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ABSTRACT

In digital imaging, quality of image degrades due to contamination of various types of noise

during the process of acquisition, transmission and storage. Especially impulse noise appears

during image acquisition and transmission, which severely degrades the image quality and

cause a great loss of information details in an image. Various filtering technique are found in

literature for removal of impulse noise. Nonlinear filter such as standard median, weight

median filter, center weight median and switching based median filter out perform the linear

filters.

This thesis investigates the performance analysis of different nonlinear filtering schemes. The

performance of these filters can be improved by incorporating the mechanism of noise

detection and then applying switching based adaptive filtering approach. Three novel filtering

approaches that incorporate the above principles are proposed. It is found that all three

approaches give noticeable performance improvement of over many filters reported in

literature.
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Chapter 1

INTRODUCTION
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1.1 Preview

      Today digital imaging is required in many applications e.g., object recognition, satellite

imaginary, biomedical instrumentation, digital entertainment media, internet etc. The quality

of image degrades due to contamination of various types of noise. Noise corrupts the image

during the process of acquisition, transmission, storage etc. For a meaningful and useful

processing such as image segmentation and object recognition, and to have very good visual

display in applications like television, photo-phone, etc., the acquired image signal must be

noise free and made deblurre. Both the noise suppression (filtering) and the deblurring come

under a common class of image processing tasks known as image restoration.

          Amongst the various types of noise, the impulse noise may appear during image

acquisition and transmission. Two types of impulse noise can be modeled: (i) Fixed valued

impulse noise, also called, salt & pepper noise (SPN) and (ii) Random-valued impulse noise

(RVIN). The absolute-average intensity of impulse noise could be very high for an RVIN

under some circumstances. Thus, it could severely degrade the image quality and cause a

great loss of information details in an image. For both SPN and RVIN, impulse noise density

plays a great role. If the density is very high (normally > 50%), then it is very difficult to

estimate the original pixel value from the neighborhood pixels.

 For this dissertation, the following research activities are taken up:

(a) Study of various impulse noise types and their effect on digital images;

(b) Study and implementation of various efficient nonlinear and adaptive digital

image filters available in the literature and their relative performance comparison;

(c) Development and implementation of various novel efficient nonlinear and

adaptive digital image filters and their relative performance comparison.
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1.2 Literature Review
     Noise in an image is a serious problem. The noise could be Additive White Gaussian

Noise (AWGN), Salt & Pepper Impulse Noise (SPIN), Random Value Impulse Noise

(RVIN), or a mixed noise. Efficient suppression of noise in an image is a very important

issue. Denoising finds extensive applications in many fields of image processing.

Conventional techniques of image denoising using linear and nonlinear techniques have

already been reported and sufficient literature is available in this area and has been reviewed

in the next paragraph. Recently, various nonlinear and adaptive filters have been suggested

for the purpose. The objectives of these schemes are to reduce noise as well as to retain the

edges and fine details of the original image in the restored image as much as possible.

However, both the objectives conflict each other and the reported schemes are not able to

perform satisfactorily in both aspects. Hence, still various research workers are actively

engaged in developing better filtering schemes using latest signal processing techniques.  In

the present thesis, efforts have been made in developing some efficient noise removal

schemes.

     Most of the classical linear digital image filters, such as averaging low pass filters have

low pass characteristics and they tend to blur edges and to destroy lines, edges and other fine

image details. One solution to this problem is the use of the median (MED) filter, which is

the most popular order statistics filter [1,2] under the nonlinear filter classes. This filter has

been recognized as a useful filter due to its edge preserving characteristics and its simplicity

in implementation. The median filter, especially with larger window size destroys the fine

image details due to its rank ordering process. Applications of the median filter require

caution because median filtering tends to remove image details such as thin lines and corners

while reducing noise. One way to improve this situation is the weighted median WM filter

[3,4,5,6], which is an extension of the median filter that gives more weight to some values

within the window. It emphasizes or de-emphasizes specific input samples, because in most

applications, not all samples are equally important. The special case of the median filter is the

center-weighted median (CWM) filter [7], which gives more weight only to the central value

of the window. It is also reasonable to give emphasis to the central sample, because it is one

that is the most correlated with the desired estimate. The median filter, as well as its

modifications and generalizations [8] are typically implemented invariantly across an image.

They tend to alter pixels undisturbed by noise. Additionally, they are prone to edge jitter in

cases where the noise ratio is high. As a result, their effectiveness in noise suppression is
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often at the expense of blurred and distorted image features. Another way to circumvent this

situation is to incorporate some decision making process in the filtering framework.

      Conventional median filtering approaches apply the median operation to each pixel

unconditionally, that is, without considering whether it is uncorrupted or corrupted. As a

result, the image details contributed from the uncorrupted pixels are still subject to be filtered,

and this causes image quality degradation. An intuitive solution to overcome this problem is

to implement an impulse-noise detection mechanism prior to filtering; hence, only those

pixels identified as “corrupted” would undergo the filtering process, while those identified as

“uncorrupted” would remain intact. By incorporating such noise detection mechanism or

“intelligence” into the median filtering framework, the so-called switching median filters

[11]–[16] had shown significant performance improvement. To address this drawback, a

number of modified median filters have been proposed, e.g., minimum maximum exclusive

mean (MMEM) filter [17], prescanned minmax center-weighted (PMCW) filter [18], and

decision-based median filters [19], [20], [21], [22]. In these methods, the filtering operation

adapts to the local properties and structures in the image. In the decision-based filtering, for

example, image pixels are first classified as corrupted and uncorrupted, and then passed

through the median and identity filters, respectively. The main issue of the decision-based

filter lies in building a decision rule, or a noise measure, that can discriminate the

uncorrupted pixels from the corrupted ones as precisely as possible. In the method proposed

by Han MMEM [17], in these pixels that have values close to the maximum and minimum in

a filter window are discarded, and the averages of remaining pixels in the window are

computed. If the difference between the   center pixel and average exceeds a threshold, the

center pixel is replaced by average; otherwise, unchanged. In ACWM [20], CWM [7] has

used to detect noisy pixels. The objective is to utilize the center-weighted median (CWM) [2]

filters that have varied center weights to define a more general operator, which realizes the

impulse detection by using the differences defined between the outputs of CWM filters and

the current pixel of concern. The ultimate output is switched between the median and the

current pixel itself. While still using a simple thresholding operation, the proposed filter

yields superior results to other switching schemes in suppressing both types of impulses with

different noise ratios. Florencio et al. [10] proposed a decision measure, based on a second

order statistic called normalized deviation.
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      The tri-state median filter [11] further improved switching median filters that are

constructed by including an appropriate number of center-weighted median filters into the

basic switching median filter structure. These filters exhibit better performance than the

standard and the switching median filters at the expense of increased computational

complexity. In progressive switching median filter (PSM) [12] for the removal of impulse

noise from highly corrupted images has proposed, where both the impulse detector and the

noise filter are applied progressively in iterative manners. The noise pixels processed in the

current iteration are used to help the process of the other pixels in the subsequent iterations. A

main advantage of such a method is that some impulse pixels located in the middle of large

noise blotches can also be properly detected and filtered. Therefore, better restoration results

are expected, especially for the cases where the images are highly corrupted. A new impulse

noise detection technique [13] for switching median filters, which is based on the minimum

absolute value of four convolutions, obtained using one-dimensional Laplacian operators. It

provides better performance than many of the existing switching median filters with

comparable computational complexity.

     The signal-dependent rank-ordered mean filter [23] is a switching mean filter that exploits

rank order information for impulse noise detection and removal. The structure of this filter is

similar to that of the switching median filter except that the median filter is replaced with a

rank-ordered mean filter. This filter has been shown to exhibit better noise suppression and

detail preservation performance than some conventional and state-of-the-art impulse noise

cancellation filters for both grey scale [23] and color [24] images.

The peak and valley filter [25] is a highly efficient recursive nonlinear filter. It identifies

noisy pixels by inspecting their neighborhood, and then replaces their values with the most

conservative ones out of the values of their neighbors. In this way, no new values are

introduced into the neighborhood and the histogram distribution range is conserved. The

main advantage of this filter is its simplicity and speed, which make it very attractive for real

time applications. A modified peak and valley filter [26] has also been proposed. This filter

provides very good detail preservation performance but it is slower than the original peak and

valley filter.

     The adaptive two-pass rank order filter [27] has been proposed to remove impulse noise

from highly corrupted images. Between the passes of filtering, an adaptive process detects
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irregularities in the spatial distribution of the estimated noise and selectively replaces some

pixels changed by the first pass with their original values. These pixels are kept unchanged

during the second filtering. Consequently, the reconstructed image maintains a higher degree

of fidelity and has a smaller amount of noise. In [28], a detail-preserving variational method

has been proposed to restore impulse noise. It uses a nonsmooth data fitting term together

with edge-preserving regularization functions. A combination of this variational method [28]

with an impulse detector [20] has also been presented in [29] for the removal of random

valued impulse noise. The filter offers good filtering performance but its implementation

complexity is higher than most of the previously mentioned filters.

     The two-output nonlinear filter [30] is another rank order filter based on the subsequent

activation of two recursive filtering algorithms that operate on different subsets of input data.

Two pixel values are updated at each processing step. A nonlinear mechanism for error

correction is also provided for avoiding detail blur. The filter provides very good detail

preservation performance.

     The threshold boolean filter [31] employs boolean functions for impulse noise removal. In

this approach, the gray level noisy input image is decomposed into a number of binary

images by gray level thresholding. Detection and removal of impulse noise are then

performed on these binary images by utilizing specially designed boolean functions. Finally,

the resulting boolean images are combined back to obtain a restored grey level image. A

number of filters utilize the histogram information of the input image. In [28], histograms of

homogenous image regions are used to characterize and classify the corrupting noise. In [32]

and [33], the histogram information of the input image is used to determine the parameters of

the membership functions of an adaptive fuzzy filter. The filter is then used for the restoration

of noisy images. An adaptive vector filter exploiting histogram information is also proposed

for the restoration of color images [34].

     In addition to the median and the mean based filtering methods discussed above, a number

of nonlinear impulse noise filtering operators based on soft computing methodologies have

also been presented [35]–[40]. These filters offer relatively better noise removal and detail

preservation performance than the median and the mean based operators. However, the

implementation complexities of these filters are generally higher and the required filtering

window size is usually larger than the other methods. In the last few years, there has been a
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growing research interest in the applications of soft computing techniques, such as neural

networks and fuzzy systems, to the problems in digital image processing [32]–[40]. Indeed,

neuro-fuzzy (NF) systems offer the ability of neural networks to learn from examples and the

capability of fuzzy systems to model the uncertainty which is inevitably encountered in noisy

environments. Therefore, neuro-fuzzy systems may be utilized to design line, edge, and detail

preserving impulse noise removal operators provided that the appropriate network topologies

and processing strategies are employed.

      Early-developed switching median filters are commonly found being non adaptive to a

given, but unknown, noise density and prone to yielding pixel misclassifications especially at

higher noise density interference. To address this issue, the noise adaptive soft-switching

median (NASM) filter was proposed in [14], which consists of a three-level hierarchical soft-

switching noise detection process. The NASM achieves a fairly robust performance in

removing impulse noise, while preserving signal details across a wide range of noise

densities, ranging from 10% to 50%. However, for those corrupted images with noise density

greater than 50%, the quality of the recovered images become significantly degraded, due to

the sharply increased number of misclassified pixels. In BDND [41] highly-accurate noise

detection algorithm, called the boundary discriminative noise detection, which can handle

image corruption even up to 80% noise density. Together with the modified NASM median

filtering scheme, this BDND has shown far superior performance in terms of subjective

quality in the filtered image as well as objective quality in the peak signal-to-noise ratio

(PSNR) measurement to that of the NASM filter. For denoising color images, BDND filter

consistently shows impressive results as well.

1.3 The Problem Statement
In the last two decades, many researchers have attempted to develop filters to suppress the

impulse noise. But that are not adaptive in nature, so the performance of that filter is not good

in many occasion. Some filters are not able to preserve image detail and also many filters are

quite efficient at high noise levels but don’t perform so well at low noise levels. Therefore, it

is very important to design and develop highly efficient adaptive nonlinear image filters that

suppress impulse noise quite effectively and preserve image detail.

Therefore, the problem taken for this thesis work is to develop some novel nonlinear and

adaptive digital image filters for efficient impulse noise suppression.
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1.4 Performance Metrics
The quality of an image is examined by objective evaluation as well as subjective evaluation.

There are various metrics that can be used for objective evaluation of an image. Some of

them are mean squared error (MSE), root mean squared error (RMSE), mean absolute error

(MAE) and peak signal to noise ratio (PSNR).In this thesis work only two metrics has used to

evaluate the objective quality of filtered images i.e. PSNR and MSE.

     The performance evaluation of the filtering operation is quantified by the PSNR calculated

using the following standard formula:

2

10
255P SN R = 10 log
M S E

 
 
 

dB

And

2

1 1

1MSE= [ ( , ) ( , )]
MN

M N

i j
I i j I i j

= =

−∑∑
where M and N are the total number of pixels in the horizontal and the vertical direction in

the image respectively . ( , )I i j  and ( , )I i j denotes the original and filtered image pixels,

respectively.

      For subjective evaluation, the image has to be observed by a human expert. The human

visual system (HVS) is so complicated that it is not yet modeled properly. Therefore, in

addition to objective evaluation, the image must be observed by a human expert to judge its

quality.

1.5 Standard Test Images

There are various standard test images, used extensively in literature, for this purpose. They

are ‘Lena’, ‘Bridge’, ‘Boats’, ‘Goldhill’, ‘Pepper’, ‘Baboon’ etc. Here original image has

shown in fig. 1.1.

1.6 Organization of the Thesis
Following the introduction, the rest of the thesis is organized as follows. Chapter 2 gives

basics of image processing and noise filtering. Chapter 3 introduces Boundary Discriminative

Noise Detection [41] for switching median filter. Chapter 4 presents Progressive Switching

Median filter. Chapter 5 describes an Efficient Approach for Removing Impulse Noise [45].
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Chapter 6 presents an Impulse Detection Method SM [13] for switching median filter. In

Chapter 7 a novel Adaptive Noise Detection and Suppression ANDS [P2] has described. In

Chapter 8 a novel Impulse Noise Detection has described .Then finally thesis has concluded

in Chapter 9.

(a)                                                                          (b)

(c)                                                                         (d)

(e)                                                                         (f)
Fig.1.1: Original test image of Lena, Bridge, Boat, Goldhill, Pepper, Baboon in a, b, c, d, e, f respectively.
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Chapter 2

BASICS OF IMAGE PROCESSING
AND NOISE FILTERING
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2.1 Fundamentals of Digital Image Processing
Digital image processing generally refers to the processing of a 2-dimensional (2-D) picture

signal by a digital hardware. An image is a 2-D function (signal), ( )nm,X , where m and n are

the spatial (plane) coordinates. The magnitude of X  at any pair of coordinates (m, n) is the

intensity or gray level of the image at that point. In a digital image m, n and the magnitude of

X are all finite and discrete quantities. Each element of this matrix (2-D array) is called a

picture element or pixel.

It is a hard task to distinguish between the domains of image processing and any other related

area such as computer vision. Though, essentially not correct, image processing may be

defined as a process where both input and output are images. At the high level of processing

and after some preliminary processing, it is very common to perform some analysis,

judgment or decision making or perform some mechanical operation (robot motion). These

areas are the domains of artificial intelligence (AI), computer vision, robotics, etc.

Digital image processing has a broad spectrum of applications, such as digital television,

photo-phone, remote sensing, image transmission and storage for business applications,

medical processing, radar, sonar, and acoustic image processing, robotics, and computer

aided manufacturing (CAM) and automated quality control in industries. Fig.2.1 depicts a

typical image processing system. Except image acquisition and display, most of the images

processing functions are implemented in software. A significant amount of basic image

processing software is obtained commercially.

Fundamental steps in image processing are:

(a) Image acquisition

(b) Image Enhancement

Digitize Store Process

Fig.2.1 A typical digital image processing system

OutputRefreshObject Observe

Sampler
and

Quantizer

Recorder

Digital
Storage
System

Digital
Computer

Online
Buffer

Display
DeviceImaging

System
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(c) Image Transform

(d) Image Filtering and Restoration

(e) Color Image Processing

(f) Image Data Compression

(g) Morphological Processing

(h) Image segmentation

(i) Representation and description

(j) Image Analysis and Recognition, etc.

Image processing may be performed in the spatial domain or in a transform domain.

Depending on the application, a suitable transform is used that may be discrete Fourier

transform (DFT), discrete cosine transform (DCT), discrete wavelet transform (DWT), etc.

Image enhancement is among the simplest and most appealing areas of digital image

processing. Basically, the idea behind enhancement techniques is to bring out detail that is

obscured, or simply to highlight certain features of interest in an image. A familiar example

of enhancement is when we increase the contrast of an image because “it looks better.” It is

important to keep in mind that enhancement is a subjective area of image processing. On the

other hand, image restoration is very much objective. The restoration techniques are based on

mathematical and statistical models of image degradation. Denoising (filtering) and

deblurring tasks come under this category.

Image restoration and filtering  is one of the prime areas of image processing and its

objective is to recover the images from degraded observations. The techniques involved in

image restoration and filtering are oriented towards modeling the degradations and then

applying an inverse procedure to obtain an approximation of the original image.The use of

color in image processing is motivated by two principal factors. First, color is a powerful

descriptor that often simplifies object identification and extraction from scene. Second,

humans can discern thousands of color shades and intensities, compared to shades of gray.

Compression, as the name implies, deals with techniques for reducing the storage required to

save an image, or the bandwidth required to transmit it. Although storage technology has

improved significantly over the past decade, the same cannot be said for transmission

capacity. This is true particularly in uses of the Internet, which are characterized by
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significant pictorial content. Image compression is familiar (perhaps inadvertently) to most

users of computers in the form of image file extensions, such as the jpg file extension used in

the JPEG (Joint Photographic Experts Group) image compression standard.

Morphological processing deals with tools for extracting image components that are useful in

the representation and description of shape. Segmentation procedures partition an image into

its constituent parts or objects. In general, autonomous segmentation is one of the most

difficult tasks in digital image processing. A rugged segmentation procedure brings the

process a long way toward successful solution of imaging problems that require objects to be

identified individually. On the other hand, weak or erratic segmentation algorithms almost

always guarantee eventual failure. In general, the more accurate the segmentation, the more

likely recognition is to succeed.

Representation and description almost always follow the output of segmentation stage, which

usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels

separating one image region from another) or all the points in the region itself. In either case,

converting the data to a form suitable for computer processing is necessary. The first decision

that must be made is whether the data should be represented as a boundary or as a complete

region. Boundary representation is appropriate when the focus is on external shape

characteristics, such as corners and inflections. Regional representation is appropriate when

the focus is on internal properties, such as texture or skeletal shape. In some applications,

these representations complement each other. Choosing a representation is only part of the

solution for transforming raw data into a form suitable for subsequent computer processing.

A method must also be specified for describing the data so that features of interest are

highlighted. Description, also called feature selection, deals with extracting attributes that

result in some quantitative information of interest or are basic for differentiating one class of

objects from another. Recognition is the process that assigns a label  to an object based on its

descriptors.

There are various types of imaging systems. X-ray, Gamma ray, ultraviolet, and ultrasonic

imaging systems are used in biomedical instrumentation. In astronomy, the ultraviolet,

infrared and radio imaging systems are used. Sonic imaging is performed for geological

exploration. Microwave imaging is employed for radar applications. But, the most commonly

known imaging systems are visible light imaging. Such systems are employed for



14

applications like remote sensing, microscopy, measurements, consumer electronics,

entertainment electronics, etc.

An image acquired by optical, electro-optical or electronic means is likely to be degraded by

the sensing environment. The degradation may be in the form of sensor noise, blur due to

camera miss focus, relative object camera motion, random atmospheric turbulence, and so on.

The noise in an image may be due to a noisy channel if the image is transmitted through a

medium. It may also be due to electronic noise associated with a storage-retrieval system.

2.2 Noise in Digital Images

In common use the word noise means unwanted signal. In electronics noise can refer to the

electronic signal corresponding to acoustic noise (in an audio system) or the electronic signal

corresponding to the (visual) noise commonly seen as 'snow' on a degraded television or

video image. In signal processing or computing it can be considered data without meaning;

that is, data that is not being used to transmit a signal, but is simply produced as an unwanted

by-product of other activities. In Information Theory, however, noise is still considered to be

information. In a broader sense, film grain or even advertisements in web pages can be

considered noise.

The principle source of noise in digital images arises during image acquisition and or

transmission. The performance of image sensors is affected by variety of factors, such as

environmental conditions during image acquisitions, and by quality of sensing elements

themselves. Images are corrupted during transmission principally due to interference in the

channel used for transmission. For example, an image transmitted using a wireless network

might be corrupted because of lighting or other atmospheric disturbances.

2.2.1 Some Important Noise Probability Density Function

Noise in imaging systems is usually either additive or multiplicative. This thesis deals only

with additive noise which is zero-mean and white. White noise is spatially uncorrelated: the

noise for each pixel is independent and identically distributed .Common noise models are:

a) Gaussian Noise

Because of the mathematical tractability in both the frequency and spatial domains, Gaussian

noise models are used frequently in practice. In fact , this tractability is so convenient that it
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often results in Gaussian models being used in situations in which they are marginally

applicable at best.

         The PDF of Gaussian random variable, z, is given by
2

2
( )

2
1( )

2

z
p z e

µ
σπ

πσ

− −
=                                                                                        (2.1)

 Where z is gray level; = mean of average value of z;  = the standard deviation. The

standard deviation squared, 2, is called the variance of z.

The Gaussian distribution has an important property: to estimate the mean of a stationary

Gaussian random variable, one can't do any better than the linear average. This makes

Gaussian noise a worst-case scenario for nonlinear image restoration filters, in the sense that

the improvement over linear filters is least for Gaussian noise. To improve on linear filtering

results, nonlinear filters can exploit only the non-Gaussianity of the signal distribution.

b)  Rayleigh noise

 The PDF of Raleigh noise is given by

2( ) /2 0
( )

0

( ) z a b
for z

p z b
for z a

z a e− − ≥= 
 <

−                                                                (2.2)

The mean and variance of this density are given by

4
ba πµ = +

and

2 (4 )
4

b π
σ

−
=

Note the displacement from the origin and the fact that the basic shape of the density is

skewed to the right. The Rayleigh density can be quite useful for approximating skewed

histograms.

c)    Erlang (Gamma) noise

The PDF of Erlang noise is given by
1

0( ) ( 1)!
0 0

b b
az for zp z b

for z

a z e
−

−
≥= −

 <

                                                                      (2.3)
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Where parameters are such that a>0, b is a positive integer, and “!” indicates factorial. The

mean and variance of the density given by

b
a

µ =

2
2

b
a

σ =

Often the equation of gamma function is referred as gamma density; strictly speaking this is

true when the denominator is gamma function,  (b). When the denominator is as shown in,

the density is called Erlang density.

d)   Exponential noise:

The PDF of exponential is given by

                                                                  (2.4)

Where a > 0; the mean and variance density functions are

1
a

µ =

      and 2
2

1
a

σ =

Note that this PDF is a special case of Erlang PDF, with b = 1.

e)   Uniform Noise

The PDF of    uniform noise is given by

1
( )( )
0

if a z b
b ap z

otherwise
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                                                                              (2.5)

The mean of this density function and variance is given by

2
a b

µ
+

=

     and
2

2 ( )
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−
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f)  Impulse (Salt and pepper) Noise :

The PDF of a bipolar impulse noise is given as

0
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                                                                              (2.6)

If b > a, gray level b will appear as light dot in the image. Conversely level a will appear as a

dark dot. If either Pa or Pb is zero, the impulse noise is called unipolar. If neither probability

is zero, and if they are approximately equal, impulse noise value will resemble salt and

pepper granules randomly distributed over the image. Hence, bipolar impulse noise is also

called salt and pepper noise.

Let a digital image X (m,n), after being corrupted with SPN of density d, be represented by

X SPN(m,n). Then, the noisy image X SPN(m,n) is :

2/
2/

1y,probabilitwith

1
0),(XSPN









=
=

−=
=

dp
dp

dp(m,n)
nm

X
   (2.7)

The impulse noise occurs at random locations ),( nm  with a probability of d. The SPN and

RVIN are substitutive in nature.  A digital image corrupted with RVIN of density d,

X RVIN(m,n):





=
−=

=
dpnm

dp(m,n)
nm

y,probabilitwith),(
1y,probabilitwithX

),(XRVIN η
                                                (2.8)

Here, ),( nmη  represents a uniformly distributed random variable, ranging from 0 to 1, that

replaces the original pixel value X (m,n). The noise magnitude at any noisy pixel location

(m,n) is  independent of the original  pixel magnitude.

2.3 Fundamental Noise Reduction Spatial Filters

As the fig.1.2 shows, the degradation process is modeled in this chapter as a degradation

function that, together with an additive noise term , operates on an input image f(x, y) to

produce a degraded image g(x, y).
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g(x, y) ( , )f x y

          f (x, y)

                                                             Noise  (x, y)
Fig.2.2: Degradation and Restoration model

Given g(x, y), some knowledge of degradation function H, and some knowledge of additive

noise term  (x, y), the objective of noise reduction is to estimate ( , )f x y= of the original

image. If ‘H’ is linear, position invariant process, then the degraded image is given in the

spatial domain by

                                g (x, y) =h (x, y) * f (x, y) +   (x, y)                                         (2.7)

Where h (x, y) = spatial representation of the degradation function; ‘*’represents spatial

convolution. We know that the convolution in the spatial domain is equal to the

multiplication in the frequency domain and is given as:

G (u, ) =H (u, ) F (u, ) + N (u, )                                           (2.8)

Where the terms in capital letters are the Fourier Transforms of the corresponding terms in

equation (2.7).

2.3.1 Mean Filters

Mean filter is a linear filter. In this section we discuss types of mean filters

a) Arithmetic mean filter

This is the simplest of the mean filters. Let Sxy represent the set of coordinates in a

rectangular subimage window of size m×n, centered at point (x, y). The arithmetic mean

filtering process computes the average value of the corrupted image g(x, y) in the area defined

by Sxy. The value of the restored image f  at any point (x, y) is simply the arithmetic mean

computed using the pixels in the region defined by Sxy. In other words,

Degradation
  Function

 H
+

Restoration
  Filter(s)
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( , )

1( , ) ( , )
s t Sxy

f x y g s t
mn ∈

= ∑                                                         (2.9)

    Where s and t are neighborhoods of x and y.  This operation can be implemented using a

convolution mask in which all coefficients have 1/mn. A mean filter simply smoothes local

variations in an image. Noise is reduced as a result of blurring.

b) Geometric mean filter

An image restored using a geometric mean filter is given by the expression
1

( , )

( , ) ( , )
x y

mn

s t S

f x y g s t
∈

 
=  

  
∏                              (2.10)

Here each restored pixel is given by the product of the pixels in the subimage window, raised

to the power 1/mn. A geometric mean filter achieves smoothing comparable to the arithmetic

mean filter, but it tends to loose less image detail in the process.

c) Harmonic Mean Filter

The harmonic mean filtering operation is given by the expression

( , )

( , ) 1
( , )

x ys t S

mnf x y

g s t∈

=
∑

                                      (2.11)

The harmonic mean filters woks well for salt noise, but fails for pepper noise. It does well

also with other types of noise like Gaussian noise.

d) Contraharmonic Mean Filter

The Contraharmonic mean filtering operation yields a restored image based on the expression
1

( , )

( , )

( , )
( , )

( , )
x y

x y

Q

s t S

Q

s t S

f x y
g s t

g s t +

∈

∈

=
∑

∑
                                                     (2.12)

 Where Q is order of the filter. For positive value of Q, the filter eliminates pepper noise and

for negative values of Q the filter eliminates salt noise. Both cannot eliminate noise

simultaneously. The Contraharmonic filter reduces to the arithmetic mean filter if Q = 0, and

to the harmonic mean filter if Q = -1.
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2.3.2 Order Statistics Filter
Order statistic filter are nonlinear spatial filters whose response is based on ordering (ranking

the pixels) contained in the image area encompassed by the filter, than replacing the value of

the center pixel with the value determined by the ranking result.

a) Median Filter

It is the best known order-statistics filter which as its name suggests replaces the value of the

pixel by the median of the gray levels in the neighborhood of that pixel:

( , )( , ) { ( , )}
xys t Sf x y median g s t∈=                                                 (2.13)

The original value of the pixel is included in the computation of the median. Median filters

are particularly effective in the presence of both bipolar and unipolar impulse noise. Median

filter provides excellent noise reduction capabilities, with considerably less blurring than

linear smoothing filter of similar size.

The median, , of a set of values is such that half the values in the set are less than or equal to

, and half are greater than equal to . In order to perform median filtering at a point in an

image we first sort the values of pixels in question and its neighbors, determine their median

and assign the to the pixel. Thus the principle function of the median filter is to force points

with distinct gray levels to be more like their neighbors. In fact isolated clusters of pixels that

are light or dark with respect to there neighbors, and whose area is less than n2/2 (one half of

the filter area), are eliminated by an n×n median filter. The median represents the 50th

percentile of a ranked set of numbers.

b) Max and Min filters

Median filter discussed above is by-far most used filter but by no means the only one. The

median represents the 50th percentile of ranked set of the numbers. But using the 100th

percentile result we get so called the Max filter, given by

( , )( , ) max{ ( , )}
xys t Sf x y g s t∈=                                                     (2.14)

This filter is useful for finding the brightest points in the image. Also, because the

perpendicular noise has very low values, it is reduced by this filter as a result of max

selection process in the sub image area S xy.

The 0th percentile filter is the min filter:

( , )( , ) min{ ( , )}
xys t Sf x y g s t∈=                                                     (2.15)
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This filter is useful for finding the darkest points in the image. Also, it reduces the salt noise

as a result of the min operation.

c) Midpoint filter

The midpoint filter simply computes the midpoint between the maximum and minimum

values in the area encompassed by the filter:

( , ) ( , )( , ) 1/ 2[max{ ( , )} min{ ( , )}]
xy xys t S s t Sf x y g s t g s t∈ ∈= +            (2.16)

Here the filter combines order statistics and averaging. This filter works best for randomly

distributed noise, like Gaussian or uniform noise.

d)  Alpha-trimmed mean filter:

If we delete the d/2 lowest and d/2 highest gray-level values of g(s, t) in the neighborhood Sxy.

Let gr(s, t) represent the remaining “m×n-d” pixels. A filter formed by the averaging of these

remaining pixels is called alpha trimmed mean pixels.

( , )

1( , ) ( , )
xy

r
s t S

f x y g s t
mn d ∈

=
− ∑ (2.17)

Where the value of ‘d’ can range from ‘0 to mn-1’. When d=0 the alpha trimmed filter

reduces to the arithmetic mean filter. If we take d = (mn-1)/2, the filter becomes a median

filter.
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Chapter 3

SWITCHING MEDIAN FILTER WITH
BOUNDARY DISCRIMINATIVE

NOISE DETECTION



23

3.1 Introduction

To determine whether the current pixel is corrupted or not, the BDND [41] (Boundary

Discriminative Noise Detection) algorithm first classifies the pixels of a localized window,

centering on the current pixel, into three groups—lower intensity impulse noise, uncorrupted

pixels, and higher intensity impulse noise. The center pixel will then be considered as

“uncorrupted,” provided that it belongs to the “uncorrupted” pixel group, or “corrupted.” For

that, two boundaries that discriminate these three groups require to be accurately determined

for yielding very high noise detection accuracy even up to 70% noise corruption. Extensive

simulation results conducted on both monochrome and color images under a wide range

(from10% to 70%) of noise corruption clearly show that this switching median filter

substantially outperforms existing median-based filters, in terms of suppressing impulse noise

while preserving image details. BDND is algorithmically simple, suitable for real-time

implementation and application.

3.2 Impulse-Noise Detection

3.2.1 Noise Models

Four impulse noise models are implemented, for extensively examining the performance of

BDND filter with consideration of practical situations. Each model is described in detail as

follows.

1) Noise Model 1: Noise is modeled as salt-and-pepper impulse noise as practiced (e.g., in

[9]). Pixels are randomly corrupted by two fixed extremal values, 0 and 255 (for 8-bit

monochrome image), generated with the same probability. That is, for each image pixel at

location (i, j) with intensity value si,,j , the corresponding pixel of the noisy image will be xi,j ,

in which the probability density function of xi,j is

,

, 0
2

( ) 1 , [ 1]

, 255
2

i j

p for x

f x p for x s Model
p for x


=

= − =

 =


where p is the noise density.

2) Noise Model 2: For the Model 2, it is similar to Model 1, except that each pixel might be

corrupted by either “pepper” noise (i.e., 0) or “salt” noise with unequal probabilities. That is
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Where p=p1+p2 is the noise density and p1 ≠ p2 .

3) Noise Model 3: Instead of two fixed values, impulse noise could be more realistically

modeled by two fixed ranges that appear at both ends with a length of each, respectively. For

example, if m is 10, noise will equal likely be any values in the range of either [0, 9] or [246,

255] . That is

,
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Where p is the noise density.

4) Noise Model 4: Model 4 is similar to Model 3, except that the densities of low-intensity

impulse noise and high-intensity impulse noise are unequal. That is

1

,
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, 0

( ) 1 , [ 4]

, 255 255

i j

p for x m
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f x p for x s Model

p for m x
m


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= − =

 − < ≤


where p=p1+p2 the noise density and p1 ≠ p2.

3.2.2 Noise Detection

        The BDND algorithm is applied to each pixel of the noisy image in order to identify

whether it is “uncorrupted” or “corrupted.” After such an application to the entire image, a

two-dimensional binary decision map is formed at the end of the noise detection stage, with

“0s” indicating the positions of “uncorrupted” pixels, and “1s” for those “corrupted” ones. To

accomplish this objective, all the pixels within a pre-defined window that center around the

considered pixel will be grouped into three clusters; hence, two boundaries and are required

to be determined. For each pixel xi,j being considered, if 0<= xi,j<=b1 , the pixel will be

assigned to the lower-intensity cluster; otherwise, to the medium-intensity cluster for

b1<xi,j<=b2 or to the high-intensity cluster for b2<xi,j<=255 .
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         Obviously, if the center pixel being considered falls onto the middle cluster, it will be

treated as “uncorrupted,” since its intensity value is neither relatively low nor relatively high.

Otherwise, it is very likely that the pixel has been corrupted by impulse noise. Clearly, the

accuracy of clustering results (hence, the accuracy of noise detection) ultimately depends on

how accurate the identified boundaries b1 and b2 are.

       First, we shed the light of our intuition that leads to the development of the BDND

algorithm simply based on the histogram distribution of any subimage extracted from the

simulated noisy image “Lena” corrupted by 70% impulse noise density based on the above-

mentioned Noise Model 1. For illustrating a “typical” histogram distribution, the subimage

chosen bears a “neutral” image content, meaning that the content is neither too “flat”

(containing low frequency) nor too “busy” (containing high frequency). It could be observed

that the distribution presented at the two ends of the distribution is most likely contributed by

impulse noise. Furthermore, the locations of two distinct gaps (or valleys) mark the most

possible positions of the two boundaries, respectively, that clearly separate the impulse noise

regions (at the two ends) from the uncorrupted pixel region (a much wider region in

between); thus, dividing all the pixels within the window into three groups—the lower

intensity impulse noise, the uncorrupted pixels (in the middle) and the higher intensity

impulse noise.

       The boundary discriminative process consists of two iterations, in which the second

iteration will only be invoked conditionally. In the first iteration, an enlarged local window

with a size of 11×11 (empirically determined) is used to examine whether the considered

pixel is an uncorrupted one. If the pixel fails to meet the condition to be classified as

“uncorrupted” (i.e., not falling onto the middle cluster), the second iteration will be invoked

to further examine the pixel based on a more confined local statistics by using a 3×3 window.

In summary, the steps of the BDND are:

Step 1) Impose a 11×11 window, which is centered around the current pixel.

Step 2) Sort the pixels in the window according to the ascending order and find the median,

med, of the sorted vector Vo .

Step 3) Compute the intensity difference between each pair of adjacent pixels across the

sorted vector Vo and obtain the difference vector Vd.

Step 4) For the pixel intensities between 0 and med in  the  Vo, find the maximum intensity

difference in the Vd of the same range and mark its corresponding pixel in the Vo as  the

boundary b1 .
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Step 5) Likewise, the boundary b2 is identified for pixel intensities between med and 255;

three clusters are, thus, formed.

Step 6) If the pixel belongs to the middle cluster, it is classified as “uncorrupted” pixel, and

the classification process stops; else, the second iteration will be invoked in the following.

Step 7) Impose a 3×3 window, being centered around the concerned pixel and repeat Steps

2)–5).

Step 8) If the pixel under consideration belongs to the middle cluster, it is classified as

“uncorrupted” pixel; otherwise, “corrupted.”

Fig. 3.1. Example for noise detection

  For the understanding of the algorithmic steps mentioned above, a 5×5 (instead of 11×11)

windowed subimage with the center pixel “202” (being boxed) is used as an example for

illustrating the BDND process as follows:

• Pixel intensities are sorted in the ascending order and represented as a vector, where the

median med is 81 ; i.e., Vo=[0 0 0 0 0 0 0 39 47 50 62 72 81 179 202 205 224 255 255 255

255 255 252 255 255 255 ].

• The vector of intensity differences between each pair of two adjacent pixels in Vo is

computed as: Vd=[0 0 0 0 0 0 39 8 3 12 10 9 98 23 3 22 31 0 0 0 0 0 0 0].

• For the pixels with intensities between 0 and med in the , the corresponding maximum

difference in the Vd is 39, which is the difference between the pixel intensities 0 and 39.

• For the pixels with intensities between med and 255 in the Vo, the maximum difference in

the Vd is 98, which is the difference between the pixel intensities 81 and 179.

• Hence, b1=0 and b2=81. Thus, the lower intensity cluster is{0, 0, 0, 0, 0, 0, 0},, the medium-

intensity cluster is{39, 47, 50, 62, 72, 81} and the higher intensity cluster is {179, 202, 205,

224, 255, 255, 255, 255, 255, 255, 255,  255}.

• Since the center pixel “202” belongs to the higher intensity cluster, hence, the second

iteration needs to be invoked, and a 3×3 window is imposed and centered around it.

255 255 47 255 39

50 255 255 0 0

0 0 202 224 205

62 255 0 0 255

255 72 81 0 179
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                                           W3×3 =

• Now, the pixel intensities are sorted and represented in the vector form: Vo=[0 0 0 0 202

224 255 255 255].

• As before, the vector of intensity differences is computed: Vd=[0 0 0 202 22 31 0 0].

• The first maximum difference is 202, which is the difference between the pixel intensities 0

and 202. The second maximum difference is 31, which is the difference between the pixel

intensities 224 and 255.

• Hence,b1=0 and b2=224. Thus, the lower intensity cluster is {0, 0, 0, 0}, the medium-

intensity cluster is {202, 224}, and the higher intensity cluster is {255, 255, 255}.

• At the end of the discrimination process, the center pixel “202” is classified as an

“uncorrupted” pixel, since it belongs to the middle cluster.
TABLE 3.1

Suggested window size for the estimated noise density level p

      3.2.3 Color Image Noise Detection

          As the most directly used color space for digital image processing, the RGB color

space is chosen in work to represent the color images. In the RGB color space, each pixel at

the location (i, j) can be represented as color vector ( ), , , ,, ,R G B
i j i j i j i js s s s= , where ,

R
i js , ,

G
i js  and

,
B
i js are the red (R), green (G), and blue (B) components, respectively. The noisy color images

are modeled by injecting the salt-and-pepper noise randomly and independently to each of

these color components. That is, when a color image is being corrupted by the noise density,

it means that each color component is being corrupted by p. Thus, for each pixel ,i js  , the

corresponding pixel of the noisy image will be denoted as ( ), , , ,, ,R G B
i j i j i j i jx x x x=  , in which the

255 255 0

0 202 224

255 0 0

Noise Density Wd ×Wd

0%<p<=20% 3×3

20%<p<=40% 5×5

>40 11×11
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probability density functions of each color components can be one of the noise models

described earlier. In this work, Noise Model 1 is used for performance demonstration.

       The process of extending the noise detection algorithm to corrupted color images is

straightforward. The BDND algorithm will be simply applied to R-, G-, and B-planes

individually, and three binary decision maps are obtained.

3.3 Noise-Adaptive Filtering

       Although the major contributions of making the entire switching median filter being

noise-adaptive come from the impulse-noise detection as described in the previous section,

the post-detection filtering to be discussed in this section also contributes to the overall

denoising performance. Based on the filtering process described in [14], in the follow-up two

subsections, we shall highlight this aspect and provide two additional improvements on the

filtering stage.

3.3.1 Simplified Noise-Density Estimation

       In order to determine the window size of the filtering window, the limit of the maximum

window size requires to be determined first. For that, Table I is empirically established based

on multiple test images, in which different window sizes are suggested for different noise-

density levels of corruption estimated. To conduct the estimation of noise density, NASM

involves a set of sophisticated procedures (such as quad-tree decomposition) [14]. On the

contrary, the noise-density estimation performed in the BDND is much simpler, simply by

counting the number of 1s on the binary decision map obtained in the impulse-noise detection

stage conducted earlier. Based on the binary decision map, “no filtering” is applied to those

“uncorrupted” pixels, while the SM filter with an adaptively determined window size is

applied to each “corrupted” one.

3.3.2 Algorithmic Improvement on Filtering

             First, the maximum window size is limited to 7×7 (instead of 11×11 as suggested in

[14]) in order to avoid severe blurring of image details at high noise density cases (i.e.,

p>50%). After that, the filter’s window size is obtained in a similar way as that in [42] with a

slight modification as follows.

In the NASM [14], starting with WF=3, the filtering window iteratively extends outward by

one pixel in all the four sides of the window, provided that the number of uncorrupted pixels

(denoted by Nc ) is less than half of the total number of pixels (denoted by Sin=1/2[ WF×WF])
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within the filtering window, while . In this work, an additional condition is further imposed,

such that the filtering window will also be extended when the number of uncorrupted pixels

is equal to zero. Therefore, the second change for improvement is that while (Nc< Sin and WF

<= WD1 ) or (Nc=0) , window will be extended by one pixel outward in all the four sides of

the window. In [14], the current pixel is included in the filtering (ranking) process. Note that

the current pixel has already been identified as “corrupted;” thus, our third change in the

BDND is to exclude the current pixel in the process of filtering; that is, only those

“uncorrupted” pixels within the window are considered for the process of ranking. This will,

in turn, yield a better filtering result with less distortion.

3.3.3 Color Image Denoising

The switching median filtering scheme can be extended to denoise corrupted color images via

the scalar median filtering approach as well as the vector median filtering approach. The

scalar approach treats each color component as an independent entity; that is, the same

filtering scheme will be applied to R,  G, and B-planes independently, as if each plane is a

separate monochrome image. The filtered R, G, and B-planes will be then combined to form

the recovered color image.

3.4 Simulation Results

 Intensive simulations were carried out using several monochrome images, from which
“Lena,” “Peppers,” and “Baboon” are chosen for demonstrations see fig.

Fig.3.2 Original image of Pepper (512×512), Lena (512×512), Baboon (512×512) taken for demonstration
 in 1, 2, 3 respectively.

             2             1                 3
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Table-3.2. PSNR performance of the switching median filter with the BDND on
 Pepper image, corrupted by noise density (10-70%) of “salt and pepper” noise

In table 3.2 PSNR performances of BDND for Pepper image are given, from that we can see

the how BDND performance better than other median filters (MED(3×3), MED(5×5), MED(7×7)).

BDND performance is good for higher noise density even up to 80%.Its giving less blurring

effect compare to MED(5×5), MED(7×7) even for higher noise density. This PSNR performance

table 3.2 is plotted in fig 3.4. In fig. 3.3 noisy Pepper images are taken with different noise

density and corresponding restored image by different techniques are shown. Visual quality

of restored image by BDND is very good comparing to MED (3×3), MED (5×5), and MED (7×7)

even for higher noise density. See in fig 3.3 when noise density increased MED (3×3), MED

(5×5), MED (7×7) are failed. But BDND is giving good visual quality and also good PSNR.

      In table 3.3 PSNR comparisons of BDND with different exiting technique on Lena

(512×512) image corrupted by “salt and pepper” noise density of (10-30%) are given.

Fig.3.5. shows noisy images of Lena (512×512) corrupted by salt and pepper noise with noise

density of 10, 20, 30, 50% respectively and corresponding restored image by BDND.

Noise

density

(%)

Input

PSNR(dB)

Output

PSNR

BDND

Output

PSNR

MED(3×3)

Output

PSNR

MED(5×5)

Output

PSNR

MED(7×7)

10 15.22 42.73 31.03 28.09 25.88

20 12.34 39.36 27.11 26.09 24.13

30 10.51 36.78 21.98 24.18 22.51

40 9.28 33.97 18.4 22.84 21.61

50 8.35 32.61 14.95 20.51 20.30

60 7.52 30.69 12.13 17.37 18.89

70 6.84 27.17 9.79 13.41 16.24
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(a)                                       (f)                                       (k)

(b)                                       (g)                                      (l)

(c)                                      (h)                                      (m)

(d)                                      (i)                                       (n)

(e)                                 (j)                                      (o)
Fig.3.3:  a, f, k are noisy (salt & pepper) Pepper image with noise density of 10, 40 and

 60% respectively and corresponding filtered images by BDND are in b, g, l, by MED (3×3)
 in c, h, m, by MED(5×5) in d, i, n, and by MED(7×7) in e, j ,o respectively.
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Lena Corrupted with Noise density
Algorithm

10% 20% 30%

MF(3×3) 31.19 dB 28.48 dB 25.45 dB

MF(5×5) 29.45 dB 28.91 dB 28.43 dB

MMEM[17] 30.28 dB 29.63 dB 29.05 dB

Florencio’s[10] 33.69 dB 32.20 dB 30.95 dB

PMCWF [18] 35.70 dB 32.95 dB 31.86 dB

AMF(3×3) [22] 33.79 dB 30.65 dB 26.26 dB

AMF(5×5) [22] 30.11 dB 28.72 dB 27.84 dB

CMF(3×3) [21] 38.05 dB 31.79 dB 26.22 dB

CMF(5×5) [21] 36.32 dB 33.52 dB 30.33 dB

SDROM [23] 37.93 dB 34.10 dB 29.80 dB

BDND [41] 42.08 dB 38.84 dB 36.20 dB

Table 3.3 PSNR comparisons of BDND with different exiting technique
on Lena (512×512)  image corrupted by “salt and pepper” noise density of (10-30%).

10 20 30 40 50 60 70
5

10

15

20

25

30

35

40

45

Noise density
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ut
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ut

 P
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(d
B

)

BDND
MED(3×3)
MED(5×5)
MED(7×7)

Fig 3.4: PSNR Plot for table 3.2

    In this chapter only one noise model has taken for demonstration that is noise model 1. We

can also apply this technique to other noise model. In fig 3.6 BDND performances for color

images are given for 10% and 20% of salt and pepper noise. BDND work very well on color

image also.

3.5 Conclusion
In this chapter BDND based noise detection has implemented, which has been further

incorporated into the framework of switching median filter as a very powerful image

denoising scheme. Extensive simulation results reveal that this filter consistently outperforms
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on the many existing filters (especially, with a large margin of improvement at extremely

high noise density corruption) by attaining much higher PSNR across a wide range of noise

densities, from 10% to 80%. Another tremendous advantage of BDND algorithm is fairly

simple to implement for real-time image applications.

  (a)                                                       (e)

 (b)       (f)

           (c)            (g)

          (d)            (h)
Fig.3.5 a, b, c, d are Lena (512×512) images corrupted by salt and pepper noise with noise density of
10, 20, 30, 50% respectively and corresponding restored image by BDND are in e, f, g, h respectively
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(a)                                             (b)                                             (c)

(d)                                            (e)                                              (f)
Fig. 3.6: a is the original color image of Pepper, b is noisy Pepper image with 10 % salt and pepper noise and
corresponding filtered image in c by BDND, d is the original color image of Baboon, e is noisy Baboon image

20 % salt and pepper noise and corresponding filtered image in f  by BDND
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Chapter 4

PROGRESSIVE SWITCHING
MEDIAN FILTER
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4.1 Introduction

In this chapter a median-based filter, progressive switching median (PSM) [12] filter, is

implemented to restore images corrupted by salt–pepper impulse noise. The algorithm is

developed by the following two main points: 1) switching scheme—an impulse detection

algorithm is used before filtering, thus only a proportion of all the pixels will be filtered and

2) progressive methods—both the impulse detection and the noise filtering procedures are

progressively applied through several iterations. The noise pixels processed in the current

iteration are used to help the process of the other pixels in the subsequent iterations. A main

advantage of such a method is that some impulse pixels located in the middle of large noise

blotches can also be properly detected and filtered. Therefore, better restoration results are

expected, especially for the cases where the images are highly corrupted.

Fig. 4.1 A general framework of switching scheme-based image filters.

4.2 PSM Filter

      4.2.1 Impulse Detection

      Similar to other impulse detection algorithms, this impulse detector is implemented by

prior information on natural images, i.e., a noise-free image should be locally smoothly

varying, and is separated by edges [4]. The noise considered for this algorithm is only salt–

pepper impulsive noise which means: 1) only a proportion of all the image pixels are

corrupted while other pixels are noise-free and 2) a noise pixel takes either a very large value

as a positive impulse or a very small value as a negative impulse. In this chapter, we use

noise ratio (0 1)R R≤ ≤  to represent how much an image is corrupted. For example, if an

image is corrupted by R = 30% impulse noise, then 15% of the pixels in the image are

corrupted by positive impulses and 15% of the pixels by negative impulses.

       Two image sequences are generated during the impulse detection procedure. The first is

a sequence of gray scale images, (0) (1) (2) ( )
( , ) ( , ) ( , ) ( , ){ , , ,.... .....}n
i j i j i j i jx x x x , where the initial image (0)

( , )i jx  is

noisy image itself , (i , j) is position of pixel in image, it can be 1 ≤ i ≤  M, 1 ≤ j ≤  N where



37

M and N are the number of the pixel in horizontal and vertical direction respectively, and
( )
( , )

n
i jx  is image after nth iteration. The second is a binary flag image sequence,

(0) (1) (2) ( )
( , ) ( , ) ( , ) ( , ){ , , ,.... }n
i j i j i j i jf f f f where the binary flag ( )

( , )
n

i jf  is used to indicate whether the pixel  at

(i, j) in noisy image detected as noisy or noise-free after nth iteration. If ( )
( , )

n
i jf =0 means pixel

at (i, j) has been found as noise-free after nth iteration and if ( )
( , )

n
i jf =1 means pixel at (i, j) has

been found as noisy after nth iteration. Before the first iteration, we assume that all the image

pixels are good, i.e. (0)
( , )i jf =0 for all (i, j).

      In the nth iteration (n= 1, 2, 3…) for each pixel ( 1)
( , )

n
i jx −  we first find out the median value

of the samples in a WD ×WD (WD is an odd integer not smaller than 3) window centered about

it. To represent the set of the pixels within a WD ×WD window centered about ( 1)
( , )

n
i jx − is ( 1)

( , )
n
i k j lx −
+ +

where ,W k W W l W− ≤ ≤ − ≤ ≤ k ≤  W, -W ≤ l ≤  W and W 1, then we have median value

of this window ( 1)
( , )

n
i jm −  is

( 1)
( , )

n
i jm − = median ( ( 1)

( , )
n
i k j lx −
+ + )                                                (4.1)

The difference between ( 1)
( , )

n
i jm −  and ( 1)

( , )
n
i jx −  provides us with a simple measurement to detect

impulses
( 1) ( 1) ( 1)

( , ) ( , ) ( , )( )
( , )

,

1,

n n n
i j i j i jn

i j

f if x m T
f

otherwise

− − − − <= 


                         (4.2)

where T is a predefined threshold value. Once a pixel (i, j) is detected as an impulse, the

value of
( )
( , )

n
i jx  is subsequently modified

( 1) ( ) ( 1)
( , ) ( , ) ( , )( )

( , ) ( 1) ( ) ( 1)
( , ) ( , ) ( , )

,

,

n n n
i j i j i jn

i j n n n
i j i j i j

m if f f
x

x if f f

− −

− −

 ≠= 
=

                              (4.3)

Suppose the impulse detection procedure is stopped after the NDth iteration, then two output

images- ( )
( , )

DN
i jx  and ( )

( , )
DN

i jf  are obtained, but only ( )
( , )

DN
i jf  is useful for our noise filtering

algorithm.

     4.2.2 Noise Filtering

     Like the impulse detection procedure, the noise filtering procedure also generates a gray

scale image sequence, (0) (1) (2) ( )
( , ) ( , ) ( , ) ( , ){ , , ,.... .....}n
i j i j i j i jy y y y and a binary flag image sequence
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(0) (1) ( )
( , ) ( , ) ( , ){ , ,.... .....}n
i j i j i jg g g . In the gray scale image sequence, we still use (0)

( , )i jy  to denote the

pixel value at position (i, j) in the noisy image to be filtered and use ( )
( , )

n
i jy  to represent the

pixel value at position (i, j) in the image after the nth iteration. In a binary flag image ( )
( , )
n
i jg ,

the value ( )
( , )
n
i jg =0 means the pixel (i, j) is good and ( )

( , )
n
i jg  = 1 means it is an impulse that

should be filtered. A difference between the impulse detection and noise-filtering procedures

is that the initial flag image (0)
( , )i jg  of the noise-filtering procedure is not a blank image, but the

impulse detection result ( )
( , )

DN
i jf , i.e., (0)

( , )i jg = ( )
( , )

DN
i jf .

      In the nth iteration (n = 1; 2; ….), for each pixel ( 1)
( , )

n
i jy − , we also first find its median value

( 1)
( , )

n
i jm −   of a WF×WF (WF is an odd integer and not smaller than 3) window centered about it.

However, unlike that in the impulse detection procedure, the median value here is selected

from only good pixels with ( 1)
( , )

n
i jg − = 0 in the window.

    Let M denote the number of all the pixels with ( 1)
( , )

n
i jg − = 0 in the WF×WF window. If M is

odd, then
( 1)
( , )

n
i jm −  = ( 1) ( 1)

( , ) ( , ){ 0, ( , ) }n n
i j i j F Fmedian y g i j W W− − = ∈ ×                        (4.5)

The value of ( )
( , )

n
i jy  is modified only when the pixel (i, j) is an impulse and M is greater than 0:

( 1) ( 1)
( , ) ( , )( )

( , ) ( 1)
( , )

, 1; 0

,

n n
i j i jn

i j n
i j

m if g M
y

y else

− −

−

 = >= 


                                      (4.6)

Once an impulse pixel is modified, it is considered as a good pixel in the subsequent

iterations
( 1) ( ) ( 1)
( , ) ( , ) ( , )( )

( , ) ( ) ( 1)
( , ) ( , )

,

0,

n n n
i j i j i jn

i j n n
i j i j

g if y y
g

if y m

− −

−

 == 
=

                                           (4.7)

The procedure stops after the NFth iteration when all of the impulse pixels have been

modified, i.e.,

( , )
( , )

FN
i j

i j
g∑ =0                                                                   (4.8)

Then we obtain the image ( )
( , ){ }FN
i jy  which is our restored output image.

4.3 Simulation Results and Conclusion
     In this experiment, the original test images are corrupted with fixed valued salt and pepper

noise, where the corrupted pixels take on the values of either 0 or 255 with equal probability.
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To implement the PSM algorithm, four parameters must be predetermined. They are the

filtering window size WF, the impulse detection window size WD, the impulse detection

iteration number ND and the impulse detection threshold T. Experiments show that almost all

the best restoration results are obtained when WF = 3 and ND = 2. In addition, these two

parameters are not sensitive to noise rate and image type. Therefore, we simply set both WF

=3 and ND = 2. From experiment we have seen that T will affect the restored image quality.

T= 40 gives good PSNR and restored image quality.

Table 4.1. PSNR Performance of Different Algorithms for Lena image

 corrupted with salt and pepper noise

Lena Corrupted with Noise density
Algorithm

10% 20% 30%

MF(3×3) 31.19 dB 28.48 dB 25.45 dB

MF(5×5) 29.45 dB 28.91 dB 28.43 dB

MMEM [17] 30.28 dB 29.63 dB 29.05 dB

Florencio’s[10] 33.69 dB 32.20 dB 30.95 dB

PMCWF [18] 35.70 dB 32.95 dB 31.86 dB

AMF(3×3)[22] 33.79 dB 30.65 dB 26.26 dB

AMF(5×5)[22] 30.11 dB 28.72 dB 27.84 dB

CMF(3×3)[21] 38.05 dB 31.79 dB 26.22 dB

CMF(5×5)[21] 36.32 dB 33.52 dB 30.33 dB

SDROM [23] 37.93 dB 34.10 dB 29.80 dB

PSM [12] 39.34 dB 35.53 dB 34.13 dB

      In table 4.1 PSNR comparisons of PSM with different exiting technique on

Lena(512×512)  image corrupted by “salt and pepper” noise density of (10-30%) are given.

PSM performs better than other median-based methods, especially when noise ratios are high.

Fig.4.2 shown noisy images of  Lena (512×512) corrupted by salt and pepper noise with

noise density of  10, 20, 30, 40% respectively and corresponding restored image by PSM .

Similarly for Pepper image in fig. 4.3 Both the simple 3×3 median filter and the switch

median filter can preserve image details but many noise pixels are remained in the image.

The CWM filter performs better than simple median filter, but it still influences good pixels

and misses many impulse pixels. The iterative median filter removes most of the impulses,

but many good pixels are also modified, resulting in blurring of the image.   Since   the

iterative switching filter does not modify good pixels in the image, it maintains image details

better than the iterative median filter, but many noise blotches still remained in the image.
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Dramatic restoration results are obtained by PSM filter.  It can remove almost all of the noise

pixels while preserve image details very well.

(a)                                                 (e)

(b)                                                (f)

(c)                                               (g)

(d)                                               (h)
 Fig. 4.2 a, b, c, d are noisy images of  Lena (512×512) corrupted by salt and pepper noise with noise density of

10, 20, 30, 40% respectively and corresponding restored image by PSM are in e, f, g, h.
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(a)                                                 (e)

(b)                                                 (f)

(c)                                                  (g)

(d)                                                 (h)
Fig. 4.3 a, b, c, d are noisy images of  Pepper (512×512) corrupted by salt and pepper noise with noise

 density of  10, 20, 30, 40% respectively and corresponding restored image by PSM are in e, f, g, h.
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Chapter 5

DETAIL-PRESERVING APPROACH
FOR REMOVING IMPULSE

NOISE IN IMAGES



43

5.1 Introduction
In this chapter, an efficient approach for removing impulse noise [45] from corrupted images

while preserving image details, based on alpha-trimmed mean, is implemented. It is well

known that the alpha-trimmed mean [43] see in equation 2.17 is a special case of the order-

statistics filter [44]. The difference between this approach and [43],[44] is that this algorithm

[45] uses the alpha-trimmed mean in impulse noise detection instead of pixel value

estimation. Also, it applies the filtering process to only the identified noisy pixels instead of

all image pixels. Extensive experimental results show that this algorithm performs

significantly better than many other well-known techniques. This can be used for SPN and

RVIN.

5.2 Alpha-Trimmed Mean-Based Approach
It is well known that simple mean might be inadequate in high-noise situations to represent

the main body of the data but rather will be biased toward the “outliers” [43]. Since a noisy

pixel is usually located near one of the two ends in the sorted sample [1], a robust statistical

estimator, for example, trimmed mean, is more intuitively appealing than sample mean [43].

     5.2.1 Impulse Noise Detection

Let I  denote the corrupted, noisy image of size 1 2l l×  , and ijx  is its pixel value at position

(i, j), i.e., { }1 2:1 ,1ijI x i l j l= ≤ ≤ ≤ ≤  . Let ( )ijW I denote the window of size

(2 1) (2 1)d dL L+ × + centered about ijx  , i.e., { },( ) ,ij i u j v d dW I x L u v L− −= − ≤ ≤  . The alpha-

trimmed mean ( )ijM I of the pixel values within window ( )ijW I  is defined as

( )
1

1( )
2

t t

ij i
i t

M I X
t t

α

αα

−  

= +  

=
− ∗   

∑     (5.1)

where 2(2 1) ,dt L α= +  is the trimming parameter that assumes values between 0 and 0.5,

.   is the floor function, and ( )iX represents the ith data item in the increasingly ordered

samples of ( )ijW I , i.e., (1) (2) ( )...... tX X X≤ ≤ ≤  [43]. That is,

( )iX = ith smallest ( ( ) )ijW I .
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       Since the alpha-trimmed mean ( )ijM I , with appropriately chosenα  , represents

approximately the average of the noise-free pixel values within window ( )ijW I , the absolute

difference between ijx  and ( )ijM I

( )ij ij ijr x M I= −                                                                      (5.2)

should be relatively large for noisy pixels and small for good, noise-free pixels. Let

{ }(0)
1 2:1 ,1ijR r i l j l= ≤ ≤ ≤ ≤  , and it is called the residue image of I  . The residue image

(0)R for image Goldhill of size 512×512 in Fig. 5.1(d), along with the original image [see Fig.

5.1(a)] of Goldhill and the noisy image [see Fig. 5.1(b)] of Goldhill corrupted by 10% fixed

valued impulse noise, where the impulses take on the values of 0 or 255 with equal

probabilities. For simplicity, in the experiment, we set 1dL =  and α = 0.35. From Fig. 5.1(d),

it is clear that the residue image (0)R  contains not only noisy pixels but also some image

details such as the sketches of the houses.

                                      (a)                               (b)                                  (c)

                                                     (d)                                     (e)
Fig.5.1. Residue images for Goldhill. (a) Original image Goldhill. (b) Goldhill corrupted by 10% fixed-valued

impulse noise.(c) Alpha trimed mean  out put image (d) (0)R . (e) (1)R  .

If we compare ijr with a threshold value to determine whether or not the pixel ijx  is noisy,

then it will detect many image details as noisy as well. In order to improve the impulse noise

detection accuracy, ideally, we need to remove all the image details from the residue
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image (0)R . Next, we implement a simple and efficient method to remove image details

from (0)R .

      This method is based on the following observations. First, when the pixel ijx is an

impulse, it takes a value substantially larger than or smaller than those of its neighbors.

Second, when the pixel ijx is a noise-free pixel, which could belong to a flat region, an edge,

or even a thin line, its value will be very similar to those of some of its neighbors. Therefore,

we can detect image details from noisy pixels by counting the number of pixels whose values

are similar to that of ijx  in its local window ( )ijW I . For , ( )i u j v ijx W I− − ∈ and, ( , ) (0,0)u v ≠ , we

define

,
,

1,

0,
i u j v ij

i u j v

x x T

otherwise
δ − −

− −

 − <= 


     (5.3)

where T is a predetermined parameter. , 1i u j vδ − − =  indicates that the pixel ,i u j vx − −  is

similar to the pixel in intensity. Also, let denote the total number of neighboring pixels in the

window that are similar to the pixel ijx  in intensity.

That is

,
, ,( , ) (0,0)d d

ij i u j v
L u v L u v

ξ δ − −
− ≤ ≤ ≠

= ∑                                                           (5.4)

Next, define as

0,

1,
ij

ij

N
otherwise
ξ

ϕ
≥

= 


                                                                     (5.5)

where N is a predetermined parameter. 0ijϕ = indicates that most likely ijx  is a noise-free

pixel instead of an impulse because it has at least N similar neighboring pixels in the window

( )ijW I . Let { }(1)
1 2:1 ,1ij ijR r i l j lϕ= ∗ ≤ ≤ ≤ ≤ .It is clear that

0, 0
1, 1

ij
ij ij

ij

r
ϕ

ϕ
ϕ

=∗ =  =
                  (5.6)

Therefore, (1)R retains the impulse noises in (0)R  while removing most of the image details,

as shown in Fig. 1(e). From Fig. 1(e), it is clear that most image details disappear while the

noise remains, thus improving the impulse noise detection accuracy in the subsequent steps.

This is indeed very important for the good performance of this algorithm, as will be shown

later. Since impulse noises can be detected more accurately from the residue image, next, we
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apply a fuzzy impulse detection technique to give each pixel a fuzzy flag indicating how

much it looks like an impulse. The more it looks like a damaged pixel, the more it is modified

later. This technique is very efficient in removing impulse noise, especially random-valued

impulse noise where the impulse values are uniformly distributed within [0, 255], as will be

shown later. The following two-parameter membership function, similar to that in [46], is

used to generate a fuzzy flag for each pixel in the noisy image:

1,

,

0,

ij ij u

ij ij l
ij l ij ij u

u l

ij ij l

r W
r W

n W r W
W W

r W

ϕ

ϕ
ϕ

ϕ∗

∗ ≥


∗ −= ≤ ∗ < −
 <

     (5.7)

Where Wl and Wu are two predetermined parameters. Can be used to measure how much the

pixel is corrupted.

     5.2.2 Refinement

It is well known that a noisy pixel is usually located near one of the two ends in the ordered

samples of ( )ijW I  . In other words, if a pixel ijx  is not located near one of the two ends in the

ordered samples, then most likely, it is not a noisy pixel. Based on this observation, we can

refine the fuzzy flag ijn  as follows:

( ) ( 1)0,

,
s ij t s

ij
ij

if X x X
n

n otherwise
− +< <= 


                 (5.8)

Where s is constant, and1 ( 1) / 2s t≤ ≤ − .

     5.2.3 Impulse Noise Cancellation

After we calculate the membership function ijn  for each pixel ijx , the pixel value of ijx  is

replaced by a linear combination of the median ( )ijm I of ( )ijW I , i.e.,

( ) ( ( ))ij ijm I median W I= , and its original value ijx  . That is

( ) (1 )ij ij ij ij ijy n m I n x= × + − ×          (5.9)

where ijy is the restored value of i jx .
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5.3 Experimental Results
In this section, this  algorithm is evaluated and compared with many other existing

techniques. Extensive experiments are conducted on a variety of standard gray-scale test

images with distinctly different features and different sizes, including Lena, Bridge, and

Goldhill. For simplicity, we set Ld=1 and α = 0.35 in our computer simulations. For fixed-

valued impulse noise, s=1, T=30, N=4, Wl =20 and Wu =40, while for random-valued impulse

noise s=2, T=12, N=4, Wl =5 and Wu =30. This algorithm is implemented recursively. That

is, the modified pixel values are immediately used in process of the following pixels. In order

to further improve the restoration results, algorithm is applied iteratively. Usually, the best

restoration results can be obtained after two to four iterations. Peak signal-to-noise ratio

(PSNR) is used to give quantitative performance measures as in [7]-[23].

Table5.1 comparative results in PSNR for image Lena of size 512x512 corrupted by

 20% fixed-valued impulse noise and random-valued impulse noise, respectively

Algorithm
Fixed Value Impulse

noise

Random Value

Impulse noise

Median filter 28.57 29.76

CWM [7] 30.39 32.42

AMF [22] 30.57 31.18

TSM filter[11] 31.84 34.13

DBM filter [10] 35.12 31.66

Fuzzy filter [48] 30.75 28.66

SD-ROM [23] 35.70 33.37

LRC Method [13] 36.95 33.43

ACWMF [20] 36.54 34.98

This Method [45 ] 37.45 35.22

First, the performance of this method for impulse noise suppression is compared with those

of many other well-known algorithms, which include the standard median filter of size 3×3,

the center-weighted median (CWM) filter of size 3×3 [7], the median filter with adaptive

length (AMF) [22], the median filter based on fuzzy rules (FM) [48], the SD-ROM approach

[23], and the adaptive center-weighted median filter (ACWMF) in [20]. For the CWM filter,

center weights are appropriately tuned to obtain better performance for different noisy

images. Unless otherwise mentioned, the SD-ROM approach used inside training set with

M=1296 , as defined in [23]. The test image used for this comparison is Lena of size

512×512, which is corrupted by both 20% fixed-valued and random-valued impulse noises,
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as in [23]. Table 5.1 lists the restoration results of different algorithms. From Table 5.1, it is

clear that for both fixed-valued and random-valued impulse noises, this method provides

significant improvement over all the other approaches.

                              (a)                                                       (b)
Fig. 5.2. Goldhill ( 512 ×512) corrupted with random-valued impulse noise with 20% noise density in (a), and

corresponding restored image in (b) .

Table 5.2 Comparative results in PSNR (dB) for standard images Lena, Bridge, and Goldhill of size

( 256 ×256) corrupted by 30% random-valued impulse noise.

Algorithm Lena Bridge Goldhill

ACWMF [20] 27.18 22.21 26.57

DPVM [21] 27.29 22.44 27.13

This method 28.48 24.62 28.61

The restoration results of different algorithms are listed in Table 5.2, which also includes that

of ACWMF in [20]. Table 5.2 shows clearly that this algorithm outperforms all other three

techniques for Lena, Bridge, and Goldhill test images. In fig. 5.2 noisy images of Goldhill with

noise density of 20% RVIN and corresponding  restored images presented respectively.  As a

final remark, it should be mentioned that for all the experiments in this section, the

parameters for this approach are fixed to show its robustness. Better performance could be

achieved with more appropriately tuned parameters. In Fig. 5.3, noisy images of Lena with

noise density of 10, 20, 30% and corresponding  restored images presented respectively ,

which shows that the this algorithm yields superior subjective quality with respect to impulse

noise suppression and image detail reservation.
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5.4 Conclusion
In this chapter a detail-preserving algorithm is implemented for removing impulse noise

efficiently from images. To demonstrate the superior performance of the method, extensive

experiments have been conducted on a variety of standard test images to compare this method

with many other well known techniques. Experimental results indicate that this method

performs significantly better than many other existing techniques.

(a)                                              (d)

(b)                                             (e)

(c)                                             (f)
Fig. 5.3.  Noisy images of Lena a, b, c with noise density of 10, 20, 30% and

corresponding restored images d, e, f  respectively
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Chapter 6

AN IMPULSE DETECTOR FOR
 SWITCHING MEDIAN FILTERS
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6.1 Introduction

     In this chapter an impulse noise detection technique for switching median filters [13] is

implemented, which is based on the minimum absolute value of four convolutions obtained

using one-dimensional Laplacian operators. And after noise detection switching median filter

has used. We have also proposed adaptive noise filtering technique at filtering end.Extensive

simulations show that this proposed filter provides better performance than SM filter [13] .In

particular, it can successfully preserve thin lines and other detail features.

6.2 Impulse Noise Detection

     The impulse detection is usually based on the following two assumptions: 1) a noise-free

image consists of locally smoothly varying areas separated by edges and 2) a noise pixel

takes a gray value substantially larger or smaller than those of its neighbors. Let ijx  and ijy

represent the pixel values at position in the corrupted and restored images, respectively. The

standard median filter outputs the median value of the samples in the (2 1) (2 1)N N+ × +

window centered at ijx , i.e.,

, ,{ ,..... ...... }ij i N j N ij i N j Nm median x x x− − + +=            (6.1)

To judge whether ijx  is an impulse, the median-based impulse detector [3] measures and

compares it with a predefined threshold T1

11,

0,
ij ij

ij

if x m T

otherwise
α

 − >= 


                                        (6.2)

ijα  =1means ijx  is a corrupted pixel; otherwise ijx  is noise-free. The output of the SM filter

is obtained by

(1 )ij ij ij ij ijy m xα α= × + − ×                                                  (6.3)

     It is well known that the median filter cannot distinguish thin lines from impulses.

Accordingly, the median-based impulse detector will interpret thin lines as impulses and lead

to the removal of thin lines from images. Here a simple impulse detector is implemented to

overcome this problem.

       The input image is first convolved with a set of convolution kernels. Here, four one-

dimensional Laplacian operators as shown in Fig. 6.1 are used, each of which is sensitive to

edges in a different orientation. Then, the minimum absolute value of these four convolutions

(denoted as ijr  ) is used for impulse detection, which can be represented as
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min{ : 1 4}ij ij pr x K p to= ⊗ =                                                       (6.4)

Where Kp is the pth kernel, and ⊗ denotes a convolution operation.

     The value of ijr  detects impulses due to the following reasons.

1) ijr  is large when the current pixel is an isolated impulse because the four convolutions are

large and almost the same.

2) ijr  is small when the current pixel is a noise-free flat region pixel because the four

convolutions are close to zero.

3) ijr  is small also when the current pixel is an edge (including thin line) pixel because one of

the convolutions is very small (close to zero) although the other three might be large.

From the above analysis, ijr  is large when is corrupted by noise, and ijr  is small when is noise-

free whether or not it is a flat-region, edge, or thin-line pixel. So, we can compare ijr  with a

threshold to determine whether a pixel is corrupted, i.e.,

1,

0,
ij

ij
ij

r T
r T

α
>=  ≤

                                                                        (6.5)

Fig.6.1. Four 5×5 convolution kernels

Obviously, the threshold affects the performance of impulse detection. It is not easy to derive

an optimal threshold through analytical formulation. But we can determine a reasonable

threshold using computer simulations.
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6.3 Switching Based Noise Filtering

After completion of noise detection process we have binary map ijα . It gives information

about whether corresponding pixel is corrupted in ijx  or not. If it is corrupted then it will

replace by median of neighborhood pixels otherwise it will remain same. This step can be

formulated by

(1 )ij ij ij ij ijy m xα α= × + − ×                                                                (6.6)

Where ijy  is restored pixel corresponding of ijx

6.4 Modification in Filtering Process

After getting binary map ijα  we will apply noise adaptive filtering [41] technique at the

filtering end. From the simulation we found its give much better than this method. The

maximum filtering window size shouldn’t be more than 7×7 to reduce blurring effect. Steps

are given below for Adaptive Switching Filtering:

1. Start with (3×3) filtering window form ijx   and corresponding (3×3) window from

binary map ijα .

2. Find out how many pixels are detected as noise-free in current filtering window from

corresponding binary flag window.

3. Iteratively extends window size outward by one pixel in all the four sides of the

window, if the number of uncorrupted pixels is less than half of the total number of

pixels (denoted by Sin=1/2[3×3]) within the filtering window .These all above three

steps should be repeat again up to 7×7 filtering window if condition are not satisfy.

4. So since the current pixel has been marked noisy, it will not participate in filtering

process. Only the pixels that are classified as noise free in filtering window will

participate in median filtering process. This will, in turn, yield a better filtering result

with less distortion.

6.5 Simulation Results
Computer simulations are carried out to assess the performance of this impulse noise detector

using a variety of test images. Mean square error (MSE) is used to give a quantitative

evaluation on the filtering results. The performance of the proposed filer is compared with

SM(5x5),SM(7x7)[13] because detection process are same as in SM [13] but filtering process

are noise adaptive[41] .Here some parameter has taken from SM[13],that is T=0.4 . MSE plot
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is given in fig.6.5 for SM(5x5),SM(7x7)[13] and Proposed modified SM for Lena image

corrupted by different noise density(10-40%). Similarly MSE performance shown in fig 6.4

for Boat image. Fig.6.2, 6.3 shows the subjective visual qualities of the noisy and filtered

images using proposed method for Lena and Boat image respectively with various noise

density levels. From the experimental result we can say that proposed modified SM is giving

better MSE performance and also good restored image quality.

(a)                                            (d)

(b)                                           (e)

(c)                                          (f)
Fig. 6.2. a, b, c are noisy images of  Lena (512×512) corrupted by salt and pepper noise with noise density of

10, 20, 30 respectively and corresponding restored image by proposed method are in  d, e, f.

Simple median filter suppresses the impulses but introduces a blurring effect. The median-

based and ROM based switching filters provide better results, but they remove some image

details, especially thin lines. On the other hand, the WM-based and tri-state median filters can
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preserve image details, but many impulses remain in the image. It is seen that the proposed

filter can remove most of the noise pixels while preserving image detail very well.

(a)                                                 (d)

(b)                                               (e)

(c)                                                 (f)
Fig.6.3. a, b, c are noisy images of  Boat (512×512) corrupted by salt and pepper noise with noise density of  10,

20, 30 respectively and corresponding restored image by proposed method are in  d, e, f.
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Fig. 6.4 : MSE Plot for Boat image
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Fig. 6.5. MSE Plot for Lena image

6.6 Conclusion

We have proposed a modified SM [P3]that can effectively separate noise and noise-free

pixels and also suppress the noise. In particular, it prevents the removal of fine details such as

thin lines from the images and thus provides improved impulse detection ability. The

simulation result shows that the proposed method is better than SM filters [13]. The MSE

curves in Fig. 6.4 show that MSE increases significantly when the noise becomes heavy (after

approximately 30%) for SM [13] filtering algorithm but modified SM is giving good MSE

performance even for higher noise density.
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Chapter 7

ADAPTIVE NOISE DETECTION AND
SUPPRESSION FILTER FOR

 IMPULSE NOISE
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7.1 Introduction
A new switching based median filter with adaptive noise detection and suppression (ANDS)

method is proposed to restore images corrupted by salt & pepper impulse noise. The

proposed algorithm works well for suppressing impulse noise with noise ratios from 5 to 60%

while preserving image details. The algorithm  is  based  on  the  following  two  schemes :

(1) Adaptive noise  detection  scheme  and  (2) Adaptive filtering scheme. We begin by

introducing neighborhood differentiation preprocessing step to quantify the increments in

each local neighborhood of the noisy image. A correlation map is then derived by adaptive

thresholding and   used    to   designate pixels as noisy or noise free. Finally, the noise is

attenuated by estimating the values of the noisy pixels with a switching based median filter

applied exclusively to those neighborhood pixels not labeled as noisy. The size of filtering

window is adaptive in nature, and it depends on the number of noise-free pixels in current

filtering window.

7.2 Adaptive Noise Detection
      ANDS is a nonlinear adaptive filtering algorithm consisting of two major components:

corrupted pixel detection and adaptive spatially localized noise filtering, which are

implemented in five processing steps as described in the following paragraphs.

Step 1: Neighborhood preprocessing.

Let us take a 3×3 window of image A (noisy image) center around A (i, j),that is Ai, j =A(i +

k, j +l) for -1 ≤ (k, l) ≤ +1.The difference image for the window can be found according to

Di, j= Ai, j –A (i, j)

Replace  Di, j (2,2)=A (i, j)

Fig. 7.1. Block diagram of ANDS Filter

Filtered Image
No FilteringSwitch

Adaptive Noise
Detector

Switching mechanism based on
Noise detector

Adaptive Median
Filtering

Noisy input  image
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Example 1:

,

132 131 130
131 132 129
130 129 130

i jA
 
 =  
  

Difference Image D is found to be

,

0 1 2
1 132 3
2 3 2

i jD
− − 

 = − − 
 − − − 

Example 2:

,

132 131 130
131 255 255
130 129 130

i jA
 
 =  
  

Difference Image D is

,

123 124 125
124 255 0
125 126 125

i jD
− − − 

 = − 
 − − − 

Step 2: Correlation   map    using   adaptive

thresholding

In this step correlation map to 8-neighborhood of ,i jD (2, 2) is developed. Mapped image is

formed according to the following rule-

,

, ,

,

1, ( , )

( , ) 0, ( , )

1, ( , )

i j

i j i j

i j

D k l

Map k l D k l

D k l

β

β β

β

 < −


= − ≤ ≤
 >

                                                 (7.1)

     Where 1 k 3, and 1 l 3, (k, l)  (2, 2). In (7.1), β [46] is a nonlinear adaptive threshold

that will be designed as a function of A (i, j) based on the particular noise model. The

thresholding parameter β  is adaptive in nature so this is called correlation map by adaptive

thresholding and this whole step becomes adaptive noise detection. β  is given by
2

,[41 0.00234( (2,2) - 127.5 ) ]i jDβ = − (7.2)
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    In case of salt and pepper noise maximum and minimum pixel values are 255, 0

respectively. When central pixel has maximum and minimum value then β  value reaches to

its minimum value. For Example-1 and Example- 2, β  value will be 40.95 and 2.96

respectively.

So map image for Example 1 is

,

0 0 0
0 132 0
0 0 0

i jMap
 
 =  
  

and for Example 2 is

,

1 1 1
1 255 0
1 1 1

i jMap
 
 =  
  

In Example 1, , (2,1)i jMap = 0 indicates a “connectedness” condition in the sense that the

observed pixel value A(i, j 1) supports the hypothesis     that A(i, j)   is  noise    free.   For

Example 2, , (2,1)i jMap = 1 indicates that the observed value A(i, j 1) supports the hypothesis

that A(i, j) has been corrupted by noise.

Step 3: Classification of pixel

Initially all pixel of A are labeled as noise-free pixels in a binary flag image B, means all

values are set to zeros initially. From the correlation map ,i jMap  central pixel will be

classified as noisy or noise free, based on the number of zeros (Z) in the 8 neighborhood of

, (2, 2)i jMap . If 3Z ≥ then current pixel A (i, j) is classified as a noise free and B(i, j)=0

otherwise B(i, j)=1. Z will be small when the  noise density is high.

Step 4: Refinement

After classifying all pixels in A we have binary flag image B. Elements of B give information

whether the pixel has been classified as noisy or noise-free. Since salt & pepper has minimum

and maximum pixel values 0 and 255 respectively, so we will crosscheck the binary flag. If

any pixel has classified as noisy but its value will be in the range of 10< A (i, j) <245, then

corresponding flag will change from 1 to 0.
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7.3 Adaptive Noise Filtering

    The major contributions of making the entire switching median filter being noise-adaptive

[14] come from the impulse-noise detection as described in the previous section. In order to

determine the size of the filtering window, the limit of the maximum window size requires to

be determined first. Based on the binary flag, “no filtering” is applied to those “uncorrupted”

pixels, while the SM (switching median) with an adaptively determined window size is

applied to each “corrupted” one.

    The maximum window size is limited to (7×7) in order to avoid severe blurring of image

details at high noise density cases (i.e., p>50%). Starting with (3×3) filtering window

iteratively extends outward by one pixel in all the four sides of the window, provided that the

number of uncorrupted pixels is less than half of the total number of pixels (denoted by

Sin=1/2[3×3]) within the filtering window . Since the current pixel has been marked noisy, it

will not participate in filtering process. Only the pixels that are classified as noise free in

filtering window will participate in median filtering process. This will, in turn, yield a better

filtering result with less distortion.

7.4 Simulation Result

Intensive simulations were carried out using several monochrome images, from which

“Lena,” “Peppers,” and “Baboon” are chosen for demonstrations.
Table 7.1 PSNR Performance of Different Algorithms for

 Lena (512×512) image corrupted with salt and pepper noise

Lena Corrupted with Noise ratio
Algorithm

10% 20% 30%

MF(3×3) 31.19 dB 28.48 dB 25.45 dB

MF(5×5) 29.45 dB 28.91 dB 28.43 dB

MMEM [17] 30.28 dB 29.63 dB 29.05 dB

Florencio’s[10] 33.69 dB 32.20 dB 30.95 dB

PMCWF [18] 35.70 dB 32.95 dB 31.86 dB

AMF(3×3)[22] 33.79 dB 30.65 dB 26.26 dB

AMF(5×5)[22] 30.11 dB 28.72 dB 27.84 dB

CMF(3×3)[21] 38.05 dB 31.79 dB 26.22 dB

CMF(5×5)[21] 36.32 dB 33.52 dB 30.33 dB

SDROM [23] 37.93 dB 34.10 dB 29.80 dB

CSAM [15] 39.23 dB 36.44 dB 34.32 dB

ACWMF [20] 40.60 dB 36.54 dB 33.68 dB

ANDS [P2] 43.74 dB 39.64 dB 36.43 dB
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This proposed technique is compared with different standard methods that are standard

median filters MF(3×3), MF(5×5), adaptive center weighted median filter (ACWMF) [20],

minimum–maximum exclusive mean (MMEM) filter[17] , Florencio’s[10], conditional

median filtering (CMF)[21], Signal-dependent rank-order mean (SDROM) filter [23]. The

proposed method ANDS has been applied on Lena, Baboon    and    Bridge   gray   images

of  size 512×512 corrupted by fixed-value impulse noise with different densities ranges from

5% to 60%. Comparatively PSNR performance has been given with different noise density in

Table 7.1 for Lena image.

Fig.7.3. PSNR Plot for Lena image corrupted with 10 to 60%

noise density

Fig.7.2. PSNR Plot for Lena image corrupted with
Different noise density
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This PSNR performance is also plotted in fig.7.2 and fig 7.3. In fig. 7.4 test images, noisy

images and corresponding denoised images are shown. From all this simulation results we

can say performance of the proposed ANDS scheme is better than other methods in terms of

PSNR and visual aspect.

                       (a)                                             (b)                                               (c)

           (c)     (d)           (e)

                           (f)                                             (g)        (h)
Fig.7.4 The original image (a)Lena, (c)Baboon, (f)Bridge and corresponding noisy image corrupted by 30%,
20%,10% fixed value impulse noise is (b),(d),(g)respectively and (c),(e),(h) are filtered image of (b),(d),(e)

respectively.

7.5 Conclusion
In this chapter, a novel detail-preserving algorithm (ANDS) is simulated for removing

impulse noise efficiently from images. To demonstrate the superior performance of the

proposed method, extensive simulation experiments have been conducted on a variety of

standard test images to compare our method with many other well known techniques.
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Experimental results indicate that the proposed   method performs significantly better than

many other existing techniques.

(a)                                               (b)

(c)                                                (d)

(e)                                                 (f)
Fig.7.5 Lena image corrupted by salt and pepper noise with  density of 10%, 20%,40% are in

(a),(c),(e)respectively and corresponding filtered images by ANDS are in (b),(d),(f) respectively.
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Chapter 8

IMPULSE NOISE DETECTION AND
ADAPTIVE MEDIAN FILTER
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8.1 Introduction
      In this chapter a impulse noise detection & removal with adaptive filtering approach is

proposed to restore images corrupted by salt & pepper noise. The proposed algorithm works

well for suppressing impulse noise with noise density from 5 to 60% while preserving image

details. The difference of current central pixel with median of local neighborhood pixels is

used to classify the central pixel as noisy or noise-free.  The noise is attenuated by estimating

the values of the noisy pixels with a switching based median filter applied exclusively to

those neighborhood pixels not labeled as noisy. The size of filtering window is adaptive in

nature, and it depends on the number of noise-free pixels in current filtering window.

Simulation results indicate that this filter is better able to preserve 2-D edge structures of the

image and delivers better performance with less computational complexity as compared to

other denoising algorithms existing in literature. The processing steps are shown in block

diagram in Fig. 8.1.

Fig. 8.1.Block diagram of proposed Filter

8.2 Impulse Noise Detection
The impulse detection is usually based on the following two assumptions: 1) a noise-free

image consists of locally smoothly varying areas separated by edges and 2) a noisy pixel has

tendency of very high or very low gray value compare to its neighbors. Two image sequences

are generated during the impulse detection procedure. The first is a sequence of gray scale

images, (0) (1) (2) ( )
( , ) ( , ) ( , ) ( , ){ , , ,.... }n
i j i j i j i jx x x x  where the initial image (0)

( , )i jx  is noisy image itself , (i , j) is

position of pixel in image, it can be 1 ≤ i ≤  M, 1 ≤ j ≤  N where M and N are the number of

the pixel in horizontal and vertical direction respectively, and ( )
( , )

n
i jx  is image after nth iteration.

The second is a binary flag image sequence, (0) (1) (2) ( )
( , ) ( , ) ( , ) ( , ){ , , ,.... }n
i j i j i j i jf f f f where the binary flag

( )
( , )

n
i jf  is used to indicate whether the pixel at (i, j) in noisy image detected as noisy or noise-

Switching mechanism based on noise
detected

Switch

Iterative median
based noise detector

Input Noisy Image

No Filtering

Adaptive Median
Filtering

Filtered Image
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free after nth iteration. If ( )
( , )

n
i jf =0 means pixel at (i, j) has been found as noise-free after nth

iteration and if ( )
( , )

n
i jf =1 means pixel at (i, j) has been found as noisy after nth iteration. Before

the first iteration, we assume that all the image pixels are good, i.e. (0)
( , )i jf =0 for all (i, j).

Steps for noise detection:

1. Lets take a (2W+1)×(2W+1) window around ( 1)
( , )

n
i jx −  means

( 1)
( , )

n
i k j lx −
+ +  where -W ,W k W W l W− ≤ ≤ − ≤ ≤ k ≤  W, -W ≤ l ≤  W and  W 1.

2. Find Median value of this window ( 1)
( , )

n
i jm −

( 1)
( , )

n
i jm − = median ( ( 1)

( , )
n
i k j lx −
+ + )                                                           (8.1)

3. Find absolute difference between ( 1)
( , )

n
i jx −  and ( 1)

( , )
n
i jm − ,and assign

( 1) ( 1) ( 1)
( , ) ( , ) ( , )( )

( , )

,

1,

n n n
i j i j i jn

i j

f if x m T
f

otherwise

− − − − <= 


                                        (8.2)

Where T is predefined threshold value.1 indicate pixel detected as noisy after nth

iteration.

4. If (i, j)th is detected as noisy then the value of ( )
( , )

n
i jx   will be modified as

( 1) ( ) ( 1)
( , ) ( , ) ( , )( )

( , ) ( 1) ( ) ( 1)
( , ) ( , ) ( , )

,

,

n n n
i j i j i jn

i j n n n
i j i j i j

m if f f
x

x if f f

− −

− −

 ≠= 
=

                                                 (8.3)

    This all steps will repeat for t times. This t can be 2,3,4…..After the tth iteration we have

two images ( )
( , )
t
i jx  and ( )

( , )
t

i jf .But only ( )
( , )

t
i jf  binary flag image is required for noise filtering

process. This median based noise detection had introduced by Wang and Zhang (PSM) [12]

in progressive way. The difference between PSM and our approach is, we have applied

adaptive filtering approach for improving filtering performance of the filter. From the

simulation result we can see our approach is giving better performance in term of PSNR and

visual aspect.

8.3 Adaptive Noise Filtering

From the last section we got binary flag image ( )
( , )

t
i jf  which elements give information about

whether the pixel is corrupted or not corrupted at location (i, j) in noisy image (0)
( , )i jx .If (i, j)th

pixel has detected as a noise then it will go through median filtering process other wise it will

remain same. This is called Switching based median filter. Here the size of filtering window

is adaptive in nature and its size is depending on the number of pixels which are noise free in



68

current filtering window [41]. The maximum window size shouldn’t be more than 7×7 to

reduce blurring effect. Steps are given below for Adaptive Switching Filtering:

5. Start with (3×3) filtering window form (0)
( , )i jx   and corresponding (3×3) window from

binary flag image ( )
( , )

t
i jf .

6.  Find out how many pixels are detected as noise-free in current filtering window from

corresponding binary flag window.

7. Iteratively extends window size outward by one pixel in all the four sides of the

window, if the number of uncorrupted pixels is less than half of the total number of

pixels (denoted by Sin=1/2[3×3]) within the filtering window .These all above three

steps should be repeat again if condition are not satisfy.

8.  So since the current pixel has been marked noisy, it will not participate in filtering

process. Only the pixels that are classified as noise free in filtering window will

participate in median filtering process. This will, in turn, yield a better filtering result

with less distortion.

8.4 Simulation Results

Intensive simulations were carried out using several monochrome images, from which

“Lena,” “Peppers,” and “Bridge” are chosen for demonstrations. This proposed technique is

compared with different standard methods that are standard median filters MF(3×3), MF(5×5),

minimum–maximum exclusive mean (MMEM) filter[17] , Florencio’s[10], conditional median

filtering (CMF)[21], signal-dependent rank-order mean (SDROM) filter [23],progressive

switching median filter [12]. The proposed method has been applied on Lena, Pepper    and

Bridge   gray   images   of   size  512×512 corrupted by fixed-value impulse noise with

different densities ranges from 5% to 60%.For simulation we have taken T=40, and t=2.

Comparatively PSNR performance has been given with different noise density in Table. 8.1

for Lena image. This PSNR performance is also plotted in fig.8.2.In fig. 8.3 test images,

noisy images and corresponding denoised images are shown. For comparison with PSM [12]

we have given MSE (mean square error) plot in fig.8.4 with different noise density for Bridge

image. From all this simulation results we can say performance of the proposed method is

better than other methods in terms of PSNR and visual aspect.
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Lena Corrupted with Noise density
Algorithm

10% 20% 30%

MF(3×3) 31.19 dB 28.48 dB 25.45 dB

MF(5×5) 29.45 dB 28.91 dB 28.43 dB

MMEM [17] 30.28 dB 29.63 dB 29.05 dB

Florencio’s[10] 33.69 dB 32.20 dB 30.95 dB

PMCWF [18] 35.70 dB 32.95 dB 31.86 dB

AMF(3×3)[22] 33.79 dB 30.65 dB 26.26 dB

AMF(5×5)[22] 30.11 dB 28.72 dB 27.84 dB

CMF(3×3)[21] 38.05 dB 31.79 dB 26.22 dB

CMF(5×5)[21] 36.32 dB 33.52 dB 30.33 dB

SDROM [23] 37.93 dB 34.10 dB 29.80 dB

Proposed [P1] 42.14 dB 38.66 dB 35.75 dB

Table 8.1. PSNR Performance of Different Algorithms for Lena image

corrupted with salt and pepper noise
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Fig.8.2. PSNR Plot for Lena image corrupted with different noise density
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                    (a)                                             (b)                                              (c)

                    (d)              (e)                 (f)

                     (g)                                             (h)                                               (i)
Fig.8.3. The original image (a)Bridge, (d)Lena, (g)Pepper and corresponding noisy image corrupted by 10%,
20%, 30% fixed value impulse noise is (b),(e),(h) respectively and (c),(f),(i) are filtered image of (b),(e),(h)

respectively.

8.5 Conclusion
     To demonstrate the performance of the proposed method, extensive simulation

experiments have been conducted on a variety of standard test images to compare our method

with many other well known techniques. Experimental results indicate that the proposed

method performs significantly better than many other existing techniques.
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Fig.8.4. MSE Plot for Bridge image corrupted with different noise density
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Chapter 9

DISCUSSION AND CONCLUSION
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9.1 Comparative Study
In this section the performance of the proposed techniques has been compared with existing

methods available in literature. Table 9.1 shows the PSNR performance of different existing

and also proposed method for Lena image. The extensive simulation has carried out in this

thesis work that shows the performance of the proposed filter gives better visual quality and

objective quantity in term of PSNR. This PSNR performance also reported in graph (fig. 9.1).

Table 9.1 PSNR Performance of Different Algorithms for

 Lena (512×512) image corrupted with salt and pepper noise

Lena Corrupted with Noise ratio
Algorithm

10% 20% 30%

MF(3×3) 31.19 dB 28.48 dB 25.45 dB

MF(5×5) 29.45 dB 28.91 dB 28.43 dB

MMEM [17] 30.28 dB 29.63 dB 29.05 dB

Florencio’s[10] 33.69 dB 32.20 dB 30.95 dB

PMCWF [18] 35.70 dB 32.95 dB 31.86 dB

AMF(3×3)[22] 33.79 dB 30.65 dB 26.26 dB

AMF(5×5)[22] 30.11 dB 28.72 dB 27.84 dB

CMF(3×3)[21] 38.05 dB 31.79 dB 26.22 dB

CMF(5×5)[21] 36.32 dB 33.52 dB 30.33 dB

SDROM [23] 37.93 dB 34.10 dB 29.80 dB

SM(7×7)[13] 35.48 dB 32.49 dB 29.67 dB

CSAM [15] 39.23 dB 36.44 dB 34.32 dB

ACWMF [20] 40.60 dB 36.54 dB 33.68 dB

PSM[12] 39.34 dB 35.53 dB 34.13 dB

BDND [43] 42.08 dB 38.84 dB 36.20 dB

Proposed 1 [P3] 38.35 dB 35.39 dB 32.71 dB

Proposed 2 [P1] 42.14 dB 38.66 dB 35.75 dB

ANDS  [P2] 43.74 dB 39.64 dB 36.43 dB

Performance of ACWMF is good for low noise density but poor for medium and high noise

density. BDND gives good performance for low, medium, and high noise density. Proposed

method [P1] also gives improved performance for low and medium noise density. ANDS

[P2] filter gives appreciable performance for low and medium impulse noise density.
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9.2 Conclusion
Many existing methods are studied and the BDND algorithm is found to be the best among

them for removal of impulsive noise. In addition, some novel adaptive filtering schemes have

been proposed for suppression of impulse noise from digital images. The performance of the

proposed method: ANDS is found to be the best in terms of PSNR. Its performance in terms
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Fig.9.1 Comparative PSNR performance for Lena (512×512).

of visual quality is also found to be very nice for noise density upto 20 %.  Since this

algorithm outperforms almost all schemes existing in the literature, it is finally concluded that

this filtering scheme be recommended for removal of low and medium density salt and

pepper noise from digital images.

9.3 Future Scope
In this thesis work, many existing method are simulated and nonlinear adaptive methods have

proposed for suppression of impulsive noise. The performance of proposed filter also can be

improved by applying adaptive filtering technique through out the image in recursive way.

Neuro-Fuzzy can be used for noise detection for switching based median filter.
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