
DETERMINISTIC CLOCK GATING FOR
LOW POWER VLSI DESIGN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

VLSI Design and Embedded System

By

SURESH KUMAR AANANDAM

Roll No : 20507007

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

Rourkela, orissa – 769008

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DETERMINISTIC CLOCK GATING FOR
LOW POWER VLSI DESIGN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

VLSI Design and Embedded System

By

SURESH KUMAR AANANDAM

Roll No : 20507007

Under the Guidance of

Prof. K.K.MAHAPATRA

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

Rourkela, orissa – 769008

2007

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis titled, “ Deterministic Clock Gating for Low Power VLSI

Design ” submitted by Mr. Suresh Kumar Aanandam (Roll No : 20507007), in partial

fulfillment for the award of Master of Technology degree in Electronics &

Communication Engineering with the specialization in “ VLSI Design and Embedded

System ” during the session 2006-2007 at the National Institute of Technology, Rourkela

(Deemed University) is an authentic work carried out by him under my supervision and

guidance.

To the best of my knowledge, this matter embodied in the thesis has not been submitted at

any other university / institute for the award of any Degree or Diploma.

Prof. K.K. MAHAPATRA

Date : Department of E.C.E.

 National Institute of Technology

Rourkela – 769008.

ACKNOWLEDGEMENTS

I would like to extend my gratitude & my sincere thanks to my honorable, esteemed

supervisor Prof. K.K.Mahapatra, Department of Electronics and Communication

Engineering. He is not only a great lecturer with deep vision but also a kind person. His

knowledge and company at the time of crisis would be remembered lifelong.

I would like to thank all my teachers Prof. G.S. Rath, Prof. G. Panda, Prof. S.K. Patra and

Dr. S. Meher for providing a solid background for my studies and research thereafter. They

have been great sources of inspiration to me and I thank them from the bottom of my heart.

I would like to thank all faculty members and staff of the Department of Electronics and

Communication Engineering, N.I.T. Rourkela for their generous help in various ways for the

completion of this thesis.

I am especially indebted to my parents for their love, sacrifice, and support. They are my first

teachers and set great examples for me about how to live, study, and work.

Last but not least, I would like to thank all my friends, who made my stay in Rourkela an

unforgettable experience.

SURESH KUMAR AANANDAM

 i

CONTENTS

 Chapter No Title Page No

 Abstract iv

 List of Figures v

 List of Tables vii

1 Introduction

 1.1. Introduction 2

 1.2. Power dissipation in VLSI circuits 3

1.3. Dynamic power reduction techniques 3

1.4. Leakage power reduction techniques 6

2 Clock Gating

2.1. Introduction 9

2.1. Principle of Clock-Gating 9

3 General Purpose Processor Design

3.1. Introduction 14

3.2. Instruction set for the
 General-purpose microprocessor 15

3.3. Datapath 19

3.4. Control Unit 24

3.5. Complete Processor 26

4 Deterministic Clock Gating

4.1. Introduction 28

4.2. DCG for Pipeline Latches 29

4.3. DCG for Pipeline Stages 31

4.4. Implementation of DCG 32

 ii

5 Application

5.1. Traffic-light controller 37

6 Simulation Results

6.1. Hardware Description Language 41

6.2. Field Programmable Gate Arrays 43

6.3. Simulation Results of
General Purpose Processor 45

6.4. Simulation Results of Traffic light controller 47

6.5. Power calculations 49

7 Conclusion 51

References 52

Appendix 55

 iii

ABSTRACT

The demand for power-sensitive design has grown significantly in recent years due to

tremendous growth in portable applications. Consequently, the need for power efficient

design techniques has grown considerably. Several efficient design techniques have been

proposed to reduce both dynamic as well as static power in state-of-the-art VLSI circuit

applications. With the scaling of technology and the need for higher performance and more

functionality, power dissipation is becoming a major bottleneck for microprocessor designs.

Clock power is significant in high-performance processors.

Deterministic Clock Gating (DCG) technique effectively reduces the clock power. DCG is

based on the key observation that for many of the pipelined stages of a modern processor, the

circuit block usage in the near future is known a few cycles ahead of time. DCG exploits this

advance knowledge to clock-gate the unused blocks. Because individual circuit usage varies

within and across applications, not all the circuits are used all the time, giving rise to power

reduction opportunity. By ANDing the clock with a gate-control signal, clock-gating

essentially disables the clock to a circuit whenever the circuit is not used, avoiding power

dissipation due to unnecessary charging and discharging of the unused circuits.

Results show that DCG is very effective in reducing clock power. 25 – 33 % power

consumption is reduced by using this method. As high-performance processor pipelines get

deeper and power becomes a more critical factor, DCG’s effectiveness and simplicity will

continue to be important.

 iv

LIST OF FIGURES

 Figure No Title Page No

1.1 Single clock, flip-flop-based FSM. 4

1.2 Schematic diagram of gated clock design 5

2.1 A latch element 10

2.2 Clock gating a latch element 10

2.3 A dynamic logic gate 11

2.4 Clock gating a dynamic logic gate 12

3.1 Datapath 20

3.2 State diagram for the control unit. 24

3.3 Complete general purpose processor 26

4.1 Basic superscalar pipeline 30

4.2 Schematic of a selection logic cell with the
clock-gate signals extracted from it. 32

4.3 Clock-gating of the execution units. 33

4.4 Timing diagram for execution units clock-gating. 34

4.5 Clock-gating of pipeline latches. 34

5.1 Traffic light controller. 37

5.2 State diagram of traffic light controller. 38

5.3 Pre-computation based traffic light controller. 38

6.1 HDL Based design flow 42

6.2 Accumulator output 45

6.3 ALU output 45

6.4 Multiplexer output 45

6.5 Regfile output 46

6.6 Shifter output 46

 v

6.7 Tri-state buffer output 46

6.8 Normal Traffic light controller 47

6.9 PCL based DCG Traffic light controller output 47

6.10 PCL baesd DCG Traffic light controller
When North_sensor ON. 48

6.11 PCL based DCG Traffic light controller output

when TWO sensors ON. 48

 vi

LIST OF TABLES

 Table No Title Page No

3.1 Data movement instructions 17

3.2 Jump instructions 18

3.3 Arithmetic and logical instructions 18

3.4 Input / Output and Miscellaneous instructions 19

3.5 Alu operation 22

3.6 Shifter / Rotate operation 22

3.7 Control word signals for the Datapath 23

6.1 Cell Usage for the General Purpose Processor 49

6.2 Cell Usage for the General Purpose Processor
after DCG applied. 49

6.3 Cell Usage for the Traffic light controller. 49

 vii

Chapter 1

INTRODUCTION

1.1. INTRODUCTION

In recent years, the demand for power-sensitive designs has grown significantly. This

tremendous demand has mainly been due to the fast growth of battery-operated portable

applications such as notebook and laptop computers, personal digital assistants, cellular

phones, and other portable communication devices. Semiconductor devices are aggressively

scaled each technology generation to achieve high-performance and high integration density.

Due to increased density of transistors in a die and higher frequencies of operation, the power

consumption in a die is increasing every technology generation. Supply voltage is scaled to

maintain the power consumption within limit.

However, scaling of supply voltage is limited by the high-performance requirement. Hence,

the scaling of supply voltage only may not be sufficient to maintain the power density within

limit, which is required for power-sensitive applications. Circuit technique and system-level

techniques are also required along with supply voltage scaling to achieve low-power designs.

In the nano-meter regime, a significant portion of the total power consumption in high

performance digital circuits is due to leakage currents. Because high-performance systems are

constrained to a predefined power budget, the leakage power reduces the available power,

impacting performance. It also contributes to the power consumption during standby

operation, reducing battery life. Hence, techniques are necessary to reduce leakage power

while maintaining the high performance. Moreover, as different components of leakage are

becoming important with technology scaling, each leakage reduction technique needs

reevaluation in scaled technologies where sub-threshold conduction is not the only leakage

mechanism. New low-power circuit techniques are required to reduce total leakage in high-

performance nano-scale circuits.

A spectrum of circuit techniques including transistor sizing, clock gating, multiple and

dynamic supply voltage are there to reduce the dynamic power. For low-leakage design,

different circuit techniques including, dual Vth, forward/reverse bias, dynamically varying the

Vth during run time, sleep transistor, natural stacking are there.

 2

1.2. POWER DISSIPATION IN VLSI CIRCUITS

The total power dissipation in a circuit conventionally consists of two components, namely,

the static and dynamic power dissipation.

1.2.1. Dynamic power

For dynamic power dissipation there are two components one is switching power due to

charging and discharging of load capacitance. The other is the short circuit power due to the

nonzero rise and fall time of input waveforms. The switching power of a single gate can be

expressed as
PD = α CL VDD

2 f

Where α is the switching activity,

f is the operation frequency,

CL is the load capacitance,

VDD is the supply voltage.

The short circuit power of an unloaded inverter can be approximately given by

PSC = β (VDD – Vth)3 τ / 12T

Where β is the transistor coefficient,

τ is the rise/fall time,

T (1/f) is the delay.

1.2.2. Leakage power

There are three dominant components of leakage in a MOSFET in the nanometer regime:

(1) Sub-threshold leakage, which is the leakage current from drain to source (Isub).

(2) Direct tunneling gate leakage which is due to the tunneling of electron (or hole) from the

bulk silicon through the gate oxide potential barrier into the gate.

(3) The source/substrate and drain/substrate reverse-biased p-n junction leakage.

1.3. DYNAMIC POWER REDUCTION TECHNIQUES

Though the leakage power increases significantly in every generation with technology

scaling, the dynamic power still continues to dominate the total power dissipation of the

general purpose microprocessors. Effective circuit techniques to reduce the dynamic power

consumption include transistor size and interconnect optimization, gated clock, multiple

 3

supply voltages and dynamic control of supply voltage. Incorporating the above approaches

in the design of nano-scale circuits, the dynamic power dissipation can be reduced

significantly. Other techniques such as instruction set optimization, memory access reduction

and low complexity algorithms are also there to reduce the dynamic power dissipation in both

logics and memories.

1.3.1. Transistor sizing and interconnect optimization

The best way to reduce the junction capacitance as well as the overall gate capacitance is to

optimize the transistor size for a particular performance. Sizing techniques can be mainly

divided into two types.

• Path-based optimization.

• Global optimization.

In path-based optimization, gates in the critical paths are upsized to achieve the desired

performance, while the gates in the off critical paths are down sized to reduce power

consumption.

In global optimization, all gates in a circuit are globally optimized for a given delay.

1.3.2. Clock gating

Clock gating is an effective way of reducing the dynamic power dissipation in digital circuits.

In a typical synchronous circuit such as the general purpose microprocessor, only a portion of

the circuit is active at any given time. Hence, by shutting down the idle portion of the circuit,

the unnecessary power consumption can be prevented. One of the ways to achieve this is by

masking the clock that goes to the idle portion of the circuit.

Combinational

Logic

R
eg

is
te

rs

STATE

IN
OUT

GCLK

Fig 1.1. Single clock, flip-flop-based FSM.

 4

This prevents unnecessary switching of the inputs to the idle circuit block, reducing the

dynamic power. The input to the combinational logic comes through the registers, which are

usually composed of sequential elements, such as D flip-flops (Fig. 1.1.).

A gated clock design can be obtained by modifying the clocking structure shown in Fig.1.1.

A control signal (fa) is used to selectively stop the local clock (LCLK) when the

combinational block is not used. The local clock is blocked when fa is high. The latch shown

in Fig.1.2 is necessary to prevent any glitches in fa from propagating to the AND gate when

the global clock (GCLK) is high. The circuit operates as follows.

The signal fa is only valid before the rising edge of the global clock. When the global clock is

low, the latch is transparent, however, fa does not affect the AND gate. If fa is high during the

low-to-high transition of the global clock, then the global clock will be blocked by the AND

gate and local clock will remain at low. Power saving using gated clock technique strongly

depends on the efficient synthesis and optimization of dedicated clock-stopping circuitry.

 STATE

Combinational

logic

R
eg

is
te

rs

OUT

AND Latch

GCLK

IN

LCLK

fa

Fig.1.2. Schematic diagram of gated clock design

Effective clock gating requires a methodology that determines which circuits are gated, when,

and for how long. Clock-gating schemes that either result in frequent toggling of the clock-

gated circuit between enabled and disabled states, or apply clock gating to such small blocks

that the clock-gating control circuitry is almost as large as the blocks themselves, incur large

overhead. This overhead may result in power dissipation to be higher than that without clock

gating.

 5

1.3.3. Low-voltage operation

Supply voltage scaling was originally developed for switching power reduction. It is an

effective method for switching power reduction because of the quadratic dependency of

switching power on supply voltage. However, since the gate delay increases with decreasing

VDD, globally lowering VDD degrades the overall circuit performance. To achieve low-power

benefits without compromising performance, two ways of lowering supply voltage can be

employed: static and dynamic supply scaling.

In Static supply voltage scaling schemes, higher supply voltage is used in the critical paths of

the circuit, while lower supply voltages are used in the off critical paths.

In Dynamic supply voltage scaling schemes, the highest supply voltage delivers the highest

performance at the fastest designed frequency of operation. When performance demand is

low, supply voltage and clock frequency is lowered, just delivering the required performance

with substantial power reduction.

1.4. LEAKAGE POWER REDUCTION TECHNIQUES

The techniques to reduce leakage energy utilizing the slack without impacting performance

can be categorized based on when and how they utilize the available timing slack e.g. dual Vth

statically assigns high Vth to some transistors in non-critical paths at the design time so as to

reduce leakage current. The techniques, which utilize the slack in run time, can be divided

into two groups depending on whether they reduce standby leakage or active leakage.

Standby leakage reduction techniques put the entire system in a low leakage mode when

computation is not required. Active leakage reduction techniques slow down the system by

dynamically changing the Vth to reduce leakage when maximum performance is not needed.

1.4.1. Design time techniques

Design time techniques exploit the delay slack in non-critical paths to reduce leakage. These

techniques are static; once it is fixed, it cannot be changed dynamically while the circuit is

operating.

Dual threshold CMOS logic:

In this logic, a high Vth can be assigned to some transistors in the non-critical paths so as to

reduce sub-threshold leakage current, while the performance is not sacrificed by using low Vth

 6

transistors in the critical path(s). No additional circuitry is required, and both high

performance and low leakage can be achieved simultaneously.

Different Dual threshold CMOS techniques are

• Changing doping profile.

• Higher oxide thickness

• Large channel length

1.4.2. Run time techniques

Standby leakage reduction techniques place certain sections of the circuitry in standby mode

(low leakage mode) when they are not required.

Different Standby leakage reduction techniques are

• Natural transistor stacks.

• Sleep transistor (forced stacking).

• Forward/reverse body biasing.

Active leakage reduction techniques are intermittently slows down the faster circuitry and

reduces the leakage power consumption as well as the dynamic power consumption when

maximum performance is not required.

Dynamic Vth scaling (DVTS) scheme uses body biasing to adaptively change Vth based on the

performance demand. The lowest Vth is delivered, if the highest performance is required.

When performance demand is low, clock frequency is lowered and Vth is raised to reduce the

run-time leakage power dissipation. In cases when there is no workload at all, the Vth can be

increased to its upper limit to significantly reduce the standby leakage power.

1.4.3. Cache memories

Circuit techniques to reduce leakage in cache memories are

• Source biasing scheme.

• Forward/reverse body biasing scheme.

• Dynamic VDD scheme

• Leakage biased scheme

• Negative word line scheme

 7

Chapter 2

CLOCK GATING

2.1. INTRODUCTION

Clock power is a major component of microprocessor power mainly because the clock is fed

to most of the circuit blocks in the processor, and the clock switches every cycle. Thus the

total clock power is a substantial component of total microprocessor power dissipation.

Clock-gating is a well-known technique to reduce clock power. Because individual circuit

usage varies within and across applications, not all the circuits are used all the time, giving

rise to power reduction opportunity. By ANDing the clock with a gate-control signal, clock-

gating essentially disables the clock to a circuit whenever the circuit is not used, avoiding

power dissipation due to unnecessary charging and discharging of the unused circuits.

Specifically, clock-gating targets the clock power consumed in pipeline latches and dynamic-

CMOS-logic circuits (e.g., integer units, floating-point units, and word-line decoders of

caches) used for speed and area advantages over static logic.

Effective clock-gating, however, requires a methodology that determines which circuits are

gated, when, and for how long. Clock-gating schemes that either result in frequent toggling of

the clock-gated circuit between enabled and disabled states, or apply clock-gating to such

small blocks that the clock-gating control circuitry is almost as large as the blocks

themselves, incur large overhead. This overhead may result in power dissipation to be higher

than that without clock-gating.

2.1. PRINCIPLE OF CLOCK-GATING

The clock network in a microprocessor feeds clock to sequential elements like flip-flops and

latches, and to dynamic logic gates, which are used in high-performance execution units and

array address decoders (e.g. D-cache word-line decoder). At a high level, gating the clock to

a latch or a logic gate by ANDing the clock with a control signal prevents the unnecessary

charging/discharging of the capacitances when the circuit is idle, and saves the circuit’s clock

power.

 9

Out

Data

Clock

Latch

Fig 2.1 A latch element

Pr
ec

ha
rg

e
 ev

al
ua

te

Fig. 2.1 shows the schematic of a latch element. Cg is the latch’s cumulative gate capacitance

connected to the clock. Because the clock switches every cycle, Cg charges and discharges

every cycle and consumes significant amount of power. Even if the inputs do not change

from one clock to the next, the latch still consumes clock power.

Clock

Clk-gate
signal

g-clk
Latch

Data

Fig 2.2 clock gating a latch element

Out

In Fig. 2.2, the clock is gated by ANDing it with a control signal, which we refer as Clk-gate

signal. When the latch is not required to switch state, Clk-gate signal is turned off and the

clock is not allowed to charge/discharge Cg, saving clock power. Because the latches of an

operand (32 or 64 b) can be driven by an AND gate, the capacitance of the AND gate itself is

much smaller than the sum of multiple Cg of these latches. Hence, we can get a net power

saving.

 10

Now, let us consider a dynamic logic cell, the schematic of which is shown in Fig. 2.3.

PDN
logic

Clk
Cg

CL

out

Vdd

Gnd

In

Fig 2.3 A dynamic logic gate

Pr
ec

ha
rg

e
 ev

al
ua

te

Cg is the effective gate capacitance that appears as a capacitive load to the clock, and CL

is the capacitive load to the dynamic logic cell. Similar to the latch, the dynamic logic’s

Cg also charges and discharges every cycle and consumes power.

In addition to Cg, CL also consumes power: at the precharge phase of the clock, CL

charges through the PMOS precharge transistor and during the evaluate phase, it

discharges or retains value depending on the input to the pull-down logic. Whether CL

consumes power or not depends on both the current input and previous output. There are

two cases:

(1) If CL holds logic “1” at the end of a cycle, and the next cycle output evaluates to a

“1”, then CL does not consume any power: Precharging an already-charged CL does not

consume power unless there are leakage losses. Because the next output is a “1”, there is

no discharging.

(2) If CL holds a “0” at the end of a cycle, CL consumes precharge power, irrespective

of what the inputs are in the next cycle. Even if the input does not change, this precharge

power is consumed. If the next output is a “1”, no discharging occurs; otherwise, more

power is consumed in discharging CL.

 11

Clk – gate
signal

g clk

Fig 2.4 clock gating a dynamic logic gate

Clk

PDN
logic

CL

out

Vdd

Gnd

Cg

In

Fig. 2.4 shows the same dynamic logic cell with gated clock. If the dynamic logic cell is not

used in a cycle, Clk-gate signal prevents both Cg and CL from switching in the cycle. While

clock-gating latches reduce only unnecessary clock power due to Cg, clock-gating dynamic

logic reduces unnecessary dissipation of not only the clock power due to Cg, but also the

dynamic logic power due to CL. Here also, because the AND gate’s capacitance itself is much

smaller than Cg + CL, there is a net power saving. Moreover, a single AND gate can be used

to gate the clock to a large number of dynamic logic cells.

The concept of circuit-level clock-gating can be achieved by two good architectural

methodologies. They are Pipeline balancing (PLB) and Deterministic clock-gating.

Pipeline balancing method (PLB) exploits the inherent variation of instruction level

parallelism (ILP) within a program. PLB uses heuristics to predict a program’s instruction

level parallelism (ILP). If the degree of ILP in the next window is predicted to be lower than

the width of the pipeline, PLB clock-gates a cluster of pipeline components during the

window.

In contrast to PLB’s predictive methodology, Deterministic clock-gating (DCG) is based on

the key observation that for many of the pipeline stages in a modern processor, a circuit block

usage in a specific cycle in the near future is deterministically known a few cycles ahead of

time. DCG exploits this advance knowledge to clock-gate the unused blocks.

 12

Chapter 3

GENERAL PURPOSE PROCESSOR

3.1. INTRODUCTION

In designing a CPU, we must first define its instruction set and how the instructions are

encoded and executed. We need to answer questions such as how many instructions do we

want? What are the instructions? What operation code (opcode) do we assign to each of the

instructions? How many bits do we use to encode an instruction?

Once we have decided on the instruction set, we can proceed to designing a datapath that can

execute all the instructions in the instruction set. In this step we are creating a custom

datapath, so we need to answer questions such as what functional units do we need? How

many registers do we need? Do we use a single register file or separate registers? How the

different units are connected together?

Finally, we can design the control unit. Just like the dedicated microprocessor, the control

unit asserts the control signals to the datapath. This finite-state machine cycles through three

main steps or states: 1) fetch an instruction; 2) decode the instruction; and 3) execute the

instruction. The control unit performs these steps by sending the appropriate control signals

to the datapath or to external devices.

Instructions in your program are usually stored in external memory, so in addition to the

CPU, there is external memory that is connected to the CPU via an address bus and a data

bus. Hence, step 1 (fetch an instruction) usually involves the control unit setting up a memory

address on the address bus and telling the external memory to output the instruction from that

memory location onto the data bus. The control unit then reads the instruction from the data

bus. To keep our design simple, instead of having external memory, we will put the memory

directly inside the CPU and implemented simply as a 64-byte array. In fact, there are real

CPUs with internal program memory.

For step 2 (decode the instruction) the control unit extracts the opcode bits from the

instruction and determines what the current instruction is by jumping to the state that has

been assigned for executing that instruction. Once in that particular state, the finite-state

machine performs step 3 by simply asserting the appropriate control signals for controlling

the datapath to execute that instruction.

 14

3.2. GENERAL PURPOSE MICROPROCESSOR

The instructions that our general-purpose microprocessor can execute and the corresponding

encoding are defined in Figure 1. The Instruction column shows the syntax and mnemonic to

use for the instruction when writing a program in assembly language. The Encoding column

shows the binary encoding for the instructions and the Operation column shows the actual

operation of the instruction. The instructions are separated into four categories:

 1) Data movement instructions for transferring data between the accumulator, the

 general registers and the memory.

 2) Jump instructions for changing the instruction execution sequence.

 3) Arithmetic and logical instructions for performing arithmetic and logics. and

 4) Input / Output and miscellaneous instructions. There are five data movement

instructions, eight jump instructions, ten arithmetic and logic instructions, two input/output

instructions, and two miscellaneous instructions.

The number of instructions implemented determines the number of bits required to encode all

the instructions. All instructions are encoded using one byte except for instructions that have

a memory address as one of its operand, in which case a second byte for the address is

needed. The encoding scheme uses the first four bits as the opcode. Depending on the

opcode, the last four bits are interpreted differently as follows.

3.2.1. Two Operand Instructions

If the instruction requires two operands, it always uses the accumulator (A) for one operand.

If the second operand is a register then the last three bits in the encoding specifies the register

file number. An example of this is the LDA (load accumulator from register) instruction

where it loads the accumulator with the content of the register file number specified in the

last three bits of the encoding. Another example is the ADD (add) instruction where it adds

the content of the accumulator with the content of the specified register file and put the result

in the accumulator. The result of all arithmetic and logical operations is stored in the

accumulator.

The LDI (load accumulator with immediate value) is also a two-operand instruction.

However, the second operand is an immediate value that is obtained from the second byte of

 15

the instruction itself (iiiiiiii). These eight bits are interpreted as a signed number and is loaded

into the accumulator.

3.1.2. One Operand Instructions

One-operand instructions always use the accumulator and the result is stored back in the

accumulator. In this case, the last four bits in the encoding are used to further decode the

instruction. An example of this is the INC (increment accumulator) instruction. The opcode

(1110) is used by all the one-operand arithmetic and logical instructions. The last four bits

(0001) specify the INC instruction.

3.2.3. Instructions Using a Memory Address

For instructions that have a memory address as one of its operand, an additional six bits are

needed in order to access the 64 bytes of memory space. These six bits (aaaaaa) are specified

in the six least significant bits of the second byte of the instruction. An example is the LDM

(load accumulator from memory) instruction. The address of the memory location where the

data is to be loaded from is specified in the second byte. In this case, the last four bits of the

first byte and the first two bits in the second byte are not used and are always set to 0. All the

absolute jump instructions follow this format.

3.2.4. Jump Instructions

For jump instructions, the last four bits of the encoding also serves to differentiate between

absolute and relative jumps. If the last four bits are zeros, then it is an absolute jump,

otherwise, they represent a sign and magnitude format relative displacement from the current

location as specified in the program counter (PC). For example, the two-byte encoding 0110

0000 0000 0100 specifies an absolute unconditional jump to memory location 4. The first

four bits (0110) specify the unconditional jump. The second four bits (0000) specify an

absolute jump. The last six bits (000100) specify the memory address.

On the other hand, the one-byte encoding 0110 0100 specifies a relative unconditional jump

to PC + 4. Again, the first four bits (0110) specify the unconditional jump. The next four bits

(0100) specify that it is a relative jump because it is not zero. The relative position to jump to

is +4 because the first bit is a 0, which is for forward and the last three bits evaluate to 4. To

jump backward by four locations, we would use 1100 instead.

 16

Two conditional flags (zero and positive) are used for conditional jumps. These flags are set

or reset depending on the value of the accumulator when the accumulator is written to.

Instructions that modify the accumulator include LDA, LDM, LDI, all the arithmetic and

logic instructions, and IN. For example, if the result of the ADD instruction is a positive

number, then the zero flag will be reset and the positive flag will be set. A conditional jump

then reads the value of these flags to see whether to jump or not. The JZ instruction will not

jump after the previous ADD instruction, where as the JP instruction will perform the jump.

Notations:

 A = accumulator.

 R = general register.

 M = memory.

 rrr = three bits for specifying the general register number (0 – 7).

 aaaaaa = six bits for specifying the memory address.

 iiiiiiii = an eight bit signed number.

 PC = program counter.

 smmm = four bits for specifying the relative jump displacement in sign and

magnitude format. The most significant bit (s) determines whether to jump forward or

backward (0 = forward, 1 = backward). The last three bits (mmm) specify the number of

locations to increment or decrement from the current PC location.

3.2.5. Instruction set

Instruction

Encoding Operation Comment

LDA A,rrr 0001 0rrr A ← R[rrr] Load accumulator from
register

STA rrr,A 0010 0rrr R[rrr] ← A Load register from
accumulator

LDM A,aaaaaa 0011 0000
00 aaaaaa A ← M[aaaaaa] Load accumulator from

memory
STM aaaaaa,A 0100 0000

00 aaaaaa M[aaaaaa] ← A Load memory from
accumulator

LDI A,iiiiiiii 0101 0000
iiiiiiii A ← iiiiiiii

Load accumulator with
immediate value(iiiiiiii
is a signed number)

Table 3.1. Data movement instructions

 17

Instruction

Encoding Operation Comment

JMP absolute 0110 0000
00 aaaaaa PC = aaaaaa Absolute

unconditional jump

JMPR relative 0110 smmm
if (smmm!= 0) then
if (s == 0) then PC = PC+mmm;
else PC = PC-mmm;

Relative
unconditional jump

JZ absolute 0111 0000
00 aaaaaa if (A == 0) then PC = aaaaaa Absolute jump if A

is zero

JZR relative 0111 smmm
if (A == 0 and smmm!= 0) then if
(s == 0) then PC = PC+mmm; else
PC = PC-mmm;

Relative jump if A is
zero

JNZ absolute 1000 0000
00 aaaaaa if (A != 0) then PC = aaaaaa Absolute jump if A

is notzero

JNZR relative 1000 smmm
if (A != 0 and smmm!= 0) then if
(s == 0) then PC = PC+mmm; else
PC = PC-mmm;

Relative ump if A is
notzero

JP absolute 1001 0000
00 aaaaaa

if (A == possitive) then PC =
aaaaaa

Absolute jump if A
is possitive

JPR relative 1001 smmm
if (A == positive and smmm!= 0)
then if (s == 0) then PC =
PC+mmm; else PC = PC-mmm;

Relative ump if A is
possitive

Table 3.2. Jump instructions

Instruction

Encoding Operation Comment

AND A,rrr 1010 0rrr A ← A AND R[rrr] Accumulator AND
register

OR A,rrr 1011 0rrr A ← A OR R[rrr] Accumulator OR
register

ADD A,rrr 1100 0rrr A ← A + R[rrr] Accumulator + register
SUB A,rrr 1101 0rrr A ← A - R[rrr] Accumulator - register
NOT A 1110 0000 A ← NOT A Invert accumulator
INC A 1110 0001 A ← A + 1 Increment accumulator

DEC A 1110 0010 A ← A - 1 Decrement accumulator

SHFL A 1110 0011 A ← A << 1 Shift accumulator let

SHFR A 1110 0100 A ← A >> 1 Shift accumulator right

ROTR A 1110 0101 A ← Rotate right (A) Rotate accumulator right

Table 3.3. Arithmetic and logical instructions

 18

Instruction

Encoding Operation Comment

In A 1111 0000 A ← input Input to accumulator

Out A 1111 0001 Output ← A Output from
accumulator

HALT 1111 0010 Halt Halt execution

NOP 0000 0000 No operation No operation

Table 3.4. Input / Output and Miscellaneous instructions

3.3. DATAPATH

Having defined the instruction set for our general microprocessor, we are now ready to

design the custom datapath that can execute all the operations as defined by all the

instructions. The resulting datapath is shown in Fig. 3.1.

The width of the datapath is eight bits, i.e. all the connections for data movement are eight

bits wide (thicker lines). The remaining thinner control lines are all one bit wide unless the

name for that control line has a number subscript such as faddr_dp2,1,0 , in which case there

are as many lines as the subscript numbers. For example, the control line label rfaddr_dp2,1,0

is actually composed of three separate lines.

3.3.1. Input multiplexer

The 4-to-1 input mux at the top of the datapath drawing selects one of four different inputs to

be written into the accumulator. These four inputs, starting from the left, are:

 (1) imm_dp for getting the immediate value from the LDI instruction and storing it

into the accumulator.

 (2) input_dp for getting a user input value for the IN instruction;

 (3) The next input selection allows the content of the register file to be written to the

accumulator as used by the LDA instruction.

 (4) Allows the result of the ALU and the shifter to be written to the accumulator as

used by all the arithmetic and logical instructions.

 19

Fig 3.1. Datapath

3.3.2. Conditional Flags

The two conditional flags, zero and positive, are set by two comparators that check the value

at the output of the mux which is the value that is to be written into the accumulator for these

two conditions. To check for a value being zero, recall that just a NOR gate will do. In our

case, we need an eight-input NOR gate because of the 8-bit wide data bus. To check for a

positive number, we simply need to look at the most significant sign bit. A 2’s complement

positive number will have a zero sign bit, so a single inverter connected to the most

significant bit of the data bus is all that is needed to generate this positive flag signal.

 20

3.3.3. Accumulator

The accumulator is a standard 8-bit wide register with a write wr and clear clear control input

signals. The write signal, connected to accwr_dp, is asserted whenever we want to write a

value into the accumulator. The clear signal is connected to the main computer reset signal

rst_dp, so that the accumulator is always cleared on reset. The content of the accumulator is

always available at the accumulator output. The value from the accumulator is sent to three

different places:

 (1) It is sent to the output buffer for the OUT instruction;

 (2) It is used as the first (A) operand for the ALU; and

 (3) It is sent to the input of the register file for the STA instruction.

3.3.4. Register File

The register file has eight locations, each 8-bit wide. Three address lines, rfaddr_dp2,

rfaddr_dp1, rfaddr_dp0 are used to address the eight locations for both reading and writing.

There are one read port and one write port. The read port is always active which means that it

always has the value from the currently selected address location. However, to write to the

selected location, the write control line rfwr_dp must be asserted before a value is written to

the currently selected address location. Note that a separate read and write address lines is not

required because all the instructions either perform just a read from the register file or a write

to the register file. There is no one instruction that performs both a read and a write to the

register file. Hence, only one set of address lines is needed for determining both the read and

write locations.

3.3.5. ALU

The ALU has eight operations implemented as defined by the following table. The operations

are selected by the three select lines alusel_dp2, alusel_dp1, and alusel_dp0. The select lines

are asserted by the corresponding ALU instructions as shown under the Instruction column in

the above table. The pass through operation is used by all non-ALU instructions.

 21

alusel_dp2 alusel_dp1 alusel_dp0 Operation name Operation Instruction

0 0 0 pass Pass A to output Non-ALU

0 0 1 AND A And B AND A,rrr

0 1 0 OR A OR B OR A,rrr

0 1 1 NOT A’ NOT A

1 0 0 Addition A + B ADD A,rrr

1 0 1 Subtraction A - B SUB A,rrr

1 1 0 Increment A + 1 INC A

1 1 1 Decrement A - 1 DEC A

Table 3.5. Alu operation

3.3.6. Shifter / Rotator

The Shifter has four operations implemented as defined by the following table. The

operations are selected by the two select lines shiftsel_dp1, and shiftsel_dp0. The select lines

are asserted by the corresponding Shifter/Rotator instructions as shown under the Instruction

column in the above table. The pass through operation is used by all non-Shifter/Rotator

instructions.

Shiftsel_dp1 Shiftsel_dp1 Operation Instruction

0 0 Pass through non Shift / Rotate
instructions

0 1 Shift left and fill with 0 SHFL A

1 0 Shift right and fill with 0 SHFL A

1 1 Rotate right ROTR A

Table 3.6. Shifter / Rotate operation

3.3.7. Output Buffer

The output buffer is a register with an enable control signal connected to outen_dp.

Whenever the enable line is asserted, the output from the accumulator is stored into the

buffer. The value stored in the output buffer is used as the output for the computer and is

 22

always available. The enable line is asserted either by the OUT A instruction or by the system

reset signal.

3.3.8. Control Word

From Figure 3.1, we see that the control word for this custom datapath has fourteen bits,

which maps to the control signals for the different datapath components. These fourteen

control signals are summarized in Table3.7.

Number Signal name Component Purpose

14 muxsel_dp1 4-input mux Select line1

13 muxsel_dp0 4-input mux Select line1

12 accwr_dp accumulator Write enable

11 rst_dp accumulator clear

10 Rfwr_dp register file Write enable

9 Rfaddr_dp2 register file Address line 2

8 Rfaddr_dp1 register file Address line 1

7 Rfaddr_dp0 register file Address line 0

6 alusel_dp2 ALU Select line 2

5 alusel_dp1 ALU Select line 1

4 alusel_dp0 ALU Select line 0

3 shitsel_dp1 shifter Select line 1

2 shitsel_dp0 shifter Select line 0

1 outen_dp Tri-state buffer Output enable

Table 3.7. Control word signals for the Datapath

For example, to execute the ADD instruction, which adds the content of the accumulator with

the content of the specified register file location and writes the result back into the

accumulator, the value in the accumulator is passed to the A operand of the ALU. The B

operand of the ALU comes from the register file, the location of which is selected from

setting the register file address lines rfaddr_dp2,1,0. The appropriate ALU select lines

alusel_dp2,1,0 are set to select the ADD operation. The shifter is not needed and so the pass

 23

through operation is selected. The output of the shifter is routed back through input 0 of the

multiplexer and finally written back to the accumulator.

So the control word for the instruction ADD A, 011 is

muxsel1 muxsel0 accwr rst rfwr rfaddr2 rfaddr1 rfaddr0 alusel2 alusel1 alusel0

0 0 1 0 0 0 1 1 1 0 0

Shiftsel2 Shiftsel1 outen

0 0 0

3.4. CONTROL UNIT

The finite state machine for the control unit basically cycles through four main states: reset,

fetch, decode, and execute, as shown in Figure 3.2. There is one execute state for each

instruction in the instruction set.

Execute
ADD

Execute
LDA

Execute
JMP

Reset

Fetch

Decode

Fig.3.2. State diagram for the control unit.

 24

3.4.1. Reset

The finite state machine starts executing from the reset state when the reset signal is asserted.

On reset, the finite state machine initializes all its working variables and control signals. The

variables include PC – program counter, IR – instruction register, state – the state variable. In

addition, the content of the memory, i.e., the program for the computer to execute is also

loaded at this time.

3.4.2. Fetch

 In the fetch state, the memory content of the location pointed to by the PC is loaded

into the instruction register. The PC is then incremented by one to prepare it for fetching the

next instruction. If the fetched instruction is a jump instruction, then the PC will be changed

accordingly during the execution phase.

3.4.3. Decode

The content that is stored in the instruction register is decoded according to the encoding that

is assigned to the instructions as listed in table3.1, 3.2, 3.3, and 3.4. This is accomplished in

VHDL using a CASE statement with the switch condition being the opcode. From the

different cases, the state that is responsible for executing the corresponding instruction is

assigned to the next state variable. As a result, the instruction will be executed starting at the

beginning of the next clock cycle when the FSM enters this new state.

3.4.4. Execute

The execution state simply sets up the control word, which asserts the appropriate control

signals for the datapath to carry out the necessary operations for executing a particular

instruction. Each instruction, therefore, has its own execute state. For example, the execute

state for the add instruction ADD A, 011 will set up the following control word.

muxsel1 muxsel0 accwr rst rfwr rfaddr2 rfaddr1 rfaddr0 alusel2 alusel1 alusel0

0 0 1 0 0 0 1 1 1 0 0

Shiftsel2 Shiftsel1 outen

0 0 0

 25

For all the jump instructions, no actions need to be taken by the datapath. It simply

determines whether to perform the jump or not depending on the particular jump instruction

and by checking on the zero and positive flags. If a jump is needed then the target address is

calculated and then assigned to the PC. At the end of the execute state, the FSM goes back to

the fetch state and the cycle repeats for the next instruction.

3.5. Complete Processor

Fig.3.3. Complete general purpose processor

 26

Chapter 4

DETERMINISTIC CLOCK GATING

4.1. INTRODUCTION

Deterministic clock-gating (DCG) is based on the key observation that for many of the

pipeline stages in a modern processor, a circuit block usage in a specific cycle in the near

future is deterministically known a few cycles ahead of time. DCG exploits this advance

knowledge to clock-gate the unused blocks. In particular, we propose to clock-gate execution

units, pipeline latches of back-end stages after issue, L1 D-cache word-line decoders, and

result bus drivers. In an out-of-order pipeline, whether these blocks will be used is known at

the end of issue based on the instructions issued. There is at least one cycle of register read

stage between issue and the stages using execution units, D-cache word-line decoder, result

bus driver, and the back-end pipeline latches. DCG exploits this one-cycle advance

knowledge to clock-gate the unused blocks without impacting the clock speed.

DCG has the following key features.

 1) DCG is based on actual usage of circuit blocks and not on predictions. Therefore,

DCG avoids performance loss due to mispredictions causing circuits to be gated when they

are needed, and lost opportunity due to mispredictions causing circuits not to be gated when

they are idle.

 2) DCG clock-gates at fine granularities of a few (1–2) cycles on small circuit blocks

(execution units, D-cache decoders, result bus drivers, and pipeline latches). The fine

granularity enables flexible gating of individual pipeline stages without the all-or-nothing

restriction of gating the entire pipeline backend, making DCG effective. However, DCG’s

blocks are still substantially larger than the few gates added for clock-gating, allowing DCG

to amortize the overhead.

 3) DCG is a simple technique requiring no fine-tuning of thresholds, and is general

enough to be applicable to clustered and non-clustered micro architectures.

DCG not only achieves large power savings, but also incurs no performance loss, while being

simple.

In this section, we analyze the opportunity of DCG in different parts of a superscalar micro

architecture.

DCG depends on two factors:

 1) Opportunity due to existence of idle clock cycles (i.e., cycles when a logic block is

not being used) and

 2) Advance information about when the logic block will not be used in the future.

 28

Fig. 4.1 depicts the general pipeline model for a superscalar processor. The pipeline consists

of eight stages with pipeline latches between successive stages, used for propagating

instruction/ data from one stage to the next. Here is the explanation, why we do or do not

clock-gate each individual pipeline latch and stage.

4.2 DCG FOR PIPELINE LATCHES

Pipeline latches unconditionally latch their inputs at every clock edge, resulting in high power

dissipation. As the technology scales down, deeper pipeline stages with more latches are

used. Furthermore, the data width (e.g., 32 versus 64 b) also increases with microprocessor

evolution. Consequently, the ratio of the latch power to the total processor power increases.

Because most of the stage latches have some idle cycles, clock-gating the latches during these

cycles can substantially save processor power. Each of the stages to determine if an idle cycle

for the stage can be known in advance is analyzed.

Instructions are fetched from the instruction cache every cycle. The instructions are then

decoded, checked for dependences, renamed, and deposited in an instruction window. For a

branch, the instructions on the predicted path will be taken before the branch is resolved. At

the end of decode, we can determine how many of the instructions are in the predicted path

out of those fetched. That is, if the third instruction in a fetched block is a branch and the

branch is predicted to be taken then the instructions from the fourth instruction to the end of

the fetched block are thrown away. Only the first three instructions enter the rename stage.

Unfortunately, we cannot clock-gate the latches following fetch and decode because before

decode we do not know how many instructions are in the fetched path. However, we can

determine the number of instructions that will enter the rename stage at the end of decode and

clock-gate the unnecessary parts of the rename latch. We have the entire rename stage to set

up the clock-gate control of the rename latch.

 29

Fetch (IF)

Decode (ID)

Rename (RN)

Instruction Queue (IQ)
Wakeup/select

Reg Read (RF)

Execute (Ex)

Memory (Mem)

Write Back (WB)

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

Fig 4.1 basic superscalar pipeline

 30

Because we can identify which and how many instructions are selected to issue only at the

very end of issue, we do not have enough time to clock-gate the issue latch. We can clock-

gate the latches for the rest of the pipeline stages [register read (RF), execute (Ex), memory

access (Mem) and Write-Back (WB)]. At the beginning of the each of the stages we know

how many instructions are entering the stage, and we can exploit the time during the stage to

set up the clock-gate control for these latches.

4.3 DCG FOR PIPELINE STAGES

Fetch stage uses the decoders in the instruction cache and decode stage uses instruction

decoder, both of which are often implemented with dynamic logic circuits. However, we

cannot clock-gate fetch and decode logic, because fetch and decode occur almost every cycle.

We do not know which instructions are useless until we decode them, which is too late to

clock-gate the decode stage. Rename stage consumes little power and so we do not consider

rename stage for clock-gating.

The issue stage consists of the issue queue, which uses an associative array and a

wakeup/select combinational logic. Issue queue entries that are either deterministically

determined to be empty, or deterministically known to be already woken up, are essentially

clock-gated.

Register read stage consists of a register file implemented using an array. However, only at

the very end of issue, we know how many instructions are selected and are going to access

the register file in the next cycle. Hence, there is no time to clock-gate the register file.

We can clock-gate the execution units, which are often implemented with dynamic logic

blocks for high performance. Based on the instructions issued, we deterministically know at

the end of issue which unit is going to be used in the cycle after the register read stage.

Hence, we can clock-gate the rest of the unused execution units, by setting the clock-gate

control during the read cycle.

Modern caches use dynamic logic for word-line decoding and the write-back stage uses result

bus driver to route result data to the register file. Instructions that enter the execute stage go

through the memory and write-back stages. We can use the same clock-gate control used in

execute to clock-gate the relevant logic in these stages. The control signal needs to be delayed

by one and two clock cycle(s), respectively, for the memory and write-back stages.

 31

4.4. IMPLEMENTATION OF DCG

4.4.1. Execution Units

At the end of instruction issue, we know which execution units will be used in the execute

stage, a few cycles into the future. The selection logic in a conventional issue queue not only

selects which instructions are to be issued based on execution unit availability, but also

matches instructions to execution unit. Hence, we leverage the selection logic to provide

information about which execution units will remain unused and clock-gate those units.

Priority
encoder

OR

Grand0

Grand3

To Clk-
gating
control

To Requesting
instructions

R
eq

0

R
eq

3

ANY REQ ENABLE

Fig 4.2. Schematic of a selection logic cell with the clock-
gate signals extracted from it.

Fig. 4.2 shows the schematic of selection logic associated with one type of execution units

(e.g., integer ALU, or floating-point adder, or floating-point multiplier, etc.). The request

signals (REQ) come from the ready instructions once the wakeup logic determines which

instructions are ready. The selection logic uses some selection policy to select a subset of the

ready instructions, and generates the corresponding grant signals (GRANT). In our

implementation, we send the GRANT signals to the clock-gate control.

 32

Fig 4.3. Clock-gating of the execution units.

Fig. 4.3 shows the pipeline details of the control. Because instructions selected in cycle X use

the execution units in cycle (as shown in Fig. 4.4), we have to pass the GRANT signals down

the pipeline through latches for proper timing of clock-gating. We extend the pipeline latches

for the issue and read stages by a few extra bits to hold the GRANT signals. We note that the

gated clock line (output of the AND gates in Fig. 4.3) that feeds the execution units may be

skewed a bit because of the delay through the latch and the AND gate. This skew affects only

the precharge phase and not the evaluate phase. Therefore, DCG is likely not to lengthen

execution unit latencies.

The control for clock-gating execution units is simple and the overhead of the extended

latches and the AND gates is small compared to the execution units (e.g., 32- or 64-b carry-

look ahead adders) themselves. Therefore, the area and power overhead of the control

circuitry are easily amortized by the significant power savings achieved. If execution units

keep toggling between gated and non-gated modes, the control circuitry keeps switching,

resulting in an increased overhead due to the power consumed by the control circuitry. To

alleviate this problem, we apply sequential priority policy for execution units: Among the

execution units of the same type, we statically assign priorities to the units, so that the higher

priority units are always chosen to be used before the lower priority units. Thus, most of the

 33

time the (lower) higher priority units stay in (gated) non-gated mode, minimizing the control

power overhead.

Select
X

Reg Read
X+1

Exe
X+2

Mem
X+3

L4 L5 L6 L7

Fig 4.4. Timing diagram for execution units clock-gating.

4.4.2. Pipeline Latches

We clock-gate pipeline latches at the end of rename, register read, execute, memory, and

write-Back stages. For rename, the number of clock-gated latches in any cycle is known from

the decode stage in the previous cycle. For latches in the other stages, the number of clock-

gated latches in any cycle is known from the issue stage. We augment the issue stage to

generate a one-hot encoding of how many instructions are issued every cycle. The encoding

has a “0” to represent an empty issue slot, and a “1” to represent a full issue slot for an issued

instruction, for all the issue slots of the pipeline. Much like the execution units, the clock the

one-hot encoding is passed down the pipe via extended pipeline latches.

Fig 4.5. Clock-gating of pipeline latches.

 34

Fig. 4.5 shows the clock-gating control for the stages following issue queue. The outputs of

the extended latches carrying the one-hot encoding are ANDed with the clock line to generate

a set of gated clock inputs for pipeline latches corresponding to individual issue slots. Note

that the clock line for the extra latches themselves is not gated.

Extensions to the pipeline latches and the extra AND gates for the control are small compared

to the pipeline latches (containing issue-width X number of operands per instruction X

operand width bits, e.g., 8 X 2 X 64 = 1024 b) themselves, and clock drivers, respectively.

Hence, the impact of the extra control logic on area and power is not significant.

 35

Chapter 5

APPLICATION

5.1. TRAFFIC LIGHT CONTROLLER

The controller to be designed controls the Traffic lights of a junction intersecting two main

roads. Figure 5.1 shows the location of the Traffic lights. Sensors at the intersection detect the

presence of cars on the highway and side road.

The controller operates the traffic lights at an intersection where two-way street running north

and south intersects a two-way street running east and west. The goal is to design the

controller so that collisions are avoided, and no traffic waits at a red light

forever.

EAST
SENSOR

NORTH
SENSOR

WEST
SENSOR

SOUTH
SENSOR

Fig 5.1 Traffic light controller

The controller has four traffic sensor inputs, N_Sensor, W_Sensor, S_Sensor and E_Sensor

indicating when a vehicle is present at the intersection traveling in the north, south, west and

east directions respectively. There are four green outputs, N_G, S_G, W_G and E_G, indicating

that a green light should be given to traffic in each of the four directions.

 37

S0 to S11

S_G,W_R
N_R,E_R

S57 to S63

S_R,W_R
N_R,E_Y

S12 to S14

S_Y,W_R
N_R,E_R

S15 to S26

S_R,W_G
N_R,E_R

S45 to S56

S_R,W_R
N_R,E_G

S42 to S44

S_R,W_R
N_Y,E_R

S30 to S41

S_R,W_R
N_G,E_R

S27 to S29

S_R,W_Y
N_R,E_R

Fig 5.2 state diagram of traffic light controller

Pre -
Computation

logic

Signaling
system

SE
N

SO
R

S

To
traffic
lights

CLK

Fig 5.3 Pre-computation based traffic light controller

When any sensor is ON, switch on the respective green light and change the state of the

present green light. Note that, these two assignments should occur simultaneously.

Otherwise, there may be a collision of traffic a junction.

 38

The pre computation logic should be designed in such a way that the resulted logic is to be

work as a normal traffic light controller and switch to corresponding route depending on the

sensors..

Effective clock-gating, however, requires a methodology that determines which signals are to

be gated, when, and for how long. Clock-gating schemes that either result in frequent

toggling of the signals between enabled and disabled states, or apply clock-gating to such

small blocks that the clock-gating control circuitry is almost as large as the blocks

themselves, incur large overhead. This overhead may result in power dissipation to be higher

than that without clock-gating.

 39

Chapter 6

SIMULATION RESULTS

6.1. HARDWARE DESCRIPTION LANGUAGE

The two most popular hardware description languages are VHDL and Verilog. The HDL

used for our thesis is VHDL.

VHDL is a hardware description language used to describe the behavior and structure of

digital systems. The acronym VHDL stands for VHSIC Hard ware Description Language,

and VHSIC in turn stands for very high speed integrated circuit. However, VHDL is a

general purpose hardware description language, which can be used to describe and simulate

the operation of a wide variety of digital systems, ranging in complexity from a few gates to

an interconnection of many complex integrated circuits. The VHDL language is widely used

in industry.

VHDL can describe a digital system at several different levels- behavioral, dataflow and

structural. VHDL leads naturally to a top-down design methodology, in which the system is

first specified at a high level and tested using a simulator. After the system is debugged at this

level the design can gradually be refined eventually leading to structural description.

The language has the following feature:

 Designs may be decomposed hierarchically

 Each designs element has both a well-defined interface (for connecting in it other

elements) and a precise behavioral specification (for simulating it).

 Behavioral specifications can use either an algorithm or an actual hardware structure

to define an element’s operation.

 Concurrency timing and clocking can all be modular. VHDL handles asynchronous as

well as synchronous sequential- circuit structures.

 The logical operation and timing behavior of a design can be simulated.

While the VHDL language and simulation environment were important innovations by

themselves, VHDL’s utility and popularity took a quantum leap with the commercial

development of VHDL synthesis tools. These programs can create logic – circuit structures

directly from VHDL behavioral description using VHDL, simulate and synthesize anything

from a simple combinational circuit to a complete microprocessor system on chip.

 41

Block

coding

Compilation

Simulation /
Verification

Synthesis

Placing

Timing verification

Fig.6.1. HDL Based design flow

A programmable logic device or PLD is an electronic component used to build digital

circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at

the time of manufacture. Before the PLD can be used in a circuit it must be programmed.

Programmability of logic means that new chip designs can be tested and easily changed

without incurring the huge photo mask costs for chips completed in a semiconductor fab. In

addition, memory-based PLDs can be reprogrammed over and over. Figure 6.1 contains a block

 42

http://www.answers.com/topic/electronics
http://www.answers.com/topic/digital-electronics
http://www.answers.com/topic/digital-electronics
http://www.answers.com/topic/logic-gate

diagram of a hypothetical CPLD. Each of the four logic blocks shown there is the equivalent

of one PLD. However, in an actual CPLD there may be more (or less) than four logic blocks.

Note also that these logic blocks are themselves comprised of macro cells and interconnect

wiring, just like an ordinary PLD.

Unlike the programmable interconnect within a PLD, the switch matrix within a CPLD may

or may not be fully connected. In other words, some of the theoretically possible connections

between logic block outputs and inputs may not actually be supported within a given CPLD.

The effect of this is most often to make 100% utilization of the macro cells very difficult to

achieve. Some hardware designs simply won't fit within a given CPLD, even though there are

sufficient logic gates and flip-flops available.

Because CPLDs can hold larger designs than PLDs, their potential uses are more varied.

They are still sometimes used for simple applications like address decoding, but more often

contain high-performance control-logic or complex finite state machines. At the high-end (in

terms of numbers of gates), there is also a lot of overlap in potential applications with

FPGAs. Traditionally, CPLDs have been chosen over FPGAs whenever high-performance

logic is required. Because of its less flexible internal architecture, the delay through a CPLD

(measured in nanoseconds) is more predictable and usually shorter.

6.2. FIELD PROGRAMMABLE GATE ARRAYS

Field Programmable Gate Arrays (FPGAs) can be used to implement just about any hardware

design. There are three key parts of its structure: logic blocks, interconnect, and I/O blocks.

The I/O blocks form a ring around the outer edge of the part. Each of these provides

individually selectable input, output, or bi-directional access to one of the general-purpose

I/O pins on the exterior of the FPGA package. Inside the ring of I/O blocks lies a rectangular

array of logic blocks. And connecting logic blocks to logic blocks and I/O blocks to logic

blocks is the programmable interconnect wiring.

The FPGA used for testing is VIRTEX-II.

 43

VIRTEXII PRO FPGA

Configurable Logic Blocks (CLBs):

CLB resources include four slices and two 3-state buffers.

Each slice is equivalent and contains:

• Two function generators (F & G)

• Two storage elements

• Arithmetic logic gates

• Large multiplexers

• Wide function capability

• Fast carry look-ahead chain

• Horizontal cascade chain (OR gate)

Configuration

Virtex-II Pro devices are configured by loading the bit stream into internal configuration

memory using one of the following modes:

• Slave-serial mode

• Master-serial mode

• Slave Select MAP mode

• Master Select MAP mode

• Boundary-Scan mode (IEEE 1532)

Ordering information of VIRTEX-II is XC2VPX20 -5 FF 896 C

• XC2VPX20 - Device Type

• -6 -- Speed Grade (-5 , -6)

• FF -- Package Type

• 896 -- No. of pins

• C -- Temperature Range

 44

6.3. SIMULATION RESULTS OF GENERAL PURPOSE PROCESSOR

Fig.6.2. Accumulator output

Fig.6.3. ALU output when the inputs are A = “01100011” and B = “10110110”.

Fig.6.4. Multiplexer output.

 45

Fig.6.5. Regfile output.

Fig.6.6. Shifter output when the input is “00111011”.

Fig.6.7. Tri-state buffer output.

 46

6.4. SIMULATION RESULTS OF TRAFFIC LIGHT CONTROLLER

Fig.6.8.Normal Traffic light controller.

Fig.6.9. Pre-computation logic DCG Traffic light controller output.

 47

Fig.6.10. PCL based DCG Traffic light controller output when N_sensor ON.

Fig.6.11. PCL based DCG Traffic light controller output TWO sensors ON.

 48

6.5. POWER CALCULATIONS

 ALU ACC MUX Shifter Tri-state buffer

No.of slices 18 9 8 8 1

No. of 4 i/p LUT’s 25 9 16 9 1

No. of IO’s 27 19 42 18 17

No. of IO Buffers 27 19 42 18 17

Table 6.1 Cell Usage for the General Purpose Processor

 ALU ACC MUX Shifter Tri-state buffer

No.of slices 13 6 5 5 1

No. of 4 i/p LUT’s 19 6 13 6 1

No. of IO’s 23 16 35 14 13

No. of IO Buffers 23 16 35 14 13

Table 6.2 Cell Usage for the General Purpose Processor after DCG applied.

Traffic light controller

Traffic light controller

after PCL DCG

No.of slices 20 18

No. of 4 i/p LUT’s 40 37

No. of IO FF’s 12 8

No. of IO Buffers 18 14

No.of slice FF’s 28 23

Timing Delay 4.470 ns 3.565 ns

Power consumption 330 uW 219 uW

Table 6.3 Cell Usage for the Traffic light controller.

 49

Chapter 7

CONCLUSION

CONCLUSION

Deterministic clock-gating (DCG) methodology is based on the key observation that for

many of the stages in a modern pipeline, a circuit block’s usage in a specific cycle in the near

future is deterministically known a few cycles ahead of time. Using this advance information,

DCG clock-gates unused execution units, pipeline latches.

Results show that DCG is very effective in reducing clock power. 25 – 33 % power

consumption is reduced by using this method. As high-performance processor pipelines get

deeper and power becomes a more critical factor, DCG’s effectiveness and simplicity will

continue to be important.

Effective clock-gating, however, requires a methodology that determines which circuits are

gated, when, and for how long. Care to be taken while designing the clock-gating control

circuitry; otherwise the circuitry may become an overhead. This overhead may result in

power dissipation to be higher than that without clock-gating.

 51

REFERENCES

1. Bipul C. Paul, Amit Agarwal, Kaushik Roy, “Low-power design techniques for scaled

technologies”, INTEGRATION, the VLSI journal, science direct 39(2006).

2. L. Hai, S. Bhunia, Y. Chen, K. Roy, T.N. Vijay Kumar, “ DCG : deterministic

clock gating for low-power microprocessor design ”, IEEE Trans. VLSI Syst. 12

(2004), pp.245-254.

3. Yan Luo , Jia Yu , Jun Yang , Laxmi Bhuyan, Low power network processor design

using clock gating, Proceedings of the 42nd annual conference on Design automation,

June 13-17, 2005, San Diego, California, USA.

4. Hai Li, Swarup Bhunia, Yiran Chen, T. N. Vijaykumar, and Kaushik Roy,

“Deterministic Clock Gating for Microprocessor Power Reduction”,1285 EE

Building, ECE Department, Purdue University.

5. Enoch O. Hwang, “Microprocessor Design Principles and Practices”, Brooks / Cole,

2004.

6. Hai Li , Chen-Yong Cher , Kaushik Roy , T. N. Vijaykumar, Combined circuit and

architectural level variable supply-voltage scaling for low power, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, v.13 n.5, p.564-576, May 2005.

7. D. Folegnani and A. Gonzalez, “Energy-effective issue logic”, in Proc.28th Int. Symp.

Computer Architecture (ISCA), July 2001, pp. 230 - 239.

8. D. Garrett, M. Stan, A. Dean, “Challenges in clock gating for a low power ASIC

methodology”, in International Symposium on Low Power Electronics and Design,

1999, pp. 176 - 181.

9. J. Oh, M. Pedram, “Gated clock routing for low-power microprocessor design”, IEEE

Trans. Comput. Aided Des.Integr. Circuits Syst. 20 (2001) 715 – 722.

 52

http://portal.acm.org/citation.cfm?id=1065766&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754
http://portal.acm.org/citation.cfm?id=1065766&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754
http://portal.acm.org/citation.cfm?id=1065766&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754
http://portal.acm.org/citation.cfm?id=1086585&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754
http://portal.acm.org/citation.cfm?id=1086585&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754
http://portal.acm.org/citation.cfm?id=1086585&dl=GUIDE&coll=GUIDE&CFID=5067872&CFTOKEN=72971754

10. N. Raghavan, V. Akella, S. Bakshi, “Automatic insertion of gated clocks at register

transfer level”, in: International Conference on VLSI Design, 1999, pp. 48 – 54.

11. L. Benini, G.D. Micheli, “Automatic synthesis of low power gated clock finite state

machines”, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15 (1996) 630 –

643.

12. R. I. Bahar and S. Manne, “Power and energy reduction via pipeline balancing,” in

Proc. 28th Int. Symp. Computer Architecture (ISCA), July 2001, pp. 218–229.

13. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level

power analysis and optimizations,” in Proc. 27th Int.Symp. Computer Architecture

(ISCA), July 2000, pp. 83–94.

14. S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar

processors,” in Proc. 24th Annu. Int. Symp. Computer Architecture (ISCA), June

1997, pp. 206–218.

15. S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: speculation control for

energy reduction,” in Proc. 25th Int. Symp. Computer Architecture (ISCA), June

1998, pp. 132–141.

16. D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” in Proc. 28th Int.

Symp. Computer Architecture (ISCA), July 2001, pp. 230–239.

17. D. Brooks and M. Martonosi, “Value-based clock gating and operation packing:

dynamic strategies for improving processor power and performance,” ACM Trans.

Comput. Syst., vol. 18, no. 2, pp. 89–126, May 2000.

18. J. C. Monteiro, “Power optimization using dynamic power management,” in Proc. XII

Symp. Integrated Circuits Systems Design (ICSD), Sept. 1999, pp. 134–139.

 53

19. Massoud Pedram “Power Minimization in IC Design: Principles and Applications”,

Department of EE-Systems, University of Southern California, Los Angeles CA.

20. William M. Johnson “Super-Scalar Processor Design”, Computer Systems

Laboratory, Stanford University Stanford, CA, June 1989.

21. Ricardo E. Gonzalez “LOW-POWER PROCESSOR DESIGN”, Computer Systems

Laboratory, Stanford University Stanford, CA, June 1997.

22. Qing WU “Clock-Gating and Its Application to Low Power Design of Sequential

Circuits”, Department of Electrical Engineering-Systems, University of Southern

California, Los Angeles, CA, USA.

 54

APPENDIX

Device utilization summary for complete processor:
--

Selected Device : 2vp4ff672-5

 Number of Slices: 140 out of 3008 4%

 Number of Slice Flip Flops: 77 out of 6016 1%

 Number of 4 input LUTs: 260 out of 6016 4%

 Number used as logic: 252

 Number used as RAMs: 8

 Number of IOs: 18

 Number of bonded IOBs: 18 out of 348 5%

 Number of GCLKs: 1 out of 16 6%

Timing Summary:

Speed Grade: -5

Minimum period: 10.131ns (Maximum Frequency: 98.705MHz)

Minimum input arrival time before clock: 4.902ns

Maximum output required time after clock: 5.090ns

Maximum combinational path delay: 6.131ns

Device utilization summary for Datapath:

Selected Device : 2vp4ff672-5

 Number of Slices: 76 out of 3008 2%

 Number of Slice Flip Flops: 16 out of 6016 0%

 Number of 4 input LUTs: 137 out of 6016 2%

 Number used as logic: 129

 Number used as RAMs: 8

 55

Number of IOs: 41

Number of bonded IOBs: 41 out of 348 11%

Number of GCLKs: 1 out of 16 6%

Timing Summary:

Speed Grade: -5

Minimum period: 8.613ns (Maximum Frequency: 116.100MHz)

Minimum input arrival time before clock: 9.735ns

Maximum output required time after clock: 13.396ns

Maximum combinational path delay: 14.518ns

Device utilization summary for control unit:
--

Selected Device : 2vp4ff672-5

Number of Slices: 79 out of 3008 2%

Number of Slice Flip Flops: 66 out of 6016 1%

Number of 4 input LUTs: 151 out of 6016 2%

Number of IOs: 25

Number of bonded IOBs: 25 out of 348 7%

Number of GCLKs: 1 out of 16 6%

Timing Summary:

Speed Grade: -5

Minimum period: 5.316ns (Maximum Frequency: 188.103MHz)

Minimum input arrival time before clock: 3.456ns

Maximum output required time after clock: 4.061ns

 56

Device utilization summary for traffic light controller :

Selected Device : 2vp4ff672-5

 Number of Slices: 20 out of 3008 0%

 Number of Slice Flip Flops: 28 out of 6016 0%

 Number of 4 input LUTs: 40 out of 6016 0%

 Number of IOs: 18

 Number of bonded IOBs: 18 out of 348 5%

 IOB Flip Flops: 12

 Number of BRAMs: 1 out of 28 3%

 Number of GCLKs: 1 out of 16 6%

Timing Summary:

Speed Grade: -5

Minimum period: 3.872ns (Maximum Frequency: 258.231MHz)

Minimum input arrival time before clock: 3.660ns

Maximum output required time after clock: 4.214ns

Device utilization summary pre computation logic based traffic light
controller:
--

Selected Device : 2vp4ff672-5

 Number of Slices: 18 out of 3008 0%

 Number of Slice Flip Flops: 23 out of 6016 0%

 Number of 4 input LUTs: 37 out of 6016 0%

 Number of IOs: 14

 Number of bonded IOBs: 14 out of 348 4%

 IOB Flip Flops: 8

 Number of BRAMs: 1 out of 28 3%

 Number of GCLKs: 1 out of 16 6%

 57

Timing Summary:

Speed Grade: -5

Minimum period: 3.984ns (Maximum Frequency: 250.995MHz)

Minimum input arrival time before clock: 4.193ns

Maximum output required time after clock: 4.214ns

 58

	1 COVERS.pdf
	2 Abstract.pdf
	ch 1.pdf
	ch 2_2.pdf
	ch 3_2.pdf
	ch 4.pdf
	ch 5.pdf
	ch 6.pdf
	cH 7.pdf
	REFERENCES.pdf
	z_Appendix.pdf

