
FPGA IMPLEMENTATION OF AN ADAPTIVE HEARING
AID ALGORITHM USING BOOTH WALLACE

MULTIPLIER

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI DESIGN and EMBEDDED SYSTEM

By

NARESH REDDY.N
Roll No : 20507001

Department of Electronics & Communication Engineering

National Institute of Technology

Rourkela

2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53188967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FPGA IMPLEMENTATION OF AN ADAPTIVE HEARING
AID ALGORITHM USING BOOTH WALLACE

MULTIPLIER

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI DESIGN and EMBEDDED SYSTEM

By

NARESH REDDY.N

Under the Guidance of

Prof.K.K.MAHAPATRA

Department of Electronics & Communication Engineering

National Institute of Technology

Rourkela

2007

 NATIONAL INSTITUTE OF TECHNOLOGY
 ROURKELA

CERTIFICATE

This is to certify that the thesis titled “FPGA Implementation of an Hearing Aid Algorithm

Using Booth Wallace Multiplier” submitted by Mr. Naresh Reddy N in partial fulfillment of

the requirements for the award of M.Tech degree in Electronics and Communication Engineering

with specialization “VLSI DESIGN and EMBEDDED SYSTEM” during the session 2006-

2007 at National Institute of Technology, Rourkela (Deemed University) is an authentic work

carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other university/institute for the award of any Degree or Diploma.

 Prof.K.K.MAHAPATRA

Date: Department of E.C.E
 National Institute of Technology

 Rourkela-769008

CONTENTS

Acknowledgement iv

Abstract vii

List of Figures viii

List of Tables x

1. INTRODUCTION 1

1.1 Motivation 3

1.2 Contributions 3

1.3 Outline 4

2. FUNDAMENTALS OF LOW POWER DESIGN 5

2.1 Design Flow 6

2.2 CMOS Component Model 8

2.2.1 Dynamic power dissipation 8

2.2.2 Static Power Dissipation 12

2.3 Basic Principles of Low Power Design 13

2.3.1 Reduce Voltage and Frequency 14

2.3.2 Reduce capacitance 14

2.3.3 Reduce Leakage and Static Currents 15

 3. MULTIPLIERS 16

 3.1 Hearing Aid Architecture 17

 3.2 Multiplier Background 18

 3.3 Speeding up multiplication 20

 3.3.1 Sequential multiplier 20

 3.3.2 Booth’s Multiplier 21

 3.3.3 Wallace multiplier 24

v

 3.4 Fast Adders 26

 3.4.1 Carry Save Adder Tree 26

 3.4.2. Carry Look Ahead Adder (CLA) 27

 4. FILTERS 29

 4.1 The Adaptive Decorrelator 30

 4.2 The Analysis Filter 34

 4.3 The Synthesis Filter 37

 4.4 High Pass Filter 40

 4.5 Analog to Digital Converter 43
 4.6 Digital to Analog Converter 44

 5. HEARING AID DESIGN 46

 5.1 Spectral Sharpening for Speech Enhancement 47

 5.2 Spectral Sharpening for Noise Reduction 48

 6. DESIGN METHODOLOGY AND SIMULATION RESULTS 51

 6.1 The Hardware Description Language 52

 6.2 MATLAB Results 56

 6.3 VHDL Simulation Results 59

 7. CONCLUSION 65

 REFERENCES 67

 Appendix 69

vi

Acknowledgement

I would like to express my gratitude to my major Prof. K. K. Mahapatra for his

guidance, advice and constant support throughout my thesis work. I would like to thank him for

being my advisor here at National Institute of Technology (Deemed University).

Next, I want to express my respects to Prof. G.S.Rath, Prof. G. Panda, Prof. S.K.

Patra and Dr. S. Meher for teaching me and also helping me how to learn. They have been

great sources of inspiration to me and I thank them from the bottom of my heart.

I would like to thank all faculty members and staff of the Department of Electronics and

Communication Engineering, N.I.T. Rourkela for their generous help in various ways for the

completion of this thesis.

I would also like to mention the names of Jithendra sir, Srikrishna, Balaji, Jagan,

Chaithu, Pandu and Suresh for helping me a lot during the thesis period.

I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious. I’ve

enjoyed their companionship so much during my stay at NIT, Rourkela.

I am especially indebted to my parents for their love, sacrifice, and support. They are my

first teachers after I came to this world and have set great examples for me about how to live,

study, and work.

NARESH REDDY N
Roll No: 20507001

Dept of ECE, NIT, Rourkela

iv

ABSTRACT

Approximately 10% of the world’s population suffers from some type of hearing loss, yet only

small percentage of this statistic use the hearing aid. The stigma associated with wearing a

hearing aid, customer dissatisfaction with hearing aid performance, the cost and the battery life.

Through the use of digital signal processing the digital hearing aid now offers what the analog

hearing aid cannot offer. It proposes the possibility of flexible gain processing, updating filter

coefficients using adaptive techniques and digital feed back reduction, etc. Currently lot of

attention is being given to low power VLSI design.

 Major focus in this thesis is given to the impact of multipliers on the power

consumption of digital hearing aids. At first booth multiplier and booth Wallace multipliers are

designed. The multiplier which consumes less power is taken for designing hearing aid

component. The implementation of the Hearing Aid system includes spectral sharpening for

speech enhancement and spectral sharpening for noise reduction. A fundamental building block,

an adaptive filter, analysis filter, synthesis filter are implemented using Booth multiplier and

Booth Wallace multiplier. The simulation of the hearing aid is done both in MATLAB and

VHDL. The results from MATLAB and VHDL are compared. The hearing aid is constructed,

targeting FPGA. Using the synthesis report and the power calculation report we compare the

relative power consumption of the adaptive decorrelator; analysis filter and synthesis filter for

these multipliers. The results show that the power consumption is reduced using Booth Wallace

multiplier and also that using this multiplier speed is increased. How ever, since the total power

consumption is dominated by the FIR, IIR lattice filters, and the total power saving depends on

the order of the filter.

 The hearing aid component is designed in VHDL and implemented in FPGA(VIRTEXII

PRO) kit.

vii

LIST OF FIGURES

Fig no. TITLE Page no.
1.1 Block diagram of hearing aid signal processing 3

2.1 CMOS inverter 9

2.2 CMOS inverter and its transfer curve 11

2.3 Transfer Characteristics of CMOS 11

2.4 Short-circuit current of a CMOS inverter during input transition 12

3.1 The Spectral Sharpening Filter for speech enhancement 17

3.2 Spectral Sharpening for Noise Reduction. 18

3.3 Signed multiplication algorithm 19

3.4 Partial product generation logic 20

3.5 Multiplier bit grouping according to Booth Encoding 22

3.6 Wallace multiplier 25

3.7 Implementation of n bit CSA operation 25

4.1 Block diagram of an adaptive filter 31

4.2 Adaptive gradient lattice decorrelator 32

4.3 Updating the filter coefficients 33

44 Block diagram of the analysis filter [(1-A(z/β)] 35

4.5 Single stage of the analysis filter. 35

4.6 Block diagram of the synthesis filter [1-A(z/γ)]-1 38

4.7 Single stage of the synthesis filter. 39

4.8 The general, causal, length N=M+1, finite-impulse-response 41

4.9 Magnitude response of a high pass FIR filter (cut off frequency 700HZ) 42

4.10 Phase response of a high pass FIR filter (cut off frequency 700HZ). 43

4.11 Impulse response of a high pass FIR filter (cut off frequency 700HZ). 43

5.1 Block diagram of Spectral sharpening for speech enhancement. 47

5.2 Block diagram of Spectral sharpening for noise reduction. 49

6.1 Steps in VHDL or other HDL based design flow 53

viii

6.2 Waveform of the five second speech input 56

6.3 Waveform of the 5 second hearing aid output using parameters β=0.04, γ=0.6, µ=0.98 56

6.4 Waveform of the 5 second hearing aid output using parameters β=0.4, γ=0.6, µ=0.98 57

6.5 Waveform of the 5 second hearing aid output using parameters β=0.04, γ=0.6, µ=0.98 57

6.6 Waveform of the 5 second hearing aid output using parameters β=0.4, γ=0.6, µ=0.98 58

6.7 Waveform of the 5 second hearing aid output using parameters β=0.03, γ=0.7, µ=0.98. 58

6.8 Waveform of the 5 second hearing aid output using parameters β=0.03, γ=0.7, µ=0.98 59

6.9 VirtexIIPRO kit 62

6.10 Hearing aid output in CRO. 62

6.11 Comparison of the input speech signal with the output obtained

 using VHDL for 250samples 63

6.12 Comparison of the MATLAB output speech signal with the

 output obtained using VHDL for 250 samples 63

6.13 VHDL output of the hearing aid. 64

ix

LIST OF TABLES

Table no. TITLE Page no.

3.1 Booth encoding table 22

3.2 Multiplier recoding for radix-4 booth’s algorithm 23

6.1 Cell Usage for the multipliers in VIRTEXII PRO (XC2VP4-5FF672) 60

6.2 Power consumption and delay for two multipliers with 8X8 bit 60

6.3 Cell Usage for the Hearing Aid Component in VIRTEXII PRO

 (XC2VP4-5FF672) 61

x

1

CHAPTER 1

INTRODUCTION

2

Hearing aids are one of many modern, portable, digital systems requiring power efficient

design in order to prolong battery life. Hearing aids perform signal processing functions on

audio signals. With the advent of many new signal processing techniques, their requirement

for higher computational ability has put additional pressure on power consumption. In this

thesis, we are specifically interested on lowering the power consumption of digital hearing

aids. We investigate the use of multipliers for processing audio signals. Through comparison,

we show how the power consumption can be lowered for audio signal processing using

customized multiplier while maintaining the overall signal quality.

Hearing aids are a typical example of a portable device.They includes digital signal

processing algorithms, which demand considerable computing power. Yet, miniature pill

sized batteries store a small amount of energy, limiting their lifetime [7]. Consequently, it is

mandatory to employ low-power design and circuit techniques without neglecting their

impact on area occupation. Hearing impairment is often accompanied with reduced frequency

selectivity which leads to a decreased speech intelligibility in noisy environments. One

possibility to alleviate this deficiency is the spectral sharpening for speech enhancement

based on adaptive filtering [1]; the important frequency contributions for intelligibility

(formants) in the speech are identified and accentuated. Due to area constraints, such

algorithms are usually implemented in totally time-multiplexed architectures, in which

multiple operations are scheduled to run on a few processing units. This work discusses the

power consumption in an FPGA implementation of the speech enhancement algorithm. It

points out that power consumption can be reduced using Booth Wallace multiplier [8].

Several implementations of the algorithm, differing only in the degree of resource sharing are

investigated aiming at power-efficiency maximization. At first an overview of the algorithm

is given. Next the realized architectures are presented.

1.1 MOTIVATION

The need for improved hearing aids is widely attested to by the nationally supported research

efforts worldwide. Over 28 million Americans have hearing impairments severe enough to

cause a communications handicap. While hearing aids are the best means of treatment for the

vast majority of these people, only about 5 million of them own hearing aids, and fewer than

2 million aids are sold annually. Market surveys of hearing aid owners have found that only

slightly more than half (58%) of these people are satisfied with their aids[14].

3

The input signal comes in from the left, is sampled at a rate of 8 kS/s, and is simultaneously

presented to high pass filter and decorrelator. Signal amplification is done using both analysis

filter and synthesis filter.

Figure 1.1 Block diagram of hearing aid signal processing.

1.2 CONTRIBUTIONS

In a digital hearing aid, the resource limitations can be extreme, given that the entire device

(including the battery) needs to fit within the ear canal. As a result, power consumption must

be held to an absolute minimum. In this thesis, we investigate the power savings associated

with constructing the hearing aid using a different multipliers customized to the needs of the

application. Specifically, we compare the relative power consumption of three designs, one

using a shift-add multiplier, Booths multiplier and Booth Wallace multiplier. Each design is

implemented in an FPGA. Since in a channel the total power consumption is dominated by

the FIR, IIR lattice filters, the total power saving depends on the order of the filters.

Our work in this thesis is listed as follows,

1. Implementations of the shift-add multiplier, Booth’s multiplier and Booth Wallace

 multiplier in VHDL, with different bit widths.

2. An implementation of a hearing aid channel in MATLAB.

Adaptive
Decorrelator

1-A(z/)
1

1-A(z/)

K1,k2 ..k
m

Y[n]

1- z-1

Loudness
control

X[n]

4

3. An implementation of a hearing aid channel using different multipliers in VHDL and

 input set on FPGA targets.

4. Comparison of the results obtained using MATLAB and VHDL.

1.3 OUTLINE

This thesis is organized as follows.

Chapter 2 describes the need for low power VLSI design and the factors affecting the power

dissipation in a VLSI chip.

Chapter 3 describes the three Multipliers Shift-Add, Booth’s, Booth Wallace multipliers. Two

adders carry save adder and carry look ahead adder are described.

Chapter 4, we describe the functionality of the Adaptive filter and give a review of the

implementation of the FIR filter, analysis filter and synthesis filter, other fundamental

components in the hearing aid.

Chapter 5, The hearing aid design is presented. Two blocks spectral sharpening for speech

enhancement and spectral sharpening for noise reduction are presented.

Chapter 6, Basic concepts of VHDL and FPGA are given. Simulation results are presented.

Comparison of the hearing aid signal processing using VHDL and MATLAB results are

shown.

 Finally, we conclude in Chapter 7.

5

CHAPTER 2
FUNDAMENTALS OF LOW POWER

DESIGN

6

Here we discuss ‘power consumption’ and methods for reducing it. Although they may not

explicitly say so, most designers are actually concerned with reducing energy consumption.

This is because batteries have a finite supply of energy (as opposed to power, although

batteries put limits on peak power consumption as well). Energy is the time integral of power;

if power consumption is a constant, energy consumption is simply power multiplied by the

time during which it is consumed. Reducing power consumption only saves energy if the

time required to accomplish the task does not increase too much. A processor that consumes

more power than a competitor's may or may not consume more energy to run a certain

program. For example, even if processor A's power consumption is twice that of processor B,

A's energy consumption could actually be less if it can execute the same program more than

twice as quickly as B.

 Therefore, we introduce a metric: energy efficiency. We define the energy efficiency e as the

energy dissipation that is essentially needed to perform a certain function, divided by the

actually used total energy dissipation. The function to be performed can be very broad: it can

be a limited function like a multiply-add operation, but it can also be the complete

functionality of a network protocol. Note that the energy efficiency of a certain function is

independent from the actual implementation and thus independent from the issue whether an

implementation is low power.

It is possible to have two implementations of a certain function that are built with different

building blocks, of which one has high energy efficiency, but dissipates more energy than the

other implementation which has a lower energy efficiency, but is built with low-power

components.

2.1 DESIGN FLOW

The design flow of a system constitutes various levels of abstraction. When a system is

designed with an emphasis on power optimization as a performance goal, then the design

must embody optimization at all levels of the design. In general there are three main levels on

which energy reduction can be incorporated. The system level, the logic level, and the

technological level. For example, at the system level power management can be used to turn

off inactive modules to save power, and parallel hardware may be used to reduce global

interconnect and allow a reduction in supply voltage without degrading system throughput.

7

At the logic level asynchronous design techniques can be used. At the technological level

several optimizations can be applied to chip layout, packaging and voltage reduction.

Low power design problems are broadly classified in to

1. Analysis

2. Optimization

Analysis: These problems are concerned about the accurate estimation of the power or energy

dissipation at different phases of the design process. The purpose is to increase confidence of

the design with the assurance that the power consumption specifications are not violated.

Evidently, analysis techniques differ in their accuracy and efficiency. Accuracy depends on

the availability of design information. In early design phases emphasis is to obtain power

dissipation estimates rapidly with very little available information on the design. As the

design proceeds to reveal lower-level details, a more accurate analysis can be performed.

Analysis techniques also serve as the foundation for design optimization.

Optimization: Optimization is the process of generating the best design, given an

optimization goal, without violating design specifications; an automatic design optimization

algorithm requires a fast analysis engine to evaluate the merits of the design choices. A

decision to apply a particular low power design technique often involves tradeoffs from

different sources pulling in various directions. Major criteria to be considered are the impact

on circuit delays, which directly translates to manufacturing costs. Other factors of chip

design such as design cycle time, testability, quality, reliability, reusability; risk etc may all

be affected by a particular design decision to achieve the low power requirement. The task of

a design engineer is to carefully weigh each design choice with in specification constraints

and select the best implementation.

Before we set to analyze or optimize the power dissipation of a VLSI chip, the basic

understanding of the fundamental circuit theory of power dissipation is imminent. Further is

the summary of the basic power dissipation modes of a digital chip.

8

2.2 CMOS COMPONENT MODEL

Most components are currently fabricated using CMOS technology. Main reasons for this

bias is that CMOS technology is cost efficient and inherently lower power than other

technologies[3].

 The sources of energy consumption on a CMOS chip can be classified as

1. STATIC power dissipation, due to leakage current drawn continuously form the power

supply and

2. DYNAMIC power dissipation, due to

 - Switching transient current,

 - Charging and discharging of load capacitances.

 The main difference between them is that dynamic power is frequency dependent, while

static is not. Bias (Pb) and leakage currents (Pl) cause static energy consumption. Short

circuit currents (Psc) and dynamic energy consumption (Pd) is caused by the actual effort of

the circuit to switch.

P = Pd + Psc + Pb + Pl ..(2.1)

The contributions of this static consumption are mostly determined at the circuit level. While

statically-biased gates are usually found in a few specialized circuits such as PLAs, their use

has been dramatically reduced in CMOS design. Leakage currents also dissipate static

energy, but are also insignificant in most designs (less than 1%). In general we can say that

careful design of gates generally makes their power dissipation typically a small fraction of

the dynamic power dissipation, and hence will be omitted in further analysis.

2.2.1 Dynamic power dissipation

Dynamic power can be partitioned into power consumed internally by the cell and power

consumed due to driving the load. Cell power is the power used internally by a cell or module

primitive, for example a NAND gate or flip-flop. Load power is used in charging the external

loads driven by the cell, including both wiring and fan out capacitances. So the dynamic

power for an entire chip is the sum of the power consumed by all the cells on the chip and the

power consumed in driving all the load capacitances. During the transition on the input of a

9

CMOS gate both p and n channel devices may conduct simultaneously, briefly establishing a

short from the supply voltage to ground. This effect causes a power dissipation of approx. 10

to 15%.

Figure 2.1: CMOS inverter.

The more dominant component of dynamic power is capacitive power. This component is the

result of charging and discharging parasitic capacitances in the circuit. Every time a

capacitive node switches from ground to Vdd an vice-versa energy is consumed. The

dominant component of energy consumption (85 to 90%) in CMOS is therefore dynamic. A

first order approximation of the dynamic energy consumption of CMOS circuitry is given by

the formula:

Pd = Ceff V 2 f ………………………………………….(2.2)

where Pd is the power in Watts, Ceff is the effective switch capacitance in Farads, V is the

supply voltage in Volts, and f is the frequency of operations in Hertz. The power dissipation

arises from the charging and discharging of the circuit node capacitance found on the output

10

of every logic gate. Every low-to-high logic transition in a digital circuit incurs a voltage

change V, drawing energy from the power supply. Ceff combines two factors C, the

capacitance being charged/discharged, and the activity weighting , which is the probability

that a transition occurs.

Ceff = C.

Short-Circuit Current In CMOS Circuit:

Another component of power dissipation also caused by signal switching called short-circuits

power.

Short-Circuit Current of an Inverter:

Figure shows a simple CMOS inverter operating at Vdd with the transistor threshold voltages

of Vtn and Vtp as marked on the transfer curve. When the input signal level is above Vtn, the

N-transistor is turned on; similarly, when the signal level is below Vtp the P-transistor is

turned on. When the input signal Vi switches, there is a short duration in which the input level

is Vtn and Vtp and both transistors are turned on. This causes a short circuit current from Vdd

to ground and dissipates power. The electrical energy drawn from the source is dissipated as

heat in the P and N transistors.

From the first order analysis of the CMOS transistors model, the time variation of the short-

circuit current during signal transition is shown in the figure. The current is zero when the

inputs signal below Vtn or above Vtp. The current increase as Vi rises beyond Vtn and

decreases as it approaches Vtp. Since the supply voltage is constant, the integration of the

current over time multiplies by the supply voltage is the energy dissipated during the input

transition period.

11

Figure 2.2: CMOS inverter and its transfer curve.

Figure2.3: Transfer Characteristics of CMOS.

Vdd

ip

Vi

ic

C

ip=ic+in

in

Output
voltage

Vi Vd
Vi

Vd

12

Figure2.4 Short-circuit current of a CMOS inverter during input transition.

2.2.2 Static power dissipation

Strictly speaking, digital CMOS circuits are not supposed to consume static power from

constant static current flow. All non-leakage current in CMOS circuits should only occur in

transient when signals are switching. However, there are times when deviations from CMOS

style circuit design are necessary.

An example is the pseudo NMOS logic. However, for special circuits such as PLAS or

Register files, it may be useful due to its efficient area usage. In such circuits, there is tradeoff

for power and area efficiency.

The pseudo NMOS circuit doesn’t require a p-transistor network and saves half the

transistors required for logic computation as compared to the CMOS logic. The circuit has a

special property that the current only flows when the output is at logic 0.

Vip

Vin

t

Input voltage Vi

ip/in

t

Short-circuit current

13

When the output is at logic1, all the N-transistors are turned off and no static power is

consumed.

Expect leakage current. This property may be exploited in a low power design. If a signal is

known to have very high probability of logic1, say 0.99, it may make sense to implement the

computation in pseudo NMOS logic. Conversely, if the single probability is very close to

zero, we may eliminate the N- transistor network of a CMOS gate and replace it with a load

transistor of N type.

An example where this future can be exploited is the system reset circuitry. The reset signal

has extremely low activation probability (for example, during the power-on phase) which can

benefit from such circuit technique. Other examples where single activation probabilities are

extremely low are: test signals, error detection signals, interrupt signals and exception

handling signals.

2.3 BASIC PRINCIPLES OF LOW POWER DESIGN

Conservation and trade-off are the philosophy behind most low power technique. The

conservation school attempts to reduce power that is wasted with out a due course. The

design skills required are in identifying, analyzing.

This often requires complex trade-offs decisions involving a designer’s overall, intimate

understanding of the design specifications, operating environment and intuition acquired

from past design experience are keys to creative low power techniques.

It should be emphasized that no single low power technique is applicable to all situations.

Design constraints should be viewed from all angles with in the bounds of the design

specification. Low power considerations should be applied at all levels of design abstraction

and design activities. Chip area and speed are the major trade-off considerations but a low

power design decision also affects other aspects such as reliability, testability and design

complexity. Early design decisions have higher impact to the final results and therefore,

power analysis should be initiated early in the design cycle. Maintaining a global view of the

power consumption is important so that a chosen technique does not impose restrictions on

other parts of the system offset its benefits.

14

2.3.1 Reduce Voltage and Frequency

One of the most effective ways of energy reduction of a circuit at the technological level is to

reduce the supply voltage, because the energy consumption drops quadratic ally with the

supply voltage. For example, reducing a supply voltage from 5.0 to 3.3 Volts (a 44%

reduction) reduces power consumption by about 56%. As a result, most processor vendors

now have low voltage versions. The problem that then arises is that lower supply voltages

will cause a reduction in performance. In some cases, low voltage versions are actually 5 Volt

parts that happen to run at the lower voltage. In such cases the system clock must typically be

reduced to ensure correct operation. Therefore, any such voltage reduction must be balanced

against any performance drop. To compensate and maintain the same throughput, extra

hardware can be added. This is successful up to the point where the extra control, clocking

and routing circuitry adds too much overhead [58]. In other cases, vendors have introduced

‘true’ low voltage versions of their processors that run at the same speed as their 5 Volt

counterparts. The majority of the techniques employing concurrency or redundancy incur an

inherent penalty in area, as well as in capacitance and switching activity. If the voltage is

allowed to vary, then it is typically worthwhile to sacrifice increased capacitance and

switching activity for the quadratic power improvement offered by reduced voltage. The

variables voltage and frequency have a trade-off in delay and energy consumption. Reducing

clock frequency f alone does not reduce energy, since to do the same work the system must

run longer. As the voltage is reduced, the delay increases. A common approach to power

reduction is to first increase the performance of the module – for example by adding parallel

hardware, and then reduce the voltage as much as possible so that the required performance is

still reached. Therefore, major themes in many power optimization techniques are to optimize

the speed and shorten the critical path, so that the voltage can be reduced. These techniques

often translate in larger area requirements; hence there is a new trade-off between area and

power.

2.3.2Reduce capacitance

Reducing parasitic capacitance in digital design has always been a good way to improve

performance as well as power. However, a blind reduction of capacitance may not achieve

15

the desired results in power dissipation the real goal is to reduce the product of capacitance

and its witching frequency. Singles with high switching frequency should be routed with

minimum parasitic capacitance to conserve power. Conversely, nodes with large parasitic

capacitance should not be allowed to switch at high frequency. Capacitance reduction can be

achieved at most design abstraction levels: material, process technology, physical design

(floor planning, placement and routing) circuit techniques, transistor sizing, logic

restructuring, and architecture transformation and alternative computation algorithms.

2.3.3 Reduce Leakage and Static Currents
Leakage current, whether reverse biased junction or sub threshold current, is generally not

very useful in digital design. However, designers often have very little control over the

leakage current of the digital circuit. Fortunately, the leakage power dissipation of a CMOS

digital circuit is several orders of magnitude smaller than the dynamic power. The leakage

power problem mainly appears in very low frequency circuits or ones with “sleep modes”

where dynamic activities are suppressed. Most leakage reduction techniques are applied at

low level design abstraction such as process, device and circuit design. Memory chips that

have very high device density are most susceptible to high leakage power.

Transistor sizing, layout techniques and careful circuit design can reduce static current.

Circuit modules that consume static current should be turned off if not used. Sometimes,

static current depends on the logic state of its output and we can consider reversing the signal

polarity to minimize the probability of static current flow.

16

CHAPTER 3

MULTIPLIERS

17

3.1 HEARING AID ARCHITECTURE

To ease the computational burden, the real-time implementation of the hearing aid utilizes a

spectral sharpening and noise reduction due to spectral sharpening design for the signal

processing, which is illustrated in Figure 3.1, 3.2 respectively. The input signal comes in on

the upper left side of the figure, is sampled at a rate of 8 kS/s, and is delivered to the high

pass filter and the filtered signal is used for updating the filter coefficients[2]. The sampled

signal is also passed through analysis filter. The output of the analysis filter is passed through

synthesis filter and then to a speaker. Speech enhancement usually results from adaptively

filtering the noise reference signals and subsequently subtracting them from the primary

input.

In the proto type implementation, the high pass filter with 6 taps, FIR filter designed with cut

off frequency 700Hz. Hardware multiplication is necessary in any system that contains

Digital Signal Processing (DSP) functionalities.

Figure 3.1: The Spectral Sharpening Filter for speech enhancement.

Adaptive
Decorrelator

Analysis Filter

K1,k2 ..k
m

High
Pass
filter

Y[n]

X[n]

Synthesis
Filter

18

Figure3.2: Spectral Sharpening for Noise Reduction.

3.2. Multiplier Background

3.2.1. Basic binary multiplier

The shift-add Multiplier scheme is the most basic of unsigned Integer multiplication

algorithms[4].

The operation of multiplication is rather simple in digital electronics. It has its origin from the

classical algorithm for the product of two binary numbers. This algorithm uses addition and

shift left operations to calculate the product of two numbers. Two examples are presented

below.

Basic binary multiplication

The left example shows the multiplication procedure of two unsigned binary digits while the

one on the right is for signed multiplication. The first digit is called Multiplicand and the

second Multiplier. The only difference between signed and unsigned multiplication is that we

Adaptive
Decorrelator

b(1-z -1]

[1-az -1)
1-A(z/)

1

1-A(z/)

X[n]

K1,k2 ..k
m

Y[n]

19

have to extend the sign bit in the case of signed one, as depicted in the given right example in

PP row 3. Based upon the above procedure, we can deduce an algorithm for any kind of

multiplication which is shown in Figure 3.3. Here, we assume that the MSB represents the

sign of digit.

Figure 3.3: Signed multiplication algorithm

3.2.2. Partial product generation
Partial product generation is the very first step in binary multiplier. These are the

intermediate terms which are generated based on the value of multiplier. If the multiplier bit

is ‘0’, then partial product row is also zero, and if it is ‘1’, then the multiplicand is copied as

it is. From the 2nd bit multiplication onwards, each partial product row is shifted one unit to

the left as shown in the above mentioned example. In signed multiplication, the sign bit is

also extended to the left. Partial product generators for a conventional multiplier consist of a

series of logic AND gates as shown in Figure 3.4.

START

Check
MSB of

Both digits

Final addition

Product

Negative
 results

Positive
results

Calculate partial products

20

Figure 3.4: Partial product generation logic

The main operation in the process of multiplication of two numbers is addition of the partial

products. Therefore, the performance and speed of the multiplier depends on the performance

of the adder that forms the core of the multiplier. To achieve higher performance, the

multiplier must be pipelined. Throughput is often more critical than the cycle response in

DSP designs. In this case, latency in the multiply operation is the price for a faster clock rate.

This is accomplished in a multiplier by breaking the carry chain and inserting flip-flops at

strategic locations. Care must be taken that all inputs to the adder are created by signals at the

same stage of the pipeline. Delay at this point is referred to as latency.

3.3 SPEEDING UP MULTIPLICATION

Multiplication involves two basic operations - generation of partial products and their

accumulation. Two ways to speed up multiplication

1. Reducing number of partial products and/or

2. Accelerating accumulation

3.3.1 Sequential multiplier - generates partial products sequentially and adds each newly

generated product to previously accumulated partial product.

Example: add and shift method.

Shift - Adder Multiplier:

Y

X7
X6 X5 X4 X3 X2 X1 X0

PP0PP1PP2PP3PP4PP5PP6PP7

21

The following notation is used in our discussion of multiplication algorithms:

a Multiplicand a(k-1)a(k-2) ... a(1)a(0)

x Multiplier x(k-1)x(k-2) ... x(1)x(0)

P Product (a x x) a(2k-1)a(2k-2) ... a(1)a(0)

Sequential or bit-at-a-time multiplication can be done by keeping a cumulative partial product

(initialized to 0) and successively adding to it the properly shifted terms x(j)a. Since each

successive number to be added to the cumulative partial product is shifted by one bit with

respect to the preceding one, a simpler approach is to shift the cumulative partial product by

one bit in order to align its bits with those of the next partial product.

Parallel multiplier - Generates partial products in parallel, accumulates using a fast multi-

operand adder. Number of partial products can be reduced by examining two or more bits of

a multiplier at a time.

Example: Booth’s algorithm reduces number of multiplications to n/2

Where n is the total number of bits in a multiplier

3.3.2Booth’s Multiplier:

In add and shift algorithm the initial partial product is taken as zero. In each step of the

algorithm, LSB bit of the multiplier is tested, discarding the bit which was previously tested,

and hence generating the individual partial products. These partial products are shifted and

added at each step and the final product is obtained after n steps for nxn multiplication. The

main disadvantage of this algorithm is that it can be used only for unsigned numbers[10]. The

range of the input for a ‘n’ bit multiplication is from 0 to 2n-1

A better algorithm which handles both signed and unsigned integers uniformly is Booth’s

algorithm. Booth encoding is a method used for the reduction of the number of partial

products proposed by A.D. Booth in 1950.

X=-2mXm + 2m-1 xm-1 + 2m-2 Xm-2+…….

Rewriting above equation using 2a=2 a+1 -2a leads to

X=-2m(xm-1 –xm)+2m-1(Xm-2+Xm-1)+2m-2(Xm-3-Xm-2)

22

Considering the first 3 bits of X, we can determine whether to add Y, 2Y or 0 to partial

product. The grouping of X bits is shown in Figure 3.5

Figure 3.5: Multiplier bit grouping according to Booth Encoding

The multiplier X is segmented into groups of three bits (Xi+1, Xi, Xi-1) and each group of

bits is associated with its own partial product row using Table 1.

Table3.1 : Booth encoding table

 Booth’s algorithm is based on the fact that fewer partial products have to be generated for

groups of consecutive ‘0’ in the multiplier there is no need to generate any new partial

product. For every ‘0’ bit in the multiplier, the previously accumulated partial product needs

only to be shifted by one bit to the right. The above can be implemented by recoding the

multiplier as shown in the table 3.1.

X0 X-1X1X2X3X4X5X6x7

Group0

Group1

Group2

Group3

23

S.NO mri+1 mri mri-1 Recoded digit Operation on the multiplicand

1 0 0 0 0 0 X multiplicand

2 0 0 1 +1 +1 X multiplicand

3 0 1 0 +1 +1 X multiplicand

4 0 1 1 +2 +2 X multiplicand

5 1 0 0 -2 -2 X multiplicand

6 1 0 1 -1 -1 X multiplicand

7 1 1 0 -1 -1 X multiplicand

8 1 1 1 0 0 X multiplicand

Table3.2: Multiplier recoding for radix-4 booth’s algorithm

It is based on portioning the multiplier in to overlapping group of 3- bits and each group is

decoded to generate corresponding partial product. Each recoded digit performs a certain

operation on the multiplicand shown above in the table:3.2

The primary advantage of using this multiplication scheme is that it reduces the number of

partial products generated by half the number.

For example consider 6X6 bit multiplication, number of partial products involved will be 3

where as in Add- Shift algorithm six partial products are needed.

Example :

 A 01 00 01 17 Multiplicand

 X x 11 01 11 -9 Multiplier

 -A +2A -A 0peration

Add –A + 10 11 11

2 bit shift 11 10 11 11

Add 2A 10 00 10

 01 11 01 11

2 bit shift 00 01 11 01 11

Add –A + 10 11 11

 11 01 10 01 11 -153

24

n/2=3 steps;2 multiplier bits in each step

All shift operations are 2 bit position shifts

Accumulation of the partial products in multiplication is accelerated by adding all the partial

products at a time.

Example:

3.3.3 Wallace multiplier:

Wallace trees are irregular in the sense that the informal description does not specify a

systematic method for the compressor interconnections. However, it is an efficient

implementation of adding partial products in parallel[10]. The Wallace tree operates in three

steps:

1. Multiply: Each bit of multiplicand is ANDed with each bit of multiplier yielding n2 results.

Depending on the position of the multiplied bits, the wires carry different weights.

2. Addition: As long as there are more than 3 wires with the same weights add a following

layer. Take 3 wires of same weight and input them into a full adder. The result will be an

output wire of same weight. If there are two wires of same weight, add them using half-adder

and if only one is left, connect it to the next layer.

3. Group the wires in two numbers and add in a conventional adder. A typical Wallace tree

architecture is shown in Figure 3.6.

25

Fig3.6: Wallace multiplier

In the above diagram ABO-AB7 represents the partial products

Wallace multipliers consist of AND-gates, carry save adders and a carry propagate

adder.

Fig3.7: Implementation of n bit CSA operation

The n-bit CSA consists of disjoint full adders (FA’s). It consumes three -bit input vectors and

produces two outputs, i.e., n-bit sum vector S and n-bit carry vector C. Unlike the normal

FULL
ADDER

FULL
ADDER

FULL
ADDER

CoS0C1Sn-2
Cn-1

Sn-1
C0

CIZoYoXoZn-2Yn-2Xn-2Zn-1Yn-1Xn-1

26

adders [e.g., ripple-carry adder (RCA) and carry-look ahead adder (CLA)], a CSA contains

no carry propagation. Consequently, the CSA has the same propagation delay as only one FA

delay and the delay is constant for any value of n. For sufficiently large n, the CSA

implementation becomes much faster and also relatively smaller in size than the

implementation of normal adders. In Wallace multiplier carry save adders are used, and one

carry propagate adder is used as shown in the figure3.7.The basic idea in Wallace multiplier

is that all the partial products are added at the same time instead of adding one at a time. This

speeds up the multiplication process.

3.4 FAST ADDERS

The final step in completing the multiplication procedure is to add the final terms in the final

adder. This is normally called “Vector-merging” adder. The choice of the final adder depends

on the structure of the accumulation array.

3.4.1 Carry Save Adder Tree (CSAT)

Carry Save Adder (CSA) can be used to reduce the number of addition cycles as well as to

make each cycle faster. Figure 3.7 shows the implementation of the n-bit carry save adder.

Carry save adder is also called a compressor. A full adder takes 3 inputs and produces 2

outputs i.e. sum and carry, hence it is called a 3:2 compressor. In CSA, the output carry is not

passed to the neighboring cell but is saved and passed to the cell one position down. In order

to add the partial products in correct order, Carry save adder tree (CSAT) is used. In carry-

save adder (CSA) architecture, one adds the bits in each column of the first three partial

products independently (by full adders). From there on, the resulting arrays of sum and carry

bits and the next partial product are added by another array of full adders[10]. This continues

until all of the partial products are condensed into one array of sum bits and one array of

carry bits. A fast adder (carry select or look-ahead) is finally used to produce the final

answer. The advantage of this method is the possibility of regular custom layout. The

disadvantage of the CSA method is the amount of delay of producing the final answer.

Because, the critical path is equivalent to first traversing all CSA arrays and then going

through the final fast adder. In contrast, in Wallace tree architecture, all the bits of all of the

partial products in each column are added together in parallel and independent of other

columns. Then, a fast adder is used to produce the final result similar to the CSA method. The

27

advantage of Wallace tree architecture is speed. This advantage becomes more pronounced

for multipliers of bigger than 16 bits. However, building a regular layout becomes a challenge

in this case. It can be seen that changing the Wallace tree multiplier into a

multiplier/accumulator is quite simple. One needs to include the incoming data for

accumulation in the set of partial products at the input of the Wallace tree section; and the

Wallace tree will treat it as another Partial product. Also, merging multiple parallel

multipliers and adders is as simple. It only needs to include all partial product bits in the same

column in the inputs to the Wallace tree adders.

3.4.2. Carry Look Ahead Adder (CLA)

The concept behind the CLA is to get rid of the rippling carry present in a conventional adder

design. The rippling of carry produces unnecessary delay in the circuit. For fast applications,

a better design is required. The carry-look-ahead adder solves this problem by calculating the

carry signals in advance, based on the input signals. It is based on the fact that a carry signal

will be generated in two cases:

(1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

For a conventional adder the expressions for sum and carry signal can be written as follows.

S = A⊕ B ⊕ C …………………………………...(3.1)

C = AB + BC + AC …………………………………..(3.2)

It is useful from an implementation perspective to define S and Co as functions of some

intermediate signals G (generate), D (delete) and P (propagate). G=1 means that a carry bit

will be generated, P=1 means that an incoming carry will be propagated to C0. These signals

are computed as

Gi = Ai.Bi …………………………………………..(3.3)

Pi = Ai ⊕ Bi ………………………………………..(3.4)

We can write S and C0 in terms of G and P.

C0(G,P) = G + PC …………………………………….(3.5)

S(G,P) = P ⊕ C ……………………………………..(3.6)

28

Lets assume that the delay through an AND gate is one gate delay and through an XOR gate

is two gate delays. Notice that the Propagate and Generate terms only depend on the input

bits and thus will be valid after two and one gate delay, respectively. If one uses the above

expression to calculate the carry signals, one does not need to wait for the carry to ripple

through all the previous stages to find its proper value. Let’s apply this to a 4-bit adder to

make it clear.

C1 = G0 + P0.C0 .

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0

 C4 = G3 + P3.G2 + P3.P2.G1 + P3P2.P1.G0 + P3P2.P1.P0.C0

Notice that the carry-out bit, Ci+1, of the last stage will be available after four delays (two

gate delays to calculate the Propagate signal and two delays as a result of the AND and OR

gate). The Sum signal can be calculated as follows,

Si = Ai ⊕ Bi ⊕ Ci = Pi⊕ Ci …………………………...(3.7)

The Sum bit will thus be available after two additional gate delays (due to the XOR gate) or a

total of six gate delays after the input signals Ai and Bi have been applied. The advantage is

that these delays will be the same independent of the number of bits one needs to add, in

contrast to the ripple counter. The carry-look ahead adder can be broken up in two modules:

(1) the Partial Full Adder, which generates Si, Pi and Gi and (2) the Carry Look-ahead Logic,

which generates the carry-out bits.

29

CHAPTER 4

FILTERS

30

4.1 THE ADAPTIVE DECORRELATOR

An adaptive filter is a filter which self-adjusts its transfer function according to an optimizing

algorithm. Because of the complexity of the optimizing algorithms, most adaptive filters are

digital filters that perform digital signal processing and adapt their performance based on the

input signal. By way of contrast, a non-adaptive filter has static filter coefficients (which

collectively form the transfer function).

For some applications, adaptive coefficients are required since some parameters of the

desired processing operation (for instance, the properties of some noise signal) are not known

in advance. In these situations it is common to employ an adaptive filter, which uses feedback

to refine the values of the filter coefficients and hence its frequency response.

Generally speaking, the adapting process involves the use of a cost function, which is a

criterion for optimum performance of the filter (for example, minimizing the noise

component of the input), to feed an algorithm, which determines how to modify of the filter

coefficients to minimize the cost on the next iteration. The block diagram, shown in the

following figure 4.1, serves as a foundation for particular adaptive filter realizations, such as

Least Mean Squares (LMS) and Recursive Least Squares (RLS). The idea behind the block

diagram is that a variable filter extracts an estimate of the desired signal.

Applications of adaptive filters

1.Channel equalization

2.Channel identification

3.Noise cancellation

4.Signal prediction

5.Adaptive Feedback Cancellation

31

Figure4.1 Block diagram of an adaptive filter

From the block diagram shown in figure 4.1 we take the following assumptions:

1. The input signal is the sum of a desired signal d(n) and interfering noise v(n)

x(n) = d(n) + v(n) ………………………………………….(4.1)

2. The variable filter has a Finite Impulse Response (FIR) structure. For such structures the

impulse response is equal to the filter coefficients. The coefficients for a filter of order p are

defined as

Wn(0)=[wn(0),wn(1),……….wn(p)] T …………………………….(4.2)

3. The error signal or cost function is the difference between the desired and the estimated

signal.

() () ()
^

e n d n d n= − ……………………………………..(4.3)

The variable filter estimates the desired signal by convolving the input signal with the

impulse response. In vector notation this is expressed as

() ()()
^

T
n n X nWd n =

………………………………………..(4.4)

Where

X(n)=[x(n),x(n-1),………..,x(n-p)]T ………………………………..(4.5)

is an input signal vector. Moreover, the variable filter updates the filter coefficients at every

time instant

Wn+1=Wn+ ∆ Wn…………………………………………..(4.6)

Variable filter Wn

Update
Algorithm

+
X(n) d(n)

-

+

e(n)

nW∆

()
^

d n

32

where ∆ Wn is a correction factor for the filter coefficients. The adaptive algorithm generates

this correction factor based on the input and error signals. LMS and RLS define two different

coefficient update algorithms.

The speech signal to be transmitted is spectrally masked by noise. By using an adaptive filter,

we can attempt to minimize the error by finding the correlation between the noise at the

signal microphone and the (correlated) noise at the reference microphone. In this particular

case the error does not tend to zero as we note the signal d(k) = x(k) + n(k) whereas the input

signal to the filter is x(k) and n(k) does not contain any speech. Therefore it is not possible to

"subtract" any speech when forming e(k) = d(k) - ()
^

d n . Hence in minimising the power of

the error signal e(k) we note that only the noise is removed and e(k) =~ x(k).

Figure 4.2: Adaptive gradient lattice decorrelator

Figure4.2 depicts the structure of the adaptive gradient lattice decorrelator. The illustration

shows three stages only with indices 1, i and m. good results typically require a filter order

m=8…10 for speech sampled at 8KHz[2]. The output signal with vanishing autocorrelation is

computed on the upper signal path by subtracting from the input sample suitable fractions of

the signal values on the lower path.

X[n]

Z -1

+

X

X

+

+

X

X

+

k1 K2 Km

Z -1

+

X

X

+

Z -1

33

The multipliers k1,………..km are iteratively computed

Ki[n]:=Ki[n-1]+ Ki[n] …………………………….(4.7)

every sampling interval n. the details of this process are illustrated in figure 4.3 for the i-th

stage. Input and output values on upper and lower signal path to and from the i-th stage

contribute to the computation of the update value Ki.

Figure4.3: Updating the filter coefficients

Both output values are multiplied with the input values on the opposite path and then

summed up to form the numerator in the subsequent computation of the update value. The

denominator 2 is iteratively computed.
2 [n] := . 2 [n-1] + 2 [n] …………………………….(4.8)

+

Z -

1
+

X

X

X X
X

X

+ +

+ / +

Z -

1

X

Z -1

2

2

ki

K
i

-

+

-

Z -1

Z -1

Z -1

34

The incremental value equals the sum of the two squared input values. The iterative

computation of the denominator defines an exponentially decaying window which

progressively decreases the influence of past contributions[12].

The computationally expensive division yields fast converging filter coefficients Ki

independent of the varying input signal power level. This remarkable property is

indispensable for good enhancement results. It is also clear contrast to simpler algorithms

replacing the division by a multiplication with a small convergence constant 0<µ<<1.

The longest delay through a string of lattice filters extends from the output of the storage

element in the first lattice filter, through a multiplication with the first reflection coefficient,

then through an addition for each stage of the lattice filter until the output is produced in the

final stage. For a large number of lattice filter stages, this longest delay can be reduced by a

lattice filter optimization for speed which defers the final carry propagating addition until

after the final lattice filter stage. This requires the transmission of an additional value

between lattice filter stages. The multiplication process is speeded using booth multiplier and

the accumulation process is done faster using the Wallace multiplier.

4.2THE ANALYSIS FILTER

 The analysis filter H(z)=[(1-A(z/)] is illustrated in figure4.4. Its structure is similar to that

of the adaptive decorrelator shown in fig4.2

The only difference is the multiplication with the filter parameter following every shift

element z-1 on the lower signal path. Furthermore, the analysis filter does not need a separate

circuitry for coefficient update. It instead requires and therefore copies the filter coefficients

k1, k2…..km computed by the unmodified (=1) filter structure, i.e., the adaptive

decorrelator.

35

Figure 4.4: The analysis filter [(1-A(z/)].

Figure 4.5: Single stage of the analysis filter.

Km

Z -1
+

X

X

+

X Z -1

X

+

X

K1 K2

+

-

+

-

Z -1
+

X

X

+

X

+

-

+

-

+

-

+

+

X

X

z-1

fm-1(n)

bm-1(n)

Km

fm(n)

bm(n)

36

The two mathematical equations for the single stage analysis filter is shown below.

1 1

1 1

() () (1)
() (1) ()

m m m m

m m m m

f n f n k b n
b n b n k f n

− −

− −

= − −

= − −

Some characteristics of the Lattice predictor:

1. It is the most efficient structure for generating simultaneously the forward and backward

prediction errors.

2. The lattice structure is modular: increasing the order of the filter requires adding only one

extra module, leaving all other modules the same.

3. The various stages of a lattice are decoupled from each other in the following sense: The

memory of the lattice (storing b0(n ¡ 1); : : : ; bm¡1(n ¡ 1)) contains orthogonal variables,

thus the information contained in x(n) is splitted in m pieces, which reduces gradually the

redundancy of the signal.

4. The similar structure of the lattice filter stages makes the filter suitable for VLSI

implementation.

Lattice filters typically find use in such applications as predictive filtering, adaptive filtering,

and speech processing. One desirable feature of lattice filters are their use of reflection

coefficients as the filter parameter. Algorithms exist to compute reflection coefficients to

obtain the optimal linear filter for a given filter order. Reflection coefficients have the

additional property that for some applications, the optimal reflection coefficients remain

unchanged when going from a lower order filter to a higher order filter. Thus, when adding

additional filter stages, only the reflection coefficients for the added stages need to be

computed. The straight forward implementation of a lattice filter would be composed of two

multipliers, two adders and a latch per lattice filter stage as shown in figure 4.5. The longest

timing path to the output of a string of lattice filters starts at the multiply of the first lattice

filter stage and propagates through the adders of each lattice filter stage. The delay for an n

stage conventional lattice filter is equal to the delay of one multiply and n CLAs.

The modification with filter parameter causes the analysis filter to produce an output signal

with reduced formants instead of a signal with completely flat spectral envelope as produced

by the adaptive decorrelator.

37

4.3THE SYNTHESIS FILTER

When considering IIR filters, the direct form filter is the common structure of choice. This is

true, in general, because when designing an algorithm which adapts the parameters ak and bk ,

the coefficients of the difference equation, described below, are manipulated directly.

Yk+a1YK-1+…………+amYk-m = b0 Uk+b1 Uk-1+…………+bm Un-m

Some problems exist in using the direct form filter for adaptive applications. First of all,

ensuring stability of a time-varying direct form filter can be a major difficulty. It is often

computationally a burden because the polynomial, A(z), made up of the ak parameters, must

be checked to see if it is minimum phase at each iteration. Even if the stability was assured

during adaptation, round off error causing limit cycles can plague the filter.

Parallel and cascade forms are often used as alternatives for direct form filters. These consist

of an interconnection of first and second order filter sections, whose sensitivity to round off

errors tends to be less drastic than for the direct form filter. Since the filter is broken down

into a factored form, the round off error associated with each factorization only affects that

term. In the direct form filter, the factors are lumped together so that round off error in each

term affects all of the factors in turn.

A larger problem exists for both parallel and cascade forms: the mapping from transfer

function space to parameter space is not unique. Whenever the mapping from the transfer

function space to the parameter space is not unique, additional saddle points in the error

surface appear that would not be present if the mapping had been unique. The addition of

these saddle points can slow down the convergence speed if the parameter trajectories wander

close to these saddle points. For this reason, these filter forms are considered unsuitable for

adaptive filtering.

A tapped-state lattice form has many of the desirable properties associated with common

digital filters and avoids the problems discussed above. Due to the computational structure,

the round off error in this filter is inherently low.

Direct implementation of the IIR filter can lead to instabilities if it is quantized. The filter is

stable using the following structure. The structure of the synthesis filter [1-A(z/)]-1 is shown

in figure3.6. The synthesis filter also requires and copies the filter coefficients k1,k2,……km

from the adaptive decorrelator at every sampling interval. The structure in figure4.6 also

38

shows a synthesis filter modified by the multiplication with the filter parameter succeeding

every shift element z-1 on the lower signal path. The unmodified synthesis filter (=1)

restores the original formants in the output when a signal with flat spectral envelope is fed to

its input. The modification with a parameter value less than unity causes the synthesis filter to

produce an output signal with partially restored formants only. The spectral sharpening effect

results from a suitable choice of both filter parameters 0< <1. Experiments with one

adaptive filter only failed in producing satisfactory speech enhancement results.

Figure 4.6: The synthesis filter [1-A(z/)]-1

Z -1

+

X

X

+

X

+

+

+

-

+
Z -1

X

X

+

X

+

+

+

-

Z -1

X

+

X

+

+

Km K2 K1

39

Figure 4.7: Single stage of the synthesis filter.

The two mathematical equations for the single stage synthesis filter is shown below.

1 1

1 1

() () (1)
() (1) ()

m m m m

m m m m

f n f n k b n
g n g n k f n

− −

− −

= + −

= − −

 The computational complexity of a digital filter structure is given by the total number of

multipliers and the total number of two input adders required for its implementation which

roughly provides an indication of its cost of implementation. The synthesis filter is stable if

the magnitudes of all multiplier coefficients in the realization are less than unity.i.e., -

1<Km<1 for m=M,M-1,………

+

+

X

X

Z-1

fm-1(n) fm(n)

gm(n) gm-1(n)

Km

40

4.4 HIGH PASS FILTER

In signal processing, there are many instances in which an input signal to a system contains

extra unnecessary content or additional noise which can degrade the quality of the desired

portion. In such cases we may remove or filter out the useless samples. For example, in the

case of the telephone system, there is no reason to transmit very high frequencies since most

speech falls within the band of 700 to 3,400 Hz. Therefore, in this case, all frequencies above

and below that band are filtered out. The frequency band between 700 and 3,400 Hz, which

isn’t filtered out, is known as the pass band, and the frequency band that is blocked out is

known as the stop band. FIR, Finite Impulse Response, filters are one of the primary types of

filters used in Digital Signal Processing. FIR filters are said to be finite because they do not

have any feedback. Therefore, if you send an impulse through the system (a single spike)

then the output will invariably become zero as soon as the impulse runs through the filter.

There are a few terms used to describe the behavior and performance of FIR filter including

the following:

• Filter Coefficients - The set of constants, also called tap weights, used to multiply

against delayed sample values. For an FIR filter, the filter coefficients are, by

definition, the impulse response of the filter.

• Impulse Response – A filter’s time domain output sequence when the input is an

impulse. An impulse is a single unity-valued sample followed and preceded by zero-

valued samples. For an FIR filter the impulse response of a FIR filter is the set of

filter coefficients.

• Tap – The number of FIR taps, typically N, tells us a couple things about the filter.

Most importantly it tells us the amount of memory needed, the number of calculations

required, and the amount of "filtering" that it can do. Basically, the more taps in a

filter results in better stop band attenuation (less of the part we want filtered out), less

rippling (less variations in the pass band), and steeper roll off (a shorter transition

between the pass band and the stop band).

• Multiply-Accumulate (MAC) – In the context of FIR Filters, a "MAC" is the

operation of multiplying a coefficient by the corresponding delayed data sample and

accumulating the result. There is usually one MAC per tap.

41

Figure 4.8: The general, causal, length N=M+1, finite-impulse-response

Figure4.8 gives the signal flow graph for a general finite-impulse-response filter (FIR). Such

a filter is also called a transversal filter, or a tapped delay line. The implementation is one

example of a direct-form implementation of a digital filter. The impulse response h(n) is

obtained at the output when the input signal is the impulse signal =[1 0 0 0…]. If the kth tap

is denoted bk, then it is obvious from figure3.8 above that the impulse response signal is

given by

In other words, the impulse response simply consists of the tap coefficients, prep ended and

appended by zeros.

Convolution Representation of FIR Filters : Note that the output of the kth delay element in

figure is x(n-k),k=0,1,2…..m , where x(n) is the input signal amplitude at time n. The output

signal y (n) is therefore

Y(n)=b0x(n)+b1x(n-1)+b2x(n-2)+...........+bm x(n-m)

 =
0

()
M

m
m

b x n m
=

−∑

 = () ()
m

h m x n m
∞

=−∞

−∑

 =(h * x)(n)

Where we have used the convolution operator * to denote the convolution of h and x, as

defined in above Equation. An FIR filter thus operates by convolving the input signal x(n)

42

with the filter's impulse response h(n).The transfer function of an FIR filter is given by the z

transform of its impulse response.

0

()
M

n n
n n

n n
H Z h z b z

∞
− −

=−∞ =

=∑ ∑@

Thus, the transfer function of every length N=M+1 FIR filter is an Mth-order polynomial in

Z.

The order of a filter is defined as the order of its transfer function. Note from Figure4.8 that

the order is also the total number of delay elements in the filter. When the number of

delay elements in the implementation is equal to the filter order, the filter implementation is

said to be canonical with respect to delay. It is not possible to implement a given transfer

function in fewer delays than the transfer function order, but it is possible (and sometimes

even desirable) to have extra delays.

Figure 4.9 shows the magnitude response of a FIR HIGH PASS FILTER with cutoff

frequency of 700HZ. The sampling frequency considered here is 8000hz. The order of the

filter is five, hence six coefficients are generated. Figure4.10 shows the phase response and

figure 4.11 shows the impulse response of the high pass filter.

Figure 4.9 : Magnitude response of an high pass FIR filter(cut off frequency 700HZ)

43

Figure 4.10: Phase response of a high pass FIR filter (cut off frequency 700HZ).

Figure 4.11: Impulse response of a high pass FIR filter (cut off frequency 700HZ).

4.5 ANALOG TO DIGITAL CONVERTOR.

A device for converting the information contained in the value or magnitude of some

characteristic of an input signal, compared to a standard or reference, to information in the

form of discrete states of a signal, usually with numerical values assigned to the various

combinations of discrete states of the signal. Analog-to-digital (A/D) converters are used to

transform analog information, such as audio signals or measurements of physical variables

44

(for example, temperature, force, or shaft rotation) into a form suitable for digital handling,

which might involve any of these operations: (1) processing by a computer or by logic

circuits, including arithmetical operations, comparison, sorting, ordering, and code

conversion, (2) storage until ready for further handling, (3) display in numerical or graphical

form, and (4) transmission.

If a wide-range analog signal can be converted, with adequate frequency, to an appropriate

number of two-level digits, or bits, the digital representation of the signal can be transmitted

through a noisy medium without relative degradation of the fine structure of the original

signal. Conversion involves quantizing and encoding. Quantizing means partitioning the

analog signal range into a number of discrete quanta and determining to which quantum the

input signal belongs. Encoding means assigning a unique digital code to each quantum and

determining the code that corresponds to the input signal. The most common system is

binary, in which there are 2n quanta (where n is some whole number), numbered

consecutively; the code is a set of n physical two-valued levels or bits (1 or 0) corresponding

to the binary number associated with the signal quantum.

The A-D converter used here is AD9240.

The resolution for this ADC is 14bit; the sampling rate is 10MSP and the input range is 0-5V.

Here the ADC is buffered by using Rail-to-Rail amplifier AD8052. AD8052 is useful in

various applications such as imaging, communications, and medical and data acquisition

systems.

4.6 DIGITAL TO ANALOG CONVERTOR

A device for converting information in the form of combinations of discrete (usually binary)

states or a signal to information in the form of the value or magnitude of some characteristics

of a signal, in relation to a standard or reference. Most often, it is a device which has

electrical inputs representing a parallel binary number, and an output in the form of voltage or

current.

Digital-to-analog (D/A) converters (sometimes called DACs) are used to present the results

of digital computation, storage, or transmission, typically for graphical display or for the

control of devices that operate with continuously varying quantities. D/A converter circuits

45

are also used in the design of analog-to-digital converters that employ feedback techniques,

such as successive-approximation and counter-comparator types. In such applications, the

D/A converter may not necessarily appear as a separately identifiable entity.

The fundamental circuit of most D/A converters involves a voltage or current reference; a

resistive “ladder network” that derives weighted currents or voltages, usually as discrete

fractions of the reference; and a set of switches, operated by the digital input, that determines

which currents or voltages will be summed to constitute the output. The output of the D/A

converter is proportional to the product of the digital input value and the reference.

The device used for D-A conversion is AD-7541A. The resolution for this DAC is 12bit; the

conversion time is 100ns, settling time of 600ns and the analog output range is 0-5v.

46

CHAPTER 5

HEARING AID DESIGN

47

5.1 SPECTRAL SHARPENING FOR SPEECH ENHANCEMENT
Speech enhancement usually results from adaptively filtering the noise reference

signals and subsequently subtracting them from the primary input. How ever, a procedure for

speech enhancement based on a single audio path is presented here. It is there fore applicable

for real world situations. An example of such a situation is using hearing aid equipment. The

hearing impaired person could place additional microphones close to noise sources only

rarely. Current hearing aid equipment comprise filtering and amplifying the speech signal and

thus suggest that hearing impairment is just a more or less reduced sensitivity to sound

pressure in various frequency intervals. This view however neglects the loss of frequency

discrimination which can be efficiently compensated by the spectral sharpening technique

presented. The idea of spectral sharpening originates from the adaptive post filtering method

in modern speech coding schemes at bit rates around 8kb/s and lower. With these algorithms

speech is encoded segment by segment. The linear prediction filter

A(z)=a1z-1 + a2z-2+…..+ amz-m

Is any way computed in every speech segment for the encoding process, and post- filtering with

the transfer function

1 ()
()

1 ()

zA
H z zA

β

γ

−
=

−

 and constant filter parameters 0< < <1 is subsequently performed with a moderate

computational increase.

Figure5.1: Block diagram of Spectral sharpening for speech enhancement.

Adaptive
Decorrelator

1-A(z/)
1

1-A(z/)

K1,k2 ..k
m

Y[n]

1- z-1

Loudness
control

X[n]

48

Figure5.1 shows the block diagram of spectral sharpening of speech sharpening for speech

enhancement. The speech signal x[n] from the microphone splits into three distinct paths.

The signal on the lowest path passes through the analysis filter [(1-A(z/)] and subsequently

through the synthesis filter [1-A(z/)]-1. Both filters are implemented as lattice filters with the

analysis and synthesis structures respectively. They both require the identical set of reflection

coefficients k1,k2,…..km.

 m represents the number of stages .

Which is updated every sampling interval by the adaptive decorrelator shown on the middle

path of figure4.1. The filter parameters b and y do not vary with time.

A high pass filter 1- z-1 is shown in front of the adaptive decorrelator, where x=1 may be

chosen for simplicity. The high pass filter is used in order to compensate the spectral tilt of

natural speech: the average power of the speech signal decreases above 1 KHz at a rate of ~ 10

db per octave. The adaptive transfer function

1 ()
()

1 ()

zA
H z zA

β

γ

−
=

−

enhances this spectral tilt even more when the filter coefficients k1,k2,……..km are computed

from the speech signal x[n] directly. Efficient speech enhancement requires however that the

various formants are more or less uniformly emphasized, regardless of their relative power

level. This is possible with the use of the high pass filter. It compensates at least partially the

original spectral tilt.

The decorrelator on the middle signal path of the figure is an adaptive gradient lattice filter. It

produces an output signal with vanishing autocorrelation by updating its filter coefficients

every sampling interval to the continuously changing input signal characteristics. The output

signal is not required in this application, however. The updated filter coefficients k1,k2……km

are of interest only for the use in the analysis and synthesis filter.

5.2 SPECTRAL SHARPENING FOR NOISE REDUCTION

The block diagram of the spectral sharpening process for noise reduction is illustrated in

figure5.2. The arrangement of adaptive decorrelator, analysis and synthesis filters agrees with

the former block diagram in figure 5.1: but there are various differences:

49

1 no loudness control,.

2 the input signal x[n] goes directly to the adaptive decorrelator, and

3 a high pass filter precedes the analysis and synthesis filters.

1

1
(1)
1

() b z
hp az

H z
−

−
−

−
=

The reasons for these differences are as follows: as mentioned in the previous section the

spectral sharpening process

1 ()
()

1 ()

zA
H z zA

β

γ

−
=

−

introduces a signal dependent amplification: signal segments with strong formant structure

are amplified more than segments with a rather flat spectral envelop. In the sequel it is

assumed that back ground noise is the major source for signal degradation and that its

spectrum reveals relatively flat resonances only. Speech segments with strong resonances

clearly profit in this situation. They experience a remarkable amplification compared to noisy

segments. The loudness compensation of the previous block diagram is consequently omitted

in order to preserve this effect.

Figure 5.2: Block diagram of Spectral sharpening for noise reduction.

Adaptive
Decorrelator

b(1-z -1]

[1-az -1)
1-A(z/)

1

1-A(z/)

X[n]

K1,k2 ..k
m

Y[n]

50

Best results require that the input signal is directly fed to the adaptive decorrelator. Only

negligible amplification is then applied to noisy signal segments as a consequence of their

assumed approximately flat spectrum. The spectral sharpening process further enhances the

spectral tilt of speech when the filter parameters are estimated from the speech signal without

prior compensation.

The high pass filter which preceded the adaptive decorrelator in the figure 5.1 has been

shifted to the bottom signal path in figure5. 2 in order to avoid the scheme from producing a

dull sound.

51

CHAPTER 6
DESIGN METHODOLOGY AND

SIMULATION RESULTS

52

6.1 THE HARDWARE DESCRIPTION LANGUAGE:

As the integrated circuit technology has improved to allow more and more components on a

chip, digital systems have continued to grow in complexity. As digital systems have become

more complex, detailed design of the systems at the gate and flip-flop level has become very

tedious and time consuming. For this reason, use of hardware description languages in the

digital design process continues to grow in importance. A hardware description language

allows a digital design system to be designed and debugged at a higher level before

conversion to the gate and flip-flop level. Use of synthesis CAD tools to do this conversion is

becoming more wide spread. This is analogous to writing software programs in a high level

language such as C and then using a computer to convert the programs to machine language.

The two most popular hardware description languages are VHDL and Verilog.

VHDL is a hardware description language used to describe the behavior and structure of

digital systems. The acronym VHDL stands for VHSIC Hard ware Description Language,

and VHSIC in turn stands for very high speed integrated circuit. However, VHDL is a

general purpose hardware description language, which can be used to describe and simulate

the operation of a wide variety of digital systems, ranging in complexity from a few gates to

an interconnection of many complex integrated circuits. VHDL was originally developed for

the military to allow a uniform method for specifying digital systems. The VHDL language

has since become IEEE standard, and it is widely used in industry.

VHDL can describe a digital system at several different levels- behavioral, dataflow and

structural. For example, a binary adder could be described at the behavioral level in terms of

its function of adding two binary numbers, with out giving any implementation details. The

same adder could be described at the data flow level by giving the logic equations for the

adder. Finally, the adder could be described at the structural level by specifying the

interconnections of the gates that comprise the adder.

VHDL leads naturally to a top-down design methodology, in which the system is first

specified at a high level and tested using a simulator. After the system is debugged at this

level the design can gradually be refined eventually leading to structural description.

53

The language has the following feature:

§ Designs may be decomposed hierarchically

§ Each designs element has both a well-defined interface (for connecting in it other

elements) and a precise behavioral specification (for simulating it).

§ Behavioral specifications can use either an algorithm or an actual hardware structure

to define an element’s operation. For example an element can be defined initially by

an algorithm to allow design verification of higher-level elements that use it: later the

algorithmic definition can be replaced by hardware structure.

§ Concurrency timing and clocking can all be modular. VHDL handles asynchronous as

well as synchronous sequential- circuit structures.

§ The logical operation and timing behavior of a design can be simulated.

While the VHDL language and simulation environment were important innovations by

themselves, VHDL’s utility and popularity took a quantum leap with the commercial

development of VHDL synthesis tools. These programs can create logic – circuit structures

directly from VHDL behavioral description using VHDL, simulate and synthesize anything

from a simple combinational circuit to a complete microprocessor system on chip.

Figure6.1 steps in VHDL or other HDL based design flow

A programmable logic device or PLD is an electronic component used to build digital

circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at

the time of manufacture. Before the PLD can be used in a circuit it must be programmed.

Programmability of logic means that new chip designs can be tested and easily changed

without incurring the huge photo mask costs for chips completed in a semiconductor fab. In

addition, memory-based PLDs can be reprogrammed over and over. Figure 6.1 contains a block

Hierarchy /
Block

Coding Simulation /
Verification

Compilation

Synthesis Fitting/Place Timing
Verification

54

diagram of a hypothetical CPLD. Each of the four logic blocks shown there is the equivalent

of one PLD. However, in an actual CPLD there may be more (or less) than four logic blocks.

Note also that these logic blocks are themselves comprised of macro cells and interconnect

wiring, just like an ordinary PLD.

Unlike the programmable interconnect within a PLD, the switch matrix within a CPLD may

or may not be fully connected. In other words, some of the theoretically possible connections

between logic block outputs and inputs may not actually be supported within a given CPLD.

The effect of this is most often to make 100% utilization of the macro cells very difficult to

achieve. Some hardware designs simply won't fit within a given CPLD, even though there are

sufficient logic gates and flip-flops available.

Because CPLDs can hold larger designs than PLDs, their potential uses are more varied.

They are still sometimes used for simple applications like address decoding, but more often

contain high-performance control-logic or complex finite state machines. At the high-end (in

terms of numbers of gates), there is also a lot of overlap in potential applications with

FPGAs. Traditionally, CPLDs have been chosen over FPGAs whenever high-performance

logic is required. Because of its less flexible internal architecture, the delay through a CPLD

(measured in nanoseconds) is more predictable and usually shorter.

FIELD Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) can be used to implement just about any hardware

design. One common use is to prototype a lump of hardware that will eventually find its way

into an ASIC. The development of the FPGA was distinct from the PLD/CPLD. There are

three key parts of its structure: logic blocks, interconnect, and I/O blocks. The I/O blocks

form a ring around the outer edge of the part. Each of these provides individually selectable

input, output, or bi-directional access to one of the general-purpose I/O pins on the exterior of

the FPGA package. Inside the ring of I/O blocks lies a rectangular array of logic blocks. And

connecting logic blocks to logic blocks and I/O blocks to logic blocks is the programmable

interconnect wiring. The FPGA we have used here is VIRTEXII pro.

55

VIRTEXII PRO FPGA

Configurable Logic Blocks (CLBs):

CLB resources include four slices and two 3-state buffers.

Each slice is equivalent and contains:

• Two function generators (F & G)

• Two storage elements

• Arithmetic logic gates

• Large multiplexers

• Wide function capability

• Fast carry look-ahead chain

• Horizontal cascade chain (OR gate)

Configuration

Virtex-II Pro devices are configured by loading the bit stream into internal configuration

memory using one of the following modes:

• Slave-serial mode

• Master-serial mode

• Slave Select MAP mode

• Master Select MAP mode

• Boundary-Scan mode (IEEE 1532)

ORDERING INFORMATION

56

6.2. MATLAB Results

6.2.1 Spectral Sharpening for Speech Enhancement in MATLAB

The speech signal for 5seconds is recorded using wave record function in MATLAB. This

speech signal is sampled at 8 kS/s and is taken as input for the hearing aid design. The

figure6.1 shows the waveform of the five second recorded speech input.

Figure 6.1 Waveform of the five second speech input

The sampled signal is given as input to the hearing aid, spectral sharpening for speech

enhancement shown in figure. The result obtained is shown in the figure and is for the single

stage. Here we can see from the figure 6.2 that the output is almost doubled. The selection of

 values effect the spectral sharpening process.

The parameters are =0.04, =0.6,µ=0.98

Figure 6.2 Waveform of the 5 second hearing aid output using parameters

=0.04, =0.6,µ=0.98

57

If =0.4, =0.6,µ=0.98 then for single stage hearing aid design the output is as shown in

figure6.3.

The output obtained is amplified by certain factor which is less than twice.

Figure 6.3 Waveform of the 5 second hearing aid output using parameters

=0.4, =0.6,µ=0.98

Figure6.4 shows the result obtained using 8stages.we can see that the output is amplified by

more than twice. The parameters are =0.04, =0.6,µ=0.98

Figure 6.4 Waveform of the 5 second hearing aid output using parameters

=0.04, =0.6,µ=0.98

As the number of stages increases the amplification factor also increases. From the figure6.2

we can see that using the parameters =0.04, =0.6,µ=0.98 for single stage the output obtained

is almost doubled and using the same parameters for the 8 stages the output obtained is more

than double.

58

If =0.4, =0.6,µ=0.98 then for eight stage hearing aid design the output is as shown in

figure6.5.

The output obtained is amplified by certain factor which is less than twice but greater than

single stage output.

Figure 6.5 Waveform of the 5 second hearing aid output using parameters =0.4, =0.6,
µ=0.98

6.1.2 Spectral Sharpening for Noise Reduction

The same input is applied for the noise reduction process as shown in figure. The number of

stages taken is eight. The output obtained using MATLAB for the parameters

=0.03, =0.7,µ=0.98 is shown in figure 6.6

Figure 6.6 Waveform of the 5 second hearing aid output using parameters

=0.03, =0.7,µ=0.98.

59

If =0.3, =0.7,µ=0.98 then for eight stage hearing aid design the output is as shown in

figure6.7.

The output obtained is same as that of the original input speech signal and the only difference

is that noise is reduced.

Figure 6.7 Waveform of the 5 second hearing aid output using parameters

=0.03, =0.7,µ=0.98

6.2 VHDL SIMULATION RESULTS.

6.2.1 Multipliers

The table below compares the cell usage of the three multipliers (SHIFT/ADD, BOOTH’S

and BOOTH WALLACE multiplier) for 8bit by 8bit multiplication and 16bit by 16 bit

multiplication. From the table we can see that the booth Wallace multiplier uses less

hardware compared to that of the shift/add multiplier and booth multiplier. The details are

given in appendix.

60

CELL
USUAGE

Shift/
add

multiplier
(8x8)

Shift/
Add

Multiplier
(16x16)

Booth’s
multiplier

(8x8)

Booth’s
multiplier

(16x16)

Booth
Wallace

Multiplier
(8x8)

Booth
Wallace

Multiplier
(16x16)

BELS 240 1000 333 975 167 697

LUT-1 1 1 0 0 0 0

LUT-2 14 1 37 36 5 9

LUT-3 34 186 28 66 51 234

LUT-4 74 290 116 399 83 328

MUXCY 56 240 64 228 0 0

MUXF5 11 27 14 2 28 126

XOR CY 49 225 61 219 0 0

Table6.1: Cell Usage for the three multipliers in VIRTEXII PRO (XC2VP4-5FF672)

Cells
used

Slices 4-LUT IO Delay

Booth
Wallace

multiplier

76 139 32 20.62ns

Booth’s
multiplier

109 192 32 24.41ns

Table 6.2 Power consumption and delay for two multipliers with 8X8 bits.

61

From the table 6.2 we can see that the using the booth Wallace multiplier consumes less

power compared to the booth multiplier and also that booth Wallace multiplier is faster than

booth multiplier. Hence the Booth Wallace multiplier is used for hearing aid design in

VHDL.

Cells used Slices Slice
Flip

Flops

4-LUT logic Shift
registers

IO

Booth
Wallace

multiplier

2583 196 4885 4866 19 32

Booth’s
multiplier

2684 183 5003 4979 24 32

Table6.3: Cell Usage for the Hearing Aid Component in VIRTEXII PRO (XC2VP4-5FF672)

62

6.8VirtexIIPRO kit

6.9 Hearing aid output in CRO.

63

6.2.2 Spectral Sharpening for Speech Enhancement in vhdl
 The amplitude values of the speech signal sampled at 8KS/s is rounded to 8 bits and stored in

a text file for VHDL simulation. The hearing aid is designed in VHDL and is tested using

different multipliers.

The first 250 samples are taken as input for the hearing aid in VHDL .The output obtained

through simulation is stored in a text file. The text file is read in MATLAB and is plotted as

shown in the figure6.10. The parameters used in VHDL are =0.04, =0.6, µ=0.98.

6.10 Comparison of the input speech signal with the output obtained using VHDL for 250

samples.

64

Figure 6.11 Comparison of the MATLAB output speech signal with the output obtained using

VHDL for 250 samples.

From the figure we can see that the output obtained using VHDL is slightly less in magnitude

than MATLAB output. This is due to rounding of the values and due to fixed point

multiplication. But from the figure 6.11 we see that the VHDL output follows the MATLAB

output.

Figure6.12 VHDL output of the hearing aid.

65

CHAPTER 7
CONCLUSION

66

In this thesis, the power savings associated with constructing a hearing aid using a different

multipliers customized to the needs of the application is investigated.

The hearing aid component for single stage and for multistage are executed in MATLAB. We

can see that the amplification depends on parameters of the analysis and synthesis filters and

also on the number of stages taken to implement the design.

 Specifically, we compare the relative power consumption of two designs, one using the

Booth’s multiplier, and the other using Booth Wallace multiplier. Each design is targeted in

to an FPGA implementation. The synthesis report after simulation is used to evaluate relative

power consumption. A hearing aid component, two multipliers, is implemented and

evaluated. The hearing aid channel is also constructed. The implementation using the Booth

Wallace multiplier is shown to provide significant power savings over that of booth

multiplier. The power consumed is more using Booth multiplier than booth Wallace and is

slower, shift/add multiplier is slower and consumes more power than booth Wallace

multiplier. Since the total power consumption is dominated by the FIR, IIR lattice filters, the

total power saving is on the order of the filters. Although the specific results presented for

hearing aid component in VHDL section are limited to a single stage, using the results of

single stage hearing aid in VHDL, we can compute the relative power savings for the hearing

aid for multistage processing.

The VHDL code for hearing aid component is dumped in VIRTEXII PRO kit and analyzed.

67

REFERENCES

1. F.Buergin, F.Carbognani and M.Hediger. Low Power Architecture Trade-offs in a

VLSI Implementation of an Adaptive Hearing Aid Algorithm. In IEEE, pages 558-

561, July 2006.

2. A. Schaub and P. Straub. Spectral sharpening for speech enhancement/noise

reduction. In IEEE Acoustics, Speech and Signal Processing (ICASSP-91), pages

993–996, April 1991.

3. A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design. Kluwer

Academic Publishers, Boston, Massachusetts, 1995.

4. A. D. Booth, “A signed binary multiplication technique”, Quart. J.Math., vol. IV, pt.

2, 1951.

5. L. P. Rubinfield, “A proof of the modified booth’s algorithm for multiplication,”

IEEE Trans. Computers, vol. 37, 1988.

6. Edwards,. “Signal Processing Techniques for a DSP Hearing Aid”, IEEE International

Symposium on Circuits and Systems, June 1998.

7. Eric Hemmeter. Reducing power consumption using customized numerical

representations in digital hearing aids. Master’s thesis, Washington University, May

2003.

8. M.J.Liao, C.F.Su, Chang and Allen Wu “A carry select adder optimization technique

for high-performance Booth-encoded Wallace tree multipliers” IEEE International

Symposium on Circuits and Systems 2002.

9. J. Wassner, H. Kaeslin, N. Felber, and W. Fichtner. Waveform coding for low-power

digital filtering of speech data. IEEE Transactions on Signal Processing, 51(6):1656–

1661, June 2003.

68

10. M.J.Liao, C.F.Su, Chang and Allen Wu “A carry select adder optimization technique

for high-performance Booth-encoded Wallace tree multipliers” IEEE International

Symposium on Circuits and Systems 2002.

11. Wallace, C.S., “A suggestion for a fast multiplier”, IEEE Trans. Electron. Compute.,

vol. EC-13, pp. 14-17, 1964.

12. Regalia, Phillip A., Adaptive IIR Filtering in Signal Processing and Control, Marcel

Dekker, Inc., 1995.

13. M. Nayeri and W. Jenkins, 1989, “Alternate realizations of adaptive IIR filters and

properties of their performance surfaces”, IEEE Transactions on Circuits and

Systems, Vol. 36, pp. 485-496.

14. Othman O.Khalifa, M.H Makhtar, and M.S. Baharom, “Hearing Aids System for

Impaired People”, International journal of computing and Information

science,vol.2,no.1, pp 23-26,2004.

15. “Digital system design using VHDL”, Charles H Roth, Jr.Thomson Brooks/Cole.

16. “Principles of CMOS VLSI Design, A Systems perspective”, N.H.E.Weste and

K.Eshraghian. 3rd ed. Pearson education 2003.

17. “Digital integrated circuits”, J.Rabey, 3rd ed. Prentice Hall-2003.

18. J. A. Maxwell and P. M. Zurek, “Reducing acoustic feedback in hearing aids,” IEEE

Trans. Speech Audio Processing, vol. 3, pp. 304–313, July 1993.

19. Sankarayya, N., Roy, K., and Bhattacharya, D. “Algorithms for Low-Power and

High-Speed FIR Filter Realization Using Differential Coefficients”. IEEE Trans. on

Circuits and Systems, Vol. 44, No. 6, pp. 488-497, Jun. 1997.

20. http://www.xilinx.com /

http://www.xilinx.com

69

APPENDIX

VIRTEXII-PRO DEVICE UTILIZATION SUMMARY

Booth Wallace multiplier

Selected Device : 2vp4ff672-5

 Number of Slices: 76 out of 3008 2%

 Number of 4 input LUTs: 139 out of 6016 2%

 Number of IOs: 32

 Number of bonded IOBs: 32 out of 348 9%

Speed Grade: -5

Maximum combinational path delay: 20.621ns

Booth Wallace multiplier
Selected Device : 2vp4fg256-5

 Number of Slices: 109 out of 3008 3%

 Number of 4 input LUTs: 192 out of 6016 3%

 Number of IOs: 33

 Number of bonded IOBs: 33 out of 140 23%

Maximum combinational path delay: 24.412ns

Highpass filter using BOOTH multiplier
Selected Device : 2vp4ff672-5

 Number of Slices: 241 out of 3008 8%

 Number of Slice Flip Flops: 41 out of 6016 0%

 Number of 4 input LUTs: 446 out of 6016 7%

 Number of IOs: 25

 Number of bonded IOBs: 25 out of 348 7%

 Number of GCLKs: 1 out of 16 6%

Minimum period: 61.917ns (Maximum Frequency: 16.151MHz)

 Minimum input arrival time before clock: 1.810ns

 Maximum output required time after clock: 65.296ns

70

Synthesis filter
Selected Device : 2vp4ff672-5

 Number of Slices: 175 out of 3008 5%

 Number of Slice Flip Flops: 32 out of 6016 0%

Number of 4 input LUTs: 323 out of 6016 5%

 Number of IOs: 41

 Number of bonded IOBs: 41 out of 348 11%

 Number of GCLKs: 1 out of 16 6%

Speed Grade: -5

 Minimum period: 83.074ns (Maximum Frequency: 12.037MHz)

 Minimum input arrival time before clock: 1.681ns

 Maximum output required time after clock: 26.924ns

Updating filter coefficients

Selected Device : 2vp4ff672-5

 Number of Slices: 1695 out of 3008 56%

 Number of Slice Flip Flops: 104 out of 6016 1%

 Number of 4 input LUTs: 3159 out of 6016 52%

 Number of IOs: 33

 Number of bonded IOBs: 33 out of 348 9%

 Number of MULT18X18s: 3 out of 28 10%

 Number of GCLKs: 1 out of 16 6%

Speed Grade: -5

 Minimum period: 457.801ns (Maximum Frequency: 2.184MHz)

 Minimum input arrival time before clock: 257.223ns

 Maximum output required time after clock: 4.061ns

Decorrelator filter
Selected Device : 2vp4ff672-5

 Number of Slices: 164 out of 3008 5%

 Number of 4 input LUTs: 292 out of 6016 4%

 Number of IOs: 40

 Number of bonded IOBs: 40 out of 348 11%

Maximum combinational path delay: 30.211ns

71

Hearing aid using booth’s multiplier
Selected Device : 2vp4ff672-5

 Number of Slices: 2684 out of 3008 89%

 Number of Slice Flip Flops: 183 out of 6016 3%

 Number of 4 input LUTs: 5003 out of 6016 83%

 Number used as logic: 4979

 Number used as Shift registers: 24

 Number of IOs: 32

 Number of bonded IOBs: 25 out of 348 7%

 Number of MULT18X18s: 3 out of 28 10%

 Number of GCLKs: 2 out of 16 12%

Speed Grade: -5

 Minimum period: 644.955ns (Maximum Frequency: 1.550MHz)

 Minimum input arrival time before clock: 3.176ns

 Maximum output required time after clock: 76.333ns

 Maximum combinational path delay: 4.548ns

Hearing aid using booth Wallace multiplier

Selected Device : 2vp4ff672-5

 Number of Slices: 2583 out of 3008 85%

 Number of Slice Flip Flops: 196 out of 6016 3%

 Number of 4 input LUTs: 4885 out of 6016 81%

 Number used as logic: 4866

 Number used as Shift registers: 19

 Number of IOs: 33

 Number of bonded IOBs: 33 out of 348 9%

 Number of MULT18X18s: 3 out of 28 10%

 Number of GCLKs: 1 out of 16 6%

Minimum period: 605.505ns (Maximum Frequency: 1.652MHz)

Minimum input arrival time before clock: 18.453ns

Maximum output required time after clock: 22.736ns

	certi.pdf
	nareshfinalchapters.pdf

