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Abstract

A distributed system is composed of multiple independent machines that communicate
using messages. Faults in a large distributed system are common events. Without fault
tolerance mechanisms, an application running on a system has to be restarted from scratch
if a fault happens in the middle of its execution, resulting in loss of useful computation.
Checkpoint and Recovery mechanisms are used in distributed systems to provide fault
tolerance for such applications. A checkpoint of a process is the information about the
state of a process at some instant of time. A checkpoint of a distributed application is a
set of checkpoints, one from each of its processes, satisfying certain constraints. If a fault
occurs, the application is started from an earlier checkpoint instead of being restarted
from scratch to save some of the computation. Several checkpoint and recovery protocols
have been proposed in the literature.

The performance of a checkpoint and recovery protocol depends upon the amount of
computation it can save against the amount of overhead it incurs. Checkpointing pro-
tocols should not add much overhead to the system. Checkpoiniting overhead is mainly
due to the coordination among processes and their context saving in stable storage. In
coordination checkpointing, for taking single checkpoint, it will coordinate with other
processes. Checkpoint initiating process coordinates with other processes through mes-
sages. If more number of messages are used for coordination then it increases the network
traffic. Which is not desirable. It is better to reduce the number of messages that are
needed for checkpoint coordination. In this thesis, we present an algorithm which reduces
the number of messages per process, that are needed for checkpoint Coordination and
there by decreasing the network traffic.

The total running time of an application is depend on the execution time of the ap-
plication and the amount of checkpointing overhead that incurs with the application. We
should minimize this checkpointing overhead. Checkpointing overhead is the combination
of context saving overhead and coordination overhead. Storing the context of applica-
tion over stable storage also increases the overhead. In periodic interval checkpointing,
sometimes processes takes checkpoints though it is not much useful. These unnecessary
checkpoints increase the application’s running time. We have proposed an algorithm
which determines checkpointing interval dynamically, based on expected recovery time,
to avoid unnecessary checkpoints. By eliminating unnecessary checkpoints, we can reduce

running time of a process significantly.
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Chapter 1

INTRODUCTION



Distributed systems today are ubiquitous and enable many applications, including
client-server systems, transaction processing, World Wide Web, and scientific computing,
among many others. The vast computing potential of these systems is often hampered
by their susceptibility to failures. Therefore, many techniques have been developed to

add reliability and high availability to distributed systems.

1.1 DISTRIBUTED SYSTEM

A distributed system consists of a collection of independent computers that appears
it’s user as a single coherent system. These computers are communicated with each other
by exchanging messages over a communication network. The machines in Distributed
System offer their resources for collective computation.

These resources can be of various types such as storage devices, printers, compu-
tational nodes etc. The main objectives of the distributed system is to achieve high
throughput for distributed application and to increase accessibility to resources not com-
monly availble to a single machine. A distributed application is composed of several
processes running on different nodes of a distributed system and communicating through

messages. Typical distributed system consist of following characterstics.

o Multiple Nodes - A distributed system is composed of multiple independent nodes
belonging to different computers, not merely multiple processors on the same com-

puter.

e Heterogeneity : - The nodes in a distributed system may consist of machines having

different architectures and possibly running different types of operating systems.

e Message Passing : - Processes on the different resource nodes may communicate
using diverse networking protocols over different networking technologies. There-
fore, the characteristics of the underlying communication links can be different.

The nodes in most distributed systems are reachable from one another.

e Concurrency : - Each of the nodes in a distributed system provides independent

functionality and operates concurrently with other nodes.

e Decentralized Control : - No single computer is necessarily responsible for config-

uration, management, or policy control for the whole distributed system. However,



some functionality may reside in a central node, or a set of nodes by necessity.

1.2 FAULT TOLERANCE IN DISTRIBUTED
SYSTEM

Distributed systems are composed of multiple computing resources connected by co-
communication links. Nodes in a Distributed System are susceptible to failures for many
different reasons. Failure of nodes and links are assumed to be independent, larger the
system, higher is its probability of failure. To provide fault tolerance, it is essential to
understand the nature of the faults that occur in these systems.

There are mainly two kinds of faults: permanent and transient [15]. Permanent faults
are caused by permanent damage to one or more components and transient faults are
caused by changes in environmental conditions. Permanent faults can be rectified by
repair or replacement of components. Transient faults remain for a short duration of
time and are difficult to detect and deal with. Hence, it is necessary to provide fault
tolerance particularly for transient failures in distributed system.

Distributed system should remain atleast partially available and functional even if the
some of their nodes or communication links fail or misbehave. Without fault tolerance
mechanisms, the system and applications running on it need to be restarted every time
a failure occurs. Many of the distributed systems applications are long running, taking
hours or even days in some cases to complete. If a fault occurs in the middle of a long
running application, long hours of useful computation will be lost. Thus an application
may take a long time to complete in the presence of such failures. In case of such failures
the distributed system as a whole needs to be restored to an error free state, existing
prior to failure. Fault tolerance techniques can allow applications to run to completion
in the presence of faults with minimal disruption.

For recovering the system from this failures, it is better to start from a previous error
free state. This fault tolerance can be achieved through the checkpointing [3]. Checkpoint
is defined as a designated place in a program at which normal processing is interrupted
specifically to preserve the status information necessary to allow resumption of processing
at a later time. On the other hand, rollback recovery for an application is defined as the

procedure for restarting the application process from a checkpoint stored in stable storage.



However, several issues with checkpoint and recovery technique arise in a distributed
system which runs applications having multiple concurrent processes, communicating
with each other via messages. Overheads of a checkpoint and recovery protocol include
protocol overhead during checkpointing, protocol overhead during recovery and overhead
for accessing stable storage. However, these overheads are different for different protocols.
The checkpoint and recovery protocols proposed in literature can be broadly classified

into the following four classes.

e Independent Checkpointing Protocols
The protocols in this class allow processes to take local checkpoints independent
of other processes in the distributed system. Such protocols are also referred to
as uncoordinated or asynchronous checkpointing protocols. The fault-free runtime
overhead is least for these kind of protocols because no coordination is needed
between the processes to take checkpoints. During recovery, processes coordinate
among themselves to determine a consistent global state. Therefore, recovery over-
head is high. Due to bad placement of checkpoints over the communication pattern,
the recovery protocol may require several rounds of coordination and rollbacks until
a consistent global checkpoint is found. As a result a lot of useful computation may
be lost and recovery overhead increases. Many of the local checkpoints taken may
not be part of any recovery line and they are called useless checkpoints. However,
processes may need to store all the local checkpoints since identifying which check-
points are useless at runtime can be costly. As a result storage requirement is high

for this kind of protocols.

e Coordinated Checkpointing Protocols
In this class of protocols a process does not take local checkpoints independently,
but synchronizes every checkpointing event with that of other processes, such that
every checkpointing effort results in a consistent global checkpoint. These protocols
are also known as synchronous checkpointing protocols. Checkpointing overhead
is high due to the synchronization effort involved. However, recovery is fast, since
processes only need to roll back to their latest local checkpoints. Storage space
requirement is also minimum, because the protocols require that only the latest

checkpoint be stored for recovery.



e Communication Induced Checkpointing Protocols (CIC)
This class comprises of protocols which try to combine the positive aspects of both
the independent and the coordinated checkpointing protocols. This class of pro-
tocols allows processes to take checkpoints independently, which are called basic
checkpoints. In addition, the protocols use the communication pattern to force
some extra checkpoints, called forced checkpoints. Forced checkpoints are taken to
avoid creation of useless checkpoints in the system. Processes decide if a forced
checkpoint should be taken or not, based on the information piggybacked on appli-
cation messages by the sender. Hence processes may end up taking more number
of local checkpoints in this case compared to that in the independent checkpointing
protocols. Since the protocol prevents creation of useless checkpoints, processes

need not keep all its checkpoints.

e Log based Recovery Protocols
The previous three classes contain protocols with purely checkpoint based recovery.
Log based recovery adopts a different strategy for recovery than the earlier three
classes. Log based recovery protocols assume that processes follow the piecewise
deterministic model (PWD) [29]. The execution of a process is modeled as a
series of deterministic execution intervals terminated by non deterministic events,
for example, the receive of a message. The first deterministic execution interval
of a process begins with the start of the process. Every deterministic execution
interval terminates with the first non deterministic event since its initiation. The
same non deterministic event starts the next deterministic execution interval. If the
non deterministic event e terminates an interval I and initiates an interval J, and
if the event e can be replayed exactly at the end of interval J, then the execution of
the interval J can be repeated. Recovery in this class of protocols depends on this
principle. These protocols require that the content of the application messages and

the information to replay them in order be stored and available during recovery.

During recovery, the failed process is restarted and all the application messages
received by it before failure is replayed. By the PWD model, the failed process
can retrace the execution path and will eventually arrive at a state just before the
failure, i.e., the process is rolled forward. To avoid a complete restart of the failed

process, checkpointing is used in conjunction with message logging. The failed



process can then resume execution from a checkpointed state instead of a complete
restart. This bounds the amount of rollback a process may suffer and recovery
becomes faster. But the overhead of message logging during failure-free execution

is a drawback for these protocols.

1.3 MOTIVATION

A distributed system employing checkpoint and recovery protocols provides improved
throughput by virtue of its ability to recover a process from failure without complete
restart of the application. In a failure prone environment, a checkpoint and recovery
protocol saves recomputation and as a result reduces application completion time and
increases throughput of the system. Better the performance of a checkpoint and recovery
protocol, better is the throughput of a system.

The performance of a checkpoint and recovery protocol depends on the overheads it
incurs against the amount of computation the protocol can save during recovery. The
amount of computation a checkpoint and recovery protocol saves can be measured by
the amount of reexecution that has to be done after a rollback. Smaller the reexecution,
higher is the amount of computation saved.

The overheads incurred by a checkpoint and recovery protocol are dependent on
many system and application characteristics of the checkpoint and recovery protocol.
For example, if the fault frequency of a system is low, it makes sense to take check-
points less frequently to reduce the checkpointing overhead. Similarly, if the application
is communication-intensive and large loss of computation is undesirable, a coordinated
checkpoint and recovery protocol may be preferred over an uncoordinated one to avoid
possible cascaded rollbacks during recovery. For example, choosing a low checkpointing
frequency, i.e., high checkpointing interval, may result in a large loss of computation in
case a fault does happen.

Protocols involving communication among processes are affected by network traffic.
Such a protocol incurs less overhead on a high speed network and high overhead in low
speed ones. In addition, the application also affects the performance of a checkpoint and
recovery protocol. For example in a message log-based recovery, all application messages
are logged. So, message logging overhead is directly proportional to the number and size

of application messages.



The total running time of an application is depend on the execution time of the ap-
plication and the amount of checkpointing overhead that incurs with the application. We
should minimize this checkpointing overhead. Checkpointing overhead is the combination
of context saving overhead and coordination overhead. Storing the context of application

over stable storage also increases the overhead.

1.4 OBJECTIVES OF THESIS

The main objective of our research work is to develop efficient checkpoitning algorithms.

To address this broad objective, we identify the following goals:

e We wish to develop an efficient checkpointing algorithm in Distributed System
which incurs the less coordination overhead and there by reducing the network

traffic.

e Next, we want to propose an algorithm which determines checkpoint interval dy-

namically to get the more advantages over the periodic interval checkpointing.

1.5 ORGANIZATION OF THESIS

The rest of thesis work is organized as follows.
Chapter 2 presents discussion and literature survey on fault tolerance techniques in

general and checkpoint and recovery protocols in particular.

Proposed coordinated checkpointing algorithm which reduces the chechpoint coordi-

nation overhead and we compared it with previously existed algorithms in chapter 3.

Chapter 4 presents dynamic interval deteminitation for incremental checkpoiting al-
gorithm for reducing context overhead of checkpoints. First, we discussed some basic

definitions of probability and calculus. Next, we derived some intermediate derivations.

Chapter 5 concludes the thesis with a summary of our contributions. We also briefly

discuss the possible future extensions to our work.



Chapter 2

BACKGROUND AND RELATED
WORK



Checkpoint is defined as a designated place in a program at which normal pro-
cessing is interrupted specifically to preserve the status information necessary to allow
resumption of processing at a later time. Checkpointing is the process of saving the
status information. A checkpoint of a process is the information about the state of a
process at some instant of time. Fault tolerance through checkpoint and recovery tech-
niques includes taking checkpoint of an application process periodically and logging the
checkpoint in a stable storage which is immune to failures. Checkpoint of an application
process is the information about the state of the process and can be used to restart it
from a state corresponding to the checkpoint. On the other hand, roll back recovery for
an application is defined as the procedure for restarting the application process from a
checkpoint stored in stable storage.

A checkpoint can be saved on either stable storage or the volatile storage of another
process, depending on the failure scenarios to be tolerated. For long running scientific
applications, checkpointing and rollback recovery can be used to minimize the total exe-
cution times in the presence of failures.

For an application involving a single process checkpoint and recovery is simple. In
the event of a node failure, the application process is restarted from latest checkpoint,
i.e. rolled back it’s latest checkpoint. However, several issues with checkpointing and
recovery arise in distributed system which runs applications having multiple concurrent

processes, communicating with each other via messages.

2.1 ASPECTS OF CHECKPOINTING

Some of the aspects to be considered with checkpointing are frequency of checkpoint-

ing, contents of a checkpoint and methods of checkpointing [15].

2.1.1 Frequency of Checkpointing

A checkpointing algorithm executes in parallel with the underlying computation.
Therefore, the overheads introduced due to checkpointing should be minimised. Check-
pointing should enable a user to recover quickly and not to lose substantial computation
in case of an error, which necessitates frequent checkpointing and consequently significant
overhead. The number of checkpoints initiated should be such that the cost of information

loss due to failure is small and the overhead due to checkpointing is not significant. This



depends on the failure probability and the importance of the computation. For example,
in a transaction processing system where every transaction is important and information
loss is not permitted, a checkpoint may be taken after every transaction, increasing the

checkpointing overhead significantly.

2.1.2 Contents of a Checkpoint

The state of a process has to be saved in stable storage so that the process can be
restarted in case of an error. The state context includes code, data and stack segments
along with the environment and the register contents. Environment has the information
about the various files currently in use and the file pointers. In case of message pass-
ing systems, environment variables include those messages which are sent and not yet

received.

2.1.3 Methods of Checkpointing

The methodology used for checkpointing depends on the architecture of the system.
Methods used in multiprocessor systems should incorporate explicit coordination unlike
uniprocessor systems. In a message passing system, the messages should be monitored
and if necessary saved as part of the global context. The reason is that, messages intro-
duce dependencies among the processors. On the other hand, a shared memory system
communicates through shared variables which introduce dependency among the nodes
and thus, at the time of checkpointing, the memory has to be in a consistent state to

obtain a set of concurrent checkpoints.

2.2 OVERHEADS OF CHECKPOINTING

During a failure free run, every global checkpoint incurs coordination overhead and

context saving overhead in a distributed system. We define them as follows.

e Coordination Overhead
In a distributed system, coordination among processes is needed to obtain a con-
sistent global state. Special messages and piggy-backed information with regular
messages are used to obtain coordination among processes. Coordination overhead

is due to these special messages and piggy-backed information.
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e Context Saving Overhead
The time taken to save the global context of a computation is defined as the context
saving overhead. Overhead for checkpoint storage in stable storage contributes a
major part of the overhead of checkpoint and recovery protocols. This overhead is

proportional to the size of the context.

2.3 CONSISTENT SYSTEM STATES

In distributed system, a computation node can take checkpoints of its local processes
only and such checkpoints are called local checkpoints [7]. A global checkpoint of a
distributed system is defined as set of local checkpoints, one from each of its processes
in the system. After recovery the system must be in a consistent state. A global state
of a message passing system is a collection of the individual states of all participating
processes and of the states of the communication channels. Intuitively, a consistent
global state is one that may occur during a failure free, correct execution of a distributed
computation. More precisely, a consistent system state is one in which if a processs state

reflects a message receipt, then the state of the corresponding sender reflects sending that

Consistent state | Inconsistent state
Py . > P -

message.

w] =
5 p P B
. > P

(@) {b)

Figure 2.1: An example of a consistent and inconsistent state.

For example, Fig 2.1 shows two examples of global states, a consistent state in
Fig 2.1(a) and an inconsistent state in Fig 2.1(b). Note that the consistent state in

Fig 2.1(a) shows message m; to have been sent but not yet received. This state is

11



consistent, because it represents a situation in which the message has left the sender
and is still travelling across the network. On the other hand, the state in Fig 2.1(b) is
inconsistent because process P, is shown to have received msy but the state of process
P, does not reflect sending it. Such a state is impossible in any failure free, correct
computation. Inconsistent states occur because of failures. For example, the situation
shown in part (b) of Figure 2.1 may occur if process P; fails after sending message my to
P, and then restarts at the state shown in the figure. A fundamental goal of any rollback
recovery protocol is to bring the system into a consistent state when inconsistencies occur
because of a failure. The reconstructed consistent state is not necessarily one that has
occurred before the failure. It is sufficient that the reconstructed state be one that could

have occurred before the failure in a failure free, correct execution.

2.4 ISSUES IN CHECKPOINTING

In concurrent systems, several processes cooperate by exchanging information to ac-
complish task. The information exchanges through the message passing. In such system,
if one of the cooperating process fails and resumes execution from a recovery point, then
the effects it has caused at other processes due to the information it has exchanged with
them after establishing the recovery point will have to be undone. To undo the effects
caused by a failed process at an active process, the active process must also rollback to
an earlier state. Rolling back processes in concurrent system is more difficult than in
the case of a single process. The following discussion illustrates how the rolling back of

processes can cause further problems [20].

2.4.1 Orphan Messages and Domino Effect

Consider the three processes X, Y and Z are running concurrently in Fig 2.2. The
parallel lines are showing the executions of the processes. These processes are commu-
nicated through exchange of messages. Each symbol ’'[" marks a recovery point to which
process can be rolled back in the event of a failure.

If the process X is to be rolled back, it can be rolled back to the recovery point x3
without affecting any other process. Suppose that Y fails after sending message m and
is rolled back to ys. In this case, the receipt of m is recorded in x3, but the sending of m

is not recorded in y,. Now we have a situation where X has received message m from Y,

12
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Figure 2.2: Effects of Orphan Messages and Domino Effect

but Y has no record of sending it, which corresponds to an inconsistent state. Under such
circumstances, m is reffered to as an orphan message and process X must also roll back.
X must roll back because Y interacted with X after establishing its recovery point ys.
When Y is rolled back to s, the event that is responsible for the interaction is undone.
Therefore, all the effects at X caused by the interaction must also be undone. This can
be achievied by rolling back X to recovery point x,. Likewise, it can be seen that, if Z is
rolled back, all three processes must rollback to their very first recovery points, namely,
x1, Y1, 21. This effect, where rolling back one process causes one or more processes to roll

back, is known as the domino ef fect and orphan messages are the cause.

2.4.2 Lost Messages

xl

X 7 —
it

Y

Tl

¥

Fai_l_ure

Figure 2.3: Lost Messages

Suppose that checkpoints 1 and y; in Fig 2.3 are chosen as the recovery points for
processes X and Y, respectively. In this case, the event that sent message m is recorded

in xy, while the event of its receipt at Y is not recorded in y;. If Y fails after receiving

13



message m the system is restored to state xy, y;, in which message m is lost as process X
is past the point where it sends message m. This condition can also arise if m is lost in

the communication channel and processes X and Y are in state z; and ¥y, respectively.

2.4.3 Problem of Livelocks

In rollback recovery, livelock is a situation in which a single failure can cause an infinite
number of rollbacks, preventing the system from making process. A livelock situation in

a distributed system is shown in Fig 2.4.
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Figure 2.4: State Before Livelock

Fig 2.4 illustrates the activity of two processes X and Y until the failure of Y. Process
Y fails before receiving message ni, sent by X. When Y rolls back to v, there is no record

of sending message m1, hence X must rollback to x;.
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Figure 2.5: Livelock Situation

When process Y recovers, it sends out ms and receives n; (Fig 2.5). Process X,
after resuming from x, sends ny and receives my. However, because X rolled back, there

is no record of sending n; and hence Y has to roll back for the second time. This forces

14



X to rollback too, as it has received msy and there is no record of sending ms at Y. This

situation can repeat indefinitely, preventing the system from making any progress.

2.5 DIFFERENT TYPES OF CHECKPOINTING
PROTOCOLS

Several checkpointing and recovery protocols are available in the literature [11]. These
protocols are classified into following categories. (i) Independent checkpointing protocols
(ii) Coordinated checkpointing protocols (iii) Communication induced checkpointing pro-

tocols (iv) Log based recovery protocols

2.5.1 Independent Checkpointing Protocols

The protocols in this class allow to take local checkpoints independent of other pro-
cesses in the distributed system. Such protocols are also reffered as uncoordinated or
asynchronous checkpointing protocols. The fault free run time ocerhead is least for these
kind of protocols because no coordination is needed between the processes to take check-
points. During recovery, processes coordinate among themselves to determine a consistent
global state. Therefore, recovery overhead is high. Due to bad placement of checkpoints
over the communication pattern, the recovery protocol may require several rounds of co-
ordination and rollbacks until a consistent global checkpoint is found. As a result a lot

of useful computation may be lost and recovery overhead increases.
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Figure 2.6: Domino Effect

Many of the local checkpoints taken may not be part of any recovery line and they are
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called useless checkpoints. However, processes may need to store all the local checkpoints
since identifying which checkpoints are useless at runtime is costly. As a result storage
requirement is high for this kind of protocols. There is also a possibility of domino effect
which may cause a loss of large amount of useful computation [26]. Fig 2.6 shows a
checkpoint and communication pattern involving two processes, which can be affected by
domino effect. It can be seen from the figure that all the possible global checkpoints are
inconsistent and therefore all local checkpoints are useless checkpoints. If a fault occurs,
the recovering process will force the other process to roll back to its previous checkpoint,
until both the processes are rolled back to their initial state.

In order to determine a recovery line during recovery, processes record their dependen-
cies with checkpoints of other processes during failure free execution. The straightforward
way to keep track of such information is by using a set of messages counters, one for each
of the processes with which it communicates. When a process sends out an applica-
tion message, it increments the counter value corresponding to the receiver process, and
tags the value as an identification number to the message. The processes also maintain
records of the highest numbered message received from each of its senders. Processes
store both these send and receive information along with its checkpoints and this is used
to determine inconsistent checkpoints during recovery.

A checkpoint of a process P is inconsistent with that of a process Q if the highest
message id received from the process Q) recorded in P’s checkpoint is higher than the send
counter value corresponding to P as recorded in Q’s checkpoint. Then process P has to
roll back again. This may lead to several rounds of coordination and cascaded rollbacks
until a consistent global checkpoint is found. These dependency tracking protocols add
some overhead during fault free execution. In case of a fault, all the processes have to
coordinate among themselves to decide upon a recovery line to which they will roll back.
Therefore, recovery overhead is high in most cases. This approach is very reasonable if
faults are rare in the system under consideration. There is also a possibility of domino

effect during recovery. This class of protocols does not inherently support output commit.

2.5.2 Coordinated Checkpointing Protocols

In this class of protocols a process does not take local checkpoints independently,

but synchronizes every checkpointing event with that of other processes, such that ev-
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ery checkpointing effort results in a consistent global checkpoint. These protocols are
also known as synchronous checkpointing protocols. This class of protocols ensures that
whenever a process takes a local checkpoint, all other processes in the system also take
their respective local checkpoints. As a result every local checkpointing effort trans-
lates into a global checkpointing activity. They are free from domino effect. Storage
space requirement is minimum for these protocols, since they require that only the latest
checkpoint be stored for recovery. All the checkpoints taken with successful coordination
are useful, i.e., the recovery line steadily progresses with every checkpoint. All the latest
local checkpoints are part of a consistent global checkpoint and therefore recovery time is
lower compared to independent protocols. However, due to the effort of synchronization
involved in every checkpointing activity, checkpointing overhead is high.

Coordinated checkpointing protocols can be either blocking or non blocking.

¢ Blocking protocols
A straightforward approach to coordinated checkpointing is to block inter process
communication until the checkpointing protocol ompletes [8, 31] . The protocol
is initiated by a coordinator. The coordinator sends a request to all processes
asking them to checkpoint. On the receipt of the request the process blocks normal
execution, takes a tentative checkpoint and sends an acknowledgment message to
the coordinator. On receipt of the acknowledgment messages from all the processes,
the coordinator sends a message indicating the end of the protocol. On receipt of
this message, all processes make their tentative checkpoints permanent, remove old
permanent checkpoints and resume normal execution. Acharya and Badrinath [1]
have devised a blocking coordinated checkpointing protocol on the assumption of
causal order message delivery by the underlying communication system. Koo and
Toueg [16] proposed a blocking coordinated checkpointing protocol which allows
failure during checkpointing while storing only two local checkpoints per process.
They showed that storage of two checkpoints is the minimal requirement to tolerate
failure during checkpointing. Another important feature of their protocol is that

only a subset of the processes need to take checkpoint.

e Non blocking protocols
The problem with blocking coordinated checkpointing protocols is that the pro-

cesses are not allowed to execute until the coordination is complete. Hence check-

17



pointing overhead is high. Chandy and Lamport’s [7] distributed snapshot protocol
provides a non blocking coordinated checkpointing protocol over reliable FIFO links.
They use the property of the underlying link to achieve coordinated checkpointing
without the explicit two round coordination protocol. The idea is to use a special
message, called a marker message, which is a checkpoint request message carrying
the checkpointing interval number. The protocol is similar to the flooding protocols
used in distributed systems. The process which first initiates coordination blocks
the local process, takes a local checkpoint, sends a marker message to all its neigh-
boring processes and then unblocks the local process. The receiver of a marker
message, if has not already received a similar message, follows the same procedure
as that of the coordinator and forwards the marker message to all its neighbors.
Lai and Yang [17] relaxed the FIFO constraint by piggybacking the marker on ev-
ery post checkpoint message. The same affect can be obtained by marking local
checkpoints by a sequence number, called checkpoint index and piggybacking the

current checkpoint index value on every application message [12, 27].

Similar to blocking coordinated checkpointing protocols, attempts have been
made to construct non blocking coordinated checkpointing protocols which require
that a minimal number of processes take checkpoints. The coordination protocols
discussed above involve all the processes in the system and therefore raises concern
for scalability of the protocols. Prakash and Singhal [25] observed that only those
processes which have communicated since the last checkpoint require to checkpoint
again. A minimal number of processes, only those whose present states are causally
dependent on the current state of the coordinator, need to participate. They pro-
posed a non blocking coordinated checkpointing protocol where every process keeps
track of the processes which are causally dependent on its present state and the
protocol involves only those processes which are causally related to the coordina-

tor.

However, Cao and Singhal found a flaw in Prakash and Singhal’s protocol and
went on to prove the impossibility of a non blocking coordinated protocol where
a minimal number of processes participate [5] . Cao and Singhal also proposed a

non blocking coordinated checkpointing protocol [6] , using mutable checkpoints,
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which reduces the number of checkpoints to be stored in stable storage. Mutable
checkpoints can be stored in the volatile memory and are converted into permanent

checkpoints and stored in stable storage only when a new recovery line is developed.

Another approach to non blocking coordinated checkpointing protocol is to avoid
explicit coordination by message passing and use synchronous clocks to achieve im-
plicit coordination. In modern distributed systems many applications require clocks
of the processors to be approximately synchronized. Many distributed systems run
clock synchronization protocol at the background to keep their clock differences
within some guaranteed bound [18] . Such loosely coupled synchronized clocks can
facilitate checkpointing effort without explicit coordination . A process takes a lo-
cal checkpoint and blocks all receives for a period which is equal to the maximum
deviation between clocks plus the maximum time to detect a failure in the system.
It can be shown that all its local checkpoints of processes form a global recovery

line.

2.5.3 Communication Induced Checkpointing Protocols (CIC)

This class comprises of protocols which try to combine the advantages of both the
independent and the coordinated checkpointing protocols. This kind of protocols take
two types of checkpoints, namely basic and forced checkpoints. Basic checkpoints can
be taken independently by the processes, while forced checkpoints are extra checkpoints
forced by the communication pattern to avoid the creation of useless checkpoints in other
processes. These protocols ensure that every checkpoint taken by processes is in some
recovery line. Since local checkpoints are taken independently these protocols suffer less
overhead for checkpointing, and yet avoid domino effect. But these protocols may end
up taking more number of checkpoints compared to that in independent checkpointing
protocols. The failed process can determine the recovery line without any coordination
with other processes. Other processes need to roll back to the recovery line sent by the
failed process. Therefore recovery is simple.

The protocols in this class piggyback protocol-specific information on every applica-
tion messages. The receiver process then analyzes this information to decide whether any
forced checkpoint is required or not. If so, the process first takes a checkpoint and then

delivers the message to the application. Informally, the decision is based on whether the
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checkpoint and communication pattern will create any useless checkpoints in the system.
If there is such a possibility, a forced checkpoint is taken to break the pattern. The
decision is based on the notion of a Z — cycle and a Z — path, based on the zigzag path
formulation [7]. A Z — path is the same as a zigzag-path. A Z-cycle is a Z-path that
begins and ends in the same checkpoint interval (Fig 2.7). CIC protocols can be broadly
sub-divided into two classes, index — based coordination protocols and model — based
checkpointing protocols.

In index based coordination checkpointing protocol, a process takes both basic and
forced checkpoints, and all local checkpoints of a process are indexed by a monotonically
increasing value. The index value is piggybacked on all application messages. When a
process receives an application message, it checks whether the piggybacked index value
is higher than its own. If so, then it updates its own index value to the piggybacked
index value and takes a forced checkpoint. It then delivers the message to the application
process. The protocol ensures that local checkpoints in different processes having the same
index value form a recovery line. A more sophisticated protocol where processes transmit
more information on application messages to reduce the number of forced checkpoints
was proposed in [13].

A model based checkpointing protocol defines a model of checkpoint and communica-
tion pattern which contains no useless checkpoints. For example, a model of checkpoint
and communication pattern can be defined as the one which does not have any Z-cycle.
A checkpoint and communication pattern, free of Z-cycle, does not contain any useless
checkpoints. Therefore, a protocol which enforces such a model, ensures that no useless
checkpoint is generated in the system. When a process detects a possibility of violation

of any constraints put forward by the model, it takes a forced checkpoint. All decisions
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are taken locally with the help of the information gathered from other processes through
piggybacked values. Since the processes take independent decisions, the possibility of vio-
lation of the model can be detected by multiple processes at the same time and all of them
may take preventive actions. Therefore, processes may end up taking more checkpoints
than actually required.

Wang [32] has classified these protocols as follows:.

e NRAS or No — Receive — After — Sendprotocol, where a checkpoint has to be

taken before the first message received after a message has been sent.

e C'AS or Checkpoint — After — Send, where a checkpoint is forced after every send

event.

e C'BR or Checkpoint — Before — Receive, where a checkpoint is forced before all

receive events.

e CASBR or Checkpoint — After — Send and Before — Receive, is a combination of
CAS and CBR protocols. Here, checkpoints are taken after a message is sent and

also before a message is received.

e FFDAS or Fixed — Dependency — After — Send, uses checkpoint sequence num-
ber (csn) to track dependency among processes. Every message sent carries this
number. If a received message carries a csn value higher than the local csn value
of the receiver, the receiver process first updates its local csn value to the received
csn value, then takes a forced checkpoint, and then delivers the message to the

application process.

e ['DI or Fixed Dependency Interval, protocols force checkpoints before depen-
dency of a process changes due to some receive event. Manivannan and Singhal

have proposed such a protocol [21].

Helary et. al. showed that since the checkpoint index number in index based coordination
protocols always increases along a Z-path, no Z-cycle can be formed. They have also
proved that index based checkpointing is a form of model based checkpointing, specifically

belonging to the FDAS class.

21



2.5.4 Log based Recovery Protocol

The previous three classes contain protocols with purely checkpoint based recovery.
Log based recovery adopts a different strategy for recovery than the earlier three classes.
These protocols log all application messages. When a failed process is restarted, the
logged messages are replayed to it exactly at the same instances as they were received
before its failure. The PWD model ensures that the same execution path is retraced
by the process in this technique, i.e., the process can be rolled forward. The execution
of a process is modeled as a series of deterministic execution intervals terminated by
non deterministic events, for example, the receive of a message. The first deterministic
execution interval of a process begins with the start of the process. Every deterministic
execution interval terminates with the first non deterministic event since its initiation.
The same non deterministic event starts the next deterministic execution interval.

If the non deterministic event e terminates an interval I and initiates an interval J
and if the event e can be replayed exactly at the end of interval I, then the execution
of the interval J can be repeated. Recovery in this class of protocols depends on this
principle. These protocols require that the content of the application messages and the
information to replay them in order be stored and available during recovery.

During recovery the failed process is restarted and all the application messages re-
ceived by it before failure is replayed. By the PWD model, the failed process can retrace
the execution path and will eventually arrive at a state just before the failure, i.e., the
process is rolled forward. To avoid a complete restart of the failed process, checkpointing
is used in conjunction with message logging. The failed process can then resume execu-
tion from a checkpointed state instead of a complete restart. This bounds the amount of
rollback a process may suffer and recovery becomes faster. But the overhead of message
logging during failure free execution is a drawback for these protocols. Checkpointing is
used in conjunction with log based recovery techniques to bound the amount of rollback.
Three classes of message log based recovery protocols have been proposed based on three
types of message logging techniques. The problem of output commit is inherently handled

by protocols in this class.

e Pessimistic Message Logging Protocols
This kind of protocols takes a conservative view of failure in that a fault can occur

immediately after a nondeterministic event. Therefore, they ensure that all non
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deterministic events are logged before it can affect the state of a process. All receive
messages are logged in the stable storage before it is delivered to the application.
Therefore this technique is also referred to as synchronous logging. The process
which logs a message gets blocked until the message is logged in some stable storage.
In this class of protocols, only the failed process needs to recover and the recovering

process can recover upto the last state before failure. No orphan message is created.

This class of protocols always support output commit since the whole history
of messages are always logged in the stable storage. Since only the failed process
requires to recover, independent checkpointing protocols can be used in conjunction
with this class of protocols. So, a process can choose any checkpointing frequency to
limit its rollback. Garbage collection is simple because all checkpoints and message
log of events prior to the most recent checkpoint can be purged. The overhead of
synchronous logging can be reduced by special hardware or by bounding the number

of tolerable failures.

Optimistic Message Logging Protocols

Unlike pessimistic message logging protocols, protocols in this class log messages
in the volatile memory and therefore message logging overhead is lower. Message
logs in volatile memory are asynchronously flushed to stable storage periodically,
without blocking the application processes [28, 29, 33] . This class of protocols
optimistically assumes that failure will not occur until the volatile log is flushed
into the stable store which allows the failed process to recover to the last state

before its failure similar to pessimistic protocols.

However, when a process fails, all message logs stored in its volatile memory are
lost and the process can not roll forward to its latest state before failure. If the
recovering process had sent messages in the interval between its recovered state and
the state before its failure, then such messages become orphan messages. Therefore,

the recovering process may create orphan processes in the system.

Consider a situation depicted in Fig 2.8. Let the message m; be logged by the

process P in its volatile log. The process P fails after sending message mo and rolls
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Figure 2.8: Orphan process

back to p;. Since m; is not recorded, the process can not roll forward to the state
before it receives my. So msy becomes an orphan message and () becomes an orphan
process. The possibility of creation of orphan processes complicates the recovery
and garbage collection processes. Also, processes must be blocked in order to ensure

that all volatile message logs are flushed to stable storage to ensure output commit.

To perform rollbacks correctly, optimistic logging protocols track causal depen-
dency during failure free run. During recovery, this information is used to calculate
a global state with no orphan processes. The recovery process is similar to that in
independent checkpointing protocols. Multiple processes may need to roll back to
avoid the creation of an orphan process. Processes need to store multiple check-

points.

In Fig 2.8 the process @ is forced to roll back to ¢ in order to bring the system
to a consistent state. Moreover, since at failure multiple processes may need to
roll back, output commit generally requires the coordination of multiple processes.

Recovery can be either synchronous or asynchronous.

—Synchronous Recovery

In this kind of protocols every process maintains information about causal depen-
dency between processes, developed due to application message transmissions. This
information is then used by the recovering process to determine the processes which
need to roll back to avoid the creation of orphan processes.

—Asynchronous Recovery

In contrast to synchronous recovery, asynchronous recovery requires that processes
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participate in multiple rounds of coordination to identify the processes which need
to recover and a global state where they can rollback [29]. The process is similar
to the recovery procedure for independent checkpointing protocol. It was shown
that an exponential number of message may be exchanged to determine such a
global state. The advantage is that, unlike synchronous recovery protocols, these
protocols use very small piggybacked information and need not do elaborate book-
keeping of dependency informations, and as a result have less failure free overhead.

But recovery may become costly.

e Causal Message Logging Protocols
This class of protocols uses the application communication pattern to ensure that
whenever a process P sends a message m, P is recoverable atleast upto a state
beyond the send event e? | so that even if P fails, the receiver of m need not roll
back. The protocol satisfies this condition by ensuring that the messages required
to roll forward P beyond the state ef are either stored in stable storage or are
available in the volatile memory of some non failed processes. Casual logging has
the advantage of the low failure free overhead of optimistic logging, while retaining

most of the advantages of the recovery of pessimistic logging [2, 10]. However,

recovery and garbage collection procedures are complex.

2.6 REDUCTION OF CHECKPOINTING
OVERHEAD

Overhead of saving checkpoint over stable storage contributes a major part of the
overhead of checkpoint and recovery protocols. Studies of performance evaluation of
checkpointing protocols indicate that transfer of checkpointed information to stable stor-
age incurs large overhead . The simplest way to store a checkpoint is to suspend the
process until the checkpoint is written on stable storage. However several techniques are

proposed to reduce this overhead.

e Concurrent Checkpointing
Concurrent checkpointing is a hardware assisted method which allows checkpoints
to be stored in a stable storage while the process is in execution. In this technique

the address space of a process is protected from update [23] . If a process attempts
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to write in a page, a fault is signaled. The page is then copied into a different

unprotected buffer.

Pagelevel Incremental Checkpointing(PIC)

Pagelevel incremental checkpointing [24] only writes those pages which have been
modified since the last checkpoint. It can be implemented using memory protec-
tion hardware or through implementation of dirty bit in operating systems . An
alternative method is to directly compare the current checkpoint with the previous
checkpoint, calculate the difference and finally store the difference only. However,
the overhead of computation of the difference may offset the gain achieved from

incremental storage.

System-level vs Application-level Checkpointing

Checkpoint of an application process can either be captured with system level check-
pointing where the support for checkpointing is built in the kernel [4]. Alternatively,
the application can define and store its state with the help of libraries linked with
it. System level implementations are more powerful, because they can capture user
level data and also have access to kernel level data structures which support ap-
plications. But the checkpoints are not portable between different systems. On
the other hand application level checkpoints are portable. But this kind of check-
pointing cannot access the kernel level data structure, such as open file descriptors,
message buffers, etc. An advantage of application level checkpointing is that the
application can choose a point in the program where checkpoint size is small and

store the state.

Diskless Checkpointing

This method [22] was proposed by Plank which uses volatile memory as stable
storage. The method uses coordinated checkpointing protocol as the basic check-
pointing service. All the local checkpoints are collected and encoded in a processor
(called the checkpoint processor) and a copy of it is stored in several volatile stor-
ages. To tolerate f number of failures the encoded global checkpoint is stored in
f + 1 volatile memories. Therefore, even after f concurrent failures, the global

state is still recoverable.

With diskless checkpointing, the processor saves its state in memory, rather than

on disk. In its simplest form, diskless checkpointing requires an in-memory copy
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of the address space and registers. If a rollback is required, the contents of the
address space and registers are restored from the in-memory checkpoint. Note that
this checkpoint will not tolerate the failure of the application processor itself; it
simply enables the processor to roll back to the most recent checkpoint if another
processor fails. If a rollback is required, the contents of the address space and
registers are restored from the in-memory checkpoint. Note that this checkpoint
will not tolerate the failure of the application processor itself; it simply enables the

processor to rollback to the most recent checkpoint if another processor fails.

e Forked Checkpointnig
The application protocols that are discussed till now, are halting their execution
while taking checkpoints. If application takes more number of checkpoints then
its execution time will be increases because of its halting execution. This problem
can be overcome by forked checkpointing. Here, it makes a copy of the program’s
data space and to use an asynchronously executing thread of control to write the
checkpoint file. This is called “ main-memory checkpointing” [14] and improves
checkpoint overhead if there is enough physical memory to hold the checkpoint,
as the saving of the checkpoint to disk is overlapped with the execution of the

application.

The Unix fork() primitive provides exactly the mechanism needed to implement

main memory checkpointing.

e Checkpoint Compression
With checkpoint compression, a standard compression algorithm like LZW [30] is
used to shrink the size of the checkpoint. While this may be successful at reducing
checkpoint size, it only improves the overhead of checkpointing if the speed of com-
pression is faster than the speed of disk writes and if the checkpoint is significantly
compressed. For uniprocessor checkpointing this is not the case. Compression has

only been shown to be effective in parallel systems with disk contention.

A Coordination checkpoint algorithm has proposed in next chapter which reduces the

number of messges that are needed for coordination, for taking a checkpoint.
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Chapter 3

A CHECKPOINTING
ALGORITHM FOR REDUCING
COORDINATION OVERHEAD
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To overcome the problems that are discussed in Sec 2.4, R. Koo and S. Toueg has
proposed an algorithm [16]. The algorithm [16], which is caused to take minimal number
of processes, is forced to take checkpoints. This algorithm overcomes these problems by
dividing the entire thing into two phases and having some assumptions. In first phase,
an initiating process takes a tentative checkpoint and sends the checkpoint request to all
the processes that are in its cohort. The processes that are received checkpoint request
message, takes a tentative checkpoint if it is intersted in taking checkpoint and send “yes”
as its response to the initiator. The processes that are not interested in checkpointing
will send "no” as its response to the initiator.

In second phase, if the initiator receives “yes” from all the processes in its cohort then
it will make the decision as " make tentative checkpoint as permanent” else it will make
the decision as “discard the tentative checkpoint”. After making the decision, initiator
informs this decision to all the processes in it’s cohort. After receiving the decision from

the initiator , the processes will act accordingly.

3.1 PROPOSED ALGORITHM

The algorithm in [16] takes three messages per processes for a single checkpoint co-
ordination. One checkpoint request message, one response message and final ddecision
message. Total three messages per process are needed for a single checkpoint coordina-
tion. If the number of processes in the system increases then the total number of messages
for coordination will be increases. If the number of messages in the network increases
then it increases congestion in the network. This is not desirable. These unnecessary
messages are increasing congestion in the network. We should try to reduce the network
congestion. This can be achieved by reducing the unnecessary messages. The algorithm in
[16] is taking three messages per process for coordinating a single checkpoint. We should
reduce the number of messages that are needed for coordination. This can be achieved
by the following algorithm. The proposed algorithm is having the same assumptions that
of the algorithm proposed by R. Koo and S. Toueg [16].

Messages that are not sent by the checkpoint algorithm are system messages. Every
system message m contains a label m.l . Each process appends outgoing system messages

with monotonically increasing labels.
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The following notations are used in the algorithm.

L: largest label; S: smallest label

Let m be the last message X received from Y after X’s last permanent checkpoint.

Last__msg_recdx[Y] = m.l, if m exists. Otherwise, it is set to S.

Let m be the first message X sent to Y after checkpointing at X (permanent or ten-
tative).
First_msg__sentx|Y] = m.l, if exists. Otherwise, set to L.

For a checkpointing request to Y, X sends Last_msg_recdx[Y] . Y takes a tempo-
rary checkpoint iff Last__msg_recdx[Y] > First__msg-_senty[X] > S.
i.e., X has received 1 or more messages after checkpointing by Y and hence Y should take

checkpoint.

Ckpt__cohortyx is the set containing all the processes from which X has received mes-

sages after it has taken its last checkpoint.

Each process will maintain a variable Will__to__take__ckpt.

Algorithm:

Initial State at all processes:

First__msg__sentx[Y] = S.

Will_to__take__ckptx= "yes” if X is willing;

"no” Otherwise
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At initiator process X; :
for all Y in ckpt__cohortx do
Send Take__a__tentative__ckpt(X;, Last__msg_recdx[Y]) message.

Wait for particular time period.

if any process replied "no” then for all Y in ckpt__cohortx do
Send Undo__tentative__ckpt.
else

Send Make__tentative__ckpt__permanent.

At all processes Y:
Upon receiving Take__a__tentative__ckpt message from X do
if Will_to_take_ckpty ="yes " AND Last__msg_recdx|[Y] > First_msg__senty|X]
> S
Take a tentative checkpoint.
for all processes Z in ckpt__cohorty do

Send Take__a__tentative__ckpt(Y, Last_msg_recdy|Z]) message.

Wait for particular time period .

if any process Z replied "no” then

Will__to__take_ckpty = "no " and Send (Y, Will_to_take_ckpty) to X.

Upon receiving Make__tentative__ckpt__permanent message do
Make tentative checkpoint permanent
for all processes Z in ckpt__cohorty do

Send Make__tentative__ckpt__permanent message.

Upon receiving Undo__tentative__ckpt message do
Undo tentative checkpoint.
for all processes Z in ckpt__cohorty do

Send Undo__tentative__ckpt message.
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The proposed algorithm is reducing the number of messages that are needed for a
checkpoint coordination as like this. The algorithm in [16] takes three messages per
process (request message, reply message, final decision message) for coordinating the
checkpoint process. But, the proposed algorithm will take only two messages for a suc-
cessful checkpoint. One message is for request and one message is for final decision
message. Here, there are no reply messages because the processes that are interested in
taking checkpoint will not send any reply message and these processes will directly take
tentative checkpoint. After receiving the final decision message, they will act according
to the final decision message. But, according to our algorithm, only two messages per
process are sufficient for checkpoint coordination.

By decreasing one message per process, we can reduce checkpoint overhead and the
network congestion significantly. Reply message will come into existence, only when a
process is not interested in taking checkpoint. In an average case, if the half of the
processes send replies, then the number of messages needed for checkpoint coordination

will be less than three messages.

3.2 PERFORMANCE EVALUATION

In this section, we present the experimental results of the proposed algorithm. Here,
we have calculated the total number of messages that are needed for single checkpoint
coordination and compared with the total number of messages that are needed with the
algorithm [16]. In this case, not all the processes are sending reply messages. Based
on the number of processes sending reply messages, we had calculated the total number
of messages that are needed for coordination of a checkpoint. Here, we eliminated reply
messages by considering the assumptions that are discussed in [16]. Proposed algorithm
is using only two messages per process for successful checkpoint and the total number of
messages that are needed for checkpoint coordination is also less. In Fig 3.1, the upper
line gives the values that are obtained by using the algorithm[ [16]. Below the upperline,
remaining lines represents the values that are obtained by our proposed algorithm with

60%, 30% and none of the processes has send reply messages.
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Chapter 4

DYNAMIC INTERVAL
DETERMINATION FOR PIC
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Checkpointing is an effective mechanism to prevent a process from restarting the
execution from the initial state in case of system failures. But there is checkpointing
overhead to save memory state of a process. Saving the state means it incurs with the
stable storage. The speed of writing data to a secondary storage is much slower than the
execution of the process. It is very difficult to fill that gap. To reduce the running time
of a process, we have to reduce the disk writing overhead.

When a checkpoint is taken, only the portion of the checkpoint that has changed since
the previous checkpoint need to be saved. The unchanged portion can be restored from
previous checkpoints. Several techniques have been devised and implemented to minimize
the checkpointing overhead. These can be divided into two groups. One is the latency
hiding optimization techniques such as diskless checkpointing, forked checkpointing and
compression checkpointing which attempt to reduce or hide the disk writing overhead.
The other is the size reduction techniques such as memory exclusion checkpointing and
incremental checkpointing [24] which attempt to minimize the amount of data that gets
stored per checkpoint. An important point to note with respect to size reduction is that
the large amounts of read only memory or unmodified memory pages are identified and
excluded from checkpoints. Among these techniques, incremental checkpointing is widely
used in practically. In incremental checkpointing, the large amounts of read-only memory
or unmodified memory pages are identified and excluded from checkpoints.

These modified pages or dirty pages information can be extracted by using the dirty
bit. This dirty bit information will be available in page fault routine in linux kernel.
The page table entry of 1386 architechture as shown in Fig 4.1. For implementing this we
were used D bit, R/W bit and Available bits in the figure.

n 12 11 a8
u|R
PAGE FRAME ADDRESS 31..12 AVAIL @ B|D|A|B B g ﬁ P
P — PRESENT
R — READ-URITE
u-s — USER-/SUPERVISOR
D — DIRTY
AVAIL - AVAILAELE FOR SYSTEMS PROGRAMMER USE

NOTE: @ INDICATES INTEL RESERUED. DO HOT DEFIME.

Figure 4.1: Page Table Entry of the i386 in the Linux Kernel
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A major unsolved problem with the conventional incremental checkpointing is the
efficiency of the checkpoint interval. In periodic interval checkpointing, the checkpoint
cost is constant for a checkpoint interval irrespective of the amount of information to be
stored. But in case of incremental checkpointing, cost of checkpointing is depends on the

amount of information that has modified or the number of pageas that has modified.

In next section, we are going to determine a dynamic interval for checkpointing based

on the expected execution time.

4.1 BASICS OF PROBABILITY

Here, we are deriving the expected execution time by using the theory of probability
and calculus. Some definitions of probability:

-Conditional probability is the probability of some event A, given the occurrence of
some other event B. Conditional probability is written P(A|B), and is read “the proba-
bility of A, given B”.

-law of total expectation states that if X is an integrable random variable (i.e., a
random variable satisfying E( | X | ) < oo ) and Y is any random variable, not necessarily
integrable, on the same probability space, then E(X) = E(E(X|Y)).

i.e., the expected value of the conditional expected value of X given Y is the same as the
expected value of X.

The conditional expected value E( X | Y ) is a random variable in its own right, whose
value depends on the value of Y. Notice that the conditional expected value of X given
the event Y = y is a function of y. If we write E(X|Y = y) = ¢(y) then the random
variable E(X|Y) is just g(Y).

If X is an event that is running on a system subjected to the time ¢, then the total

expected time to finish that event is given [34, 9, 19] by

Blt) = /OOOX(t) dt
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4.2 NOTATIONS AND ASSUMPTIONS

The following notations are used in the derivation of total expected execution time as

shown in Table 4.1 .

t total work requirement time of a process
t; work requirement time of interval i
r recovery cost of a process
ci checkpointing cost of interval i
A failure rate
m number of the modified pages of a process
Cp checkpointing cost of a page
f(k) probability dencity function of a failure at elapsed time k
T(t) expected execution time of a process
T.(t,c) expected execution time of a process
with page-level incremental checkpointing
Recgyiy(t) | expected recovery time of a process
without checkpointing
Reciare(t) | expected recovery time of a process
with page-level incremental checkpointing

Table 4.1: Notations used in algorithm

The following is the system model used for our experiment on the expected execution
time with and without checkpointing. First and foremost, the expected total execution
time of a process can be defined as the processing time from the beginning of its execution

to its completion.

Let T'(t) denote the expected execution time of a process and ¢ be the “work require-
ment “ of the process. Note that in the absence of any failures [34, 9, 19],
T(t) = t.

We assume that the expected total execution time of a process with incremental check-
pointing, T.(t,c) , consists of the execution time of n intervals and time for incremental

checkpointing is at the end of each interval.
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A checkpoint interval is the duration between two checkpoints. That is, it begins
when a checkpoint is established and ends when the next checkpoint is established.
Let T.(t;, ¢;) denote the expected time required to execute the interval i and take an

incremental checkpoint. Obviously,
D Tfti ci) = To(t )
i=1

in the absence of failures. Note that T.(¢;, ¢;) is a random variable, even though ¢; is fixed
and the interval i could be executed in time T.(t;, ¢;) as long as, there no failure occurs.

Here, we assumed that failures can occur during normal execution as well as during
checkpointing. We also assumed that failures occurs according to a Poisson process at
rate, A. These are commonly accepted assumptions, particularly when failures are known
to occur as a result of many different reasons. Further, we assume that failures are

detected as soon as they occur.

4.3 EXPECTED EXECUTION TIME WITHOUT
CHECKPOINTING

Clearly, the execution time ¢ of a process is identical to 7'(t) in the absence of failures
without checkpointing. However, in the presence of failure, if a failure occurs before the
completion of a process, then a recovery cost r is incurred to resume its execution from its
beginning of the process. Fig 4.2 shows an example of a process which is being executed

without checkpointing and where a failure occurs.

In Fig 4.2, if a failure occurs before the end of execution (k < t ) , the expected
execution time of a process without checkpointing 7'(¢), can be calculated by the disjunct
components, k, r and T'(¢). In this case, the process must restart from the beginning,
which means that the remaining work requirement is ¢ and its expected execution time
is T'(t).

We assumed that the failures occur according to a Poisson process at rate A, thus
F(K) =1—e* and the f(k) = Ae™*. then the expected execution time of a process

without checkpointing is given as Theorem 4.1.
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Kk Failure

]

rollback

Figure 4.2: Execution without checkpointing

Theorem 4.1: The expected execution time T'(t) of a process without checkpointing

15 given by
(M —1) (1+ Ar)
A

PROOF': Formally, the conditional expected execution time is written as

T(t) = (4.1)

¢ if k>t
T(t) =
k+r+T(t) otherwise

By the law of total expectation,

T(t) = /:O tf (k) dk + /Ot(k o+ T@) f(k) dk

Solving the above equation we obtain,

[ tf (k) dk + [ (k+ 7 —t) (k) dk
1— [ f(k)dk

T(t) =

Since [} tf(k)dk = t, rearranging with respect to T'(t), we obtain,

ot ok —t) (k) dk
i
Finally the probabilistic density function of failure f(k) is Ae™*, we will get,

T(t)

(eM—1) (1+ Ar)
A

T(t) =
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4.4 EXPECTED EXECUTION TIME WITH PAGE
LEVEL INCREMENTAL CHECKPOINTING

l s Faihuye
L A .

3

hor Ci-f 4 e

Figure 4.3: Execution with Incremental Checkpointing

Fig 4.3 shows the execution with pagelevel incremental checkpointing. When a
failure occurs during a checkpoint interval, the process must roll back and reprocess its
execution from the beginning of the interval. If no failure occurs during normal execu-
tion and checkpointing, then the expected execution time of the interval 7 is identical to
(t;+¢;). However, if a failure occurs during a checkpoint interval i, recovery time r to roll
back to the beginning of the interval is required. Therefore, if a failure occurs before the
end of interval i, k < (¢; + ¢;), the expected execution time of an interval with a pagelevel

incremental checkpoint, T,(t;, ¢;) is given by Theorem 4.1.

Theorem 4.2: . If we assume the failures occur according to the Poisson process
with rate A and that failures can occur during checkpointing, the expected execution time

T.(t;, ¢;) of the interval ¢ with a pagelevel incremental checkpoint is given by

Altited) — 1) (14 A
To(ts, c;) = (e A)( +Ar) (4.2)

where ¢; = mc,
PROOF: . By substituting (¢; + ¢;) for ¢ in Eq.(4.1), we obtain Eq.(4.2).
When the expected total execution time T;(¢;, ¢;) is divided into n intervals and an

incremental checkpoint is taken at the end of each interval, the expected total execution

time with pagelevel incremental checkpoints can be expressed as follows.
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L (e’\(tﬁ‘”) — 1) (14 Ar)

Tu(t, c) = Z )

=1

If we assume that the checkpoints are equally spaced, and the checkpointing cost is
constant ¢, then the above equation becomes much easier. However, these assumptions
do not reflect the actual characteristics of incremental checkpointing. In incremental
checkpointing, the checkpointing cost ¢; is not a constant value, and furthermore, the
checkpointing interval cannot be a constant duration. For instance, ¢; can vary under the
modification pattern of a process memory pages that we dont know. Thus, this equation

is not an appropriate way of deriving an efficient checkpointing interval.

4.5 DYNAMIC INTERVAL DETERMINATION

In this section, we derive an efficient interval of pagelevel incremental checkpointing
by the cost analysis of expected recovery time. We will analyze the expected recovery
time and present the dynamic interval determination mechanism on pagelevel incremental

checkpointing.

4.5.1 Cost Analysis of Expected Recovery Time

Fig 4.4 shows the example situation of a process with pagelevel incremental check-
pointing, ¢;_; is a checkpointing time of the (i — 1) interval, the t; is a processing time of
the i'" interval, and the ¢; is an estimated checkpointing time of current execution point
of the process. In this situation, we can take or skip an incremental checkpoint at this
time.

When a process takes an incremental checkpoint at this time, the process waits for
incremental checkpointing time ¢;. The process may extend the execution time of the
process because of ¢; when no failure exist, but if failure does occur, the recovery time
may be reduced by the current checkpoint. We derive the expected recovery time of a

process in cases where we have to decide whether to skip or take a checkpoint.
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Figure 4.4: Example Situation with Incremental Checkpoinitng

Skip: The expected recovery time from the figure and the law of total expectation

for checkpoint skip is given by ,

Recskip(ti, Ci) = /Ooo(k +7r+ T(t))f(k) dk

Take: The expected recovery time for checkpoint take is derived as follows ,

From the Fig 4.4 and law of conditional expectation,

k+r+Tt+c¢) if k<g
Rectake =
k+r otherwise

From the law of total expectation ,

Reciape(tiy c;) = /OCi(k +r+T()f(k)dk + /oo(k +r)f(k)dk

i

Finally, Reciae(ti,ci) — Recspip(ti, c;) represents a decider Dec(t;, ¢;) of the two

alternatives, we obtain,

Dec(t;,c;) = (1 — e_Aci)T(ti +¢;) = T(t;)
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By calculating Dec(t;,¢;), we can decide whether to skip or take. If Dec(t;,¢;) is
positive, Recike(ti, ;) is larger than Recgp,(ti, ¢;), then we may skip an incremental
checkpoint. Otherwise, we may take an incremental checkpoint. For example, if ¢; is
nearly zero, then Dec(0, ¢;) converges to positive because e *¢ < 1 and T'(¢;) > 0, so we
skip a checkpoint. For another example, if ¢; is nearly oo, then Dec(oo, ¢;) converges to

negative because e~ > 0 and T'(t;) > 0, so we take a checkpoint.

4.5.2 Interval Determination Mechanism

Since Dec(t;, ¢;) changes over t; and ¢;, we need to calculate Dec(t;, ¢;) when t; or ¢;
is changed. Even ¢; is not changing on run-time, we still need to calculate the Dec(t;, ¢;).
The checkpointing cost ¢; is increasing when some pages are modified. Therefore, we

need to find an appropriate x to make Dec(t; + x, ¢;) to be zero.

1l e~ ;
r = —Iln — 1;
A 2 — eXei

Here, x represents the next checkpointing time and thus can be used to determine the

checkpointing interval. For efficient calculation of the above equations, we attached the
interval determination mechanism to the page-fault handler. Algorithm 4.1 shows the

mechanism in the page-fault handler and timer expire routine.

Algorithm 4.1:
Interval determination mechanism
-In page fault handler
if a page has modified then
Increase m
Compute Dec
if dec < 0 then
Take an incremental checkpoint
else
Compute new x to take incremental checkpoint
Set the timer to new x value
end If
end If
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-In Timer Routine
If The timer is x then
Take an incremental checkpoint.
Compute new x
Set the timer to new z value

end If

In Algorithm 4.1, m denotes the number of modified pages on the checkpoint interval
and z is the adequate time to make the Dec(t; +x, ¢;) to zero. The timer is set to the z to
take an incremental checkpoint. By doing so, we can determine the efficient checkpoint

interval on pagelevel incremental checkpointing.

4.6 PERFORMANCE EVALUATION

Here, we are going to discuss the performance of the dynamic interval determination
for the pagelevel incremental checkpointing facility based on the efficient interval de-
termination mechanism. We applied this algorithm, to Matrix Multiplication and Quick
Sort, to compare the execution times of periodic interval checkpointing and dynamic
interval checkpointing. To compare the checkpoint overhead, we measured the average
execution time of a process for these applications.

The average execution time of each application with periodic pagelevel incremental
checkpointing and the dynamic pagelevel incremental checkpointing with efficient interval
determination is shown in Fig(4.5, 4.6). Dec(t;, ¢;) is the calculated discriminant based
on the expected recovery time of a process decision when skip or take an incremental
checkpointing. Thus, it means the efficiency of checkpoint placement. In periodic check-
pointing the process should take the checkpoint, though it is not needed. Where as in
dynamic interval determinism, it depends on the decide value which is calculated based
on expected recovery time and it avoids unnecessary checkpoints. Obviously, it reduces
the checkpoint overhead and execution time of the process.

In Fig 4.5, the proposed algorithm is applied on Matrix Multiplication and is compared
with periodic incremental checkpointing algorithm and same with Quick Sort in Fig 4.6.

In this result, the checkpoint placement of the dynamic interval pagelevel incremental
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checkpointing is more efficient than any other periodic pagelevel incremental checkpoint-
ing.

These results shows that the execution time with dynamic interval pagelevel incre-
mental checkpointing had been significantly reduced compared with periodic pagelevel
incremental checkpointing. It is noted that the dynamic interval pagelevel incremental
checkpointing with interval determination reduce the execution time of a process by about

20% more than using periodic pagelevel incremental checkpointing.
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Figure 4.5: Comparison of average execution times for matrix multipication
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Comparison of Execution times for Quick sort
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Figure 4.6: Comparison of average execution times for quick sort
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Chapter 5

CONCLUSION AND FUTURE
WORK
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This thesis presents two algorithms on checkpointing. One is coordinated check-
point algorithm for reducing the number messages per process that are needed for check-
point coordination and there by reducing netwotk congestion. Another one is ”Dynamic
interval determination for pagelevel incremental checkpointing”, which reduces the check-
pointing overhead by eliminating unnecessary checkpoints based on expected recovery

time. Finally, section 5.2 discuss the scope for future work.

5.1 THESIS SUMMARY

The following are the main contributions of the thesis.

5.1.1 A checkpointing algorithm for reducing coordination

overhead

Checkpointing is a fault tolerant technique, which allows the system to run its appli-
cations in less time in the event of failures also. But checkpointing adds the overhead to
the Distributed system. It adds the overheads like checkpointing overhead and context
saving overhead. System is getting coodination overhead, mainly by the messages that
are needed for checkpoint ordination. Existing algorithm is taking three messages per
process( request,reply and final decision messages) for coordinating a single checkpoint.
If the more number of process are in the system then more number of coordination mes-
sages will be there. Obviously, these unnessary messages increases the network traffic.
This is not advisable. We should reduce the network traffic by reducing the number of
coordination messages. The proposed algorithm is reducing the number of coordination
messages by eliminating unnecessary reply messages. On succesful checkpoint proposed
algorithm is taking only two messages per process for checkpoint coordination. In this

we reduced number of messages that are needed for checkpoint coordination.

5.1.2 Dynamic interval determination for pagelevel incremental

checkpointing

Checkpointing is also caused to increase the execution time of the process by adding
its checkpoint context saving overhead. Existing periodic checkpointing algorithms are

taking checkpoints, though it is not needed all the time. These unnecessary checkpoints
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increasing the execution time of the process. To overcome this, increnetal checkpointing
has proposed, which saves only the pages that are modified from previous checkpoint. We
have to mtake the checkpoints in such a way that overhead and recovery cost should be
minimum. Our proposed algorithm is achieving this by determining interval dynamically
for taking checkpoints based on the expected recovery time. This expected recovery is
calculated by using the principles of probability and calculus.

For calculating decide value, we are using expected recovery time by skipping check-
point and by taking checkpoint. After getting this decide value, the algorithm dtermines
whether to skip the checkpoint or to take the checkpoint. By eliminating some checkpoints
the execution time of the program will reduce. Proposed algorithm takes checkpoints only

when taking the checkpoint is reasonable.

5.2 FUTURE WORK

5.2.1 Coordinated checkpoint algorithm

The coordinated checkpoint algorithm that we were proposed is reducing the number
of messages that are needed for checkpoint coordination. In the proposed algorithm,
the processes that are involved in taking checkpointing will stop their executions until
the finishing of checkpoint process. Another thing in the proposed algorithm is some
processes are forced to take the checkpoints.

This halting problem can be overcome by creating the child process for each process.
The job of the child processes is saving parent process execution to the stable storage
when the execution of the parent process is started. This will reduce the execution time

of the process by performing the context saving in parallel with the execution.

5.2.2 Dynamic interval determination for pagelevel incremental
checkpointing

The algorithm “Dynamic interval determination for pagelevel incremental checkpoint-
ing” minimizes the execution time of a process in compared with any other periodic
checkpointing. The algorithm that we were proposed can be extended to the Distributed
System. For extending it to distributed system one should deal with all designing issues

of distributed system and issues that are related to checkpointing for distributed system.
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