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ABSTRACT 

Matrix multiplication and Fast Fourier transform are two computational intensive DSP 

functions widely used as kernel operations in the applications such as graphics, imaging and 

wireless communication. Traditionally the performance metrics for signal processing has been 

latency and throughput. Energy efficiency has become increasingly important with proliferation 

of portable mobile devices as in software defined radio. 

 A FPGA based system is a viable solution for requirement of adaptability and high 

computational power. But one limitation in FPGA is the limitation of resources. So there is need 

for optimization between energy, area and latency. There are numerous ways to map an 

algorithm to FPGA. So for the process of optimization the parameters must be determined by 

low level simulation of each of the designs possible which gives rise to vast time consumption. 

So there is need for a high level energy model in which parameters can be determined at 

algorithm and architectural level rather than low level simulation. 

 In this dissertation matrix multiplication algorithms are implemented with pipelining and 

parallel processing features to increase throughput and reduce latency there by reduce the energy 

dissipation. But it increases area by the increased numbers of processing elements. The major 

area of the design is used by multiplier which further increases with increase in input word width 

which is difficult for VLSI implementation. So a word width decomposition technique is used 

with these algorithms to keep the size of multipliers fixed irrespective of the width of input data. 

 FFT algorithms are implemented with pipelining to increase throughput. To reduce 

energy and area due to the complex multipliers used in the design for multiplication with twiddle 

factors, distributed arithmetic is used to provide multiplier less architecture. To compensate 

speed performance parallel distributed arithmetic models are used. 

           This dissertation also proposes method of optimization of the parameters at high level for 

these two kernel applications by constructing a high level energy model using specified 

algorithms and architectures. Results obtained from the model are compared with those obtained 

from low level simulation for estimation of error. 
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1.1  Introduction          

  Matrix multiplication and Fast Fourier Transform are important tools used in the 

Digital Signal Processing applications. Each of them is compute-intensive portion of 

broadband beam forming applications such as those generally used in software defined radio 

and sensor networks. These are frequently used kernel operations in signal and image 

processing systems including mobile systems. 

Recently, in signal processing there has been a lot of development to increase its 

performance both at the algorithmic level and the hardware implementation level. 

Researchers have been developing efficient algorithms to increase the speed and to keep 

the memory size low. On the other hand, developers of the VLSI systems are including 

features in design that improves the system performance for applications requiring matrix 

multiplication and Fast Fourier Transform. Research in this field is not only because of the 

popularity, but also because of the reason that, for decades the chip size has decreased 

drastically. This has allowed portable systems to integrate more functions and become 

more powerful. These advances have also, unfortunately, led to increase in power 

consumption. This has resulted in a situation, where numbers of potential applications are 

limited by the power - not the performance. Therefore, power consumption has resulted to 

be the most significant design requirement in portable systems and this has lead to many 

low power design techniques and algorithms. 

 

1.2 Motivations 

 Matrix multiplication is widely used as core operation in various signal processing 

application like software defined radio. The FFT processor is widely used in DSP and 

communication applications. It is critical block in the OFDM (Orthogonal Frequency 

Division Multiplexing) based communication systems, such as WLAN (IEEE 802.11) and 

MC-CDMA receiver. Recently, both high data processing and high power efficiency 

consumes more power. Due to the nature of non-stop processing at the sample rate, the 

pipelined FFT appears to be the leading architecture for high performance applications. 

Since these two functions are widely used in various mobile devices they required to have 

features like low power, lesser area without increase of latency. 

 The design and portable systems requires critical consideration for the 

averaged power consumption which is directly proportional to the battery weight and 

volume required for a given amount of time. The battery life depends on both the power 

consumption of the system and the battery capacity. The battery technology has improved 
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considerably with the advent of portable systems but it is not expected to grow drastically 

in near future. Most of these portable applications demands high speed computation, 

complex functionality and often real time processing capabilities with the low power 

consumption. Portable devices like cellular phones, pagers, wireless modems and laptops 

along with the limitation of the technology have elevated power. Moreover there is a need 

to reduce the power consumption in the high performance micro systems for the packaging 

and cooling purposes. Also high power and systems are more prone to several silicon 

failure mechanisms. Every 10°C rise in operating temperature roughly doubles a 

component's failure rate. Hence, power consumption has now become an important 

design criterion just like speed and silicon area. Again when the functions are implemented 

on FPGA there is a need to reduce the area as much as possible due to limited availability 

of resources. In DSP applications there is a need of maximizing throughput with reduction 

of latency. 

 

1.3 Literature review 

 Matrix multiplication: 
 
 H.T.Kung and PhilipL.Lehman[5] reported matrix multiplication on systolic array. 

But FPGA implementation is not covered in their work. Again they have explained the 

operation on 2D systolic array. The 2D systolic array requires more number of processing 

elements interconnects and also as a result consumes more area. Also there is difficulty of 

VLSI implementation of it due to large numbers of interconnects. Also latency is Order of n2. 

 Kumar and Tsai [8] achieved the theoretical lower bound for latency for matrix 

multiplication with a linear systolic design. They provide tradeoffs between the number of 

registers and the latency. Their work focused on reducing the leading coefficient for the time 

complexity. The latency becomes Order of n. Due to linear systolic design the number of 

interconnects gets reduced and also reduces the area by reducing the number of processing 

elements. 

 Mencer [4] implemented matrix multiplication on the Xilinx XC4000E FPGA device. 

Their design employs bit-serial MACs using Booth encoding. They focused on tradeoffs 

between area and maximum running frequency with parameterized circuit generators. 

 Amira [6] improved the design in [4] using the Xilinx XCV1000E FPGA device. 

Their design uses modified Booth-encoder multiplication along with Wallace tree addition. 

The emphasis was once again on maximizing the running frequency. Area or speed or, 
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equivalently, the number of CLBs divided by the maximum running frequency was used as a 

performance metric. 

 Ju-Wook Jang,, Seonil B. Choi, , and Viktor K. Prasanna [1] has developed a design 

to do the optimization of energy and area at algorithmic and architectural level. They have 

used a technique called domain specific modeling technique for the optimization at high 

level. Their algorithms and architectures use pipelining and parallel processing on linear 

systolic array. So the area and interconnects gets reduced But they considered the input word 

width directly. So if the size of input word increases the size of multipliers used in the design 

increases so by increasing the area and power consumption. Also it becomes difficult for 

VLSI implementation. 

 This problem of increase of word width was being solved by Sangjin Hong, Kyoung-

Su Park [3] and by designing a very flexible architecture for a 2×2 matrix multiplier on 

FPGA. It has also mechanism to support 2’complement data. But they have not given any 

attempt to increase the throughput by pipelining or parallel processing. Again they didn’t 

propose block matrix multiplication. They have also not used the optimization procedure by 

constructing high level energy model. 

 So in this dissertation the proposed architecture uses algorithm for matrix 

multiplication on a linear systolic array to reduce the interconnects, uses pipelining and 

parallel processing to increase throughput there by reducing the latency. It also solves the 

problem of increasing size of the multipliers by using word width decomposition technique 

by modifying the algorithm and architecture. Then a high level model is constructed for the 

optimization of various parameters at high level. 

  

Fast Fourier Transform 

 Jia, Gao, Isoaho and Tenhunen [30] proposed an efficient architecture for radix2/4/8 

architecture reducing no. of complex multipliers. But they have not proposed architecture for 

pipelining and parallel processing.   

 Each butterfly unit of radix-4 FFT needs four operands per cycle, and then produces 

four results, which proves that parallel access to data is crucial issue for system efficiency. D. 

Cohen [37] and Y. T. Ma [38], etc., proposed several approaches of address mapping, which 

are not appropriate to the structure of single butterfly unit.  

 Seonil Choi1, Gokul Govindu, Ju-Wook Jang, Viktor K. Prasanna[12] have done a 

work on FFT architecture using pipelining and constructed an energy model based on the 

technique[2].They have done optimization at high level. But their work consists of 
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multiplication with twiddle factors using complex multipliers leads to consumption of area 

and power. 

 In all above cases none of the designs construct high level energy model for FFT 

processor based on distributed arithmetic for radix 4 FFT algorithm. So this paper uses 

pipelining implementation of FFT processors based on distributed arithmetic forming a 

multiplier less architecture along with the pipelining. Also using the energy efficient 

modeling technique optimization of the parameters is done at algorithm level. Then error is 

estimated from simulated result. 

 

1.4 Organization 

Chapter-2 presents an overview of the energy efficient modeling technique known as 

domain specific modeling technique. This explains how to construct high level energy 

models and generate energy\area functions from that. 

Chapter-3 presents an overview of the operation of matrix multiplication on a systolic 

array. 

Chapter-4 presents the proposed algorithms and architectures used for matrix 

multiplication and construction of high level energy model to generate functions and to 

obtain the parameter values at algorithm level. This also includes results and discussion. 

Chapter-5 presents an overview of the Fast Fourier Transform and describes radix 2 and 

radix 4 FFT in details. 

Chapter-6 presents the proposed algorithms and architectures used for Fast Fourier 

Transform and construction of high level energy model to generate functions. This also 

includes results and discussion. 

Chapter-7 presents conclusion of this dissertation work and depicts the future work 

which can be done on this project. 

 

1.5 Summary 

This chapter provides a general introduction towards the aim of this project. As 

energy, area and speed optimized systems are required due to the portable systems usage 

and to increase their efficiency with respect to the energy and area consumption without 

increase of latency. 
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2.1 Introduction 

 

  FPGAs are the most attractive devices for complex applications due to their high 

density and speed. Because of its available processing power, FPGAs are an attractive fabric 

for implementing complex and compute intensive applications such as signal processing 

kernels for mobile devices. Mobile devices operate in power constrained environments. 

Therefore, in addition to time, power is a key performance metric. Optimization at the 

algorithmic and architectural level has a much higher impact on total energy dissipation of a 

system than RTL or gate level. Because optimization at RTL or gate level gives rise to 

consumption of more time. So there arise needs for a high-level energy model which not only 

enables algorithmic level optimizations but also provides rapid and reasonably accurate 

energy estimates. 

      In RISC processor or a DSP, the architecture and the components such as ALU, data 

path, memory etc. are well defined. But the basic element in FPGAs is lookup table (LUT). It 

is a too low level entity to be considered for high level modeling. So a lot of issues must be 

addressed in developing a high level energy model for FPGAs. Besides, the architecture 

design depends heavily on the algorithm. Therefore, no single high-level model can capture 

the energy behavior of all feasible designs implemented on FPGAs. Again, to elevate the 

level of abstraction, high-level models do not capture all the details of a system and consider 

only a small set of key parameters that affect energy. This lowers the accuracy of energy 

estimation. So this issue must be considered for designing high level energy model.  

           The traditional approach for estimation of energy in a design is to do low level 

simulation for each design and estimate overall energy dissipation. But it is time consuming 

to implement each and every design and estimate energy by low level simulation. The 

advantage of the present approach is the ability to rapidly evaluate the system-wide energy 

using energy function for different designs within a domain. This high-level energy model 

also facilitates algorithmic level energy optimization through identification of appropriate 

values for architecture parameters such as frequency, number of components. 

 

2.2 Domain specific Modeling technique 

 To address the issues discussed above a modeling technique is considered known as 

domain specific modeling technique. This technique helps in reduction of design space and 

also facilitates high-level energy modeling for a specific domain. 
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Figure 2.1 System wide energy function generation 

 

             In any of the kernels of the design chosen the design is divided in to various domains. 

A domain corresponds to a family of architectures and algorithms that implements a given 

kernel. For example, a set of algorithms implementing matrix multiplication on a linear array 

is a domain. In the domain for the algorithms those parameters are extracted variation of 

which varies the number of components in that algorithm. Component corresponds to the 

basic building blocks of the design. By restricting the modeling to a specific domain, the 

number of architecture parameters and their ranges are reduced, there by significantly 

reducing the design space. A limited number of architecture parameters also facilitate 

development of power functions that estimate the power dissipated by each component. For a 

specific design, the component specific power functions, parameter values associated with 

the design, and the cycle specific power state of each component are combined to specify a 

system-wide energy function.              
 

Advantages of the modeling 

            The goal of the domain-specific modeling is to represent energy dissipation of the 

designs specific to a domain in terms of parameters associated with this domain. These are 

known as key parameters. For a given domain, these are the parameters which can 
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significantly affect system-wide energy dissipation and can be varied at algorithmic level are 

chosen for the high level energy model. As a result, this model 

 Facilitates algorithmic level optimization of energy performance. 

 Provides rapid and fairly accurate estimates of the energy performance. 

 Provides energy distribution profile for individual components to identify 

            Candidates for further optimization. 
              

2.2.1High-level Energy Model  

This model consists of components and key parameters. Components comprises of 

RModules and its interconnects. Key parameters are the parameters which can significantly 

affect system-wide energy dissipation and can be varied at algorithmic level. 

 

2.2.1.1Components      

            Relocatable Module (RModule) is a high-level architecture abstraction of a 

computation or storage module. The power & area of a RModule is independent of its 

location on the FPGA. For example, a register can be a RModule if the number of registers 

varies in the design depending on algorithmic level choices. One important assumption about 

RModule is that energy performance and area of an instance of a RModule is independent of 

its location on the device. While this assumption can introduce small error in energy 

estimation, it greatly simplifies the model. Interconnect represents the connection resources 

used for data transfer between the RModules. The power consumed in a given Interconnect 

depends on its length, width, and switching activity. Interconnect can be of various types. For 

example, in Virtex- II Pro FPGAs, there are several Interconnects such as long lines, hex 

lines, double lines, and single connections which differ in their lengths. The component refers 

to both RModule and interconnects. 

 

2.2.1.2 Methodology used 

            In a high level energy model first the components are extracted from the algorithm. 

Then the Component specific parameters are extracted which depend on the characteristics of 

the component and its relationship to the algorithm. For example, operating frequency or 

precision of a multiplier RModule can be chosen as parameters if they can be varied by the 

algorithm. Variation of component specific parameters varies the area and power dissipation 

of the components. Possible candidate parameters include operating frequency, input 

switching activity, word precision, power states etc. Component specific power functions 
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capture the effect of component specific parameters on the average power dissipation of the 

component. Now sample design of each of the components is implemented individually and 

the power and area are determined by low level simulation. By varying the component 

specific parameters the various values of power and area are determined. Then the values are 

given to the power function builder like curve fitting to generate the power function. 

         System-wide energy function represents the energy dissipation of the designs 

belonging to a specific domain as a function of the parameters associated with the domain. 

        The domain-specific nature of our energy modeling is exploited when the designer 

identifies the level of architecture abstraction (RModules and Interconnects) appropriate to 

the domain or chooses the parameters to be used in the component specific power functions 

The whole flow of design is given in the figure 2.2. 

 

 

Figure 2.2 Domain specific modeling 
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2.2.1.3 Component Power State (CPS) matrices 
 
         Component Power State (CPS) matrices capture the power state for all the 

components in each cycle. For example, in a design that contains k different types of 

components (c1..ck) with ni components of type i. If the design has the latency of T cycles, 

then k two dimensional matrices are constructed where the i-th matrix is of size T × ni. An 

entry in a CPS matrix represents the power state of a component during a specific cycle and 

is determined by the algorithm. 

            Power dissipation by a RModule or Interconnect in a particular state is captured as a 

power function of a set of parameters. These functions are typically constructed through 

curve fitting based on some sample low-level simulations. CPS matrices contain cycle 

specific power state information for each component. The entries in the CPS matrices are 

determined by the algorithm.               

Combining the CPS matrices and component specific power functions for individual 

components, the total energy of the complete system is obtained by summing the energy 

dissipation of individual components in each cycle. The system-wide energy function SE is 

obtained as:                                   

                           SE   =  .
1 1 1

1 .
ink T

i p ps
i j t

C
f= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑∑                                             (1) 

      Where     ps = CPS (i.t,j) .                       

 

Ci.p.ps is the power dissipated in the j-th component (j = 1...nl) of type i during cycle t (t = 

1...T) and f is the operating frequency. CPS (i, t, j) is the power state of the j-th component of 

the i-th type during the t-th cycle.                              

           Due to the high-level nature of the model, we can rapidly estimate the system-wide 

energy. In the worst case, the complexity of energy estimation is 
1

k

i
l

O T n
=

⎛ ⎞×⎜ ⎟
⎝ ⎠

∑  which 

corresponds to iterating over the elements of the CPS matrices and adding the energy 

dissipation by each component in each cycle.  

                

2.2.2 Generation of power functions 
 
  For estimation of power functions the frame work used here is known MILAN Frame 

work .MILAN is a Model based Integrated simulation framework for embedded system 

design and optimization by integrating various simulators and tools in to a unified 
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environment. We use the MILAN framework to derive the component specific power 

functions associated with the high level energy model. 

 

 

              
 
 

 
Figure 2.3 MILAN Framework 
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modeling paradigms provided in MILAN. The designer provides the architecture and the 

parameters (with their possible ranges) that significantly affect the power dissipation of the 

component. Model interpreters (MI) in the MILAN are used to drive the integrated tools and 
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format required by the low level simulators and tools. If z(p1, . . . , pn) be the component 

specific power function and p1, . . . , pn be the parameters associated with the component. 

Figure 2.3 above illustrates the process of deriving component specific power functions. This 

process involves estimation of power dissipation through low-level simulation of the 

component at different design points. For low-level simulations, we have integrated simulator 

such as XPower and ModelSim into the MILAN framework. The switching activity for the 

input to the component can be provided by the designer or specified as some default values, 

depending on the desired accuracy. 

           Low-level simulation is performed at each of the chosen design points to estimate the 

power dissipation. These power estimates are fed to the power function builder. A typical 

low-level simulation for power estimation of a sample design point proceeds as follows. The 
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chosen sample VHDL design is synthesized using Synopsis FPGA Express on Xilinx 

ISE7.1i. The place-and-route file (.ncd file) is obtained for the target FPGA device, Virtex-II 

Pro XC2VP4 and ModelSim 5.5e is used to simulate the module and generate simulation 

results (.vcd file). These two files are then provided to the Xilinx XPower tool to estimate the 

energy dissipation. The power function builder is driven by an MI from the MILAN 

framework. For components with a single parameter, the power function can be obtained 

from curve-fitting on sample simulation results. In case of larger number of the parameters, 

surface fitting can be used. The component specific power function of an interconnect 

depends on its length, operating frequency, and the switching activity. Equation (2) is used to 

estimate power dissipation in an interconnect. ΦP denotes the power dissipation of a cluster of 

k numbers of RModules connected through the candidate interconnects and M.pi represents 

power dissipation of the i-th RModule. The power dissipated by the cluster is obtained by 

low-level simulation.                              

                    
1

k

p p pi
i

IC Mφ
=

= −∑                                                                                   (2) 

 

 
 
Figure 2.4 Function generation by Low Level Simulations  
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2.2.3 Power function builder Curve fitting 

  

    It is the method of generating the best fit curve that determines the function between 

the given parameters. It can be determined by applying least square error method for a no of 

differential equations. It can also be determined by using curve fitting tools in MATLAB. So 

given the values of the given parameters by the best fit curve it determines the function in 

terms of these parameters. It is two types. Parametric and Non parametric.  

 Parametric fitting is performed by using toolbox library equations (such as linear, 

quadratic, higher order polynomials, etc.) or by using custom equations (limited only by the 

user's imagination.) A parametric fit would be used to find regression coefficients and the 

physical meaning behind them. Non parametric fitting is performed by using a smoothing 

spline or various interpolants. A nonparametric fit would be used when regression 

coefficients hold no physical significance and are not desired. In this dissertation parametric 

curve fitting is used to obtain higher order differential equations. 

 
 
 
 
 
 
 
 
 
 



 
 
 

Chapter   3 
 

 
 

 

 

 

 

 

 

 

 

 

                               

                 
        

  Matrix Multiplication  

 

                                      



 13

3.1Systolic array                                  
   A systolic array is an arrangement of processors in array where data flows 

synchronously across the array between the neighbors, usually with different data flowing in 

different directions. Each processor at each step takes in data from one or more neighbors 

(e.g. north and west), processes it and, in the next step, outputs result in opposite directions 

(south and east).          

These have following characteristics. 

 A specialized form of parallel processing. 

 Multiple processors connected by short wires. 

 Processors compute data and store it independently of each other. 

 

3.1 .1 Systolic operation 
Each unit in a systolic array is an independent processor. Every processor has some 

registers and ALU. The cells share information with their neighboring cells, after performing 

the needed operation on the data. Some examples of systolic arrays are given below. It is 

divided mainly in to two categories. 1-D array and 2-D array. One dimensional array is also 

known as linear array.   

            It consist of three main functional units as shown in figure 3.1   

Host Processor: 

 Controls whole processing. 

Controller: 

 Provides system clock, control signals, input data to systolic array, and                     

collects results from systolic array.                                

Systolic array:  

Multiple processor network with pipelining. 

 

Some examples of systolic arrays are given in figures 3.2, 3.3 and 3.4. Arrays are classified 

depending on how the processors are arranged in the array. It is a network of locally 

connected functional units, operating synchronously with multidimensional pipelining                  
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Input data 

Output data 

Systolic 
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Controller Host 
processor 
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Figure 3.4 2D systolic triangular array 

Figure 3.2 Pipelined linear 1D systolic array 

Figure 3.1 Functional units of systolic array 

Figure 3.3 2D systolic square array 
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3.1.1.1  Advantages and Disadvantages of Systolic computation 
 
      Advantages: 
 

 Extremely fast. 

 Easily scalable architecture. 

 Can do many tasks single processor machines cannot attain. 

 Turns some exponential problems in to linear or polynomial time. 

 Systolic arrays are very suitable for VLSI design. 

 

        Disadvantages:  
 

 Expensive. 

 Not needed on most applications they are a highly specialized processor type. 
 

                    

3.2 Matrix multiplication algorithm 

 
Let       BAC ×=    is to be performed. 

Where C, A and B are n × n matrices. 

Then  

kj

n

i
ikij BAC ∑

=

=
1

   

This can be performed by following algorithm with three no.s of for loops. 

Algorithm: 

 for i : = 1 to n 

       for j : = 1 to n  

         for k : = 1 to n 

             C( i, j ) : = C( i, j ) + A( i, k ) * B( k, j ); 

(suppose all C( i, j ) = 0 before the computation)  

                      end of k loop 

                          end of j loop 

                               end of i loop                                   

If this algorithm is to be implemented on 2D systolic array its computational complexity will 

be O(n3) and it requires n2 no.s of processing elements. 
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3.2.1 Matrix-matrix multiplication on systolic array 
 
 It can be performed on 2D array or 1D systolic array. 
    
       Before firing the cell                                             After firing the cell 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 Firing of cells in systolic array 
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3.2.1.1 Matrix multiplication on a 2-D systolic array 
 
                              j                                k                              j       
                             →                             →                            → 
 
                   i                               i                               k 
                                              ×                              = 
                  ↓                              ↓                              ↓ 
 
                                                    a31       a32        a33  
 
                                        a21       a22        a23            ⎯ 
 
                            a11       a12        a13            ⎯ 
                                                                                                                          time fronts 
 
                 b11 
 
            b12 b21 
 
 
      b13 b22 b31 
 
 
      b23 b32  ⎯ 
 
      b33   ⎯    ⎯ 
                                                                              c33              c32              c31 
 
 
                                                                                  c23 
 
        
                                                                                    c13                                 c22        c21 
  
 
                                                                                                              c12 
                                                                                                              
 
 
                                                                                                                                           c11 

 
 
Figure 3.6 Matrix multiplication on a 2D systolic array  
 

 
 

 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

2322 21

131211

a    a    a
a    a   a
a    a    a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

2322 21

131211

b    b    b
b    b    b
b    b    b

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

2322 21

131211

c    c    c
c    c   c
c    c    c

k̂
ĵ
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4.1 Introduction 
 
      Matrix multiplication is a frequently used kernel operation in a wide variety of graphics, 

Image processing, robotics, and signal processing applications. Several signal and image 

processing operations can be reduced to matrix multiplication. Most previous works on 

matrix multiplication on FPGAs focuses on latency optimization. However, since mobile 

devices typically operate under various computational requirements and energy constrained 

environments, energy is a key performance metric in addition to latency and throughput. So 

there is a need of energy efficient design of matrix multiplication algorithms on FPGA. 

Hence, the designs would be developed that minimize the energy dissipation. These designs 

offer tradeoffs between energy, area, and latency for performing matrix multiplication on 

commercially available FPGA devices. Recent efforts by FPGA vendors have resulted in 

rapid increase in density of FPGA devices.  

 So there arises a need for optimization between energy, area and speed for matrix 

multiplication on FPGA.  

 

4.2 Methodology adopted                     

        The whole effort is focused on algorithmic techniques to improve energy performance, 

instead of low-level (gate-level) optimizations. Various alternative designs are evaluated at 

the algorithmic level (with accompanying architectural modifications) on their energy 

performance. For this purpose, appropriate energy model is constructed based on a proposed 

methodology known as domain specific modeling to represent the impact of changes in the 

algorithm on the system-wide energy dissipation, area, and latency. The modeling starts by 

identifying parameters whose values change depending on the algorithm and have significant 

impact on the system-wide energy dissipation. These parameters depend on the algorithm and 

the architecture used and the target FPGA device features. These are known as key 

parameters. Closed-form functions are derived representing the system-wide energy 

dissipation, area, and latency in terms of the key parameters. The energy, area, and latency 

functions provide a high level view to look for possible savings in system-wide energy, area, 

and latency. These functions allow making tradeoffs in the early design phase to meet the 

constraints. Using the energy functions algorithmic and architectural-level 

optimizations are made. To illustrate performance gains low-level simulations are performed 

using Xilinx ISE 7.1i and ModelSim 5.5 e, and Virtex-II Pro as an example target FPGA 

device. Then Xilinx XPower is used on the simulation data to verify the accuracy of the 

energy and area estimated by the functions. 
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Here algorithms and architectures for energy-efficient implementation are presented. An 

Energy model specific to this implementation is described. It includes extracting key 

parameters from our algorithm and architecture to build a domain-specific energy model and 

deriving functions to represent system-wide energy dissipation, area, and latency. Then the 

optimization procedure is shown for these algorithms and architectures in an illustrative way. 

Analysis of the tradeoffs between system-wide energy, area, and latency is also explained.  

 
4.3 Algorithms and Architectures in the design        

       The algorithms are chosen to be implemented on a linear systolic array (as discussed 

in chapter 3).Here matrix multiplication algorithm on a linear systolic array is considered as a 

domain. The algorithms and architectures are presented as two theorems and one corollary.            

  This design has optimal time complexity with a leading coefficient of 1 for matrix 

multiplication on a linear array.              

 

4.3.1 Theorems   

Theorem1: n × n matrix multiplication can be performed in (n2 + 2n) cycles using 

three I/O ports and n PEs, each PE having one MAC, 4 registers, and 2 local memories of n 

words. 

Corollary 1: n × n matrix multiplication can be performed in (rn2 + 2r2n) cycles 

using three I/O ports and (n / r) PEs, each PE with one MAC, 4 registers, and 2 local 

memories of (n / r) words. (n should be divisible by r) 

Theorem 2: n × n matrix multiplication can be performed   in ((n2/r) + (2n/r)) cycles 

using 3r I/O ports and (n / r) PEs, each PE with r2 MACs, 4r registers, and 2r2 local 

memories of (n / r) words.(n should be divisible by r) 

 

 

 

 

 

 

 

 

Figure 4.1 Matrix multiplication on linear systolic array 
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Figure 4.2 Architecture of PE for theorem 1 
 

4.3.2 Timing diagrams and explanations  

 

4.3.2.1 Timing steps of theorem 1 

During t = 1 to n 

For all j, 1 ≤ j ≤n do parallel 

PEJ shifts data in BU right to PEJ+1 

If (BU =bkj) copy it to BM 

During t = n+1 to n2+n 

For all j, 1 ≤ j ≤n do parallel 

PEJ shifts data in A, BU right to PEJ+1 

If (BU = bkj) copy it to BM or BL (alternatively) 

If (A = aik) 

A 

BL 
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BU 

CBUF 

COBUF 

Ain 
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Aout 

Bout 

Cout Cin 

PEJ 

From 
PEJ+1 

To 
PEJ-1 

To 
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cij’ =cij’ + aik* bkj     (bkj is in BM or BL) 

(store cij’ in cbuf) 

During t = n2+1 to 2n2 

For all j, 1 ≤ j ≤n do parallel 

PEJ store input Cin to cobuf 

PEJ outputs Cij to PEJ-1  

PEJ outputs cobuf  to PEJ-1  

 
Figure 4.3 Timing diagram of theorem 1(n = 3) 
 
 
4.3.2.2Explanation of theorem 1: 
          
            PEJ  denotes jth PE from left where j = 1,2…..n. Here PEJ  computes jth column of 

matrix C i.e. c1j,c2j,c3j…..cnj.which is stored in the local memory Cbuf. In Phase column k of 

matrix A and row k of matrix B traverse PE1,PE2,PE3…in order and allows PE J to update 

the intermediate value of C’ij = C’ij + Aik *Bkj.in order and allow to update , where C’ij 

represents the intermediate value of Cij. Once bkj arrives at PEJ a copy of resides in until 

a1k,a2k,a3k……..ank passes through it. It is observed that the following two essential 

requirements should be satisfied: 1) Since aik stays at each PEJ for just one cycle, bkj should 

arrive at no later than , aik for any value of i, and 2) Once bkj arrives at PEJ , a copy of it 

should reside in it until ank arrives. These two essential requirements for this systolic 
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implementation are satisfied with a minimal number of registers. In addition, the number of 

cycles required to finish the operation and the amount of local memory per PE are evaluated. 

 

1)  Since aik stays at each PEJ for just one cycle, bkj should arrive at no later than 

, aik.for any value of i: Matrix B is fed to the lower I/O port of [Figure 4.2] in row major 

order as b11,b12,b13…. and . Matrix A is fed to the upper I/O port of in column major order as 

a11,a21,a31…….. n cycles behind Matrix B. For example,a11 is fed to the upper I/O port of in 

the same cycle as b21 is fed to the lower I/O port of PE1. The number of cycles required for bkj 

to arrive at PEJ is (k-1)n+2j-1. aik requires n+ (k-1)n+i+j-1 cycles to arrive at PEJ. The 

requirement is satisfied since  (k-1)n+2j-1 ≤ n+ (k-1)n+i+j-1 for all i and j.  

 

2) Once bkj arrives at PEJ , a copy of it resides in it until ank arrives.: The registers 

are minimized to store copies of bkj (k = 1,2,3….n) in PEJ.. Here two registers [denoted BM 

and BL in Fig. 4.2] are sufficient to hold bkj at PEJ.(to store two consecutive elements,bkj and 

b(k+1)j).. In general, bkj is needed until ank arrives at PEJ at the  n+ (k-1)n+n+j-1-th cycle. b(k+2)j 

arrives at PEJ  in the (k+1)n+2j-1 th cycle. Since (k+1)n+2j-1 > n+ (k-1)n+n+j-1for all i,j and 

k .So b(k+2)j can replace bkj.So two registers are sufficient to hold the values.  

 

3) n2+2n cycles are needed to complete the matrix multiplication. The computation 

finishes one cycle after ann arrives at n, which is the n2+2n -1-th cycle. Column j of the 

resulting output matrix C is in cbuf of PEJ , for 1≤j≤n. To move the matrix C out of the array, 

an extra local memory cobuf and two ports Cout and Cin are used in each PE. 

 

4.3.2.3 Explanation of corollary 1: 

 

    Any n × n matrix multiplication can be decomposed in to r3 numbers of (n/r) × (n/r) matrix 

multiplications .So multiplication can be done in  r3 ×((n/r)2 + 2(n/r)) i.e. same as (rn2 + 

2r2n). By replacing n with (n/r) in the proof of theorem1 corollary1 can be proved easily and 

formula for it’s latency can be obtained. 
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Figure 4.4 (Architecture of PE for theorem 2) 

 

 
4.3.2.4Timing steps of theorem 2 

Completing multiplication 

During t = 1 to n /2 

For all j do in parallel 

PEJ shifts words in BU1 & BU2 to PEJ+1 

If (BU1 = b11kj) copy it to BM1 

If (BU2 = b12kj) copy it to BM2 

During t = (n /2+1) to ((n/2)2+(n/2)) 

For all j do in parallel 

PEJ shifts A1,A2,BU1,BU2 to the right(PEJ+1) 

If( BU1 = b11kj) copy it to BM1(after moving BM1 to  BL1) 

If( BU2 = b12kj) copy it to BM2(after moving BM2 to  BL2) 

If(A1 = a11ik)  

          cbuf11=cbuf11 + a11ik ×b11kj 
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          cbuf12=cbuf12 +a11ik × b12kj 

If(A2 = a21ik)  

          cbuf21=cbuf21+a21ik × b11kj 

          cbuf22=cbuf22+a21ik × b12kj 

During t = (n /2)2+1 to (2(n/2)2+n) 

For all j do in parallel 

Repeat for b21kj,b22kj, and a12kj,a22kj  

Outputting result 

During t = (n 2/2+1) to (2n2/2) 

For all j do in parallel 

PEj outputs c11ij’(from MAC11) to c1out. 

                   c12ij’(from MAC12) to c2out. 

PEj stores  c21ij’(from MAC 21) to cobuf21. 

                   c22ij’(from MAC 22) to cobuf22. 

PEJ store  c1in to cobuf11 

                                 & c2in to cobuf12 

PEJ output cobuf21 to c1out  

                                 & cobuf22 to c2out 

PEJ outputs  cobuf11 to c1out 

                                 & cobuf12 to c2out 

 

4.4 Word width Decomposition technique      

      In all the above procedure the input word width is taken directly. So when the width 

of the word increases the size of the multiplier increases to a large extent. When input word is 

considered directly and the size of scalar multipliers can be significantly large for practical 

VLSI implementation when the input word-width increases. So to overcome this problem a 

technique is used that subdivides the width of the word and a smaller numbers of fixed sized 

multipliers are used to generate the partial results and finally they are added to get the final 

result. It provides structural flexibility, what ever the size of word the multiplier size remains 

fixed. 

 The architecture for word width decomposition technique is explained below. 
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4.4.1Architecture with word width decomposition technique 
      The whole architecture consists of a decomposition unit, a composition unit and basic 

operators (fixed sized multipliers and Muxes) in addition to previous architecture in a 

processing element. 

 
Figure 4.5 Decomposition unit 

 

The overall operation is based on two basic assumptions.(1) Matrix multiplication is 

performed on N×N matrices where N is a power of 3. (2) Each element in the matrices is a 

fixed-point integer with word-width of W. Initially, N×N matrix multiplication is 

decomposed into several 3× 3 matrix multiplications.  

This process is illustrated with as   N = 6. 

 

 
 

Where A1, B1, A2 and B2 are 3×3 matrices. After the initial decomposition, all matrix 

multiplications are 3×3 matrix multiplications where word-width of each element is W. 
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A1B1 = (QA1QB12P + QA1RB1 + RA1QB1 )2P + RA1RB1 

 

Where, QA1QB1, QA1RB1, RA1QB1, RA1RB1 and represent decomposed 3×3 matrix 

multiplications. Two matrices, QA1 andQB1  are decomposed further until each element in all 

the decomposed matrices is less than 2p where all elements are represented with p-bit 

precision. Upon completion of the decomposition process, all matrix multiplications with p-

bit precision are computed in parallel with much smaller scalar multipliers than W. The 

outputs from this computation are accumulated to generate the final outputs for one 3×3 -bit 

matrix multiplication. After repeating the same process, the outputs for matrix multiplications 

are constructed. 

 

4.4.1.1 Procedure of decomposition 
There are two ways to decompose the matrices. The first approach is to divide the 

width of the original elements successively in half. This approach, called balanced word-

width decomposition, is illustrated in Fig. 4.5. If p be a finite number represent the 

decomposed data width, then, a multiplication by 2p becomes a simple p-bit shift. Initially, 

the matrix multiplication with W–bit input elements is decomposed into two sub matrix 

multiplications. Then, the decomposed matrix multiplication is further decomposed until the 

element word length is less than or equal to p. After the decomposition, there will be many 

but smaller sub matrix multiplications which can be performed with simple arithmetic units. 

The depth of the decomposition tree depends on the word length of the original data element. 

The restriction with this approach is that the size W of must be p.2i, where i is an integer. The 

second approach, skewed word-width decomposition, relaxes this restriction and the input 

elements bits can be decomposed at a time, starting from either the least significant bits of the 

element or the most significant bits of the element. Thus, the original word length can be any 

multiple of p. The illustrations shown in Fig 4.5 may seem to suggest that the decomposition 

process takes multiple stages of operations. The decomposition of the original matrix 

multiplication results in 16 sub matrix multiplications (i.e. for W =16 and p = 4). But the 

actual decomposition can be done directly from the input elements and the decomposition 

processes illustrated above, are handled during the composition where siftings and 

summations are performed. Basically, the decomposition process is merely dividing the 

original values through interconnection distribution. 
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4.4.1.2 Supporting two’s complement data: 

The decomposition unit must support word-width decomposition of 2’s complement 

numbers. This is done by incorporating an adder for each -bit segment of the original element 

as shown in Fig. 4.6. If the original input element is a negative number, a sign bit of the 

original element is appended to each p-bit segment to form a p+1-bit segment. Then, 1 is 

added to this value and its overflow bit is ignored. Such addition is not necessary for the least 

significant -bits. The sign bit is overwritten if the p-bit element is all zero. No conversion is 

necessary if the original elements are positive. A multiplexor is used for selection. 

 
Figure 4.6 Mechanism to support two’ complement data 

 

4.4.1.3  Composition Unit: 

 

In the balanced decomposition with W = 16 and p = 4 .Then after the decomposition, the 

matrix multiplication is represented as 
 
AB = (QQAQQB)26P + (QQARQB)25P+ (RQAQQB)25P + (RQARQB)24P + (QRAQQB)24P + (RRAQQB) 

23P + (RRAQQB )23P + (RRARQB)22P + (QQAQRB)24P + (QQARRB) 23P + (RQAQQB )23P+ (RQARRB) 

22P + (QRAQRB)22P + (QRARRB) 2P + (RRAQRB )2P + (RRARRB) .  

 

The original matrix multiplication A×B consists of many smaller sub matrix multiplications, 

which can be computed in parallel with the same hardware. The results from these smaller 

matrix multiplications are the partial results for Cij where they are accumulated by an adder 

tree to generate the outputs of the matrix multiplication. Hence, the adder tree is executed 

four times to generate a complete 3×3 output matrix.  
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Figure 4.7 Composition Unit for W= 16 and P = 4 

 

 

4.4.1.3 Construction of theorem 1 with word width decomposition technique 

 

In the processing element used in theorem 1 two extra components are added along 

with the previous architecture. The matrices A and B are entered column and row wise. Then 

placed in the registers as before. But before giving to the multipliers these are given to the 

decomposition unit as described in Fig 4.5 .The decomposed data are given to a set of smaller 

width (p bit, here p = 4) multipliers. Multipliers frequency is chosen to be 4 times faster than 

decomposition unit and composition unit. While decomposition unit and composition unit 

operates in the same clock frequency. So four numbers of multipliers can generate 16 partial 

products at each Tdecomp. So after each Tdecomp the datas are fed to composition unit to generate 

the final result. All other operations are same as before. 

 So along with the pipelining scheme this technique functions properly and generates 

results with the same latency. The architecture for one processing element is given in the 

figure 4.8. 



 29

 
Figure 4.8 Theorem 1 with word width decomposition  

 

4.5 Construction of High level energy model 

 

  This model is applicable only to the design domain spanned by the family of 

algorithms and architectures being evaluated. The family represents a set of algorithm-

architecture pairs that exhibit a common structure and similar data movement. Domain is a 

set of point designs resulting from unique combinations of algorithm and architecture-level 

changes. Key parameters are extracted considering their expected impact on the total energy 

performance. For Example, if the number of MACs and the number of registers change 

values in a domain and are expected to be frequently accessed, a domain-specific energy 

model is built using them as key parameters. The parameters may include elements at the 

gate, register, or system level as needed by the domain. It is a knowledge-based model that 

exploits the knowledge of the designer about the algorithm and the architecture. This 

knowledge is used to derive functions that represent energy dissipation, area, and latency. 
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Beyond the simple complexity analysis, we make the functions as accurate as possible by 

incorporating implementation and target device details. For example, if the number of MACs 

is a key parameter, then a sample MAC is implemented on the target FPGA device to 

estimate its average power dissipation. A power function representing the power dissipation 

as a function of, the number of MACs is generated. This power function is obtained for each 

module related to the key parameters.  

                      An energy model specific to the domain is constructed at the module level by 

assuming that each module of a given type (register, multiplier, SRAM, BRAM, or I/O port) 

dissipates the same power independent of its location on the chip. This model simplifies the 

derivation of system-wide energy dissipation functions. The energy dissipation for each 

module can be determined by counting the number of cycles the module stays in each power 

state and low-level estimation of the power used by the module in the power state, assuming 

average switching activity. Table 4.1 below gives the key parameters and the number of each 

key module in terms of the two parameters for each domain. 

                       

4.5.1 Generation of energy, area and latency functions 
 
 
 Functions that represent the energy dissipation, area, and latency are derived for 

Corollary 1 and Theorem 2 along with word width decomposition technique. The energy 

function of a design is approximated to be i i
i

PT∑ , where Ti and Pi represent the number of 

active cycles and average power for module. For example, denotes the average power 

dissipation of the multiplier module. The average power is obtained from low-level power 

simulation of the module. The area function is given by, i
i

A∑  where Ai represents the area 

used by module. In general, these simplified energy and area functions may not be able to 

capture all of the implementation details needed for accurate estimation. But here 

algorithmic-level comparisons are concerned, rather than accurate estimation. Moreover, the 

architectures are simple and have regular interconnections, and so the error between these 

functions and the actual values based on low-level simulation is expected to be small. The 

latency functions are obtained easily because the theorems and corollaries already give the 

latency in clock cycles for the different designs. 
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Figure 4.9 generation of energy and area functions 

 

In this case each of these theorems uses a similar method of data transfer between processing 

elements on linear systolic array. So these algorithms and architectures implementing the 

matrix multiplication create a domain. In this domain the basic building blocks (components) 

are the MACs (multipliers and adders) ,registers ,memories(Slice based RAM or Block 

RAM) and I/Os. With insertion of word width decomposition technique two additional 

components are added i.e. decomposition unit and composition unit. 

 The key parameters are n and r. The component specific parameters are no. of 

entries(x) (in case of memory only) and precision (w) .So power/area functions for 

components are generated in terms of these parameters. Then system wide energy, area and 

latency functions are generated by combination of power/area functions and key parameters. 

 

 

 

 

 

Kernels 

Domain1, Algorithm1, 
Architecture1 
(Range of key 
parameters) 

e.g. matrix multiplication 
or FFT or DCT 

system wide energy, 
Area & latency 

functions. 
(with key parameters) 

component1 component2 

Component  
     specific parameters  

VHDL code 
 for  

Rmodules 

Power function builder 
(Curve fitting) 

In mat lab 

Others domains 

Synthesis and 
 Simulation in  
(ModelSim, 

Isim) 
Power 

Estimation 
With excel sheet or

XPower 

Component Specific  
power functions 

(with random input vectors) 
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The functions in Table 4.1 and table 4.2 can be used to identify tradeoffs among energy, area, 

and latency for various designs. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Functions for theorem1 and theorem 2 

 

 

Latency 
(cycles) 

 

L = r3{(n/r)2 +2 (n/r)} 
 

Energy 
 

L{(n/r)[(w/k)Pmult+Psram+(w/k)2Padd+(w/k)2Psram 

+Pcomp+Pdcomp+4Pr] +2PI+PO+ (n/r)Pcnt} 

 

Area 
 

(n/r) {(w/k)Amult+Asram+(w/k)2Aadd++(w/k)2Asram+4Ar+Acnt} 

 

Table 4.2 Functions for theorem1+ word width decomposition 

A2=nr(Amult+Aadd+2Asram)+n(4Ar)+nrAcnt  

       

Area 

E2 = L2{nr(Pmult+Padd+2Psram)+n(4Pr) +2rpi+rpo+nrPcnt}  Energy 

L2 = (n2/r) + (2n/r) Latency (cycles) 

Performance model metric 

Key parameters : n & r 
 

Theorem 2 

A1 = (n/r)(Amult+Aadd+2Asram+4Ar)+Acnt Area  

E1 = L1{(n/r)(Pmult+Padd+2Psram+4Pr)+2pi+po+(n/r)Pcnt}  Energy  

L1 = r3{(n/r)2 +2 (n/r)} Latency (cycles) 

Performance model metric 

 
Key parameters n , r 

 
Corollary 1 
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4.6 Results and discussion 

 

4.6.1 Functions generation from curve fitting 

 

4.6.1.1 The curve fitting is used in MATLAB to generate power and area functions for the 

designs. 
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Figure 4.10 Best fit curves to generate power, area functions using curve flitting    
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Each of the component is simulated individually and area or power values obtained by 

varying the component specific parameters (precision (w) and no. of entries(x)).These values 

are given to power function builder to generate area and power functions in terms of 

component specific parameters. W is varied as 4, 8, 16, 32 and 64. The result from simulation 

with these values of W is given to power function builder curve fitting to generate the 

functions through best fit curve. 

 

Timing diagram of theorem 1 with word width decomposition (from simulation) 
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4.6.2 Comparison of design at high level 

 Combining these component specific power and area functions and key parameters 

the system wide energy, area and latency functions is generated (Table 4.1 and 4.2).So by 

varying the component specific parameters the results (energy, area and latency) are obtained 

at high level. (Table 4.3 and 4.4) These results can be used for determining optimized design 

at algorithm level without going for low level simulation. Suppose the latency and energy 

dissipation are constrained then depending upon the constraints the suitable design can be 

selected from table with least area. 

      Theorem 1: By varying the block size (n/r) the values of energy, area and latency are 

obtained from the functions generated by curve fitting . 
Design 

 
Metric 

 
3×3 

 
6×6 

 
12×12 

 
Block size   (n/r) 

 
3 6 12 

Energy (nj) 
 

61.9 
 

179.6 
 

689 
 

Latency (us) 
 

0.06 
 

0.24 
 

0.96 
 

Them 
1 
+ 

WWD 
 

Area (slices) 
 

684 
 

1376 
 

3495 

 

Table 4.3Results for theorem 1 with word width decomposition (w = 16 and k =4) 

 Theorem 2: By varying the block size (n/r) the values of energy, area and latency are 

obtained from the functions generated by curve fitting. 
Design 
 

Metric 
 

6×6 
 

12×12 
 

24×24 
 

Block size   
(n/r) 
 

3  (r =2) 6 (r = 2) 6 (r = 4 ) 

Energy (nj) 
 

157 1324 4438 

Latency (us) 
 

0.12 0.33 0.69 

Theorem 

2 
+ 
WWD 
 

Area (slices) 
 

3944 9469 9469 

 

Table 4.4 Results for theorem 2 with word width decomposition (w = 16 and k =4) 
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4.6.3 Estimation of error at low level 

Theorem1 Theorem1 + word width 
decomposition 

Error for 2nd 

column (%) 

Reduce/increase 

(%) for 1st and 2nd 

column. 

W  =  16 W  =  16, k = 4   

Area = 517slices Area = 709slices. 
 

3.52 27 % increased 

Latency = 0.06us Latency = 0.06us 
 

No error No change 

Energy = 49nj Energy = 67nj 
 

7.6 26 % increased 

W  =  64 W  = 64, k = 16   

Area = 9432slices Area = 4760 slices. 
 

11.3 49% reduced 

Latency = 0.06us Latency = 0.06us No error No change 

Energy = 291nj Energy = 123nj 
 
 

13.9 57% reduced 

 
Table 4.5 Comparison of result with and without word width decomposition technique 
from low level simulation for n = 3 
 
4.6.4 Conclusion 

Optimization at high level 

From table 4.3 and 4.4 it is shown that the values of energy, area and latency can be obtained 

for theorems with word width decomposition technique from the functions generated by 

curve fitting .So depending on the requirement the optimized design can be chosen at high 

level. In theorem 1 pipelining is used and theorem 1 pipelining is used with parallel 

processing. So as per results when low latency is required with some increased source then 

theorem 2 is chosen, When limited resources are available theorem 1 is chosen with increased 

latency. The results obtained from functions generated at high level are compared with 

simulated values obtained at low level and the error is found to be within 15%. The values are 

compared with the values in theorem 1 with and without word width decomposition (Table 

4.5).It concludes the word width decomposition technique reduces the area and energy 

without change in the latency with large precision of word. For precision less than 16 bits it 

does not give better result. But for precision greater than 16 bits(as 64 bits) it reduces area 

and energy dissipation to a great extent. Since the whole design is pipelined throughput is 

good. 
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5.1 Introduction 

 This chapter begins with an overview of Fourier transform in most common form the 

Discrete Fourier Transform (DFT). Remainder of the chapter focuses on the introduction of a 

collection of algorithms used to efficiently compute the DFT; these algorithms are known as Fast 

Fourier Transform (FFT) algorithms.     

5.2The Discrete Fourier Transform (DFT) 

The discrete Fourier transform operates on an N-point sequence of numbers, referred to 

as x(n). This sequence can (usually) be thought of as a uniformly sampled version of a finite 

period of the continuous function f(x). The DFT of x(n) is also an N-point sequence, written 

as X(k), and is defined in Eq. 5.1. The functions x(n) and X(k) are, in general, complex. The 

indices n and k are real integers. 
1

2 /

0
( ) ( ) ,

N
i nk N

n
X k x n e π

−
−

=

= ∑  k = 0,1,………N - 1 (5.1) 

  

Using a more compact notation, can also be written, 
1

0
( ) ( ) ,

N
nk

N
n

X k x n W
−

=

=∑  k = 0,1,………N - 1 (5.2) 

 

Introducing the terms 
2 /i N

NW e π−=  (5.3) 

2 2cos sini
N N
π π⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (5.4) 

  

The variable WN is often called an “Nth root of unity” since (WN) = 2ie π−  = 1. Another 

very special quality of WN is that it is periodic; that is, n n mN
N NW W +=  for any integer m. The 

periodicity can be expressed through the relationship n mN n mN
N N NW W W+ =  because, 

( )2 / , ,.......... 1,0,1.......
mNmN i N

NW e mπ−= = −∞ − ∞  (5.5) 

                        
2i me π−=  (5.6) 

                        =    1       (5.7) 
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In a manner similar to the inverse continuous Fourier transform, the Inverse DFT 

(IDFT), which transforms the sequence X(k) back into x(n), is, 
1

2 /

0

1( ) ( ) , 0,1........., 1
N

i nk N

k
x n X k e n N

N
π

−

=

= = −∑  (5.8) 

1

0

1 ( ) , 0,1........., 1
N

nk
N

k
X k W n N

N

−
−

=

= = −∑  (5.9) 

 

From Eqs. 5.2 and 5.9, x(n) and X(k) are explicitly defined over only the finite interval 

from 0 to N-1. However, since x(n) and X(k) are periodic in N, (viz., x(n) = x(n + mN) and 

X(k) = X(k + mN) for any integer m), they also exist for all n and k respectively. 

An important characteristic of the DFT is the number of operations required to 

compute the DFT of a sequence. Equation 5.2 shows that each of the N outputs of the DFT is 

the sum of N terms consisting of x(n) nk
NW  products. When the term nk

NW  is considered a pre-

computed constant, calculation of the DFT requires N (N - 1) complex additions and N2 

complex multiplications. Therefore, roughly 2N2 or O(N2) operations1 are required to calculate 

the DFT of a length-N sequence. 

For this analysis, the IDFT is considered to require the same amount of computation 

as its forward counterpart, since it differs only by a multiplication of the constant 1/N and by 

a minus sign in the exponent of e. The negative exponent can be handled without any 

additional computation by modifying the pre-computed WN term. 

Another important characteristic of DFT algorithms is the size of the memory required 

for their computation. Using Eq. 5.2, each term of the input sequence must be preserved until 

the last term has been computed. Therefore a minimum, 2N memory locations are necessary 

for the direct calculation of the DFT. 

 

5.3 The Fast Fourier Transform 

 
 FFT is used to speed up the DFT. Instead of direct implementation of the 

computationally intensive DFT, the FFT algorithm is used to factorize a large point DFT 

recursively into small point DFTs such that the overall operations involved can be drastically 

reduced. 

 

                                                 
1 The symbol O means “on the order of”; therefore, O(P) means on the order of P. 
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5.3.1 Cooley Tukey algorithm 

        This is a divide and conquer algorithm that recursively breaks down a DFT of any 

composite size N = N1N2 into many smaller DFT of sizes N1 and N2, along with O(N) 

multiplications by complex roots of unity traditionally called twiddle factors (after 

Gentleman and Sande, 1966).This method (and the general idea of an FFT) was popularized 

by a publication of and J. W. Cooley and J.W.Tukey in1965, but it was later discovered that 

those two authors had independently re-invented an algorithm known to Carl Fredrick Gauss 

around 1805 (and subsequently rediscovered several times in limited forms). 

          The most well-known use of the Cooley-Tukey algorithm is to divide the transform 

into two pieces of size N / 2 at each step, and is therefore limited to power-of-two sizes, but 

any factorization can be used in general (as was known to both Gauss and Cooley/Tukey). 

These are called the radix-2 and mixed-radix cases, respectively (and other variants such as 

the split radix FFT have their own names as well). Although the basic idea is recursive, most 

traditional implementations rearrange the algorithm to avoid explicit recursion. Also, because 

the Cooley-Tukey algorithm breaks the DFT into smaller DFT, it can be combined arbitrarily 

with any other algorithm for the DFT, such as those described below. 

    More generally, Cooley-Tukey algorithms recursively re-express a DFT of a composite 

size N = N1N2 as: 

 Perform N1 DFT of size N2.  

 Multiply by complex roots of unity called twiddle factors. 

 Perform N2 DFT of size N1.  

         Typically, either N1 or N2 is a small factor (not necessarily prime), called the radix 

(which can differ between stages of the recursion). If N1 is the radix, it is called decimation in 

time (DIT) algorithm, whereas if N2 is the radix, it is decimation in frequency (DIF, also 

called the Sande-Tukey algorithm). The version presented above was a radix-2 DIT 

algorithm; in the final expression, the phase multiplying the odd transform is the twiddle 

factor, and the +/- combination (butterfly) of the even and odd transforms is a size-2 DFT. 

(The radix's small DFT is sometimes known as a butterfly, so-called because of the shape of 

the dataflow diagram for the radix-2 case.) 

5.3.1.1 Data reordering and bit reversal          
  The most well-known reordering technique involves explicit bit reversal for in-place 

radix-2 algorithms. Bit reversal is the permutation where the data at an index n, written in 

binary with digits b4b3b2b1b0 (e.g. 5 digits for N=32 inputs), is transferred to the index with 

reversed digits b0b1b2b3b4. In the last stage of a radix-2 DIT algorithm like the one presented 
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above, where the output is written in-place over the input: when Ek and Ok are combined with 

a size-2 DFT, those two values are overwritten by the outputs. However, the two output 

values should go in the first and second halves of the output array, corresponding to the most 

significant bit b4 (for N=32); whereas the two inputs Ek and Ok are interleaved in the even and 

odd elements, corresponding to the least significant bit b0. Thus, in order to get the output in 

the correct place, these two bits must be swapped in the input.  

 

5.3.2 Radix 2 FFT algorithm 

          Many FFT users, however, prefer natural-order outputs, and a separate, explicit bit-

reversal stage can have a non-negligible impact on the computation time, even though bit 

reversal can be done in O(N) time and has been the subject of much research (e.g. Karp, 

1996; Carter, 1998; and Rubio, 2002). Also, while the permutation is a bit reversal in the 

radix-2 case, it is more generally an arbitrary (mixed-base) digit reversal for the mixed-radix 

case, and the permutation algorithms become more complicated to implement. Moreover, it is 

desirable on many hardware architectures to re-order intermediate stages of the FFT 

algorithm so that they operate on consecutive (or at least more localized) data elements. To 

these ends, a number of alternative implementation schemes have been devised for the 

Cooley-Tukey algorithm that do not require separate bit reversal and/or involve additional 

permutations at intermediate stages. 

            For simplicity, N is chosen to be a power of 2 (N= 2m), where m is a positive integer. 

With this assumption, it is possible to break x(n) of length N into two sequence of lengths N/2. 

The first sequence xeven(m) contains all even samples of x(n) and the second sequence xodd(m) 

contains all the odd samples. Equation 5.2 can now be written as follows: 

( )
2 1

0 1
( ) ( )

even odd

N N
nk nk

N N
n n

X K x n W x n W
− −

= =

= +∑ ∑  (5.10) 

 

If 2m and 2m+1 are substituted for n in the even and odd summations respectively, 

then equation 5.10 can be written as follows: 

( )
/ 2 1 / 2 1

2 2

0 0
(2 ) ( ) (2 1) ( )

N N
mk mk k

N N N
m m

X K x m W x m W W
− −

= =

= + +∑ ∑  (5.11) 

 

But 2
/ 2N NW W=  and hence, 
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( )
/ 2 1 / 2 1

/ 2 / 2
0 0

(2 ) (2 1)
N N

mk mk
N N

m m
X K x m W x m W

− −

= =

= + +∑ ∑  (5.12) 

 

Equation 5.12 can also be written in terms of even and odd DFTs as follows: 

( ) ( ) ( )k
even N oddx k F k W F k= +  (5.13) 

 

The equation on the right hand side of the equation 5.16 corresponds to N/2 point 

DFTs of even (Feven (k)) and odd (Fodd(k)) parts of x(n). The direct computation of Feven (k) 

requires (N/2)2 complex multiplications. The same is true for Fodd(k). Moreover, there are N/2 

additional complex multiplications required to compute k
NW Fodd (k). Hence the computation of 

X(k) requires 2(N/2)2 + N/2 complex multiplication. For large N, about 50% multiplication 

operation savings can be achieved compared to the direct calculation of the DFT by the 

equation 5.2. 

Figure 5.1: Dataflow graph of an 8-point radix-2 two N/2 point FFT 

 

The dataflow of this algorithm for N=8 is shown in Figure 5.1. The horizontal axes 

signify the computational stages. The vertical axes indicates the memory location of the 

memory which is required for storing the sequence x(n). In Figure 5.1, following N/2-point 

DFTs (here, N/2 is 4) the data will be multiplied by 8
kW . The calculations after the 8

kW  

multiplications are the 2-point DFTs. There, the minus (-) sign adjacent signifies that the 
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signal is subtracted from the node. Otherwise the signal will be summed into that node. The 

number of FFT points N is chosen to be the power of 2 and if N is greater than 2 then Xeven 

(m) and Xodd(m) also have even number of points. Hence they can be further decimate in there 

even and odd sequences and computed from the N/4-point FFTs. Repeating this decimation 

procedure for log2(N) - 1 times until sequences with only two components are gained in the 

last stage. 

 A total of log2(N) stages can be produced by applying this decimation procedure. Each 

stage has N/2 complex multiplications by some power of NW . The final stage is reduced to 2-

point DFT where no multiplication is required, since the twiddle factors are trivial numbers 

there. The input sequence is broken into two smaller sequences at each stage; hence radix-2 

FFT algorithm is called Decimation in time .Hence a total number of only (N/2)log2(N) 

complex multiplications are needed for computing an N-point FFT.    

 Besides the radix-2 FFT algorithm, the second popular radix-2 FFT algorithm is 

known as decimation in frequency (DIF) FFT. The decimation in frequency can be obtained 

by slightly modifying the procedures the decimation in time algorithm. In this algorithm the 

input data is separated into its first N/2 and its last N/2 components instead of even and odd 

components. The name decimation in frequency originated from the fact that this decimation 

leads to the bit reversal of the DFT vector. The figure 5.2 and 5.3 shows the data flow in both 

the algorithms. 

  

 Figure 5.2: Dataflow graph of an 8-point radix-2 decimation in time FFT 
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Figure 5.3: Dataflow graph of an 8-point radix-2 decimation in frequency FFT . 

 
Figure 5.4: Flow graph of a 16-point radix-4 decimation-in-time FFT algorithm.  

  

5.3.3 Radix-4 FFT Algorithm 

When the number of data points N in the DFT is a power of 4(N = 4v), then it is more 

efficient computationally to employ a radix-4 algorithm instead of a radix-2 algorithm.   A 

radix-4 decimation-in-time FFT algorithm is obtained by splitting the N-point input sequence 

x(n)into four sub sequences x(4n), x(4n + 1), x(4n + 2) and x(4n + 3). The radix-4 decimation 

in- time FFT algorithm is obtained by selecting L = 4 and M = N/4 in the unified approach. 

This leads to n = 4m + l and k = (N=4)p + q. The radix-4 algorithm is obtained by following  
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the decomposition procedure outlined in the previous section v time's recursively. The 

signal flow graph of a 16-point radix-4 decimation-in-time algorithm is shown in Figure 5.4 

 

5.3.3.1 DECIMATION IN TIME (DIT): 
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5.3.3.2 DECIMATION IN FREQUENCY (DIF): 
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                                                                                                        (5.15) 

The radix-4 butterfly, shown in Figure 5.5, is constructed by merging 4-point DFT 

with associated coefficients between DFT stages. The four outputs of the radix-4 butterfly 

namely BO1, BO2, BO3 and BO4 are expressed in terms of its inputs BI1, BI2, BI3 and BI4 as 

follows: 

BO1 = BI1 + BI2W1 +  BI3xW2 + BI4W3 

BO2 = BI1 -  iBI2W1 -  BI3W2 +  iBI4W3 

BO3 = BI1 -  iBI2W1 + BI3W2  -   BI4W3 

BO4 = BI1 + iBI2W1 -  BI3W2  -   iBI4W3 

(5.16) 
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Figure 5.5: Radix-4 decimation in time butterfly. 
  

The radix-4 butterfly requires three complex multiplications. The multiplication with 

TW is accomplished by negation and swapping of the real and imaginary parts. Radix-4 has a 

computational advantage over radix-2 because radix-4 butterfly does the work of four radix-2 

butterflies using three multipliers instead of four multipliers in four radix-2 butterflies. On the 

negative side, a radix-4 butterfly is more complicated to implement than a radix-2 butterfly. 

While radix-2 and radix-4 FFTs are certainly the most widely known algorithms, it is 

also possible to design FFTs with even higher radix butterflies. They are not often used 

because the control and dataflow of their butterflies are more complicated and the additional 

efficiency gained diminishes rapidly for radices greater than four. 

To see this intuitively, let us choose N = 64 and do the FFT three ways, by radix 2, 

radix 4, and radix 8, and count the number of complex multiplications needed for each case. 

1. In radix 2, if we are doing DIT, the first stage consists of multiplications by W0 = 1, or no 

multiplications. The second stage has twiddles W0 and W16 = j so again no multiplications. 

The third stage has one-half of full the full complement multiplications and so on. As a 

formula, we can write 
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(5.17) 

where   MN is the number of complex multiplications needed for an N-point radix 2 FFT. 

Simplifying Eq. 2.19 we find 

2
3log 2

2 2N
NM N N= − +  (5.18) 
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For N = 64, Eq 2.20 gives MN = 98. 

 

2. In radix 4, we can derive a formula similar to Eq. 5.20 but our example it is simpler to 

count the number of multiplications. The first stage requires 4 multiplications; the next stage , 

32; and the final stage, none; resulting in 76 multiplications – a quite notable improvement 

compared to the radix 2 case. 

3. In both radix 2 and radix 4, the DFT part of the computation introduces no multiplications 

so that all multiplications are really the twiddle factors. Such is no longer the case with higher 

radices. In particular, an eight-point DFT, done by FFT algorithm, requires 2 multiplications 

(by numbers of the form ±a ±ja). Thus the multiplications in a radix 8 FFT are caused by both 

the DFTs and the twiddles. In 64 point it comes to a total of 32 multiplications plus 48 non 

trivial twiddles, so we obtain a total of 80 multiplications.  
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6.1 Introduction 

 In this chapter Energy efficient designs are developed for the Fast Fourier Transform 

on FPGAs. Architectures on FPGAs are designed by investigating and applying techniques 

for minimizing the energy dissipation. Architectural parameters are identified and a design 

domain is created through a combination of design choices. The trade-offs are determined 

using high-level performance estimation to obtain energy-efficient designs. Then a set of 

parameterized designs are implemented having parallelism, radix and choice of storage types 

as parameters, on Xilinx Virtex-II Pro FPGA to verify the estimates. The optimized designs 

are compared with the designs from the Xilinx library.  

 

Applications 

      Characteristic features like customizability and high processing power and DSP oriented 

features like embedded multipliers and RAMs have made FPGAs an attractive option for 

implementing signal processing applications. Traditionally the performance metrics for signal 

processing have been latency and throughput. However energy efficiency has become 

increasingly important with the proliferation of portable, mobile devices. One such energy 

conscious application is software-defined radio (SDR). A FPGA based system is a very 

viable solution for SDR’s requirement of adaptively and high computational power. So 

energy-efficient FFT designs are presented on FPGAs. The FFT is the compute-intensive 

portion of broadband beam forming applications such as those generally used in SDR and 

sensor networks.  

 

6.2 Methodology adopted 

       The design techniques are investigated for minimizing the energy dissipated by FPGAs 

and apply the techniques for designing architectures and algorithms for FFT. The 

architectural parameters are identified that characterize the FFT designs and which affect the 

energy dissipation of the designs. A high level energy performance model is developed using 

these parameters. This model is used to determine design trade-offs, estimate the energy 

efficiency and arrive at energy-efficient designs. A parameterized architecture is designed, so 

that by selecting appropriate parameter values, the architecture of a complete design can be 

easily synthesized. This parameterized design has more flexibility than a soft IP core, because 

it exploits the degrees of parallelism and throughput to a greater extent. Then candidate 

designs are implemented and simulated a set of designs on Xilinx Virtex-II Pro FPGA using 

Xilinx ISE tools to obtain energy dissipation values. The latencies, the area, and energy 
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dissipations of these designs are compared with the Xilinx library based designs. Both 

estimated values (based on the model) and actual values (based on the synthesized designs) 

are used in the comparisons. These comparisons show that the proposed designs can provide 

Significant reductions in not only latency but also energy dissipation. Thus a parameterized 

architecture and high-level model is provided for fast estimation and implementation of 

energy efficient FFT designs.  

 

Energy Efficient design Techniques on FPGA 

            In this section the techniques are briefly discussed that can be applied to FPGA-based 

designs to obtain energy efficiency. Then the energy-efficient, parameterized architectures for 

FFT on FPGAs are presented, inculcating the aforementioned design techniques. 

 

6.2.1 Sources of Energy Dissipation  
 
      The power dissipation in FPGA devices is due primarily to the programmable 

interconnects. In the Xilinx Virtex-II   family, for example, it is reported that between 50% 

and 70% of total power is dissipated in the interconnect, with the remainder being dissipated 

in the clocking, logic, and I/O blocks. FPGA interconnect consists of pre-fabricated wire 

segments of various lengths, with used and unused routing switches attached to each wire 

segment. Another important factor affecting the power dissipation in FPGAs is resource 

utilization .In typical FPGA designs, a majority of the resources are not used after the 

configuration and thus they will not dissipate any dynamic power. One more factor in 

determining power dissipation is the switching activity, which is defined as the number of 

signal transitions in a clock period. The switching activity for each resource depends not only 

on the type of design but also the input stimuli. Understanding sources of power dissipation, 

we can now discuss energy-efficient low-level and algorithm-level design techniques for 

FPGA-based design. 

 
6.2.2 Techniques of energy reduction  

 

Two types of design techniques are available for energy reduction on FPGA. 

1. Low-Level Design Techniques 

2. Algorithm-Level Design Techniques 
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6.2.2.1 Low-Level Design Techniques 

  In literature, there are many low-level power management techniques that lead to 

energy savings when applied to designing for FPGAs. One such technique is clock gating, 

which is used to disable parts of the device that are not in use during the computation. In the 

Virtex-II family of FPGAs, clock gating can be realized by using primitives such as 

BUFGMUX to switch from a high frequency clock to a low frequency clock. BUFGCE can 

be used for dynamically driving a clock tree only when the corresponding logic is used. 

Choosing energy-efficient bindings is another technique. A binding is a mapping of an 

operation to an FPGA component. The ability to choose the proper binding is due to the 

existence of several configurations for the same computation. Thus, different bindings affect 

FPGA energy dissipation. For example, there are three possible bindings for storage in 

Virtex-II Pro FPGAs based on the number of entries: registers, slice based RAM (SRAM), 

and embedded Block RAM (BRAM). For large storage elements (those with more than 48 

entries) BRAM shows an advantage in power dissipation over other implementations. 

Another example is the choice between hard and soft IP. One such case is the choice of 

multipliers: block multipliers, such as those in the Xilinx Virtex-II Pro and Altera Stratix, can 

be more efficient than CLB-based multipliers.  

 
6.2.2.2 High-Level Design Techniques 
 
The algorithm-level techniques are summarized that can be used to improve the energy 

performance of designs implemented on FPGAs.  

 

Architecture Selection 

 Since FPGAs provide the freedom to map various architectures, choosing the 

appropriate architecture affects the energy dissipation. It plays a large part in determining the 

amount of interconnect and logic to be used in the design. Since interconnect dissipates a 

large amount of power, minimizing the number of long wires between building blocks is 

beneficial. Identification of an appropriate architecture for an algorithm ensures that we begin 

with an efficient design most suitable for the performance requirements and that there are 

various architecture parameters that can be varied to explore trade-offs among energy, 

latency, and area. For example, matrix multiplication can be implemented using a 1-D array 

(linear array) or a 2-D array. A 2-D array dissipates more power from interconnect since 

more interconnects are required.  
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Module Disabling 

In developing an algorithm, it is possible to design the algorithm such that it utilizes 

the clock gating technique to disable modules that are not in use during the computation. For 

example, FFT computation has many complex number multipliers to perform twiddle factor 

computations (multiplication and addition/subtraction).Because of the nature of the 

algorithm, some twiddle factors are 1, −1, j, or −j and their computation can be bypassed. 

Thus, the implementation of twiddle factor computation can exploit clock gating to disable 

the unnecessary computation modules.  

Pipelining 

 Pipelining is an efficient design practice for both time and energy performance. Many 

digital signal processing applications process streaming data. For these applications with 

regular data flow, pipelining increases throughput. Pipelining increases power dissipation, 

however, since all logic in the design is continuously active. In FPGA designs with streaming 

data, throughput is another important factor in energy dissipation. Thus, in the pipelined 

design, a modified version of the energy equation is Epipe = Pavg/Th, where Th is the 

throughput of the design. Here Th can be considered the effective latency of the design. The 

effective latency accounts for the benefits of overlapping computations in pipelining. All 

designs in this dissertation adopt pipelining. Pipelining is one technique in which increasing 

the power dissipation may decrease the overall energy dissipation. 

Parallel Processing 

 Parallel processing is an important technique for reducing energy dissipation in 

FPGA systems. In practice, the trade-off between pipelining and parallelism is not distinct: 

merely replicating functional units rather than using pipelining has the negative effect of 

increasing area and wiring, which in turn increases the energy dissipation. Instead, a more 

sophisticated approach to parallel processing is needed. 

 Algorithm Selection 

 A given application is mapped onto FPGAs differently by selecting different 

algorithms. For example, using block matrix multiplication is the algorithm level design 

choice for larger matrix multiplication the block matrix multiplication is energy-efficient 

choice for n > 24. In implementing FFT, the choice of radices affects the energy 

performance. For example, a radix-4 based algorithm significantly reduces the number of 

complex multiplications that would otherwise be needed if a radix-2 based algorithm were 

used. All these algorithm selections affect the architectures and the energy dissipation of a 
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design. The trade-offs between different algorithms should be analyzed to achieve energy-

efficient designs. 

 

6.3 Algorithm and architectures for Fast Fourier Transform 

For FFT designs, the well known Cooley-Tukey method is used. A pipelined 

architecture is designed to increase throughput. The N-point FFT design is based on the 

radix-4 algorithm. While there are many design parameters, the parameters are identified that 

determine the FFT architecture and eventually affect the energy dissipation. The 

parameterization is the key of this design since the design space is explored based on the 

parameters for energy efficiency. 

 There are five design parameters that characterize an N-point FFT designs: 1) the 

problem size (N), 2) the degree of horizontal parallelism (Hp), 3) the degree of vertical 

parallelism (Vp), 4) the binding for storage element, and 5) the precision of data. These are 

considered as key parameters. 

The horizontal parallelism (HP) determines how many radix-4 stages are used in 

parallel (1 ≤ Hp ≤ log4 N). Vertical parallelism (VP) determines the number of inputs being 

computed in parallel. Using the radix-4 algorithm, up to 4 inputs can be operated on in 

parallel. Five basic building blocks are considered affecting the architecture. They are radix-4 

butterfly, data buffer, data path permutation, parallel-to-serial/serial-to-parallel Mux, and 

twiddle factor computation. Each individual block is parameterized, so that a complete design 

for any N can be obtained from combinations of the basic blocks. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 FFT architecture ( HP = 2 and VP = 1) 
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Figure 6.2 FFT architecture (HP = 2 and VP = 4)     

 

Figure: Architectures for Radix 4 FFT (with varying key parameters HP and VP )    

 

6.3.1 Components used in the architecture                                                    

 

Radix-4 butterfly (R4)  

This block performs a set of additions and subtractions with 16 adders/subtracters. It takes 

four inputs and produces four outputs in parallel. Each input data has real and imaginary 

components. The complex number multiplication for 1, −1, j, or −j is implemented by 

remapping the inputs data path and using adders / subtracters.                 

 

Twiddle factor computation (TW): 

This block performs the complex number multiplication of the data with twiddle factors. The 

twiddle factors are obtained from a sine/cosine lookup table. Bypassing the multiplication 

when the value of twiddle factors is 1, −1, j, or −j can reduce computation and thus energy 

(by disabling the multipliers). This block contains 4 multipliers, 2 adders/subtracters and two 

sign inverters.  

 

Data buffer (DB): 

 This block consists of two RAMs having N/Vp entries each. Data is written into one and read 

from the other RAM simultaneously. The read and write operations are switched after every 
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N inputs. The data write and read addresses are at different strides determined by the 

architecture. For example in a N = 16, single input case, writing is done sequentially and 

reading is at strides of four. 

 

Data path permutation (PER): 

 

In the parallel architectures (Vp = 4) , after computation of each stage, the data paths need to 

be permuted so that data can be accessed in parallel and in the correct order by the next stage. 

Dependencies occur due to stride accesses requiring data from either same locations or same 

RAMs. On the first clock cycle, four data are stored in the first entry of each DB in parallel 

.On the second clock cycle, another four data are stored in the second entry of each DB with 

one location being permuted .On the third and fourth clock cycles, the operation is performed 

in the same manner and the final result is shown in .Note that the four data, a0, a4, a8, and 

a12, are stored in different DBs so that the radix-4 computation can be performed in 

parallel.(Fig 6.2.2) .The permutation occurs at every stage in the same manner. 

 

Parallel-to-serial/serial-to-parallel Mux (PS/SP):  

 

This block is used when the data is fed into the Radix-4 block in parallel and fed out in serial 

in the serial architecture (Vp < 4). While the radix-4 module operates on four data in parallel, 

the rest of architecture is flexible. Thus, to match the data rate, a parallel-to-serial mux before 

the radix-4 module and a serial-to-parallel MUX after the radix-4 module are required. For 

example, a 16-point FFT algorithm has 2 radix-4 stages. In the design, one or two radix-4 

blocks (Hp = 1, 2) can be used depending on the sharing of the radix-4 block resource. If Hp = 

1, one radix-4 block is used and is shared by the first and second stages. Thus a feedback data 

path is necessary which decreases the throughput of the design.  

Figure 6.1.1 shows an architecture for N = 16 where VP = 1, Hp = 2. Fig 6.1.2 shows a 

fully parallel architecture when Vp = 4, Hp = 2. This design has 12 data buffers, two radix-4 

blocks, and 3 twiddle computation blocks. Also the associated algorithm for various 

architectures is developed. Figure 3 describes the parallel algorithm for the architecture in 

Figure 2 (b). The variable P is used for horizontal parallelism (Hp = log4 N = 2) and there are 

four unrolled do parallel loops (Vp = 4).  
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Figure 6.3 Radix 4 Butterfly  

 

            

            

            

            

            

            

            

            

            

      

Figure 6.4 Data storing mechanism by data buffers                  Figure 6.5 Data Buffer   

Figure: Components in the FFT architecture 

 

 

 
Figure 6.6 Complex Multiplier 
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6.4 Complex Multiplier in the design 

Each complex multiplier requires 4 multipliers and two adders / subtracters.(Fig 6.3) 

6.4.1 Various Multiplier architectures 

 As mentioned previously, the butterfly data path requires 16-bit by 16-bit 2's-

complement signed multipliers. Different multiplier configurations were tested against the 

embedded multiplier of the FPGA. Following are the different types of multiplier architectures 

that have been reported in various books and literature. 

 Conventional multiplier  

 Array Multiplier 

 Radix-4 multiplier 

 Booth multiplier 

 Modified Booth Recoding multiplier 

 Carry Save Adder and Wallace Tree multiplier 

 

6.4.1.1 Conventional multiplier 

 A standard approach that might be taken by a novice to perform multiplication is to 

"shift & add", or normal "long multiplication". That is, for each column in the multiplier, 

shift the multiplicand the appropriate number of columns and multiply it by the value of the 

digit in that column of the multiplier, to obtain a partial product. The partial products are then 

added to obtain the final result. 

Example:  

 

 

 

 

 

 

 

Architecture of Conventional multiplier  

  

 The multiplier is stored in the Q register and its sign in Qs. The sequence counter is initially 

set to a number equal to the number of bits in the multiplier. The counter is decrement by one 

after forming each partial product. When the content of counter reaches zero, the product is 

1001
1010× 
0000

1001 
0000 

1001 + 
1011010

Multiplie
Multiplican

 Multiplication by repeated Shift and Add 
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formed and the process is stopped. Initially, the multiplicand is in register B and the 

multiplier in Q. The sum of A and B forms a partial product which is transferred to EA 

register. Both partial product and multiplier is shifted to the right. The least significant bit of 

A is shifted into the most significant position of Q, the bit from is shifted into the most 

significant position of A, and 0 is shifted into E. After the shift, one bit of partial product is 

shifted to into Q, pushing the multiplier bits one position to the right. The right most flip-flop 

of the register Q is designated by Qn, depends upon its value, if it is 1 then EA  A+B, 

otherwise only shift is required. 

6.4.1.2 Array Multiplier 

 In general, this multiplication is done by checking the bits of the multiplier one at a 

time and forming partial products is a sequential operation that requires a sequence of add 

and shift micro-operations. The multiplication of two binary numbers can be done with one 

micro-operation by means of combinational circuit that forms the product bits all at once. 

This is a fast way of multiplying two numbers since it takes the time for the signals to 

propagate through the gates that form the multiplication array. However, an array multiplier 

requires a large number of gates, and for this reason it was not economically suitable.  

Consider the multiplication of two 2-bits numbers as shown in Fig.6.4 The multiplicand bits 

are b1 and b0, the multiplier bits are a1 and a0, and the product is c3, c2, c1 and c0. Multiplying 

a0 with b1b0 forms the first partial product. The multiplication of two bits such as a0 and b0 

produces 1 if both bits are 1; otherwise, it produces 0. This is identical to AND operation and 

can be implemented with AND gate. Usually, there are more bits in the partial products hence 

it is necessary to use full adders to calculate the sum. Note that the LSB of the product is not 

necessary to go through an adder since it is formed by the output of the first AND gate.     

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Array multiplier 
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6.4.1.3 Radix-4 Multiplier 

 By this multiplier, the multiplication results can be achieved in a faster way. Multiple 

bits of the multiplier are multiplied with the multiplicand at one clock pulse, so one can get 

the result in less time. Less number of clock cycles is required to operate the multiplier. For 

example, the multiplier +7 (0111) is divided into 01(1) and 11(3). Here the multiple bits are 

multiplied with multiplier. Therefore less numbers of partial products is required and it is also 

faster than conventional multiplier. Here any multiplicand is multiplied by 0(00) , 1(01), 

2(10), and 3(11). Shifting operation only can easily make multiplication of multiplicand with 

0, 1 and 2. But multiplication of 3 with multiplicand is done by manually and store in the 

register, whenever it requires it is used. So multiplication of multiplicand and 3 takes some 

more time which is not desirable. This problem has been resolved in Booth and Modified 

Booth multipliers. 

 

 
6.4.1.4 Booth Multiplier 
 

Booth multiplier is used for signed number multiplication. The negative numbers are 

represented in 2’s complement form. It operates on the strings of 0’s in the multiplier require 

no addition but just shifting, and a string of 1’s in the multiplier from bit weight 2k to weight 

2m can be treated as 2k+1-2m.Suppose the binary number 001110 (+14) has a string of 1’s from 

23 to 21, let us take k=3 and m=1.The number can be represented as 2k+1-2m=24-21=16-2=14. 

Therefore, the multiplication M × 14, (where M is the multiplicand and +14 is the multiplier), 

can be done as M × 24- M × 21. Thus the product can be obtained by shifting the binary 

multiplicand M four times to the left and subtracting M shifted left once. 

 

 

 

        0  0  1  1       3 
  1           3       7       

              1  0  0  1           

           0  0   1  1 

           0  1   0  1  0  1                   21 
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Architecture of Booth multiplier 

  It is same as conventional multiplier but only difference is that here sign bit is not 

separated from the rest of the registers. This algorithm works for both negative and positive 

numbers. 

As in all multiplication schemes, both algorithms require examination of the multiplier bits 

and shifting of the partial product. Prior to the shifting, the multiplicand may be added to the 

partial product, or left unchanged according to the following rules. 

 
1. The multiplicand is subtracted from the partial product upon encountering the first least 

significant 1 in a string of 1’s in the multiplier. 

2. The multiplicand is added to the partial product upon encountering the first 0   (provided 

that there was a previous 1) in a string of 0’s in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit. 

 

 

 

 

 

It is the example of multiplication of (-9) × (-13). The multiplier in QR is negative and that 

the multiplicands in BR also negative. The 10-bit product appears in AC and QR and is 

positive. The final value of Qn+1 is the original sign bits of the multiplier and should not be 

taken as part of the product.  

 

Table 6.1: Example of multiplication using Booth’s Algorithm 
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6.4.1.5 Modified Booth Recoding (MBR) Multiplier 

 
 [Yi+1, Yi, Yi-1] Unshifted partial product

000 +0X 

001 +1X 

010 +1X 

011 +2X 

100 -2X 

101 -1X 

110 -1X 

111 -0X 

 

 

Now let’s generate those partial products. A straightforward generation can be made using 

three signals: negate (1: negate X, 0: no change), shift (1: shift left by one, 0: no change), and 

zero (1: force to zero, 0: no change). Design a circuit that implements these three signals 

using standard gates (AND, OR, INVERTER, XOR, etc.).  
6.4.1.6 Carry-save Adder Wallace Tree Multiplier 

 A Wallace tree is a combinational circuit used to multiply two numbers. Although it 

requires more hardware than shift & add multipliers, it produces a product in less time. 

Instead of performing additions using standard parallel adders, Wallace tree multipliers use 

carry-save adders and only one parallel adder. 

A carry save adder can add three values simultaneously, instead of just two. However, 

it does not yield output in a single result. Instead, it outputs both a sum and a set of carry bits. 

Carry bit 1+iC  is the carry generated by the sum. To form a final sums, and must be added 

together. Because carry bits do not propagate through the adder, it is faster than parallel 

adder. In a parallel adder, adding 1111 and 0001 generates a carry that propagates from the 

least significant bit, through each bit of the sum, to the output carry. Unlike the parallel adder, 

the carry-save adder does not produce a final sum. The Wallace tree makes use of parallel 

operations for larger numbers of partial products, when multiplying large numbers.         

Performance Estimation and Design Synthesis 

  Since the architecture is parameterized, all possible designs can be generated by 

varying the parameter values. However, rather than implementing and simulating all designs, 

the high-level model can be defined using the techniques in [Ch1] and conduct performance 

Table 6.2: Modified Booth’s recording table  
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estimation and design trade-offs. Then the chosen candidate designs are implemented. The 

target device is Virtex-II Pro FPGA (speed grade -5) which is a high-performance, platform 

FPGA from Xilinx. 

 

6.5 Distributed Arithmetic 

 Distributed Arithmetic (DA) plays a key role in embedding DSP functions in the 

Xilinx family of FPGA devices. Distributed Arithmetic, along with Modulo Arithmetic, are 

computation algorithms that perform multiplication with look-up table based schemes DA 

specifically targets the sum of products (sometimes referred to as vector dot product) 

computation that covers many of the important DSP filtering and frequency transforming 

functions. Due to look up table architecture of FPGA this arithmetic has wide advantages in 

the FPGA implementation of many applications.  

 

6.5.1 Derivation of Distributed Arithmetic Algorithm  

 The arithmetic sum of products that defines the response of linear, time-invariant 

networks can be expressed as: 

                                   
1

( ) ( )
K

k k
k

y n A X n
=

=∑                                                        (6.1)                                   

 

Where 

y(n) = Response of network at time n. 

xk(n) = k th input variable at time n. 

 

Ak = weighting factor of kth input variable that is constant for all n, and so it remains time-

invariant. In filtering applications the constants, Ak , are the filter coefficients and the 

variables, xk , are the prior samples of a single data source. In frequency transforming 

whether the discrete Fourier or the fast Fourier transform - the constants are the sine/cosine 

basis functions and the variables are a block of samples from a single data source. Examples 

of multiple data sources may be found in image processing. The multiply-intensive nature of 

the equation can be appreciated by observing that a single output response requires the 

accumulation of K product terms. In DA the task of summing product terms is replaced by 

table look-up procedures that are easily implemented in the Xilinx configurable logic block 

(CLB) look-up table architecture. 
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The number format of the variable is taken to be 2’s complement, fractional - a 

standard practice for fixed-point microprocessors in order to bound number growth under 

multiplication. may be written in the fractional format as shown in equ. 2 
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where xkb is a binary variable and can assume only values of 0 and 1. A sign bit of value -1 is 

indicated by xk0. Note that the time index, n, has been dropped since it is not needed to 

continue the derivation. The final result is obtained by first substituting equ.2 into equ.1                                 
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and then explicitly expressing all the product terms under the summation symbols:                      
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        (6.4)                     

 

Each term within the brackets denotes a binary AND operation involving a bit of the 

input variable and all the bits of the constant. The plus signs denote arithmetic sum 

operations. The exponential factors denote the scaled contributions of the bracketed pairs to 

the total sum A look-up table can be constructed that can be addressed by the same scaled bit 

of all the input variables and can access the sum of the terms within each pair of brackets. 

Such a table is shown in fig. 1 and will henceforth be referred to as a Distributed Arithmetic 

look-up table or DALUT. The same DALUT can be time-shared in a serially organized 

computation or can be replicated B times for a parallel computation scheme, as described 

later.  
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6.5.1.1 DALUT Addressing: 

 

Ak is included in the sum if xkb is 1. So bits of the input data xkb are used to address the 

contents of the DALUT. 

 

 

         

 

 

 

 

Figure 6.8 DALUT contents and addressing       

             

DA mechanism for Y = A1X1 + A2X2 + A3X3  + A4X4 

b0 b1 b2 b3 DALUT content 

0 0 0 0 0 

0 0 0 1 A4 

0 0 1 0 A3 

0 0 1 1 A4 + A3 

0 1 0 0 A2 

0 1 0 1 A4 + A2 

0 1 1 0 A2 + A3 

0 1 1 1 A2 + A3 + A4 

1 0 0 0 A1 

1 0 0 1 A1 + A4 

1 0 1 0 A1 + A3 

1 0 1 1 A1 + A3+ A4 

1 1 0 0 A1 + A2 

1 1 0 1 A1 + A2+ A4 

1 1 1 0 A1 + A2+ A3 

1 1 1 1 A1 + A2+ A3+ A4 

 

Table 6.3 DALUT contents 

A0   

 
A1 
 
A2           2

K words by    
A bits 

 Ak 

X0b

X1b 
X2b 

X3b 

Xkb 

0 
 
A0 
 
A1 
 
A0 + A1 

0 

1 

2 

3 

Address 
by bits 
of input 
datas 



 63

6.5.1.2 The Speed Tradeoff 
 
The arithmetic operations have now been reduced to addition, subtraction, and binary scaling. 

With scaling by negative or positive powers of 2, the actual implementation entails the 

shifting of binary coded data words toward the least significant bit and the use of sign 

extension bits to maintain the sign at its normal bit position. The hardware implementation of 

a binary full adder (as is done in the CLBs) entails two operands, the addend and the augend 

to produce sum and carry output bits. The multiple bit-parallel additions of the DALUT 

outputs can only be performed with a single parallel adder if this adder is time-shared. 

Alternatively, if simultaneous addition of all DALUT outputs is required, an array of parallel 

adders is required. These opposite goals represent the classic speed-cost tradeoff.   

  For B =16 Eq.6.4 becomes  

  Y = -[sum0] + [sum1] 2-1 + ………………. +[sum15]2-15  

By successively decomposing in to two input adders the following figure can be obtained. 

 

 
Figure 6.9 Fully parallel DA model with k =16 and B = 16 
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Limitations of using multipliers: 

 In all above multipliers area increases with precision of data. Each complex multiplier 

requires 4 real multipliers with 2 adders and substractors. So increase in number of stages in 

FFT increases complex multipliers required for twiddle factor computation. To overcome this 

problem distributed arithmetic is used which replaces multipliers. 

 

6.5.2 Architecture of FFT with distributed arithmetic 

For multiplication with the twiddle factors the complex multiplier takes most of the 

area occupied by whole design. Because it requires four numbers of multipliers as in Fig 6.3. 

So there is need for a multiplier less architecture. For the implementation the vector product 

terms in the equations for decimation in time /frequency for radix 4 FFT algorithm (Eq.5.14 

and 5.15) distributed arithmetic is used modifying the pipelined architecture. 

 All the possible combinations of sum of vector products (data with twiddle factors) 

are stored in separate DALUTs and are addressed by the bits of input datas. Then these are 

scaled and added to get the sum of vector product. So here the equation of area and energy 

gets modified where latency remains the same with a parallel DA model. 

  

 

``` 

 

 

` 

 

 

 

Figure 6.10 Modified architecture with distributed arithmetic 

6.6 Construction of high level energy model 

 For architecture with complex multipliers 

 There are three design parameters that characterize an N-point FFT designs: 1) the 

problem size (N), 2) the degree of horizontal parallelism (Hp), 3) the degree of vertical 

parallelism (Vp), These are known as key parameters. The horizontal parallelism determines 

how many radix-4 stages are used in parallel (1 ≤ Hp ≤ log4 N). Vertical parallelism 

determines the number of inputs being computed in parallel.(Vp≤ 4) .Using the radix-4 

algorithm, up to 4 inputs can be operated on in parallel. Five basic building blocks are 
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considered affecting the architecture. They are radix-4 butterfly, data buffer, data path 

permutation, parallel-to-serial/serial-to-parallel Mux, and twiddle factor computation. 

 

For modified architecture with distributed arithmetic 

 There are four design parameters that characterize an N-point FFT designs: 1) the 

problem size (N), 2) the degree of horizontal parallelism (Hp), 3) the degree of vertical 

parallelism (Vp), 3) Number of stages (KP = log4N).These are known as key parameters. The 

horizontal parallelism determines how many radix-4 stages are used in parallel (1 ≤ Hp ≤ KP). 

Vertical parallelism determines the number of inputs being computed in parallel.(Vp≤ 4) 

.Using the radix-4 algorithm, up to 4 inputs can be operated on in parallel. Seven basic 

building blocks are considered affecting the architecture. They are radix-4 butterfly, data 

buffer, data path permutation, parallel-to-serial/serial-to-parallel Mux, twiddle factor 

computation , distributed arithmetic look up table(DALUT) and scalar-adder unit(SCA) as 

Fig. 6.9). 

 

6.6.1 Generation of energy, area and latency functions 

 For architecture with complex multipliers 

                              In FPGA designs with streams of data, throughput is an important factor in 

energy dissipation. Thus, in the pipelined design, the energy equation is E = P/Th, where P is 

the average power dissipation and Th is the throughput of the design. Note that 1/Th = L can 

be considered the effective latency of the design. The effective latency accounts for the 

benefits of overlapping computations in pipelining. Based on the architecture and algorithm, 

it can be shown that the equation to calculate the latency (L), of computing an N-point, radix-

4 FFT is: 

                               L = N log4 N / (Vp × Hp)  

Where L is in cycles. To convert this latency to seconds, it is divided by the clock frequency. 

Also the types of FPGA components (multipliers, registers, etc.) and the amounts of each 

type of component that are used by for five basic building blocks are known. The power 

function for each basic building block is obtained using the techniques in [Ch 1]. The average 

power dissipation of each block is summed to estimate the total power dissipation. Since 

power is energy divided by latency, and the latency is calculated earlier, the power is 

multiplied by the latency to estimate the energy used in executing the algorithm. The power 

functions for the data buffer, the radix-4 block, the data path permutation, parallel-to-
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serial/serial-to-parallel Mux, and the twiddle computation block are PDB, PR4, PPER, PPS/SP and 

PTW, respectively, 

 

E = L {VP (HP+1)PDB + 2m HP PPER + (HP)PR4 +2s(HP-1) PPS/SP + tvth PTW  + 2VPPIO 

 

Where the key parameters are VP and HP and the components are Radix 4 Butterfly 

(R4), Data Buffer (Dbuf), Permutation unit (PER), Mux(PS/SP) and I/Os. Here m is the 

number of the data path permutation block (m = 1 when Vp = 4, otherwise m = 0), s is the 

number of parallel to- serial/serial-to-parallel muxes (s = 1 when Hp = 1, otherwise s = 0). tv th 

is the number of twiddle computation blocks (tv = Vp−1 when Vp = 4, otherwise tv = Vp; th = 

Hp−1 when Hp = log4 N, otherwise th = Hp). 

 

 For modified architecture with distributed arithmetic 

 

       Latency     L = N log4 N / (Vp × Hp)  

 To keep latency unaltered a fully parallel model of DA is used as Fig.6.9.First stage of 

butterfly R4 is kept as it does not require twiddle factor multiplication. Then parallel 

DALUTs are addressed by the bits of intermidiate datas in parallel. N datas got from the 

LUTs are given to the scaler-adder unit(SCA) .SCA consist of  N/2 adders(N/4 scalers) in 

first stage, N/4 adders(N/8 scalers) in the second stage, N/8 adders(N/16 scalers) in the third 

stage and so on until one adder is there to generate final product. 

 Energy E = L{VPHPPDB + HPPR4 + 2(N/4)PDALUT(KP - HP) + 2VP(KP - HP)PSCA + 

2VPPIO} 

Where N is the number of data points in FFT. All other parameters are described earlier. 

  

6.7 Results and discussion 

 The curve fitting is used in MATLAB to generate power and area functions for the 

designs. Each of the component is simulated individually and area \ power values obtained by  

Varying the component specific parameters (precision (w) and no. of entries(x)).These values 

are given to power function builder to generate area and power functions in terms of 

component specific parameters. 
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6.7.1 Comparison of the designs at high level 

With complex multiplier 

 

With Distributed arithmetic 

 

 

N =16 

(VP=4, 

HP= 2) 

N = 64 

(VP=4, 

HP= 3) 

N =256 

(VP=1, 

HP= 4) 

N =16 

(VP=4, 

HP = 1) 

N = 64 

(VP=4, 

HP = 1) 

N =256 

(VP=4,  

HP = 2) 
Energy  

nj 
127 1179 4399 109 745 3126 

Area 

(slices) 
4331 7619 3044 

 

3123 5528 9111 

Latency 

(usecs) 
0.04 0.16 0.64  0.04 0.16 0.64 

 

EAT 0.022 1.43 8.56  0.013 0.65 18.22  

 

Table 6.4 Comparison of results obtained from functions (at 100 MHz) 

6.7.2 Estimation of error from low level simulation 

With complex multiplier 

(VP = 4, HP = 2) 

With Distributed arithmetic 

(VP = 4, HP = 1) 

N = 16 

 

estimated actual Error (%) estimated actual Error (%) 
Energy(nj) 127 139 9.4 109 122 10.6 
Area(slices) 4331 5022 13 3123 3499 2.8 
Latency 

(usecs) 
0.04 0.04 0 0.04 0.04 0 

 

Table 6.5 Comparison of results with actual values and error estimation (at 100 MHz) 

6.7.3 Conclusion 

 The results are compared between the architectures with complex multiplier and with 

distributed arithmetic from the functions obtained at high level. It shows that the use of 

distributed arithmetic reduces the energy and area by keeping latency fixed. Also the values 

obtained from low level simulation are compared against values obtained from functions. 

Parameters (energy, area and latency) can be optimized at high level as values from Table 6.4 

and Table 6.5 shows that the error obtained is within 20% between estimated values at high 

level and actual values obtained from low level. So this method can be accepted for 

optimization of parameters at algorithm level. 
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7.1 Co ntributions 

The key contributions of this research are: 

1. Optimization of parameters at high level: Matrix multiplication and Fast Fourier 

Transform designs optimized at algorithm and architecture level by using energy 

efficient modeling technique. 

2. Design and synthesis of matrix multiplication algorithms include pipelining and 

parallel processing to reduce latency and increase throughput. Reduction of area 

and energy by use of word width decomposition technique to the algorithms. 

3. Design and synthesis of Fast Fourier Transform algorithms include pipelining to 

reduce latency and increase throughput. Design of multiplier less architecture and 

simpler VLSI implementation by use of distributed arithmetic due to look up table 

features of FPGA.  
7.2 Further work 

 This section suggests following work can be done in future in this thesis.. 

1. Algorithms used for matrix multiplication and Fast Fourier Transform use 

pipelining and parallel processing for trade off between various parameters. These 

algorithms can further be modified to obtain different latencies against variation of 

other key parameters.   

2. Designs of matrix multiplication can be used in some practical applications like 

software defined radio to verify performance against variation of different key 

parameters. 

3. Designs of Fast Fourier Transform can be used to verify its performance through a 

spectrum analyzer. 

4. This design can be modified at algorithm level to use high precision data formats. 

7.2.1     Higher-Precision Data Formats 

 Modern digital processors represent data using notations that generally can be 

classified as fixed-point, floating-point, or block-floating-point. These three data notations 

vary in complexity, dynamic range, and resolution. The designed FFT processor uses a fixed-

point notation for data words. We now briefly review the other two data notations and 

consider several issues related to implementing block-floating-point this work. 

Background 

Fixed-point In fixed-point notation, each datum is represented by a single signed or unsigned 

(non-negative) word. The implemented FFT processor uses a signed, 2’s-complements, and 

fixed-point data word format. 
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Floating-point In floating-point notation, each datum is represented by two components: a 

mantissa and an exponent in the following configuration: mantissa x base exponent. The base 

is fixed, and is typically two or four. Both the mantissa and exponent are generally signed 

numbers. Floating-point formats provide greatly increased dynamic range, but significantly 

complicate arithmetic units since normalization steps are required whenever data are 

modified. 

Block-floating-point Block-floating-point notation is probably the most popular format for 

dedicated FFT processors and is similar to floating-point notation except that exponents are 

shared among "blocks" of data. For FFT applications, a block of data is typically N words. 

Using only one exponent per block dramatically reduces a processor's complexity since 

words are normalized uniformly across all words within a block. The complexity of a block-

floating-point implementation is closer to that of a fixed-point implementation than that of a 

floating-point one. However, in the worst case, block-floating-point performs the same as 

fixed-point. 

Convergent block floating point When a pipelined architecture is used, it is not efficient to 

wait until stage N has finished determining the scaling factor. Instead a method called 

Convergent Block Floating Point (CBFP). The basic idea is that the output from a radix-4 

stage is a set of 4 independent groups that can use different scale factors. After the first stage 

there will be 4 groups, after the second stage 16 groups and so on. This will converge towards 

one exponent for each output sample from the FFT. The same scheme can be applied for a 

radix-2 stage, generating 2 independent groups at each stage. If the initial butterfly is of 

radix-2 type, most implementations omit the CBFP logic in the first stage due to the large 

memory overhead. 

Applications to the design 

While the fixed-point format permits a simple and fast design, it also gives the least dynamic 

range for its word length. Floating-point and block-floating-point formats provide more 

dynamic range, but are more complex. The architectures can be modified to use these formats 

of data and verify the performance both at high and low level by construction of energy 

model. 

  

  

  

 

 



 70

REFERENCES: 

[1] Choi S., Jang J.W., Prasanna V.K., “Energy- and Time-Efficient Matrix 

Multiplication on FPGAs.” IEEE. Transaction on (VLSI) systems. Volume 13, No.1, 

(NOVEMBER 2005). 

[2] Choi S., Jang J.W., and Prasanna V.K., Mohanty S., “Domain-specific modeling for 

rapid energy estimation of reconfigurable architectures.” J.Supercomputing. Volume 26, 

No. 3, (Nov. 2003): p. 259–281. 

[3] Hong, Park K., and Mun Jun- Hee “Design and Implementation of a High-Speed 

Matrix Multiplier Based on Word-Width Decomposition.” IEEE. Transaction on(VLSI) 

systems. Volume 14, No. 4, (APRIL 2006). 

[4] Mencer O., Morf M.., and Flynn M. J., “PAM-Blox: High performance FPGA design 

for adaptive computing.”  Field-Programmable CustomComputing Machines (FCCM). 

(1998): p. 167–174. 

[5] Kung H. T., Leiserson C. E., “Systolic arrays for (VLSI).” Introduction to VLSI 

Systems. (1980). 

[6] Amira A., Bouridane A., Milligan P., “Accelerating matrix product on reconfigurable 

hardware for signal processing.” Proc. 11th Int.Conf. Field-Programmable Logic and Its 

Applications (FPL). (2001): p.101–111. 

[7] Choi S., Jang J.W., and Prasanna V.K., “Energy efficient matrix multiplication on 

FPGAs.” Proc. Field-Programmable Logic and Its Applications (FPL).(2002):p. 534–544. 

[8] Kumar, Tsai Y., “On synthesizing optimal family of linear systolic arrays for matrix 

multiplication.” IEEE Trans. Comput.. Volume 40, No. 6, (1991): p 770–774. 

[9] Scrofano R., Jang J.W., PrasannaV.K., “Energy-Efficient discrete cosine transform on 

FPGAs.” Proc. Engineering of ReconfigurableSystems and Algorithms (ERSA).(2003): p. 

215–221. 

[10] Shang L., Kaviani A., Bathala K., “Dynamic power consumption in Virtex-II FPGA 

family.” Proc. Field-Programmable Gate Arrays(FPGA).(2002) : p. 157–164. 

[11] Bass B., “A low-power, high-performance, 1024-point FFT processor.” IEEE J. 

Solid-State Circuits. Volume 34, no. 3, (Mar. 1999): p. 380–387. 

[12] Choi S., Govindu G., Jang J.W., Prasanna V.K., “Energy-efficient and 

parameterized designs of fast fourier transforms on FPGAs.” Proc. Int. Conf. Acoustics, 

Speech, and Signal Processing (ICASSP) Volume. 2, (2003): p. 521–524. 



 71

[13] Lin R., “Bit-matrix decomposition and dynamic reconfiguration: Unified arithmetic 

processor architecture, design, and test.” Proc. ReconfigurableArch. Workshop (RAW). 

(2002): p. 83. 

[14] Lin R., “A reconfigurable low-power high-performance matrix multiplier 

architecture with borrow parallel counters.” Proc. Reconfigurable Arch. Workshop 

(RAW). (2003): p. 182. 

[15] Lin R., “Reconfigurable parallel inner product processor architectures.” IEEE Trans. 

Very Large Scale Integr. (VLSI) Syst.. Volume. 9, no. 2, (Apr. 2001): p.261–272. 

[16]  http://www.xilinx.com/univ/ML310/ml310_mainpage: ML310 Virtex-II Pro 

Development Platform (Online).  

[17]  http://milan.usc.edu: Model-Based Integrated Simulation (Online)  

[18]  http://www.xilinx.com: Virtex-II Series and Xilinx ISE 7.1i Design Environment 

(2001), Xilinx Application Note (Online).    

[19] Brown, Yates C. I., “VLSI architecture for sparse matrix multiplication.”Electron. 

Lett. Volume 32, No. 10, (May 1996):p. 891–893.       

[20] Choi S., Jang J.W., Prasanna V.K., “Area and time efficient implementations of 

matrix multiplication on FPGAs.” Proc. IEEE Int.Conf. Field Programmable Technol. 

(2002): p. 93–100. 

[21] Rabaey J. M., Chandrakasan A., Nikolic B. Digital Integrated Circuits:A Design 

Persepective. Englewood Cliffs: Prentice-Hall, 2003. 

[22] Baugh C. R. and Wooley, “A two’s complement parallel array multiplication 

algorithm.” IEEE Trans. Comput. Volume C-22, No.1–2, (Jan. 1973): p. 1045–1047.  

[23] Dick, “The Platform FPGA: Enabling the Software Radio.” Software Defined Radio 

Technical Conferenceand Product Exposition (SDR). (November 2002) 

[24] Oppenheim A.V. and Schafer R.W. Discrete-Time Signal Processing. Prentice Hall, 

1989. 

[25] Raghunathan A., Jha N. K., Dey, High-level Power Analysis and Optimization. 

Kluwer Academic Publishers. 1998. 

[26] Shang L., Kaviani, Bathala, “Dynamic Power Consumption in Virtex-II FPGA 

Family.” International Symposium on Field Programmable GateArrays. (2002). 

[27] Yeap G. Practical Low Power Digital VLSI Design,Kluwer. Academic Publishers, 

1998. 

[28] http://milan. usc.edu :Model-Based Integrated Simulation (Online)  



 72

[29] Choi S., Govindu G., Jang J.W., Prasanna V.K., “Energy-efficient and 

parameterized designs of fast fourier transforms on FPGAs.” Proc. Int. Conf. acoustics, 

Speech, and Signal Processing (ICASSP), Volume 2,(2003):p.521-524. 

[30] Jia L. ,Gao Y. ,Isoaho J ,Tenhunen H. ,”A new VLSI orieneted FFT algorithm and 

implementation.”IEEE(1998). 

[31] Cormen T.H, .Leiserson C.E., Rivest R.L. Introduction to algorithms. Prentice-Hall, 

1998. 

[32] Bass B., “A Low-Power, High-Performance, 1024-Point FFT Processor.” IEEE 

Journal of Solid-State Circuits.Volume. 34, No. 3 ,(1999): p.380-38. 

[33] Cooley J. W., and Tukey J. W., “An Algorithmm for the Machine Computation of 

Complex Fourier Series.” Mathematics of Computation. Volume.19, (Apr. 1965): p.297-

301. 

[34] Despain A.M., “Very Fast Fourier Transform Algorithms Hardware for 

Implementation”, IEEE Trans. on Computers, vol. c-28, no. 5, (May 1979). 

[35] Swartzlander, Young, and Joseph, “A radix-4 delay commutater for fast Fourier 

transform processor implementation.” 

[36] Bernard, Krammer, Sauer, Schweizer R., “A pipeline architecture for modified 

higher radix FFT.” IEEE International Conference on Acoustics, Speech, and Signal 

Volume.5, (1992):p. 617-620. 

[37] Cohen D., “Simplified control of FFT hardware.” IEEE Trans.Acoustics, Speech,  

signal Processing, Volume. ASSP-24,(1976): p. 517-579 

[38] Ma Y. T.  “An effective memorv addressing scheme for FFT processors.” IEEE     

trans.on signal processing, Volume 47, No. 3,( 1999) p.907-91 I . 

 [39] Perry D.L. ,VHDL Programming by Example. TATA McGraw-HILL, 2002  

 

 

            

            

            

            

            

            

            

             


