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ABSTRACT

Data Mining refers to as “the nontrivial process of identifying valid, novel, potentially

useful and ultimately understandable pattern in data”. Based on the type of knowledge that

is mined, data mining can be classified in to different models such as Clustering, Decision

trees, Association rules, and Sequential pattern and time series. In this thesis work, an

attempt has been made to study theoretical background and applications of Clustering

techniques in data mining with a special emphasis on analysis of Gene Expression under

Bioinformatics.

Bioinformatics is the study of genetic and other biological information using computer

and statistical techniques. DNA microarray technology has now made it possible to simul-

taneously monitor the expression levels of thousands of genes during important biological

processes and across collections of related samples. A flood of data means that many of the

challenges in biology are now challenges in computing. A first step toward addressing this

challenging is the use of clustering technique, which is essential in the data mining process

to reveal natural structures and identifying interesting patterns in the underlying data.

In this thesis work, effort has been made to compare between few Clustering algorithms

such as: K means, Hierarchical, Self Organization Map(SOM), and Cluster Affinity Search

Technique(CAST) with proposed algorithm called CAST+. Strengths and Weaknesses

of the above Clustering algorithms are identified and drawbacks like knowing number of

clusters before clustering, and taking affinity threshold as input from the users are rectified

by the proposed algorithm. Results show that Proposed Algorithm is efficient in comparison

with other Clustering algorithms mentioned above.

The Clustering algorithms are compared on the basis of few Evaluation Indices such as

Homogeneity Vs separation, and Silhouette width.
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Abbreviations

SOM Self Organizing Map

CAST Cluster Affiniy Search Technique

ECAST Enhanced Cluster Affinity Search Technique

CAST+ Proposed Algorithm

DNA Deoxiribo Nucliec Acid

cDNA colored Deoxiribo Nucleic Acid

KDD Knowledge Discovery in Databases

CPU Central Processing Unit

~O Vector of object O

RNA Ribo Nucleic Acid

mRNA messenger Ribo Nucleic Acid

GB Gene Bank
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Chapter 1

Introduction

1.1 Data Mining and Knowledge Discovery

With the enormous amount of data stored in files, databases, and other repositories, it is

increasingly important, to develop powerful means for analysis and perhaps interpretation

of such data and for the extraction of interesting knowledge that could help in decision-

making.

Data Mining, also popularly known as Knowledge Discovery in Databases (KDD), refers

to as “the nontrivial process of identifying valid, novel, potentially useful and ultimately

understandable pattern in data”. While data mining and knowledge discovery in databases

(KDD) are frequently treated as synonyms, data mining is actually part of the knowledge

discovery process. Figure 1.1 shows data mining as a step in an iterative knowledge dis-

covery process.

The task of the knowledge discovery and data mining process is to extract knowledge

from data such that the resulting knowledge is useful in a given application. The Knowledge

Discovery process in Databases comprises of a few steps leading from raw data collections

to some form of retrieving new knowledge. The iterative process consists of the following

steps:

1. Data cleaning: Also known as data cleansing, it is a phase in which noisy data and

irrelevant data are removed from the collection.
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Figure 1.1: An Overview of the Steps Comprising the KDD Process

2. Data integration: At this stage, multiple data sources, often heterogeneous, may be

combined in a common source.

3. Data selection: At this step, the data relevant to the analysis is decided on and

retrieved from the data collection.

4. Data mining: It is the crucial step in which clever techniques are applied to extract

data patterns potentially useful.

5. Pattern evaluation: In this step, strictly interesting patterns representing Knowledge

is identified based on given measures.

6. Knowledge representation: Is the final phase in which the discovered knowledge is

visually represented to the user. This essential step uses visualization techniques to

help users understand and interpret the data mining results.
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It is common to combine some of these steps together. For instance, data cleaning and

data integration can be performed together as a pre-processing phase to generate a data

warehouse. Data selection and data transformation can also be combined where the con-

solidation of the data is the result of the selection, or, as for the case of data warehouses,

the selection is done on transformed data.

The KDD is an iterative process. Once the discovered knowledge is presented to the user,

the evaluation measures can be enhanced, the mining can be further refined, new data can

be selected or further transformed, or new data sources can be integrated, in order to get

different, more appropriate results.

1.2 Data Mining Models

There are several data mining models, some of these are narrated below which are conceived

to be important in the area of “Data Mining”.

• Clustering: It segments a large set of data into subsets or clusters. Each cluster is a

collection of data objects that are similar to one another with the same cluster but

dissimilar to objects in other clusters.

• Classification: Decision trees, also known as classification trees, are a statistical tool

that partitions a set of records into disjunctive classes. The records are given as

tuples with several numerics and categorical attributes with one additional attribute

being the class to predict. Decision trees algorithm differs in selection of variables to

split and how they pick the splitting point.

• Association Mining: It uncovers interesting correlation patterns among a large set of

data items by showing attribute value conditions that occur together frequently.

• Sequential Pattern and Time series: Sequential pattern and time -series mining looks

for patterns where one event (or value) leads to another later event (or value). One

example is that after the inflation rate increases, the stock market is likely to go

down.
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1.3 Bioinformatics

Bioinformatics is the study of genetic and other biological information using computer and

statistical techniques. The explosive growth in the amount of biological data demands the

use of computers for the organization, the maintenance and the analysis of these data. The

aims of Bioinformatics are:

1. The organization of data in such a way that allows researchers to access existing

information and to submit new entries as they are produced.

2. The development of tools that help in the analysis of data.

3. The use of these tools to analyze the individual systems in detail, in order to gain

new biological insights.

Application of Data Mining techniques for Bioinformatics is vast area of study. It includes

• Gene Expression in Datamining : Gene expression analysis is the use of quanti-

tative mRNA-level measurements of gene expression (the process by which a gene’s

coded information is converted into the structural and functional units of a cell)

in order to characterize biological processes and elucidate the mechanisms of gene

transcription.

• Data mining in genomics: Genomics is the study of an organism’s genome and

deals with the systematic use of genome information to provide new biological knowl-

edge.

• Data Mining in Proteomics: Proteomics is the large-scale study of proteins, par-

ticularly their structures and functions.

1.4 Introduction to Microarray Technology

Compared with the traditional approach to genomic research, which is focused on the local

examination and collection of data on single genes, microarray technologies have now made

it possible to monitor the expression levels for tens of thousands of genes in parallel. The two
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major types of microarray experiments are the cDNA microarray and oligonucleotide arrays

(abbreviated oligo chip). Despite differences in the details of their experiment protocols,

both types of experiments involve three common basic procedures :

1. Chip manufacture: A microarray is a small chip (made of chemically coated glass,

nylon membrane or silicon), onto which tens of thousands of DNA molecules (probes)

are attached in fixed grids. Each grid cell relates to a DNA sequence.

2. Target preparation, labeling and hybridization: Typically, two mRNA samples

(a test sample and a control sample) are reverse-transcribed into cDNA (targets),

labeled using either fluorescent dyes or radioactive isotopics, and then hybridized

with the probes on the surface of the chip.

3. The scanning process: Chips are scanned to read the signal intensity that is

emitted from the labeled and hybridized targets.

Generally, both cDNA microarray and oligo chip experiments measure the expression level

for each DNA sequence by the ratio of signal intensity between the test sample and the

control sample, therefore, data sets resulting from both methods share the same biological

semantics. In this thesis work, unless explicitly stated, we will refer to both the cDNA mi-

croarray and the oligo chip as microarray technology and term the measurements collected

via both methods as gene expression data.

1.4.1 Gene expression data

A microarray experiment typically assesses a large number of DNA sequences (genes, cDNA

clones, or expressed sequence tags) under multiple conditions. These conditions may be

a time series during a biological process or a collection of different tissue samples (e.g.,

normal versus cancerous tissues). In this thesis work, emphasis is given on the cluster

analysis of gene expression data without making a distinction among DNA sequences,

which will uniformly be called ”genes”. Similarly, it is referred to all kinds of experimental

conditions as ”samples”, if no confusion will be caused. A gene expression data set from a

microarray experiment can be represented by a real-valued expression matrix M = {Wij |
1 ≤ i ≤ n, 1 ≤ j ≤ m} as shown in Figure 1.2, where the rows (G = {g1...gn}) form the

5



expression patterns of genes, the columns (S = {S1...Sm}) represent the expression profiles

of samples, and each cell is the measured expression level of gene i in sample j. Table 1.1

includes some notation that is used in thesis work.

Figure 1.2: A Gene Expression Matrix

1.5 Motivation

Analysis of microarrays presents a number of unique challenges for data mining. Typical

data mining applications in domains like banking or web, have a large number of records

(thousands and sometimes millions), while the number of fields is much smaller (at most

6



n number of genes

m number of samples

M a gene expression matrix

wij each cell in gene expression matrix

gi a gene

Sj a sample

G,G0, ... a set of genes

S, S0, .... a set of samples

Table 1.1: Notation in this Thesis

several hundred). In contrast, a typical microarray data analysis study may have only a

small number of records (less than a hundred), while the number of fields, corresponding to

the number of genes, is typically in thousands. Given the difficulty of collecting microarray

samples, the number of samples is likely to remain small in many interesting cases. It need

especially robust methods to validate the models and assess their likelihood.

Clustering is a potential area of Data mining that can be dealt with the large data simul-

taneous. Due to special characteristics of gene expression data and particular requirements

from biological domain. Gene based clustering presents several challenges.

• The purpose of clustering gene expression data is to reveal the natural data struc-

tures and gain some initial insights regarding data distribution. Therefore, a good

clustering algorithm should depend as little as possible on prior knowledge, which is

usually not available before cluster analysis.

• Due to complex procedures of microarray experiments, gene expression often contain

a huge amount of noise. Therefore clustering algorithms for gene expression data

should be capable of extracting useful information from a high level of background

noise.

• Users of microarray data may not only be interested in the clusters of genes, but also

be interested in the relationship between the clusters, and the relation between the

genes within the same cluster.

7



1.6 Organization of thesis work

This thesis work is divided into five chapters. This Chapter gives introduction to what is

data mining, bioinformatics and our motivation towards clustering the gene expression data

generated by microarray. Chapter 2 presents the literature survey that is carried out.

Chapter 3 presents clustering concepts and different types of methods used in clustering

gene expression data. Chapter 4 presents the Cluster Affinity Search Technique(CAST)

and rectified its drawbacks using proposed algorithm, and also showed the results prov-

ing the proposed algorithm is better than existing. And the last chapter presents the

conclusion and proposals for possible extension of this thesis work.

1.7 Conclusion

Biological data analysis has been increasing at explosive rates due to improvements of ex-

isting technologies and the introduction of new ones such as the microarrays. The explosive

growth in the amount of biological data demands the use of computers for the organization,

the maintenance and the analysis of these data. Consequently, data mining in bioinformat-

ics has become a research area with increasing importance. Data mining is the confluence

of many fields such as Database, Statistics, and Artificial Intelligence etc.
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Chapter 2

Literature Review

According to Reichhardt T(1999) , Biological data are being produced at a phenomenal

rate [31]. For example as of April 2001, the GenBank repository of nucleic acid sequences

contained 1,15,46,000 entries and the SWISSPROT database of protein sequences contained

95,320 entries. On an average, these databases are doubling in size every 15 months. In

addition, since the publication of the H. influenza genome [14], complete sequences for

nearly 300 organisms have been released, ranging from 450 genes to over 100,000. At the

same time, there have been major advances in the technologies that supply the initial

data. Anthony Kervalage of Celera recently cited that an experimental laboratory can

produce over 100 gigabytes of data a day with ease [20]. Figure 2.1 shows the growth of

DNA sequence in Gen Bank during a period from 1982 to 2003. This incredible processing

power has been matched by developments in computer technology; the most important

areas of improvements have been in the CPU speed, disk storage and Internet, allowing

faster computations, better data storage and revolutionalised the methods for accessing

and exchanging data.

According to Dr. Diego Kuonen, Data mining and bioinformatics are fast expanding

research frontiers. It is important to examine what are the important research issues in

bioinformatics and develop new data mining methods for scalable and effective analysis.

The effective interactions and collaborations between these two fields have just started

and lots of exciting results will appear in the feature. Bioinformatics and Data mining

will inevitably grow toward each other because bioinformatics will not become knowledge

9



Figure 2.1: Figure showing the growth of gen bank

discovery without statistical datamining and thinking[8].

According to P.Tamayo, The main types of data analysis needed to for biomedical ap-

plications include:

• Clustering: finding new biological classes or refining existing ones [10].

• Gene Selection: In mining terms this is a process of attribute selection, which finds

the genes most strongly related to a particular class.

• Classification: classifying diseases or predicting outcomes based on gene expression

patterns, and perhaps even identifying the best treatment for given genetic signature.

One important clustering task is to identify groups of co expressed genes recognize coherent

expression patterns. Microarrays are a revolutionary new technology with great potential

to provide accurate medical diagnostics, help find the right treatment and cure for many

diseases and provide a detailed genome-wide molecular portrait of cellular states.
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Houle et al. (2000) refer to a classification of three successive levels for the analysis of

biological data, that is identified on the basis of the central dogma of molecular biology:

Application of Data Mining techniques for Bioinformatics is vast area to study. It includes

[11]

• Gene expression in Datamining: Gene expression analysis is the use of quanti-

tative mRNA-level measurements of gene expression (the process by which a gene’s

coded information is converted into the structural and functional units of a cell)

in order to characterize biological processes and elucidate the mechanisms of gene

transcription

• Data mining in genomics: Genomics is the study of an organism’s genome and

deals with the systematic use of genome information to provide new biological knowl-

edge.

• Data mining in proteomics: Proteomics is the large-scale study of proteins, par-

ticularly their structures and functions.

Clustering techniques have proven to be helpful to understand gene function, gene regu-

lation, cellular processes, and subtypes of cells[3]. Genes with similar expression patterns

(co-expressed genes) can be clustered together with similar cellular functions. This ap-

proach may further understanding of the functions of many genes for which information

has not been previously available [13]. Furthermore, co-expressed genes in the same cluster

are likely to be involved in the same cellular processes, and a strong correlation of ex-

pression patterns between those genes indicates co-regulation. Searching for common DNA

sequences at the promoter regions of genes within the same cluster allows regulatory motifs

specific to each gene cluster to be identified and cis-regulatory elements to be proposed [15].

The inference of regulation through the clustering of gene expression data also gives rise

to hypotheses regarding the mechanism of the transcriptional regulatory network. Finally,

clustering different samples on the basis of corresponding expression profiles may reveal

sub-cell types which are hard to identify by traditional morphology-based approaches.

11



According to Kjersti Aas [18], DNA microarray makes it possible to quickly, efficiently and

accurately measure the relative representation of each mRNA species in the total cellular

mRNA population. A DNA experiment consists of measurements of the relative represen-

tation of a large number of mRNA species ( typically thousands or tens of thousands) in

a set of related biological samples, e.g. time points taken during a biological process or

clinical samples taken from different patients. Each experiment sample is compared to a

common reference sample and the result for each gene is the ratio of the results of such

experiments are represented in a table, with each row representing a gene, each column a

sample, and each cell the log(base - 2) transformed expression ratio of the appropriate gene

in the appropriate sample.

Figure 2.2: Figure Explaining the micro array process

The microarray process is shown in Figure 2.2. The DNA sample ( which may be

several thousands) are fixed to a glass slide, each at a known position in the array. A

12



target sample and a reference sample are labeled with red and green dyes, respectively,

and each is hybridised on the slide. Using a fluorescent microscope and image analysis,

the log(green/red) intensities of mRNA hybridising at each site is measured. The result

is a few thousand numbers, typically ranging form -4 to 4, measuring the expression level

of each gene in the experimental sample relative to the reference sample. Positive values

indicate higher expression in the target versus the reference, and vice verses for negative

values.

According to Rui Xu, and Donald Wunsch [27], data analysis plays an indispensable role

for understanding various phenomena. Cluster analysis, primitive exploration with little

or no prior knowledge, consists of research developed across a wide variety of communi-

ties. Cluster analysis is not a one-shot process. It needs a series of trials and repetitions.

Moreover, there are no universal and effective criteria to guide the selection of features

and clustering schemes. Validation criteria provide some insights on the quality of clus-

tering solutions. But how to choose the appropriate criterion is still a problem, which

requires more efforts. Clustering has been applied in a wide variety of fields, ranging

from engineering (machine learning, artificial intelligence, pattern recognition, mechanical

engineering, electrical engineering), computer sciences (web mining, spatial database anal-

ysis, textual document collection, image segmentation), life and medical sciences (genetics,

biology, micro biology, paleontology, psychiatry, clinic, pathology), to earth sciences (ge-

ography. geology, remote sensing), social sciences (sociology, psychology, archeology), and

economics (marketing, business).

Accordingly, clustering is also known as numerical taxonomy, learning without a teacher

(or unsupervised learning), typological analysis and partition. The diversity reflects the

important position of clustering in scientific research. On the other hand, it causes con-

fusion, due to the differing terminologies and goals. Clustering algorithms developed to

solve a particular problem, in a specialized field, usually make assumptions in favor of the

application of interest. These biases inevitably affect performance in other problems that

do not satisfy these premises.
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According to Daxin Jiang, Chun Tang, and Aidong Zhang [3], Elucidating the pat-

terns hidden in gene expression data offers a tremendous opportunity for an enhanced

understanding of functional genomics. Many conventional clustering algorithms have been

adapted or directly applied to gene expression data, and also new algorithms have recently

been proposed specifically aiming at gene expression data. These clustering algorithm rel-

evant groups of genes and samples. In this thesis paper it is explained that gene expression

clustering is divide into gene based clustering and sample based clustering. It is explained

that K-Means a partition based clustering where no of clusters has to be mentioned earlier,

in hierarchical clustering it produces a dendogram, in SOM it requires the grid structure

earlier before clustering, and for CAST it requires the affinity threshold as input parameter.

According to Bendor et.al [2] Current approaches to clustering gene expression patterns

utilize hierarchical methods (constructing phylogenetic trees) or methods that work for

Euclidean distance metrics (e.g K-Means). We take a graph theoretic approach, and make

no assumptions on the similarity function or the number of clusters sought. The cluster

structure is produced directly, without involving an intermediate tree stage.

14



Chapter 3

Cluster formation algorithm

3.1 Introduction

Clustering plays a vital role in the Gene Expression Analysis. In this chapter we will first

discuss the concepts of clustering, and later discuss the various algorithms used such as

K-Means, SOM, hierarchical clustering algorithms and their pros and cons.

3.2 Cluster formation in Data Mining

Clustering is the process of grouping data objects into a set of disjoint classes, called

clusters, so that objects within the same class have high similarity to each other, while

objects in separate classes are more dissimilar. Clustering is an example of unsupervised

classification. “Classification” refers to a procedure that assigns data objects to a set of

classes. “Unsupervised” means that clustering does not rely on predefined classes and

training examples while classifying the data objects. Thus, clustering is distinguished from

pattern recognition or the areas of statistics known as discriminate analysis and decision

analysis, which seek to find rules for classifying objects from a given set of pre-classified

objects.
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3.3 Categories of Gene Expression Data Clustering

Recently, a typical micro array experiment contains 103 to 104 genes, and this number is

expected to reach the order of 106. However, the number of samples involved in micro

array experiment is generally less than 100. One of the characteristics of gene expression

data is that it is meaningful to cluster both genes and samples. Clustering gene expression

data can be categorized into two groups.

3.3.1 Gene based clustering

In this type of clustering genes are treated as the objects, while samples as the features.

The purpose of gene-based clustering is to group together co expressed genes which indicate

co-function and co-regulation.

3.3.2 Sample based clustering

In this type of clustering samples are the objects and genes are features. Within a gene

expression matrix, there are usually particular macroscopic phenotypes of samples related

to some diseases or drug effects, such as diseased samples, normal samples or drug treated

samples. The goal of sample based clustering is to find the phenotype structures or sub-

structures of the sample.

The distinction of gene based clustering and sample based clustering is based on different

characteristics of clustering tasks for gene expression data [3].

In this thesis work it has been discussed the clustering algorithms used for grouping the

genes, i.e., we have studied gene based clustering.

3.4 Proximity measurement for gene expression data

Proximity measurement measures the similarity( distance ) between two data objects.

Gene expression data objects, no matter genes or samples, can be formalized as numerical

vectors ~Oi = {oi,j|1 ≤ j ≤ p}, where oi,j is the value of the jth feature for the ith data
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object and p is the number of features. The proximity between two objects Oi and Oj is

measured by a proximity function of corresponding vectors ~Oi and ~Oj.

3.4.1 Euclidean Distance

EuclideanDistance is one of the most commonly used methods to measure the distance

between two data objects. The distance between objects ~Oi and ~Oj in p-dimensional space

is defined as

Eucledian(Oi, Oj) =

√√√√
p∑

d=1

(oid − ojd)2 (3.1)

However, for gene expression data, the overall shapes of gene expression patterns are of

greater interest than the individual magnitudes of each feature.

3.4.2 Pearson’s correlation coefficient

Pearson’s correlation coefficient, which measures the similarity between the shapes of two

expression patterns. Given two data objects Oi and Oj, pearson’s correlation coefficient is

defined as

pearson(Oi, Oj) =

∑p
d=1(oid − µoi)(ojd − µoj)√∑p

d=1(oid − µoi)2
√∑p

d=1(ojd − µoj)2
(3.2)

where µoi and µoj are the means for ~Oi and ~Oj respectively. Pearsons correlation coeffi-

cient views each object as a random variable with p observations and measures the similarity

between two objects by calculating the linear relationship between the distributions of the

two corresponding random variables[16].

Hence, in this entire thesis work Euclidean distance is used as the proximity measure.

3.5 Clustering Paradigms

Based on the method of clustering, the clustering algorithms are divided into two paradigms

[1].
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• Partitioning clustering: in which the database is partitioned into a predefined number

of clusters.

for example:K-Means, K-mediods etc.

• Hierarchical clustering do sequence of partitions, in which each partition is nested

into the next partition in the sequence Based on the approach Hierarchical clustering

is further divided into two types

– Agglomerative clustering technique starts with as many clusters as there are

records, with each cluster having only one record. Then pair of clusters succes-

sively merged.This is also called as bottom up approach.

for example:single linkage hierarchical algorithm, complete linkage hierarchical

algorithm etc.

– Divisive clustering takes the opposite approach from agglomerative techniques.In

this approach the algorithm starts with one cluster containing all the data ob-

jects, and at each step split a cluster until only singleton clusters of individual

objects remain.

for example:Graph theoretical algorithms, CAST etc.

3.6 Clustering Algorithms

In this section different algorithms that is studied in this thesis work is discussed in brief.

3.6.1 K-Means

The K-Means algorithm is a typical partition-based clustering method. Given a pre-

specified number K, the algorithm partitions the data set into K disjoint subsets which

optimize the following objective function:

E =
k∑

i=1

∑
OεCi

|O − µi|2. (3.3)

Here, O is a data object in cluster Ci and mui is the centroid (mean of objects) of Ci.

Thus, the objective function E tries to minimize the sum of the squared distances of objects
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from their cluster centers.

Algorithm

1. The K-Means algorithm accepts the ”number of clusters” to group data into, and the

dataset to cluster the input values.

2. The K-Means algorithm then creates the first k initial clusters from the data set

3. The K-Means algorithm calculates the arithmetic mean of each cluster formed in the

data set. The arithmetic mean is the mean of all the individual records in the cluster.

4. Next K-Means assigns each record in the dataset to only one of the initial clusters.

Each record is assigned to the nearest cluster using proximity measure like Euclidean

distance.

5. K-Means reassigns each record in the dataset to the most similar cluster and recal-

culates the arithmetic mean of the clusters in the dataset.

6. K-Means reassigns each record in the dataset to only one of the new clusters formed

7. The preceding steps are repeated until ”stable clusters” are formed and the K-Means

clustering is completed

The K-Means algorithm is simple and fast. The time complexity of K-Means is O(l*m*n),

where l is the number of iterations and K is the number of clusters, m is the number of

genes and n is the number of samples. Our empirical study has shown that the K-Means

algorithm typically converges in a small number of iterations. However, it also has several

drawbacks as a gene-based clustering algorithm. First, the number of gene clusters in a

gene expression data set is usually unknown in advance. To detect the optimal number of

clusters, users usually run the algorithms repeatedly with different values of K and compare

the clustering results.

For a large gene expression data set which contains thousands of genes, this extensive

parameter fine-tuning process may not be practical. Second, gene expression data typically

contain a huge amount of noise; however, the K-Means algorithm forces each gene into a

cluster, which may cause the algorithm to be sensitive to noise.
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3.6.2 SOM

The Self-Organizing Map (SOM) was developed by Kohonen in 1997[12], on the basis of a

single layered neural network. The data objects are presented at the input, and the output

neurons are organized with a simple neighborhood structure such as a two dimensional p*q

grid. Each neuron of the neural network is associated with a reference vector, and each

data point is “mapped” to the neuron with the “closest” reference vector. In the process

of running the algorithm, each data object acts as a training sample which directs the

movement of the reference vectors towards the denser areas of the input vector space, so

that those reference vectors are trained to fit the distributions of the input data set. When

the training is complete, clusters are identified by mapping all data points to the output

neurons.

Figure 3.1: Schematic representation of a self-organizing map method

The neuron training process of SOM provides a relatively more robust approach than

K-Means to the clustering of highly noisy data [12]. However, SOM requires users to input

the grid structure of the neuron map. This parameter is preserved through the training

process;hence, improperly-specified parameter will prevent the recovering of the natural
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cluster structure. Furthermore, if the data set is abundant with irrelevant data points,

such as genes with invariant patterns, SOM will produce an output in which this type of

data will populate the vast majority of clusters. In this case, SOM is not effective because

most of the interesting patterns may be merged into only one or two clusters and cannot

be identified.

3.6.3 Hierarchical Clustering

Hierarchical clustering generates a hierarchical series of nested clusters which can be graph-

ically represented by a tree, called dendrogram. The branches of a dendrogram not only

record the formation of the clusters but also indicate the similarity between the clusters.

By cutting the dendrogram at some level, we can obtain a specified number of clusters.

By reordering the objects such that the branches of the corresponding dendrogram do not

cross, the data set can be arranged with similar objects placed together.

The hierarchical clustering scheme:

Let S={Si,j} is the input similarity matrix, where Si,j indicates similarity between two data

objects based on Euclidean distance.

Algorithm:

1. Find a minimal entry s(i, j) in S, and merge clusters i and j.

2. Modify S by deleting rows and columns i, j and adding a new row i and column j,

with their dissimilarities defined by:

s(k, i ∪ j) = s(i ∪ j, k) = αis(k, i) + αjs(k, j) + γ|s(k, i)− s(k, j)| (3.4)

3. If there is more than one cluster, then go to Step 1.

Common variants of this scheme, obtained for appropriate choices of the α − s and γ

parameters, are the following:

singlelinkage : s(k, i ∪ j) = min = {s(k, i), s(k, j)} (3.5)

completelinkage : s(k, i ∪ j) = max{s(k, i), s(k, j)} (3.6)

averagelinkage : s(k, i ∪ j) = (nid(k, i) + njd(k, j))/(ni + nj), (3.7)

where ni denotes the number of elements in cluster i.
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Hierarchical clustering not only groups together genes with similar expression pattern

but also provides a natural way to graphically represent the data set. The graphic rep-

resentation allows users a thorough inspection of the whole data set and obtain an initial

impression of the distribution of data. However, the conventional agglomerative approach

suffers from a lack of robustness [19] , i.e., a small perturbation of the data set may greatly

change the structure of the hierarchical dendrogram. Another drawback of the hierarchical

approach is its high computational complexity. To construct a complete dendrogam (where

each leaf node corresponds to one data object, and the root node corresponds to the whole

data set), the clustering process should take n2−n
n

merging (or splitting) steps. The time

complexity for a typical agglomerative hierarchical algorithm is O(n2logn) [17]. If a wrong

decision is made in the initial steps, it can never be corrected in the subsequent steps.

3.7 Conclusion

In this chapter clustering algorithms like K-Means, SOM, and hierarchical algorithms were

studied and observed that K-Means requires number of clusters before clustering where it

is not known earlier for gene expression data. For SOM, grid structure of the neuron map

has to be mentioned earlier. The time complexity of hierarchical clustering is very high. To

overcome these problems, the next chapter discusses a divisive graph theoretical algorithm

CAST and how its faults are overcome by the proposed algorithm of this thesis work.
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Chapter 4

Proposed Algorithm

4.1 Introduction

Several data mining solutions have been presented for Bioinformatics [22], [23], and [5].

Cluster analysis received significant attention in the area of gene expression. It allows the

identification of groups of similar objects in multidimensional space. In this chapter it has

been discussed a graph-based clustering algorithm, CAST, its disadvantages, and how they

are overcome in the proposed algorithm .

4.2 Cluster Affinity Search Technique(CAST)

On study of clustering algorithms with an emphasis on graph theoretic approaches[21], it is

observed that for any micro array data analysis of gene expression patterns with clustering

algorithms involve the following steps:

• Determination of gene expression data: The data can be represented by a real-

valued expression matrix I where Iij is the measured expression level of gene i in

experiment j. The ith row of the matrix is a vector forming the expression pattern

of gene i.

• Calculation of a similarity matrix S: In this matrix, the entry Sij represents

the similarity of the expression patterns for genes i and j. Many possible similarity
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measures can be used here. A good choice of measure depends on the nature of the

biological question and on the technology that was used to obtain the data.

• Clustering the genes based on the similarity data or the expression data:

Genes that belongs to the same cluster should have similar expression patterns, while

different clusters should have distinct, well-separated patterns.

• Representation of the constructed solution.

Several techniques were previously used in clustering gene expression data such as Hier-

archical clustering techniques[13], Self-Organizing Maps used by Tamayo et. al [12], and

K-Means [1]. In this thesis work it has been discussed a novel algorithm for the problem of

clustering gene expression patterns. Unlike the hierarchical approaches mentioned above,

our algorithm doesn’t build a tree of clusters. Clusters are built and portrayed as unrelated

entities. In contrast to self-organizing maps, it does not assume an initial spatial structure,

but determines the cluster and structure based on the data. Unlike K-Means it doesn’t

require the number of clusters earlier before clustering.

4.2.1 Experimental Representation of Data set

Formally, a set of genes can be viewed as a set of vectors V = {vi, v2, v3, ..., vm} with

each expression level of a given experiment, xj, being the components in the vector vi =

(x1, x2, x3, , xn), where m is the number of genes in the experiments and n is the number

of experiments.Figure 4.1is an example gene expression matrix.(This works equally well

when the experiments form the vectors). These vectors can then be viewed as points in

n dimensional space and a similarity measurement between points can be calculated and

stored in a m by m similarity matrix M . Where Mij is the distance (similarity) measure

between gene i and gene j. There are several similarity measures, e.g., Euclidean distance

and Pearson correlation. Figure 4.2 shows the similarity matrix of the given gene expression

matrix generated using Euclidean distance. Then algorithms used for clustering is run on

the similarity matrix to group the members of V into clusters, which attempts to maximize

the intra-cluster similarity and minimize the inter-cluster similarity.
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Figure 4.1: A Gene Expression Matrix

Figure 4.2: Similarity Matrix for the above gene expression matrix

4.2.2 CAST

The Cluster affinity search technique (CAST) developed by Ben-Dor et. al., 1999 [2] takes

a graph theoretic approach that relies on the concept of a clique graph and uses a divisive

clustering approach. A clique graph is an undirected graph that is the union of disjoint

complete graphs. Thus, the model assumes that there is a “true biological partition of the

genes into disjoint clusters bases on the functionality of the genes. The clique graph would

then be composed of clusters (cliques) of genes (vertices) whose interconnections (edges)

are present or not present corresponding to their respective similarity measures (i.e. if

two genes are similar there is an edge between them). So, ideally, the genes would form
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subgraphs (cliques) where every gene would be completely similar to every other gene in

the clique and completely dissimilar to every gene not in the clique. Thereby, producing a

clique graph G of U = {u1, u2, , un} vertices partitioned such that every clique Si contains

edges connecting every vertex uεSi to every other uεSi and no edges connecting any uεSi

to any uεU \ Si. This, model can be applied just as easily to experiments instead of genes.

Where, the experiments become the vertices and one experiment is linked to another based

on the similarity of their respective patterns.

It is very probable that a set of gene (or experiment) vectors will tend to have a similarity

gradient across other vectors and the high incidence rate of errors in micro-array technology,

the ideal clique graph would be impossible to generate, or, at the very lease, would create

very small clusters. So small, in fact, that many would contain single data points, and

therefore defeat the purpose of the algorithm. Thus, an approximation of the preceding

model is called for.

The CAST algorithm takes as input an n−by−n similarity matrix S where (S(i, j)ε[1, 0])

and an affinity threshold T is to be defined by the user. T is used to determine node

membership to a cluster. The pseudo code for both CAST and proposed algorithm is

shown in fig 4.3, 4.4, 4.5, 4.6.

4.3 Proposed Algorithm

It is studied that the main draw back of CAST algorithm is taking affinity threshold as

input, which determines the size and number of clusters produced. In this thesis work we

have proposed an affinity threshold by taking the mean of affinity values of all the elements

in the dataset.The proposed algorithm may be named as CAST+. Let us see the main

terminology used

Definition 1: The affinity of a node x to a cluster C is defined as follows:

a(x) =
∑

kεC

S(x, k) (4.1)
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Definition 2:The connectivity threshold,χ , of a cluster C is:

χ = T | C | (4.2)

where | C | is the cardinality of C.

Definition 3: A high connectivity node is a node that will be included in a cluster.

Its affinity satisfies the following.

a(i) ≥ χ (4.3)

where a(i) is the affinity of i.

Definition 4: A low affinity node will be removed from a cluster if its affinity satisfies the

following:

a(i) < χ (4.4)

where a(i) is the affinity of i.

Each cluster is formed by alternating between adding and removing nodes from the

current cluster until such time that changes no longer occur or a maximum of iterations

executed:

• Node Addition: Add nodes with high connectivity to the nodes in the open cluster.

For CAST+ Before performing this step we check the node with existing clusters

and adds to the cluster which is highly connected.

• Node Removal: Remove any nodes in the open cluster with low connectivity to the

other nodes in the cluster.

• Cluster Cleaning: Make sure all nodes are in clusters with highest affinity.

For CAST+ this step is not required.

CAST algorithm relies on the affinity threshold, T, being an input variable defined by the

user before initiating the clustering process. This is the problem because the size and the
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quantity of the clusters produced by the algorithm is directly affected by this parameter[2].

Implying that some knowledge of the data set is required before the clustering can be

performed. We have enhanced the algorithm to calculate this threshold. The threshold

parameter, T, is calculated based on the similarity values of the nodes in the data set. The

threshold is computed as follows:

T =

∑
i,j≤n S(i, j)

n2
(4.5)

The following figure 4.3 provides the pseudo code for threshold value, figure 4.4 provides

the pseudo code for Node addition, and 4.5 provides the pseudo code for Node Removal.

Figure 4.3: Pseudo code for finding threshold Value

The threshold assignment and affinity check with existing clusters in the step of node

addition, obviate the need for the “cleaning ” step as proposed in the original CAST
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Figure 4.4: Pseudo code for node addition

algorithm. The cleaning step is used to move any vector from its current cluster to one

that it may have a higher affinity for and has a time complexity on the order of O(n2).

The output of the gene expression matrix of figure 4.1 is given in figure 4.7

4.4 Analysis of Clustering Solutions

Different clustering algorithms yield different solutions on the same data and also same

algorithm gives different solutions for different parameter settings.

Different measures for the quality of a clustering solution are applicable in different

situations, depending on the data and on availability of the true solution.
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Figure 4.5: Pseudo code for node deletion

In case true solution is known, and we wish to compare it to another solution, one can

use Minkowski Measure or Jaccards Coefficient method.

4.4.1 Jaccards Coefficient

Jaccards Coefficient is a static measure used for comparing the similarity and diversity

of sample sets, by everitt(1993)[13].

The jaccards coefficient is defined as the size of the intersection divided by the size of the

union of the sample sets.

J(A,B) =
| A ∩B |
| A ∪B | (4.6)

where A indicates the true solution, and B indicates the solution generated by the algorithm.

4.4.2 Minowski Measure

: A clustering solution of n elements is represented by a n − by − n similarity matrix C,

where Cij = 1 if i and j belong to the same cluster and Cij = 0 otherwise.

Given such matrix representation of the true clustering T and any clustering C of the

same data set, the minowski measure for the quality of C is the normalized distance between
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Figure 4.6: Pseudo code for Cleaning or pruning

the two matrices.

MinowskiMeasure =
| T − C |
| T | (4.7)

where | T |=
√∑

i

∑
j T 2

ij as developed by Sokal(1977)

[33].

Since the matrices are binary, this is simply the number of pairs on which the two

solutions disagree and normalized according to the true solution. A perfect clustering

would thus obtain the score zero.

4.4.3 Homogeneity Vs Separation

When the true solution is not known the algorithms are analyzed by presenting a curve of

homogeneity versus separation.The intra cluster is called as Homogeneity value, and inter

cluster distance is called as Separation value. Such a curve can show that one algorithm

dominates another if it provides better homogeneity for all separation values.

4.4.4 Silhouette Width

The Silhouette validation technique (Rousseau w, 1987) [33] calculates the silhouette width

for each sample, average Silhouette width for each cluster and overall average silhouette
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Figure 4.7: Sample result of the proposed algorithm

width for a total data set. Using this approach each cluster could be represented by so

called silhouette width, which is based on the comparison of its tightness and separation.

The average silhouette width could be applied for evaluation of clustering validity and

can also be decide how good is the number of selected clusters.

To construct the silhouettes S(i) the following formula is used:

S(i) =
(b(i)− a(i))

max{a(i), b(i)} (4.8)

where

a(i)=average dissimilarity of object i to all other objects in the same cluster.
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b(i)= minimum of average dissimilarity of object i in other cluster (in the closest cluster).

The largest overall average silhouette indicates the best clustering. Therefore, the number

of clusters with maximum overall average silhouette width is taken as the optimal number

of the clusters.

4.5 Results

Figure 4.8: Figure showing the comparison between the CAST and Hierarchical algorithm

Data Set:

The synthetic random datasets in our simulation provides randomly generated classes in a

two dimensional Euclidean space. These data sets are used to evaluate the performance of

the algorithms. It is supposed to provide data with low noise. Twenty two different syn-

thetic random data sets are being generated which yields similarity matrix using Euclidean

distance in interval [0, 1].
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Figure 4.8 shows that the time of execution of hierarchical algorithms is comparatively

very high when compared to CAST algorithm.

Figure 4.9: Figure showing the comparison between the K-Means, SOM, and CAST based

on silhouette width

Figure 4.9 explains that K-Means, SOM, and CAST are executed on 22 different Data

Sets and is observed that SOM, and CAST performs better than K-Means algorithm based

on Silhouette width. Out of twenty two data sets sixteen data sets showed better result

using CAST than SOM. For the remaining six data sets also SOM reached the performance

of CAST but not exceeded. Hence it can be inferred that CAST performs better than SOM.

Figure 4.10 explains that CAST, ECAST, and proposed CAST+ algorithms are tested

on twenty two different data sets and result is analyzed using silhouette width. It is

observed that overall 22 data sets both ECAST and CAST+ algorithms performed better
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Figure 4.10: Figure showing the comparison between the CAST, ECAST and Proposed

algorithm

than CAST. But CAST+ has performed better on fourteen datasets in comparison with

ECAST algorithm. In remaining data sets both have performed comparatively well. i.e.

CAST+ showed 60% better performance over ECAST and 100

Figure 4.11 explains the that K-Means, SOM, and CAST algorithms are performed

on twenty two different data sets and respective homogeneity and separation values are

calculated. It is observed that CAST has shown the best result over SOM and K-Means

as indicated in figure 4.11.

Figure 4.12 shows that over 78% of the data sets show better result to CAST+ over

CAST and ECAST. The data sets whose homogeneity value is vast, they show same result

of the CAST. Overall it is observed that the proposed CAST+ algorithm shows better

result than other algorithms.
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Figure 4.11: Figure showing the comparison between the K-Means, SOM, and CAST

4.6 Conclusion

In this chapter a graph theoretic divisive algorithm called CAST is studied and overcome

the drawback what it is having by using the proposed algorithm. Comparing the result

of the proposed algorithm with the existing algorithms and it is observed that proposed

algorithm performed better than all other algorithms.
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Figure 4.12: Figure showing the comparison between the CAST, ECAST, and Proposed

algorithm
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The introduction of new technologies such as computers, satellites, new mass storage me-

dia and many others during 1980’s have lead to an exponential growth of collected data.

Traditional data analysis techniques often fail to process large amounts of -often noisy-

data efficiently, in an exploratory fashion. The scope of data mining is the knowledge

extraction from large data amounts with the help of computers. It is an interdisciplinary

area of research, that has its roots in databases, machine learning, and statistics and has

contributions from many other areas.

Recently, the collection of biological data has been increasing at explosive rates due to

improvements of existing technologies and the introduction of new ones such as the microar-

rays. These technological advances have assisted the conduct of large scale experiments

and research programs.The explosive growth in the amount of biological data demands

the use of computers for the organization for its maintenance and the analysis. This led

to the evolution of bioinformatics, an interdisciplinary field at the intersection of biology,

computer science, and information technology.

DNA microarray technology has now made it possible to simultaneously monitor the

expression levels of thousands of genes during important biological processes and across

collections of related samples. Elucidating the patterns hidden in gene expression data

38



offers a tremendous opportunity for an enhanced understanding of functional genomics.

A first step towards addressing this challenge is the use of clustering techniques, which is

essential in the data mining process to reveal natural structures and identifying interesting

patterns in the underlying data.

Cluster analysis seeks to partition a given data set into groups based on specific features

so that points within a group are more similar to each other than the points in different

groups. Many conventional clustering algorithms have been adapted or directly applied to

gene expression data. But each method has short comings. These shortcomings include

problems of cluster boundaries, as for hierarchical techniques, where the output is a tree

depicting the relation of each object to every other object in the data set. The require-

ment for knowing the expected number of clusters, as for K-Means, and knowing the grid

structure for SOM are the underlining problems under different algorithms developed so

far.

CAST algorithm[2] had overcome the above problems but takes the affinity threshold,

which determines the size and number of clusters, as input value. Also after the clustering

is over cleaning step has to be performed, which takes an additional time, resulting in

increase of time complexity.

But the proposed algorithm overcomes the problem of taking threshold affinity as input

by finding the affinity value as the mean of the affinity of all the genes in the data set i.e.

gene expression array. It also overcomes the problem of cleaning or external pruning by

performing the affinity check while performing the Node addition itself. The experimen-

tal results also show that the proposed algorithm performs better than all other existing

algorithms we have studied in this thesis work.
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5.2 Future Work

This work can be extended as follows:

1. Improve the performance of the algorithm using soft computing techniques.

2. Perform theoretical analysis of the determination of the threshold parameter.

3. Explore further improvements to Proposed CAST+ Algorithm.

4. Clustering is generally recognized as an “un supervised” learning problem. Prior to

undertaking a clustering task, “global” information regarding the data set, such as

the total number of clusters and the complete data distribution in the object space,

is usually unknown. However, some “partial” knowledge is often available regarding

a gene expression data set. For example, the functions of some genes have been

studied in the literature, which can provide guidance to the clustering. Furthermore,

some groups of the experimental conditions are known to be strongly correlated, and

the differences among the cluster structures under these different groups may be of

particular interest. If a clustering algorithm could integrate such partial knowledge as

some clustering constraints when carrying out the clustering task, we can expect the

clustering results would be more biologically meaningful. In this way, clustering could

cease to be a “pure” un supervised process and become an interactive exploration of

the data set.
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