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ABSTRACT 
 
The main frequency is an important parameter of an electrical power system. The frequency 

can change over a small range due to generation-load mismatches. Some power system 

protection and control applications, e.g., frequency relay for load shedding, load-frequency 

controller, require accurate and fast estimation of the frequency. Most digital algorithms for 

measuring frequency have acceptable accuracy if voltage waveforms are not distorted. 

However, due to nonlinear devices, e.g., semiconductor rectifiers, electric arc furnaces, the 

voltage waveforms can include higher harmonics. The paper presents a new method of 

measurement of power system frequency, based on digital filtering and Prony’s estimation 

method. Simulation results confirm, that the proposed method is more accurate than others, 

e.g., than the method based on the measurement of angular velocity of the rotating voltage 

phasor. 

A precise digital algorithm based on Discrete Fourier   Transforms (DFT) to estimate the   

frequency of a sinusoid with harmonics in real-time is proposed. This algorithm that we 

called the Smart Discrete Fourier Transforms (SDFT) smartly avoids the errors that arise 

when frequency deviates from the nominal frequency, and keeps all the advantages of the 

DFT e.g., immune to harmonics and the recursive computing can be used in SDFT. These 

make the SDFT more accurate than conventional DFT based techniques. In addition, this 

method is recursive and very easy to implement, so it is very suitable for use in real-time. We 

provide the simulation results compared with a conventional DFT   method and second-order   

Prony   method to validate the claimed benefits of SDFT. 
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1.1 BACKGROUND 

With the progress of industry, power-electronic equipment is widely used in power systems, 

but the nonlinear characteristics of this equipment have also produced serious harmonic 

pollution. Frequency is one of the most important quantities in power system operation 

because it can reflect the dynamic energy balance between load and generating power. So 

frequency is always regarded as an index of the operating practices, and utilities can know the 

system energy balance situations by observing frequency variations. Frequency may vary 

very fast in the transient events such that it is difficult to track it accurately. In addition, there 

are many devices, such as power electronic equipments and arc furnaces, etc. generating lots 

of harmonics and noise in modern power systems. It is therefore essential for utilities to seek 

and develop a reliable method that can measure frequency in presence of harmonics and 

noise. In addition, many ill effects (i.e., worse power quality for end users, more loss in 

transmission lines, overheating of machines, and malfunction of relays and breakers) are due 

to harmonic pollution. It goes without saying that “harmonic analysis is a very important 

subject in power systems”.  

 
1.2 OBJECTIVES 
 

About harmonic analysis, several algorithms have been proposed and fast Fourier transform 

(FFT) is the most widely used computation algorithm for harmonic analysis. With the advent 

of the microprocessor, more and more microprocessor-based equipments have been 

extensively used in power systems. Using such equipments is known to provide accurate, fast 

responding, economic, and flexible solutions to measurement problems [1]. Therefore, all we 

have to do is to find the best algorithm and implement it. There have been many digital 

algorithms applied to estimating frequency during recent years, for example Modified Zero 

Crossing Technique [2], Level Crossing Technique [3], Least Squares Error Technique [4]–

[6], Newton method [7], Kalman Filter [8]–[10], Prony Method [11], and Discrete Fourier 

Transform (DFT) [12], etc. About harmonic analysis, several algorithms have been proposed 

and Discrete Fourier transform (DFT) is the most widely used computation algorithm for 

harmonic analysis. However, leakage effect, less accuracy and low speed in presence of 

harmonics and noise, these effects make DFT suffer from specific restrictions. Therefore, 

some methods have also been provided to improve these drawbacks.  For real-time use, most 

of the aforementioned methods have trade-off between accuracy and speed [13]. A precise 

digital algorithm, namely Smart Discrete Fourier Transform (SDFT) is presented and tries to 

meet the real-time use. SDFT has the advantages that it can obtain exact solution when 

  - 11 -



frequency deviates from nominal frequency, its speed is even faster than DFT, and it can get 

exact solution in the presence of harmonics. 

 
1.3 Different techniques for frequency estimation: 
 

• Least mean squares error techniques. 
• NLMS technique. 
• Adaptive combine filtering technique. 
• Kalman filtering. 
• Finite impulse response filtering. 
• Zero crossing technique. 
• Level crossing technique. 
• FFT techniques. 
• DFT techniques. 
• Newton method. 
• Prony method 
• SDFT technique, etc 

 
1.3.1Introduction 
 
IN MANY power system protection and control schemes it is necessary to accurately 

measure and track the fundamental power frequency. In this paper specified three criteria that 

a frequency tracking method should satisfy in this application: i) fast speed of convergence; 

ii) accuracy of frequency estimation; and iii) robustness to noise. Other considerations are 

that, due to unbalanced loads or faults, it may be necessary to use just the information from 

one phase of a three phase supply and also the delay between the estimated frequency and the 

actual frequency may be important. 

Six principle methods are compared in this paper and their ability to satisfy the requirements 

specified above are examined. 

 
1.3.2: zero crossing methods: 
 
                This is a popular method in both protection and control. When using zero crossing 

methods, one determines the time between zero crossings of the signal to determine the 

frequency. This can be carried out by having a sliding window of samples and curve fitting 

using a least squares technique. This method can be applied to a single phase, but three 

phases may be used together to provide the frequency at more intervals. 

N
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1.3.3: Quadratic Form: 
 
           This method is described in detail in Hacaoglu . Suppose that we are analyzing a set of 

signal samples defined by the vector  . The quadratic 

form of 

( [ ], [ 1],....., [ 1])TX x n x n x n M= − − +

X is defined as 

 

                       
1 1

0 0
( ) [ , ] [ ] [ ] (1.3.1)

M M

m m
F x h k m x n k x n m

− −

= =

= − − − − − − −∑∑

 

Where is the ( )th term of an ([ , ]h k m ,k m M M× ) matrix, H  . A nominal frequency of 50 

Hz is assumed. In Reference .it is shown that, by taking the ratio of two quadratic forms of 

X  with different matrices  and  that it is possible to obtain an approximate formula for 

the frequency. 

1H 2H

1.3.4: Demodulation: 

This procedure operates in analogy to demodulation of a Single Sideband Amplitude 

Modulated signal. Akke suggests that if three phases of the signal are available, then one can 

form two signals  and that are 90 out of phase by application of the [ ]V nα [ ]V nβ αβ  

Transform [4]. The complex signal is then formed from 

 

                    1( )[ ] [ ] [ ] (1.3.2).nj tV n V n jV n Ae ω φ
α

+= + = − − − − −

 

Where 1ω  is the angular frequency at the th sample point and is the corresponding time of 

occurrence. In order to determine the frequency 1ω  , one demodulates with the local 

oscillator term at angular frequency

[ ]V n

0ω . The frequency 1ω can be found by differentiation of 

( )nψ  with respect to time where 0 0( ) ( ) nn tψ ω ω φ= − + . 

One can apply demodulation with single phase data, but the filtering of a double frequency 

component is required which introduces a delay into the estimates ; the advantage of the 

complex demodulation method is that no such delay is introduce unless prefiteering of the 

data is carried out. 

1.3.5: Discrete Fourier Transform with Phase Compensation 
 
          In this method, a DFT is computed over a 0.02 second segment of single phase data 

and the phase spectrum at 50 Hz is determined. By differentiation of this phase with respect 

to time, the frequency can be determined. In , this is extended to three phase data where the 
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positive sequence DFT is found. The frequency can be calculated using a batch least squares 

methods to fit a polynomial over a window of phase values. 

1.3.6: Decomposition of Single Phase into Orthogonal Components 
 
In the (DSPOC) method of Moore , which has been derived to analyze single phase data, the 

signal  is decomposed into two orthogonal components ( )s t 1[ ]x t and 2[ ]x t as: 

 
1/ 2

' '
1 0

1/ 2

[ ] ( )sin(2 )
T

T

'x t s t t f tπ
−

== −∫ dt  

 
1/ 2

' ' '
2 0

1/ 2

[ ] ( ) cos(2 ) (1.3.3).
T

T

x t s t t f t dtπ
−

== − − − − − −∫  

Where  s and0.02T = 0f  is the reference frequency that is taken to be 50 Hz. 

Each filter represents a band pass filter centered at 50 Hz, but which have phase responses 

that are / 2π out of phase.  

The frequency is estimated from: 
2 2

2 1 1 2 1 2ˆ ˆ( ) 1/ 2 (( ( ) ( ) ( ) ( )) /( ( ) ( ))) (1.3.4).ef t x t x t x t x t x t x tπ= − + − − − − −  

One problem with this method is that the gains of the sine and cosine filters used in (4) are 

different away from the reference frequency of 50 Hz. This can be overcome by using an 

adaptive normalization procedure . The gains at the present estimated frequency are 

computed for the sine and cosine filters and this is used to renormalize the outputs 1x  and 2x . 

1.3.7: Non-Linear Least Squares Estimation 
 
Various authors have approached the problem of determining the frequency deviation from 

mains using estimation techniques.  

The underlying signal is modeled by: 

( ) cos(2 ) (1.3.5).xs t A f tπ φ= + − − − − −  

Which can be rewritten as: 
 

1 0 1 2 0 1( ) cos(2 ( ) cos(2 ( ) (1.3.6).s t x f f t x f f tπ π= + − + − − − − −  
 
Where 

   1x            is the in-phase component, 

   2x             is the quadrature phase component, 

   0f              is the reference frequency (50 Hz) and 
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   1f              is the frequency deviation. 

Girgis et al.  attempt a direct estimation of 1f using Kalman filter techniques. The estimation 

problem here is nonlinear in that  is a nonlinear function of( )s t 1x , 2x  and 1f , hence the 

Extended Kalman Filter needs to be used. When 3x  has been estimated, this is further 

smoothed by being input into a linear Kalman filter; which assumes that the frequency 

changes according to a random ramp and random walk process. Kamwa and Grodin simplify 

this problem by rewriting: 

0 1( ) cos(2 ( )) (1.3.7)s t A f t tπ φ= + − − − − −  

Recursive Least Squares (RLS) methods are applied to determine which is numerically 

differentiated 1( )tφ  and smoothed to estimate of the frequency deviation from 0f . 

1.3.8: Linear Estimation of Phase (LEP) 
 
A novel approach  follows on from the algorithm of Kamwa mentioned above but simplifies 

it to a linear estimation method to give amplitude and phase. Once the phase angle is known 

then the frequency can be estimated as it can be shown that the frequency error fΔ  is given 

by the time derivative of the phase. 

                 The advantage of the LEP method is that, in theory, complete cycles of the 

sinusoid are not required in order to estimate the amplitude, frequency and phase. In practice 

the effects of noise mean that larger data segments than the theoretical minimum have to be 

used. The disadvantage of this method is that it can be adversely effected by nonsinusoidal 

components. However, the known harmonics can be simply removed or the signal has to be 

band pass filtered. For the types of power swing events studied here, it has been found that 

the nonfundamental components cannot be characterized as harmonics. A prefilter is 

therefore required so that the signal is dominated by the fundamental component. The 

prefilter used here is the FIR Hamming type filter as used. 
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2.1 FILTERED PHASORS FROM SAMPLED DATA 

                    Consider a sinusoidal input signal of frequency ω  given by 

( ) 2 sin( ) (2.1.1).x t x tω φ= + − − − −  

This signal is conventionally represented by a phasor (a complex number) X 

ˆ cos sin (2.1.2).jX Xe X jφ φ φ= = + − − − −  

Assuming that ( )x t is sampled N times per cycle of the 60 Hz waveform to produce the 

Sample set { Kx } 

2 sin(2 / ) (2.1.3).Kx x k Nπ φ= + −−−−  

The Discrete Fourier Transform of { Kx } contains a fundamental frequency component 

given by 
1

2 /
1

0

ˆ 2 / (2.1.4).
N

j k N
k

k
x N x e π

−
−

=

= − − − −∑  

       
1 1

0 0

2 / cos(2 / ) 2 / sin(2 / )
N N

k k
k k

N x k N j N x k Nπ π
− −

= =

= −∑ ∑

  
       (2.1.5).c sx jx= − − − − −
 

where cx and sx  are the cosine and sine multiplied sums in the expression for X1, 

Substituting for kx  from equation (2.1.3) in equations (2.1.4) and (2.1.5) it can be shown that 

for a sinusoidal input signal given by  equation (2.1.1), 

2 sincx x φ=  

2 cos (2.1.6).sx x φ= −−−−  

From equations (2.1.2), (2.1.5) and (2.1.6), it follows that the conventional phasor 

representation of a sinusoidal signal is related to the fundamental frequency component of its 

DFT By 

1ˆ ˆ1/ 2 1/ 2( ) (2.1.7).s cx jx x jx= = − −−−−  

In the preceding development it was assumed that the input signal is a pure sine wave of 

fundamental frequency. When   the input contains other frequency components as well, the 

phasor calculated by equation (2.1.7) is a filtered fundamental frequency phasor. The input 

signals must be band-limited to satisfy the Nyquist criterion to avoid errors due to aliasing 

effects. It is therefore assumed that the input signals are filtered with low-pass analog filters 
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having a cut-off frequency of wN/47 Hz. The effect of anti-aliasing analog filters on the 

fundamental frequency signals has been discussed in reference [14]. 

                            Another point to note is that equation (2.1.4) assumes data collected over 

one complete cycle of the fundamental frequency. Although the filter equations (2.1.4) are 

particularly simple for the case of a one cycle data window, similar filter equations can be 

formulated for any other window length.  The consequence of using other window 

Length is to affect the accuracy of the phasor computation. A more detailed discussion Of 

this aspect will be found in reference [15]. The remainder of this paper will assume the use of 

one cycle data window, it being a simple matter to modify one cycle data window results to 

reflect the effects of other data window lengths. 

 
2.2 RECURSIVE PHASOR COMPUTATION 
 
 The input signal of equation (2.1.1) is shown in Figure (2.1). Data window 1 produces 

the sample set { ( )x t , k=0, N-1} and the phasor representation obtained from this sample set 

is given by equation (2.1.7). A new sample is obtained after an elapsed (2.1.4) time 

corresponding to the sampling angle 27r/N radians. At this time the data window 2 becomes 

operative with sample set { kx , k=l ..... The phasor computations using data window 2 are 

performed with 

Equations (2.1.1), (2.1.2) and (2.1.7) as follows: 

( ) 2 sin( 2 / ) (2.2.1).x t x t Nω φ π= + + − − − −  

( ) ( 2 / )ˆ (2.2.2).new j Nx xe φ π+= − − − −  

            ( ) 2 /ˆ .old j Nx e π=
( ) ( )

1ˆ ˆ1/ 2 (2.2.3).new newx jx= − − − −  

          ( ) ( )ˆ ˆ1/ 2( ).new new
s cx jx= +  

Where the superscripts 'new’ and 'old' signify computations from data windows 2 and 1 

respectively. Equation (2.2.2) shows that the use of equation (2.1.7) for calculating the 

filtered phasor of an input signal produces a phasor which rotates in a counterclockwise 

direction in the complex 
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                                                       Figure: 2.1 data windows  

Plane by the sampling angle 2w/N. This phenomenon is illustrated in Figure 2.2. The angular 

velocity of the phasor computed from a 60 Hz input signal is thus 120wf377 radians per 

second, although the phasor is available only at discrete angles. 

 

                 
 
                         Figure: 2.2 phasors from different data windows. 

 
1

( )
1

0

2 / cos(2 / ) (2.2.4).
N

r
c k r

k

x N x k Nπ
−

+ −
=

= −∑ −− −  

 
1

( )
1

0

2 / sin(2 / ) (2.2.5).
N

r
s k r

k

x N x k Nπ
−

+ −
=

= − − − −∑  
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( ) ( ) ( )ˆ 1/ 2( )r r
s cx x j= + rx  

         
( 1) 2 /ˆ (2.2.6).r j Nx e π−= − − − −

Clearly the procedure described by (2.2.4)-(2.2.6) is non-recursive, and requires 2N 

multiplications an if (N-l) additions to produce the phasor X (The factor 2 is of no 

consequence, and is usually suppressed). It should however be noted that in progressing From 

one data window to the next, only one sample ( ox  ) is discarded and only one sample ( Nx  ) is 

added to the data set. It is therefore advantageous to develop a technique which retains 2(N-1) 

multiplications and 2(N-1) sums corresponding to that portion of the data which is common 

to the old and new data windows. 

                     A recursive computation of the type described above is made possible by the 

fact that the DFT computation is arbitrary to the extent of its phase angle. Consider the 

calculation of ( )cx θ , ( )sx θ and ( )R θ with Fourier coefficients having an arbitrary phase 

angle θ : 
1

( )
1

0
2 / cos(2 / ) (2.2.7).

N

c k r
k

x N x k Nθ π θ
−

+ −
=

= + − − − −∑  

1
( )

1
0

2 / sin(2 / ) (2.2.8).
N

s k r
k

x N x k Nθ π θ
−

+ −
=

= + − − − −∑  

( )ˆ ˆ (2.2.9).jx xeθ θ−= − − − −  

The phasor representation of the input signal in equation (2.2.9) contains as much 

information as does the one described by equations (2.1.2) and (2.1.7), and can therefore be 

used without any loss of generality. It is advantageous to calculate the phasor for data 

window 1 with equations (2.1.2) and (2.1.7), and that for data window 2 with equations 

(2.2.7) - (2.2.9): 

If θ  is now made equal to equations (2.2.7) and (2.2.8) become 
( ) ( ), 2 / 2 / cos 2 ( ) (2.2.10).new old

c c N ox N x N x xπ π= + − − − − −  

( ) ( ), 2 / 2 / sin 2 ( ) (2.2.11).new old
s s N ox N x N x xπ π= + − − − − −  

If it is understood that the angle 0 is always set equal to 27r/N, this factor can be dropped 

From the superscript on the left hand side of equations (2.2.10) and (2.2.11), and the new 

Phasor is given by 
( ) ( ) 1/ 2.2 / 2 /ˆ ˆ ( ) (2.2.12).new old N j N

N ox x j x x e π−= + − − − − −  

 

  - 20 -



In general, the  phasor is computed from the (r-l)th phasor by thr
 

( ) ( 1) 1/ 2.2 / 2 / ( 1)ˆ ˆ ( ) (2.2.13).r r N j N r
N r rx x j x x e π− − −
+= + − − − − −  

Recursive equations (2.2.10) and (2.2.11) are comparable to the non-recursive equations 

(2.2.4) and (2.2.5). With the recursive procedure only two multiplications need be performed 

at each new sample time; making this a very efficient computational algorithm. 

                                    It is interesting to note that when the input signal is a pure sine wave of 

fundamental frequency N r rX X+ = for all r; and consequently for this case equation (2.2.13) 

Becomes 
( ) ( 1)ˆ ˆ (2.2.14).r rx x −= − − − −       for all r. 

Equation (2.2.14) shows that when a recursive computation is used to calculate phasors, it 

leads to stationary phasors in the complex plane when the input signal is a pure sine wave of 

fundamental frequency. Recall that non-recursive phasor computation leads to phasors which 

rotate in the complex plane: with an angular velocity w. 

2.3 CALCULATION OF LOCAL FREQUENCY 
 
Assume that the sampling clock used for obtaining the sampled data from the three phase 

voltage inputs operates precisely at 720 Hz while the power system frequency is precisely 60 

Hz. When a recursive relation such as equation (2.2.13) is used to calculate the phasors, the 

resultant phasors will remain stationary in the complex plane. The equations derived in this 

section will consider phasor computations from a single input signal, although it may be 

verified readily that the results of this section apply directly to the positive sequence voltage 

calculated from three input voltage signals according to equation (2.2.14). 

                                            If the input signal frequency is now assumed to change slightly 

from 60 Hz by an amount &f, while the sampling clock frequency remains at 720 Hz, it can 

be shown that the recursive relation of equation (2.2.13) changes into 
( ) ( ) ( / 60 )

60 60ˆ ˆ (sin( / 60) / sin( / 60 ). ). (2.3.1).r o j f N r
fx x f N f N e ππ π Δ

+Δ = Δ Δ −−−−  

Where X60 is the initial computation of the phasor from a 60 Hz input signal having the same 

magnitude as the (60+ fΔ ) Hz signal, r is the recursion number, and N is the number of 

samples in a period of the 60 Hz wave. Equation (2.3.1) shows that when the input signal 

Frequency changes from 60 Hz to (60 + fΔ ) Hz, the phasor obtained recursively undergoes 

Two modifications: 
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                         A magnitude factor of ( sin( / 60 )f NπΔ ); A f 27T and a phase factor of 
( 2 / 60 )j f r Ne πΔ . The magnitude factor is independent No f r, and is relatively small for small 

changes in frequency. The magnitude factor is a manifestation of the "leakage effect", and 

has been proposed as a measure of the frequency deviation fΔ  [2]. 

However, the phase angle effect is far more sensitive to the frequency fΔ , and provides a 

most direct measure of fΔ . 

Denoting the phase factor by exp( )j rψ  
( / 60 ) (2.3.2).j f N r j re eπ ψΔ = − − − −  

/ 60.2 / . (2.3.3).r f N rψ π= Δ −−−−  
And thus the phase angle at  recursive computation directly depends upon the frequency 

deviation and the recursion order r. Since r increases by 1 in each iteration, 

thr

The recursive relation for rψ becomes 

1 / 60.2 / (2.3.4).r r f Nψ ψ π−= + Δ − − − −  

Further, the time interval between two iterations is 1/60N seconds: and therefore the angular 

velocity of p is given by 

1/ /(1/ 60 ). (2.3.5).r rd dt Nψ ψ ψ −= − − − − −  

2π  fΔ  Radians/second. 

         The rate of change of the complex phasor angle is thus directly related to the input 

signal frequency. For example, an input signals with frequency (60 ± 1) Hz would produce a 

phasor that turns one complete circle per second in the complex plane. When the input signal 

frequency is 61 Hz, the phasor rotates in the counterclockwise direction, whereas for an input 

signal frequency of 59 Hz the phasor rotates in a clockwise direction. There is a striking 

resemblance between this phenomenon of a rotating phasor and the principle of a power 

system synchroscope so familiar to most power system engineers. Just as the frequency is 

calculated by calculating   /d dtψ  the rate of change of frequency can be calculated by 

computing . From equation (2.3.5) 2 /d dtψ 2

60f f= + Δ  

   60 1/ 2 ( / ) (2.3.6).d dt hzπ ψ= + − − − −  
2 2/ 1/ 2 ( / ) (2.3.7).df dt d dtπ ψ= − − − −  
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Figure 2.3: the estimated frequency component with single harmonic using DFT      

                    technique. 

The actual computations for f and are performed with the help of regression formulas /df dt

As explained below. 
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3.1 METHOD BASED ON THE DISCRETE FOURIER TRANSFORMATION 
 

Some methods of frequency measurement, presented in literature during recent years base on 

the definition of the instantaneous frequency as angular velocity of the rotating voltage 

phasor. The phasor of the fundamental waveform of the voltage can be calculated from the N 

samples, using the DFT or other algorithms [16]–[20]. If the sampling window equals one 

cycle of the basic waveform, the phasor at the time kt kT=  is given by 

1

1
0

2 / (3.1.1).
N

j Tn
k k n N

n
G N v e ω

−
−

+ − +
=

= − − − −∑  

Where: 

      T         Sampling interval; 

      ω         Fundamental frequency; 

         Sampled values of a voltage. 1k n Nv + − +

When implementing the method,  is updated at every sampled value. After each sampling 

cycle, the newest sample is taken into the calculation, while the oldest one is neglected. For 

each position of the phasor, its argument can be calculated. The instantaneous frequency can 

be determined from the two consecutive phasors. 

kG

1arg[ ] arg[ ] / . (3.1.2).k kG G Tω += − − − − −  

Where  

arg[ ] tan {Im[ ] / Re[ ]}. (3.1.3).k k kG G G−= − − − −   

3.2 FILTERING 
 
                  In the proposed approach a voltage waveform taken from a voltage transformer, is 

first filtered using algorithms based on the DFT. For further processing, we need only the 

time function of the fundamental component of voltage equals to the real part of the phasor. 

The filter algorithm is described as 
1

1
0

2 / cos( ) (3.2.1).
N

k k n N
n

g N v n Tω
−

+ − +
=

= − − − −∑  

 
However, when the frequency changes, the rectangular window inherent in the DFT has some 

disadvantages. To improve the filter properties, applying of a smoothing window is 

Proposed. The investigation was carried out for two most common window functions: 

Hamming window or Blackman window. The Hamming window is described by 
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.54 .46cos(2 / 1) (3.2.2).Hw n Nπ= − − − − − −  

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
The hamming Window

Time (samples)

A
m

pl
itu

de

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
The Blackman Window

Time (samples)

A
m

pl
itu

de

 
    Figure 3.2.1: The amplitude response of hamming and Blackman window with N=20. 

And the Blackman window described by  

.42 .5cos(2 / 1) .08cos(4 / 1) (3.2.3).Bw n N n Nπ π= − − + − − − − −  

The aim of the pre filtering is to improve the accuracy of the frequency determination. 
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             Figure 3.2.2: Blackman window with window size N=40. 

 

                                  
3.3 ALGORITHM BASED ON THE PRONY’S ESTIMATON METHOD 
 
   
At the output of the filter algorithm we obtain samples of the fundamental component of a 

voltage. Due to deviation of the frequency the filtering is not exact. For the calculation of the 

frequency we propose an algorithm based on the Prony’s estimation method. The method is 

based on the assumption that given a series of samples , ,…. 1g 2g Mg , a filtered voltage 

waveform can be approximated by one sinusoid 

cos( ) (3.3.1).my A m Tω ψ= + − − − −            From m=1,2,………..M. 

Where M is the number of samples taken into the approximation. In the complex exponential 

form, this may be written as 
*

1 1 (3.3.2).m m
my bz bz= + − − − −  

Where  

      1 (3.3.3).j tz e ω= − − − −

     / 2 (3.3.4).jb A e ψ= − − − −
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The estimation problem is, to find the values of and  so that the error b 1z

(3.3.5).m m mg yδ = − − − − −  

Will be minimized. 

                          The key idea of the Prony’s estimation method is to transform this nonlinear 

problem into a linear fitting problem by minimizing the error E defined as  
1

2( ) (3.3.6).
M

m
m p

E ε
−

=

= − − − −∑  

Where p is the no of exponents and  mε  is defined by  

1
0

(3.3.7).
p

m k k m
k

aε δ + −
=

= − − − −∑  

The parameters are initially unknown, and are related to the frequency of the sinusoid. The 

key step to the estimation is to recognize that the (8) is the solution to some linear constant 

coefficient difference equation. In order to find the form of the difference equation, the 

polynomial  is defined for  

ka

( )F z 2p =

*
0 1 1( ) ( )( ) 0 (3.3.8).F z a z z z z= − − = − − − −  

The exponents and are roots of the polynomial. Now, using (3.1.8) we obtain 1z
*
1z

2

1 0 1 1 2 1
0

0 (3.3.9).k k m m m m
k

a y a y a y a y+ − − +
=

= + + = − − − −∑  

From (3.3.5) and (3.3.7) it follows that  
2

1 1
0

( )m k k m k m
k

a g yε + − + −
=

= −∑  

      0 1 1 2 1 (3.3.10).m m ma g a g a g− += + + − − − −

The desired roots of the polynomial  have unit modulus. If  is a root, then1z ( )F z 1z
1

1z
−  is 

also. So the coefficients are symmetric about , i.e., =  . It is convenient to choose so 

that =1. For = , =1. 

ka 1a 0a 2a

1a 0a 2a 1a

0 1 1( ). (3.3.11).m m m mg a g gε − += + + − − − −  

The minimization of E with respect to the unknown  will be achieved if 0a
1

0 0 1 1 1 1
2

/ 2[ ( )]( ) 0 (3.3.12).
M

m m m m m
m

E a g a g g g g
−

+ − + − +
=

∂ ∂ = + + = − − − −∑  

 
A solution of (3.3.12) we obtain  
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1 1
2

0 0 1 1 0 1 1
2 2

( ) / ( ) (3.3.13).
M M

m m m m m m
m m

a g a g g g a g g
− −

− + − +
= =

= − + + − − − −∑ ∑  

 
The polynomial  (3.1.14) can be expressed as  ( )F z
 

2
0(1/ ) 1 0 (3.3.14).z a z+ + = − − − −  

 
The roots of polynomial are  
 

2
1,2 0 01/ 2 1 1/ 4 (3.3.15).z a j a= − ± − − − − −  

 
Since the roots are defined as (3.3.2) 
 

1,2
j Tz e ω±=  

 
      cos( ) sin( ). (3.3.16).T j Tω ω= ± − − − −  
 
The angular frequency ω is given by  
 

1 1
1 2

1 1 1 1
2 2

1/ cos { ( ) / 2 ( )}. (3.3
M M

m m m m m
m m

T g g g g gω
− −

−
− + − +

= =

= + + − − − −∑ ∑ .17).  

 
 
                 Figure 3.3.1: frequency response with single harmonic using prony technique 
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                    Figure 3.3.2: frequency response with filter with multiple harmonics 
 
 
3.4 SIMULATION RESULTS 
 
             The developed method was investigated on computer and compared to the method 

based on the DFT. The program generates a voltage which is sampled at preselected rate. 

These samples were processed according to (3.1.1) to calculate the phasor, and according to 

(3.1.4) to calculate the time function of the main waveforms. The frequency was calculated 

either Using the (3.1.2) or using the new method, described by (3.3.17). The voltage 

waveforms were distorted by higher harmonics. 

                            When implementing the methods, the calculated frequency is updated at 

every sampled value: After each sampling cycle, the newest sample is taken into the 

calculation, while the oldest one is neglected. 
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   Figure 3.4.1: Estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=20, M- 

number of samples of the prony’s model, M=15. 
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      Figure3.4.2:Estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=20, M- 

number of samples of the prony’s model, M=20. 
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       Figure3.4.3:estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=15. 
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     Figure3.4.4: Estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=20. 
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     Figure3.4.5: estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=5. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
48.95

48.96

48.97

48.98

48.99

49

49.01

49.02

49.03

49.04

Time (sec)

fre
qu

en
cy

(h
z)

 
    Figure3.4.6: estimated frequency of a voltage ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=30. 
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  Fig.3.4. shows results of frequency estimation for heavy distorted voltage waveform 

( ) cos( ) .2cos(5 ) .1cos(7 ).g t t t tω ω= + + ω  Fig. 3.4.1 shows results when applying the 

Hamming window, Fig. 3.4.2 and 3.4.3 the Blackman window. For comparison, the results 

when applying the DFT method have also been shown. The best accuracy has been achieved 

using the Blackman smoothing window. 

  
Figure3.4.7: estimated frequency of a voltage ( ) cos( ) .02cos(5 ) .01cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49.5 Hz, sampling frequency sf =1000 Hz, filter order N=20, M- 

number of samples of the prony’s model, M=15. 
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Figure3.4.8: estimated frequency of a voltage ( ) cos( ) .02cos(5 ) .01cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49.5 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=15. 
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Figure3.4.9: estimated frequency of a voltage ( ) cos( ) .02cos(5 ) .01cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49.5 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=5. 
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Figure3.4.10: estimated frequency of a voltage ( ) cos( ) .02cos(5 ) .01cos(7 );g t t t tω ω ω= + +  

simulated frequency f =49.5 Hz, sampling frequency sf =1000 Hz, filter order N=40, M- 

number of samples of the prony’s model, M=30. 

 

 Fig. 3.4.7 shows results for the voltage waveform with realistic distortion in high voltage 

networks ( ) cos( ) .02cos(5 ) .01cos(7 ).g t t t tω ω= + + ω  The computer investigation disclosed a 

high accuracy of the developed method. For realistic voltage distortion and frequency 

deviation the error was less than 1 mHz. The dynamic behavior of the method was also 

investigated. The results showed in Fig. 3.4.11 confirm a good tracking capability of the 

method. 
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                Figure3.4.11:True and estimated frequency of a voltage          

                  ( ) cos( ) .2cos(5 ) .1cos(7 );g t t t tω ω= + + ω  with sampling frequency sf =1000 Hz,   

                  filter order N=20, M- no of samples M=30. 
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THE PROPOSED DIGITAL ALGORITHM 
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4.1 The proposed digital algorithm 

           This section presents the algorithm of the SDFT that calculates the frequency from a 

voltage/current signal. Consider a sinusoidal input signal of frequency 2 fω π=  with th 

harmonic given by 

m

             1 1 2 2( ) cos( ) cos( ) (4.1.1)x t X t X m tω φ ω φ= + + + − − − −  

Where  

    1X , 2X :   the amplitude, 

    1φ , 2φ :   the phase angle, 

Suppose that ( )x t is sampled with a sampling rate (60*N ) Hz waveform to produce the 

sample set { ( )}x k  

      1 1 2 2( ) cos( / 60 ) cos( / 60 ) (4.1.2)x k X k N X m k Nω φ ω φ= + + + − − − −  

The signal ( )x t  is conventionally represented by a phasor (a complex number) x&&& 

        cos sin . (4.1.3).jx Xe X jXφ φ φ= = + − − − −&&&

The ( )x t  can be expressed as 

    
* *

1 1 2 2( ) / 2 / 2. (4.1.4).j t j t jm t jm tx t x e x e x e x eω ω ω ω− −= + + + − − − −&&& &&& &&& &&&

Where denotes complex conjugate. Moreover, the fundamental frequency (60 Hz) component 

of DFT of { ( )}x k  is given by 

    
1

0

ˆ 2 / ( ) exp( 2 / ). (4.1.5).
N

r
k

x N x k r j k Nπ
−

=

= + − − − − −∑

Combing (4.1.4) and (4.1.5) and taking frequency deviation [ 2 (60 )fω π= + Δ ] into 

consideration,  

we obtain: 

   

1

1
0

1
*
1

0

1

2
0

*
2

ˆ / exp( 2 (60 )( ) / 60 ).exp( 2 / )

/ exp( 2 (60 )( ) / 60 ).exp( 2 / )

/ exp( 2 (60 ) ( ) / 60 ).exp( 2 / )

/ exp( 2 (60 ) ( ) / 60 ).

N

r
k

N

k

N

k

k

x x N j f k r N j k N

x N j f k r N j k N

x N j f m k r N j k N

x N j f m k r N

π π

π π

π π

π

−

=

−

=

−

=

=

= + Δ + −

+ − + Δ + −

+ + Δ + −

+ − + Δ +

∑

∑

∑

&&&

&&&

&&&

&&&
1

0
exp( 2 / ) (4.1.6)

N

j k Nπ
−

− − − − −∑
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We rearrange (4.1.6) as the following 
1

0

1
*

0
1

0

*

/ exp( 2 / (1 / 60) ) exp( 2 ( / 60 ) )

/ exp( 2 / (1 / 60) ) exp( 2 (2 / 60 ) )

/ exp( 2 / (1 / 60) ) exp( 2 ( 1 / 60 ) )

/ exp( 2 / (1 / 60) ) e

N

r
k

N

k
N

k

x x N j N f r j f N k

x N j N f r j f N k

x N j N f mr j m m f N k

x N j N f mr

π π

π π

π π

π

−

=

−

=

−

=

= + Δ Δ

+ − + Δ − + Δ

+ + Δ − + Δ

+ − + Δ

∑

∑

∑

&&& &&&

&&&

&&&

&&&
1

0
xp( 2 ( 1 / 60 ) ) (4.1.7)

N

k
j m m f N kπ

−

=

− − − + Δ − − − −∑
We use the following identity to simplify (4.1.7). 

1

0

( ) sin( / 2) / sin( / 2)exp( ( 1) / 2). (4.1.8).
N

j i

i

e N j Nθ θ θ θ
−

=

= − − − − −∑  

Then (4.1.7) can be expressed as 

1 1 1 1
*

1 2 2 2

2 3 3 3

/ exp( 2 / (1 / 60) )sin( / 2) / sin( / 2).exp( ( 1) / 2)

/ exp( 2 / (1 / 60) )sin( / 2) / sin( / 2).exp( ( 1) / 2)
/ exp( 2 / (1 / 60) )sin( / 2) / sin( / 2).exp( ( 1) / 2)

rx x N j N f r N j N

x N j N f r N j N
x N j N f mr N j N

π θ θ θ

π θ θ θ
π θ θ θ

= + Δ −

+ − + Δ −
+ + Δ −

&&& &&&

&&&
&&&

*
2 4 4/ exp( 2 / (1 / 60) )sin( / 2) / sin( / 2).exp( ( 1) / 2). (4.1.9)x N j N f mr N j Nπ θ θ θ+ − + Δ − − − − −&&& 4

Where 

   1θ = 2 ( / 60f Nπ Δ ), 

   2θ = 2 (2 / 60f Nπ− + Δ ), 

   3θ = 2 ( 1 / 60m m f Nπ − + Δ ), 

   4θ = 2 ( 1 / 60m m f Nπ − − + Δ ). 

Rearranging (4.1.9) further we obtain  

1 1 1
*
1 2 2

2 3 3

*
2

/ sin( /2)/sin( /2)exp( /60 ( (2 1 120 ))

/ sin( /2)/sin( /2)exp( /60 ( (2 1 120( 1)))
/ sin( /2)/sin( /2)exp( /60 ( (2 1 60(2 1)))

/

rx x N N j N f r N r

x N N j N f r N r N
x N N j N m f r N mr mN m N

x N

θ θ π

θ θ π
θ θ π

= Δ + − +

+ − Δ + − + + −
+ Δ + − + + − − +

+

&&& &&&

&&&
&&&

&&& 4 4sin( /2)/sin( /2)exp( /60 ( (2 1 60(2 1))). (4.1.10)N j N m f r N mr mN m Nθ θ π− Δ + − + + − − − −−−−
If we define ,rA rB , and  as rC rD

rA = 1 1 1/ sin( / 2) / sin( / 2)exp( / 60 ( (2 1 120 ))x N N j N f r N rθ θ π Δ + − +&&&  

rB =  *
1 2 2/ sin( / 2) / sin( / 2) exp( / 60 ( (2 1 120( 1)))x N N j N f r N r Nθ θ π− Δ + − + + −&&&

rC = 2 3 3/ sin( / 2) / sin( / 2)exp( / 60 ( (2 1 60(2 1)))x N N j N m f r N mr mN m Nθ θ π Δ + − + + − − +&&&

rD = *
2 4 4/ sin( / 2) / sin( / 2) e( / 60 ( (2 1 60(2 1))x N N j N m f r N mr mN m Nθ θ π− Δ + − + + − − −&&& ). 
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Then (4.1.9) can be expressed as 

rx&&&= +rA rB + + .-----(4.1.11). rC rD

Except the parts of  harmonic, so far the development of the algorithm of SDFT are the 

same as the conventional DFT method. So the SDFT can keep all advantages of DFT such as 

thm

Recursive computing manner. But in the DFT, it assumes that the frequency deviation is 

small enough to be ignored, and it always considers ˆr rx A=  , so traditional DFT based 

methods incur error in estimating frequency and phasor when frequency deviates from 

nominal frequency (60 Hz). If we want to get exact solution, we must take rB  ,  and  

into consideration. 

rC rD

So we define 

exp( ( / 60 (2 120))). (4.1.12).a j N fπ= Δ + − − − −  

And from (4.1.10), we will find the following relations 

1 (4.1.13).r rA A a+ = − − − −  

1
1 (4.1.14).r rB B a−
+ = − − − −  

1 (4.1.15).m
r rC C a+ = − − − −  

1 (4.1.16).m
r rD D a−
+ = − − − −  

Then  
1

1ˆ (4.1.17).m m
r r r r rx A a B a C a D a− −
+ = + + + − − − −  

1
2 1 1 1 1ˆ (4.1.18).m m

r r r r rx A a B a C a D a− −
+ + + + += + + + − − − −  

If we multiplied “ ” both sides (4.1.17) and (4.1.18) respectively, then we get, ma
1 1 2

1ˆ (4.1.19).m m m m
r r r r ra x A a B a C a D+ − +
+ = + + + − − − −  

1 1 2
2 1 1 1 1ˆ (4.1.20).m m m m

r r r r ra x A a B a C a D+ − +
+ + + + += + + + − − − −  

Subtracting (4.1.11) from (4.1.19) and subtracting (4.1.17) from (4.1.20), respectively, we 

can erase  and obtain  rD

1ˆ ˆm
r ry a x x+= − ˆr

1ˆr+

 

     =  1 1 2( 1) ( 1) ( 1) (4.1.21).m m m
r r rA a B a C a+ − +− + − + − − − − −

1 2ˆ ˆm
r ry a x x+ += −  

        =  1 1 2
1 1 1( 1) ( 1) ( 1) (4.1.22).m m m

r r rA a B a C a+ − +
+ + +− + − + − − − − −

Repeat similar operation to erase the rB  and , then the equations will become rC
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2 1 1
1

ˆ ˆ ( 1)( 1)( 1) (4.1.23).m m
r r raZ Z A a a a− +
+ − = − − − −−−−  

2 1 1
2 1 1

ˆ ˆ ( 1)( 1)( 1) (4.1.24).m m
r r raZ Z A a a a− +
+ + +− = − − − −−−−  

Where 1
ˆ ˆ ˆ ,r r rZ au u+= − 1 .ˆ ˆ ˆm

r r ru a y y−
+= −   

Dividing (4.1.24) by (4.1.23), we get  

2 1 1 1
ˆ ˆ ˆ ˆ/ / . (4.1.25).r r r r r raZ Z aZ Z A A a+ + + +− − = = −−−−  

Then expand (4.1.25), and use numerical method to find the solution of “  .” And from the 

definition of “  ” in (4.1.12), we can get the exact solution of the frequency. 

a

a

 
160 cos ( ( ))60 / 2 . (4.1.26).f f Re a N π−= + Δ = − − − −  
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             Figure 4.1.1: Estimated frequency with single harmonic using SDFT method. 

                                          (m=1). 1SDFT

4.2 Phasor estimation 

From (4.1.26), it is observed that SDFT can provide exact frequency using ˆrx , 1ˆrx + , 2ˆrx +  , 3ˆrx +  

and 4ˆrx +   in the presence of harmonics. Moreover, we can estimate phasor after getting exact 

“ f  ” by the following equations: 

2 1 1
1

ˆ ˆ /( 1)( 1)( 1) (4.2.1).m m
r rA aZ Z a a a− +

+= − − − − −−−−  
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1 ( ) sin( / 60 ) / sin( / 60). (4.2.2).rX abs A N f N fπ π= Δ Δ − − − −  

1 ( ) / 60 ( ( 1)). (4.2.3).rangle A N f Nφ π= − Δ − − − − −  

4.3 SDFT with multiple harmonics 

It appears that SDFT can take integral order harmonics into consideration. To distinguish 

easily, SDFT means calculating frequency for 1m =  and we add suffix to the others, for 

example  and  calculate frequency for 3SDFT 35SDFT 3m = and 3,5m =  , respectively. And 

here we offer the polynomial equation of   (3SDFT 3m = ): 

         4 3 3
3 2 1 0 0.a p a p a p a p+ + + + =

Where      

    3 1 3ˆ ˆ ˆ/ 2 ,r r r 2p x x x+ + += − +       2p = -3/4, 

    1 1 3ˆ ˆ ˆ/ 4 ,r r r 2p x x x+ + += +        0 2 4ˆ ˆ ˆ ˆ2 /16 ,r r r r 2p x x x x+ + += + +  
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                 Figure 4.3.1: Estimated frequency of a multiple harmonic with SDFT method, 

                                       (m=3), 3SDFT

Actually, if we assume that 1 1 2( ) cos( ) cos( )x t X t X m t 2ω φ ω= + + φ+  from the beginning of 

development of the algorithm, we will derive a polynomial equation similar to (4.1.26) that 

provide exact frequency in the presence of nonintegral harmonic. We add suffix “  ” to 

SDFT means that has taken nonintegral harmonics into consideration. Although we can take 

n
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all of the harmonics into consideration, we still need a digital filter to decay noise and high 

order harmonics. Since, in SDFT, the more harmonics taken into consideration, the more 

CPU time needed in computing. The advantages of digital filtering are no voltage drop, no 

temperature drift, no noise addition, and don’t have any analog filter element features, like 

aging. Besides these, digital filter can be implemented in microprocessor-based equipment. 

These make us choose a digital filter to filter noise and high order harmonics. There are many 

digital filters that we can choose e.g., Hanning, Hamming and Blackman windows. In our 

simulations we will use the Blackman window for filtering. 

4.4 simulation results 

Simulation results presented in this section were all simulated from Matlab and showed a fair 

comparison to both the DFT method and Prony method. In Fig.4.4.1, we showed that SDFT 

could obtain an exact solution identical to the Prony method under frequency deviation in a 

pure sinusoidal waveform. Fig 4.4.1.  also shows the performance of SDFT method and 

conventional DFT method. It is observed that conventional DFT method gives the wrong 

frequency calculations. 
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             Figure 4.4.1: comparison of frequency calculations among DFT, Prony , SDFT 

and  [Test signal 3SDFT ( ) cos( )x t tω= ,  f =51 Hz.  
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         Figure 4.4.2: comparison of frequency calculations among DFT, Prony , SDFT and 

 [Test signal 3SDFT ( ) cos( ) .05cos(3 ) .02cos(5 );x t t t tω ω= + + ω ,  f =50.5 Hz. 

 
         Figure 4.4.3: comparison of frequency calculations among DFT, Prony , SDFT and 

 with Blackman window [Test signal 3SDFT ( ) cos( ) .05cos(3 ) .02cos(5 );x t t t tω ω ω= + +  

f =50.5 Hz. 
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                        In Fig. 4.4.3, SDFT and SDFT3 are observed to obtain the exact solution. 

While the SDFT and Prony methods test the same signal without filtering, we find that Prony 

is worse than SDFT in the presence of harmonics, but if the test signal is filtered by a 

Blackman window (window size = 16) for estimation, we find that the SDFT and Prony 

methods have similar performance. 
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Discussion: 

The frequency is changed as a sine wave and 3rd, 5th harmonics is also added in test signal 

during 1 second. We can observe the errors of SDFT and Prony with Blackman window , and 

the errors of SDFT and SDFT without filter  . Although SDFT and SDFT can resist the effect 

of the 3rd, 5th harmonics, the effect of frequency variation makes them get some small errors. 

We change 5th harmonic to a nonintegral harmonic, and of course SDFT has better 

performance than SDFT . However, this is a special case for SDFT . In fact, SDFT spends 

more time in computing than SDFT , and sometimes it has convergence problem when there 

are more than two harmonics in the signal. Anyway, from Fig. 5.1.1 we can conclude that 

SDFT-family algorithms (PRONY, SDFT and SDFT3 ) are better than DFT method and 

Prony method for frequency calculation. 
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  Figure 5.1.1: frequency variation of test signal ( ( ) cos( )x t tω= f =50+0.5 sin(2 )tπ Hz), 

comparison of error of frequency calculations between Prony, SDFT and . 3SDFT

By comparison of computation speed, Table I shows the AMD K6-200 CPU time of each 

method. There are 960 data per second computed by each method [the test signal is the same 

as in Fig. 3(a)] without a Blackman window to calculate the frequency, while adding a 

Blackman window will add 0.91 second to the computation. We find that SDFT is the fastest 
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method in these computations, even faster than DFT, because SDFT counts frequencies 

directly, but DFT has to count the phase first and then use the phase difference to count 

frequencies. The faster speed of SDFT over the Prony method is because recursion can be 

used in SDFT. 
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6.1 Conclusions 

In This work we came to know about The SDFT-family methods and demonstrate their 

performance. SDFT both keeps the advantages of DFT and also deals with the cause of 

frequency deviation errors, while taking harmonics into consideration. These aspects make 

SDFT a fast, accurate and harmonic-resisting method. But we do not suggest taking all the 

harmonics into consideration, since that would require too much computation time. 

Alternatively, using a smoothing window to decay the high order harmonics and just taking 

the low order harmonics into consideration will be more efficient and suitable for power 

systems under real-time demands. 

 

6.2 Suggested future work 

• The digital filters that we can choose e.g. Hanning, Hamming and Blackman window, 

can achieve the more efficient results in the presence of high order  harmonics.  

• The smoothing windows can be reduced the too much computation time. 

• Stability study of the SDFT family.  
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