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ABSTRACT 

The demand for power-sensitive design has grown significantly in recent years due to 

tremendous growth in portable applications. Consequently, the need for power efficient 

design techniques has grown considerably. Several efficient design techniques have been 

proposed to reduce both dynamic as well as static power in state-of-the-art VLSI circuit 

applications. With the scaling of technology and the need for higher performance and more 

functionality, power dissipation is becoming a major bottleneck for microprocessor designs. 

Clock power is significant in high-performance processors.  

 

Deterministic Clock Gating (DCG) technique effectively reduces the clock power. DCG is 

based on the key observation that for many of the pipelined stages of a modern processor, the 

circuit block usage in the near future is known a few cycles ahead of time. DCG exploits this 

advance knowledge to clock-gate the unused blocks. Because individual circuit usage varies 

within and across applications, not all the circuits are used all the time, giving rise to power 

reduction opportunity. By ANDing the clock with a gate-control signal, clock-gating 

essentially disables the clock to a circuit whenever the circuit is not used, avoiding power 

dissipation due to unnecessary charging and discharging of the unused circuits. 

 

Results show that DCG is very effective in reducing clock power. 25 – 33 % power 

consumption is reduced by using this method. As high-performance processor pipelines get 

deeper and power becomes a more critical factor, DCG’s effectiveness and simplicity will 

continue to be important. 
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Chapter 1 

 

 

 

INTRODUCTION 



1.1. INTRODUCTION 

In recent years, the demand for power-sensitive designs has grown significantly. This 

tremendous demand has mainly been due to the fast growth of battery-operated portable 

applications such as notebook and laptop computers, personal digital assistants, cellular 

phones, and other portable communication devices. Semiconductor devices are aggressively 

scaled each technology generation to achieve high-performance and high integration density. 

Due to increased density of transistors in a die and higher frequencies of operation, the power 

consumption in a die is increasing every technology generation. Supply voltage is scaled to 

maintain the power consumption within limit.  

 

However, scaling of supply voltage is limited by the high-performance requirement. Hence, 

the scaling of supply voltage only may not be sufficient to maintain the power density within 

limit, which is required for power-sensitive applications. Circuit technique and system-level 

techniques are also required along with supply voltage scaling to achieve low-power designs. 

In the nano-meter regime, a significant portion of the total power consumption in high 

performance digital circuits is due to leakage currents. Because high-performance systems are 

constrained to a predefined power budget, the leakage power reduces the available power, 

impacting performance. It also contributes to the power consumption during standby 

operation, reducing battery life. Hence, techniques are necessary to reduce leakage power 

while maintaining the high performance. Moreover, as different components of leakage are 

becoming important with technology scaling, each leakage reduction technique needs 

reevaluation in scaled technologies where sub-threshold conduction is not the only leakage 

mechanism. New low-power circuit techniques are required to reduce total leakage in high-

performance nano-scale circuits. 

 

A spectrum of circuit techniques including transistor sizing, clock gating, multiple and 

dynamic supply voltage are there to reduce the dynamic power. For low-leakage design, 

different circuit techniques including, dual Vth, forward/reverse bias, dynamically varying the 

Vth during run time, sleep transistor, natural stacking are there. 
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1.2. POWER DISSIPATION IN VLSI CIRCUITS 

The total power dissipation in a circuit conventionally consists of two components, namely, 

the static and dynamic power dissipation.  

 

1.2.1. Dynamic power 

For dynamic power dissipation there are two components one is switching power due to 

charging and discharging of load capacitance. The other is the short circuit power due to the 

nonzero rise and fall time of input waveforms. The switching power of a single gate can be 

expressed as  
PD =  α CL VDD

2 f 
 

Where  α is the switching activity,  

f  is the operation frequency,  

CL is the load capacitance, 

VDD is the supply voltage.  

The short circuit power of an unloaded inverter can be approximately given by  

PSC = β ( VDD – Vth )3 τ / 12T 

Where β is the transistor coefficient,  

τ is the rise/fall time, 

T (1/f) is the delay. 

 

1.2.2. Leakage power 

There are three dominant components of leakage in a MOSFET in the nanometer regime: 

(1) Sub-threshold leakage, which is the leakage current from drain to source ( Isub ). 

(2) Direct tunneling gate leakage which is due to the tunneling of electron (or hole) from the 

bulk silicon through the gate oxide potential barrier into the gate. 

(3) The source/substrate and drain/substrate reverse-biased p-n junction leakage.  

 

1.3. DYNAMIC POWER REDUCTION TECHNIQUES 

Though the leakage power increases significantly in every generation with technology 

scaling, the dynamic power still continues to dominate the total power dissipation of the 

general purpose microprocessors. Effective circuit techniques to reduce the dynamic power 

consumption include transistor size and interconnect optimization, gated clock, multiple 
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supply voltages and dynamic control of supply voltage. Incorporating the above approaches 

in the design of nano-scale circuits, the dynamic power dissipation can be reduced 

significantly. Other techniques such as instruction set optimization, memory access reduction 

and low complexity algorithms are also there to reduce the dynamic power dissipation in both 

logics and memories.  

 

1.3.1. Transistor sizing and interconnect optimization 

The best way to reduce the junction capacitance as well as the overall gate capacitance is to 

optimize the transistor size for a particular performance. Sizing techniques can be mainly 

divided into two types.  

• Path-based optimization.  

• Global optimization.  

In path-based optimization, gates in the critical paths are upsized to achieve the desired 

performance, while the gates in the off critical paths are down sized to reduce power 

consumption.  

In global optimization, all gates in a circuit are globally optimized for a given delay. 

 

1.3.2. Clock gating 

Clock gating is an effective way of reducing the dynamic power dissipation in digital circuits. 

In a typical synchronous circuit such as the general purpose microprocessor, only a portion of 

the circuit is active at any given time. Hence, by shutting down the idle portion of the circuit, 

the unnecessary power consumption can be prevented. One of the ways to achieve this is by 

masking the clock that goes to the idle portion of the circuit.  
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Fig 1.1. Single clock, flip-flop-based FSM. 
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This prevents unnecessary switching of the inputs to the idle circuit block, reducing the 

dynamic power. The input to the combinational logic comes through the registers, which are 

usually composed of sequential elements, such as D flip-flops (Fig. 1.1.).  

 

A gated clock design can be obtained by modifying the clocking structure shown in Fig.1.1. 

A control signal (fa) is used to selectively stop the local clock (LCLK) when the 

combinational block is not used. The local clock is blocked when fa is high. The latch shown 

in Fig.1.2 is necessary to prevent any glitches in fa from propagating to the AND gate when 

the global clock (GCLK) is high. The circuit operates as follows.  

 

The signal fa is only valid before the rising edge of the global clock. When the global clock is 

low, the latch is transparent, however, fa does not affect the AND gate. If fa is high during the 

low-to-high transition of the global clock, then the global clock will be blocked by the AND 

gate and local clock will remain at low. Power saving using gated clock technique strongly 

depends on the efficient synthesis and optimization of dedicated clock-stopping circuitry.  

 STATE
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Fig.1.2. Schematic diagram of gated clock design 

 

Effective clock gating requires a methodology that determines which circuits are gated, when, 

and for how long. Clock-gating schemes that either result in frequent toggling of the clock-

gated circuit between enabled and disabled states, or apply clock gating to such small blocks 

that the clock-gating control circuitry is almost as large as the blocks themselves, incur large 

overhead. This overhead may result in power dissipation to be higher than that without clock 

gating.  
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1.3.3. Low-voltage operation 

Supply voltage scaling was originally developed for switching power reduction. It is an 

effective method for switching power reduction because of the quadratic dependency of 

switching power on supply voltage. However, since the gate delay increases with decreasing 

VDD, globally lowering VDD degrades the overall circuit performance. To achieve low-power 

benefits without compromising performance, two ways of lowering supply voltage can be 

employed: static and dynamic supply scaling. 

 

In Static supply voltage scaling schemes, higher supply voltage is used in the critical paths of 

the circuit, while lower supply voltages are used in the off critical paths.  

In Dynamic supply voltage scaling schemes, the highest supply voltage delivers the highest 

performance at the fastest designed frequency of operation. When performance demand is 

low, supply voltage and clock frequency is lowered, just delivering the required performance 

with substantial power reduction. 
 
1.4. LEAKAGE POWER REDUCTION TECHNIQUES 

The techniques to reduce leakage energy utilizing the slack without impacting performance 

can be categorized based on when and how they utilize the available timing slack e.g. dual Vth 

statically assigns high Vth to some transistors in non-critical paths at the design time so as to 

reduce leakage current. The techniques, which utilize the slack in run time, can be divided 

into two groups depending on whether they reduce standby leakage or active leakage. 

Standby leakage reduction techniques put the entire system in a low leakage mode when 

computation is not required. Active leakage reduction techniques slow down the system by 

dynamically changing the Vth to reduce leakage when maximum performance is not needed. 

  

1.4.1. Design time techniques 

Design time techniques exploit the delay slack in non-critical paths to reduce leakage. These 

techniques are static; once it is fixed, it cannot be changed dynamically while the circuit is 

operating. 

Dual threshold CMOS logic: 

In this logic, a high Vth can be assigned to some transistors in the non-critical paths so as to 

reduce sub-threshold leakage current, while the performance is not sacrificed by using low Vth 
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transistors in the critical path(s). No additional circuitry is required, and both high 

performance and low leakage can be achieved simultaneously. 

Different Dual threshold CMOS techniques are  

• Changing doping profile. 

• Higher oxide thickness  

• Large channel length  

 

1.4.2. Run time techniques 

Standby leakage reduction techniques place certain sections of the circuitry in standby mode 

(low leakage mode) when they are not required. 

Different Standby leakage reduction techniques are 

• Natural transistor stacks. 

• Sleep transistor (forced stacking).  

• Forward/reverse body biasing. 

 

Active leakage reduction techniques are intermittently slows down the faster circuitry and 

reduces the leakage power consumption as well as the dynamic power consumption when 

maximum performance is not required. 

Dynamic Vth scaling (DVTS) scheme uses body biasing to adaptively change Vth based on the 

performance demand. The lowest Vth is delivered, if the highest performance is required. 

When performance demand is low, clock frequency is lowered and Vth is raised to reduce the 

run-time leakage power dissipation. In cases when there is no workload at all, the Vth can be 

increased to its upper limit to significantly reduce the standby leakage power. 

 
1.4.3. Cache memories  
 
Circuit techniques to reduce leakage in cache memories are 
 

• Source biasing scheme. 

• Forward/reverse body biasing scheme. 

• Dynamic VDD scheme 

• Leakage biased scheme 

• Negative word line scheme 
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Chapter 2 

 

 

 

CLOCK GATING 



2.1. INTRODUCTION 

Clock power is a major component of microprocessor power mainly because the clock is fed 

to most of the circuit blocks in the processor, and the clock switches every cycle. Thus the 

total clock power is a substantial component of total microprocessor power dissipation. 

 

Clock-gating is a well-known technique to reduce clock power. Because individual circuit 

usage varies within and across applications, not all the circuits are used all the time, giving 

rise to power reduction opportunity. By ANDing the clock with a gate-control signal, clock-

gating essentially disables the clock to a circuit whenever the circuit is not used, avoiding 

power dissipation due to unnecessary charging and discharging of the unused circuits. 

Specifically, clock-gating targets the clock power consumed in pipeline latches and dynamic-

CMOS-logic circuits (e.g., integer units, floating-point units, and word-line decoders of 

caches) used for speed and area advantages over static logic.  

 

Effective clock-gating, however, requires a methodology that determines which circuits are 

gated, when, and for how long. Clock-gating schemes that either result in frequent toggling of 

the clock-gated circuit between enabled and disabled states, or apply clock-gating to such 

small blocks that the clock-gating control circuitry is almost as large as the blocks 

themselves, incur large overhead. This overhead may result in power dissipation to be higher 

than that without clock-gating. 

 

2.1. PRINCIPLE OF CLOCK-GATING 

The clock network in a microprocessor feeds clock to sequential elements like flip-flops and 

latches, and to dynamic logic gates, which are used in high-performance execution units and 

array address decoders (e.g. D-cache word-line decoder). At a high level, gating the clock to 

a latch or a logic gate by ANDing the clock with a control signal prevents the unnecessary 

charging/discharging of the capacitances when the circuit is idle, and saves the circuit’s clock 

power.  
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Fig. 2.1 shows the schematic of a latch element. Cg is the latch’s cumulative gate capacitance 

connected to the clock. Because the clock switches every cycle, Cg charges and discharges 

every cycle and consumes significant amount of power. Even if the inputs do not change 

from one clock to the next, the latch still consumes clock power. 

Clock

Clk-gate 
signal 

g-clk 
Latch

Data

Fig 2.2 clock gating a latch element 

Out 

 
In Fig. 2.2, the clock is gated by ANDing it with a control signal, which we refer as Clk-gate 

signal. When the latch is not required to switch state, Clk-gate signal is turned off and the 

clock is not allowed to charge/discharge Cg, saving clock power. Because the latches of an 

operand (32 or 64 b) can be driven by an AND gate, the capacitance of the AND gate itself is 

much smaller than the sum of multiple Cg of these latches. Hence, we can get a net power 

saving. 
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Now, let us consider a dynamic logic cell, the schematic of which is shown in Fig. 2.3. 
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Fig 2.3 A dynamic logic gate 
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Cg is the effective gate capacitance that appears as a capacitive load to the clock, and CL 

is the capacitive load to the dynamic logic cell. Similar to the latch, the dynamic logic’s 

Cg also charges and discharges every cycle and consumes power. 

 

In addition to Cg, CL also consumes power: at the precharge phase of the clock, CL 

charges through the PMOS precharge transistor and during the evaluate phase, it 

discharges or retains value depending on the input to the pull-down logic. Whether CL 

consumes power or not depends on both the current input and previous output. There are 

two cases:  

(1) If CL holds logic “1” at the end of a cycle, and the next cycle output evaluates to a 

“1”, then CL does not consume any power: Precharging an already-charged CL does not 

consume power unless there are leakage losses. Because the next output is a “1”, there is 

no discharging.  

(2) If CL holds a “0” at the end of a cycle, CL consumes precharge power, irrespective 

of what the inputs are in the next cycle. Even if the input does not change, this precharge 

power is consumed. If the next output is a “1”, no discharging occurs; otherwise, more 

power is consumed in discharging CL. 
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Fig. 2.4 shows the same dynamic logic cell with gated clock. If the dynamic logic cell is not 

used in a cycle, Clk-gate signal prevents both Cg and CL from switching in the cycle. While 

clock-gating latches reduce only unnecessary clock power due to Cg, clock-gating dynamic 

logic reduces unnecessary dissipation of not only the clock power due to Cg, but also the 

dynamic logic power due to CL. Here also, because the AND gate’s capacitance itself is much 

smaller than Cg + CL, there is a net power saving. Moreover, a single AND gate can be used 

to gate the clock to a large number of dynamic logic cells. 

 

The concept of circuit-level clock-gating can be achieved by two good architectural 

methodologies. They are Pipeline balancing (PLB) and Deterministic clock-gating. 

Pipeline balancing method (PLB) exploits the inherent variation of instruction level 

parallelism (ILP) within a program. PLB uses heuristics to predict a program’s instruction 

level parallelism (ILP). If the degree of ILP in the next window is predicted to be lower than 

the width of the pipeline, PLB clock-gates a cluster of pipeline components during the 

window. 

 

In contrast to PLB’s predictive methodology, Deterministic clock-gating (DCG) is based on 

the key observation that for many of the pipeline stages in a modern processor, a circuit block 

usage in a specific cycle in the near future is deterministically known a few cycles ahead of 

time. DCG exploits this advance knowledge to clock-gate the unused blocks. 
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Chapter 3 

 

 

 

GENERAL PURPOSE PROCESSOR 



3.1. INTRODUCTION 

In designing a CPU, we must first define its instruction set and how the instructions are 

encoded and executed. We need to answer questions such as how many instructions do we 

want? What are the instructions? What operation code (opcode) do we assign to each of the 

instructions? How many bits do we use to encode an instruction?  

 

Once we have decided on the instruction set, we can proceed to designing a datapath that can 

execute all the instructions in the instruction set. In this step we are creating a custom 

datapath, so we need to answer questions such as what functional units do we need? How 

many registers do we need? Do we use a single register file or separate registers? How the 

different units are connected together?  

 

Finally, we can design the control unit. Just like the dedicated microprocessor, the control 

unit asserts the control signals to the datapath. This finite-state machine cycles through three 

main steps or states: 1) fetch an instruction; 2) decode the instruction; and 3) execute the 

instruction. The control unit performs these steps by sending the appropriate control signals 

to the datapath or to external devices.  

 

Instructions in your program are usually stored in external memory, so in addition to the 

CPU, there is external memory that is connected to the CPU via an address bus and a data 

bus. Hence, step 1 (fetch an instruction) usually involves the control unit setting up a memory 

address on the address bus and telling the external memory to output the instruction from that 

memory location onto the data bus. The control unit then reads the instruction from the data 

bus. To keep our design simple, instead of having external memory, we will put the memory 

directly inside the CPU and implemented simply as a 64-byte array. In fact, there are real 

CPUs with internal program memory. 

 

For step 2 (decode the instruction) the control unit extracts the opcode bits from the 

instruction and determines what the current instruction is by jumping to the state that has 

been assigned for executing that instruction. Once in that particular state, the finite-state 

machine performs step 3 by simply asserting the appropriate control signals for controlling 

the datapath to execute that instruction. 
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3.2. GENERAL PURPOSE MICROPROCESSOR 

The instructions that our general-purpose microprocessor can execute and the corresponding 

encoding are defined in Figure 1. The Instruction column shows the syntax and mnemonic to 

use for the instruction when writing a program in assembly language. The Encoding column 

shows the binary encoding for the instructions and the Operation column shows the actual 

operation of the instruction. The instructions are separated into four categories:  

 1) Data movement instructions for transferring data between the accumulator, the   

      general registers and the memory.  

 2) Jump instructions for changing the instruction execution sequence. 

 3) Arithmetic and logical instructions for performing arithmetic and logics. and  

 4) Input / Output and miscellaneous instructions. There are five data movement 

instructions, eight jump instructions, ten arithmetic and logic instructions, two input/output 

instructions, and two miscellaneous instructions.  

 

The number of instructions implemented determines the number of bits required to encode all 

the instructions. All instructions are encoded using one byte except for instructions that have 

a memory address as one of its operand, in which case a second byte for the address is 

needed. The encoding scheme uses the first four bits as the opcode. Depending on the 

opcode, the last four bits are interpreted differently as follows. 

 

3.2.1. Two Operand Instructions 

If the instruction requires two operands, it always uses the accumulator (A) for one operand. 

If the second operand is a register then the last three bits in the encoding specifies the register 

file number. An example of this is the LDA (load accumulator from register) instruction 

where it loads the accumulator with the content of the register file number specified in the 

last three bits of the encoding. Another example is the ADD (add) instruction where it adds 

the content of the accumulator with the content of the specified register file and put the result 

in the accumulator. The result of all arithmetic and logical operations is stored in the 

accumulator. 

 

The LDI (load accumulator with immediate value) is also a two-operand instruction. 

However, the second operand is an immediate value that is obtained from the second byte of 
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the instruction itself (iiiiiiii). These eight bits are interpreted as a signed number and is loaded 

into the accumulator. 

 

3.1.2. One Operand Instructions 

One-operand instructions always use the accumulator and the result is stored back in the 

accumulator. In this case, the last four bits in the encoding are used to further decode the 

instruction. An example of this is the INC (increment accumulator) instruction. The opcode 

(1110) is used by all the one-operand arithmetic and logical instructions. The last four bits 

(0001) specify the INC instruction.  

 

3.2.3. Instructions Using a Memory Address 

For instructions that have a memory address as one of its operand, an additional six bits are 

needed in order to access the 64 bytes of memory space. These six bits (aaaaaa) are specified 

in the six least significant bits of the second byte of the instruction. An example is the LDM 

(load accumulator from memory) instruction. The address of the memory location where the 

data is to be loaded from is specified in the second byte. In this case, the last four bits of the 

first byte and the first two bits in the second byte are not used and are always set to 0. All the 

absolute jump instructions follow this format. 

 

3.2.4. Jump Instructions 

For jump instructions, the last four bits of the encoding also serves to differentiate between 

absolute and relative jumps. If the last four bits are zeros, then it is an absolute jump, 

otherwise, they represent a sign and magnitude format relative displacement from the current 

location as specified in the program counter (PC). For example, the two-byte encoding 0110 

0000 0000 0100 specifies an absolute unconditional jump to memory location 4. The first 

four bits (0110) specify the unconditional jump. The second four bits (0000) specify an 

absolute jump. The last six bits (000100) specify the memory address.  

 

On the other hand, the one-byte encoding 0110 0100 specifies a relative unconditional jump 

to PC + 4. Again, the first four bits (0110) specify the unconditional jump. The next four bits 

(0100) specify that it is a relative jump because it is not zero. The relative position to jump to 

is +4 because the first bit is a 0, which is for forward and the last three bits evaluate to 4. To 

jump backward by four locations, we would use 1100 instead.  
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Two conditional flags (zero and positive) are used for conditional jumps. These flags are set 

or reset depending on the value of the accumulator when the accumulator is written to. 

Instructions that modify the accumulator include LDA, LDM, LDI, all the arithmetic and 

logic instructions, and IN. For example, if the result of the ADD instruction is a positive 

number, then the zero flag will be reset and the positive flag will be set. A conditional jump 

then reads the value of these flags to see whether to jump or not. The JZ instruction will not 

jump after the previous ADD instruction, where as the JP instruction will perform the jump. 

Notations: 

 A = accumulator. 

 R = general register.  

 M = memory.  

 rrr =  three bits for specifying the general register number (0 – 7). 

 aaaaaa = six bits for specifying the memory address. 

 iiiiiiii = an eight bit signed number. 

 PC = program counter. 

 smmm = four bits for specifying the relative jump displacement in sign and    

magnitude format. The most significant bit (s) determines whether to jump forward or 

backward (0 = forward, 1 = backward). The last three bits (mmm) specify the number of 

locations to increment or decrement from the current PC location. 

 
3.2.5. Instruction set 

 
 

Instruction 
 

Encoding Operation Comment 

LDA A,rrr 0001 0rrr A ← R[rrr] Load accumulator from 
register 

STA rrr,A 0010 0rrr R[rrr] ←  A Load register from 
accumulator 

LDM A,aaaaaa 0011 0000 
00 aaaaaa A ← M[aaaaaa] Load accumulator from 

memory 
STM aaaaaa,A 0100 0000 

00 aaaaaa M[aaaaaa] ←  A Load memory from 
accumulator 

LDI A,iiiiiiii 0101 0000 
iiiiiiii A ← iiiiiiii 

Load accumulator with 
immediate value(iiiiiiii 
is a signed number) 

 
Table 3.1. Data movement instructions 
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Instruction 
 

Encoding Operation Comment 

JMP absolute 0110 0000 
00 aaaaaa PC = aaaaaa Absolute 

unconditional jump 

JMPR relative 0110 smmm 
if (smmm!= 0 ) then 
if (s == 0 ) then PC = PC+mmm; 
else PC = PC-mmm; 

Relative 
unconditional jump 

JZ absolute 0111 0000 
00 aaaaaa if (A == 0) then PC = aaaaaa Absolute jump if A 

is zero 

JZR relative 0111 smmm 
if (A == 0 and smmm!= 0 ) then if 
(s == 0 ) then PC = PC+mmm; else 
PC = PC-mmm; 

Relative jump if A is 
zero 

JNZ absolute 1000 0000 
00 aaaaaa if (A != 0) then PC = aaaaaa Absolute jump if A 

is notzero 

JNZR relative 1000 smmm 
if (A != 0 and smmm!= 0 ) then if 
(s == 0 ) then PC = PC+mmm; else 
PC = PC-mmm; 

Relative ump if A is 
notzero 

JP absolute 1001 0000 
00 aaaaaa 

if (A == possitive) then PC = 
aaaaaa 

Absolute jump if A 
is possitive 

JPR relative 1001 smmm 
if (A == positive and smmm!= 0 ) 
then if (s == 0 ) then PC = 
PC+mmm; else PC = PC-mmm;  

Relative ump if A is 
possitive 

 
Table 3.2.  Jump instructions 

 
 

 
 

Instruction 
 

Encoding Operation Comment 

AND A,rrr 1010 0rrr A ← A AND R[rrr] Accumulator AND 
register 

OR A,rrr 1011 0rrr A ← A OR R[rrr] Accumulator OR 
register 

ADD A,rrr 1100 0rrr A ← A + R[rrr] Accumulator + register 
SUB A,rrr 1101 0rrr A ← A - R[rrr] Accumulator - register 
NOT A 1110 0000 A ← NOT A Invert accumulator 
INC A 1110 0001 A ← A + 1 Increment accumulator 

DEC A 1110 0010 A ← A - 1 Decrement accumulator 

SHFL A 1110 0011 A ← A << 1 Shift accumulator let 

SHFR A 1110 0100 A ← A >> 1 Shift accumulator right 

ROTR A 1110 0101 A ← Rotate right (A) Rotate accumulator right 
 

Table 3.3. Arithmetic and logical instructions 
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Instruction 
 

Encoding Operation Comment 

In A 1111 0000 A ← input Input to accumulator 

Out A 1111 0001 Output ← A Output from 
accumulator 

HALT 1111 0010 Halt Halt execution 

NOP 0000 0000 No operation No operation 
 

Table 3.4. Input / Output and Miscellaneous instructions 
 
 
3.3. DATAPATH 
 
Having defined the instruction set for our general microprocessor, we are now ready to 

design the custom datapath that can execute all the operations as defined by all the 

instructions. The resulting datapath is shown in Fig. 3.1. 

 

The width of the datapath is eight bits, i.e. all the connections for data movement are eight 

bits wide (thicker lines). The remaining thinner control lines are all one bit wide unless the 

name for that control line has a number subscript such as faddr_dp2,1,0 , in which case there 

are as many lines as the subscript numbers. For example, the control line label rfaddr_dp2,1,0 

is actually composed of three separate lines. 

 

3.3.1. Input multiplexer 

The 4-to-1 input mux at the top of the datapath drawing selects one of four different inputs to 

be written into the accumulator. These four inputs, starting from the left, are:  

 (1) imm_dp for getting the immediate value from the LDI instruction and storing it 

into the accumulator. 

 (2) input_dp for getting a user input value for the IN instruction;  

 (3) The next input selection allows the content of the register file to be written to the 

accumulator as used by the LDA instruction.  

 (4) Allows the result of the ALU and the shifter to be written to the accumulator as 

used by all the arithmetic and logical instructions. 
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Fig 3.1. Datapath 

 

3.3.2. Conditional Flags 

The two conditional flags, zero and positive, are set by two comparators that check the value 

at the output of the mux which is the value that is to be written into the accumulator for these 

two conditions. To check for a value being zero, recall that just a NOR gate will do. In our 

case, we need an eight-input NOR gate because of the 8-bit wide data bus. To check for a 

positive number, we simply need to look at the most significant sign bit. A 2’s complement 

positive number will have a zero sign bit, so a single inverter connected to the most 

significant bit of the data bus is all that is needed to generate this positive flag signal. 
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3.3.3. Accumulator 

The accumulator is a standard 8-bit wide register with a write wr and clear clear control input 

signals. The write signal, connected to accwr_dp, is asserted whenever we want to write a 

value into the accumulator. The clear signal is connected to the main computer reset signal 

rst_dp, so that the accumulator is always cleared on reset. The content of the accumulator is 

always available at the accumulator output. The value from the accumulator is sent to three 

different places:  

 (1) It is sent to the output buffer for the OUT instruction;  

 (2) It is used as the first (A) operand for the ALU; and  

 (3) It is sent to the input of the register file for the STA instruction. 

 

3.3.4. Register File 

The register file has eight locations, each 8-bit wide. Three address lines, rfaddr_dp2, 

rfaddr_dp1, rfaddr_dp0 are used to address the eight locations for both reading and writing. 

There are one read port and one write port. The read port is always active which means that it 

always has the value from the currently selected address location. However, to write to the 

selected location, the write control line rfwr_dp must be asserted before a value is written to 

the currently selected address location. Note that a separate read and write address lines is not 

required because all the instructions either perform just a read from the register file or a write 

to the register file. There is no one instruction that performs both a read and a write to the 

register file. Hence, only one set of address lines is needed for determining both the read and 

write locations. 

 

3.3.5. ALU 
 
The ALU has eight operations implemented as defined by the following table. The operations 

are selected by the three select lines alusel_dp2, alusel_dp1, and alusel_dp0. The select lines 

are asserted by the corresponding ALU instructions as shown under the Instruction column in 

the above table. The pass through operation is used by all non-ALU instructions. 
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alusel_dp2 alusel_dp1 alusel_dp0 Operation name Operation Instruction 

0 0 0 pass Pass A to output Non-ALU 

0 0 1 AND A And B AND A,rrr 

0 1 0 OR A OR B OR A,rrr 

0 1 1 NOT A’ NOT A 

1 0 0 Addition A + B ADD A,rrr 

1 0 1 Subtraction A - B SUB A,rrr 

1 1 0 Increment A + 1 INC A 

1 1 1 Decrement A - 1 DEC A 

 

Table 3.5. Alu operation 

 
3.3.6. Shifter / Rotator 

The Shifter has four operations implemented as defined by the following table. The 

operations are selected by the two select lines shiftsel_dp1, and shiftsel_dp0. The select lines 

are asserted by the corresponding Shifter/Rotator instructions as shown under the Instruction 

column in the above table. The pass through operation is used by all non-Shifter/Rotator 

instructions. 

 

Shiftsel_dp1 Shiftsel_dp1 Operation Instruction 

0 0 Pass through non Shift / Rotate 
instructions 

0 1 Shift left and fill with 0 SHFL A 

1 0 Shift right and fill with 0 SHFL A 

1 1 Rotate right ROTR A 
 

Table 3.6. Shifter / Rotate operation 

 
3.3.7. Output Buffer 

The output buffer is a register with an enable control signal connected to outen_dp. 

Whenever the enable line is asserted, the output from the accumulator is stored into the 

buffer. The value stored in the output buffer is used as the output for the computer and is 
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always available. The enable line is asserted either by the OUT A instruction or by the system 

reset signal. 

 

3.3.8. Control Word 

From Figure 3.1, we see that the control word for this custom datapath has fourteen bits, 

which maps to the control signals for the different datapath components. These fourteen 

control signals are summarized in Table3.7. 

 

Number Signal name Component Purpose 

14 muxsel_dp1 4-input mux Select line1 

13 muxsel_dp0 4-input mux Select line1 

12 accwr_dp accumulator Write enable 

11 rst_dp accumulator clear 

10 Rfwr_dp register file Write enable 

9 Rfaddr_dp2 register file Address line 2 

8 Rfaddr_dp1 register file Address line 1 

7 Rfaddr_dp0 register file Address line 0 

6 alusel_dp2 ALU Select line 2 

5 alusel_dp1 ALU Select line 1 

4 alusel_dp0 ALU Select line 0 

3 shitsel_dp1 shifter Select line 1 

2 shitsel_dp0 shifter Select line 0 

1 outen_dp Tri-state buffer Output enable 

 

Table 3.7. Control word signals for the Datapath 

 

For example, to execute the ADD instruction, which adds the content of the accumulator with 

the content of the specified register file location and writes the result back into the 

accumulator, the value in the accumulator is passed to the A operand of the ALU. The B 

operand of the ALU comes from the register file, the location of which is selected from 

setting the register file address lines rfaddr_dp2,1,0. The appropriate ALU select lines 

alusel_dp2,1,0 are set to select the ADD operation. The shifter is not needed and so the pass 
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through operation is selected. The output of the shifter is routed back through input 0 of the 

multiplexer and finally written back to the accumulator. 

So the control word for the instruction ADD A, 011 is 

 

muxsel1 muxsel0 accwr rst rfwr rfaddr2 rfaddr1 rfaddr0 alusel2 alusel1 alusel0 

0 0 1 0 0 0 1 1 1 0 0 

 
Shiftsel2 Shiftsel1 outen 

0 0 0  
 
 
3.4. CONTROL UNIT 
 
The finite state machine for the control unit basically cycles through four main states: reset, 

fetch, decode, and execute, as shown in Figure 3.2. There is one execute state for each 

instruction in the instruction set. 

 

Execute 
ADD 

Execute 
LDA 

Execute 
JMP 

Reset 

Fetch 

Decode 

Fig.3.2. State diagram for the control unit. 
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3.4.1. Reset 

The finite state machine starts executing from the reset state when the reset signal is asserted. 

On reset, the finite state machine initializes all its working variables and control signals. The 

variables include PC – program counter, IR – instruction register, state – the state variable. In 

addition, the content of the memory, i.e., the program for the computer to execute is also 

loaded at this time. 

 

3.4.2. Fetch 

 In the fetch state, the memory content of the location pointed to by the PC is loaded 

into the instruction register. The PC is then incremented by one to prepare it for fetching the 

next instruction. If the fetched instruction is a jump instruction, then the PC will be changed 

accordingly during the execution phase. 

 

3.4.3. Decode 

The content that is stored in the instruction register is decoded according to the encoding that 

is assigned to the instructions as listed in table3.1, 3.2, 3.3, and 3.4. This is accomplished in 

VHDL using a CASE statement with the switch condition being the opcode. From the 

different cases, the state that is responsible for executing the corresponding instruction is 

assigned to the next state variable. As a result, the instruction will be executed starting at the 

beginning of the next clock cycle when the FSM enters this new state. 

 

3.4.4. Execute 

The execution state simply sets up the control word, which asserts the appropriate control 

signals for the datapath to carry out the necessary operations for executing a particular 

instruction. Each instruction, therefore, has its own execute state. For example, the execute 

state for the add instruction ADD A, 011 will set up the following control word. 

 

muxsel1 muxsel0 accwr rst rfwr rfaddr2 rfaddr1 rfaddr0 alusel2 alusel1 alusel0 

0 0 1 0 0 0 1 1 1 0 0 

 
Shiftsel2 Shiftsel1 outen 

0 0 0  
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For all the jump instructions, no actions need to be taken by the datapath. It simply 

determines whether to perform the jump or not depending on the particular jump instruction 

and by checking on the zero and positive flags. If a jump is needed then the target address is 

calculated and then assigned to the PC. At the end of the execute state, the FSM goes back to 

the fetch state and the cycle repeats for the next instruction. 

 

3.5. Complete Processor 

 
Fig.3.3. Complete general purpose processor 
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Chapter 4 

 

 

 

DETERMINISTIC CLOCK GATING 



4.1. INTRODUCTION   

Deterministic clock-gating (DCG) is based on the key observation that for many of the 

pipeline stages in a modern processor, a circuit block usage in a specific cycle in the near 

future is deterministically known a few cycles ahead of time. DCG exploits this advance 

knowledge to clock-gate the unused blocks. In particular, we propose to clock-gate execution 

units, pipeline latches of back-end stages after issue, L1 D-cache word-line decoders, and 

result bus drivers. In an out-of-order pipeline, whether these blocks will be used is known at 

the end of issue based on the instructions issued. There is at least one cycle of register read 

stage between issue and the stages using execution units, D-cache word-line decoder, result 

bus driver, and the back-end pipeline latches. DCG exploits this one-cycle advance 

knowledge to clock-gate the unused blocks without impacting the clock speed.  

 

DCG has the following key features. 

  1) DCG is based on actual usage of circuit blocks and not on predictions. Therefore, 

DCG avoids performance loss due to mispredictions causing circuits to be gated when they 

are needed, and lost opportunity due to mispredictions causing circuits not to be gated when 

they are idle.  

 2) DCG clock-gates at fine granularities of a few (1–2) cycles on small circuit blocks 

(execution units, D-cache decoders, result bus drivers, and pipeline latches). The fine 

granularity enables flexible gating of individual pipeline stages without the all-or-nothing 

restriction of gating the entire pipeline backend, making DCG effective. However, DCG’s 

blocks are still substantially larger than the few gates added for clock-gating, allowing DCG 

to amortize the overhead.  

 3) DCG is a simple technique requiring no fine-tuning of thresholds, and is general 

enough to be applicable to clustered and non-clustered micro architectures.  

DCG not only achieves large power savings, but also incurs no performance loss, while being 

simple. 

In this section, we analyze the opportunity of DCG in different parts of a superscalar micro 

architecture.  

DCG depends on two factors:  

 1) Opportunity due to existence of idle clock cycles (i.e., cycles when a logic block is 

not being used) and  

 2) Advance information about when the logic block will not be used in the future. 
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Fig. 4.1 depicts the general pipeline model for a superscalar processor. The pipeline consists 

of eight stages with pipeline latches between successive stages, used for propagating 

instruction/ data from one stage to the next. Here is the explanation, why we do or do not 

clock-gate each individual pipeline latch and stage. 

 

4.2 DCG FOR PIPELINE LATCHES 

Pipeline latches unconditionally latch their inputs at every clock edge, resulting in high power 

dissipation. As the technology scales down, deeper pipeline stages with more latches are 

used. Furthermore, the data width (e.g., 32 versus 64 b) also increases with microprocessor 

evolution. Consequently, the ratio of the latch power to the total processor power increases. 

Because most of the stage latches have some idle cycles, clock-gating the latches during these 

cycles can substantially save processor power. Each of the stages to determine if an idle cycle 

for the stage can be known in advance is analyzed.  

 

Instructions are fetched from the instruction cache every cycle. The instructions are then 

decoded, checked for dependences, renamed, and deposited in an instruction window. For a 

branch, the instructions on the predicted path will be taken before the branch is resolved. At 

the end of decode, we can determine how many of the instructions are in the predicted path 

out of those fetched. That is, if the third instruction in a fetched block is a branch and the 

branch is predicted to be taken then the instructions from the fourth instruction to the end of 

the fetched block are thrown away. Only the first three instructions enter the rename stage.  

 

Unfortunately, we cannot clock-gate the latches following fetch and decode because before 

decode we do not know how many instructions are in the fetched path. However, we can 

determine the number of instructions that will enter the rename stage at the end of decode and 

clock-gate the unnecessary parts of the rename latch. We have the entire rename stage to set 

up the clock-gate control of the rename latch.  
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Fetch (IF) 

Decode (ID) 

Rename (RN) 

Instruction Queue (IQ) 
Wakeup/select

Reg Read (RF) 

Execute (Ex) 

Memory (Mem) 

Write Back (WB) 

L 1 

L 2 

L 3 

L 4 

L 5 

L 6 

L 7 

L 8 

Fig 4.1 basic superscalar pipeline 
 

 

 30



Because we can identify which and how many instructions are selected to issue only at the 

very end of issue, we do not have enough time to clock-gate the issue latch. We can clock-

gate the latches for the rest of the pipeline stages [register read (RF), execute (Ex), memory 

access (Mem) and Write-Back (WB)]. At the beginning of the each of the stages we know 

how many instructions are entering the stage, and we can exploit the time during the stage to 

set up the clock-gate control for these latches. 

  

4.3 DCG FOR PIPELINE STAGES 

Fetch stage uses the decoders in the instruction cache and decode stage uses instruction 

decoder, both of which are often implemented with dynamic logic circuits. However, we 

cannot clock-gate fetch and decode logic, because fetch and decode occur almost every cycle. 

We do not know which instructions are useless until we decode them, which is too late to 

clock-gate the decode stage. Rename stage consumes little power and so we do not consider 

rename stage for clock-gating.  

 

The issue stage consists of the issue queue, which uses an associative array and a 

wakeup/select combinational logic. Issue queue entries that are either deterministically 

determined to be empty, or deterministically known to be already woken up, are essentially 

clock-gated. 

 

Register read stage consists of a register file implemented using an array. However, only at 

the very end of issue, we know how many instructions are selected and are going to access 

the register file in the next cycle. Hence, there is no time to clock-gate the register file.  

We can clock-gate the execution units, which are often implemented with dynamic logic 

blocks for high performance. Based on the instructions issued, we deterministically know at 

the end of issue which unit is going to be used in the cycle after the register read stage. 

Hence, we can clock-gate the rest of the unused execution units, by setting the clock-gate 

control during the read cycle.  

 

Modern caches use dynamic logic for word-line decoding and the write-back stage uses result 

bus driver to route result data to the register file. Instructions that enter the execute stage go 

through the memory and write-back stages. We can use the same clock-gate control used in 

execute to clock-gate the relevant logic in these stages. The control signal needs to be delayed 

by one and two clock cycle(s), respectively, for the memory and write-back stages.  
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4.4. IMPLEMENTATION OF DCG 
 

4.4.1. Execution Units 

At the end of instruction issue, we know which execution units will be used in the execute 

stage, a few cycles into the future. The selection logic in a conventional issue queue not only 

selects which instructions are to be issued based on execution unit availability, but also 

matches instructions to execution unit. Hence, we leverage the selection logic to provide 

information about which execution units will remain unused and clock-gate those units. 

Priority 
encoder 

OR 

Grand0

Grand3

To Clk-
gating 
control 

To Requesting 
instructions 

R
eq

0 

R
eq

3 

ANY REQ ENABLE

Fig 4.2. Schematic of a selection logic cell with the clock-
gate signals extracted from it. 

 
Fig. 4.2 shows the schematic of selection logic associated with one type of execution units 

(e.g., integer ALU, or floating-point adder, or floating-point multiplier, etc.). The request 

signals (REQ) come from the ready instructions once the wakeup logic determines which 

instructions are ready. The selection logic uses some selection policy to select a subset of the 

ready instructions, and generates the corresponding grant signals (GRANT). In our 

implementation, we send the GRANT signals to the clock-gate control. 
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Fig 4.3. Clock-gating of the execution units. 

Fig. 4.3 shows the pipeline details of the control. Because instructions selected in cycle X use 

the execution units in cycle (as shown in Fig. 4.4), we have to pass the GRANT signals down 

the pipeline through latches for proper timing of clock-gating. We extend the pipeline latches 

for the issue and read stages by a few extra bits to hold the GRANT signals. We note that the 

gated clock line (output of the AND gates in Fig. 4.3) that feeds the execution units may be 

skewed a bit because of the delay through the latch and the AND gate. This skew affects only 

the precharge phase and not the evaluate phase. Therefore, DCG is likely not to lengthen 

execution unit latencies. 

 

The control for clock-gating execution units is simple and the overhead of the extended 

latches and the AND gates is small compared to the execution units (e.g., 32- or 64-b carry-

look ahead adders) themselves. Therefore, the area and power overhead of the control 

circuitry are easily amortized by the significant power savings achieved. If execution units 

keep toggling between gated and non-gated modes, the control circuitry keeps switching, 

resulting in an increased overhead due to the power consumed by the control circuitry. To 

alleviate this problem, we apply sequential priority policy for execution units: Among the 

execution units of the same type, we statically assign priorities to the units, so that the higher 

priority units are always chosen to be used before the lower priority units. Thus, most of the 
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time the (lower) higher priority units stay in (gated) non-gated mode, minimizing the control 

power overhead. 

Select 
X 

Reg Read 
X+1 

Exe 
X+2 

Mem 
X+3 

L4 L5 L6 L7

Fig 4.4. Timing diagram for execution units clock-gating. 

 
4.4.2. Pipeline Latches 

We clock-gate pipeline latches at the end of rename, register read, execute, memory, and 

write-Back stages. For rename, the number of clock-gated latches in any cycle is known from 

the decode stage in the previous cycle. For latches in the other stages, the number of clock-

gated latches in any cycle is known from the issue stage. We augment the issue stage to 

generate a one-hot encoding of how many instructions are issued every cycle. The encoding 

has a “0” to represent an empty issue slot, and a “1” to represent a full issue slot for an issued 

instruction, for all the issue slots of the pipeline. Much like the execution units, the clock the 

one-hot encoding is passed down the pipe via extended pipeline latches.  

 

 
Fig 4.5. Clock-gating of pipeline latches. 
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Fig. 4.5 shows the clock-gating control for the stages following issue queue. The outputs of 

the extended latches carrying the one-hot encoding are ANDed with the clock line to generate 

a set of gated clock inputs for pipeline latches corresponding to individual issue slots. Note 

that the clock line for the extra latches themselves is not gated. 

 

Extensions to the pipeline latches and the extra AND gates for the control are small compared 

to the pipeline latches (containing issue-width X number of operands per instruction X 

operand width bits, e.g., 8 X 2 X 64 = 1024 b ) themselves, and clock drivers, respectively. 

Hence, the impact of the extra control logic on area and power is not significant. 
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Chapter 5 

 

 

 

APPLICATION 

 

 



5.1. TRAFFIC LIGHT CONTROLLER 

 
The controller to be designed controls the Traffic lights of a junction intersecting two main 

roads. Figure 5.1 shows the location of the Traffic lights. Sensors at the intersection detect the 

presence of cars on the highway and side road. 

 

The controller operates the traffic lights at an intersection where two-way street running north 

and south intersects a two-way street running east and west. The goal is to design the 

controller so that collisions are avoided, and no traffic waits at a red light 

forever.

 

EAST 
SENSOR 

NORTH 
SENSOR 

WEST 
SENSOR 

SOUTH 
SENSOR 

Fig 5.1 Traffic light controller 

The controller has four traffic sensor inputs, N_Sensor, W_Sensor, S_Sensor and E_Sensor 

indicating when a vehicle is present at the intersection traveling in the north, south, west and 

east directions respectively. There are four green outputs, N_G, S_G, W_G and E_G, indicating 

that a green light should be given to traffic in each of the four directions. 
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S0 to S11 
 
S_G,W_R
N_R,E_R 

S57 to S63 
 
S_R,W_R
N_R,E_Y 

S12 to S14 
 
S_Y,W_R
N_R,E_R 

S15 to S26 
 
S_R,W_G
N_R,E_R 

S45 to S56 
 
S_R,W_R
N_R,E_G 

S42 to S44 
 
S_R,W_R
N_Y,E_R 

S30 to S41 
 
S_R,W_R
N_G,E_R 

S27 to S29 
 
S_R,W_Y
N_R,E_R 

Fig 5.2 state diagram of traffic light controller 
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Fig 5.3 Pre-computation based traffic light controller  

  

When any sensor is ON, switch on the respective green light and change the state of the 

present green light. Note that, these two assignments should occur simultaneously. 

Otherwise, there may be a collision of traffic a junction. 
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The pre computation logic should be designed in such a way that the resulted logic is to be 

work as a normal traffic light controller and switch to corresponding route depending on the 

sensors.. 

Effective clock-gating, however, requires a methodology that determines which signals are to 

be gated, when, and for how long. Clock-gating schemes that either result in frequent 

toggling of the signals between enabled and disabled states, or apply clock-gating to such 

small blocks that the clock-gating control circuitry is almost as large as the blocks 

themselves, incur large overhead. This overhead may result in power dissipation to be higher 

than that without clock-gating. 
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Chapter 6 

 

 

 

SIMULATION RESULTS 



6.1. HARDWARE DESCRIPTION LANGUAGE 
 
The two most popular hardware description languages are VHDL and Verilog. The HDL 

used for our thesis is VHDL. 

 

VHDL is a hardware description language used to describe the behavior and structure of 

digital systems. The acronym VHDL stands for VHSIC Hard ware Description Language, 

and VHSIC in turn stands for very high speed integrated circuit. However, VHDL is a 

general purpose hardware description language, which can be used to describe and simulate 

the operation of a wide variety of digital systems, ranging in complexity from a few gates to 

an interconnection of many complex integrated circuits. The VHDL language is widely used 

in industry. 

 

VHDL can describe a digital system at several different levels- behavioral, dataflow and 

structural. VHDL leads naturally to a top-down design methodology, in which the system is 

first specified at a high level and tested using a simulator. After the system is debugged at this 

level the design can gradually be refined eventually leading to structural description. 

The language has the following feature: 

 Designs may be decomposed hierarchically 

 Each designs element has both a well-defined interface (for connecting in it other 

elements) and a precise behavioral specification (for simulating it). 

 Behavioral specifications can use either an algorithm or an actual hardware structure 

to define an element’s operation.  

 Concurrency timing and clocking can all be modular. VHDL handles asynchronous as 

well as synchronous sequential- circuit structures. 

 The logical operation and timing behavior of a design can be simulated. 

 

While the VHDL language and simulation environment were important innovations by 

themselves, VHDL’s utility and popularity took a quantum leap with the commercial 

development of VHDL synthesis tools. These programs can create logic – circuit structures 

directly from VHDL behavioral description using VHDL, simulate and synthesize anything 

from a simple combinational circuit to a complete microprocessor system on chip. 
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Timing verification 

Fig.6.1. HDL Based design flow 

 
A programmable logic device or PLD is an electronic component used to build digital 

circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at 

the time of manufacture. Before the PLD can be used in a circuit it must be programmed. 

Programmability of logic means that new chip designs can be tested and easily changed 

without incurring the huge photo mask costs for chips completed in a semiconductor fab. In 

addition, memory-based PLDs can be reprogrammed over and over. Figure 6.1 contains a block  
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diagram of a hypothetical CPLD. Each of the four logic blocks shown there is the equivalent 

of one PLD. However, in an actual CPLD there may be more (or less) than four logic blocks. 

Note also that these logic blocks are themselves comprised of macro cells and interconnect 

wiring, just like an ordinary PLD. 

 

Unlike the programmable interconnect within a PLD, the switch matrix within a CPLD may 

or may not be fully connected. In other words, some of the theoretically possible connections 

between logic block outputs and inputs may not actually be supported within a given CPLD. 

The effect of this is most often to make 100% utilization of the macro cells very difficult to 

achieve. Some hardware designs simply won't fit within a given CPLD, even though there are 

sufficient logic gates and flip-flops available. 

 

Because CPLDs can hold larger designs than PLDs, their potential uses are more varied. 

They are still sometimes used for simple applications like address decoding, but more often 

contain high-performance control-logic or complex finite state machines. At the high-end (in 

terms of numbers of gates), there is also a lot of overlap in potential applications with 

FPGAs. Traditionally, CPLDs have been chosen over FPGAs whenever high-performance 

logic is required. Because of its less flexible internal architecture, the delay through a CPLD 

(measured in nanoseconds) is more predictable and usually shorter. 

 

6.2. FIELD PROGRAMMABLE GATE ARRAYS 

Field Programmable Gate Arrays (FPGAs) can be used to implement just about any hardware 

design. There are three key parts of its structure: logic blocks, interconnect, and I/O blocks.  

The I/O blocks form a ring around the outer edge of the part. Each of these provides 

individually selectable input, output, or bi-directional access to one of the general-purpose 

I/O pins on the exterior of the FPGA package. Inside the ring of I/O blocks lies a rectangular 

array of logic blocks. And connecting logic blocks to logic blocks and I/O blocks to logic 

blocks is the programmable interconnect wiring.  

The FPGA used for testing is VIRTEX-II. 
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VIRTEXII PRO FPGA 

Configurable Logic Blocks (CLBs): 

CLB resources include four slices and two 3-state buffers. 

Each slice is equivalent and contains: 

• Two function generators (F & G) 

• Two storage elements 

• Arithmetic logic gates 

• Large multiplexers 

• Wide function capability 

• Fast carry look-ahead chain 

• Horizontal cascade chain (OR gate) 

 

Configuration 

Virtex-II Pro devices are configured by loading the bit stream into internal configuration 

memory using one of the following modes: 

• Slave-serial mode 

• Master-serial mode 

• Slave Select MAP mode 

• Master Select MAP mode 

• Boundary-Scan mode (IEEE 1532) 

 

Ordering information of VIRTEX-II is   XC2VPX20 -5 FF 896 C 

• XC2VPX20  - Device Type 

• -6    -- Speed Grade ( -5 , -6 ) 

• FF   -- Package Type 

• 896   -- No. of pins 

• C   -- Temperature Range 
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6.3. SIMULATION RESULTS OF GENERAL PURPOSE PROCESSOR 

 

 

 
Fig.6.2. Accumulator output 

 

 

 

Fig.6.3. ALU output when the inputs are A = “01100011” and B = “10110110”. 

 

 

 

 
Fig.6.4. Multiplexer output. 
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Fig.6.5. Regfile output. 

 

 

 

Fig.6.6. Shifter output when the input is “00111011”. 

 

 

 
Fig.6.7. Tri-state buffer output.  
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6.4. SIMULATION RESULTS OF TRAFFIC LIGHT CONTROLLER 

 

Fig.6.8.Normal Traffic light controller. 

 

 

Fig.6.9. Pre-computation logic DCG Traffic light controller output. 
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Fig.6.10. PCL based DCG Traffic light controller output when N_sensor ON. 

 

Fig.6.11. PCL based DCG Traffic light controller output TWO sensors ON. 
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6.5. POWER CALCULATIONS 

 ALU ACC MUX Shifter Tri-state buffer 

No.of slices 18 9 8 8 1 

No. of 4 i/p LUT’s 25 9 16 9 1 

No. of IO’s 27 19 42 18 17 

No. of IO Buffers 27 19 42 18 17 

Table 6.1 Cell Usage for the General Purpose Processor 

 

 ALU ACC MUX Shifter Tri-state buffer 

No.of slices 13 6 5 5 1 

No. of 4 i/p LUT’s 19 6 13 6 1 

No. of IO’s 23 16 35 14 13 

No. of IO Buffers 23 16 35 14 13 

Table 6.2 Cell Usage for the General Purpose Processor after DCG applied. 

 

 

 
Traffic light controller 

Traffic light controller 

after PCL DCG 

No.of slices 20 18 

No. of 4 i/p LUT’s 40 37 

No. of IO FF’s 12 8 

No. of IO Buffers 18 14 

No.of slice FF’s 28 23 

Timing Delay 4.470 ns 3.565 ns 

Power consumption 330 uW 219 uW 

Table 6.3 Cell Usage for the Traffic light controller. 
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Chapter 7 

 

 

 

CONCLUSION 



CONCLUSION 
 

Deterministic clock-gating (DCG) methodology is based on the key observation that for 

many of the stages in a modern pipeline, a circuit block’s usage in a specific cycle in the near 

future is deterministically known a few cycles ahead of time. Using this advance information, 

DCG clock-gates unused execution units, pipeline latches.  

 

Results show that DCG is very effective in reducing clock power. 25 – 33 % power 

consumption is reduced by using this method. As high-performance processor pipelines get 

deeper and power becomes a more critical factor, DCG’s effectiveness and simplicity will 

continue to be important. 

 

Effective clock-gating, however, requires a methodology that determines which circuits are 

gated, when, and for how long. Care to be taken while designing the clock-gating control 

circuitry; otherwise the circuitry may become an overhead. This overhead may result in 

power dissipation to be higher than that without clock-gating. 
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APPENDIX 
 
 
Device utilization summary for complete processor: 
---------------------------------------------------------------------------------- 
 
Selected Device : 2vp4ff672-5  

 

 Number of Slices:                         140   out of   3008     4%   

 Number of Slice Flip Flops:             77   out of   6016     1%   

 Number of 4 input LUTs:               260  out of   6016     4%   

     Number used as logic:         252 

     Number used as RAMs:          8 

 Number of IOs:                           18 

 Number of bonded IOBs:                 18   out of    348     5%   

 Number of GCLKs:                             1  out of     16      6%    

 

Timing Summary: 
 

Speed Grade: -5 

 

Minimum period: 10.131ns (Maximum Frequency: 98.705MHz) 

Minimum input arrival time before clock: 4.902ns 

Maximum output required time after clock: 5.090ns 

Maximum combinational path delay: 6.131ns 

 
Device utilization summary for Datapath: 
----------------------------------------------------------------- 
 
Selected Device : 2vp4ff672-5 
 

 Number of Slices:                       76   out of   3008     2%   

 Number of Slice Flip Flops:            16    out of   6016     0%   

 Number of 4 input LUTs:               137  out of   6016     2%   

     Number used as logic:         129 

      Number used as RAMs:          8 
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Number of IOs:                               41 

Number of bonded IOBs:                 41  out of    348    11%   

Number of GCLKs:                           1   out of     16     6%   

 

Timing Summary: 

Speed Grade: -5 

 

Minimum period: 8.613ns (Maximum Frequency: 116.100MHz) 

Minimum input arrival time before clock: 9.735ns 

Maximum output required time after clock: 13.396ns 

Maximum combinational path delay: 14.518ns 

 

Device utilization summary for control unit: 
------------------------------------------------------------ 
 
Selected Device : 2vp4ff672-5  
 

Number of Slices:                          79    out of   3008     2%   

Number of Slice Flip Flops:            66    out of   6016     1%   

Number of 4 input LUTs:               151  out of   6016     2%   

Number of IOs:                        25 

Number of bonded IOBs:                  25  out of    348      7%   

Number of GCLKs:                             1  out of     16       6%   

 

Timing Summary: 

Speed Grade: -5 

 

Minimum period: 5.316ns (Maximum Frequency: 188.103MHz) 

Minimum input arrival time before clock: 3.456ns 

Maximum output required time after clock: 4.061ns 
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Device utilization summary for traffic light controller : 
--------------------------------------------------------------------------- 
 

Selected Device : 2vp4ff672-5  

 

 Number of Slices:                         20   out of   3008     0%   

 Number of Slice Flip Flops:            28    out of   6016     0%   

 Number of 4 input LUTs:                40   out of   6016     0%   

 Number of IOs:                      18 

 Number of bonded IOBs:                 18  out of    348     5%   

     IOB Flip Flops:                     12 

 Number of BRAMs:                          1   out of     28     3%   

 Number of GCLKs:                          1    out of     16     6% 

 

Timing Summary: 

Speed Grade: -5 

Minimum period: 3.872ns (Maximum Frequency: 258.231MHz) 

Minimum input arrival time before clock: 3.660ns 

Maximum output required time after clock: 4.214ns 

 

Device utilization summary pre computation logic based traffic light 
controller: 
------------------------------------------------------------------------------------------------------ 
 

Selected Device : 2vp4ff672-5  

 Number of Slices:                           18  out of   3008     0%   

 Number of Slice Flip Flops:            23  out of   6016     0%   

 Number of 4 input LUTs:                37  out of   6016     0%   

  Number of IOs:                      14 

 Number of bonded IOBs:                14  out of    348     4%   

    IOB Flip Flops:                       8 

 Number of BRAMs:                         1  out of     28     3%   

 Number of GCLKs:                         1  out of     16     6%   
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Timing Summary: 

Speed Grade: -5 

 

Minimum period: 3.984ns (Maximum Frequency: 250.995MHz) 

Minimum input arrival time before clock: 4.193ns 

Maximum output required time after clock: 4.214ns 
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