methodology. In the GA-neural model, the GA segment of the hybrid model will
give the intermittent result for initial relative crack depths and initial relative crack locations.
The neural segment of the GA-neural model has ten neurons representing fnf, snf, tnf, fimd,
smd, tmd , interim first relative crack location (rcllinerimi), interim first relative crack depth

(rcdlinterim1 ), interim second relative crack location (rcl2inerim1) and interim first relative crack
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depth (rcd2interimi1). The final outputs (four neurons) from the GA-neural model are final first
relative crack location (rcllgpa), final first relative crack depth (rcd1gn,), final second relative

crack location (rcl2fy,,1) and final first relative crack depth (rcd2fina).

The neural network used in the GA-neural model is a ten-layer perceptron. The neural
network is trained to give outputs such as relative crack depths and relative crack locations.

Fig. 11.1 depicts the GA-neural model with its input and output signals.

11.2.4 Analysis of the neural segment of GA-neuro-fuzzy model

The diamond shape neural model of the three layers intelligent multiple crack detection
method has been designed with ten input and four output parameters. The ten inputs
comprise of fnf, snf, tnf, fmd, smd, tmd and interim first relative crack location (rcllinerimi),
interim first relative crack depth (rcdlinerimi), interim second relative crack location
(rcl2interim1 ), interim second relative crack depth (rcd2interim1)-

The final outputs from the neural segment of the GA-neural-fuzzy model are;

final first relative crack location = “rcl linterimn”

final first relative crack depth = “rcdlinterim2”

final second relative crack location = “rcl2interim2”

final second relative crack depth = “rcd2interimn”

Fig. 11.2 presents the GA-neural-fuzzy model with layer wise input and output signals.

The complete architecture of the proposed neural model for multi crack diagnosis mentioned
in section 11.2.3 and section 11.2.4 has been formulated using the steps from section 6.3 of

the thesis.

11.2.5 Analysis of the fuzzy segment of GA-neuro-fuzzy model

The procedure followed to develop the fuzzy part of the GA-neural-fuzzy model used for
crack identification is analyzed in the present section.

The fuzzy layer has ten inputs and four outputs. The inputs to the fuzzy segment of the GA-
neuro-fuzzy model are fnf, snf, tnf, fmd, smd, tmd with the second interim output from the
neural segment i.e. interim first relative crack location (rclliperim2), interim first relative crack
depth (rcdlinerimz), interim second relative crack location (rcl2igerim2), interim second relative
crack depth (rcd2inerim2). The final four outputs from the fuzzy segment of the GA-neural-

fuzzy model are final first relative crack location (rcllgsa), final first relative crack depth
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(rcd1 ginal), final second relative crack location (rcl2 gpn,1) and final second relative crack depth
(rcd2 final). Fuzzy linguistic terms and fuzzy rule base of the fuzzy model have been made by
using the vibration parameters derived from numerical, finite element, experimental analysis
and the outputs (relative crack locations and relative crack depths) from the neural segment
of the developed hybrid multiple crack diagnosis models. Fuzzification and defuzzification of
the data have been carried out to get the final results of relative crack locations and relative
crack depths. The mechanism used to fabricate the fuzzy segment has been adopted from
section 5.3 of chapter 5.

The pictorial view of the fuzzy segment of the proposed three layer inverse GA-neural-fuzzy

model has been presented in Fig. 11.2.

11.3 Results and discussions of GA-neural and GA-neuro-fuzzy models

This section presents and analyses the results from the developed GA-neural and GA-neuro-
fuzzy models during the vibration analysis of the cantilever beam structure for multiple crack

diagnosis.

From the analysis of the results it is found that the cracks present on the structure affects the
vibration signatures of the beam structure. The extracted vibration features from the healthy
and damaged beam structures can be used to design crack diagnostic tool. Theoretical, finite
element and experimental analysis have been carried out on the cracked beam structure to
measure the first three relative natural frequencies and first three average relative mode shape
differences, which are subsequently used for designing of the GA, neural and fuzzy segment
of the hybrid multiple crack diagnosis inverse technique. The creation of initial data pool,
formation of fitness function, crossover and mutation operation to find the best fit solution
from the search space have been inherited from section 7.2. The GA segment which is the
first layer of the proposed hybrid systems have got six inputs (fnf, snf, tnf, fmd, smd, tmd).
The interim outputs from the GA segment of the GA-neural model are relative first crack
location (rclliperim), relative first crack depth(rcdlinerim), relative second crack location
(rcl2interim), relative second crack depth (rcd2inerim) Where as relative first crack location
(rcllingerim1 ), relative first crack depth (redlingerimi ), relative second crack location (rel2ingerimi),

relative second crack depth (rcd2inerimi1) are the first interim outputs from the GA segment of
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the GA-neuro-fuzzy model . The interim outputs from the GA model along with the first
three relative natural frequencies and first three average relative mode shape differences have
been used as inputs to the neural i.e. the second layer of the inverse hybrid intelligent models.
The ten numbers of inputs to the neural system are processed in the diamond shape ten layer
feed forward neural network trained with back propagation algorithm to give the results. The
training patterns used for the neural model follow the same pattern as discussed in Table 6.1
of chapter 6. The final results from the GA-neural model are relative first crack location
(rcllgina), relative first crack depth (rcdlgna), relative second crack location (rcl2gna), relative
second crack depth (rcd2fina). The complete architecture of the GA-neural model with all the
input and output parameters have been shown in Fig. 11.1. The four interim outputs from the
neural segment of the GA-neuro-fuzzy model are relative first crack location (rcllinterim2),
relative first crack depth (rcdlinerim2), relative second crack location (rcl2interim2), relative
second crack depth (rcd2interim2). The fuzzy Gaussian model i.e. the third layer of the GA-
neuro-fuzzy system has ten input and four output parameters and the fuzzy layer has been
developed in accordance to the fuzzy mechanisms cited in chapter 10. The detail architecture
of the GA-Neuro-Fuzzy model with inputs and output parameters are shown in Fig. 11.2.
Finally the three layer (GA-neuro-fuzzy) proposed crack diagnostic method provides the
results of rcllgna, redlgna, €124 and red2g,,. An experimental set up has been developed to
check the authenticity the results obtained from the proposed GA-neural and GA-neuro-fuzzy
intelligent systems. A comparison of results among GA-neural model, GA-fuzzy model,
MANFIS model and experimental analysis are presented in Table 11.1 (c). The results for
relative crack depths and relative crack locations from numerical analysis, finite element
analysis and GA-neural model have been presented in Table 11.1 (d). Comparison of results
from GA- neural-fuzzy model, GA- neural model, GA-fuzzy and experimental analysis is
presented in Table 11.1(a) to establish the accuracy of the hybrid model. The predicted
values of crack parameters from the GA- neural-fuzzy model, numerical analysis, finite
element analysis are expressed in Table 11.1 (b). The first six columns of the Table 11.1 (a)
to Table 11.1 (d)) represents the six numbers of inputs i.e. first three relative natural
frequencies and first three relative mode shape differences to be used as inputs to the
methodologies as mentioned above to measure the relative crack locations and relative crack

depths. The corresponding outputs in terms of relative crack locations and relative crack
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depths have been presented in rest of the columns of the Table 11.1 (a) to Table 11.1 (d). The
comparison of results among the mentioned techniques has been done to measure the
accuracy of the methodologies. From the analysis of the results mentioned in Table 11.1 (¢)
and Table 11.1 (a) it is observed that, the percentage of deviation of the prediction values for
relative crack locations and relative crack depths of the GA- neural, GA-neuro-fuzzy models

are 1.68%, 0.18% respectively.

11.4 Summary

This section depicts the conclusions drawn based on the results obtained from the GA-neural

and GA-neuro-fuzzy analysis carried out on the beam structure.

In the current analysis hybrid intelligent methods are presented for multiple cracks diagnosis
in beam like structures based on the combination of genetic algorithm, neural network and
fuzzy logic. The extracted vibration features for the cracked and undamaged beam structures
using theoretical, finite element and experimental analysis have been used to design and train
the GA, neural and fuzzy segments of GA-neural and GA-neuro-fuzzy model. The computed
vibration parameters are used to set up the initial data pool of the GA model. Selection
(evaluation of each solution), reproduction (crossover and mutation) and replacement of unfit
population with new one have been used to find the optimal solution (interim outputs) from
the search space for the GA segment of the hybrid models. The results obtained from GA-
neuro-fuzzy model, GA- neural model, GA-fuzzy model, MANFIS model, numerical
analysis, finite element analysis and experimental analysis indicate that the proposed
approaches i.e. GA-neuro-fuzzy model and GA- neural model can be efficiently used for the
analysis and diagnosis of multiple cracks present in beam structures. During the analysis of
the results presented in Table 11.1 (¢) and Table 11.1 (a) it is observed that, the percentage of
deviation in the prediction values of relative first crack location, relative second crack
location, relative first crack depth, relative second crack depth from GA-neural and GA-
neuro-fuzzy system are found to be 1.68% and 0.18% respectively. By analyzing the results
from the proposed GA-Neural-Fuzzy and GA-neural methodologies, it is observed that the

developed hybrid models can be used as online crack diagnostic tools for vibrating structures.
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In future the proposed methodologies can be used for health monitoring of dynamically

vibrating complex structures.

Paper communicated to International Journal:
1. D.R. Parhi, A.K. Dash, “Analyzing the GA, NN and FL for development of a hybrid
vibration system for condition monitoring of cracked structure" Proceedings of the Institution

of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering.
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Chapter 12

ANALYSIS AND DESCRIPTION OF EXPERIMENTAL
SETUP

The experimental analysis has been carried out to measure the natural frequencies and mode
shapes of the cracked beam structure. The experimental set up has been shown in Fig.12.1.
Experiments have been performed on the cracked beam structures with different crack
locations and crack depths to validate the results obtained from theoretical, finite element and
other artificial intelligent techniques used for multiple crack detection as discussed in the
previous chapters of the thesis. This chapter briefly describes the systematic procedures
adopted for experimental investigation and the required instrumentation for measuring the

vibration characteristics of the cantilever beam structures.

13.1 Detail specifications of the vibration measuring instruments

Experiments have been performed using the developed experimental set up (Fig. 12.1) for
measuring the dynamic response (natural frequencies and amplitude of vibration) of the
cantilever beam specimens made from Aluminum with dimension 800mm*38mm*6mm.
During the experiment the cracked and undamaged beams have been vibrated at their 1%, 2™
and 3™ mode of vibration by using an exciter and a function generator. The vibrations
characteristics of the beams correspond to 1%, 2" and 3™ mode of vibration have been
recorded by placing the accelerometer along the length of the beams. The signals from the
accelerometer which contains the vibration parameters such as natural frequencies and mode
shapes are analyzed and shown on the vibration indicator. The Table 12.1 shown below gives

the detail specifications of the instruments used in the current experimental analysis.
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Table 12.1 Specifications of the instruments used in the experimental set up

SL NO | Name of the Instrument Description
Type : 3560L
Product Name : Pocket front end
Make : Bruel & kjaer
1 Vibration Analyzer Frequency 7 Hz 1020 Khz
y Range
ADC Bits : 16
Simultaneous
Channels 2 Inputs, 2 Tachometer
Input Type Direct/CCLD
Type : 4513-001
Make : Bruel & kjaer
Sensitivity : 10mv/g-500mv/g
2 Delta Tron Accelerometer Frequency Range : 1Hz-10KHz
Supply voltage : 24volts
Operating temperature
Range 1 -50°C to +100°c
PULSE LabShop Software Version 12
3 Vibration indicator Make : Bruel & kjaer
Type : 4808
Permanent Magnetic Vibration Exciter
Force rating 112N (25 1bf) sine peak
(187 N (42 Ibf) with cooling)
Frequency
4 Range SHz to 10 kHz
Vibration Exciter First axial
resonance 10 kHz
Maximum bare table
Acceleration 700 m/s2 (71 g)
Continuous 12.7 mm (0.5 in)
peak-to-peak displacement with over travel stops
Two high-quality, 4-pin Neutrik® Speakon®
connectors
Make : Bruel & kjaer
Type : 2719
- Power Amplifier : 180VA
> Power Amplifier Make : Bruel & kjaer
Cracked (Multiple crack) cantilever beams made
6 Test specimen from Aluminum with dimension
800mmx38mmx6mm
7 Power Distribution 220V power supply, 5S0Hz
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Model : FG200K

Frequency
Range : 0.2Hz to 200 KHz
8 Function Generator VCG IN connector for Sweep Generation

Sine, Triangle, Square, TTL outputs

Output Level 15Vp-p into 600 ohms
Rise/Fall Time : <300nSec
Make : Aplab

Fig. 12.1 View of the experimental set-up
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12.2 Experimental procedure and its architecture

The authenticity of the results obtained from theoretical, finite element and Al based
techniques for multiple crack identification have been established by measuring the dynamic
response of the undamaged and cracked Aluminum beam specimen through experimentation.
The cracks at various locations with different depths in the beam were introduced by a saw
perpendicular to the longitudinal axis of the beam. The test specimen made from Aluminum
is of 800 mm length and has a cross section of 38mmx6 mm. The cantilever beam test sample
was clamped at its one end by two clamping devices as shown in the Fig. 12.1. The free end
of the beam specimen was excited by an appropriate signal from the function generator,
which was amplified by the amplifier. The cantilever was excited at first three modes of
vibration, and the corresponding natural frequencies and mode shapes were recorded by the
hard ware support i.e. miniature accelerometer by suitable positioning, data acquisition
system and tuning the vibration generator at the corresponding resonant frequencies. Finally,
the analysis of the vibration parameters from the intact and cracked beam were done by the
PULSE Labshop Software loaded in the laptop of the vibration analyzer. The pictorial views
of the various instruments used in the current experimental analysis are shown in Fig. 12.2(a)
to Fig. 12.2(h). The PCMCIA card is used to connect the vibration analyzer with the PULSE
Labshop Software

Fig.12.2 (a) Vibration analyzer
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Fig.12.2 (c) Concrete foundation with beam specimen

Fig.12.2 (d) Function generator
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Fig.12.2 (e) Power amplifier

Fig.12.2 (g) Vibration indicator (PULSE labShop software)
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Fig.12.2 (h) PCMCIA card

12.3 Results and discussions of experimental analysis

This section depicts the analysis of the results obtained from the developed experimental set
up.

The cracked beam with different crack depths and crack locations have been tested to obtain
the mode shape and natural frequency to validate the results from the various techniques
cited above. In chapter three Fig. 3.6 to Fig. 3.8 represents the comparison of mode shapes of
a multiple cracked beam with crack parameters al/W=0.166, L;/L= 0.0625, a,/W=0.25,
L,/L=0.3125 from experimental and numerical analysis. The mode shape for an undamaged
beam is also compared in the same figure i.e. Fig. 3.6 to Fig.3.8 to establish the fact that, the
mode shape of an undamaged beam behaves differently than a cracked beam. Table 3.1 has
been presented in chapter 3 to show the comparison of results from experimental and
numerical analysis for a multiple cracked beam and the results are found to be in close
agreement. The mode shapes obtained from the finite element analysis in chapter 4 for a
multiple cracked cantilever structure (a;/W=0.166, L;/L=0.3125, a,/W=0.083, L,/L.=0.625) is
compared with the results from numerical and experimental analysis in Fig.4.2 to Fig.4.4.
Ten sets of results for relative crack locations and relative crack depths have been presented

in Table 4.1 in chapter 4 to show the comparison between the experimental and finite
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element analysis. The results are found to be well in agreement. In chapter five, the results
for relative crack locations and relative crack depths from experimental analysis is compared
with that of the fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal model in Table 5.3
and they are observed to be well in agreement. The results for relative crack locations and
relative crack depths from the neural model as discussed in chapter six are compared with
that of the experimental set up and presented in Table 6.2. The results are found to be in close
proximity. The results of 1%, 2" relative crack locations and relative crack depths for ten sets
of different inputs from the GA model in chapter seven are compared with the results from
experimental analysis in Table 7.2. The results are in good agreement. The results for relative
crack depths and crack locations of the Gaussian based fuzzy-neuro, Triangular based fuzzy-
neuro, trapezoidal based fuzzy-neuro model are compared with the results from experimental
analysis in table 8.1 in chapter eight and they are found to be in close agreement. The Table
9.1 presents the comparison of results for relative crack locations and crack depths derived
from the developed MANFIS technique with that of the experimental technique, showing the
effectiveness of the MANFIS model. The predicted values of relative crack depths and crack
locations from the GA-fuzzy, GA-neural and GA-neuro-fuzzy methodology have been
compared with that of the experimental values in Table 10.4,Table 11.1(c) and Table 11.1(a)

in chapter 10 and chapter 11 respectively and the values are in good agreement.
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Chapter 13
RESULTS AND DISCUSSIONS

13.1 Introduction

Investigation of the feasibility of the methods as mentioned in the thesis have been carried
out, in the current chapter by systematically studying and presenting the performance of each
methodology used for prediction of multiple crack in a cracked cantilever beam structure.
The vibration response of the multi cracked beam members have been considered to develop
the crack diagnostic applications. The various techniques applied in the current research for
identification of cracks in damaged structures are eleven in numbers and they are theoretical
analysis (Chapter-3), finite element analysis (Chapter-4), Fuzzy Inference System (Chapter-
5), Artificial neural network (Chapter-6), Genetic Algorithm (Chapter-7), Fuzzy-Neuro
technique (Chapter-8), MANFIS technique (Chapter-9), GA-fuzzy technique (Chapter-10),
GA-neural and GA-neuro-fuzzy technique (Chapter-11), Experimental technique (Chapter-
12).

13.2 Analysis of results

In the present investigation, for development of multiple crack detection methodologies in
structural systems eleven different techniques (Chapter 3 to chapter 12) have been employed
as cited in the introduction section of the current chapter. Besides the eleven chapters, the
thesis comprises of two other introductory chapters and they are chapter 1- Introduction and
chapter 2-Literature review. This section depicts the analysis of the results from different

chapters of the current research.

Chapter one the introduction section of the thesis presents the motivation factors to carry out
the present research along with the aim and objective of the present investigation. Finally, the
outlines of the research work have been discussed.

In chapter two various methodologies applied by researchers since last few decades for fault
detection in engineering systems have been discussed. Applications of Al techniques for

damage and fault diagnosis in different mechanical and electrical systems have also been
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discussed. This section in particular, provides the knowledge for finalizing the direction of
research.

The analytical model used to compute the vibration parameters of multiple cracked and un-
crack cantilever beam structure (Fig. 3.1) and an in depth discussion of the theoretical model
have been made in chapter three of the thesis. During the vibration analysis of the multi
cracked cantilever beam (Fig. 3.3) the first three relative natural frequencies and first three
relative mode shape differences of the cracked and undamaged beam have been measured.
From the results it is evident that, the dimensionless compliances increase with increase with
the relative crack depths, due to the introduction of local flexibility which have been
established graphically in Fig. 3.2. Comparison of the mode shapes obtained from the
numerical analysis for the cracked and undamaged beam have been shown in Fig. 3.4. A
noticeable effect on the mode shapes of the cracked beam as compared to the undamaged
beam at the vicinity of the crack locations can be seen in the magnified view of Fig. 3.4. The
experimental validation of the results from the theoretical model has been carried out in this
chapter by using the developed experimental set up as shown in Fig. 3.5. The comparison of
the mode shapes from the experimental analysis with that of the numerical analysis for the
cracked and undamaged beam are presented in Fig. 3.6 to Fig. 3.8 and they are found to be in
close proximity. A comparison of relative crack locations and relative crack depths from the
numerical and experimental analysis have been presented in Table 3.1, which shows the
robustness of the analytical model developed for crack detection.

In chapter four finite element analysis has been applied to measure the dynamic response
(natural frequencies, mode shapes) of the cracked cantilever beam structure. A cracked beam
element (Fig. 4.1) has been considered to perform the finite element analysis to evaluate the
first three natural frequencies and first three mode shapes. The mode shapes of the cracked
beam obtained from the finite element analysis has been compared with the theoretical and
experimental method in Fig. 4.2 to Fig. 4.4, and they are found to be very close. A
comparison of results for relative crack locations and relative crack depths from FEA,
numerical analysis and experimental analysis have been shown in Table 4.1, and they are
found to be in close agreement.

Chapter five describes the steps used to design and develop fuzzy inference system to

diagnose the damage parameters (locations, depths) present in beam like structures in section
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5.2. The fuzzy models have been designed with the help of Gaussian membership function
(Fig.5.1 (a)), triangular membership function (Fig.5.1 (b)) and trapezoidal membership
functions (Fig.5.1(c)). Detail architecture of the fuzzy inference system with the input and
output parameters are shown in Fig. 5.2. The fuzzy models used in the current research for
prediction of crack locations and their severities are fuzzy Gaussian (Fig. 5.3 (a)), fuzzy
triangular (Fig. 5.3 (b)) and fuzzy trapezoidal (Fig. 5.3 (c)) models. The fuzzification
mechanism using the Gaussian, triangular and trapezoidal membership functions with fuzzy
linguistic terms in details are graphically presented in Fig. 5.4, Fig. 5.5 and Fig. 5.6
respectively. The fuzzy linguistic terms used for formulation of the fuzzy inference system is
expressed in Table 5.1. Out of several hundred fuzzy rules used for fabrication of the fuzzy
system for crack detection, twenty numbers are presented in Table 5.2. The defuzzification
process adopted to predict the relative crack locations and relative crack depths by activating
the rule no 3 and rule no 17 from Table 5.2 for Gaussian, triangular and trapezoidal fuzzy
model are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 respectively. Center of gravity procedure
has been followed to get the crisp value of the relative crack depths and crack locations. The
results for the crack parameters such as relative crack locations and relative crack depths
from the developed fuzzy models (Gaussian, triangular, trapezoidal) are compared with that
of the numerical, finite element and experimental analysis for validation in Table 5.3 (a) and
Table 5.3 (b). From the analysis of results in Table 5.3 (a), it is evident that the fuzzy
Gaussian model provides the best results in comparison to other two fuzzy models,
theoretical analysis and finite element analysis.

Chapter six enumerates the development of an artificial neural network model trained with
back propagation technique for multiple crack diagnosis in beam structures. The working
principles with the main features of the neuron model (Fig. 6.1) and the back propagation
technique (Fig. 6.2) have been discussed in section 6.2.1. A schematic diagram representing
the proposed neural network model with input and output parameters is shown in Fig. 6.3.
The working model of the ten layer neural network (Diamond shape) used in the current
research for fault detection in beam members with the detail architecture has been exhibited
in Fig. 6.4. Table 6.1 presents the test patterns required to train the neural model to predict
the relative crack locations and relative crack depths. The results obtained from the neural

model for predicting the crack locations and their severities are compared with the results
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obtained from the fuzzy models described in the above chapter, theoretical, FEA and
experimental analysis in Table 6.2 (a) and Table 6.2 (b). By analyzing the results provided in
Table 6.2 (a, b), it can be concluded that the proposed neural network gives better results in

comparison to the fuzzy techniques mentioned in the Table 6.2 (a, b).

The genetic algorithm technique has been introduced in chapter seven for multiple damage
detection in beam like members. The systematic procedures adopted to design the GA system
for damage identification is presented in section 7.2. In the development of evolutionary
algorithm natural process like crossover (Fig. 7.1) and mutation (Fig. 7.2) have been adopted
to find the fittest solution from the search space. A flow chart (Fig. 7.3) has been presented in
section 7.2 to show the flow of data in the developed GA model for crack diagnosis. Table
7.1 presents the initial data pool created to train the GA model from theoretical, FEA and
experimental methods. A comparison of results for relative crack depths and relative crack
locations among the GA model, neural network, Gaussian fuzzy model, theoretical, FEA and
experimental analysis have been carried out in Table 7.2 (a),Table 7.2 (b) and the results are
in good agreement. From the analysis of the data provided in Table 7.2 (a), it is clear that, the
proposed GA model provides more accurate results in comparison to other techniques such

as neural and fuzzy models.

A hybrid fuzzy-neuro technique has been proposed for multiple crack identification and is
briefly discussed in chapter eight. The hybrid model has been designed by fusing the features
of both fuzzy inference system and artificial neural network. Gaussian membership fuzzy-
neuro model (Fig. 8.1), triangular membership fuzzy-neuro model (Fig. 8.2) and trapezoidal
membership fuzzy-neuro model (Fig. 8.3) have been designed in the current research to
measure the crack locations and their severities. The fuzzy segment of the fuzzy-neuro model
has six inputs (first three natural frequencies and first three mode shape difference) and four
outputs (initial relative first and second crack locations). The neural network has ten inputs
(first three natural frequencies and first three mode shape difference along with the initial
output from the fuzzy model) and four outputs (final relative first and second crack
locations). The outcome from the hybrid fuzzy-neuro model in the form of relative crack
locations and relative crack depths have been compared with that of the experimental, GA

model, neural model and Gaussian fuzzy model in Table 8.1 (a) and Table 8.1 (b) . From the
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data given in the Table 8.1 (a), it is observed that, the performance of Gaussian fuzzy-neuro
model is best as compared to other techniques cited in the Table 8.1 (a). The proposed fuzzy-
neuro model can be potentially used as a condition monitoring tool in dynamically vibrating

structures.

The multiple adaptive neuro fuzzy inference system has been analyzed in chapter nine for
checking the effectiveness of the MANFIS methodology in crack identification. The
formulation of the MANFIS technique has been based on the data derived from the
theoretical, FEA and experimental techniques. A bell shaped function (Fig. 9.1) has been
used in the designing of the proposed model. The MANFIS system used for fault detection in
damaged beams is also known as multiple ANFIS system and it is presented in Fig. 9.2 (a).
The complete architecture of the MANFIS model used for multiple crack diagnosis in
cantilever beam member with different layers has been shown in Fig. 9.2 (b). The superiority
of the MANFIS technique has been established by comparing its predicted results with the
outputs (relative crack locations and relative crack depths) from Gaussian fuzzy-neuro

model, GA model, theoretical analysis, finite element analysis and experimental analysis in

Table 9.1 (a) and Table 9.1 (b).

The genetic fuzzy hybrid model (GA-fuzzy) for multiple crack detection has been discussed
in chapter ten of the thesis. This damage identification system comprises of two segment i.e.
genetic model (first layer) and fuzzy model (second layer). The hybrid model incorporates
the characteristics of both genetic algorithm and fuzzy inference system. The genetic model
has been designed using the crossover and mutation operator as shown in Fig. 7.1 and Fig.
7.2 of chapter seven. The fuzzy segment model is based on Gaussian membership functions
as shown in Fig. 10.1. The Gaussian membership functions for the input and output
parameters used for designing of the fuzzy segment of the hybrid system for multiple crack
diagnosis are presented in Fig. 10.2. The detail architecture of the proposed model is shown
in Fig. 10.3. The fuzzy linguistic terms used for development of the fuzzy segment for the
input and output parameters are shown in Table 10.1 and Table 10.2 respectively. Out of
several hundred fuzzy rules, ten fuzzy rules are shown in Table 10.3. Finally, the relative
crack depths and relative crack locations i.e. the outputs from the GA-fuzzy model have been

compared with the results from MANFIS model, Gaussian fuzzy-neuro model, theoretical
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analysis, finite element analysis and experimental analysis in Table 10.4 (a) and Table 10.4
(b). From the comparison, it is observed that the GA-fuzzy gives least error output from the

actual as compared to other techniques cited in the Table 10.4 (a, b).

Chapter eleven discusses about two layers (GA-neural) and three layers (GA-neuro-fuzzy)
hybridized techniques based on genetic algorithm, neural network and fuzzy logic. The GA-
neuro-fuzzy and GA-neural model have been devised to diagnose multiple transverse cracks
present in beam like structures. The proposed intelligent models integrate the capabilities of
genetic algorithm, artificial neural network and fuzzy inference system. The first layer of the
proposed models is a GA model. The first layer has been designed based on the steps
followed in chapter seven of the thesis using the crossover and mutation operations. Initial
data pool has been created to train the GA model in off line mode. A suitable objective
function has been formulated to find the best fit solution from the search space. The detail
architecture of the GA-neural and GA-neuro-fuzzy model has been shown in Fig. 11.1 and
Fig. 11.2 respectively. The GA segment has six inputs (first three relative natural frequencies
and first three relative mode shape differences) and four outputs (first interim relative first
and second crack locations, first interim relative first and second crack depths for GA-neuro-
fuzzy model and interim relative first and second crack locations, interim relative first and
second crack depths for GA-neural model). The neural model is a multi layer perceptron
trained with back propagation technique and it has been designed following the
methodologies mentioned in chapter six of the thesis. The outputs from the GA model along
with the first three relative natural frequencies and first three relative mode shape differences
are act as inputs to the neural segment (first layer with ten neurons) of the hybrid models.
The final outputs from GA-neural model are final relative first and second crack location,
final relative first and second crack depth. The interim outputs from the neural model of the
GA-neuro-fuzzy system are second interim relative first and second crack locations, second
interim relative first and second crack depths (last layer with four neurons). The fuzzy
Gaussian model, which is the third layer of the proposed GA-neuro-fuzzy crack diagnostic
method, has been designed following the steps used in chapter five and chapter ten of the
thesis. The outputs from the neural system with the first three relative natural frequencies and

first three relative mode shape differences are used as inputs to the fuzzy system and finally
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the outputs from the fuzzy segment are final relative first and second crack locations, final
relative first and second crack depths. The results for relative crack depths and relative crack
locations from the GA-neuro-fuzzy model have been compared with that of the GA-neural
model, GA-fuzzy model, theoretical analysis, finite element analysis and experimental
analysis in Table 11.1(a) to Table 11.1(d). By analyzing the data exhibited, it is revealed that,
the three layer GA-neuro-fuzzy technique is faster and accurate in predicting the multiple
crack parameters as compared to the other methods mentioned in the Table 11.1 (a) and
Table 11.1 (c). Hence, the GA-neuro-fuzzy system can be effectively used as crack

diagnostic tool in vibrating structural members.

The experimental analysis for validation of the results obtained from GA-neuro-fuzzy model
GA-neural model, GA-fuzzy model, MANFIS model, fuzzy-neuro models, neural model,
fuzzy models, theoretical analysis, finite element analysis has been discussed in chapter
thirteen. The schematic view and photo graphic view of the experimental set up with all the
instruments and test specimen is shown in Fig. 3.5 and Fig. 12.1 respectively. The developed
experimental set up comprises of the following instruments; 1- Vibration analyzer, 2-
Accelerometer, 3- Concrete foundation with test specimen, 4- Function Generator, 5- Power
Amplifier, 6- Modal Vibration Exciter, 7- Vibration indicator (embedded with PULSE
Labshop software, 8- PCMCIA card and are given in Fig. 12.2(a) to Fig. 12.2(h) respectively.
Section 12.2 presents the procedures adopted to carry out the experiments to evaluate the
natural frequencies and mode shapes of multi cracked and undamaged cantilever beam
structures. Efforts have made to reduce the effect of external parameter such as noise on the

vibration signatures of the cracked beam during experimentation.

The author contributions, conclusions drawn from the current research and future directions
for further investigation of the present analysis for development of multi crack diagnostic

tool have been explained in the next chapter.
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Chapter 14

CONCLUSIONS AND FUTURE WORK

In the current investigation, identification and quantification of cracks present in structural
members from the measured dynamic response has been addressed. In the quest, to design
and develop a multiple crack diagnostic tool a vibrating structural member with multiple
transverse cracks has been considered. During the analysis, analytical method, finite element
method and experimental method have been adopted to simulate the actual working
condition. The measured natural frequencies and mode shapes at different modes of
vibration, which are known as sensitive structural integrity indicators have been used to
develop inverse methodologies based Al techniques such as fuzzy logic, neural network,
genetic  algorithm, fuzzy-neuro, MANFIS, GA-fuzzy, GA-neural, GA-neuro-fuzzy

techniques for prediction of relative crack locations and relative crack depths.

From the analysis and discussion of the results from the various methodologies cited in the
chapters above, the following contributions and conclusions have been depicted in section

14.1, 14.2 and section 14.3 respectively.

14.1 Contributions

It is a fact that, the cracks present in structural systems induces a local flexibility, which is a
function of crack parameters such as crack depths and crack locations. This flexibility
changes the structural integrity sensitive indicators like frequency response and amplitude of
vibration. In previous research, in the domain of crack identification of damaged structures
the researchers have studied the effect of crack on the natural frequencies and mode shapes,
where as in the current research effort has been made to design artificial intelligent inverse
models to predict the crack locations and their severities present in structural systems using

the natural frequencies and mode shapes.
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In the current investigation for designing multiple crack identification tool an analytical
model has been developed using stress intensity factors and strain energy release rate to
evaluate the changes made to the vibration indicators due to the cracks present in the
damaged structures. Finite element analysis and experimental analysis have also been carried
out on the cracked beam member to find out the influence of cracks on the vibration
signatures of the beam. Different Al models have been formulated for multiple crack
identification using fuzzy inference system, artificial neural network, genetic algorithm and
various hybrid techniques such as fuzzy-neuro, MANFIS, GA-fuzzy, GA-neural and GA-

neuro-fuzzy

14.2 Conclusions

The conclusions are drawn on the basis of results obtained from various analyses as

discussed above are depicted below.

¢ Theoretical and finite element analyses have been presented to identify characteristics
(natural frequencies, mode shapes) of the system response that is directly attributed to
the presence of transverse cracks.

% During the analysis it is observed that, the change in frequency response due to the
presence of cracks (least crack depth ratio) is not so prominent, thereby decreasing
the chances of identifying the cracks accurately. But the crack depths have substantial
effect on the mode shapes of the vibrating structures even with the presence of small
crack depths. So, it can be concluded that the cracks can be efficiently identified with
their locations and severities if change in frequency response and change in mode
shapes both are taken into account.

% The deviations in mode shape contours at the vicinity of the crack locations are very
significant and can be seen during the comparison of mode shapes obtained from the
numerical analysis performed on the cracked and intact beam in Fig. 3.4. From the
observations of the mode shapes of the cracked cantilever beam with different crack
locations and crack depths, a significant pattern has been identified i.e. the magnitude

of deviation in mode shapes increases with increase in crack depths.
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Experimentations on the cracked cantilever beams with different configuration of
crack depths and crack locations have been performed to compare the modal
parameters obtained from the analytical and finite element model (Fig. 4.2 to Fig. 4.4)
and the results are found to be in close agreement.

The vibration signatures from the first three modes of the cantilever beam model and
the corresponding relative crack depths and crack locations have been used as the
platform to design the fuzzy inference system for multiple crack identification in
structural members.

The fuzzy system has six inputs and four outputs. The fuzzy models are based on
fuzzy Gaussian, fuzzy triangular and fuzzy trapezoidal membership functions. From
the analysis of results, it has been found that, the proposed fuzzy inverse technique
predicts the relative crack locations and their severities faster and more accurately
than the theoretical and finite element analysis. Experimental data have also been
used to check the authenticity of the results from the fuzzy models.

From the analysis of the results of the three fuzzy models for relative crack depths
and relative crack locations, it is observed that the fuzzy model with Gaussian
membership function yields better results than the fuzzy model with triangular
membership function, fuzzy model with trapezoidal membership function. Hence,
the fuzzy Gaussian model was found to be most suitable to diagnose cracks in online
mode for cracked vibrating engineering applications.

A multi layer artificial neural network model with six inputs and four outputs has
been fabricated for crack diagnosis in damaged beam structures. The training patterns
for the proposed neural model have been derived from theoretical, finite element and
experimental analysis. The results predicted by the neural network for relative crack
locations and relative crack depths are quiet nearer to the experimental results,
thereby establishing the fact that the neural model can be successfully used for
multiple crack detection in damaged beam structures.

From the comparison of results (relative crack depths and relative crack locations)
among the fuzzy models and neural model, it is clear that the predicted results from
neural system are closer to the actual results as compared to the developed fuzzy

models.
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Genetic algorithm has been adopted to develop a crack diagnostic model in structural
members. The GA model comprises of six inputs and four output parameters. The
proposed evolutionary algorithm provides results for crack locations and their depths
in close proximity to the experimental results.

From the analysis of its performance it can be stated that, the GA model can be used
as a robust multiple crack identification tool in industrial environment. When the
results are compared with that of the fuzzy and neural models, it is observed that the
GA gives better results as compared to fuzzy and neural model used for crack
identification.

A fuzzy-neuro analysis has been carried out to design a hybrid technique for damage
detection in beam structures. Three fuzzy-neuro models have been designed with
Gaussian, triangular and trapezoidal membership functions. The fuzzy-neuro models
have been designed for prediction of relative crack location and their depths of the
cracks present in the damaged structures.

From the analysis of the results, the performance of fuzzy-neuro model (based on
Gaussian membership function) gives results with better accuracy than the
independent GA, neural and fuzzy system designed for multiple crack identification.
Hence, the fuzzy-neuro model can be used as a condition monitoring tool for faulty
structures.

Multiple adaptive neuro fuzzy inference system has been applied to develop a fault
identification tool in cracked structures. Based on the observations of the predicted
results from the MANFIS model, it is revealed that, the MANFIS technique can
identify the crack parameters with higher accuracy as compared to fuzzy-neuro,
fuzzy, neural and GA model and the results are in close proximity with the
experimental analysis. So, the developed crack diagnostic method is capable of
identifying faults in a faulty system.

The GA-fuzzy two layer hybrid methodology has been designed with six input and
four output parameters. By analyzing the results from GA-fuzzy model, it is noticed
that the GA-fuzzy results are more accurate in comparison to GA, neural, fuzzy,
fuzzy-neuro and MANFIS technique. So, the developed GA-fuzzy technique can be

used efficiently and effectively for structural health monitoring in online mode.
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The genetic algorithm and neural network have been adopted to develop a hybrid
method (GA-Neural) for multiple damage identification in cracked beam members.
The predicted results for relative crack depths and relative crack locations from the
GA-neural model demonstrate its applicability for multiple crack diagnosis.

By comparing the results from the GA-neural model with that of the GA-fuzzy,
MANFIS and experimental technique, it is observed that, GA-neural model delivers
results in close proximity to the actual working condition as regard to other Al
techniques mentioned earlier. The proposed methodology can be successfully used for
condition monitoring of vibrating structures.

A three layer (GA-neuro-fuzzy) hybrid intelligent system has been proposed to
identify both locations and severities of the damages in structural systems based on
the dynamic response of cracked vibrating cantilever structure. The calculated
vibration parameters from theoretical, finite element and experimental analysis are
used to develop the initial data pool of the GA model, training patterns of the neural
segment and to design the fuzzy membership functions.

The results from the proposed inverse methodology have been validated by
comparing with the results obtained from theoretical, finite element and experimental
analysis. The results obtained from GA-neuro-fuzzy technique confirms that the
developed method can identify the crack positions and their severities with higher
accuracy as compared to all other Al based techniques discusses earlier in the thesis
and the proposed methodology can be used as an efficient online condition
monitoring tool for faulty structures.

Finally, the GA-neuro-fuzzy model is found to be best suitable artificial intelligent
model to identify multiple cracks in damaged vibrating structures with least error.

The developed crack diagnostic intelligent system can be utilized for online condition
monitoring of turbine shafts, cantilever type bridges, cantilever type cranes used for
mega structures, mechanical structures, beam like structures, marine structures,

engineering applications, etc.
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14.3 Future work

e The artificial intelligent techniques may be developed to diagnose faults in
complex engineering structures.

e The application of the artificial intelligent techniques may be extended for
multiple damage detection in bi material and composite material elements.

e More robust hybrid techniques may be developed and employed for fault
detection of various vibrating parts in dynamic systems such as cone crusher,
railway tracks, over head cranes, oil rigs, turbine shafts etc.

e The artificial intelligence techniques may be embedded and integrated with

the vibrating systems to make on line condition monitoring easier.
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Abstract: This paper presents a comprehensive review of methodologies and
technologies in the domain of dynamic vibration of cracked structures. At first,
the developments of work till date in the area of dynamic vibration of various
structures are discussed. In the second phase, different methodologies are
described with regard to the analysis of faulty structures. The methodologies
mamly consist of energy methods, fimte element methods, fuzzy inference
techmques, neural networks, neuro-fuzzy adaptive techmiques and genetic
algorithms used for identifying the intensity and location of cracks. It has been
found that, apart from conventional methods, artificial intelligence methods can
be applied efficiently and smartly to defect faults in various dynamic systems.
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Abstract: In this paper, analysis for fault identification in a cracked beam has
been carried out. Theoretical, finite element and experimental analyses for
identification of the crack depths and their positions in a beam containing
multiple fransverse cracks are carried out. It has been established that a crack in
a beam has an important effect on its dynamic behaviour. The strain energy
density function is used to evaluate the additional flexibility produced due to
the presence of crack. Based on the flexibility, a new stiffness matrix is
deduced and subsequently that 1s used to calculate the natural frequencies and
mode shapes of the cracked beam. The analysis of the crack structure 1s done
using theoretical, finite element and experimental analysis. The results from
finite element method and experimental method are compared with the results
from the numerical analysis for validation. The results are found to be m good
agreement
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Abstract: The mfluence of cracks on the dynamic behaviour of a cracked
canfilever beam with rectangular cross section 1s discussed m this work.
Analytical and experimental mvestigations are carried out to find the relation
between the change in natural frequencies and mode shapes for the cracked and
un-cracked beam. Finite element analysis is being performed on the cracked
structure to measure the vibration signatures, which 1s subsequently used in the
design of smart system based on fuzzy logic for prediction of crack depths and
locations following inverse problem approach. The fuzzy system 1s developed
with relative natural frequencies and mode shapes as input parameters based on
the triangular membership functions to calculate the deviation m the vibration
parameters for the cracked dynamic structure. Results from experimental
analysis are very close to the results predicted by the theoretical. finite element
and fuzzy analysis.
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Abstract

This article analyses the dynamic behaiour of a beam structurz containing multiple
transverse cracks using neural network controller. The frst three natural frequencies
and mode shapes have been calculated using theorstical, finite-element, and
experimental analysis for the cracked and un-cracked beam. Comparisons of the
results amang theoretical, finite-element, and experimental analysis have also been
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ABSTRACT

In this paper. a novel identification algorithm (hybrid
mtelligent system) using inverse analysis of the
vibration response of a cracked cantilever beam has
been proposed. The crack identification algorithm
utilizes the vibration signatures of the cracked beam
derived from finite element and theoretical analysis.
The hybrid controller is designed to predict the erack
locations and their severities by integrating the
capabilities of fuzzy logic and neural network
technique. The measured modal parameters along with
the outputs from the fuzzy controller are the inputs to
the neural segment of the hybrid system, where as final
relative crack depths and final relative crack locations
are the output parameters. The derived wvibration
parameters are used to establish series of fuzzy rules
and training patterns for the fuzzy and neural
controller. Finally, the reliability of the proposed erack
identification algorithm is established by comparing
the results obtained from the experimental analysis.

Key words: Vibration: Multiple cracks; Natural
frequency; Mode shape; Fuzzy neural controller

1. INTRODUCTION

The presence of a crack in a structural member
introduces a local flexibility that affects its dynamic
response. Moreover, the crack will open and close in
time depending on the loading conditions and vibration
amplitude. The changes in dynamic characteristics can
be measured and lead to an identification of the
structural changes, which eventually might lead to the
detection of a structural flaw. So engineers and
researchers working towards development of
methodology for detection of fault in damaged
structures using the changes in vibration response. An
energy based method for damage identification
(Mazanoglu et al., 2009) in non-uniform Euler —
Bernoulli beams having open cracks using Rayleigh —
Ritz approximation method has been proposed. Method
has been presented to identify crack in a beam (Lee,
2009) by modeling the cracks as rotational springs.
Newton-Rapson method has been adapted by him to
identify the locations and sizes of the erack in a beam.
A damage assessment technique has been presented
(Faverjon & Sinou 2009) for detection of size of the
open crack in beams. They have used constitutive

are

relation error updating method for identification of
crack location and size of the beam. The stress
intensity factor and local flexibility matrix for cracked
pipes have been calculated (He et al. 2009) by
dividing the cracked pipe into series of these annuli.
They have described that the local flexibility matrix for
cracked pipes have been calculated experimentally
without calculating the Stress intensity factor. The
influence of two transverse open cracks on the anti
resonances of a double cracked cantilever beam
(Douka et al., 2009) both analytically and
experimentally have been presented . The results of
experiments performed by them on Plexiglas beams for
crack location and severity are in good agreement with
theoretical predictions. Three different linear theories:
Euler — Bernoulli, Timo Shenko and Twe dimensional
clasticity (Labuschagne et al., 2009) for crack detection
of cantilever beams have been presented. A clonal
selection programming (CSP)-based fault detection
system has been developed (Gan et al, 2009) to
perform induction machine fault detection and
analysis. The proposed CSP-based machine fault
diagnostic system has been intensively tested with
unbalanced electrical faults and mechanical faults
operating at different rotating speeds. A fuzzy finite
clement approach has been proposed (Akpan et al.
2001) for modeling smart structures with imprecise
parameters.

Theories for strain energy density function with the
help of stress intensity factor (Tada et al., 1973) at the
crack section have been proposed to calculate the loeal
flexibility matrix. A mobile robot navigation control
system has been designed (Parhi, 2005) using fuzzy
logie. Fuzzy rules embedded in the controller of a
meobile robot enable it to avoid obstacles in a cluttered
environment that includes other mobile robots. The use
of neural network has been presented (Haykin, 1999)
as a data processing tool for various applications. A
neural network technique has been developed (Zubaydi
et al., 2002) for identifying the damage occurrence in
the side shell of a ship’s structure. The input to the
network is the autocorrelation function of the vibration
response of the structure. The response is obtfained
using a finite element model of the structure. An
optimized gear fault identification system (Rafiee et
al., 2009) has been developed using genetic algorithm
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Abstract In the current analysis numerical and fizzy
methods arve adopted for detection of damage in a cracked
beam structure containing transverse cracks. Based on the
flexibility produced due to the crack a new stiffness matrix is
deduced and subsequently that is used to calculate the
natural frequencies and mode shapes of the cracked beam
using numerical method.  The fuzzy inference system is
designed by setting up various fuzzy rules with the modal
parameters as input data obtained from theoretical analysis.
The owput from the fuzzy system is relative crack depth and
relative crack location. The results of the numerical and
Suzzy analysis are being validated with the result from
experimental analysis. The results are found to be in good
agreement.

Keywords— fuzzy: crack: natural frequencies: fault

1 Introduction

Generally presence of crack in a beam structure is the main
reason for failure of the component. Structural failure is
initiated when the material is stressed to its strength limit,
thus causing fracture or excessive deformations. When this
limit is reached, damage to the material has been done, and
its load-bearing capacity is reduced permanently,
significantly and quickly. Therefore intensive research has
been going on amongst the scientists and engincers to find
an effective methodology to predict the location and
intensity of damage beforehand.

Baeza et al. [1] have analyzed a beam with a breathing crack
under harmonic excitation and concluded that increase in
crack parameters increases the vibration erratically.
Capozucca et al. [2] has analyzed the dynamic response of a
carbon fiber reinforced polymer (CFRP) rod in damaged and
undamaged condition and presented the change in vibration
parameters. The results of the theoretical analysis are
validated with experimental results. Radziefiski et al. [3]
have presented experimental verification and comparison of
damage detection methods such as assurance criterion
(MAC), strain energy (SE), and Wavelets Transform
(WT).He has developed data preprocessing algorithms for
increasing damage assessment effectiveness. A finite
element model has been simulated to identify cracks in a
beam using the vibration signatures by Lec [4]. He has
modeled the crack as massless rotational spring and used
Newton-Raphson method for fault detection. Ariaei et al.[5]
presented an analytical method for determining the dynamic
response of Euler-Bernoulli beams with breathing cracks
under a point moving mass using the discrete element
technique (DET) and the finite element method (FEM)
considering the effects of Coriolis and centrifugal forces.

G78-1-4244-8196-5/10/826 .00 ©2010 IEEE
DOT 10.1 10%SOSE. 2010.326
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The results are validated against those reported in the
literature and also compared with results from the finite
clement method. Yu et al. [6] have analyzed the vibration
characteristics of a cracked structural member using two-
dimensional finite element analysis and suitable expression
for stress intensity factor. The results of the analytical
methods are in good agreement with experimental results.
Morbidini et al. [7] in this paper proposes a methodology to
study the detectability of fatigue cracks in metals using
thermo sonics using finite-element thermal models. The
results obtained from the method are validated by
performing experiments on mild steel beams. Zheng et al.
[8] have presented a method based on finite element method
for detection of crack in faulty structural member. The result
obtained from the proposed method is validated using
experimental analysis. Tada et al. [9] have provided the
basis for computation of compliance matrix for damage
detection following fracture mechanics theory. Shekhar et
al.[10] have derived a method for crack detection in a
cracked shaft using finite element analysis using correct
expression for strain energy release rate function. He has
used an experimental set-up for validating the results
obtained from the proposed method. Khoshnoud et al. [11]
have proposed a novel vibration modeling method based on
fuzzy sets. In this method, fuzzy rules are set using the
vibration modal parameters. The proposed methodology use
fuzzy representations of mode shape forms (MSFs), mixed
artificial intelligence and experimental validation, together
with human interface/intelligence for assessment of crack in
a structure.

In this paper method has been developed for prediction of
crack severity and its location in a cracked beam structure.
The structure has been analyzed using theoretical and fuzzy
techniques. Comparative study has been carried out between
theoretical, fuzzy technique and experimental analysis. A
good agreement between the results has been observed.

2 Theoretical analysis

2.1 Local flexibility of a cracked beam under

bending and axial loading.

The presence of a transverse surface crack of depth “a,” on
beam of width *B’ and height ‘W’ introduces a local
flexibility, which can be defined in matrix form, the
dimension of which depends on the degrees of freedom.
Here a 2x2 matrix is considered. A cantilever beam is
subjected to axial force (P;) and bending moment (P,),
shown in figure 1which gives coupling with the longitudinal
and transverse motion.
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APPENDIX:

& ALGOR.

Fig. A1 FEA model of the cantilever beam model
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Fig. A2 ALGOR generated 2™ mode vibration of the cantilever beam model
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