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Abstract 

 
The Discrete Cosine Transform is one of the most widely transform techniques in 

digital signal processing. In addition, this is also most computationally intensive transforms 

which require many multiplications and additions. Real time data processing necessitates the 

use of special purpose hardware which involves hardware efficiency as well as high 

throughput. Many DCT algorithms were proposed in order to achieve high speed DCT. Those 

architectures which involves multipliers ,for example Chen’s algorithm has less regular 

architecture due to complex routing and requires large silicon area. On the other hand, the 

DCT architecture based on distributed arithmetic (DA) which is also a multiplier less 

architecture has the inherent disadvantage of less throughputs because of the ROM access 

time and the need of accumulator. Also this DA algorithm requires large silicon area if it 

requires large ROM size. Systolic array architecture for the real-time DCT computation may 

have the large number of gates and clock skew problem. The other ways of implementation 

of DCT which involves in multiplierless, thus power efficient and which results in regular 

architecture and less complicated routing, consequently less area, simultaneously lead to high 

throughput. So for that purpose CORDIC seems to be a best solution. CORDIC offers a 

unified iterative formulation to efficiently evaluate the rotation operation.  

This thesis presents the implementation of 2D Discrete Cosine Transform (DCT) 

using the Angle Recoded (AR) Cordic algorithm, the new scaling less CORDIC algorithm 

and the conventional Chen’s algorithm which is multiplier dependant algorithm. The 2D 

DCT is implemented by exploiting the Separability property of 2D Discrete Cosine 

Transform. Here first one dimensional DCT is designed first and later a transpose buffer 

which consists of 64 memory elements, fully pipelined is designed. Later all these blocks are 

joined with the help of a controller element which is a mealy type FSM which produces some 

status signals also. The three resulting architectures are all well synthesized in Xilinx 9.1ise, 

simulated in Modelsim 5.6f and the power is calculated in Xilinx Xpower. Results prove that 

AR Cordic algorithm is better than Chen’s algorithm, even the new scaling less CORDIC 

algorithm. 
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Digital signal processing (DSP) algorithms exhibit an increasing need for the efficient 

implementation of complex arithmetic operations. The computation of trigonometric 

functions, coordinate transformations or rotations of complex valued phasors is almost 

naturally involved with modern DSP algorithms. In this thesis one of the most 

computationally high algorithm called the Discrete Cosine Transform is implemented with 

the help CORDIC(Co ordinate Rotation Digital computer) algorithm which results in a 

multiplier less architectures and comparison is made between the DCT using Chen’s 

algorithm and DCT using CORDIC as well as new CORDIC algorithm. 

1.1 Motivation 

Discrete cosine transform (DCT) is widely used transform in image processing, 

especially for compression. Some of the applications of two-dimensional DCT involve still 

image compression and compression of individual video frames, while multidimensional 

DCT is mostly used for compression of video streams and volume spaces. Transform is also 

useful for transferring multidimensional data to DCT frequency domain, where different 

operations, like spread-spectrum data watermarking, can be performed in easier and more 

efficient manner. A countless number of papers discussing DCT algorithms is strongly 

witnessing about its importance and applicability. 

Hardware implementations are especially interesting for the realization of highly 

parallel algorithms that can achieve much higher throughput than software solutions. In 

addition, special purpose DCT hardware discharges the computational load from the 

processor and therefore improves the performance of complete multimedia system. The 

throughput is directly influencing the quality of experience of multimedia content. Another 

important factor that influences the quality of is the finite register length effect on the 

accuracy of the forward-inverse transformation process.  
The Discrete Cosine Transform is one of the most widely transform techniques in 

digital signal processing. Hence the motivation for the design of the Discrete Cosine 

transform architecture is clear. As this is also most computationally intensive transforms 

which require many multiplications and additions. Real time data processing necessitates the 

use of special purpose hardware which involves hardware efficiency as well as high 

throughput. Many DCT algorithms were proposed in order to achieve high speed DCT. Those 

architectures which involves multipliers ,for example Chen’s algorithm has less regular 

architecture due to complex routing and requires large silicon area. On the other hand, the 

DCT architecture based on distributed arithmetic (DA) which is also a multiplier less 

architecture has the inherent disadvantage of less throughputs because of the ROM access 
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time and the need of accumulator. Also this DA algorithm requires large silicon area if it 

requires large ROM size. Systolic array architecture for the real-time DCT computation may 

have the large number of gates and clock skew problem. The other ways of implementation 

of DCT which involves in multiplierless, thus power efficient and which results in regular 

architecture and less complicated routing, consequently less area, simultaneously lead to high 

throughput. So for that purpose CORDIC seems to be a best solution. CORDIC offers a 

unified iterative formulation to efficiently evaluate the rotation operation.  

In CORDIC suppose if the desired operation is to multiply two complex numbers say 

X+jY and cos( ) sin( )jθ θ+ , so that the resultant operation is cos( ) sin( )x yθ θ−  and another 

o/p is sin( ) cos( )x yθ θ+ , we can perform very effectively without using much overhead ,i.e. 

without multipliers and only with the help of simple shift and add operations and small 

scaling. The details of the algorithm are given in chapter[4].In each iteration we have to 

perform some rotations and additions. More iterations much more accuracy and therefore less 

error. In this algorithm, each angle is approximated in terms of small angles where 1tan (2 )i− −

‘i’ denotes each iteration and these set of angles are placed in a LUT. But the conventional 

CORDIC has some inherent disadvantages of more number of iterations and very hard 

scaling factor. So another algorithm by name AR CORDIC algorithm is implemented which 

contains less number of iterations and less complex scaling factor, since the scaling is also 

implemented with the help of shift and add operations only. So it’s a better solution. But 

another algorithm is there by name THE NEW CORDIC algorithm which doesn’t have no 

scaling factor, but to have particularly good precision, we need to have more bitwidth up to 

50 bits which is considerably more number, which occupies more Input Output Buffers 

(IOBs), consequently more area and more power. 

 

1.2Literature Review 

 In this thesis, the principle reference is reference [4] titled “Low-power Multiplierless 

DCT architecture using Image Data Correlation”. The AR CORDIC algorithm is brought 

from that reference and of course later modified. Those modifications are in reducing in the 

number of iterations and scaling factor. Later the main idea about CORDIC is from 

references [3], [5], [6], [7], [8].Those references are correctly described about CORDIC. 

Later the VLSI implementations and architectures are in reference [9], [17], [19], where Yu 

Hen Hu correctly described about the different architectures of CORDIC in VLSI and FU 

also described the architectures. Later the different implementations of DCT in VLSI are 

given in reference [11] which is a tutorial like this. Before that all the references about DCT 
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is given in reference [16], [21], where they give a brief understand of DCT. Later the design 

of another important block in the design of DCT Core i.e. Transpose buffer is given in 

reference [12].The VHDL tutorial is given from reference [1], [2] which gives a good 

understanding of VHDL. 

 

1.3Overview of Thesis 

 The next chapter discusses about the DCT-An overview and chapter [3] discusses 

about the different implementations of DCT. Chapter [4] discusses about in detail of 

CORDIC algorithm. Chapter [5] discusses about the different architectures of CORDIC. 

Later chapters discusses about the fundamentals of Low Power Design. Chapter [7] describes 

about the design of Discrete Cosine transform (DCT) in details about the I/O bitwidth and the 

architecture and block diagram of it is also mentioned. Chapter [8] describes the simulation 

results. 
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The Discrete Cosine Transform (DCT) was first proposed by Ahmed et al. (1974), 

and it has been more and more important in recent years. DCT has been widely used in signal 

processing of image data, especially in coding for compression, especially in lossy 

compression, for its near-optimal performance. Because of the wide-spread use of DCT's, 

research into fast algorithms for their implementation has been rather active ,and also, since 

the DCT is computation intensive, the development of highspeed hardware and real-time 

DCT processor design have been object of research . 

Discrete cosine transform (DCT) is widely used in image processing, especially for 

compression. Some of the applications of two-dimensional DCT involve still image 

compression and compression of individual video frames, while multidimensional DCT is 

mostly used for compression of video streams. DCT is also useful for transferring 

multidimensional data to frequency domain, where different operations, like spread-spectrum, 

data compression, data watermarking, can be performed in easier and more efficient manner. 

A number of papers discussing DCT algorithms is available in the literature that signifies its 

importance and application. 

Hardware implementation of parallel DCT transform is possible, that would give 

higher throughput than software solutions.  Special purpose DCT hardware decreases the 

computational load from the processor and therefore improves the performance of complete 

multimedia system. The throughput is directly influencing the quality of experience of 

multimedia content. Another important factor that influences the quality is the finite register 

length effect that affects the accuracy of the forward-inverse transformation process. 

Hence, the motivation for investigating hardware specific DCT algorithms is clear. As 

2-D DCT algorithms are the most typical for image compression, the main focus of this 

chapter will be on the efficient hardware implementations of 2-D DCT based compression by 

decreasing the number of computations, increasing the accuracy of reconstruction, and 

reducing the chip area. This in return reduces the power consumption of the compression 

technique. As the number of applications that require higher-dimensional DCT algorithms are 

growing, a special attention will be paid to the algorithms that are easily extensible to higher 

dimensional cases. The JPEG standard has been around since the late 1980's and has been an 

effective first solution to the standardisation of image compression. Although JPEG has some 

very useful strategies for DCT quantisation and compression, it was only developed for low 
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compressions. The 8×8 DCT block size was chosen for speed (which is less of an issue now, 

with the advent of faster processors) not for performance. 

                  Like other transforms, the Discrete Cosine Transform (DCT) attempts to 

decorrelate the image data. After decorrelation each transform coefficient can be encoded 

independently without losing compression efficiency. This section describes the DCT and 

some of its important properties. 

 
2.1The One-Dimensional DCT 

The most common DCT definition of a 1-D sequence of length N is 
                            

                            
1

0

(2 1)( ) ( ) ( )cos
2

N

x

x uC u u f x
N

πα
−

=
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∑                                            (1) 

for u = 0,1,2,…., N — 1. Similarly, the inverse transformation is defined as 
        

                            
1

0

(2 1)( ) ( ) ( ) cos
2

N

u

x uf x u c u
N

πα
−

=
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∑                                             (2) 

 
for x = 0,1,2..,, N — 1. In both equations (1) and (2) α(u) is defined as 
                                                                                                     

                                
 

It is clear from (1) that for u = 0, 
1

0

1( 0) (
N

x
c u f x

N

−

=

= = ∑ ) . Thus, the first transform coefficient 

is the average value of the sample sequence. In literature, this value is referred to as the DC 

Coefficient. All other transform coefficients are called the AC Coefficients. 

 

To fix ideas, ignore the f(x) and α(u)  component in (1). The plot of   
1

0

(2 1)cos
2

N

x

x u
N

π−

=

+⎡ ⎤
⎢ ⎥⎣ ⎦

∑     

 for N = 8 and varying values of u is shown in Figure 1. In accordance with our previous 

observation, the first the top-left waveform (u = 0) renders a constant (DC) value, whereas, 

all other waveforms (u = 1,2,...,) give waveforms at progressively increasing frequencies . 

These waveforms are called the cosine basis function. Note that these basis functions are 

orthogonal. Hence, multiplication of any waveform in Figure 3 with another waveform 

followed by a summation over all sample points yields a zero (scalar) value, whereas 
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multiplication of any waveform in Figure 1 with itself followed by a summation yields a 

constant (scalar) value. Orthogonal waveforms are independent, that is, none of the basis 

functions can be represented as a combination of other basis functions . 

 

 
 

Fig 2.1.One Dimensional Cosine Functions 
 
If the input sequence has more than N sample points then it can be divided into sub-sequences 

of length N and DCT can be applied to these chunks independently. Here, a very important 

point to note is that in each such computation the values of the basis function points will not 

change. Only the values of fx() will change in each sub-sequence. This is a very important 

property, since it shows that the basis functions can be pre-computed offline and then 

multiplied with the sub-sequences. This reduces the number of mathematical operations (i.e., 

multiplications and additions) thereby rendering computation efficiency. 

 
2.2The Two-Dimensional DCT 

The objective of this document is to study the efficacy of DCT on images. This necessitates 

the extension of ideas presented in the last section to a two-dimensional space. The 2-D DCT 

is a direct extension of the 1-D case and is given by 

 

                
1 1

0 0

1 cos(2 1) cos( , ) ( ) ( ) ( , )
4 2

N N

x y

(2 1)
2

x u yC u v u v f x y
N N

vπ πα α
− −

= =

+ +
= ∑∑                       (4) 

   for u,v = 0,1,2,….,N — 1  and α(u) and α(v)  are defined in (3). The inverse transform is  
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defined as  

 

                
1 1
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(2 1) (2 1)( , ) ( ) ( ) ( , ) cos cos
2 2

N N

u v

x u yf x y u v C u v
N N

π πα α
− −

= =

+ v+⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

∑∑
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                (5) 

 
 
for x,y = 0,1,2,…N —1 . The 2-D basis functions can be generated by multiplying the 

horizontally oriented 1-D basis functions (shown in Figure 1) with vertically oriented set of 

the same functions [13]. The basis functions for N = 8 are shown in. Again, it can be noted 

that the basis functions exhibit a progressive increase in frequency both in the vertical and 

horizontal direction. The top left basis function of results from multiplication of the DC 

component in Figure 1 with its transpose. Hence, this function assumes a constant value and 

is referred to as the DC coefficient. 

 

 
 

Fig 2.2. Two dimensional DCT basis functions (N = 8). Neutral gray represents zero, 
white represents positive amplitudes, and black represents negative amplitude  

 
 

2.3Properties of DCT 

Discussions in the preceding sections have developed a mathematical foundation for DCT. 

However, the intuitive insight into its image processing application has not been presented. 

This section outlines (with examples) some properties of the DCT which are of particular 

value to image processing applications. 

2.3.1Decorrelation 

As discussed previously, the principle advantage of image transformation is the removal of 

redundancy between neighboring pixels. This leads to uncorrelated transform coefficients 

which can be encoded independently. The normalized autocorrelation of the images before 

and after DCT is shown in Figure 3. Clearly, the amplitude of the autocorrelation after the 
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DCT operation is very small at all lags. Hence, it can be inferred that DCT exhibits excellent 

decorrelation properties. 

 

 
Fig 2.3. (a) Normalized autocorrelation of uncorrelated image before and after DCT; (b) 

Normalized autocorrelation of correlated image before and after DCT. 
 

2.3.2Energy Compaction              
              Efficacy of a transformation scheme can be directly gauged by its ability to pack 

input data into as few coefficients as possible. This allows the quantizer to discard 

coefficients with relatively small amplitudes without introducing visual distortion in the 

reconstructed image. DCT exhibits excellent energy compaction for highly 

correlatedimages

  
. 

              Let us again consider the two example images (a) and (b). In addition to their 

respective correlation properties discussed in preceding sections, the uncorrelated image has 

more sharp intensity variations than the correlated image. Therefore, the former has more 
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high frequency content than the latter. Figure 6 shows the DCT of both the images. Clearly, 

the uncorrelated image has its energy spread out, whereas the energy of the correlated image 

is packed into the low frequency region (i.e., top left region). 

Other examples of the energy compaction property of DCT with respect to some standard 

images are provided in Figure 

4.  
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Fig 2.4. (a) Saturn and its DCT; (b) Child and its DCT; (c) Circuit and its DCT; (d) 
Trees and its DCT; (e) Baboon and its DCT; (f) a sine wave and its DCT. 

 
A closer look at Figure 4 reveals that it comprises of four broad image classes. Figure 

2.4(a) and 2.4(b) contain large areas of slowly varying intensities. These images can be 

classified as low frequency images with low spatial details. A DCT operation on these images 

provides very good energy compaction in the low frequency region of the transformed image. 

Figure 4(c) contains a number of edges (i.e., sharp intensity variations) and therefore can be 

classified as a high frequency image with low spatial content. However, the image data 

exhibits high correlation which is exploited by the DCT algorithm to provide good energy 

compaction. Figure 4 (d) and (e) are images with progressively high frequency and spatial 

content. Consequently, the transform coefficients are spread over low and high frequencies. 
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Figure 4(e) shows periodicity therefore the DCT contains impulses with amplitudes 

proportional to the weight of a particular frequency in the original waveform. The other 

(relatively insignificant) harmonics of the sine wave can also be observed by closer 

examination of its DCT image. 

  Hence, from the preceding discussion it can be inferred that DCT renders excellent 

energy compaction for correlated images. Studies have shown that the energy compaction 

performance of DCT approaches optimality as image correlation approaches one i.e., DCT 

provides (almost) optimal decorrelation for such images. 

 

2.3.3 Separability 

The DCT transform equation (4) can be expressed as, 

 

                   
1 1

0 0

(2 1) (2 1)( , ) ( , ) cos cos
2 2

N N
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+ + v⎡ ⎤ ⎡= ⎤
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                          (6) 

 

for u,v = 0,1,2,...,N-1. 

  This property, known as separability, has the principle advantage that C (u, v) can be 

computed in two steps by successive 1-D operations on rows and columns of an image. This 

idea is graphically illustrated in Figure 5. The arguments presented can be identically applied 

for the inverse DCT computation (5).For the hardware design, this property is utilized in this 

project. 

 

 
 

Fig 2.5. Computation of 2-D DCT using separability property. 
 

2.3.4 Symmetry 

 Another look at the row and column operations in Equation 6 reveals that these 

operations are functionally identical. Such a transformation is called a symmetric 

transformation. A separable and symmetric transform can be expressed in the form . 

                           

                                                  T = AfA                                                                    (7) 
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Where A is an N XN symmetric transformation matrix with entries 
 

                                        
1

0

(2 1)( , ) ( ) cos
2

N

j

j ii j j
N

πα α
−

=
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∑  and f is the NXN image matrix. 

           This is an extremely useful property since it implies that the transformation matrix can 

be pre-computed offline and then applied to the image thereby providing orders of magnitude 

improvement in computation efficiency. 

 
2.3.5 Orthogonality 
 

  In order to extend ideas presented in the preceding section,  let us  denote the inverse 

transformation of (7) as f = A-1TA-1. 

 

As discussed previously, DCT basis functions are orthogonal (See Section 2.1). Thus, 

the inverse transformation matrix of A is equal to its transpose i.e. A-1 = AT . Therefore, and in 

addition to its decorrelation characteristics, this property renders some reduction in the pre-

computation complexity. 
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Chapter 3 
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Implementation of the 2-D DCT directly from the theoretical equation (equation 3.2), 

results in 1024 multiplications and 896 additions. Fast algorithms exploit the symmetry 

within the DCT to achieve dramatic computational savings. 

 

There are three basic categories of approach for computation of the 2-D DCT. The 

first category of 2-D DCT implementation is indirect computation through other 

transforms—most commonly, the Discrete Hartley Transform (DHT) and the Discrete 

Fourier Transform (DFT). The DHT-based algorithm of shows increased performance in 

throughput, latency, and turnaround time. Optimization with respect to these parameters is 

not the focus of the proposed project. A DFT approach [5] calculates the odd-length DCT, 

which is not applicable to this project since the design must be compatible with JPEG 

standards. 

 

The second style of algorithms computes the 2-D DCT by row-column 

decomposition. In this approach, the separability property of the DCT is exploited. An 8-

point, 1-D DCT is applied to each of the 8 rows, and then again to each of the 8 columns. The 

1-D algorithm that is applied to both the rows and columns is the same. Therefore, it could be 

possible to use identical pieces of hardware to do the row computation as well as the column 

computation. A transposition matrix would separate the two as the functional description in 

figure 3.1 shows. The bulk of the design and computation is in the 8 point 1-D DCT block, 

which can potentially be reused 16 times—8 times for each row, and 8 times for each 

column. Therefore, the fast algorithm for computing the 1-D DCT is usually selected. The 

high regularity of this approach is very attractive for reduced cell count and easy very large 

scale integration (VLSI) implementation.   

 
Figure 3.1:2-D DCT implementation 

The third approach to computation of the 2-D DCT is by a direct method using the 

results of a polynomial transform. Computational complexity is greatly reduced, but 

regularity is sacrificed. Instead of the 16 1-D DCTs used in the conventional row-column 

decomposition, [6] uses all real arithmetic including 8 1-D DCTs, and stages of pre-adds and 
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post-adds (a total of 234 additions) to compute the 2-D DCT. Thus, the number of 

multiplications for most implementations should be halved as multiplication only appears 

within the 1-D DCT. Although this direct method of extension into two dimensions creates an 

irregular relationship between inputs and outputs of the system, the savings in computational 

power may be significant with the use of certain 1-D DCT algorithms. With this direct 

approach, large chunks of the design cannot be reused to the same extent as in the 

conventional row-column decomposition approach. Thus, the direct approach will lead to 

more hardware, more complex control, and much more intensive debugging. 

            

  Since row-column decomposition is very useful for VLSI implementation, that 

implementation is considered in this project. In that implementation, starts with one-

dimensional transform. So at first the implementation of fast 1-D transforms are considered 

.There are three algorithms considered in this project. They are well tabulated in the table 

below. 

 

 
Table 3.1:Comparison of three algorithms in terms of Multiplications and additions 

 

 Certain 1-D DCT algorithms become more optimal in the row-column approach 

when it is known that DCT calculation will be followed by quantization. In these cases, the 

numbers of multiplications are reduced by incorporating multiplications within the final stage 

of a 1-D DCT algorithm into the quantization table. When the Agui, Arai, and Nakajima 1-D 

DCT described ,is implemented in the row-column fashion, as few as 144 multiplications and 

464 additions are needed .For this particular algorithm, a savings of 8 multiplications per 1-D 

DCT calculation on each column can be saved, for a total savings of 64 multiplications on the 
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2-D DCT computation. The reduction in multiplications is attained by incorporating the scale 

factors of the final step of the algorithm into a quantization table.  

 The final scale factors of computation on each row cannot be incorporated into the 

quantization table because the scale factors are distinct for each coefficient. When elements 

are summed in the next phase, where the 1-D DCT is applied to each column, those scale 

factors cannot be factored out. It is important to note that if one optimizes the 2-D DCT 

calculation by incorporating necessary multiplications into the quantization matrix, the design 

no longer computes the DCT. It computes a version in which each coefficient needs to be 

scaled appropriately and is dependant on the presence of a quantization table. Thus, this 1-D 

DCT algorithm is optimized for use only within a compression core, such as JPEG, where 

quantization follows DCT computation. Since it is the intent of the project to have a stand 

alone DCT core, this optimization is not feasible. 

  It is worth noting that while the direct method of 2-D DCT calculation claims to 

reduce the number of multiplications in the row-column approach by a factor of two that is 

not always true. For example, when the Agui, Arai, and Nakajima 1-D DCT algorithm, 

optimized for use with a quantization table, is used in row-column decomposition, the direct 

method does not have as great a comparative savings. This is because the direct method must 

do some post processing after the 1-D DCT calculation stage so the constant scale factors 

cannot be incorporated into the quantization matrix. Thus with 13 multiplications per 1-D 

DCT computation (instead of 8 multiplications in the optimized version), 104 multiplications 

would result in the direct approach .Although the direct extension of the Arai, Agui, and 

Nakajima's 1-D DCT to two dimensions did not exactly halve the number of multiplications, 

it did reduce the number of multiplications by 40 with only a mere increase of 2 additions 

.The cost, however, is less regularity, which translates to greater complexity of control 

hardware.  

 The theoretical implementation of 1-D DCT algorithm is written in the form of 

simple transform given by 

                                                Y=AX, where X is 1-D array of data. 

Where it involves 64 multiplications and 56 additions to compute the entire the 1-D 

DCT and also it is very complex to route over FPGA, i.e. its butterfly architecture is very 

complex. The matrix A is given by 
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3.1Chen’s algorithm 

The fast 1-D DCT algorithm that was selected for use in both the direct and row-

column 2-D approaches was developed by Chen and Fralick .The 8-point, 1-D DCT, written 

in matrix factorization. 
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Where A=cos (pi/4), B=cos (pi/8), C=sin (pi/8), D=cos (pi/16), E=cos (3*pi/16), F=sin 

(3*pi/16), G=sin (pi/16) 

 

 As mentioned earlier the 1-D Discrete Cosine transform can be expressed 

as                          
7

0

1 cos(2( ) ( ) ( )
2 1y

1)
6

x uF u c u f x π
=

+
= ∑                                                (2) 

                                   where c(u)= 1
2

   ,u=0 

                                                          1, otherwise. 

In order to show how to use CORDIC algorithm for DCT, we give an example for F 

(0) and F(4).F(0) and F(4)  can be expressed into (2) and (3),respectively.                                        

{ } { }

{ } { }

(0) (0) (7) (3) (4) cos (1) (6) (2) (5) sin
4 4

(4) (0) (7) (3) (4) cos (1) (6) (2) (5) sin
4 4

F f f f f f f f f

F f f f f f f f f

π π

π π

⎛ ⎞ ⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (3,4) 
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 Where (2) and (3) are the rotation mode of CORDIC arithmetic. Therefore, in order 

to compute both F (0) and F (4), we need one CORDIC processor. Similarly, F (2) and F (6) 

can be obtained by using the rotation mode of CORDIC. For F (1) and F(7), F(5), and F(3), 

we need four CORDIC processors. Consequently, we can use six CORDIC processors for the 

2D-DCT by applying the 1DDCT two times. In this paper, we modify the conventional DCT 

arithmetic flow so that the CORDIC (3) and CORDIC (6) processors have the same structure. 

Figure 1 shows the 8×1 DCT flow using the six – 

CORDIC processors. 

 

3.2 DCT using CORDIC architectures. 

 
Fig3.1:1-D DCT architecture using CORDIC algorithm 

 

The number of iterations can be reduced, since the coefficients for 8×1 DCT are fixed. 

Also, the compensation process for the final CORDIC calculation can be composed of adder 

and shifter without multiplier as expressed in (5). 

 

                                          
1

1

(1 . )
(1 . )

i i i

i i i i

X X F
Y Y F

iγ
γ

+

+

= +

= +                                                      (5)     

 
where iγ  has the value ± 1 and Fi  is related to shift operation. Table 1 shows the 

detailed number of rotation for iterations and compensation in six CORDIC processors. In 

this project , the number of iterations is optimized within the precision requirements of IEEE 

Std. 1180-1990. The algorithm used by me in this project is given in the table 3.2.. 
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Table 3.2: Algorithm used for the computation of 1-D DCT. 

 

 Now we’ll see the implementation of 2D DCT using the new CORDIC algorithm. 

Due to the inherent disadvantages of the conventional CORDIC algorithm like fixed number 

of iterations and  the effect of the scaling factor, the conventional CORDIC algorithm lost its 

significance. But in this project results show that new CORDIC algorithm is not so efficient 

with respect to conventional CORDIC algorithm. The architecture for implementing 2D DCT 

using both CORDICs is same. Now we’ll see the algorithm for the new Cordic algorithm is 

given in table 3.3 
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Table 3.3: Algorithm of the new Cordic algorithm used for the Calculation of 1-D DCT. 

 The detailed description of both these algorithms is presented in chapter 2. 
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Chapter 4 

 

 

 

 

 
CORDIC :AN ALGORITHM FOR VECTOR ROTATION 
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4.1Introduction to CORDIC algorithm 

In the past decade, the unprecedented advances in VLSI technology have simulated 

great interests in developing special purpose, parallel processor arrays to facilitate real time 

digital signal processing. Parallel processor arrays such systolic arrays have been extensively 

studied. The basic arithmetic computation of these parallel VLSI arrays has often been 

implemented with a multiplication and accumulation unit(MAC) ,because these operations 

arise frequently in DSP applications. The reduction in hardware cost also motivated the 

development of more sophisticated DSP algorithms which require the evaluation of 

elementary functions such as trigonometric, exponential and logarithmic functions, which 

cannot be evaluated efficiently with MAC based arithmetic units. Consequently, when DSP 

algorithms incorporate these elementary functions, it is not unusual to observe significant 

performance degradation. 

 On The other hand, an alternative arithmetic computing algorithm known as 

CORDIC (Coordinate Rotation Digital Computer) has received renewed attention, as it offers 

a unified iterative formulation to efficiently evaluate each of these elementary functions. 

Specifically, all the evaluation tasks in CORDIC are formulated as a rotation of 2x1 vectors 

in various Coordinate systems. By varying a few simple parameters, the same CORDIC 

processor is capable of iteratively evaluating these elementary functions using the same 

hardware within the same amount of time. This regular unified formulation makes the 

CORDIC based architecture very appealing for implementation with pipelines VLSI array 

processors. 

Typically CORDIC algorithm is used to implement linear transformations like DCT, 

DFT, Chirp-Z transform, DHT, digital filters like adaptive filters; Matrix based dsp 

algorithms like QR factorization, singular value decomposition. 

The CORDIC is a class of hardware-efficient algorithms for the computation of 

trigonometric and other transcendental functions that use only shifts and adds to perform. The 

CORDIC set of algorithms for the computation of trigonometric functions was developed by 

Jack E. Volder in 1959 to help in building a real-time navigational system for the B-58 

supersonic bomber. Later, J. Walther in 1971 extended the CORDIC scheme to other 

transcendental functions. The CORDIC method of functional computation is used by most 
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handheld calculators (such as the ones by Texas Instruments and Hewlett-Packard) to 

approximate the standard transcendental functions.                                

 Depending on the configuration defined by the user, the resulting module implements 

pipelined parallel, word-serial, or bit-serial architecture in one of two major modes: rotation 

or vectoring. In rotation mode, the CORDIC rotates a vector by a specified angle. This mode 

is   used   to   convert   polar   coordinates   to   Cartesian coordinates. For example consider 

the multiplication of two complex numbers x+jy and (cos( ) sin( ))jθ θ+ .The result u+jv, can 

be obtained by evaluating the final coordinate after rotating a 2x1 vector [x  y]T through an 

angle θ  and then scaled by a factor r.This is 

accomplished in CORDIC via a three-phase procedure: angle conversion, Vector rotation 

and scaling.             

 

 The basic block diagram of CORDIC processing element is given below.. 

      

                                    θ                                                             X = cos( ) sin( )x yθ θ−                                                        
                                    X 

                                     Y                                                              Y= sin( ) cos( )x yθ θ+  

 
    CORDIC 
         PE 

            

 

The basic conventional algorithm to rotate the coordinate axis is given below: 

              /* CORDIC angle Conversion */ 

               Initialization Z0=θ   

              For i=0 to b-1 Do 

              iμ  =sign(zi)    /* iμ =1 if Zi > 0 

              And 

              iμ =-1  if   Zi<0 */ 

             1 ,i i iZ Z m iμ α+ = − ; 

            /* CORDIC Vector rotation */                                                            
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            Initialization [X0  Y0]T=[X Y]T

            For i=0 to b-1 Do 

                1 ,. . .i i i ix x m y m iμ δ+ = −  

               1 ,. .i i i iy y x m iμ δ+ = +                  

             /* Scaling Operation */ 

             1
vX

k
= X      ,   1

vY Y
k

=    

        During the angle conversion phase, the angle  θ  is represented as the sum of a 

nonincreasing sequence of elementary rotation angles 

{ , ,
, 2 2 .m is

m i defines a radix number systemδ −= 0 1i b≤ ≤ − } where b is the number of rotations 

,which in turn depends on the kind of precision we wanted, such that  

                              

1

,
0

b

i m i
i

θ μ α
−

=

= ∑  

            In the above algorithm, the set of parameters iμ (= ± 1) constitutes an implicit 

representation of θ , and b is the number of bits in the internal register. Variable  

represents the rotation in three different systems: the circular, linear and hyperbolic 

respectively .In DCT, 

{1,0, 1}m∈ −

θ  is known in advance and the operation is always in 

Circular system only with m=1. The scaling factor 
1

1

0

cos( tan 2 )
b

i
i

i

K μ
−

− −

=

= ∏  will be a constant 

and independent of | iμ |=1.Hence K can be computed in advance and by calculating the limit 

comes to be around 0.60725.All the angles in angle conversion contains pre computation of 

arc tan. So this is implemented in the form of a look-up table in hardware. The trajectory of 

circular cordic rotation is given in figure below. 
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Fig4.1: Trajectory of circular Cordic rotation 

 The applications of CORDIC algorithm are given below.     

 4.2The Rotation Transform 

All the trigonometric functions can be computed or derived from functions using vector 

rotations. The CORDIC algorithm provides an iterative method of performing vector 

rotations by arbitrary angles using only shift and add operations. The algorithm is derived 

using the general rotation transform: 

)sin()cos('
)sin()cos('

φφ
φφ

XYY
YXX

+=
−=

   (1) 

where (X’,Y’) are the coordinates of the resulting vector after rotating a vector with 

coordinates (X,Y) through an angle of φ in the Cartesian plane. These equations can be 

rearranged to give: 

            
[ ]
[ ])tan().cos('

)tan().cos('
φφ
φφ

XYY
YXX

+=
−=

               (2) 

Now, if the angles of rotation are restricted such that )tan(φ =±2-i then the tangent 

multiplication term is reduced to a simple shift operation. Hence arbitrary angles of rotation 

can be obtained by performing a series of successively smaller elementary rotations. The 
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iterative equation for rotation can now be expressed as:                        

                            1

1

( 2

( 2

i
i i i i i

i
i i i i i

X K X Y
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σ

σ

)
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−
+

−
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= −

= +
                                                (3) 

where Kk = cos(tan-1(2-k)) and ∂k = ±1 depending upon the previous iteration. Removing the 

scale constant from the above equations yields a shift-add algorithm for vector rotation. The 

product Kk approaches the value of 0.6073. The CORDIC algorithm in its binary version can 

be expressed as a set of three equations as follows:                                          
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]                                                   (4)                                        

Where m = ±1 and εk are prestored constants. The values of εk will become apparent from the 

following example for computing the sine and cosine functions. 

4.3Computing Sine and Cosine Functions 

To compute the sin θ and cos θ  for θ ≤ π/2, we let m = 1, εk =  tan-1(2-k) and define: 

                          (5) 
)cos(

0

k

n

k

C ε∏
=

=
 

Then the equations of the CORDIC algorithm for computing sine and cosine functions can be 
written down as: 
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]                                                 (6) 

δk = sgn(Zk), X0=C, Y0=0 and Z0 = θ and n is the number of iterations performed. Then  

                                          
)sin(
)cos(

1

1

θ
θ

≈
≈

+

+

n

n

Y
X

                                     (7) 

The well-known radix 2 system is considered here since it avoids the use of multiplications 

while implementing Equation (3). Hence a CORDIC iteration can be realized using shifters 

and adders/subtracters only. Figure 2 shows the structure of a processing element which 

implementing one CORDIC iteration. All internal variables are represented in a fixed number 
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of digits. The rotation angle θ  is precalculated and can be stored in a register. The 

adders/subtracters are controlled by respectively ,i i im andμ μ μ− −  respectively. 

 

Fig 4.2:Basic structure of a processing element for one iteration 

         The rotation mode and vectoring mode are two control schemes for the CORDIC 

algorithm. In rotation mode, the objective is to rotate the given input vector (x , y)t  with a 

desired/given  angleθ . iμ   is equal to sign (z,). After n iterations, zn is driven to zero and the 

total accumulated rotation angle is equal toθ . In vectoring mode, the desired rotation angle 

11 tan ( . )ym
xm

φ −=  and magnitude 2 . 2x m y+ are given for an input vector (x, y)T. After n 

iterations, yn is driven to zero, i.e. the objective rotates towards the x-axis. iμ =-sign (xi).sign 

(yi). In this project, the CORDIC system is target to the rotation mode. 

                However, the CORDIC iteration is not a perfect rotation. Reference [7] points out 

that for a fixed-point implementation with data word length of W bits, no more than W 

CORDIC iterations need to be performed. The large number of iterations limits its speed 

performance seriously. Secondly, a scale factor operation is necessary after iteration in order 

to guarantee the final coordinate [Xf ,Yf]T the same m-norm as the initial coordinate [Xo 

,Yo]T has the same m-norm as the initial Co-ordinate [Xo,Yo]T.                Besides, the 

algorithm computational accuracy needs to be taken into account as well. For example, the 

finite precision of the involved variables and the unavoidable rounding errors; a desired 

rotation angle θ  can only be approximated by the n fixed rotation angles so that the accuracy 

achievable by the CORDIC rotation is determined by the last rotation angle , 1m nα −  . 
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                The angles in design of DCT are known in advance. If conventional CORDIC is 

used, whatever is the angle, no of iterations are fixed. Instead of this, if we recode the angle 

in a proper way such that the sign sequence 1sin 2 2i
iα i− − −= ≈ , instead of { 1,1}iμ ∈ − , there is 

a possibility that several micro rotations will be skipped. This in turn reduces the number of 

iterations and speeds up the execution of CORDIC algorithm. In addition to this, every time 

to get the correct rotated coordinates, the pseudo result must be multiplied with a scaling 

factor K.If we eliminate this scaling block, the complexity of CORDIC algorithm will greatly 

reduced. And also, for a given rotation angle by modifying the micro rotation angles from 

  to  , then we should not create a look up table and the burden 

of creating ROM will be greatly reduced. The large number of iterations limits its speed 

performance seriously and also consumes large power. Secondly, a scale factor operation is 

necessary in order to guarantee the final coordinate [X

1tan 2 i
iα − −= 1sin 2 2i

iα − − −= ≈ i

iα − − −= ≈

f, Yf]T has the same norm as the initial 

coordinate [Xo,Yo]T . 

                 From the disadvantages of the Conventional CORDIC algorithm, the new 

CORDIC algorithm came out, where it overcomes all the disadvantages of CORDIC 

algorithm. This new CORDIC algorithm skips the operation of scaling factor correction as 

well as reduces the number of CORDIC iterations significantly. The algorithm is derived 

from the general rotation transform which shown in Equation (1). Since sine and cosine 

functions are included, they can be represented as following using Taylor Series Expansion: 

                                                             (7) 
1 3 1 5

1 2 1 4

sin( ) (3!) . (5!) . ...
cos( ) 1 (2!) . (4!) . ...

α α α α

α α α

− −

− −

= − + +

= − + +

           The series up to third order is applied to Equation (1) with the correction of 

coefficient. The new CORDIC algorithm can be summarized below. Equation (8) describes a 

rotation together with a scaling of an intermediate plane vector 

. 1 1 1[ , ] [ , ]T T
i i i i i iv x y to v x y+ + += =

            For i  with we have 1sin 2 2i {0,....., 1},i n∈ −
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Since we quantize the micro-rotation angle 1sin 2 2i
i toα i− −= − , therefore, we should 

carefully choose the micro-rotation angles for CORDIC rotations. Table 2.1 shows the 

quantization error for the angles from 0 1to 0α α . The error is large at the beginning angles, e.g. 

0 1andα α  (around 36% and 4.5% respectively), and decreases with the subsequent angles. 

Hence to achieve a high precision design, the CORDIC rotations should not start with large 

micro-rotation angles due to the large quantization error. Therefore the new CORDIC 

algorithm is modified to 

 

                                                           (9) 
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    However, for large target rotation angleθ  ,if iα  is set too small, the rotation 

precision will be increased as well as the number of CORDIC iterations required for this 

rotation angle. Hence the precision of the design needs to be traded of with the hardware 

limits and other performances as well.  
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Table 4.1: Shows the difference between the Conventional CORDIC and the new 

CORDIC algorithm. 

The new CORDIC algorithm to the rotation angles θ  from 0 to 45 degree(s). The 

value of the start point vector [x,y]T is [1,0]T. Simulations matlab show that in  maximum 

rotation number for each rotation angle is fixed to ten. Figure 2.4 shows the number of 

CORDIC iterations required to find value of the end point vector [x,y]T at each rotation angle. 

The micro-rotation start angle is set to a2. 

 

 
Fig 4.3: Number of Cordic iterations for input angle 0o to 45o
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But in the case of the new CORDIC algorithm, the input angle is restricted to 0o to 

45o.So if we want to have rotation for other angles less than 90o, which we consider 

especially for 2D Discrete Cosine Transform, method of “domain folding” must be applied. 

For example if we want to rotate the angle less than 90o and greater than 45o, say θ , we have 

to perform
2
πφ θ= − .Then negative rotation of the θ  must be performed so that 

 
That means in the equations (8) we have to change ‘-‘to ‘+’ and vice versa. After 

computing the rotations, the final results are ' ,fd fd
'x y y x+ += = − .Eventhough we have 

approximated the angle as a mere right shifting, the error between the result computed by 

conventional CORDIC and the new CORDIC algorithm is very less which is shown in the 

error plot given below. 

 

 

 
Fig 4.4: Error plot between New and Conventional CORDIC. 

Even though the new algorithm is good in terms of lack of scaling factor and reducing the 

number of iterations, it has got some disadvantages like in the word length as the word length 

must be taken as 32 bits. It is the optimum word length. Now the architecture of each 

iteration of the new Cordic algorithm is given below. 
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Fig 4.5: Architecture of a iteration in the new Cordic algorithm 

The above blocks in between the adders and registers are shifters where the main shifting 

operation is 32 bit shift operation. 
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Chapter 5 

 

 

 

 

 

 
Architectures of existing Cordic 
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There are three types of architectures with which the CORDIC ip core can be 

designed. They are 1) word-serial architecture  

2) Parallel-Pipelined architecture. 

                                       3) Bit-Serial architecture. 

            Now the description of each and very architecture is described below.. 

 

5.1 Word-serial architecture: 

Direct implementation of the CORDIC iterative equations (10) yields the block 

diagram shown in Fig 5.1. The vector coordinates to be converted, or initial values, are 

loaded via multiplexers into registers RegX, RegY, and RegA. RegA, along with an adjacent 

adder/subtractor, multiplexer, and a small arctan LUT, is often called an angle accumulator. 

Then on each of the following clock cycles, the registered values are passed through 

adders/subtractors and shifters.  Every iteration takes one clock cycle, so that in n clock 

cycles, n iterations are performed and the converted coordinates are stored in the registers. 

 
Fig 5.1: Word-serial CORDIC block diagram. 

 Depending on the CORDIC mode (rotation or vectoring), the sign-controlling logic 

watches either the RegY or the RegA sign bit. From, it decides what type of operation 

(addition or subtraction) needs to be performed at every iteration. The arctan LUT keeps a 

pre-computed table of the values. The number of entries in the arctan LUT equals the 

desirable number of iterations, n. 

The word-serial CORDIC engine takes n + 1 clock cycles to complete a single vector 

coordinate conversion. 
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5.2 Parallel-pipelined architecture: 

This architecture presents an unrolled version of the sequential CORDIC algorithm 

above. Instead of reusing the same hardware for all iteration stages, the parallel architecture 

has a separate hardware processor for every CORDIC iteration. An example of the parallel 

CORDIC architecture configured for rotation mode is shown in fig 5.2 

 
                     ……………………………………………………….. 

                     ……………………………………………………….. 

Fig 5.2: Parallel pipelined architecture 

 Each of the n processors performs a specific iteration, and a particular processor 

always performs the same iteration. This leads to a simplification of the hardware. All the 

shifters perform the fixed shift, which means these can be implemented in the FPGA wiring. 

Every processor utilizes a particular arctan value that can also be hardwired to the input of 

every angle accumulator. Yet another simplification is an absence of a state machine. 

The parallel architecture is obviously faster than the sequential architecture described 

in the “Word-serial architecture “in fig 5.2. It accepts new input data and puts out the results 

at every clock cycle. The architecture introduces a latency of n clock cycles. The architecture 

which is used in the design of the 2D DCT is this parallel-pipelined architecture because this 

architecture not only provides high throughput but also results in low power consumption. 
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5.3Bit-serial architecture: 

             Whenever the CORDIC conversion speed is not an issue, this architecture provides 

the smallest FPGA implementation. For example, in order to initialize a Sine/Cosine LUT, 

the bit-serial CORDIC is the solution. Fig 3.3 depicts the simplified block diagram of the bit-

serial architecture. The shift registers get loaded with initial data presented in bit-parallel 

form, i.e., all bits at once. The data then shifts to the right, before arriving the serial 

adders/subtractors. Every iteration takes m clock cycles, where m is the CORDIC bit 

resolution. Serial shifters are implemented by properly tapping the bits of the shift registers. 

The control circuitry (not shown in Fig 3.3) provides sign-padding of the shifted serial data to 

realize its correct sign extension. The results from the serial adders return back to the shift 

registers, so that in m clock cycles the results of iteration are stored in the shift registers. 

 
 

 

 
Fig 5.3: Bit-Serial CORDIC architecture. 
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5.4 Bit parallel iterative architecture: 

 

The CORDIC structure as described in equations in chapter 4 ,is represented by the 

schematics when directly translated into hardware. Each branch consists of an adder-

subtractor combination, a shift unit and a register for buffering the output. At the beginning 

of a calculation initial values are fed into the register by the multiplexer where the MSB of 

the stored value in the z-branch determines the operation mode for the adder-subtractor. 

Signals in the x and y branch pass the shift units and are then added to or subtracted from the 

unshifted signal in the opposite path. 

 

The z branch arithmetically combines the registers values with the values taken from 

a lookup table (LUT) whose address is changed accordingly to the number of iteration. For 

iterations the output is mapped back to the registers before initial values are fed in again and 

the final sine value can be accessed at the output. A simple finite-state machine is needed to 

control the multiplexers, the shift distance and the addressing of the constant values. 

 

 
Fig 5.4:Bit parallel iterative architecture. 

 

When implemented in an FPGA the initial values for the vector coordinates as well as 

the constant values in the LUT can be hardwired in a word wide manner. The adder and the 

subtractor component are carried out separately and a multiplexer controlled by the sign of 

the angle accumulator distinguishes between addition and subtraction by routing the signals 

as required. The shift operations as implemented change the shift distance with the number of 

iterations but those require a high fan in and reduce the maximum speed for the application In 
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addition the output rate is also limited by the fact that operations are performed iteratively 

and therefore the maximum output rate equals  1
n

 times the clock rate.  

Thus the architectures of the CORDIC are mentioned and described. The architecture 

used in this project is the parallel pipelined architecture. 
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Chapter 6 

 

 

 

 

 

 
 

FUNDAMENTALS OF LOW POWER DESIGN 
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Here we discuss ‘power consumption’ and methods for reducing it. Although they 

may not explicitly say so, most designers are actually concerned with reducing energy 

consumption. This is because batteries have a finite supply of energy (as opposed to power, 

although batteries put limits on peak power consumption as well). Energy is the time integral 

of power; if power consumption is a constant, energy consumption is simply power 

multiplied by the time during which it is consumed. Reducing power consumption only saves 

energy if the time required to accomplish the task does not increase too much. A processor 

that consumes more power than a competitor's may or may not consume more energy to run a 

certain program. For example, even if processor A's power consumption is twice that of 

processor B, A's energy consumption could actually be less if it can execute the same 

program more than twice as quickly as B. 

 Therefore, we introduce a metric: energy efficiency. We define the energy efficiency 

e as the energy dissipation that is essentially needed to perform a certain function, divided by 

the actually used total energy dissipation. The function to be performed can be very broad: it 

can be a limited function like a multiply-add operation, but it can also be the complete 

functionality of a network protocol. Note that the energy efficiency of a certain function is 

independent from the actual implementation and thus independent from the issue whether an 

implementation is low power. 

It is possible to have two implementations of a certain function that are built with 

different building blocks, of which one has high energy efficiency, but dissipates more 

energy than the other implementation which has a lower energy efficiency, but is built with 

low-power components. 

 

6.1 DESIGN FLOW 

The design flow of a system constitutes various levels of abstraction. When a system 

is designed with an emphasis on power optimization as a performance goal, then the design 

must embody optimization at all levels of the design. In general there are three main levels on 

which energy reduction can be incorporated. The system level, the logic level, and the 

technological level. For example, at the system level power management can be used to turn 

off inactive modules to save power, and parallel hardware may be used to reduce global 

interconnect and allow a reduction in supply voltage without degrading system throughput. 

At the logic level asynchronous design techniques can be used. At the technological level 

several optimizations can be applied to chip layout, packaging and voltage reduction. 

Low power design problems are broadly classified in to  
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                         1. Analysis 

                         2. Optimization 

Analysis: These problems are concerned about the accurate estimation of the power or energy 

dissipation at different phases of the design process. The purpose is to increase confidence of 

the design with the assurance that the power consumption specifications are not violated. 

Evidently, analysis techniques differ in their accuracy and efficiency. Accuracy depends on 

the availability of design information. In early design phases emphasis is to obtain power 

dissipation estimates rapidly with very little available information on the design. As the 

design proceeds to reveal lower-level details, a more accurate analysis can be performed. 

Analysis techniques also serve as the foundation for design optimization. 

Optimization: Optimization is the process of generating the best design, given an 

optimization goal, without violating design specifications; an automatic design optimization 

algorithm requires a fast analysis engine to evaluate the merits of the design choices. A 

decision to apply a particular low power design technique often involves tradeoffs from 

different sources pulling in various directions. Major criteria to be considered are the impact 

on circuit delays, which directly translates to manufacturing costs. Other factors of chip 

design such as design cycle time, testability, quality, reliability, reusability; risk etc may all 

be affected by a particular design decision to achieve the low power requirement. The task of 

a design engineer is to carefully weigh each design choice with in specification constraints 

and select the best implementation. 

Before we set to analyze or optimize the power dissipation of a VLSI chip, the basic 

understanding of the fundamental circuit theory of power dissipation is imminent. Further is 

the summary of the basic power dissipation modes of a digital chip. 

 

6.2 CMOS COMPONENT MODEL 

Most components are currently fabricated using CMOS technology. Main reasons for 

this bias is that CMOS technology is cost efficient and inherently lower power than other 

technologies. 

 The sources of energy consumption on a CMOS chip can be classified as  

1.  STATIC power dissipation, due to leakage current drawn continuously form the power 

supply and 

2.  DYNAMIC power dissipation, due to  

                                    -    Switching transient current, 

                                    -    Charging and discharging of load capacitances. 
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 The main difference between them is that dynamic power is frequency dependent, 

while static is not. Bias (Pb) and leakage currents (Pl) cause static energy consumption. Short 

circuit currents (Psc) and dynamic energy consumption (Pd) is caused by the actual effort of 

the circuit to switch.  

P = Pd + Psc + Pb + Pl   ......................................................................................(2.1)

The contributions of this static consumption are mostly determined at the circuit level. 

While statically-biased gates are usually found in a few specialized circuits such as PLAs, 

their use has been dramatically reduced in CMOS design. Leakage currents also dissipate 

static energy, but are also insignificant in most designs (less than 1%). In general we can say 

that careful design of gates generally makes their power dissipation typically a small fraction 

of the dynamic power dissipation, and hence will be omitted in further analysis. 

 

6.2.1Dynamic power dissipation 

Dynamic power can be partitioned into power consumed internally by the cell and power 

consumed due to driving the load. Cell power is the power used internally by a cell or module 

primitive, for example a NAND gate or flip-flop. Load power is used in charging the external 

loads driven by the cell, including both wiring and fan out capacitances. So the dynamic 

power for an entire chip is the sum of the power consumed by all the cells on the chip and the 

power consumed in driving all the load capacitances. During the transition on the input of a 

CMOS gate both p and n channel devices may conduct simultaneously, briefly establishing a 

hort from the supply voltage to ground. This effect causes a power dissipation of approx. 10 

to 15%.                                      

                              

                                                        Figure 6.1:  CMOS inverter. 
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The more dominant component of dynamic power is capacitive power. This 

component is the result of charging and discharging parasitic capacitances in the circuit. 

Every time a capacitive node switches from ground to Vdd an vice-versa energy is consumed. 

The dominant component of energy consumption (85 to 90%) in CMOS is therefore dynamic. 

A first order approximation of the dynamic energy consumption of CMOS circuitry is given 

by the formula:  

 

Pd = Ceff V 2 f   ………………………………………….(2.2) 

 

where Pd is the power in Watts, Ceff is the effective switch capacitance in Farads, V is the 

supply voltage in Volts, and f is the frequency of operations in Hertz. The power dissipation 

arises from the charging and discharging of the circuit node capacitance found on the output 

of every logic gate. Every low-to-high logic transition in a digital circuit incurs a voltage 

change ΔV, drawing energy from the power supply. Ceff combines two factors C, the 

capacitance being charged/discharged, and the activity weighting α, which is the probability 

that a transition occurs.  

                                                  Ceff = α C.  

 

6.2.2Short-Circuit Current In CMOS Circuit: 

Another component of power dissipation also caused by signal switching called short-

circuits power. 

 

6.2.3Short-Circuit Current of an Inverter: 

 

Figure shows a simple CMOS inverter operating at Vdd with the transistor threshold 

voltages of Vtn and Vtp as marked on the transfer curve. When the input signal level is above 

Vtn, the N-transistor is turned on; similarly, when the signal level is below Vtp the P-

transistor is turned on. When the input signal Vi switches, there is a short duration in which 

the input level is Vtn and Vtp and both transistors are turned on. This causes a short circuit 

current from Vdd to ground and dissipates power. The electrical energy drawn from the source 

is dissipated as heat in the P and N transistors. 

 

From the first order analysis of the CMOS transistors model, the time variation of the 

short- circuit current during signal transition is shown in the figure. The current is zero when 
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the inputs signal below Vtn or above Vtp. The current increase as Vi rises beyond Vtn and 

decreases as it approaches Vtp. Since the supply voltage is constant, the integration of the 

current over time multiplies by the supply voltage is the energy dissipated during the input 

transition period. 

Vdd 

ip 

Vi 

ic 

C

ip=ic+in 

in 

 
Fig 6.2: CMOS inverter and its transfer curve. 

 
 

Fig 6.3: Transfer Characteristics of CMOS. 

Output 

Vi Vd
Vi

Vd
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Fig 6.4 Short-circuit current of a CMOS inverter during input transition. 

 

6.2.4 Static Power Dissipation 

 

Strictly speaking, digital CMOS circuits are not supposed to consume static power from 

constant static current flow. All non-leakage current in CMOS circuits should only occur in 

transient when signals are switching. However, there are times when deviations from CMOS 

style circuit design are necessary. 

 

An example is the pseudo NMOS logic. However, for special circuits such as PLAS or 

Register files, it may be useful due to its efficient area usage. In such circuits, there is tradeoff 

for power and area efficiency. 

 

The pseudo NMOS circuit doesn’t require a p-transistor network and saves half the 

transistors required for logic computation as compared to the CMOS logic. The circuit has a 

special property that the current only flows when the output is at logic 0. 
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When the output is at logic1, all the N-transistors are turned off and no static power is 

consumed, 

Expect leakage current. This property may be exploited in a low power design. If a signal is 

known to have very high probability of logic1, say 0.99, it may make sense to implement the 

computation in pseudo NMOS logic. Conversely, if the single probability is very close to 

zero, we may eliminate the N- transistor network of a CMOS gate and replace it with a load 

transistor of N type. 

 

An example where this future can be exploited is the system reset circuitry. The reset signal 

has extremely low activation probability (for example, during the power-on phase) which can 

benefit from such circuit technique. Other examples where single activation probabilities are 

extremely low are: test signals, error detection signals, interrupt signals and exception 

handling signals. 

 

6.3 BASIC PRINCIPLES OF LOW POWER DESIGN 

 

Conservation and trade-off are the philosophy behind most low power technique. The 

conservation school attempts to reduce power that is wasted with out a due course. The 

design skills required are in identifying, analyzing. 

  

This often requires complex trade-offs decisions involving a designer’s overall, intimate 

understanding of the design specifications, operating environment and intuition acquired 

from past design experience are keys to creative low power techniques. 

 

It should be emphasized that no single low power technique is applicable to all situations. 

Design constraints should be viewed from all angles with in the bounds of the design 

specification. Low power considerations should be applied at all levels of design abstraction 

and design activities. Chip area and speed are the major trade-off considerations but a low 

power design decision also affects other aspects such as reliability, testability and design 

complexity. Early design decisions have higher impact to the final results and therefore, 

power analysis should be initiated early in the design cycle. Maintaining a global view of the 

power consumption is important so that a chosen technique does not impose restrictions on 

other parts of the system offset its benefits. 
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6.3.1 Reduce Voltage and Frequency 
 
 
One of the most effective ways of energy reduction of a circuit at the technological level is to 

reduce the supply voltage, because the energy consumption drops quadratic ally with the 

supply voltage. For example, reducing a supply voltage from 5.0 to 3.3 Volts (a 44% 

reduction) reduces power consumption by about 56%. As a result, most processor vendors 

now have low voltage versions. The problem that then arises is that lower supply voltages 

will cause a reduction in performance. In some cases, low voltage versions are actually 5 Volt 

parts that happen to run at the lower voltage. In such cases the system clock must typically be 

reduced to ensure correct operation. Therefore, any such voltage reduction must be balanced 

against any performance drop. To compensate and maintain the same throughput, extra 

hardware can be added. This is successful up to the point where the extra control, clocking 

and routing circuitry adds too much overhead [58]. In other cases, vendors have introduced 

‘true’ low voltage versions of their processors that run at the same speed as their 5 Volt 

counterparts. The majority of the techniques employing concurrency or redundancy incur an 

inherent penalty in area, as well as in capacitance and switching activity. If the voltage is 

allowed to vary, then it is typically worthwhile to sacrifice increased capacitance and 

switching activity for the quadratic power improvement offered by reduced voltage. The 

variables voltage and frequency have a trade-off in delay and energy consumption. Reducing 

clock frequency f alone does not reduce energy, since to do the same work the system must 

run longer. As the voltage is reduced, the delay increases. A common approach to power 

reduction is to first increase the performance of the module – for example by adding parallel 

hardware, and then reduce the voltage as much as possible so that the required performance is 

still reached. Therefore, major themes in many power optimization techniques are to optimize 

the speed and shorten the critical path, so that the voltage can be reduced. These techniques 

often translate in larger area requirements; hence there is a new trade-off between area and 

power. 

6.3.2Reduce capacitance 
Reducing parasitic capacitance in digital design has always been a good way to improve 

performance as well as power. However, a blind reduction of capacitance may not achieve 

the desired results in power dissipation the real goal is to reduce the product of capacitance 

and its witching frequency. Singles with high switching frequency should be routed with 

minimum parasitic capacitance to conserve power. Conversely, nodes with large parasitic 

capacitance should not be allowed to switch at high frequency. Capacitance reduction can be 
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achieved at most design abstraction levels: material, process technology, physical design 

(floor planning, placement and routing) circuit techniques, transistor sizing, logic 

restructuring, and architecture transformation and alternative computation algorithms. 

  

6.3.3 Reduce Leakage and Static Currents 

Leakage current, whether reverse biased junction or sub threshold current, is generally not 

very useful in digital design. However, designers often have very little control over the 

leakage current of the digital circuit. Fortunately, the leakage power dissipation of a CMOS 

digital circuit is several orders of magnitude smaller than the dynamic power. The leakage 

power problem mainly appears in very low frequency circuits or ones with “sleep modes” 

where dynamic activities are suppressed. Most leakage reduction techniques are applied at 

low level design abstraction such as process, device and circuit design. Memory chips that 

have very high device density are most susceptible to high leakage power. 

 

Transistor sizing, layout techniques and careful circuit design can reduce static current. 

Circuit modules that consume static current should be turned off if not used. Sometimes, 

static current depends on the logic state of its output and we can consider reversing the signal 

polarity to minimize the probability of static current flow. 
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Chapter 7 

 

 

 

 

 

 
DESIGN OF DCT CORE 
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 The design flow of DCT core is shown particularly in the following flow-chart given 

in appendix A.The format of input word is different for different implementations where for 

example take the case of implementation of Chen’s algorithm where the input word length is 

8 bits. But in the case of implementation of CORDIC implementation, the input word is taken 

in the form 1QN format which if a fixed format. For that purpose all the data must be less 

than 1.So whatever is the data we have to make it less than 1 for Conventional CORDIC 

algorithm, where as for new CORDIC algorithm we have to make data in the form of 32 bits. 

CORDIC, as virtually any FPGA DSP core does, utilizes fixed-point arithmetic. In particular, 

the numbers the core operates with are presented as two's complement signed fractional 

numbers. To identify the position of a binary point separating the integer and fractional 

portions of the number, the Q format is commonly used. An mQn format number is an (n + 

1)-bit signed two's complement fixed-point number: a sign bit followed by n significant bits 

with the binary point placed immediately to the right of the m most significant bits. The m 

MSBs represents the integer part, and (n-m) LSBs represent the fractional part of the number, 

called the mantissa. Table 4.1 depicts an example of a 1Qn format number.  

 

 
Table 7.1:1QN Format number. 

 
Table 7.2: QN Format Number. 

 

                       The following sections explain in detail the formats of the input and output 

signals. The linear and angular values are explained separately. The linear signals include 

Cartesian coordinates and a vector magnitude. These come to the CORDIC engine inputs xo 

and yo, or appear on its outputs xn and yn. Since the sine and cosine functions the CORDIC 

calculates are essentially the Cartesian coordinates of the vector, the angular signals include 

the vector phase that comes to the CORDIC engine input ao, or appears on its output an. Both 

linear and angular signals utilize mQn formats and appropriate conversion rules from 

floating-point to the mQn formats. 
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7.1I/O linear Format 

                    The CORDIC engine utilizes the 1Qn format shown in Table 3. Though the 1Qn 

format numbers are capable of expressing fixed-point numbers in the range from (-2n) to (2n – 

2m+n), the input linear data must be limited to fit the smaller range from (-2n-1) to (2n-1). In 

terms of floating-point numbers, the input must fit the range from -1.0 to1 .0. For example, 

the 1Q9 format input data range is limited by the following 10-bit numbers: 

Max input negative number of -1.0: 

                                  1100000000  11.00000000 

Max input positive number of +1.0: 
                                  0100000000  01.00000000 
                 This precaution is taken to prevent the data overflow that otherwise could occur as 

a result of the CORDIC inherent processing gain. The output data obviously do not have to fit 

the limited range. To convert floating-point linear input data to the 1Qn format, follow the 

simple rule in EQ 10: 

               1Qn Fixed-Point Data = 2n-1 x Floating-Point Data                                         (1) 

 

                Here it is assumed the floating-point data are presented in the range from -1.0 to 

1.0. The product on the right-hand side of Eq (1) contains integer and fractional parts. The 

fractional part has to be truncated or rounded. shows a few examples of converting the 

floating-point numbers to the 1Q15 format. 

 

                To convert the 1Qn format back to the floating-point format, use EQ 11. 

              Floating-Point Data = 1Qn Fixed-Point Data/2n-1                                                     (2) 

 

Suppose we are using the input in which one of the number is 34,then we have to convert to 

1Q17 format where we have to divide 34 with 1000 and then we have to multiply with 2^16 

and then round it…so that the end result is round(0.034*2^16) which results in 

2228.Similarly the angle format for the CORDIC design is also the same, as mentioned 

above. 

 

For the Design of 2D DCT using the New Cordic Algorithm, all the inputs must be 32 

bits wide. All inputs are converted from decimal to fixed-point binary representation in 

Matlab. For this 32-bit design, the least 31 bits are used to represent the decimal fraction. The 

Most Significant Bit (MSB) is used as the sign bit. To check the output data of x' and y' at 

each rotation angle, we first convert angleθ  from binary to decimal representation, and then 
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divided by 2P, where P is the number of bits used to represent the decimal fraction. Then we 

can calculate the value of cos and sinθ  for the estimation of output x' and y' respectively. If x' 

and y' are almost the same as the sine and 

Cosine value that we calculate, then we can say the operation of the CORDIC ip is Correct. 

For example 

 

:
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                  The above example verifies that output x' and y' are correct for its given rotation 

angle. Several outputs with different input rotation angles are chosen randomly to verify the 

correctness by following the steps illustrated in the example. Moreover, the simulation results 

are generated in waveforms so that we check not only the value of the outputs but also see if 

there is any timing matching problem within the overall design. 

 

Now consider the design of the 2D DCT core with the Conventional Chen’s 

algorithm. Every design in this project is based on row-decomposition algorithm and the 

architecture of  every design is same which is mentioned below.. 

                                                                    54



 
Fig-7.2: Architecture of 2D DCT used in this project 

              

               The basic architecture of each 2D DCT consists of the above blocks where the 

controller is the main part, which is a FSM ,especially a Mealy machine which gives  status 

signals which are essentially signals which control the operation of 1-D DCT core and 

Transpose Buffer and output 1-D DCT core to work in synchronization. Transpose buffer is 

necessary block which performs the transpose of matrix which is an important block. The 1-

D blocks in the block diagram which employs all the mentioned algorithms like Chen’s 

algorithm, Cordic algorithms which is essentially an angle recoding (AR) algorithm. The 

specialty of the Angle recoded CORDIC algorithm where the angles in the computation of 

2D DCT are predetermined and necessary iterations are calculated and the sign decision is 

also made. Due to this there is no need to incorporate the ROM in our design and numbers of 

iterations in our design are greatly reduced and thus results in reduced complexity.  

 

            But in the conventional DCT design using Chen’s algorithm, the architecture is like a 

butterfly structure which is very difficult to map over FPGA, hence it takes a lot of area, and 

takes a lot of time for routing, i.e. complex routing. But even though we have used the Angle 

Recoded CORDIC algorithm, we have to do scaling which is again a unnecessary block if we 

used the new Cordic algorithm. So the new Cordic algorithm is used and the problem is 

solved, but the overhead lies in the input data width which should be 32 bits in minimum.  

 

7.2 Design of controllers in DCT 

The state diagram of the controller which is used in the design is given below…  
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final_dct<='0'

next_delay<8

finaldct<='1'
@ELSE  if cnt_ksk < 4

ena<='0';

if count=10

ena<='0';
control<='0'

if count=1

ena<='1';
control<='0';
dct_out<='1';

@ELSE if some_delay 
<2  

ena<='0';
control<='0';

if some_delay=2

some_delay:=0

if dct_cnt=8

dct_cnt:=0;
ena<='1';

control<='1';
rfd<='0';

if dct_cnt<8

ena<='1';
control<='1';

@ELSE if 
processing_cnt<2

@ELSE if ND=0

rfd<='1';
ena<='0';

dct_out<='0';
finaldct<='0';
control<='0';

if ND='1'

ena<='0';
dct_out<'0';

rfd<='1';
control<='0';

rfd<='0'

RESET

temp

transpose_delay

transpose_readytranspose

pro

idle

datain

 
Fig 7.3: FSM for DCT design using Chen’s algorithm 

                     As mentioned in the above state diagram there are seven states namely 

idle,datain,processing,transpose,transpose_ready,transpose_delay,temp.The status signals are 

rfd,ena,dct_out,control,finaldct. Among the status signals the ena and control are the signals 

which control the transpose buffer. The main characteristic feature of transpose buffer is 

enabled, i.e it will start. The control signal controls the mode of transpose buffer. There are 

two modes in transpose buffer mode A and mode B. When the transpose buffer is in mode A, 

it will take all the date and stores in respective registers. When the same is in mode B, it will 

be transposing mode. The transpose buffer  is absolutely pipelined. 

 

                        But in the case of the Design of 2D DCT using AR Cordic and the new 

CORDIC algorithm is different and it is shown below. 
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RESET

if inter_cnt=9

cordic_out<='1'

@ELSE if inter_cnt<9

control<='0';
cordic_out<='0';

if tran_out_cnt<9

start<='1';
control<='0';

tran_out_cnt=9

start<='1';
control<='0';

@ELSE if 
dct_tran_cnt<8

start<='0';
control<='0';

cordic_out<='0';

 if block_cnt<8

start<='1';
control<='1';

if block_cnt=8

block_cnt:=0;
start<='1';

control<='1'

@ELSE if dct_cnt<8

start<='0';
control<='0';

start<='1';

if ena='1'

cordic_out<'0';
start<='0';

control<='0';
start_dct<='0'

trans_inter

transpose_ready

one_dct

idle

 
Fig 7.4 : FSM for DCT Design using CORDIC algorithm 

        In the design of DCT core using CORDIC algorithm, algorithms AR Cordic as well as 

the new CORDIC algorithm, the same state diagram is used. From the above state diagram it 

is implied the complexity of DCT architecture is less in the case of CORDIC architecture, 

where in the conventional one consists of multiplications, where in the normal CORDIC 

architecture consists of only rotations and shiftings. The sample code for the design of 

controller of 2D DCT using chen’s algorithm and Cordic architecture. The VHDL codes of  

Controllers of DCT using chen’s algorithm and controller of DCT using Cordic as well as the 

new CORDIC algorithm is given in appendix B&C. 

 
7.3Design of transpose buffer 
 

        Now consider about the design of Matrix transposer cell which is necessary a 

some sort of transpose buffer. The need for real-time implementation of the transposition 

operation is felt particularly in image processing applications as they are dominated by matrix 

based techniques. For example, a wavelet operation on a two-dimensional array of data is 

executed as follows: First, the wavelet operation is executed on the rows (columns) of data 

followed by a transposition operation. This process is then repeated on the columns (rows) of 
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data. Note that in real-time processing environments; high data-processing rates are achieved 

using parallel and pipelined processors. Hence there is a great demand to speedup the 

execution of the transposition operation. A straightforward scheme is the memory addressing 

technique where the processed data are stored in rows (columns) and accessed in columns 

(rows) by altering the addressing sequence resulting the execution of the transposition 

operation. However, this technique limits the speed of processing because of 

                (i)  The requirement for computation of the address sequence, 

               (ii)  The need for storage space 

               (iii) The finite time for accessing the data. 

                Carlach e/ a] have presented a 8x8 DCT chip where a register based transposition 

stage is used. Panchanathan has proposed transposition architecture for real-time applications. 

Note that the last two architectures are primarily for serial transposition of data. The main 

drawback with all these implementations is the lack of modularity and cascadability which is 

required for VLSI implementation of large matrix transposition. The other drawback with 

these implementations is that most of these structures have complex communication, control 

and processor designs. Finally, some of the implementations are not suitable for real-time 

applications. 

 
                   In this paper, we present a parallel and pipelined architecture for real-time MT 

This architecture is modular, cascadable and has a simple control design which makes 

possible FPGA implementation. The main advantages of the proposed architecture are as 

follows: 

•    It requires no address sequence computation or memory access time overheads. 

•  The execution time for transposition is very small and satisfies the real-time requirement 

for a variety of applications. 

•     The  interconnections  between  the  basic  transposition  cells  are  localized   and  hence  

the communication (U0 transfer) overhead is eliminated. 

•     There is a 100% utilization of the elements in the structure. 

most importantly the structure is modular so that we can connect the required number of 

chips for any desired matrix size. 

7.2.1Design of basic transpose cell: 

                    The transposition of a matrix is a simple operation. Mathematically it can be 
expressed as : 
                      ij jiX X=  For i,j = I,2,...,N   

The above operation is illustrated for a 4 x 4 matrix (Figure 4.6)    

                                                                    58



11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

X X X X

X X X X
X X X X
X X X X

X X X X

X X X X

X X X X
X X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥− − − − −− > ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fig 7.5:Transposition of a Matrix. 

The basic cell (transposer cell, shown in Figure 2) is designed to execute the transposition 

operation It has two modes of operation A and B which can be selected by a control signal C 

such that when 

                                    1. C=l   A OUTPUT = A I"UT (A mode) 

2 C=O   B OUTPUT = B INPUT ( B mode ) 

We note that K  indicates the databus width The control signal is derived from the global 

clock signal Thus the communication is synchronous and the control is simple in structure. 

 
Fig 7.6: Transpose Cell 

7.4Matrix transposition architecture 

                  The Transposer Module (TM) essentially consists of N2 basic cells interconnected 

as N rows of cells with each row consisting of N column of cells for the transposition 

operation on an N x N matrix. 

                 For the sake of simplicity, the design of the architecture is illustrated for 

transposition of a 4x4 matrix. However, this concept is valid for any N x N matrix (Figure 

2.7).An entire row (column) of data is loaded in and out of the module in each clock cycle. In 

the A-mode a row (column), initially the first row (column), of data of a matrix is loaded in 

                                                                    59



parallel into the cells TC1 1-TC41 at every clock cycle. Meanwhile, the second row (column) 

of data is prepared to be loaded into the TM. In the next clock cycle they are loaded into the 

cells TCII-TC41 while the first row (column) of data moves to the cells TC12-TC42 at the 

same time. The procedure is continued and at the end of four clock cycles all the rows 

(columns) of data are loaded into TM. As soon as the last row (column) of data is loaded into 

the cells TCl 1-TC41, the modules are switched to the B-mode of operation. In the next four 

clock cycles, the column (row) of data is drawn out of TM module through the outputs Al-A4 

in the B-mode. Note that this output data is essentially the transposed version of the input 

matrix. 

 
Fig 7.7 : Transpose Module 

 The external structure of the DCT core is given as follows:- 

 

 

 

 

 

 

 

 

                                     

 

Din_0                          fin_0    
Din_1                          fin_1 
Din_2                          fin_2 
   
Din_3                          fin_3 
Din_4                          fin_4   
Din_5                         fin_5 
                                  
Din_6                          fin_6  
Din_7                          
ND                         fin_7   
 
RST 
                                 finaldct    
clock 

 

Fig 7.8 Architecture of DCT using Chen’s algorithm 
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DIN_0…6(DATA INPUTS): 

Din_0,Din_1,Din_2,Din_3,Din_4,Din_5,Din_6,Din_7 are inputs of 8 bits width .The Module 

will read the data when ND is high. 

ND(NEW DATA): 

When this input signal is high it indicates that valid data is available at the input DIN. If RFD 

is high then the module reads this data. 

 

RST (Reset): 
Reset allows user to restart the 2-D DCT process. 
 
 
CLK (Clock): 
This clock signal is used to synchronize the module and data input output operations 
 
 
DOUT_0..6 (Data Output): 
        This output ports provides the results of 2-D DCT. When control signal finaldct is 
high,the DOUT_0,DOUT_1, DOUT_2, DOUT_3,DOUT_4,DOUT_5,DOUT_6,DOUT_7 is 
valid. The  bit width of the outputs is 38. 
 
FINAL DCT: 
        This signal indicates that whether the data at the output port is valid or not. 
 
      The controller is itself the main program which is the CORE DCT.The external structure 
of the DCT Core using CORDIC algorithm is given as follows: 
 

 
 
 
 
 
 

 

 

 

 

 

                                                                                                                                       

                                                                                                                                

                                                                                                                              

                                                                                                                                

Fig 7.9 Architecture of DCT Core using CORDIC algorithm 

data_0                    second_8   
data_1                    second_9 
data_2                  second_10 
   
data_3                  second_11 
data_4                  second_12   
data_5                 second_13 
                                  
data_6                 second_14  
data_7                          
ND                 second_15   
 
RST 
                                     
clock 
 
start                         start_dct 
 
control               Cordic_out 
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DATA INPUTS: 

          Data_0,data_1,data_2,data_3,data_4,data_5,data_6,data_7,are 8 inputs which are of 17 

bits in width .These will be fed to the CORE only when the ND is high. 

 

ND: 

When this input signal is high it indicates that valid data is available at the input DIN.  

 

RST: 

This is asynchronous reset where it resets the input without the intervention of clock. 

 

START: 

       This is an inout signal where it denotes the occurrence of result form the 1-D DCT block. 

This in turn controls the transpose buffer. 

 

CONTROL: 

       This is also an inout signal where it denotes the mode of transpose buffer. As previously 

notified that there are mode A and mode B. For first 8 rows of 8 elements each, control will 

be ‘0’, after that control will be ‘1’, where the transpose buffer transposes the matrix. This 

control is most important in the design. 

 

STARTDCT: 

       This signal denotes the start of block for which the dct of that block is calculated. 

 

CORDIC_OUT: 

       This signal denotes the presence of complete 2D DCT of the block which we presented 

as input. 

 

DATA_OUTPUTS: 

       These outputs are also 17 bit wide which are valid only when Cordic_out is high, 

otherwise these can be ignored.  
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Chapter 8 
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 The inputs to the DCT core using Chen’s algorithm is given from a text file 

Named “srinew_1.txt” which contains the data as  

34 34 34 33 34 29 35 33 
34 34 34 33 34 29 35 33 
34 34 34 33 34 29 35 33 
34 34 34 33 34 29 35 33 
34 34 34 33 34 29 35 33 
36 36 30 27 33 31 31 32 
32 32 35 30 32 34 31 28 
31 31 27 29 30 31 28 29 

 
Actually this data is the starting 8x8 matrix in a “lena512.bmp” file .Now we did the 2D DCT 
using matlab and got the result as 
Y=   [259.5000    4.7683    3.2404   -0.1992    0.2500   -0.5539   -4.5894    5.6385 

7.9473   -0.7879    0.5547   -4.9323    1.9602    2.9784   -3.7971    3.3222 
-5.0349   -0.2974   -1.5518    1.7250   -0.6765   -0.4525    1.8499   -2.2002 
2.2619    1.1390    1.7039    0.9242   -0.7606   -1.3686    0.2143    1.1422 

-1.0000   -1.1497   -0.3431   -1.3596    1.7500    1.1189   -1.4815   -0.6729 
1.2107    0.4561   -1.8021   -0.1061   -2.0116    0.7097    1.6866    0.7552 
-1.7028    0.2650    3.0999    1.6355    1.6332   -2.2546   -1.1982   -0.9011 
1.3259   -0.4152   -2.3826   -1.5945   -0.8846    1.9693    0.5532    0.6540] 

 
         Now the same file is compiled, synthesized and simulated using Xilinx9.1ise and 
directly from the Xilinx itself we are saving the result in a file named “sri_res.txt”. 
 
Y_1= [259.4446    4.7681    3.2407   -0.1995    0.2499   -0.5531   -4.5885    5.6391 

7.9477   -0.7878    0.5552   -4.9334    1.9602    2.9801   -3.7976    3.3228 
-5.0341   -0.2975   -1.5525    1.7249   -0.6767   -0.4527    1.8498   -2.2003 
2.2613    1.1392    1.7038    0.9248   -0.7611   -1.3692    0.2151    1.1424 

-0.9998   -1.1495   -0.3428   -1.3595    1.7496    1.1189   -1.4814   -0.6731 
1.2111    0.4561   -1.8030   -0.1065   -2.0117    0.7105    1.6866    0.7556 
-1.7034    0.2647    3.0998    1.6358    1.6329   -2.2552   -1.1975   -0.9015 
1.3269   -0.4151   -2.3829   -1.5951   -0.8847    1.9702    0.5528    0.6545] 

 
Now the error between the original DCT calculated by Matlab and the one designed with the 
help of Chen’s algorithm is given by: 
 
Error=   [0.0554    0.0002   -0.0003    0.0003    0.0001   -0.0008   -0.0009   -0.0006 
             -0.0004   -0.0001   -0.0005    0.0011    0.0000   -0.0017    0.0004   -0.0006 
             -0.0008    0.0001    0.0007    0.0000    0.0002    0.0002    0.0000    0.0001 
              0.0006   -0.0002    0.0001   -0.0006    0.0005    0.0005   -0.0008   -0.0002 
             -0.0002   -0.0002   -0.0002   -0.0001    0.0004   -0.0000   -0.0001    0.0002 
             -0.0004   -0.0000    0.0009    0.0005    0.0001   -0.0008    0.0001   -0.0004 
              0.0005    0.0003    0.0000   -0.0003    0.0003    0.0006   -0.0007    0.0003 
             -0.0010   -0.0002    0.0003    0.0006    0.0001   -0.0009    0.0004   -0.0005] 
 
                But for the CORDIC architecture which uses Cordic algorithm (Angle Recoded)  

which is 17 bits width and that too they are represented in 1Q16 format where the MSB is 

Non-decimal part and rest of the format which already mentioned in chapter -4.Now for that 
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purpose all the data given must be made to present in between -1.0 and 1.0.So each and every 

data must be multiplied with 2^16 and divided by 1000.We can also make a good 

approximation by multiplying with 2^6 if we make a 1000 as 1024 and made it 2^10.At the 

end also we can make the same approximation. This type of approximating enables us to read 

directly from without modifying the data. Otherwise we firstly modify the data using Matlab 

and save it in a file, later we can read from that text file with the help of VHDL test bench. 

           So doing the above modification to the above data, the text data is saved in 

“Sri_3.txt”.The data which is present in that file is shown as: 

 

2228 2228 2228 2163 2228 1901 2294 2163  
2228 2228 2228 2163 2228 1901 2294 2163  
2228 2228 2228 2163 2228 1901 2294 2163  
2228 2228 2228 2163 2228 1901 2294 2163  
2228 2228 2228 2163 2228 1901 2294 2163  
2359 2359 1966 1769 2163 2032 2032 2097  
2097 2097 2294 1966 2097 2228 2032 1835  
2032 2032 1769 1901 1966 2032 1835 1901 

 
          Now the same file is read using dct core which uses CORDIC (Angle – recoding) 
algorithm, then we got the result as: 
 
Y_2= [259.7198    4.6997    3.1128   -0.1831    0.2289   -0.6866   -4.6387    5.6000 

7.9193   -0.8545    0.5035   -5.0507    1.9379    2.9144   -3.8910    3.2806 
-5.0812   -0.3510   -1.6022    1.6785   -0.7324   -0.4730    1.8158   -2.2583 
2.3041    1.1902    1.7700    0.9766   -0.7324   -1.3275    0.2747    1.2207 

-1.0223   -1.1902   -0.3815   -1.3886    1.7700    1.1292   -1.4954   -0.7324 
1.1597    0.4883   -1.8005   -0.2136   -2.0599    0.7019    1.6174    0.7172 
-1.7090    0.2594    3.0823    1.6632    1.6479   -2.2583   -1.2054   -0.9155 
1.3275   -0.4120   -2.4261   -1.6479   -0.9003    1.9684    0.5798    0.6866]. 

 
     The error between the original DCT calculated by matlab and the DCT CORDIC core is  

some what more than the Conventional DCT algorithm, but the improvement is there in terms 

of area and power consumption. The error is shown below.. 

 

 
 Error= [   0.0198    0.0686    0.0276   -0.0161    0.0211    0.1328    0.0493    0.0385 

0.0280    0.0666    0.0512    0.1183    0.0224    0.0640    0.0938    0.0415 
0.0463    0.0536    0.0504    0.0465    0.0559    0.0205    0.0341    0.0581 
-0.0422   -0.0512   -0.0662   -0.0523   -0.0282   -0.0411-0.0604 -0.0785 
0.0223    0.0405    0.0384    0.0289   -0.0200   -0.0103    0.0139    0.0595 
0.0510   -0.0322   -0.0016    0.1076    0.0484    0.0078    0.0692    0.0380 
0.0061    0.0056    0.0176   -0.0277   -0.0147    0.0037    0.0072    0.0144 

-0.0016   -0.0033    0.0436    0.0534    0.0157    0.0010   -0.0266   -0.0327] 
 
           Now the same file is read with the DCT test bench, having a small modification. 
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To maintain the good precision, we have taken the input bit width as 45 .We can see 

the difference. So there is 1% error which can easily neglected. So with the help of the 

CORDIC algorithm even though there is an error, we can compensate this with low power 

and less area as well more compact design. This result is shown in the data results soon. Now 

considering the design with DCT using the New CORDIC algorithm. Since in the design in 

order to maintain a good precision, we have to take a more bit width. For example in the 

calculation for 3pi/8(chapter -1),the maximum value for i will be 13,means to have a proper 

precision, data atleast must be 50 bits wide, so automatically require more IOBs and in turn 

more area. Later we applied the DCT to the image and compared the PSNR of the three Lena 

images created by DCT using Chen’s algorithm, DCT using “CORDIC algorithm” and later 

DCT using the “New Cordic Algorithm”. Now consider the synthesis reports created by 

Xilinx 9.1ise.The family used for synthesizing is tabled below. 

 
           Synthesis results show that the DCT using Chen’s algorithm takes a lot of area, 

consume much power as there is a multiplier factor present in the algorithm, DCT using the 

new CORDIC algorithm is also inferior compared to the Angle Recoded Cordic algorithm in 

terms of area and power consumption. Also there must be trade off between required 

precision and the input bit width. For example to get the accurate precision upto 4 decimal 

digits after decimal point, input bit width is 43 bits in width, let it be 48 bits, which is a very 

large bit width considerable to Angle Recoded CORDIC Algorithm. Now Satisfying our need 

for good precision as well as less area, less power Angle Recoded CORDIC Algorithm is ow 

all the synthesis reports are given in tabular form. 

Algorithm used Area 
Power 

Consumption(Xpower) 

Conventional chen’s 

algorithm 
6.76% of total resources 

261.43 mw  is the peak 

power consumption 

Angle recoded CORDIC 4.62% of total resources 
210.20 mw of peak power 

consumption 

The New CORDIC algorithm 5.67% of total resources 
222.50 mw of peak power 

consumption 

Table 8.1 : Simulation results 
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Fig 8.1:Timing Diagram showing the DCT results using the New CORDIC algorithm. 

 
 

Fig 8.2:Timing diagram showing the DCT results using AR CORDIC algorithm 
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Fig 8.3:Timing diagram showing the DCT results using the New CORDIC algorithm. 

 

             

            From the above simulation results, we can say that DCT design using Angle Recoding 

algorithm is better compared with the Chen’s algorithm and even the new CORDIC 

algorithm In terms of area and power consumption. But the design is not optimized in terms 

of time. So  the of DCT using the Angle Recoded algorithm is better and it is very useful for 

the Modern DSP algorithms, since their implemenation always require less area and Low 

power.  
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The Principal Contribution of this thesis is to modify the existing AR CORDIC 

algorithm so that the implementation of 2D Discrete Cosine Transform using AR CORDIC 

could be done with less complexity, consequently less area. So it is made as a hardware as 

well as performance efficient. Also a comparison with the new CORDIC algorithm is made. 

In concluding this thesis, the discussion of previous chapters is recapitulated in brief. 

 

9.1Summary 

 The Discrete Cosine Transform is one of the most widely transform techniques in 

digital signal processing. In addition, this is also most computationally intensive transforms 

which require many multiplications and additions. Real time data processing necessitates the 

use of special purpose hardware which involves hardware efficiency as well as high 

throughput. Many DCT algorithms were proposed in order to achieve high speed DCT. Those 

architectures which involves multipliers ,for example Chen’s algorithm has less regular 

architecture due to complex routing and requires large silicon area. On the other hand, the 

DCT architecture based on distributed arithmetic (DA) which is also a multiplier less 

architecture has the inherent disadvantage of less throughputs because of the ROM access 

time and the need of accumulator. Also this DA algorithm requires large silicon area if it 

requires large ROM size. Systolic array architecture for the real-time DCT computation may 

have the large number of gates and clock skew problem. 

Digital signal processing (DSP) algorithms exhibit an increasing need for the efficient 

implementation of complex arithmetic operations. The computation of trigonometric 

functions, coordinate transformations or rotations of complex valued phasors is almost 

naturally involved with modern DSP algorithms. Popular application examples are algorithms 

used in digital communication technology and in adaptive signal processing. While in digital 

communications, the straightforward evaluation of the cited functions is important, numerous 

matrix based adaptive signal processing algorithms require the solution of systems of linear 

equations, QR factorization or the computation of Eigen values, eigenvectors or singular 

values. All these tasks can be efficiently implemented using processing elements performing 

vector rotations. The Coordinate Rotation Digital Computer algorithm (CORDIC) offers the 

opportunity to calculate all the desired functions in a rather simple and elegant way.  

 The DCT based on CORDIC algorithm doesn’t need multipliers .Morever; it has 

regularity and simple hardware architecture, which makes it easy to be implemented in VLSI. 

Also, the CORDIC based DCT algorithm can support the high performance applications such 

as HDTV due to high throughput. In this thesis, DCT using normal Chen’s algorithm was 
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implemented with word serial architecture, using AR Cordic algorithm and the new CORDIC 

algorithm was implemented. The architecture with which the DCT Core has been 

implemented was also described. The state machine for the controller part is also mentioned 

,correctly drawn and the code was also provided. The AR CORDIC algorithm with which the  

DCT is implemented was also described. The Architectures for the AR Cordic algorithm as 

well as the new CORDIC algorithm are the same. 

           In the new AR CORDIC algorithm, as per the rule the CORDIC algorithm involves a 

lot of iterations N, as usually more number of iterations means more precision and accurate 

results. The Conventional CORDIC algorithm states that, after shifting and rotation process is  

done, a scaling process is also there which involves the multiplication of the result with 

0.60725.So if we want to reduce the complexity of CORDIC algorithm; we have to 

concentrate on reducing the number of iterations and also in removing the scaling factor. So 

these factors are utilized by AR CORDIC algorithm and The New Cordic Algorithm 

respectively. In this ref [4], states an algorithm which utilizes an effective algorithm, but in 

this thesis work, that same algorithm is modified and presented which is working perfectly 

according to the simulation results. The modification lies in the Angle recoding and also in 

the changing of the scaling factor which also involves the same shifting and adding without 

much error. In DCT we already pre-determined the angles with which we have to rotate, so 

the angle recoding is easily possible. Also the scaling is different for different angles. The 

algorithm is briefly explained in chapter [2].The resulting architecture is simulated in 

Modelsim 5.7f, by taking an 8X8 matrix in the form of a text file. The detailed simulation are 

given in chapter [8].In the new Cordic algorithm, to put a sufficient precision of 0.0001 

around we have to take the input bit width of around 50 bits which is quite a large value. So 

from the simulations, the new algorithm is not good in terms of area and power consumption. 

But there is a tradeoff in terms of accuracy and in put bit width. If we sacrifice this we can 

get good results.By seeing the synthesis results which are given in chapter [8], the AR 

CORDIC algorithm is better in terms of area and power consumption. 

9.2Future Work 

 There are several issues regarding this CORDIC implementation of DCT are not 

issued in this thesis. The main issue of its kind is timing issues. The area and issues are not 

optimized for any of the three designs. This is due to lack of knowledge on Synopsys design 

compiler. The hardware implementation of this DCT Core isn’t made. If it was done then we 

would have estimated the correct use of then DCT and verify its use in some real time 

implementations. 
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Flow chart for Design flow for DCT design 
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Appendix B 
VHDL program for Controller in the DCT using Chen’s algorithm 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_signed.all; 
 
 
entity control_dct is 
port ( DIN_0: in std_logic_vector(7 downto 0); 
       DIN_1: in std_logic_vector(7 downto 0); 
       DIN_2: in std_logic_vector(7 downto 0); 
       DIN_3: in std_logic_vector(7 downto 0); 
       DIN_4: in std_logic_vector(7 downto 0); 
       DIN_5: in std_logic_vector(7 downto 0); 
       DIN_6: in std_logic_vector(7 downto 0); 
       DIN_7: in std_logic_vector(7 downto 0);        
       ND,RST,CLK: in std_logic; 
       RFD: out std_logic; 
       dct_out: out std_logic; 
       ena : inout std_logic; 
       control : inout std_logic; 
       finaldct : out std_logic; 
--       start_dct : out std_logic; 
       fin_0 : out std_logic_vector(37 downto 0); 
       fin_1 : out std_logic_vector(37 downto 0); 
       fin_2 : out std_logic_vector(37 downto 0); 
       fin_3 : out std_logic_vector(37 downto 0); 
       fin_4 : out std_logic_vector(37 downto 0); 
       fin_5 : out std_logic_vector(37 downto 0); 
       fin_6 : out std_logic_vector(37 downto 0); 
       fin_7 : out std_logic_vector(37 downto 0)); 
 end; 
 
architecture RTL of control_dct is 
type state_type is (datain,processing,transpose,transpose_ready,temp,transpose_delay,idle); 
signal state : state_type; 
component proj_dct  
port(x0,x1,x2,x3,x4,x5,x6,x7: in std_logic_vector(7 downto 0); 
     y0,y1,y2,y3,y4,y5,y6,y7: out std_logic_vector(22 downto 0)); 
end component; 
 
Component transpose_serial  
port(data0 : in  std_logic_vector(22 downto 0); 
     data1 : in std_logic_vector(22 downto 0); 
     data2 : in std_logic_vector(22 downto 0); 
     data3 : in std_logic_vector(22 downto 0); 
     data4 : in std_logic_vector(22 downto 0); 
     data5 : in std_logic_vector(22 downto 0); 
     data6 : in std_logic_vector(22 downto 0); 
     data7 : in std_logic_vector(22 downto 0); 
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     clk   : in std_logic; 
     ena   : in std_logic; 
   control : in std_logic; 
     data8 : out std_logic_vector(22 downto 0); 
     data9 : out std_logic_vector(22 downto 0); 
     data10 : out std_logic_vector(22 downto 0); 
     data11 : out std_logic_vector(22 downto 0); 
     data12 : out std_logic_vector(22 downto 0); 
     data13 : out std_logic_vector(22 downto 0); 
     data14 : out std_logic_vector(22 downto 0); 
     data15 : out std_logic_vector(22 downto 0)); 
end component; 
 
component proj_dct_2  
port(x0,x1,x2,x3,x4,x5,x6,x7: in std_logic_vector(22 downto 0); 
     y0,y1,y2,y3,y4,y5,y6,y7: out std_logic_vector(37 downto 0)); 
end component; 
 
--signal lena,lcontrol : std_logic; 
signal x0,x1,x2,x3,x4,x5,x6,x7 : std_logic_vector(7 downto 0); 
signal Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7 : std_logic_vector(22 downto 0); 
signal data8,data9,data10,data11,data12,data13,data14,data15 : std_logic_vector(22 downto 
0); 
signal twodct_0,twodct_1,twodct_2,twodct_3,twodct_4,twodct_5,twodct_6,twodct_7 : 
std_logic_vector(37 downto 0); 
begin 
chip : proj_dct  port map(X0,X1,X2,X3,X4,X5,X6,X7,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7); 
transpose_k : transpose_serial port 
map(data0=>Y0,data1=>Y1,data2=>Y2,data3=>Y3,data4=>Y4,data5=>Y5,data6=>Y6,data7
=>Y7, 
                        
clk=>clk,ena=>ena,control=>control,data8=>data8,data9=>data9,data10=>data10,data11=>d
ata11,data12=>data12,data13=>data13,data14=>data14,data15=>data15); 
chip_2 :proj_dct_2 port 
map(data15,data14,data13,data12,data11,data10,data9,data8,twodct_0,twodct_1,twodct_2,tw
odct_3,twodct_4,twodct_5,twodct_6,twodct_7);                         
                         
 
process(clk,rst,ena,control) 
variable processing_cnt : integer range 0 to 2; 
variable dct_cnt : integer range 0 to 9; 
variable some_delay : integer range 0 to 4; 
variable count : integer range 0 to 10; 
variable rfd_cnt : integer range 0 to 8; 
variable cnt_ksk : integer range 0 to 4; 
variable next_delay : integer range 0 to 8; 
begin 
if rst='1' then 
fin_0<=(others=>'0'); 
fin_1<=(others=>'0'); 
fin_2<=(others=>'0'); 
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fin_3<=(others=>'0'); 
fin_4<=(others=>'0'); 
fin_5<=(others=>'0'); 
fin_6<=(others=>'0'); 
fin_7<=(others=>'0'); 
rfd<='1'; 
ena<='0'; 
control<='0'; 
dct_out<='0'; 
finaldct<='0'; 
state<=IDLE; 
elsif clk'event and clk='1' then 
 if state=datain then 
  RFD<='0'; 
  X0<=DIN_0; 
  X1<=DIN_1; 
  X2<=DIN_2; 
  X3<=DIN_3; 
  X4<=DIN_4; 
  X5<=DIN_5; 
  X6<=DIN_6; 
  x7<=DIN_7; 
  state<=processing; 
 elsif state=processing and processing_cnt<2 then 
  
 processing_cnt:=processing_cnt+1; 
 elsif state=processing and processing_cnt=2 then 
 Processing_cnt:=0; 
 dct_cnt:=dct_cnt+1; 
 if dct_cnt < 8 then    
 ena<='1'; 
 control<='1'; 
 state<=idle; 
 elsif dct_cnt=8 then 
 dct_cnt:=0; 
 ena<='1'; 
 control<='1'; 
 rfd<='0'; 
 state<=transpose; 
 else 
 null; 
 end if; 
elsif state=transpose and some_delay < 2 then 
ena<='0'; 
control<='0'; 
some_delay:=some_delay+1; 
state<=transpose; 
elsif state=transpose and some_delay=2 then 
some_delay:=0; 
state<=transpose_ready; 
elsif state=transpose_ready and count<10 then 
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ena<='1'; 
control<='0'; 
if count=1 then 
dct_out<='1'; 
else 
dct_out<='0'; 
end if; 
state<=transpose_delay; 
elsif state=transpose_delay and cnt_ksk< 4 then 
ena<='0'; 
cnt_ksk:=cnt_ksk+1; 
elsif state=transpose_delay and cnt_ksk=4 then 
cnt_ksk:=0; 
fin_0<=twodct_0; 
fin_1<=twodct_1; 
fin_2<=twodct_2; 
fin_3<=twodct_3; 
fin_4<=twodct_4; 
fin_5<=twodct_5; 
fin_6<=twodct_6; 
fin_7<=twodct_7; 
count:=count+1; 
next_delay:=next_delay+1; 
if next_delay<8 then 
finaldct<='1'; 
state<=temp; 
elsif next_delay=8 then 
next_delay:=0; 
finaldct<='1'; 
state<=temp; 
else 
null; 
end if; 
elsif state=temp then 
finaldct<='0'; 
state<=transpose_ready; 
elsif state=transpose_ready and count=10 then 
ena<='0'; 
control<='0'; 
count:=0; 
state<=idle; 
elsif state=idle and ND='1' then 
ena<='0'; 
dct_out<='0'; 
if rfd_cnt< 8 then 
rfd<='1'; 
rfd_cnt:=rfd_cnt+1; 
elsif rfd_cnt=8 then 
rfd_cnt:=0; 
rfd<='1'; 
else 
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null; 
end if; 
control<='0'; 
state<=datain; 
else 
null; 
end if; 
end if; 
--lena<=ena; 
--lcontrol<=control; 
end process; 
end; 
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Appendix C 
VHDL program for the controller in the DCT using CORDIC algorithm 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
use work.array_type.all; 
 
entity cordic_control is 
port(data_0 : in signed(16 downto 0); 
data_1 : in signed(16 downto 0); 
data_2 : in signed(16 downto 0); 
data_3 : in signed(16 downto 0); 
data_4 : in signed(16 downto 0); 
data_5 : in signed(16 downto 0); 
data_6 : in signed(16 downto 0); 
data_7 : in signed(16 downto 0); 
rst : in std_logic; 
clk : in std_logic; 
start : inout std_logic; 
control : inout std_logic; 
start_dct : out std_logic; 
cordic_out : out std_logic; 
second_8 : out signed(16 downto 0); 
second_9 : out signed(16 downto 0); 
second_10 : out signed(16 downto 0); 
second_11 : out signed(16 downto 0); 
second_12 : out signed(16 downto 0); 
second_13 : out signed(16 downto 0); 
second_14 : out signed(16 downto 0); 
second_15 : out signed(16 downto 0)); 
end; 
 
architecture arch of cordic_control is 
 
component one_dimen_dct 
port( clk   : in std_logic; 
ena     : in std_logic; 
in_data : in in_array; 
out_data : out in_array); 
end component; 
 
component transpose_now 
port(data0 : in signed(16 downto 0); 
data1 : in signed(16 downto 0); 
data2 : in signed(16 downto 0); 
data3 : in signed(16 downto 0); 
data4 : in signed(16 downto 0); 
data5 : in signed(16 downto 0); 
data6 : in signed(16 downto 0); 
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data7 : in signed(16 downto 0); 
clk   : in std_logic; 
ena   : in std_logic; 
control : in std_logic; 
data8 : out signed(16 downto 0); 
data9 : out signed(16 downto 0); 
data10 : out signed(16 downto 0); 
data11 : out signed(16 downto 0); 
data12 : out signed(16 downto 0); 
data13 : out signed(16 downto 0); 
data14 : out signed(16 downto 0); 
data15 : out signed(16 downto 0)); 
end component; 
 
type state is (idle,one_dct,trans_inter,transpose_ready); 
signal st : state; 
signal ena : std_logic:='1'; 
signal  
temp_data_0,temp_data_1,temp_data_2,temp_data_3,temp_data_4,temp_data_5,temp_data_
6,temp_data_7 : signed(16 downto 0); 
signal temp_0,temp_1,temp_2,temp_3,temp_4,temp_5,temp_6,temp_7 : signed(16 downto 
0); 
signal dataout_0,dataout_1,dataout_2,dataout_3,dataout_4,dataout_5,dataout_6,dataout_7 : 
signed(16 downto 0); 
signal tran_0,tran_1,tran_2,tran_3,tran_4,tran_5,tran_6,tran_7 : signed(16 downto 0); 
signal second_0,second_1,second_2,second_3,second_4,second_5,second_6,second_7 : 
signed(16 downto 0); 
signal rasak_0,rasak_1,rasak_2,rasak_3,rasak_4,rasak_5,rasak_6,rasak_7 : signed(16 downto 
0); 
begin 
 
x1:one_dimen_dct port 
map(clk=>clk,ena=>'1',in_data(0)=>temp_data_0,in_data(1)=>temp_data_1,in_data(2)=>tem
p_data_2,in_data(3)=>temp_data_3, 
in_data(4)=>temp_data_4,in_data(5)=>temp_data_5,in_data(6)=>temp_data_6,in_data(7)=>t
emp_data_7,out_data(0)=>Temp_0, 
out_data(1)=>Temp_1,out_data(2)=>Temp_2,out_data(3)=>Temp_3,out_data(4)=>Temp_4,
out_data(5)=>Temp_5, 
out_data(6)=>Temp_6,out_data(7)=>Temp_7); 
 
tr : transpose_now port 
map(data0=>dataout_0,data1=>dataout_1,data2=>dataout_2,data3=>dataout_3,data4=>datao
ut_4, 
data5=>dataout_5,data6=>dataout_6,data7=>dataout_7,clk=>clk,ena=>start,control=>control
, 
data8=>tran_0,data9=>tran_1,data10=>tran_2,data11=>tran_3,data12=>tran_4,data13=>tran
_5, 
data14=>tran_6,data15=>tran_7); 
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x2 : one_dimen_dct port 
map(clk=>clk,ena=>'1',in_data(0)=>second_0,in_data(1)=>second_1,in_data(2)=>second_2,i
n_data(3)=>second_3, 
in_data(4)=>second_4,in_data(5)=>second_5,in_data(6)=>second_6,in_data(7)=>second_7, 
out_data(0)=>rasak_0,out_data(1)=>rasak_1,out_data(2)=>rasak_2,out_data(3)=>rasak_3, 
out_data(4)=>rasak_4,out_data(5)=>rasak_5,out_data(6)=>rasak_6,out_data(7)=>rasak_7); 
 
process(clk,rst) 
variable dct_cnt : integer range 0 to 8; 
variable block_cnt : integer range 0 to 9; 
variable tran_out_cnt : integer range 0 to 9; 
variable dct_tran_cnt : integer range 0 to 8; 
variable inter_cnt : integer range 0 to 9; 
begin 
if rst='1' then 
start<='0'; 
control<='0'; 
start_dct<='0'; 
cordic_out<='0'; 
second_8<=conv_signed(0,17); 
second_9<=conv_signed(0,17); 
second_10<=conv_signed(0,17); 
second_11<=conv_signed(0,17); 
second_12<=conv_signed(0,17); 
second_13<=conv_signed(0,17); 
second_14<=conv_signed(0,17); 
second_15<=conv_signed(0,17); 
st<=idle; 
elsif rising_edge(clk) then 
if st=one_dct and dct_cnt < 8 then 
if dct_cnt<1 then 
start_dct<='1'; 
else 
start_dct<='0'; 
end if; 
temp_data_0<=data_0; 
temp_data_1<=data_1; 
temp_data_2<=data_2; 
temp_data_3<=data_3; 
temp_data_4<=data_4; 
temp_data_5<=data_5; 
temp_data_6<=data_6; 
temp_data_7<=data_7; 
start<='0'; 
control<='0'; 
dct_cnt:=dct_cnt+1; 
elsif st=one_dct and dct_cnt=8 then 
dataout_0<=signed(shr(conv_std_logic_vector(Temp_0,17),"10")); 
dataout_1<=signed(shr(conv_std_logic_vector(Temp_1,17),"10")); 
dataout_2<=signed(shr(conv_std_logic_vector(Temp_2,17),"10")); 
dataout_3<=signed(shr(conv_std_logic_vector(Temp_3,17),"10")); 
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dataout_4<=signed(shr(conv_std_logic_vector(Temp_4,17),"10")); 
dataout_5<=signed(shr(conv_std_logic_vector(Temp_5,17),"10")); 
dataout_6<=signed(shr(conv_std_logic_vector(Temp_6,17),"10")); 
 
dataout_7<=signed(shr(conv_std_logic_vector(Temp_7,17),"10")); 
dct_cnt:=0; 
start<='1'; 
control<='1'; 
block_cnt:=block_cnt+1; 
if block_cnt < 8 then 
st<=one_dct; 
elsif block_cnt=8 then 
st<=transpose_ready; 
block_cnt:=0; 
else 
null; 
end if; 
elsif st=transpose_ready and dct_tran_cnt<8 then 
start<='0'; 
control<='0'; 
cordic_out<='0'; 
dct_tran_cnt:=dct_tran_cnt+1; 
elsif st=transpose_ready and dct_tran_cnt=8 then 
start<='1'; 
control<='0'; 
tran_out_cnt:=tran_out_cnt+1; 
if tran_out_cnt > 2 then 
cordic_out<='1'; 
second_8<=rasak_0; 
second_9<=rasak_1; 
second_10<=rasak_2; 
second_11<=rasak_3; 
second_12<=rasak_4; 
second_13<=rasak_5; 
second_14<=rasak_6; 
second_15<=rasak_7; 
end if; 
second_0<=tran_7; 
second_1<=tran_6; 
second_2<=tran_5; 
second_3<=tran_4; 
second_4<=tran_3; 
second_5<=tran_2; 
second_6<=tran_1; 
second_7<=tran_0; 
dct_tran_cnt:=0; 
if tran_out_cnt < 9 then 
st<=transpose_ready; 
elsif tran_out_cnt=9 then 
st<=trans_inter; 
tran_out_cnt:=0; 
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else 
null; 
end if; 
elsif st=trans_inter and inter_cnt < 9 then 
control<='0'; 
cordic_out<='0'; 
inter_cnt:=inter_cnt+1; 
elsif st=trans_inter and inter_cnt=9 then 
cordic_out<='1'; 
second_8<=rasak_0; 
second_9<=rasak_1; 
second_10<=rasak_2; 
second_11<=rasak_3; 
second_12<=rasak_4; 
second_13<=rasak_5; 
second_14<=rasak_6; 
second_15<=rasak_7; 
st<=idle; 
inter_cnt:=0; 
elsif st=idle and ena='1' then 
cordic_out<='0'; 
start<='0'; 
control<='0'; 
st<=one_dct; 
else 
null; 
end if; 
else 
null; 
end if; 
end process; 
end; 
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	The CORDIC is a class of hardware-efficient algorithms for the computation of trigonometric and other transcendental functions that use only shifts and adds to perform. The CORDIC set of algorithms for the computation of trigonometric functions was developed by Jack E. Volder in 1959 to help in building a real-time navigational system for the B-58 supersonic bomber. Later, J. Walther in 1971 extended the CORDIC scheme to other transcendental functions. The CORDIC method of functional computation is used by most handheld calculators (such as the ones by Texas Instruments and Hewlett-Packard) to approximate the standard transcendental functions.                                

