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ABSTRACT 
 

Rollback-recovery in distributed systems is important for fault-tolerant computing. 

Without fault tolerance mechanisms, an application running on a system has to be restarted 

from scratch if a fault happens in the middle of its execution, resulting in loss of useful 

computation. To provide efficient rollback-recovery for fault-tolerance in distributed systems, 

it is significant to reduce the number of checkpoints under the existence of consistent global 

checkpoints in index-based distributed checkpointing algorithms. Because of the 

dependencies among the processes states that induced by inter-process communication in 

distributed systems, asynchronous checkpointing may suffer from the domino effect. 

Therefore, a consistent global checkpoint should always be ensured to restrict the rollback 

distance.  
 

The quasi-synchronous checkpointing protocols achieve synchronization in a loose 

fashion. Index-based checkpointing algorithm is a kind of typical quasi-synchronous 

checkpointing mechanism. The algorithm proposed in this thesis follows a new strategy to 

update the checkpoint interval dynamically as opposed to the static interval used by the 

existing algorithms explained in the previous chapter. Whenever a process takes a forced 

checkpoint due to the reception of a message with sequence number higher than the sequence 

number of the process, the checkpoint interval is either reset or the next basic checkpoint is 

skipped depending on when the massage has been received.  
 

The simulation is built on SPIN, a tool to trace logical design errors and check the logical 

consistency of protocols and algorithms in distributed systems. Simulation results show that 

the proposed scheme can reduce the number of induced forced-checkpoints per message 27-

32% on an average as compared to the traditional strategies.  
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1. INTRODUCTION 

 
A distributed system is composed of a set of machines which do not share a global clock, 

the machines communicate with each other by exchanging messages over a communication 

network. Each machine in the distributed system has its own memory and runs its own 

operating system. The machines in a distributed system offer their resources for collective 

computation. The resources owned and controlled by a machine are said to be local to it, 

while the resources owned and controlled by other computers and those that can only be 

accessed through the network are said to be remote. These resources can be of various types 

such as computation nodes, storage devices etc. A large number of applications have been 

developed to harness the power of distributed systems.  
 

Typically a distributed system has the following characteristics: 

• Multiple nodes – A distributed system is composed of multiple independent nodes 

belonging to different computers, not merely multiple processors on the same com-

puter. 

• Heterogeneity – The nodes in a distributed system may consist of machines having 

different architectures and possibly running different types of operating systems. 

• Message passing – Processes on the different resource nodes may communicate using 

diverse networking protocols over different networking technologies. Therefore, the 

characteristics of the underlying communication links can be different. The nodes in 

most distributed systems are reachable from one another. 

• Concurrency – Each of the nodes in a distributed system provides independent 

functionality, and operates concurrently with other nodes 

• Decentralized control – No single computer is necessarily responsible for configu-

ration, management, or policy control for the whole distributed system. However, 

some functionality may reside in a central node or a set of nodes by necessity. 

• Openness – Many distributed systems are open, i.e., an unbounded number of nodes 

or components can be added or changed even while the system is running. 
 

The main objective of a distributed system is to achieve high throughput for distributed 

applications through concurrent computation and to increase accessibility to resources not 

commonly available to a single machine.  
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1. Introduction 

Advantages of distributed systems are: 

• Higher price/performance ratio – By interconnecting powerful workstations with 

high speed communication network we achieve higher performance at lower cost. 

• Resource sharing – A node in a distributed system can access both software and 

hardware resources of another node remotely over the communication network. 

• Improved availability – A distributed computing system provides improved reliability 

and availability because a few components of the system can fail without affecting the 

availability of the rest of the system. 

• Improved reliability – By replicating data and services the distributed systems can be 

made fault tolerant 
 

Distributed systems have been used for a wide variety applications ranging from scientific 

simulations collaborative engineering, supercomputer enabled scientific instruments, 

applications in Geographical Information Systems (GIS) like weather prediction, railway or 

airline reservation systems etc. 
 

Distributed systems are composed of multiple computing resources connected by 

communication links. Since failure of nodes and links are assumed to be independent, larger 

the system, higher is its probability of failure. Therefore, in a distributed system, failures are 

relatively common events. Distributed systems should remain at least partially available and 

functional even if some of their nodes or communication links fail or misbehave. Without 

fault tolerance mechanisms, the system and the applications running on it need to be restarted 

every time a failure occurs. Many of the distributed applications mentioned above are long 

running, taking hours or even days in some cases to complete. If a fault occurs in the middle 

of a long running application, long hours of useful computation will be lost. Thus an 

application may take a long time to complete in the presence of such failures. Fault tolerance 

techniques can allow applications to run to completion in the presence of faults with minimal 

disruption. Since such techniques do not need an application to restart when a fault occurs, 

they also save system resources and improve system throughput. 

 

Fault tolerance in distributed systems is usually achieved by some form of redundancy. 

Two forms of redundancy are normally used in distributed systems to provide tolerance to 

node failures. 
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1.1 Motivation 

• Spatial redundancy involves processes replicated on several computing nodes. 

Examples of such redundancy are TMR (Triple Modular Redundancy), voter based 

NMR etc. This type of redundancy is important for mission critical or hard real-time 

applications where failure is very critical and in-time recovery must be guaranteed. 

Spatial redundancy requires extra hardware and therefore is costly, but the reaction 

time to a fault is very fast. 

• Temporal redundancy also called backward error recovery, is to re-execute a job, or 

part of a whole job, when a fault happens. This kind of redundancy is particularly 

suitable for non-critical applications and implementation of such a scheme does not 

demand extra hardware. Checkpoint and recovery protocols are popularly used for 

providing fault tolerance through temporal redundancy in message passing distributed 

systems. 
 

Fault tolerance through checkpoint and recovery technique includes taking checkpoint of 

an application process periodically, and logging the checkpoint in a stable storage which is 

immune to failures. Checkpoint of an application process is the information about the state of 

the process and can be used to restart it from a state corresponding to the checkpoint. On the 

other hand, rollback recovery for an application is defined as the procedure for restarting the 

application process from a checkpoint stored in stable storage. For an application involving a 

single process, checkpoint and recovery is simple. In the event of a node failure, the 

application process is restarted from its latest checkpoint, i.e., rolled back to its last 

checkpoint .This technique saves re-computation till the latest checkpoint. However, several 

issues with checkpoint and recovery technique arise in a distributed system which runs 

applications having multiple concurrent processes, communicating with each other via 

messages. 

 

1.1 MOTIVATION 

 

Checkpoint/restart provides two main functions for an operating system. First, 

checkpoint/restart is a mechanism for fault tolerance. Applications may be checkpointed 

periodically (or based on notifications from fault monitors). Once the application state has 

been committed to stable storage, the application may be restarted and reconfigured to work 

around the fault. Second, checkpoint/restart may be used as a mechanism for preemption. 

This form of preemption is useful in environments where virtual memory is scarce. In such 
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1. Introduction 

environments the operating system is unable to allocate sufficient memory to hold all 

runnable processes, so checkpoint/restart is used to save the application state to the file 

system. 
 

Checkpoint and restart techniques allow programs to make progress in the face of 

recurring system downtime. The program state is periodically recorded on stable storage 

during execution. In the event of a system failure, the computation may be restarted and 

continued from the `frozen' state on disk. Several factors motivate the need for a general-

purpose checkpoint and restart mechanism for (massively) parallel computing systems. 

Parallel computers have traditionally been employed to satisfy the needs of science and 

engineering applications at the edges of computational feasibility. Such applications typically 

have long running times, ranging from several hours to days at a time, and thus require the 

systems they run on to provide long periods of continuous failure-free time. In addition, these 

applications tie up the systems resources preventing other less demanding applications from 

running, thereby decreasing system throughput and increasing average turnaround time. The 

increase in the number of system components causes the mean time between failures of the 

system to decrease. Parallel programs must also successfully contend with this increase in the 

number of points of failure. There are exacting demands on the capability of parallel 

computing systems to execute long running, compute intensive tasks to completion.  
 

Checkpoint and restart techniques endow parallel programs with a higher degree of fault 

tolerance than otherwise possible thus enabling complete runs despite non-continuous failure-

free time. These facilities provide a number of other benefits in the context of parallel 

computing systems. Large compute intensive tasks may be checkpointed allowing other 

programs to run, thereby increasing the average turnaround time of the system. Programs 

may execute on different machines during a single run, and also `shrink' and `expand' being 

checkpointed after running for a while on a system with a large number of processors, then 

continuing on smaller, more easily available systems, and vice versa 
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1.3 Thesis Organization 

1.2 THESIS OBJECTIVE 

 

To provide efficient rollback-recovery for fault-tolerance in distributed systems, it is 

significant to reduce the number of checkpoints under the existence of consistent global 

checkpoints in index-based distributed checkpointing algorithms.  
 

The main objective of our research work is to develop an efficient checkpointing 

algorithm that would minimize the number of checkpoints under the existence of consistent 

global checkpoints. 

 

1.3 THESIS ORGANIZATION 

 

This thesis report consists of 5 chapters. Chapters 2 gives an overview of checkpointing, 

where the aspects of checkpointing, overhead incurred in taking checkpoints and different 

types of checkpointing algorithms have been discussed briefly. In Chapter 3 the existing 

index based checkpointing algorithms, BCS, Lazy-BCS-Aftersend, and BQF have been 

discussed. In Chapter 4 the proposed algorithm, Enhanced index based checkpointing 

algorithm has been discussed. It also points out the drawbacks of the existing techniques and 

how they are overcome in this proposed algorithm. Conclusion and future work are discussed 

in Chapter 5. 
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2. OVERVIEW OF CHECKPOINTING PROTOCOLS 
 

Checkpoint is defined as a designated place in a program at which normal processing is 

interrupted specifically to preserve the status information necessary to allow resumption of 

processing at a later time. Checkpointing is the process of saving the status information. A 

checkpoint of a process is the information about the state of a process at some instant of time. 

Fault tolerance through checkpoint and recovery techniques includes taking check- point of 

an application process periodically, and logging the checkpoint in a stable storage which is 

immune to failures. Checkpoint of an application process is the information about the state of 

the process and can be used to restart it from a state corresponding to the checkpoint. On the 

other hand, roll back recovery for an application is defined as the procedure for restarting the 

application process from a checkpoint stored in stable storage.  
 

A checkpoint can be saved on either stable storage or the volatile storage of another 

process, depending on the failure scenarios to be tolerated. For long-running scientific 

applications, checkpointing and rollback-recovery can be used to minimize the total 

execution times in the presence of failures. 
 

For an application involving a single process checkpoint and recovery is simple. In the 

event of a node failure, the application process is restarted from latest checkpoint, i.e. rolled 

back its latest checkpoint. However, several issues with checkpointing and recovery arise in 

distributed system which runs applications having multiple concurrent processes, 

communicating with each other via messages. 

 

2.1 ASPECTS OF CHECKPOINTING 

 

Some of the aspects to be considered with checkpointing are frequency of checkpointing, 

contents of a checkpoint and methods of checkpointing [17]. 
 

2.1.1 Frequency of Checkpointing 

A checkpointing algorithm executes in parallel with the underlying computation. 

Therefore, the overheads introduced due to checkpointing should be minimized. 

Checkpointing should enable a user to recover quickly and not lose substantial computation 

in case of an error, which necessitates frequent checkpointing and consequently significant
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overhead. The number of check-points initiated should be such that the cost of information 

loss due to failure is small and the overhead due to checkpointing is not significant. These 

depend on the failure probability and the importance of the computation. For example, in a 

transaction processing system where every transaction is important and information loss is 

not permitted, a checkpoint may be taken after every transaction, increasing the 

checkpointing overhead significantly. 

 

2.1.2 Contents of a Checkpoint 

The state of a process has to be saved in stable storage so that the process can be restarted 

in case of an error. The state context includes code, data and stack segments along with the 

environment and the register contents. Environment has the information about the various 

files currently in use and the file pointers. In case of message-passing systems, environment 

variables include those messages which are sent and not yet received. 

 

2.1.3 Methods of checkpointing 

The methodology used for checkpointing depends on the architecture of the system. 

Methods used in multiprocessor systems should incorporate explicit coordination unlike 

uniprocessor systems. In a message-passing system, the messages should be monitored and if 

necessary saved as part of the global context. The reason is that the messages introduce 

dependencies among the processors. On the other hand, a shared memory system 

communicates through shared variables which introduce dependency among the nodes and 

thus, at the time of checkpointing, the memory has to be in a consistent state to obtain a set of 

concurrent checkpoints. 

 

2.2 OVERHEAD OF CHECKPOINTING 

 

During a failure-free run, every global checkpoint incurs coordination overhead and context 

saving overhead in a Distributed system. We define them as follows. 

• Coordination Overhead 

In a distributed system, coordination among processes is needed to obtain a consistent 

global state. Special messages and piggy-backed information with regular messages 

are used to obtain coordination among processes. Coordination overhead is due to 

these special messages and piggy-backed information. 

 7



2.3 Consistent System State 

• Context Saving Overhead 

The time taken to save the global context of a computation is defined as the context-

saving overhead. Overhead for checkpoint storage in stable storage contributes a 

major part of the overhead of checkpoint and recovery protocols. This overhead is 

proportional to the size of the context. 

 

2.3 CONSISTENT SYSTEM STATE 

 

In distributed system, a computation node can take checkpoints of its local processes 

only, and such checkpoints are called local checkpoints [8]. A global checkpoint of a 

distributed system is defined as set of local checkpoints, one from each of its processes in the 

system. After recovery the system must be in a consistent state. A global state of a message-

passing system is a collection of the individual states of all participating processes and of the 

states of the communication channels. Intuitively, a consistent global state is one that may 

occur during a failure-free, correct execution of a distributed computation. More precisely, a 

consistent system state is one in which if a process state reflects a message receipt, then the 

state of the corresponding sender reflects sending that message. 
 

For example, Fig 2.1 shows two examples of global states, a consistent state in Fig 2.1(a), 

and an inconsistent state in Fig 2.1(b). Note that the consistent state in Fig 2.1(a) shows 

message m1 to have been sent but not yet received. This state is consistent, because it 

represents a situation in which the message has left the sender and is still traveling across the 

network. On the other hand, the state in Fig 2.1(b) is inconsistent because process P2 is 

shown to have received m2 but the state of process P1 does not reflect sending it. Such a state 

is impossible in any failure-free, correct computation. 
 

Inconsistent states occur because of failures. For example, the situation shown in part (b) 

of Figure 2.1 may occur if process P1 fails after sending message m2 to P2 and then restarts at 

the state shown in the figure. A fundamental goal of any rollback-recovery protocol is to 

bring the system into a consistent state when inconsistencies occur because of a failure. The 

reconstructed consistent state is not necessarily one that has occurred before the failure. It is 

sufficient that the reconstructed state be one that could have occurred before the failure in a 

failure-free, correct execution. 
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2. Overview of Checkpointing Protocols 

 
Fig 2.1: An example of a consistent and inconsistent state. 

 

2.4 ISSUES IN CHECKPOINTING 

 

In concurrent systems, several processes cooperate by exchanging information to 

accomplish task. The information exchanges through the message passing. In such system, if 

one of the cooperating processes fails and resumes execution from a recovery point, then the 

effects it has caused at other processes due to the information it has exchanged with them 

after establishing the recovery point will have to be undone. To undo the effects caused by a 

failed process at an active process, the active process must also rollback to an earlier state. 

Rolling back processes in concurrent system is more difficult than in the case of a single 

process. The following discussion illustrates how the rolling back of processes can cause 

further problems [27]. 

 

2.4.1 Orphan Messages and Domino Effect 

Consider the three processes X, Y and Z are running concurrently in Fig 2.2. The parallel 

lines are showing the executions of the processes. These processes are communicated through 

exchange of messages. Each symbol '[' marks a recovery point to which process can be rolled 

back in the event of a failure. 
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x1 x3x2

X
3 

y1 y2 

XY 
Failure 

z1 z2 

Z 

 
Fig 2.2: Effects of Orphan Messages and Domino Effect 

 

If the process X is to be rolled back, it can be rolled back to the recovery point x3 

without affecting any other process. Suppose that Y fails after sending message m and is 

rolled back to y2. In this case, the receipt of m is recorded in x3, but the sending of m is not 

recorded in y2. Now we have a situation where X has received message m from Y, but Y has 

no record of sending it, which corresponds to an inconsistent state. Under such 

circumstances, m is referred to as an orphan message and process X must also rollback. X 

must roll back because Y interacted with X after establishing its recovery point y2. When Y is 

rolled back to y2, the event that is responsible for the interaction is undone. Therefore, all the 

effects at X caused by the interaction must also be undone. This can be achieved by rolling 

back X to recovery point x2. Likewise, it can be seen that, if Z is rolled back, all three 

processes must rollback to their very first recovery points, namely, x1, y1, z1. This effect, 

where rolling back one process causes one or more processes to rollback, is known as the 

domino effect and orphan messages are the cause. 

 

2.4.2 Lost Messages 

Suppose that checkpoints x1 and y1 in Fig 2.3 are chosen as the recovery points for 

processes X and Y, respectively. In this case, the event that sent message m is recorded in x1, 

while the event of its receipt at Y is not recorded in y1. If Y fails after receiving message m 

the system is restored to state x1, y1, in which message m is lost as process X is past the point 

where it sends message m. This condition can also arise if m is lost in the communication 

channel and processes X and Y are in state x1 and y1, respectively. 
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x1

 
 

Fig 2.3: Lost Messages 

 

2.4.3 Livelocks 

In rollback recovery, livelock is a situation in which a single failure can cause an infinite 

number of rollbacks, preventing the system from making process. A livelock situation in a 

distributed system is shown in Fig 2.4. Fig 2.4 illustrates the activity of two processes X and 

Y until the failure of Y. Process Y fails before receiving message n1, sent by X. When Y 

rollbacks to y1, there is no record of sending message m1, hence X must rollback to x1.When 

process Y recovers, it sends out m2 and receives n1 (Fig 2.5). Process X, after resuming from 

x1, sends n2 and receives m2. However, because X rolled back, there is no record of sending 

n1 and hence Y has to rollback for the second time. This forces X to rollback too, as it has 

received m2, and there is no record of sending m2 at Y. This situation can repeat indefinitely, 

preventing the system from making any progress. 

 
Fig 2.4: State before Livelock 

 
Fig 2.5: Livelock Situation 
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2.5 TYPES OF CHECKPOINTING PROTOCOLS 

 

Several checkpointing and recovery protocols are available in the literature [11]. These 

protocols are classified into following categories. (i) Asynchronous checkpointing protocols 

(ii) Synchronous checkpointing protocols (iii) Quasi-Synchronous checkpointing protocols 

(iv) Log-based recovery protocols 

 

2.5.1 Asynchronous Checkpointing Protocols 

The protocols in this class allow taking local checkpoints independent of other processes 

in the distributed system. Such protocols are also referred as uncoordinated or asynchronous 

checkpointing protocols. The fault-free runtime overhead is least for these kinds of protocols 

because no coordination is needed between the processes to take checkpoints. During 

recovery, processes coordinate among themselves to determine a consistent global state. 

Therefore, recovery overhead is high. Due to bad placement of checkpoints over the 

communication pattern, the recovery protocol may require several rounds of coordination and 

rollbacks until a consistent global checkpoint is found. As a result a lot of useful computation 

may be lost and recovery overhead increases. 

Local 
Checkpoint 

 
 

Fig 2.6: Domino Effect 

Many of the local checkpoints taken may not be part of any recovery line, and they are 

called useless checkpoints. However, processes may need to store all the local checkpoints 

since identifying which checkpoints are useless at runtime can be costly. As a result storage 

requirement is high for this kind of protocols. There is also a possibility of domino effect 

which may cause a loss of large amount of useful computation [24]. Fig 2.6 shows a 
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2. Overview of Checkpointing Protocols 

checkpoint and communication pattern involving two processes, which can be affected by 

domino effect. It can be seen from the figure that all the possible global checkpoints are 

inconsistent and therefore all local checkpoints are useless checkpoints. If a fault occurs, the 

recovering process will force the other process to roll back to its previous checkpoint, until 

both the processes are rolled back to their initial state. In order to determine a recovery line 

during recovery, processes record their dependencies with checkpoints of other processes 

during failure-free execution.  
 

The straightforward way to keep track of such information is by using a set of message 

counters, one for each of the processes with which it communicates. When a process sends 

out an application message, it increments the counter value corresponding to the receiver 

process, and tags the value as an identification number to the message. The processes also 

maintain records of the highest numbered message received from each of its senders. 

Processes store both these send and receive information along with its checkpoints and this is 

used to determine inconsistent checkpoints during recovery. A checkpoint of a process P is 

inconsistent with that of a process Q if the highest message id received from the process Q 

recorded in P's checkpoint is higher than the send counter value corresponding to P as 

recorded in Q's checkpoint. Then process P has to roll back again. This may lead to several 

rounds of coordination and cascaded rollbacks until a consistent global checkpoint is found. 

These dependency tracking protocols add some overhead during fault-free execution. In case 

of a fault, all the processes have to coordinate among themselves to decide upon a recovery 

line to which they will roll back. Therefore, recovery overhead is high in most cases. This 

approach is very reasonable if faults are rare in the system under consideration. There is also 

a possibility of domino effect during recovery. This class of protocols does not inherently 

support output commit. 

 

2.5.2 Synchronous Checkpointing Protocols 

In this class of protocols a process does not take local checkpoints independently, but 

synchronizes every checkpointing event with that of other processes, such that every 

checkpointing effort results in a consistent global checkpoint. These protocols are also known 

as synchronous checkpointing protocols. This class of protocols ensures that whenever a 

process takes a local checkpoint, all other processes in the system also take their respective 

local checkpoints. As a result every local checkpointing effort translates into a global 

checkpointing activity. They are free from domino effect. Storage space requirement is 
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minimum for these protocols, since they require that only the latest checkpoint be stored for 

recovery. All the checkpoints taken with successful coordination are useful, i.e., the recovery 

line steadily progresses with every checkpoint. All the latest local checkpoints are part of a 

consistent global checkpoint, and therefore recovery time is lower compared to asynchronous 

protocols. However, due to the effort of synchronization involved in every checkpointing 

activity, checkpointing overhead is high. Synchronous checkpointing protocols can be either 

blocking or non-blocking. 

• Blocking protocols 

A straightforward approach to synchronous checkpointing is to block inter-process 

communication until the checkpointing protocol completes [9, 32]. The protocol is 

initiated by a coordinator. The coordinator sends a request to all processes asking 

them to checkpoint. On the receipt of the request the process blocks normal execution, 

takes a tentative checkpoint, and sends an acknowledgment message to the 

coordinator. On receipt of the acknowledgment messages from all the processes, the 

coordinator sends a message indicating the end of the protocol. On receipt of this 

message, all processes make their tentative checkpoints permanent, remove old 

permanent checkpoints, and resume normal execution. Acharya and Badrinath [1] 

have devised a blocking synchronous checkpointing protocol on the assumption of 

causal order message delivery by the underlying communication system. Koo and 

Toueg [18] proposed a blocking synchronous checkpointing protocol which allows 

failure during checkpointing while storing only two local checkpoints per process. 

They showed that storage of two checkpoints is the minimal requirement to tolerate 

failure during checkpointing. Another important feature of their protocol is that only a 

subset of the processes needs to take checkpoint. 

• Non blocking protocols 

The problem with blocking synchronous checkpointing protocols is that the processes 

are not allowed to execute until the coordination is complete. Hence checkpointing 

overhead is high. Chandy and Lamport's [8] distributed snapshot protocol provides a 

non-blocking synchronous checkpointing protocol over reliable FIFO links. They use 

the property of the underlying link to achieve synchronous checkpointing without the 

explicit two-round coordination protocol. The idea is to use a special message, called 

a marker message, which is a checkpoint request message carrying the checkpointing 

interval number. The protocol is similar to the flooding protocols used in distributed 

systems.. The process which first initiates coordination blocks the local process, takes 
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a local checkpoint, sends a marker message to all its neighboring processes, and then 

unblocks the local process. The receiver of a marker message, if has not already 

received a similar message, follows the same procedure as that of the coordinator and 

forwards the marker message to all its neighbors. Lai and Yang [19] relaxed the FIFO 

constraint by piggybacking the marker on every post-checkpoint message. The same 

affect can be obtained by marking local checkpoints by a sequence number, called 

checkpoint index, and piggybacking the current checkpoint index value on every 

application message [12, 28]. 
 

Similar to blocking synchronous checkpointing protocols, attempts have been 

made to construct non-blocking synchronous checkpointing protocols which require 

that a minimal number of processes take checkpoints. The coordination protocols 

discussed above involve all the processes in the system and therefore raise concern for 

scalability of the protocols. Prakash and Singhal [23] observed that only those 

processes which have communicated since the last checkpoint require to checkpoint 

again. A minimal number of processes, only those whose present states are causally 

dependent on the current state of the coordinator, need to participate. They proposed a 

non-blocking synchronous checkpointing protocol where every process keeps track of 

the processes which are causally dependent on its present state and the protocol 

involves only those processes which are causally related to the coordinator.  
 

However, Cao and Singhal [6] found a flaw in Prakash and Singhal's protocol and 

went on to prove the impossibility of a non-blocking synchronous protocol where a 

minimal number of processes participate. Cao and Singhal also proposed a non-

blocking synchronous checkpointing protocol [7], using mutable checkpoints, which 

reduces the number of checkpoints to be stored in stable storage. Mutable checkpoints 

can be stored in the volatile memory and are converted into permanent checkpoints 

and stored in stable store only when a new recovery line is developed.  
 

Another approach to non-blocking synchronous checkpointing protocol is to avoid 

explicit coordination by message passing and use synchronous clocks to achieve 

implicit coordination. In modern distributed systems many applications require clocks 

of the processors to be approximately synchronized. Many distributed systems run 

clock synchronization protocol at the background to keep their clock differences 

within some guaranteed bound [21]. Such loosely coupled synchronized clocks can 
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facilitate checkpointing effort without explicit coordination .A process takes a local 

checkpoint and blocks all receives for a period which is equal to the maximum 

deviation between clocks plus the maximum time to detect a failure in the system. It 

can be shown that all its local checkpoints of processes form a global recovery line. 

2.5.3 Quasi-Synchronous Checkpointing Protocols  

This class comprises of protocols which try to combine the advantages of both 

asynchronous and synchronous checkpointing protocols. This kind of protocols takes two 

types of checkpoints, namely basic and forced checkpoints. Basic checkpoints can be taken 

independently by the processes, while forced checkpoints are extra checkpoints forced by the 

communication pattern to avoid the creation of useless checkpoints in other processes. These 

protocols ensure that every checkpoint taken by processes is in some recovery line. Since 

local checkpoints are taken independently these protocols suffer less overhead for 

checkpointing, and yet avoid domino effect. But these protocols may end up taking more 

number of checkpoints compared to that in asynchronous checkpointing protocols. The failed 

process can determine the recovery line without any coordination with other processes. Other 

processes need to roll back to the recovery line sent by the failed process. Therefore recovery 

is simple. 
 

The protocols in this class piggyback protocol-specific information on every application 

messages. The receiver process then analyzes this information to decide whether any forced 

checkpoint is required or not. If so, the process first takes a checkpoint and then delivers the 

message to the application. Informally, the decision is based on whether the checkpoint and 

communication pattern will create any useless checkpoints in the system. If there is such a 

possibility, a forced checkpoint is taken to break the pattern. The decision is based on the 

notion of a Z – cycle and a Z – path, based on the zigzag path formulation [8]. A Z – path is 

the same as a zigzag-path. A Z –cycle is a Z – path that begins and ends in the same 

checkpoint interval (Fig 2.7). CIC protocols can be broadly sub-divided into two classes, 

index–based coordination protocols and model–based checkpointing protocols. 
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Fig 2.7: Z-path determination 

 

In index-based coordination checkpointing protocol, a process takes both basic and forced 

checkpoints, and all local checkpoints of a process are indexed by a monotonically increasing 

value. The index value is piggybacked on all application messages. When a process receives 

an application message, it checks whether the piggybacked index value is higher than its own. 

If so, then it updates its own index value to the piggybacked index value and takes a forced 

checkpoint. It then delivers the message to the application process. The protocol ensures that 

local checkpoints in different processes having the same index value form a recovery line. A 

more sophisticated protocol where processes transmit more information on application 

messages to reduce the number of forced checkpoints was proposed in [14]. 
 

A model-based checkpointing protocol defines a model of checkpoint and communication 

pattern which contains no useless checkpoints. For example, a model of checkpoint and 

communication pattern can be defined as the one which does not have any Z–cycle. A 

checkpoint and communication pattern, free of Z–cycle, does not contain any useless 

checkpoints. Therefore, a protocol which enforces such a model ensures that no useless 

checkpoint is generated in the system. When a process detects a possibility of violation of any 

constraints put forward by the model, it takes a forced checkpoint. All decisions are taken 

locally with the help of the information gathered from other processes through piggybacked 

values. Since the processes take independent decisions, the possibility of violation of the 

model can be detected by multiple processes at the same time and all of them may take 

preventive actions. Therefore, processes may end up taking more checkpoints than actually 

required. Wang has classified these protocols as follows [35]. 
 

• NRAS or No – Receive – After – Sendprotocol, where a checkpoint has to be taken before 

the first message received after a message has been sent. 

• CAS or Checkpoint – After – Send, where a checkpoint is forced after every send event. 

• CBR or Checkpoint – Before – Receive, where a checkpoint is forced before all receive 

events. 

• CASBR or Checkpoint –  After  –  Send and Before –  Receive is a combination of CAS and 

CBR protocols. Here, checkpoints are taken after a message is sent and also before a message 

is received. 

• FDAS or Fixed – Dependency – After – Send uses checkpoint sequence number (csn) to 

track dependency among processes. Every message sent carries this number. If a received 
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message carries a csn value higher than the local csn value of the receiver, the receiver 

process first updates its local csn value to the received csn value, then takes a forced 

checkpoint, and then delivers the message to the application process. 

• FDI or Fixed Dependency Interval protocols force checkpoints before dependency of 

a process changes due to some receive event. Manivannan and Singhal have proposed 

such a protocol [22]. 

Helary et. al. showed that since the checkpoint index number in index-based coordination 

protocols always increases along a Z–path, no Z–cycle can be formed. They have also proved 

that index-based checkpointing is a form of model-based checkpointing, specifically 

belonging to the FDAS class. 
 

2.5.4 Log based Recovery Protocol 

The previous three classes contain protocols with purely checkpoint-based recovery. Log-

based recovery adopts a different strategy for recovery than the earlier three classes. These 

protocols log all application messages. When a failed process is restarted, the logged 

messages are replayed to it exactly at the same instances as they were received before its 

failure. The PWD model ensures that the same execution path is retraced by the process in 

this technique, i.e., the process can be rolled forward. The execution of a process is modeled 

as a series of deterministic execution intervals terminated by non-deterministic events, for 

example, the receive of a message. The first deterministic execution interval of a process 

begins with the start of the process. Every deterministic execution interval terminates with the 

first non-deterministic event since its initiation. The same non-deterministic event starts the 

next deterministic execution interval. If the non-deterministic event e terminates an interval I 

and initiates an interval J, and if the event e can be replayed exactly at the end of interval I, 

then the execution of the interval J can be repeated. Recovery in this class of protocols 

depends on this principle.  
 

These protocols require that the content of the application messages and the information 

to replay them in order be stored and available during recovery. During recovery the failed 

process is restarted and all the application messages received by it before failure is replayed. 

By the PWD model, the failed process can retrace the execution path and will eventually 

arrive at a state just before the failure, i.e., the process is rolled forward. To avoid a complete 

restart of the failed process, checkpointing is used in conjunction with message logging. The 

failed process can then resume execution from a checkpointed state instead of a complete 

restart. This bounds the amount of rollback a process may suffer and recovery becomes 
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faster. But the overhead of message logging during failure-free execution is a drawback for 

these protocols. Checkpointing is used in conjunction with log-based recovery techniques to 

bound the amount of rollback. Three classes of message log-based recovery protocols have 

been proposed based on three types of message logging techniques. The problem of output 

commit is inherently handled by protocols in this class.  
 

• Pessimistic Message Logging Protocols 

This kind of protocols takes a conservative view of failure in that a fault can occur 

immediately after a nondeterministic event. Therefore, they ensure that all non-

deterministic events are logged before it can affect the state of a process. All receive 

messages are logged in the stable storage before it is delivered to the application. 

Therefore this technique is also referred to as synchronous logging. The process 

which logs a message gets blocked until the message is logged in some stable storage. 

In this class of protocols, only the failed process needs to recover, and the recovering 

process can recover up to the last state before failure. No orphan message is created. 

These classes of protocols always support output commit since the whole history of 

messages are always logged in the stable storage. Since only the failed process 

requires to recover, asynchronous checkpointing protocols can be used in conjunction 

with this class of protocols. So, a process can choose any checkpointing frequency to 

limit its rollback. Garbage collection is simple because all checkpoints and message 

log of events prior to the most recent checkpoint can be purged. The overhead of 

synchronous logging can be reduced by special hardware or by bounding the number 

of tolerable failures.  
 

• Optimistic Message Logging Protocols 

Unlike pessimistic message logging protocols, protocols in this class log messages in 

the volatile memory and therefore message logging overhead is lower. Message logs 

in volatile memory are asynchronously flushed to stable storage periodically, without 

blocking the application processes [29, 30, 36]. This class of protocols optimistically 

assumes that failure will not occur until the volatile log is flushed into the stable store 

which allows the failed process to recover to the last state before its failure similar to 

pessimistic protocols.  
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However, when a process fails, all message logs stored in its volatile memory are lost and 

the process can not roll forward to its latest state before failure. If the recovering process had 

sent messages in the interval between its recovered state and the state before its failure, then 

such messages become orphan messages. Therefore, the recovering process may create 

orphan processes in the system. 
 

Consider a situation depicted in Fig 2.8. Let the message mi be logged by the process p in 

its volatile log. The process p fails after sending message m2 and rolls back to Cf. Since mi is 

not recorded, the process cannot roll forward to the state before it receives mi. So mi becomes 

an orphan message and q becomes an orphan process. The possibility of creation of orphan 

processes complicates the recovery and garbage collection processes. Also, processes must be 

blocked in order to ensure that all volatile message logs are flushed to stable storage to ensure 

output commit. 

Fault p1 

X

Q 

q2 q1 

m2 m1 

P

 
 

Figure 2.8: Orphan process 

 

To perform rollbacks correctly, optimistic logging protocols track causal dependency 

during failure-free run. During recovery, this information is used to calculate a global state 

with no orphan processes. The recovery process is similar to that of asynchronous 

checkpointing protocols. Multiple processes may need to roll back to avoid the creation of an 

orphan process. Processes need to store multiple checkpoints. In Fig 2.8 the process q is 

forced to roll back to Cf in order to bring the system to a consistent state. Moreover, since at 

failure multiple processes may need to roll back, output commit generally requires the 

coordination of multiple processes. Recovery can be either synchronous or asynchronous. 
 

−Synchronous Recovery 

In this kind of protocols every process maintains information about causal dependency 

between processes, developed due to application message transmissions. This information is 
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then used by the recovering process to determine the processes which need to roll back to 

avoid the creation of orphan processes. 

−Asynchronous Recovery 

In contrast to synchronous recovery, asynchronous recovery requires that processes 

participate in multiple rounds of coordination to identify the processes which need to recover 

and a global state where they can roll back [30]. The process is similar to the recovery 

procedure for asynchronous checkpointing protocol. It was shown that an exponential number 

of messages may be exchanged to determine such a global state. The advantage is that, unlike 

synchronous recovery protocols, these protocols use very small piggybacked information and 

need not do elaborate book-keeping of dependency information, and as a result have less 

failure-free overhead. But recovery may become costly. 
 

• Causal Message Logging Protocols 

This class of protocols uses the application communication pattern to ensure that 

whenever a process p sends a message m, p is recoverable at least up to a state beyond 

the send event, so that even if p fails, the receiver of m needs not rollback , so that 

even if p fails, the receiver of m need not roll back. The protocol satisfies this 

condition by ensuring that the messages required to roll forward p beyond the state 

 are either stored in stable storage or are available in the volatile memory of some 

non-failed processes are either stored in stable storage or are available in the volatile 

memory of some non-failed processes. Casual logging has the advantage of the low 

failure-free overhead of optimistic logging, while retaining most of the advantages of 

the recovery of pessimistic logging [2, 10]. However, recovery and garbage collection 

procedures are complex. 

p
me

p
me
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3. INDEX - BASED CHECKPOINTING PROTOCOLS 
 

Index-based checkpointing is a quasi-synchronous approach that allows simple and 

efficient algorithms for rollback recovery and garbage collection. Checkpoints are time 

stamped with indexes that are similar to Lamport’s logical clocks [20] in a way that 

checkpoints with the same index form a consistent global checkpoint. The first algorithm to 

use this approach was the one proposed by Briatico, Ciuffoletti, and Simoncini (BCS) [5]. 

BCS is very simple and efficient. However, its performance is strongly coupled to the policy 

adopted to take basic checkpoints. For example, if basic checkpoints are taken periodically 

according to a global clock, no forced checkpoint is ever taken. In contrast, if each process 

takes basic checkpoints at different rates, many forced checkpoints may be required. In order 

to overcome this weakness, many optimizations of BCS were proposed. 
 

The essence of index-based checkpointing is that checkpoints with the same index form a 

consistent global checkpoint. The goal is to produce an index-based checkpointing protocol 

that guarantees this property, with a minimum number of forced checkpoints. 

 

3.1 MODEL OF THE DISTRIBUTED COMPUTATION 

 

We consider a distributed computation consisting of n processes {P1, P2, …., Pn} which 

interact by message passing. Each pair of processes is connected by a two-way reliable 

channel whose transmission delay is unpredictable but finite. 
 

Processes are autonomous in the sense that they do not share memory, do not share a 

common clock value, and do not have access to private information of other processes, such 

as clock drift, clock granularity, clock precision, and speed. Moreover, processes are 

heterogeneous in the sense that private information of the same type of distinct processes is 

not correlated. We assume, finally, processes follow a fail stop behavior [26]. 
 

A process produces a sequence of events and the hth event in process Pi is denoted as ei,h; 

each event moves the process from one state to another. We assume events are produced by 

the execution of internal, send or receive statements. 
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The send and receive events of a message m are denoted respectively with send(m) and 

receive(m). A distributed execution Ê  can be modeled as a partial order of events Ê = 

(E,→ ), where E is the set of all events and →  is the happened-before relation [20] defined 

as follows: 
 

DEFINITION 4.1 An event ei,h  precedes an event ej,k, denoted ei,h  e→ j,k iff:  

• i  =  j and k  = h + 1, or 

• ei,h = send(m) and ej,k = receive(m), or 

•  e∃ i,z : (ei,h  e→ i,z)  (e∧ i,z →  ej,k). 
 

A checkpoint C dumps the current process state onto stable storage. A checkpoint of 

process Pi is denoted as Ci,sn, where sn is called the index, or sequence number, of a 

checkpoint. Each process takes checkpoints either at its own pace (basic checkpoints) or 

induced by some communication pattern (forced checkpoints). We assume that each process 

Pi takes an initial basic checkpoint Ci,0 and that, for the sake of simplicity, basic checkpoints 

are taken by a periodic algorithm. We use the notation next(Ci,sn) to indicate the successive 

checkpoint, taken by Pi, after Ci,sn. A checkpoint interval Ii,sn is the set of events between Ci,sn 

and next(Ci,sn). Checkpoints are ordered by a relation of precedence, denoted →C, and 

defined as follows: 
 

DEFINITION 4.2. A checkpoint Ci,h precedes a checkpoint Cj,k, denoted Ci,h →C  Cj,k, iff: 

∃ei,l Є Ii,g, e∃ j,m Є Ij,a : (g ≥ h)  (a < k) ∧ ∧ ( ei,l →  ej,m). 

More simply, a checkpoint Ci,h precedes a checkpoint Cj,k if there is causal path of 

messages starting after Ci,h and ending before Cj,k. 

A global checkpoint C is a set of local checkpoints { , ,….. } one from 

each process. 

1,1 snC
2,2 snC

nsnnC ,

 

DEFINITION 4.3 A global checkpoint { , ,….. } is consistent iff 
1,1 snC

2,2 snC
nsnnC ,

                           i, j Є [1, n]: i ∀ ≠ j⇒ ( )
ji snjCsni CC ,, →¬ . 

In the following, we denote with Csn a global checkpoint formed by checkpoints with 

sequence number sn and use the term consistent global checkpoint Csn and recovery line Lsn 

interchangeably. 

 

 23



3.2 BCS 

3.2 BCS 

 

 In the algorithm proposed by Briatico, Ciuffoletti, and Simoncini (BCS) [5], every 

process maintains and propagates an index sn that is similar to a logical clock [20]. Process Pi 

initializes sn to 0 and increments it after a basic checkpoint is taken. When Pi sends a 

message, it piggybacks sn onto it. When Pi receives a message _ with m.sn > sn it takes a 

forced checkpoint as shown in Fig 3.1 

 
2 

 Pi
 
 (2) 2 
 Pj
 
 

(a) Pi does not increase its index 
 
 2 3
 
 XPi
 

(3)  
 
 
 
 

(b) Pi must increment its index 
 

Fig 3.1 BCS 
 

The Briatico-Ciuffoletti-Simoncini (BCS) algorithm can be sketched by using the following 

rules associated with the action to take a local checkpoint: 
 
take-basic (BCS): 
 When a basic checkpoint is scheduled  
  sni sn← i + 1  
  a checkpoint Ci, sn is taken  
take-forced (BCS): 
 Upon the receipt of message m: 
  if sni < m.sni then a checkpoint is taken  snmiC .,
 

By using the above rules, it has been proved that Csn is consistent [5]. Note that, due to 

the rule take- forced (BCS), there could be some gap in the index assigned to checkpoints by 

a process. Hence, if a process has not assigned the index sn, the first local checkpoint of the 

2 3

Pj
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process with sequence number greater than sn can be included in the consistent global 

checkpoint Csn. 
 

Each time a basic checkpoint is taken, sn is incremented by one and the process starts a 

lazy coordination to form a consistent global checkpoint Csn. In the worst case of BCS 

algorithm, the number of forced checkpoints induced by a basic one is n -1. In the best case, 

if all processes take a basic checkpoint at the same physical time, the number of forced 

checkpoints per basic one is zero. However, in an autonomous environment, local indices of 

processes may diverge due to many causes (process speed, different period of the basic 

checkpoint etc). This pushes the indices of some processes higher and each time one of such 

processes sends a message to another one, it is extremely likely that a number of forced 

checkpoints, close to n - 1, will be induced 

 

3.3 LAZY-BCS-AFTERSEND 

  
Let us consider a checkpoint interval in which a process Pi has only received messages 

with indexes that are smaller than its current index. Process Pi can deduce that it is ahead and 

not increment its index when the next checkpoint is taken. On the contrary, if Pi has received 

at least one message with the same index, Pi must increment its index when it takes the next 

basic checkpoint. In order to implement this behavior a process needs to maintain a flag that 

indicates whether a message with an equal index has arrived in the current checkpoint 

interval. This optimization, called Lazy-BCS, reduces the impact of asymmetry and 

guarantees the absence of the domino effect [4, 14]. 
 

Let us consider an interval in which a process Pi has not sent any message at the time it 

receives a message with a greater index. Since has not propagated the index of the current 

interval, it can increase its index without taking a forced checkpoint. We call this approach 

aftersend and it is domino-effect free. In order to implement this behavior a process needs to 

maintain a flag that indicates whether a message has been sent. This optimization has been 

incorporated to many index-based protocols and has also appeared in the context of 

checkpointing protocols that enforce Rollback-Dependency Tractability [35]. By combining 

the previous two optimizations we get Lazy-BCS Aftersend. 
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The Briatico-Ciuffoletti-Simoncini (BCS) algorithm can be sketched by using the following 

rules associated with the action to take a local checkpoint: 
 

take-basic (Lazy-BCS Aftersend): 

When a basic checkpoint is scheduled: 

 if skipi then skipi←  False 

 else sni←sni + 1; 

        a checkpoint Ci, sn is taken; 

take-forced (Lazy-BCS Aftersend): 

 Upon the receipt of a message m: 

  if sni < m.sn then 

   if aftersend then sni ←m.sn 

   else sni m.sn ←

          a checkpoint Ci,m.sn is taken  

 the message is processed;   

 

3.4 BQF 

 

The algorithm proposed by Baldoni, Quaglia and Fornara (BQF) [4], is an index based 

checkpointing algorithm in which each process maintains an index sn and updates the 

sequence number sn as a checkpoint is taken. This points out that forced checkpoints are due 

to the process of fast increasing of the sequence numbers. So, in order to slow down this 

phenomenon, we define an equivalence relation between successive checkpoints of a process. 

This relation allows a recovery line to advance without increasing its sequence number. From 

an operational point of view, the equivalence between checkpoints can be detected by a 

process exploiting causal dependencies between checkpoints. This algorithm embeds such a 

mechanism to detect equivalences between checkpoints by using a vector of integers 

piggybacked on application messages. In the worst case, this algorithm takes the same 

number of checkpoints as the algorithm in [22].The price paid is that each application 

message piggybacks more controls information (one vector of messages) compared to the 

previous proposals. 
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3.4.1 Equivalence Between Checkpoints 

DEFINITION 4.4. Two local checkpoints Ci,sn and next(Ci, sn) of process Pi are equivalent 

with respect to the recovery line Lsn (including Ci,sn), denoted Ci,sn 
snL

≡  next(Ci sn), if 

∀  Cj, sn Є Lsn: j  i ≠ ( ))( ,, sniCsnj CnextC →¬ . 

As an example, consider the recovery line Lsn depicted in Fig. 3.2a, where checkpoints are 

depicted by thick crosses and arrows between processes represent messages. If in I2,sn process  

P2 executes either send events or receive events of messages which have been sent from the 

 left side of Lsn, then C2,sn  next(C
snL

≡ 2,sn) and a recovery line L`sn can be created by replacing 

C2,sn with next(C2,sn) from Lsn. Fig. 3.2b shows the construction of the recovery line L``sn 

starting from L`sn by using the equivalence between C1,sn and next(C1,sn) with respect to L`sn. 

Hence, we can say, Ci,sn is not equivalent to next(Ci,sn) with respect to Lsn if at least one 

message is sent from the right side of Lsn and is received by Pi in Ii,sn.  

 
Fig 3.2 Examples of pairs of equivalent checkpoints 

From the above examples, a simple property follows: 

PROPERTY 4.1 If Ci,sn  next(C
snL

≡ i,sn) then L`sn then L`sn = Lsn ─ {Ci,sn}  {next(CU i,sn)} is  

                            a recovery line. 

PROOF: 

 Ci,sn  next(C
snL

≡ i,sn) 

 As Lsn is a recovery line including Ci,sn then  

  C∀ j,sn Є Lsn: j  i ≠ ( ))( ,, sniCsnj CnextC →¬ . 

 So, the set of local checkpoints Lsn ─ {Ci,sn}  {next(CU i,sn)} is a consistent set. 
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Hence, if a process detects a pair of equivalent checkpoints, it can advance the recovery 

line without updating its sequence number.  
 

3.4.2 Tracking the Equivalence Relation On-The-Fly 

The events influencing the detection of the equivalence are: the arrival of a message (which 

enlarge the knowledge about the causal past of a process) and the event of taking a basic 

checkpoint. 

Upon the arrival of a message m at Pi in the checkpoint interval Ii,sn,en: One of the 

following three cases is true: 

1) (m.sn < sni) or ((m.sn = sni) and (∀  m.EQ[j] < EQi [j])): 

 % m has been sent from the left side of the recovery line  % ][,, jEQsnjj i
C∀U

2) (m.sn = sni) and (∃ j: m.EQ[j] ≥ EQi[j]): 

 % m has been sent from the right side of the recovery line % ][,, jEQsnjj i
C∀U

3) (m.sn > sni) 

 % m has been sent from the right side of a recovery line of which Pi was not aware % 

 

Fig 3.3 Upon the receipt of m`, P1 detects C1,sn,0 
snL

≡  next(C1,sn,0) 

 

A message m which falls in case 3) directs Pi to take a forced checkpoint Ci,m.sn 0. So, the only 

interesting cases for tracking the equivalence are 1) and 2). 

At the time of the basic checkpoint next(Ci,sn,en): Pi falls in one of the following two 

alternatives:  
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1) If no message is received in Ii,sn,en that falls in case 2), then Ci,sn,en  next(C
snL

≡ i,sn,en). 

That equivalence can be tracked by a process using its local context at the time of the  

 checkpoint next(Ci,sn,en). Thus, next(Ci,sn,en) = Ci,sn,en+1 (the equivalence between,  

 C2,sn,0  next(C
snL

≡ 2,sn,0) shown in Fig. 3.3, is an example of such a behavior) 

2) If there exists at least one message m received in Ii, sn, en which falls in case 2), one 

  checkpoint belonging to the recovery line  precedes next(C][,, jEQsnjj i
C∀U i,sn,en) this  

 communication pattern is shown in Fig.3.3,where ] ={C[,, jEQsnjj i
C∀U 1,sn,0,C2,sn,0,C3,sn,0}  

 and due to m, )( 0,,10,,2 snCsn CnextC → . The consequence is that process Pi cannot  

 determine, at the time of taking the basic checkpoint next(Ci,sn en) if Ci,sn,en is  

 equivalent to next (Ci, sn, en) with respect to some recovery line. As an example, in  

 Fig 3.3, process P1 cannot determine if C1,sn,0 is equivalent to next(C1,sn,0) with respect 

to some recovery line when taking next(C1,sn,0). 
 

To solve the problem raised in point 2), two approaches can be pursued. If, at the time of 

the basic checkpoint next(Ci,sn,en), the equivalence between Ci,sn,en and next(Ci,sn,en) is 

undetermined, then: 
 

Pessimistic Approach: Process Pi assumes pessimistically next(Ci,sn,en) = Ci,sn+1,0 even 

though this determination could be revealed wrong in the future of the computation. Fig. 3.3  

shows a case in which message m` brings the information (encoded in m`.EQ) to P1 that  

C2,sn,0  next(C
snL

≡ 2,sn,0) and that the recovery line was advanced by P2, from Lsn to L`sn. In such 

a case, P1 can determine C1,sn,0 is equivalent to next(C1,sn,0) with respect to L`sn. 
 

Optimistic Approach: Process Pi assumes optimistically (and provisionally) that Ci,sn,en is 

equivalent to next(Ci,sn,en). So, the index of next(Ci,sn,en) becomes <sn,en+1>.As provisional 

indices cannot be propagated in the system, if at the time of the first send event after 

next(Ci,sn,en) the equivalence is still undetermined, then next(Ci,sn,en) = Ci,sn+1,0 (thus, sni=sni+1, 

 eni = 0, and j: EQ∀ i[j] = 0). Otherwise, the provisional index becomes permanent. Fig. 3.3  

shows a case in which C1,sn,0  next(C
snL

≡ 1,sn,0) and this is detected by Pi before sending m``. 

After m`` is sent, the index <sn, 1> of next(C1,sn,0) becomes permanent. 
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3.4.3 The BQF Algorithm 

We assume each process Pi has the following data structures: 

sni, eni: integer; 

after_first_sendi, skipi, provisionali: Boolean; 

pasti, presenti, EQi: ARRAY [1, n] of integer. 

presenti[j] represents the maximum equivalence number enj sent by Pj in the current 

interval, and piggybacked on a message that falls in case 2) of Section 3.4.2. Upon taking a 

checkpoint or when updating the sequence number, all the entries of presenti are initialized to 

-1. If the checkpoint is basic, presenti is copied in pasti before its initialization. Each time a 

message m is received such that pasti[h] < m.EQ[h], pasti[h] is set to -1. So,the predicate 

( h: past∃ i[h]>-1) indicates that there is a message received in the past checkpoint interval 

that has been sent from the right side of the recovery line currently seen by Pi (case 2 of 

Section 3.4.2).Below, the process behavior is shown (the procedures and the message handler 

are executed in atomic fashion). This implementation assumes that there exists at most one 

provisional index in each process. So, each time two successive provisional indices are 

detected, the first index is permanently replaced with <sni + 1, 0>. 

init Pi: 

sni = 0; 

eni = 0;  

after_first_sendi = FALSE; 

skipi = FALSE; 

provisionali = FALSE; 

∀ h EQi[h] = 0; 

∀ h pasti[h] = -1; 

∀ h presenti[h] = -1; 

When m arrives at Pi from Pj: 

if m.sn > sni then             % Pi is not aware of the recovery line with sequence number m.sn % 

begin 

 if after_first_sendi then 

 begin 

  take a checkpoint;         % taking a forced checkpoint % 

  skipi = TRUE;  

  after_first_sendi = FALSE; 

 end; 
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 sni = m.sn; eni = 0; 

 assign the index <sni, eni> to the last taken checkpoint; 

 provisionali = FALSE;                 % the index is permanent % 

 h past∀ i[h] = -1; 

 h present∀ i[h] = -1; 

 presenti[j] = m.EQ[j]; 

 h EQ∀ i[h] = m.EQ[h]; 

end 

else if m.sn = sni then 

 begin 

 if presenti[j] < m.EQ[j] then presenti[j] = m.EQ[j]; 

 h EQ∀ i[h] = max (EQi[h], m.EQ[h]); % a component-wise maximum is performed % 

  h if past∀ i[h] < m.EQ[h] then pasti[h] = -1; 

 end; 

process the message m; 

When Pi sends data to Pj: 

if provisionali∧ ( h: past∃ i[h]>-1) then %last checkpoint not equivalent to the previous one% 

begin 

 sni = sni + 1; eni =0; 

 assign the index <sni, eni> to the last taken checkpoint; 

 provisionali = FALSE;               % the index is permanent % 

 h past∀ i[h] = -1;  

 h present∀ i[h] = -1; 

 h EQ∀ i[h] = 0; 

end; 

m.content = data; 

m.sn = sni; 

m.EQ = EQi;          % packet the message % 

send (m) to Pj; after_first_sendi = TRUE; 

When a basic checkpoint is scheduled from Pi: 

if skipi then skipi = FALSE                                                 % the basic checkpoint is skipped % 

else 

begin 

 if provisionali then                                           % two successive provisional indices % 
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 if (∃h: pasti[h]> -1) then          % last checkpoint not equivalent to the previous one % 

 begin 

  h past∀ i[h] = -1; 

  sni = sni + 1;  

  eni = 0; 

  assign the index<sni, eni> to the last taken checkpoint;% permanent index% 

  ∀ h EQi[h] = 0; 

 end 

 else ∀ h pasti[h] = presenti[h];   % last checkpoint is equivalent to the previous one % 

 take a checkpoint;                                                          % taking a basic checkpoint % 

 eni = eni + 1;  

 EQi[i] = eni; 

 assign the index <sni, eni> to the last taken checkpoint; 

 provisionali = TRUE;                                                          % the index is provisional % 

 h present∀ i[h] = -1;  

 after_first_sendi = FALSE; 

end 
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4. ENHANCED INDEX BASED CHECKPOINTING ALGORITHM 
 

 The algorithm previously described, BCS [5], Lazy-BCS Aftersend [35], BQF [4] 

start will less complexity and increase in complexity. Among the three BQF is efficient it has 

less number of forced checkpoints at the cost more control information. In this chapter we 

propose an algorithm that is more efficient both in terms of number of checkpoints and the 

control information that is needed to propagate among the processes. The proposed algorithm 

requires only the sequence number to be piggybacked along with the message instead of the 

sequence number and EQi (equivalence vector) as in case of BQF. The EQi needs to be 

piggybacked in BQF as it is optimistically assuming that the Ci,sn,en and next(Ci,sn,en) are 

equivalent. This optimistic assumption has made BQF to propagate an additional vector EQi 

each time a message is being transmitted by a process. In this proposed algorithm we haven’t 

made such assumption which obviously decreased at cost at which we have achieved less 

number of forced checkpoints than the others. 
 

In this algorithm as all the index based checkpointing algorithms each process maintains a 

sequence number sn, which is incremented by one as a process takes a basic checkpoint or a 

forced checkpoint. This sequence number sn is piggybacked along with all the messages that 

are transmitted from this process. If a process receives a message with a sequence number, 

m.sn, higher than its own sequence number then that process is forced to take a checkpoint 

with the sequence number of the message, m.sn.  
 

Each process is also associated with a boolean variable inc which indicates whether to 

increment or not when a basic checkpoint is taken. This boolean variable inc is set to true 

only if the process receives atleast a message with sequence number, m.sn greaterthan or 

equal to the sequence number, sn, of the process. This variable allows the processes to 

increase the sequence number slowly. This makes process to be in synchronous with the other 

processes. If all the processes are increasing the sequence number at the same phase then the 

need to take the forced checkpoints is removed ultimately removing the number of forced 

checkpoints.  
 

Each process is also associated with another boolean variable, aftersend, which indicates 

whether there is atleast one sending event in the current interval since the last checkpoint. If 

this variable is not set during the current interval at the time of reception of the message with 

sequence number, m.sn, higher than the sequence of the process, as the aftersend boolean 
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variable is not set, which indicates that there is no sending event since the last checkpoint 

there is no need to force the process to take a checkpoint instead the sequence number, Ci,sn, 

of the previous checkpoint is updated with the sequence number of the message, m.sn, 

without taking the checkpoint. As the process has not revealed its sequence number, sn, in the 

current interval to the other process the above optimization is handful. On the other hand if 

this boolean variable, aftersend, is set the process is forced to take a checkpoint with the 

sequence number of the message, m.sn.  
 

The checkpoint interval of all the processes is dynamically updated depending on when a 

process takes a forced checkpoint. As a process takes a forced checkpoint the checkpoint 

interval of that process is reset and the new interval starts from this moment. Again the length 

of this interval will be same, that is, an average of 10 communication events from now. This 

reset strategy has also worked well to keep a process in phase with the remaining other 

processes in terms of the sequence numbers. The interval is thus determined dynamically as 

opposed to the static interval implemented by the previous algorithms.  

 

4.1 SIMULATION ENVIRONMENT 

 

Our experimental data was obtained using SPIN [3] - the simulator and model checker. 

Promela is the input language of SPIN .In Promela, the processes are asynchronous and the 

simulated execution of each process is a succession of atomic events of three types: internal, 

send-message and receive message. The only type of internal event that is relevant for 

checkpointing is the occurrence of a basic checkpoint. The environment is controlled by 

adjusting the distribution of these events and the communication network. 
 

All of the experiments were performed considering a complete network, i.e., each pair of 

processes is connected by a bidirectional communication channel. The channels do not lose 

or corrupt messages. For each experimental point it was considered the average of 10 

measurements. Each measurement was taken by the execution of each of the studied 

algorithms under the same pattern of messages and basic checkpoints. We counted the ratio 

of forced checkpoints per total messages with an average of 500 per process 
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We considered two scenarios in this study [34]: 
 

None-faster: In the none-faster scenario all processes have, on average, the same number of 

events between basic checkpoints. The processes do not take basic checkpoints at exactly the 

same time; just the ratio of basic checkpoints per events is the same. This setting represents a 

situation where all the processes behave in the same way and have the same execution speed. 

Particularly, we have an average of 10 communication events between any two basic 

checkpoints. We have made the measurements varying the number of processes from 2 to 15.  
 

One-faster: In the one-faster scenario all but one process behaves as in the none-faster 

scenario and this process has a smaller number of events between the basic checkpoints. This 

setting represents a system with a single process that has more important local states and is 

willing to take more basic checkpoints, introducing asymmetry in the pattern of basic 

checkpoints. In this scenario we consider a system in which one process will have half the 

interval than the others; one process is taking the basic checkpoints double the rate at which 

other processes are taking. Particularly we have considered the first process 5 communication 

events between any two basic checkpoints and the others with 10 communication events 

between any two basic checkpoints.  

 

4.2 SPIN 

 

SPIN is a popular open-source software tool, used by thousands of people worldwide that 

can be used for the formal verification of distributed software systems. The tool was 

developed at Bell Labs in the original UNIX group of the Computing Sciences Research 

Center, starting in 1980. The software has been available freely [31] since 1991, and 

continues to evolve to keep pace with new developments in the field. In April 2002 the tool 

was awarded the prestigious System Software Award for 2001 by the ACM. 
 

SPIN is a tool for analyzing the logical consistency of distributed systems, specifically of 

data communication protocols [16]. The system is described in a modeling language called 

Promela (Process or Protocol Meta Language). The language allows for the dynamic creation 

of concurrent processes. Communication via message channels can be defined to be 

synchronous (i.e., rendezvous), or asynchronous (i.e., buffered). XSPIN is a graphical front-

end to drive SPIN (written in Tcl/Tk) [3, 25]. 
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Given a model system specified in Promela, SPIN can perform random or interactive 

simulations of the system's execution or it can generate a C program that performs a fast 

exhaustive verification of the system state space. During simulations and verifications SPIN 

checks for the absence of deadlocks, unspecified receptions, and unexecutable code. The 

verifier can also be used to prove the correctness of system invariants and it can find non-

progress execution cycles. Finally, it supports the verification of linear time temporal 

constraints; either with Promela never-claims or by directly formulating the constraints in 

temporal logic.  
 

The verifier is setup to be fast and to use a minimal amount of memory. The exhaustive 

verifications performed by SPIN are conclusive. They establish with certainty whether or not a 

system's behavior is error-free. Very large verification runs, that can ordinarily not be 

performed with automated techniques, can be done in SPIN with a ``bit state space'' technique. 

With this method the state space is collapsed to a few bits per system state stored. Although 

this technique doesn't guarantee certainty, the coverage is better, and often much better, than 

that obtained with traditional random simulation. 
 

SPIN is a generic verification system that supports the design and verification of 

asynchronous process systems. SPIN verification models are focused on proving the 

correctness of process interactions, and they attempt to abstract as much as possible from 

internal sequential computations. Process interactions can be specified in SPIN with 

rendezvous primitives, with asynchronous message passing through buffered channels, 

through access to shared variables, or with any combination of these. In focusing on 

asynchronous control in software systems, rather than synchronous control in hardware 

systems, SPIN distinguishes itself from other well-known approaches to model checking,  
 

As a formal methods tool, SPIN aims to provide: 
 

1) an intuitive, program-like notation for specifying design choices unambiguously, 

without implementation detail,  

2) a powerful, concise notation for expressing general correctness requirements, and  

3) a methodology for establishing the logical consistency of the design choices from 1) 

and the matching correctness requirements from 2).  
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Much formalism has been suggested to address the first two items, but rarely are the 

language choices directly related to a basic feasibility requirement for the third item. In SPIN 

the notations are chosen in such a way that the logical consistency of a design can be 

demonstrated mechanically by the tool. SPIN accepts design specifications written in the 

verification language PROMELA (a Process Meta Language) [13], and it accepts correctness 

claims specified in the syntax of standard Linear Temporal Logic (LTL).  
 

There are no general decision procedures for unbounded systems, and one could well 

question the soundness of a design that would assume unbounded growth. Models that can be 

specified in PROMELA are, therefore, always required to be bounded, and have only 

countably many distinct behaviors. This means that all correctness properties automatically 

become formally decidable, within the constraints that are set by problem size and the 

computational resources that are available to the model checker to render the proofs. All 

verification systems, of course, do have physical limitations that are set by problem size, 

machine memory size, and the maximum runtime that the user is willing, or able, to endure. 

These constraints are an often neglected issue in formal verification.  

 

4.2.1 Structure  

The basic structure of the SPIN model checker is illustrated in Fig. 4.1 [15]. The typical 

mode of working is to start with the specification of a high level model of a concurrent 

system, or distributed algorithm, typically using SPIN’s graphical front-end XSPIN. After 

fixing syntax errors, interactive simulation is performed until basic confidence is gained that 

the design behaves as intended. Then, in a third step, SPIN is used to generate an optimized 

on-the-fly verification program from the high level specification. This verifier is compiled, 

with possible compile-time choices for the types of reduction algorithms to be used, and 

executed. If any counterexamples to the correctness claims are detected, these can be fed 

back into the interactive simulator and inspected in detail to establish, and remove, their 

cause.  
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Fig 4.1 The structure of SPIN simulation and verification 

 

4.3 THE ALGORITHM: 

 

init Pi: 

sni = 0;  

aftersendi = FALSE;  

inci = FALSE;  

intervali =10; 

When m arrives at Pi from Pj: 

if m.sn > sni then             % Pi is forced to take a checkpoint with sequence number m.sn % 

begin 

 if aftersendi then 

 begin 
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  take a checkpoint m.sn as the index;         % taking a forced checkpoint % 

  intervali =0; 

  aftersendi = FALSE; 

  inci = TRUE; 

  sni = m.sn; 

 end; 

else 

 begin 

  inci = TRUE;                                    % a forced checkpoint has been skipped % 

  sni = m.sn; 

  assign the index sni to the last checkpoint taken 

 end 

end 

else if m.sn = sni then inci =TRUE; 

process the message m; 

When Pi sends data to Pj: 

m.content = data;                                                  % packet the message % 

m.sn = sni; 

send (m) to Pj; 

aftersendi =TRUE; 

intervali = intervali – 1; 

 

When a basic checkpoint is scheduled from Pi: 

If inci then sni = sni + 1; 

take a checkpoint with index as sni 

intervali = 0; aftersendi = FALSE; inci = FALSE; 
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4.4 DRAWBACKS OF BQF 

 

• As BQF is optimistically assuming that Ci,sn,en is equivalent with next(Ci,sn,en) to 

implement this assumption it is three vectors EQi, presenti, pasti which is 

unnecessarily increasing the complexity of the algorithm. 

• Because of the same assumption that Ci,sn,en is equivalent with next(Ci,sn,en) BQF is 

also increasing the message traffic by increasing the amount of message that is to be 

piggybacked on each message by the process 

 

The above two drawbacks are overcome in the proposed algorithm by merely not 

assuming that Ci,sn and next(Ci, sn) are equivalent. This ultimately reduced the amount of 

control message traffic that is to be piggybacked on a message whenever a process needs to 

send some information to the other process over the network. Also the complexity of the 

algorithm has been decreased by not needing to maintain unnecessary vector EQi, presenti, 

pasti, as needed by BQF. 

The proposed algorithm also follows a new strategy to update the checkpoint interval 

dynamically as opposed to the static interval used by the existing algorithms explained in the 

previous chapter. Whenever a process takes a forced checkpoint due to the reception of a 

message with sequence number higher than the sequence number of the process, the 

checkpoint interval is reset that is a new interval starts from the point where the forced 

checkpoint is taken. By using the above rules the set of local checkpoints one from each 

process with same sequence numbers forms a consistent global checkpoint. It may also 

happen that some processes may not have a particular sequence numbers in such case the 

next local checkpoint from that process with the sequence number greater than or equal to the 

sequence number of the consistent checkpoint is included into the global consistent set. 

 

4.5 EXPERIMENTAL RESULTS 

 

In this section, simulation results are demonstrated to compare the protocol proposed in 

this thesis to traditional ones. The simulation is built on SPIN, a tool to trace logical design 

errors and check the logical consistency of protocols and algorithms in distributed systems. 

The basic checkpoint interval is set to approximately equal to every 10 send events. There are 

only three types of events, that is, sending events, receiving events and checkpointing events. 
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The number of forced checkpoint events and the number of computation messages will be 

counted every 500 send events for each process. Process chooses its destination randomly in 

sending events. It is assumed that messages will not be corrupted or lost or disordered. The 

compared parameter is the ratio between the number of forced checkpoint events of a 

protocol and the number of computation messages [33], which indicates the performance of 

how many forced checkpoints per computation message. The numbers of processes vary from 

2 to 15.  
 

The simulation result for none faster scenario is depicted in Fig.4.2 here the X-axis 

represents the number of processes and Y-axis represents the ratio between the number of 

forced checkpoints and the number of messages of execution. The simulation shows that the 

proposed protocol outperforms than the other three protocols. It reduces the number of forced 

checkpoints by 60.9% as compared to BCS, 45% as compared to Lazy-BCS-Aftersend and 

31.4% as compared with BQF. 

 

 
Fig 4.2 None faster situation 
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The simulation result for one faster scenario is depicted in Fig.4.3.We have considered 10 

send events as the interval for all the processes and 5 send events as the interval for the first 

process. The X-axis represents the number of processes and Y-axis represents the ratio 

between the number of forced checkpoints and the number of messages of execution. The 

simulation shows that the proposed protocol outperforms than the other three protocols. It 

reduces the number of forced checkpoints by 55.1% as compared to BCS, 46.4% as 

compared to Lazy-BCS-Aftersend and 27.6% as compared with BQF. 

 

 

 
Fig 4.3 One faster situation 

 

Simulation results show that the proposed scheme can reduce the number of forced 

checkpoints per message about 27-32% on an average when compared to BQF. 
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5. CONCLUSION AND FUTURE WORK 

 
This thesis presents an Enhanced index-based Checkpointing algorithm for Distributes 

Systems to improve the performance of index-based checkpointing algorithms. The main 

drawbacks of the existing BQF, is that first it optimistically assuming that Ci,sn,en is equivalent 

with next(Ci,sn,en) to implement this assumption it is three vectors EQi, presenti, pasti which is 

unnecessarily increasing the complexity of the algorithm. Secondly, because of the same 

assumption that Ci,sn,en is equivalent with next(Ci,sn,en), BQF is also increasing the message 

traffic by increasing the amount of message that is to be piggybacked on each message by the 

process.  
 

The above two drawbacks are overcome in the proposed algorithm by merely not 

assuming that Ci,sn and next(Ci,sn) are equivalent. The proposed algorithm also follows a new 

strategy to update the checkpoint interval dynamically as opposed to the static interval used 

by the existing algorithms explained in the above sections. Whenever a process takes a forced 

checkpoint due to the reception of a message with sequence number higher than the sequence 

number of the process, the checkpoint interval is reset that is a new interval starts from the 

point where the forced checkpoint is taken. The timer reset strategy of resetting the timer 

after a forced checkpoint restarts a new basic checkpoint interval.  
 

Thus the Enhanced index-based checkpointing algorithm decreases the number of 

checkpoints with less complexity as compared to the existing index-based checkpointing 

algorithms. 

 

FUTURE WORK 

 

The proposed algorithm can be extended to incremental checkpointing wherein instead of 

saving the complete state of the process only the pages which have been modified by a 

particular process are saved each time a local checkpoint is taken by a process. This reduces 

the checkpointing overhead, as only part of a process state is saved instead of saving the 

complete state. 
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