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ABSTRACT

Classification of texture images, especially those with different orientation and scale

changes, is a challenging and important problem in image analysis and classification. This

thesis proposes an effective scheme for rotation and scale invariant texture classification

using log-polar wavelet signatures. The rotation and scale invariant feature extraction for a

given image involves applying a log-polar transform to eliminate the rotation and scale

effects, but at same time produce a row shifted log-polar image, which is then passed to an

adaptive row shift invariant wavelet packet transform to eliminate the row shift effects. So,

the output wavelet coefficients are rotation and scale invariant. The adaptive row shift

invariant wavelet packet transform is quite efficient with only O(n*log n) complexity. A

feature vector of the most dominant log-polar wavelet energy signatures extracted from each

subband of wavelet coefficients is constructed for rotation and scale invariant texture

classification. In the experiments, I employed a modified Mahalanobis classifier to classify a

set of 12 distinct natural textures selected from the Brodatz album. The experimental results,

based on different testing data sets for images with different orientations and scales, show

that the implemented classification scheme using log-polar wavelet signatures outperforms

other texture classification methods, its overall accuracy rate for joint rotation and scale

invariance being 87.59 percent, demonstrating that the extracted energy signatures are

effective rotation and scale invariant features.
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Chapter 1
INTRODUCTION
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1.1 Back ground

Image texture is an important surface characteristic used to identify and recognize

objects. Texture is difficult to be defined. It may be informally defined as a structure

composed of a large number of more or less ordered similar patterns or structures. Textures

provide the idea about the perceived smoothness, coarseness or regularity of the surface.

Texture has played an increasingly important role in diverse applications of image processing

such as in computer vision, pattern recognition, remote sensing, industrial inspection and

medical diagnosis [2].

Texture is the visual cue due to the repetition of image patterns which may be

perceived as being directional or non-directional, smooth or rough, coarse or fine, regular or

irregular, etc. The objective of the problem of texture representation is to reduce the amount

of raw data presented by the image, while preserving the information needed for the task. In

image processing texture analysis is aimed at three main issues: texture synthesis,

segmentation and classification.

Texture synthesis is an alternative way to create textures. Synthetic textures can be

made of any size without visual repetition as in original texture images.  Potential appli-

cations of texture synthesis are image de-noising, compression, etc.  Texture segmentation is

an important topic in image processing.  It aims at segmenting a textured image into several

regions without a priori knowing the textures.  An effective and efficient texture

segmentation method will be very useful in applications like the analysis of aerial images,

biomedical images and seismic images as well as the automation of industrial inspections.

Texture classification involves deciding what texture category an observed image belongs to.

In order to accomplish this, one needs to have an a priori knowledge of the classes to be

recognized.  Once this knowledge is available and the texture features are extracted, one then

uses classification techniques in order to do the classification.
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1.2 Objective
Many algorithms for texture classification are not rotation and scale invariant.  Chi-

Man Pun and Moon-Chuen have recently proposed method for rotation and scale invariant

texture classification based on log-polar wavelet energy signatures [3].  The efficiency of a

texture classification/segmentation algorithm can be increased by using a module for feature

extraction followed by classification.  This will be particularly useful for very large images

such as those used for medical image processing, remote-sensing applications and large

content based image retrieval systems.  The objective of this thesis is to develop such a

module for the rotation and scale invariant texture classification by Chi-Man Pun and Moon-

Chuen Lee method.

1.3    Thesis Contribution

These theses addressed the problem of rotation and scale invariance in image analysis

and classification and implemented an effective wavelet energy feature for rotation and scale

invariant texture classification. First I briefly reviewed the standard 2D wavelet packet

decomposition [16] techniques.  Then, I define an algorithm to extract the rotation and scale

invariant log-polar wavelet energy signatures for a given image. The feature extraction

process involves applying a log-polar transform and an adaptive row shift invariant wavelet

packet transform to obtain rotation and scale invariant wavelet coefficients. This feature

extraction process is quite efficient with only O(n·logn) complexity (where n is the number

pixels in the given image). Also, the construction of a feature vector using most dominant

log-polar wavelet energy signatures extracted from each subband of wavelet coefficients,

provides an effective and small number of features for rotation and scale invariant texture

classification. The performance of my implemented log-polar wavelet energy signatures were

tested by a number of experiments using the modified Mahalanobis classifier to classify a set

of 12 distinct natural textures selected from the Brodatz album [12].

The experimental results, based on different testing data sets for images with different

orientations and scales, show that the implemented classification scheme using log-polar

wavelet signatures is quite robust to noise and outperformed as compared with the standard

wavelet packet signatures method.
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The overall accuracy of 87.59 percent for joint rotation and scale invariance was

achieved with a vector of only 128 energy features, demonstrating that the extracted energy

signatures are effective joint rotation and scale invariant features.

1.4 Organization of Thesis
The remainder of the thesis is organized as follows.  Chapter 2 gives a brief

introduction about texture classification methods.  It also presents the recent developments in

rotation and scale invariant texture classification and discrete wavelet transform.  Chapter 3

describes the method for rotation and scale invariant texture classification.  It explains about

log-polar transform and wavelet packet transform.  Chapter 4 describes about the proposed

for rotation and scale invariant texture classification.  Chapter 5 Simulation results for the

implemented and proposed for rotation and scale invariant texture classification are also

presented. Then I made a conclusion to my work and the points to possible directions for

future work.
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Chapter 2
LITERATURE REVIEW
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This chapter gives a review of existing literature about texture classification.   A small

overview about discrete wavelet transforms and wavelet families of image processing are also

presented.

2.1     Texture Classification

A host of literature is available on texture analysis.  Texture segmentation and

classification methods can be broadly follow two approaches [2]:  spatial-domain approach

and transform domain approach.

2.1.1     Spatial-domain Approach

The approach includes the following:

Structural texture analysis [1]:  These methods consider texture as a composition of

primitive elements arranged according to some placement rule.   These primitives are called

texels. Extracting the texels from the natural image is a difficult task.  Therefore these

methods have limited applications.

Statistical  methods  [2]:  They  are  based  on  the  various  joint  probabilities  of

gray  val- ues.   Gray  Level  Co-occurrence  Matrices  (GLCM)  estimate  the  second  order

statistics by counting the frequencies for all the pairs of gray values and all displacements in

the input  image.  Haralick [4] proposes several texture features that can be extracted from the

co- occurrence matrices such as uniformity of energy, entropy, maximum probability,

contrast, inverse difference moments, correlation and probability run lengths.

Model based methods that include fitting of model like Markov random field, autore-

gressive, fractal and others [1].  The estimated model parameters are used to segment and

classify textures.

2.1.2     Transform-domain Approach

This approach analyses texture in various transform domains usually implemented

through various filters/filter banks.  T Randen and J. H Husoy [20] give an excellent review

of the various filtering techniques for texture classification and compare the performance of

the techniques.  Filtering approach includes are Laws mask, ring/wedge filters, dyadic Gabor
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filter banks, wavelet transforms which is explained in detail in the next section, quadrature

mirror filters, DCT, eigen filters etc.

Laws were one of the pioneers of the filtering approach.  He proposed nine 3X3

masks [18] to accentuate the texture features.  The response of each filter mask was used to

extract the texture energies.  Coggins and Jain [19] have suggested seven dyadically spaced

ring filters and four wedge-shaped orientation filters for feature extraction.   More recent

developments are based Gabor filters and wavelets.  Dyadic Gabor filter banks have been

used to extract texture features.  These filters give maximum resolution in both spatial and

frequency domains and are highly desirable for texture analysis.  There is also evidence that

Gabor filters provide good models for the response profiles of many cortical cells in the

human visual cortex.  The Gabor filter is of the form of a 2-D Gaussian modulated complex

sinusoidal in the spatial domain [21].

-2 (     ) ( , )  ( ', ') j U x V yh x y g x y e π +=                                          (2.1)

Where (x , y ) = (xcos  + ysin , xsin  + ycos ) are rotated co ordinates, and

2 2( )1 -( , ) ( )
2 22 2

x y
g x y e λ

πσ σ

+
=                                (2.2)

Where  defines the aspect ratio and  the scale factor and (U, V) defines the position

of the filter in the frequency domain.  The scale factor is typically determined by the center

frequency of the filter.  A fixed set of filters is usually chosen to generate features for tex-

ture classification.  These filters are centered at the required frequencies and orientations to

obtain the optimum coverage of the frequency domain.

2.2 The Discrete Wavelet Transform
The transform of a signal is just another form of representing the signal. It does not

change the information content present in the signal.  The Wavelet Transform provides a

time-frequency representation of the signal. It was developed to overcome the short coming
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of the Short Time Fourier Transform (STFT), which can also be used to analyze non-

stationary signals. While STFT gives a constant resolution at all frequencies, the Wavelet

Transform uses multi-resolution technique by which different frequencies are analyzed

with different resolutions.

A wave is an oscillating function of time or space and is periodic. In contrast,

wavelets are localized waves. They have their energy concentrated in time or space and are

suited to analysis of transient signals. While Fourier Transform and STFT use waves to

analyze signals, the Wavelet Transform uses wavelets of finite energy.

                                             (a)                                                                 (b)

Figure 2.1 Demonstrations of (a) a Wave and (b) a Wavelet [1].

The wavelet analysis is done similar to the STFT analysis. The signal to be analyzed

is multiplied with a wavelet function just as it is multiplied with a window function in STFT,

and then the transform is computed for each segment generated. However, unlike STFT, in

Wavelet Transform, the width of the wavelet function changes with each spectral component.

The Wavelet Transform, at high frequencies, gives good time resolution and poor frequency

resolution, while at low frequencies, the Wavelet Transform gives good frequency resolution

and poor time resolution.

2.2.1 The Continuous Wavelet Transform and the Wavelet Series

The Continuous Wavelet Transform (CWT) is provided by equation 2.3, where x(t) is

the signal to be analyzed. (t) is the mother wavelet or the basis function. All the wavelet

functions used in the transformation are derived from the mother wavelet through translation

(shifting) and scaling (dilation or compression).
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                                                                                                                                     (2.3)

The mother wavelet used to generate all the basis functions is designed based on

some desired characteristics associated with that function. The translation parameter  relates

to the location of the wavelet function as it is shifted through the signal. Thus, it corresponds

to the time information in the Wavelet Transform. The scale parameter s is defined as

|1/frequency| and corresponds to frequency information. Scaling either dilates (expands) or

compresses a signal. Large scales (low frequencies) dilate the signal and provide detailed

information hidden in the signal, while small scales (high frequencies) compress the signal

and provide global information about the signal. Notice that the Wavelet Transform merely

performs the convolution operation of the signal and the basis function.  The above analysis

becomes very useful as in most practical applications, high frequencies (low scales) do not

last for a long duration, but instead, appear as short bursts, while low frequencies (high

scales) usually last for entire duration of the signal.

The Wavelet Series is obtained by discretizing CWT. This aids in computation of

CWT using computers and is obtained by sampling the time-scale plane. The sampling rate

can  be  changed  accordingly  with  scale  change  without  violating  the  Nyquist criterion.

Nyquist criterion   states that, the minimum sampling rate that allows reconstruction of the

original signal is 2  radians, where  is the highest frequency in the signal. Therefore, as the

scale goes higher (lower frequencies), the sampling rate can be decreased thus reducing the

number of computations.

2.2.2 The Discrete Wavelet Transform

The Wavelet Series is just a sampled version of CWT and its computation may

consume significant amount of time and resources, depending on the resolution required. The

Discrete Wavelet Transform (DWT), which is based on sub-band coding is found to yield a

fast computation of Wavelet Transform. It is easy to implement and reduces the computation

time and resources required.

1( , ) ( ) ( )WT
tX s x t dt

ss
τ

τ ψ ∗ −
= ⋅∫
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The foundations of DWT go back to 1976 when techniques to decompose discrete

time signals were devised [16]. Similar work was done in speech signal coding which was

named as sub-band coding.  In 1983, a technique similar to sub-band coding was developed

which was named pyramidal coding. Later many improvements were made to these coding

schemes which resulted in efficient multi-resolution analysis schemes.

In CWT, the signals are analyzed using a set of basis functions which relate to each

other by simple scaling and translation.  In the case of DWT, a time-scale representation of

the digital signal is obtained using digital filtering techniques. The signal  to  be  analyzed  is

passed  through  filters  with  different  cutoff  frequencies  at different scales.

2.3 DWT and Filter Banks

2.3.1 Multi-Resolution Analysis using Filter Banks

Filters are one of the most widely used signal processing functions. Wavelets can be

realized by iteration of filters with rescaling. The resolution of the signal, which is a measure

of the amount of detail information in the signal, is determined by the filtering operations,

and the scale is determined by upsampling and downsampling (sub sampling) operations

[16].

The  DWT  is  computed  by  successive  lowpass  and  high pass  filtering  of  the

discrete time-domain signal as shown in figure 2.2. This is called the Mallat algorithm or

Mallat-tree decomposition. Its significance is in the manner it connects the continuous- time

multiresolution to discrete-time filters. In the figure, the signal is denoted by the sequence

x[n], where n is an integer. The low pass filter is denoted by G0 while the high pass filter is

denoted by H0.  At each level, the high pass filter produces detail information; d[n], while the

low pass filter associated with scaling function produces coarse approximations, a[n].

At each decomposition level, the half band filters produce signals spanning only half

the frequency band. This doubles the frequency resolution as the uncertainty in frequency is

reduced by half. In accordance with Nyquist’s rule if the original signal has a highest

frequency of , which requires a sampling frequency of 2  radians, then it now has
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Figure 2.2 Two-level wavelet decomposition tree.

a highest frequency of /2 radians. It can now be sampled at a frequency of  radians thus

discarding half the samples with no loss of information. This decimation by 2 halves the time

resolution as the entire signal is now represented by only half the number of samples. Thus,

while the half band low pass filtering removes half of the frequencies and thus halves the

resolution, the decimation by 2 doubles the scale.

With  this  approach,  the  time  resolution  becomes  arbitrarily  good  at  high

frequencies, while the frequency resolution becomes arbitrarily good at low frequencies. The

filtering and decimation process is continued until the desired level is reached. The maximum

number of levels depends on the length of the signal. The DWT of the original signal is then

obtained by concatenating all the coefficients, a[n] and d[n], starting from the last level of

decomposition.

Figure  2.3  shows  the  reconstruction  of  the  original  signal  from  the  wavelet

coefficients. Basically, the reconstruction is the reverse process of decomposition. The

approximation  and  detail  coefficients  at  every  level  are  up sampled  by  two,  passed

through the low pass and high pass synthesis filters and then added. This process is

H0 2

 2G0

H0

G0

2

2

X(n)

d1(n)

d2(n)

a2(n)
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Figure 2.3 Two-level wavelet reconstruction tree.

continued through the same number of levels as in the decomposition process to obtain the

original signal. The Mallat algorithm works equally well if the analysis filters, G0 and H0, are

exchanged with the synthesis filters, G1 and H1.

2.3.2 Conditions for Perfect Reconstruction

In most Wavelet Transform applications, it is required that the original signal be

synthesized from the wavelet coefficients. To achieve perfect reconstruction the analysis and

synthesis filters have to satisfy certain conditions. Let G0(z) and G1(z) be the low pass

analysis  and  synthesis  filters,  respectively  and  H0(z)  and    H1(z)  the  high  pass analysis

and synthesis filters respectively. Then the filters have to satisfy the following two conditions

as given:

G0 (-z) G1 (z) + H0 (-z). H1 (z) = 0                                    (2.4)

G0 (z) G1 (z) + H0 (z). H1 (z) = 2z-d                                   (2.5)

X(n)
H1 2

 2G1

H0

G0

2

2

d1(n)

d2(n)

a2(n)
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The first condition implies that the reconstruction is aliasing-free and the second

condition implies that the amplitude distortion has amplitude of one. It can be observed that

the perfect reconstruction condition does not change if we switch the analysis and synthesis

filters.

There are a number of filters which satisfy these conditions. But not all of them give

accurate Wavelet Transforms, especially when the filter coefficients are quantized. The

accuracy  of  the  Wavelet  Transform  can  be  determined  after  reconstruction  by

calculating the Signal to Noise Ratio (SNR) of the signal. Some applications like pattern

recognition do not need reconstruction, and in such applications, the above conditions need

not apply.

2.3.3 Classification of wavelets
We can classify wavelets into two classes: (a) orthogonal and (b) biorthogonal. Based

on the application, either of them can be used.

(a)Features of orthogonal wavelet filter banks

The coefficients of orthogonal filters are real numbers. The filters are of the same

length and are not symmetric. The low pass filter, G0 and the high pass filter, H0 are related to

each other by

H0(z) = z-N G0(-z-1)                                                              (2.6)

The two filters are alternated flip of each other. The alternating flip automatically

gives double-shift orthogonality between the low pass and high pass filters, i.e., the scalar

product of the filters, for a shift by two is zero. i.e., G[k] H[k-2l] = 0, where k, l Z . Filters

that satisfy equation 2.6 are known as Conjugate Mirror Filters (CMF). Perfect reconstruction

is possible with alternating flip.

Also, for perfect reconstruction, the synthesis filters are identical to the analysis filters

except for a time reversal. Orthogonal filters offer a high number of vanishing moments. This

property is useful in many signal and image processing applications. They have regular

structure which leads to easy implementation and scalable architecture.
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(b)Features of biorthogonal wavelet filter banks

In the case of the biorthogonal wavelet filters, the low pass and the high pass filters do

not have the same length. The low pass filter is always symmetric, while the high pass filter

could be either symmetric or anti-symmetric. The coefficients of the filters are either real

numbers or integers.

For perfect reconstruction, biorthogonal filter bank has all odd length or all even

length filters.  The two analysis filters can be symmetric with odd length or one symmetric

and the other anti-symmetric with even length. Also, the two sets of analysis and synthesis

filters must be dual. The linear phase biorthogonal filters are the most popular filters for data

compression applications.

2.4 Wavelet Families

There are a number of basis functions that can be used as the mother wavelet for

Wavelet Transformation. Since the mother wavelet produces all wavelet functions used in the

transformation through translation and scaling, it determines the characteristics of the

resulting Wavelet Transform. Therefore, the details of the particular application should be

taken into account and the appropriate mother wavelet should be chosen in order to use the

Wavelet Transform effectively.

Figure 2.4 illustrates some of the commonly used wavelet functions. Haar wavelet is

one of the oldest and simplest wavelet.  Therefore, any discussion of wavelets starts with the

Haar wavelet.  Daubechies wavelets are the most popular wavelets.  They represent  the

foundations  of  wavelet  signal  processing  and  are  used  in  numerous applications. These

are also called Maxflat wavelets as their frequency responses have maximum flatness at

frequencies 0 and . This is a very desirable property in some applications. The Haar,

Daubechies, Symlets and Coiflets are compactly supported orthogonal wavelets. These

wavelets along with Meyer wavelets are capable of perfect reconstruction. The Meyer, Morlet

and Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on their

shape and their ability to analyze the signal in a particular application.
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                   (a)                               (b)                              (c)                                (d)

                        (e)                                             (f)                                              (g)

Figure 2.4 Wavelet families (a) Haar  (b) Daubechies4  (c) Coiflet1  (d) Symlet2  (e) Meyer

(f) Morlet  (g) Mexican Hat.

Discrete Wavelet Transform (DWT) provides a tractable way of decomposing an

image into different frequency subbands at different scales.  The conventional wavelet

transform decomposes a signal into a set of frequency channels that have narrower

bandwidths in the lower frequency region.   The  transform  is  suitable  for  signals

consisting  primarily of  smooth  components  so  that  their  information  is  concentrated  in

the  low  frequency regions.   So  it  cannot  be  applicable  to  all  classes  of  texture  images,

more  specifically images which have middle frequency components.  Tianhorng Chang and

C.C. Jay Kuo have proposed tree structured wavelet transform [6].  The  key  difference

between  this algorithm  and  the  traditional  DWT  algorithm  is  that  the  decomposition  is

no  longer simply applied to the low frequency sub images recursively.  Instead, it can be

applied to the output of any frequency subband based on some energy criteria.
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2.5     Rotation and Scale Invariant Texture Classification

All the above methods assumed that the texture images have same orientations and

same scales.  However, this assumption is not realistic.  The images obtained from digital

cam- eras are in different orientations and with different scales.  Number of works can be

found in the literature, which specifically address the problem of rotation and scale invariant

texture recognition.  F.S. Cohen, Z. Fan have proposed the 2D Gaussian Markov random

field (GMRF) model with a likelihood function to incorporate and estimate rotation and scale

parameters [21].  Haley and Manjunath employ a complete space-frequency Gabor wavelet

model for rotation-invariant texture classification with very promising results [7].

This method is as follows.

1)  Map the image samples into Gabor space.

2)  To facilitate discrimination between textures, transform the Gabor coefficients into micro

features that contain local amplitude, frequency, phase, direction, and directionality

characteristics.  These micro features are spatially localized and do not characterize global

attributes of textures.

3)  Derive the macro features from the estimated selected parameters of the micro model.

Then classification of texture samples is performed based on the rotation invariant

components of the macro model.  A potential disadvantage is that the outputs of Gabor filters

are not mutually orthogonal.  In addition, designing of Gabor filters are computationally

intensive.  R. Manthalkar, P.K. Biswas and B.N. Chatterji have proposed rotation and scale

invariant texture features using Discrete Wavelet Packet Transform (DWPT) [8].  DWPT

decomposes each decomposed level of the image into 4 subbands LL, LH, HL and HH. For a

decomposition of level d wavelet packet transform provide 4d subimages.  It is found that

using the features from the HH channel of each level of decomposition can degrade the

classification performance because these channels contain the majority of noise in the image.

For  these  reasons  HH  channel  information  is  not  used  for  classification purpose.

Features are calculated from each subimage as follows.

                                                                                                                                      (2.7)1 ( , )
11

NM
f x i jn M N ji

= ∑∑
==
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n

NM
fnstd x i j f

MN ji
= −∑∑

==

                           (2.8)

Where x (i,j) are the wavelet coefficients .  M, N are the size of the subimage.

Rotation invariant features are obtained as follows.

0.5*[ ]n nHL nLHF f f= +                                   (2.9)

0.5*[ ]nstd nstdHL nstdLHF f f= +                 (2.10)

For scale invariance, Discrete Fourier Transform (DFT) is applied on rotation

invariant features.  This operation removes the dependence of the feature values on scale.

Chi-Man Pun and Moon-Chuen Lee have proposed log-polar wavelet energy

signatures for rotation and scale invariant texture classification.  Rotation and scale invariant

feature can be obtained by applying the wavelet packet transform on log-polar transform of

the input image and its one row circular shift.  Then energy signatures are computed from the

subimage outputs of DWPT. Then the feature vector is computed from these energy

signatures for rotation and scale invariant texture classification.  The present work will be

based on modified Mahalanobis classifier implementation of this method and details about

the method will be given in the next chapter 4.
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Chapter 3
METHOD FOR ROTATION AND SCALE INVARIANT

TEXTURE CLASSIFICATION



19

3.1     Introduction
As mention in the earlier chapter most of the texture classification methods are not

rotation and scale invariant.  A method for rotation and scale invariant texture classification

was proposed by Chi-Man Pun and Moon-Chuen Lee [3].   Rotation  and  scale  invariant

features  are  obtained  by  applying  the  wavelet  packet  transform  on  log-polar  transform

of  the  input  image  and  its  one  row  circular  shift  as  shown  in  Figure. 3.1.   The energy

signatures are computed from output of rotation and scale invariant wavelet coefficients.

Then by selecting most dominant energy signatures a feature vector is created for

classification step.  The block diagram of the method is shown in Figure. 3.1. The various

operations involved in the method are explained below.

Figure 3.1:  Block diagram explaining rotation and scale invariant feature extraction

3.2     Discrete Wavelet Packet Transform
The standard 2D discrete wavelet packet transform (DWPT) is a generalization of 2D

discrete wavelet transform (DWT) that offers a richer range of possibilities for image

analysis. In 2D-DWT analysis, an image is split into an approximation and three detail

images. The approximation image is then itself split into a second-level approximation and

detail images, and the process is recursively repeated. So, there are n+1 possible ways to
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decompose or encode the image for an n-level decomposition. In 2D-DWPT analysis, the

three details images as well as the approximation image can also be split. So, there are 4n

different ways to encode the image, which provide a better tool for image analysis. The

standard 2D-DWPT can be described by a pair of quadrature mirror filters (QMF) H and G.

The filter H is a low-pass filter with a finite impulse response denoted by h(n). And, the high

pass G with a finite impulse response is defined by:

G (n) = (-1)n · h(1-n)        for all n.                                          (3.1)

The low-pass filter is assumed to satisfy the following conditions for orthonormal
representation:

                                                                                             For all j  0.                       (3.2)

                                                                                                                                        (3.3)

                                                                                             for all j.                              (3.4)

2D discrete wavelet transform (DWT) decomposes the image into four frequency

bands LL, LH, HL and HH.  The LL band is decompose into second level LL, LH, HL and HH

fre- quency bands and the process is recursively repeated.  The standard 2D discrete wavelet

packet transform (DWPT) is a generalization of 2D discrete wavelet transform (DWT). In

2D-DWPT analysis all frequency bands (LL, LH, HL and HH) decompose to next de-

composition levels.  2D-DWPT mathematical formulas are defined as follows.

                                    (3.5)

                                                                                                                               (3.6)

                                                    (3.7)

                                                                                                                               (3.8)
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Where               = x(i , j)  is given by the intensity levels of the image x.

 j             = Level of 2D DWPT;

 i             = Subimage at J Th level;

 K           = Filter length;

 g(m )      = Impulse responses of the low-pass filter G(Z);

 h(n)        = Impulse responses of the high-pass filter H(z);

 Wj          = Image at the j th level of DWPT with   W0 as input image;

2D-DWPT can be implemented by a pair of quadrature mirror filters (QMF) lowpass

filter G(z)  and  high  pass  filter  H(z)  [11].  The lowpass filter impulse response g(n) and

the high pass filter impulse response h(n) are related by using equation (3.1). This

decomposition  algorithm  is  illustrated  by  the  block  diagram  shown  in  Figure. 3.2. Each

decomposition comprises of two stages.  Stage 1 performs horizontal filtering, and stage 2

performs vertical filtering.

Figure 3.2:  First level 2D wavelet packet decomposition
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3.3     Log-Polar Transform

Log-polar  transform  converts  the  rotation  and  scale  variations  in  an  image  into

row shifted  images.  Log-polar transform involves two steps.   In  the  first  step,  the  image

is divided into S × N/2 polar grids where S is the number of points along a circle and N/2 is

the  maximum  radius  of  the  circle  as  shown in  Figure 3.3.  The polar image p ,r) is

given by

2 2( , ) cos , sin
2 2
N Np r f r r

S S
πα πα

α
           = + −                     

                   (3.9)

Figure 3.3: Log-polar transform of NXN image (f(x,y)) into SXR log-polar image(lp(i,j)) by first (a)
using radius as scanline for sampling N times the circle to produce a polar form P( ,r), and (b)
applying quantization on the logarithm of all radii to produce the log-polar image

Where

=Angle,

r   =Radius,

r= 1 to N/2 and = 1 to S.

In the second step, logarithm functions are applied to all radii values in the polar form

and their outputs are then quantized into R bins. Hence, an SXR log-polar image for the given

NXN image is produced (as shown in Fig. 3.3b).

log(

lp(i,j)
log(r)

(a) (b)
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The procedure can be formally defined as follows:

2

2

log ( 2)
( , ) ,

log ( 2) 2
j Nlp i j p i
R

  +  = ×    +    
                                     (3.10)

For i=0……. S-1 and j=0……. R-1.

As shown in Fig. 3.4, the log-polar images of a texture image with different rotation

angles and scales seem having only row shifts when compared with the log-polar image of

the original texture. The log-polar transform is also quite efficient with only O(n)

computational complexity (where n is the number pixels in the given image).

Figure 3.4:  A sample texture (D1) from the Brodatz album in different rotation angles (r in degrees)

and scales (s) and their corresponding log-polar images
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In this section, we define an algorithm to extract the rotation and scale invariant log-

polar wavelet energy signatures for a given image, which can be obtained by applying a log-

polar transform on the image, followed by adaptive row shift invariant wavelet packet

transform (as shown in Fig. 3.5). The procedure can be formally defined as follows:

Figure 3.5: Decomposition of rotation and scale invariant wavelet coefficients from a rotated
and scaled texture image.

3.4 Row Shift Invariant wavelet packet transform
After applying the log-polar transform operation, a rotated and scaled image would be

converted  into  a  corresponding  log-polar  image  which  is  rotation  invariant  and  nearly

scale invariant.  However, any orientation changes would cause a row shifting in the log-

polar image.  Simple wavelet packet decomposition of row shifted log-polar image may not

be much help for rotation and scale invariant texture classification.  Many shift-invariant

wavelet  decomposition  algorithms  have  been  proposed  and  are  shift  invariant  in  both

rows  and  columns[23].   These algorithms generate more redundant wavelet coefficients

Log-polar
transform

Adaptive Row
Shift Invariant

Wavelet
Packet Transform

Rotated and Scaled
texture image

Row shifted image

Rotation and scale invariant
wavelet coefficients
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which are not suitable for the row-shifted output image produced by the log-polar trans-

form.  The row shift problem produced by the log-polar transform can be eliminated by

redundant  set  of  wavelet  packet  coefficients  for  one  additional  row  circular  shift  of

the log-polar image in each level. 1
, ,0
j

i LLW + , 1
, ,0
j

i LHW + , 1
, ,0
j

i HLW + , 1
, ,0
j

i HHW + are the output sub-images of

the wavelet packet transform of the input image.
1

, ,1
j

i LLW + , 1
, ,1
j

i LHW + , 1
, ,1
j

i HLW + , 1
, ,1
j

i HHW +  are the  output  sub-images  of  the  wavelet  packet

transform  of  one  row  circular  shift  of  the input image.  This algorithm is illustrated in

Figure.3.4.  The mathematical formulas are defined as follows.

                                                                                                                                            (3.11)

                                                                                                                                            (3.12)

                                                                                                                                            (3.13)

                                                                                                                                           (3.14)

Where m=[N/2p+1 ]-1, n= [M/2p+1] and             = x(i,j) is given by the gray levels of

the image x.

Since we just keep one out of two rows, these coefficients appear the same

if is circularly shifted by 0, 2, 4…2n rows. In order to have row shift invariance, we need to

compute another four periodic images each with one row shift:

                                                                                                                                            (3.15)

                                                                                                                                            (3.16)

                                                                                                                                            (3.17)

                                                                                                                                            (3.18)

j+1
i,LL,0 ,0( , ) ( ) ( ) ( 2 , 2 )j

i
m n

W m n h m h n W m i n j= + +∑∑
j+1

i,LH,0 ,0( , ) ( ) ( ) ( 2 , 2 )j
i

m n
W m n h m g n W m i n j= + +∑∑

j+1
i,HL,0 ,0( , ) ( ) ( ) ( 2 , 2 )j

i
m n

W m n g m h n W m i n j= + +∑∑

j+1
i,HH,0 ,0( , ) ( ) ( ) ( 2 , 2 )j

i
m n

W m n g m g n W m i n j= + +∑∑

j
i ( , )W m n

0
0 ( , )W i j

j+1
i,LL,1 ,1( , ) ( ) ( ) ( 2 , 2 )j

i
m n

W m n h m h n W m i n j= + +∑∑

j+1
i,LH,1 ,1( , ) ( ) ( ) ( 2 , 2 )j

i k
m n

W m n h m g n W m i n j= + +∑∑
j+1

i,HL,1 ,1( , ) ( ) ( ) ( 2 , 2 )j
i

m n
W m n g m h n W m i n j= + +∑∑

j+1
i,HH,1 ,1( , ) ( ) ( ) ( 2 , 2 )j

i k
m n

W m n g m g n W m i n j= + +∑∑



26

In a similar manner, these coefficients appear the same if                 is circularly

shifted by 1,3, 5,…….. 2n +1 rows, respectively.

Figure 3.6: Oct-tree DWPT decomposition

j
i ( , )W m n

G(Z)

H(Z)

2

2

2

2

2

2

G(Z)

G(Z)

H(Z)

H(Z)

0
0 ( , )W i j

1
LH,0 ( , )W i j

1
HL,0 ( , )W i j

1
HH,0 ( , )W i j

1
LL,0 ( , )W i j

G(Z)

H(Z)

2

2

2

2

2

2

G(Z)

G(Z)

H(Z)

H(Z)

1
LH,1 ( , )W i j

1
HL,1 ( , )W i j

1
HH,1 ( , )W i j

1
LL,1( , )W i j

One-row
 circular

 shift



27

3.5 Extraction of Rotation and Scale Invariant Wavelet Energy Signatures

Log-polar transform eliminates the rotation and scale variations in an image. But at

the same time it produces row shifted log-polar images. This problem is eliminated by

applying the wavelet packet transform on the log-polar image and its one row shift in each

level as shown in Figure.3.6. Then energy signatures are computed from the each output

subimage of the wavelet packet transform by using the formula

                                                                                                                                            (3.19)

Where j is decomposition level of DWPT and i is the subimage at that level. In this

way, the number of energy signatures is equal to the number of subimages generated by the

wavelet packet transform. In order to reduce the feature dimensionality only M most

dominant energy signatures (with highest energy values) are chosen as a component for the

feature vector. The details of the algorithm are presented below.

3.5.1     The Algorithms

a)  Feature extraction using log-polar wavelet energy signatures

Step 1. Apply log-polar transform on N × N image to produce N × N log-polar image.

Step 2. Apply wavelet packet transform on log-polar image and its one row circular shift.

Step 3. Compute the energy signatures from the output of each sub image of wavelet packet

             transform using the formula (3.19).

Step 4. Arrange all energy signatures in descending order according to their values E1 , E2

             ….EM  and choose first M most dominant energy signatures (with highest energy

              values) as feature vector, f = (E1 , E2 , ………….EM ), where M  m

Step 5. Output the feature vector f as the rotation and scale invariant energy signature for the

             given image.

2

21 ( , )j j
i iN

E W m n= ∑∑
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b)  Feature extraction using standard wavelet packet energy signatures

Step 1. Apply NXN image to wavelet packet transform.

Step 2. Compute the energy signatures from the output of each sub image of wavelet packet

             transform using the formula (3.19).

Step 3. Arrange all energy signatures in descending order according to their values E1 , E2

             ….EM  and choose first M most dominant energy signatures (with highest energy

              values) as feature vector, f = (E1 , E2 , ………….EM ), where M  m

Step 4. Output the feature vector f as the rotation and scale invariant energy signature for the

             given image.
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Chapter 4
METHOD FOR TEXTURE CLASSIFICATION
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4.1. Introduction:

As digital images become more widely used, digital image analysis must find more

tools to work on them. Texture analysis is a huge challenge nowadays, since simple images

may be considered as a mosaic of textures separated by some boundaries. That is why both

texture retrieval and classification, combined with image segmentation, may be very

powerful in image analysis. Texture retrieval (i.e. to find the most similar textures to a

query texture among a large set of data textures) can be used by internet applications in the

general context of Content-Based Image Retrieval, whereas texture classification (i.e. among

classes of textures, to select the most probable one where the query texture could lie) has a

more local use, since a “class of texture” has a loose sense, depending on the application.

In texture classification, we shall only consider the -nearest neighbor classifier,

Mahalanobis classifier, since it provides an efficient and robust scheme. Then in both texture

classification and retrieval, we need a function measuring similarity between the query image

and the images of the database. This function should measure a distance between some

features of the textures. Therefore the method consists in two main steps: feature extraction

(FE) and similarity measurement (SM).

Comparing textures requires a definition of a texture. It can be defined as a

homogeneous and coherent field of an image. But this is not a satisfactory definition, since it

is vague and not general at the same time. Actually there does not exist a proper one. That is

why in this report we shall consider gray-level images corresponding intuitively to

homogeneous and coherent textures only. Two models of textures are to be considered: the

periodic textures such as tiles and fabric, which can be studied by frequency analysis, and

random textures such as grass and metal, which can be analyzed by statistical descriptions.

However these two models correspond to extreme cases which do not match with real natural

images. Thus we shall try to fuse the two approaches thanks to the wavelet transform.

The general method of FE and SM requires the features to be small-sized (much

smaller than the image), requires the features to correctly characterize the texture, and

requires the similarity measure to be precise and small when the features are close and big

otherwise. It can also be asked to the features to be translation and rotation invariant, in order

to regard two textures as equivalent, one deriving from the other by translation or rotation.
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4.2. Gray-level statistics Methods

4.2.1     Feature Extraction

With the row shifted log-polar image obtained from the log-polar transform as the

input to the adaptive row shift invariant wavelet packet transform, the row shift problem of

the log-polar image is properly solved. So, the generated wavelet coefficients are rotation

invariant and nearly scale invariant now. However, the large number of wavelet coefficients

is not suitable for robust texture classification. So, we reduce the feature dimensionality of

the wavelet coefficients by computing energy signature for each subband. In this way, the

number of energy signatures is equal to the number of subbands generated by the adaptive

row shift wavelet packet transform. However, the number of energy signatures for texture

classification is not fixed and can be still very large. As suggested by Chang and Kou [6], the

most dominant frequency channels provide very useful information for discriminating

textures. Therefore, we sort all energy signatures and choose only M most dominant energy

signatures (with highest energy values) as feature vector. The details of the algorithm are

given in the chapter 3.

4.2.2      Similarity Measurement

After having extracted features, our next task is to find a similarity measure (not

necessarily a distance) such that d(x, vi) is small if and only if x and vi are close. The simplest

similarity measure is the Euclidean distance:

                                                                                                                               (4.1)

However the Euclidean distance is not suitable for our purpose, since it is isotropic

and our problem is not: every feature may not have similar behaviors. For example if the

values taken by the first feature x1 over the data images are very concentrated around 0, and

x2 takes uniform values on an interval, then a big difference between xk(i) and xk(q) is much
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more significant than the same big difference between vk(i) and vk(q) Euclidean distance does

not take into account this possible asymmetry. That is why it is relevant to introduce a

normalized Euclidean distance is also know as modified Mahalanobis classifier defined by:

                                                                                                                                 (4.2)

Where varxk is the empirical variance of xk over the data base, i.e.

                                                                                                                                 (4.3)

Where mk is the mean given by

                                                                                                                                 (4.4)

The reason for introducing this distance is of statistical matter. The (xk(i))i are

considered as realizations of a random variable xk, such that the xk are independent. Then

varxk is only the squared empirical standard deviation of xk. When the xk are not independent,

one prefers considering the Mahalanobis distance, which is more specific to the classification

purpose. If C is a class of textures and mC is the mean signature of class C, the Mahalanobis

distance is given by:

                                                                                                                                              (4.5)

Where  is the empirical covariance matrix of x on class C. Note that if the features

are independent, the covariance matrix is diagonal with diagonal elements varxk we come

back to the normalized Euclidean distance. Anyway we shall always consider that the xk are

independent, and then in this section we shall always use the normalized Euclidean distance.

The texture classification algorithm is explained below.
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4.3 Texture Classification Algorithm

Classification with Fixed Number of Features

A simple texture classification algorithm follows directly From Algorithm 1. The process is

detailed as follows:

Algorithm 2: Classification Algorithm with J Features.

Learning phase:

1) Given m samples obtained from the same texture, decompose each sample with the tree-

structured wavelet transform and calculate the normalized energy at its leaves which defines

an energy function on the spatial frequency domain known as the energy map.

2) Generate a representative energy map for each texture by averaging the energy maps over

all m samples.

3) Repeat the process for all textures.

Classification phase:

1) Decompose an unknown texture with the tree-structured wavelet transform and construct

its energy map.

2) Pick up the first J dominant channels which are the leaf nodes in the energy map with the

largest energy values as features. Denote this feature set by X = (x1, x2,…xj).

3) For texture i in the database, pick up the energy values in the same channels and denote the

energy value by mi = (mi, 1, mi, 2. . . mi,j).

4) Calculate the discrimination function for textures in the candidate list by

                                               Di = distance(X, mi).

5) Assign the unknown texture to texture i if Di <Dj for all j  i.
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Chapter 5
SIMULATION RESULTS
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For the implementation of the above algorithms (chapter3 and chapter4) in MATLAB

following database was created. 12 natural texture images were taken form Brodatz’s album

[12] which is shown below.

     Figure 5.1   Twelve classes of textures from the Brodatz album. ROW 1: D1, D6, D19, D21.
ROW 2: D28, D34, D56, D66. ROW 3: D78, D82, D103, D110.

Three major experiments were carried out with the objectives:

1) To investigate the texture classification performance based on the implemented log-polar

wavelet feature composed of different energy measures and different number of dominant

energy signatures.
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 2) To investigate the texture classification performance of the implemented method on

texture images with rotation changes, scale changes and joint rotation and scale changes only.

3) To compare the proposed method with other texture classification method and demonstrate

the noise robustness of the proposed method.

All these experiments were carried out with the same 4-tap orthonormal Daubechies

wavelet [13] and the modified Mahalanobis classifier which is defined in the chapter 4

equations (4.2) (4.3) (4.4)

The effectiveness of the implemented method for rotation and scale invariant texture

feature extraction was tested using natural texture images from Brodatzs texture album [12].

The result for texture D103 (Figure. 5.2) is presented here.  The D103 texture image with a

rotation angle 300 (Figure. 5.3) was read row-wise in MATLAB and input image was applied

to log-polar transform followed by row shift invariant wavelet packet transform.  Figure. 5.4

show the MATLAB simulation results of the log-polar transform.  Figure 5.5 show the three

level wavelet packet decomposition of the log-polar image.  Energy signatures were

calculated using feature extraction algorithm.  MATLAB computed rotation and scale

invariant log-polar wavelet energy signatures of texture image are shown in Table

Figure 5.2.   D103 texture from the Brodatz album.
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Figure  5.3  D103 texture image with 300 rotation angle.

Figure.5.4  Rotation invariant log-polar image of D103

Figure 5.5 Input texture image D103 (Log-polared) of DWPT.
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Figure 5.6   MATLAB Simulation for 1 Level DWPT LL Band texture image D103

Figure 5.7   MATLAB Simulation for 1 Level DWPT LH Band texture image D103
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Figure 5.8   MATLAB Simulation for 1 Level DWPT HL Band texture image D103

Figure 5.9   MATLAB Simulation for 1 Level DWPT HH Band texture image D103
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For the above experiments, I prepared three different testing data sets. Each natural

texture (Fig. 8) is first scanned with 150 dpi resolution, and 12 digital images of size pixels

with 256 gray levels are obtained. The three testing data sets are created as follows:

Data set 1 - texture images with rotation changes only: We divided each 512 x 512 texture

image into four 128 x128 non-overlapping regions. Then, we generated 288 images with

different orientations (00 to 3550 with 50 intervals). In this way, a data set of 3456(12 x 4 x

72) texture images was created. The representative data sets were created using 12% of

feature vectors from data set 1. The remaining feature vectors were used for testing the

classification performance.

Table 5.1 Classification rates for Rotation changes only

Texture ID Total No.of
samples

Correctly
Classified

Error Classification
Rate %age

D1 252 224 28 88.89

D6 252 221 31 87.69

D19 252 240 12 95.24

D21 252 227 25 90.07

D28 252 252 0 100

D34 252 252 0 100

D56 252 230 22 91.27

D66 252 245 7 97.23

D78 252 251 1 99.6

D82 252 244 8 96.82

D103 252 226 26 89.68

D110 252 239 13 94.85

Overall 3024 2851 173 94.27
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Data set 2 - texture images with scale changes only: We divided each 512 x 512 texture

image into sixteen 128 x 128 non-overlapping regions. Then, we generated 68 images with

different scales from 0.7 to 1.5 with 0.05 intervals. In this way, a data set of 816(12 x 4 x 17)

texture images was created. The representative data sets were created using 13% of feature

vectors from data set 2. The remaining feature vectors were used for testing the classification

performance.

Table 5.2  Classification rates for Scale changes only

Texture ID Total No.of

samples

Correctly

Classified

Error Classification

Rate %age

D1 59 54 5 91.52

D6 59 40 19 67.79

D19 59 46 13 77.96

D21 59 52 7 88.14

D28 59 54 5 91.52

D34 59 42 17 71.18

D56 59 47 12 79.66

D66 59 53 6 89.83

D78 59 40 19 67.79

D82 59 59 0 100

D103 59 59 0 100

D110 59 36 23 61.01

Overall 708 582 126 82.20
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Data set 3 - texture images with rotation and scale changes: We divided each 512 x 512

texture image into four 128 x128 non-overlapping regions. Then, we generated 100 images

with five different rotation and five different scales (00, 300, 600, 900, 1200, 0.7, 0.75, 0.8,

0.85, 0.9). In this way, a data set of 1200(12 x 4 x 25) texture images was created.  The

representative data sets were created using 12% of feature vectors from data set 3. The

remaining feature vectors were used for testing the classification performance.

Table 5.3  Classification rates for Rotation and Scale changes.

Texture ID Total No.of

samples

Correctly

Classified

Error Classification

Rate %age

D1 88 86 2 97.72

D6 88 65 23 73.86

D19 88 56 32 63.64

D21 88 84 4 95.46

D28 88 74 14 84.09

D34 88 66 22 75

D56 88 80 8 90.90

D66 88 87 1 98.86

D78 88 84 4 95.46

D82 88 74 14 84.09

D103 88 82 6 93.18

D110 88 87 1 98.86

Overall 1056 925 131 87.59
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The rotation and scale invariant log-polar wavelet energy feature extraction Algorithm

(as described in Section 3.4.1) to each texture image from data set 1, dataset2, and dataset3.

The generated rotation and scale invariant log-polar wavelet energy feature vector applied to

classification algorithm (as described in Section 4.3) to determine the best class for each data

set image. The classification results are summarized in Table 5.4.

From the table it is seen that with only rotation variations the proposed architecture

gives 94.27% classification, with scale variations it gives 82.20% classification, with both

rotation and scale variations it gives 87.59% classifications.

The classification results of comparing the implemented method with other common

rotation and scale invariant using wavelet packet transform [8] method are tabulated in table

5.4. From the table it is seen that the implemented algorithm performs well for texture

classification.

Table 5.4: Comparison of Classification rates obtained by Implemented Method and
Standard wavelet packet energy signatures

Log-polar
Wavelet Energy

Signatures

Standard
Wavelet Packet

Energy
Signatures

Dataset 1

(Rotation only)
94.27% 68.5%

Dataset 2

(Scale only)
82.20% 75.8%

Dataset 3

(Rotation and scale)
87.59% 64.6%

Table 5.5: MATLAB Simulation results of log-polar energy signatures of D103 image

Frequency
band

Energy
Signature

Frequency Band
(one row shift of D103)

Energy
Signature

LL

LH

HL

HH

12954

498

214

39

LL

LH

HL

HH

12908

495

203

31
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Chapter 6
CONCLUSIONS AND FUTURE WORK
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This chapter gives a summary of the work presented in this thesis. An outline for the

future work based on this is also given.

6.1 Summary
These theses addressed the problem of rotation and scale invariance in image analysis

and classification and implemented an effective wavelet energy feature for rotation and scale

invariant texture classification. First I briefly reviewed the standard 2D wavelet packet

decomposition techniques.  Then, I define an algorithm to extract the rotation and scale

invariant log-polar wavelet energy signatures for a given image. The feature extraction

process involves applying a log-polar transform and an adaptive row shift invariant wavelet

packet transform to obtain rotation and scale invariant wavelet coefficients. This feature

extraction process is quite efficient with only O(n·logn). complexity (where n is the number

pixels in the given image). Also, the construction of a feature vector using most dominant

log-polar wavelet energy signatures extracted from each subband of wavelet coefficients,

provides an effective and small number of features for rotation and scale invariant texture

classification. The performance of my implemented log-polar wavelet energy signatures were

tested by a number of experiments using the modified Mahalanobis classifier to classify a set

of 12 distinct natural textures selected from the Brodatz album.

The experimental results, based on different testing data sets for images with different

orientations and scales, show that the implemented classification scheme using log-polar

wavelet signatures is quite robust to noise and outperform with the standard wavelet packet

signatures method. The overall accuracy of 87.59 percent for joint rotation and scale

invariance was achieved with a vector of only 128 energy features, demonstrating that the

extracted energy signatures are effective joint rotation and scale invariant features.
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6.2   Future Work

The following are the some of the interesting extensions of the present work:

1)   Further research could be focused on investigating the impact on classification

performance for different choices of wavelets. Currently, orthonormal wavelets were selected

for the feature extraction. Other wavelets, such as biorthogonal wavelets, could have even

better performance.

2)   An FPGA hardware implementation for the rotation and scale invariant texture

classification.

3).   The accuracy may be even better if the neural classifier is used instead of the modified

Mahalanobis classifier.
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