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Vibration Analysis of Thin Rotating Cylindrical Shell

ABSTRACT

With the continually increasing use of turbo machinery at higher performance levels, 

especially in aircraft, the study of vibration problems arising in rotating blades has become 

increasingly important. Free vibration frequencies and mode shapes are essential for the analysis 

of resonant response and flutter. Due to its significance in structural mechanics, many 

researchers have worked on the vibration characteristics of turbo machinery blades. 

Rotating circular shell structures in many engineering applications like aviation, rocketry, 

missiles, electric motors and locomotive engines are increasingly used. They find increasing 

application in aerospace, chemical, civil and mechanical industries such as in high-speed 

centrifugal separators, gas turbines for high-power aircraft engines, spinning satellite structures, 

certain rotor systems and rotating magnetic shields.  In many cases, a rotating shell may be one 

of the main vibration and noise sources. In order to reduce the vibration, noise and to increase 

the strength of shells or shafts, it is therefore very important for engineers to understand the 

vibration of shells and design suitable shells with low vibration and noise radiation 

characteristics.  Thus, frequencies and mode shapes of such structures are important in the design 

of systems.

Composite structures have extensive use in aerospace, civil, marine and other engineering 

applications. Laminated composites are becoming key components in many of them. Their high 

performance places them at the top of the list of engineering materials needed for advanced 

design applications. This is because controlling the lamination angle can alter their structural 

properties and the stacking sequence leading to an optimal design. The higher specific modulus 

and specific strength of these composites means that the weight of certain components can be 

reduced. The increasingly wider application to other fields of engineering has necessitated the 

evolution of adequate analytical tools for the better understanding of the structural behavior and 

efficient utilization of the materials.
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In this thesis work, an analytical solution of frequency characteristics for the vibrations of 

rotating laminated composite cylindrical thin shells by using the “first order shear deformation 

theory”. Compared with classical theory and higher order theory, the “first order shear 

deformation theory” combines higher accuracy and lower calculation efforts. The objective of 

this study is to examine the effect of various shell parameters on the frequency characteristics of 

rotating laminated composite cross-ply thin shells. For reasons of simplicity, the simply 

supported boundary conditions at both ends of the shells. Figures show variation of frequency 

with the rotating speed. The formulation is general. Different boundary conditions, lamination 

schemes (which may be isotropic or orthotropic), order of shear deformation theories, and even 

forms of assumed solutions can be easily accommodated into the analysis.
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CHAPTER 1

INTRODUCTION

With the continually increasing use of turbo machinery at higher performance 

levels, especially in aircraft, the study of vibration problems arising in rotating blades has 

become increasingly important. Free vibration frequencies and mode shapes are essential 

for the analysis of resonant response and flutter. Due to its significance in structural 

mechanics, many researchers have worked on the vibration characteristics of turbo 

machinery blades. 

The turbine blading carefully designed with the correct aerodynamic shape to 

properly turn the flowing steam and generate rotational energy efficiently. The blades 

also have to be strong enough to withstand high centrifugal stresses and it size should to

be avoid dangerous vibrations. Various types of blading arrangements proposed, but the

designed are to take advantage of the principle that when a given mass of steam suddenly 

changes its velocity, a force exerted by the mass in direct proportion to the rate of change 

of velocity.

Rotating circular shell structures in many engineering applications like aviation, 

rocketry, missiles, electric motors and locomotive engines are increasingly used. They 

find increasing application in aerospace, chemical, civil and mechanical industries such 

as in high-speed centrifugal separators, gas turbines for high-power aircraft engines, 

spinning satellite structures, certain rotor systems and rotating magnetic shields.  In many 

cases, a rotating shell may be one of the main vibration and noise sources. In order to 

reduce the vibration, noise and to increase the strength of shells or shafts, it is therefore 

very important for engineers to understand the vibration of shells and design suitable 

shells with low vibration and noise radiation characteristics.  Thus, frequencies and mode 

shapes of such structures are important in the design of systems. 

Spinning cylindrical shells in various industrial equipments like gas turbines, 

locomotive engines, high-speed centrifugal separators and rotor systems are used. 
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Because of this, the study on the vibration of spinning cylindrical shells is essential to 

understanding of rotating structures; many researchers have been interested in this topic. 

Composite structures have extensive use in aerospace, civil, marine and other 

engineering applications. Laminated composites are becoming key components in many 

of them. Their high performance places them at the top of the list of engineering 

materials needed for advanced design applications. This is because controlling the 

lamination angle can alter their structural properties and the stacking sequence leading to 

an optimal design. The higher specific modulus and specific strength of these composites 

means that the weight of certain components can be lower. The increasingly wider 

application to other fields of engineering has necessitated the evolution of adequate 

analytical tools for the better understanding of the structural behavior and efficient 

utilization of the materials.

In this thesis work, an analytical solution of frequency characteristics for the 

vibrations of rotating laminated composite cylindrical thin shells by using the “first order 

shear deformation theory”. Compared with classical theory and higher order theory, the 

“first order shear deformation theory” combines higher accuracy and lower calculation 

efforts. The objective of this study is to examine the effect of various shell parameters on 

the frequency characteristics of rotating laminated composite cross-ply thin shells. For 

reasons of simplicity, the simply supported boundary conditions at both ends of the 

shells. Figures show variation of frequency with the rotating speed. The formulation is 

general. Different boundary conditions, lamination schemes (which may be isotropic or 

orthotropic), order of shear deformation theories, and even forms of assumed solutions 

can be easily accommodated into the analysis.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 INTRODUCTION

The analysis of plate and shell structures has a long history starting with membrane 

theory and then the bending theories, of the several plate theories. Laminated composite plate 

analyses and shell analyses are mainly based on three theories:

(1) The classical laminated plate theory (CLPT), 

(2) The first-order shear deformation theory (FSDT) and,

(3) The higher-order shear deformation theory (HSDT). 

The effect of transverse shear deformation, which may be essential in some cases, is 

included in FSDT and HSDT, whereas it is neglected in CLPT due to the Kirchhoff hypothesis. 

The classical laminate plate theory is based on the Kirchhoff hypothesis that straight lines 

normal to the undeformed midplane remain straight and normal to the deformed midplane and do 

not undergo stretching in thickness direction. These assumptions imply the vanishing of the 

transverse shear and transverse normal strains. The classical laminate theory has been used in the 

stress analysis of composite plates. However, it is only accurate for thin composite laminates. 

In FSDT, a first-order displacement field is assumed for transverse strain through the 

thickness. Appropriate shear correction factors are required in FSDT due to the assumption of 

constant transverse shear strain and shear stress through the plate thickness, which is 

contradictory to the zero shear stress condition on the bounding planes of the laminate and actual 

stress states through the layer thickness.

Higher-order polynomials are used to represent displacement components through the 

thickness of the laminates in HSDT, and the actual transverse strain/stress through the thickness

and the zero stress conditions on the top and bottom of a general laminate can be represented. A 
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more accurate approximation of the transverse shear effect can thus be obtained with no shear 

correction factors. However, complexities in formulation and large computational effort make it 

economically unattractive. The free vibration of plates has been largely studied using first order 

shear deformation theories (FSDT).

2.2 REVIEW OF PLATES AND CYLINDRICAL SHELLS

During the past three to four decades, there has been continuously increasing usage of 

laminated composite materials in structural applications. Often encountered among these 

applications are plate and shell structural components. Accompanying this increasing usage has 

been a growth in the literature of composite laminate structural analysis, particularly for plates 

and to a lesser extent for circular cylindrical shells. Equations have been thoroughly developed 

for the deformation analysis of laminated composite plates (Ambartsumyan, 1964, 1970[1], 

Ashton and Whitney, 1970 [1]), as well as for circular cylindrical shells.

Now many of the existing methods of analysis for multilayered anisotropic plates and 

shells are direct extensions of those developed earlier for homogeneous isotropic and orthotropic 

plates and shells. The book written by Flugge (1934), [9] and Kraus (1967), [13] deals with both 

the statics and dynamics of shells.  After the pioneering works of Ambartsumyan and Dong

(1968) [7], there has been consistent progress in the field of anisotropic layered shells. The 

publications by Bert and Egle and Leissa deal with the literature on dynamic problems in 

laminated shells.

Thin cylindrical shells are widely used as structural elements. Studies of thin cylindrical

shells are extensive and many theories have been developed. The first to study the cylindrical 

shell problem was Aron and the first to provide a mathematical framework for a thin shell theory 

was Love. Love’s mathematical framework, also known as Love’s first approximation theory, 

consisted of four principal assumptions under which many thin shell theories were developed. 

These four assumptions, commonly known as the Kirchhoff-Love hypotheses form the 

background of many linear thin shell theories, which over the years have been modified and 

employed to varying degree. 
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The vibration of laminated cylindrical shells has been studied to a greater extent 

compared to any other shell geometry. Dong (1968), [4] using Donnell’s theory conducted an 

extensive study of the lower modes of laminated orthotropic cylindrical shells; the quantitative 

effects were determined by varying the material properties, pre-stress and boundary conditions. 

Hu and Tsuiji (1999), [11]  presented a numerical method for analyzing the free vibrations of 

curved and twisted cylindrical thin panels by means of the principle of virtual work and the free 

vibration problem was solved using the Rayleigh-Ritz method, assuming two dimensional 

polynomial functions as displacement functions. It was shown that the method was effective in 

solving free vibration problems for cylindrical thin panels with curvature and twist by comparing 

the numerical results with previous results. The effects of curvature and twist on the frequency 

parameters and mode shapes were also discussed.

Lam K.Y. and Wu Qian (2000), [17] presented analytical solutions for the vibrations of 

thick symmetric angle-ply laminated composite cylindrical shells using the first-order shear 

deformation theory. A complex method was developed to deal with the partial differential 

governing equations of thick symmetric angle-ply laminated composite cylindrical shells. The 

frequency characteristics for thick symmetric angle-ply laminated composite cylindrical shells 

with different h/R and L/R ratios were studied in comparison with those of symmetric cross-ply 

laminates. Also, the influence of lamination angle and number of lamination layers on frequency 

was investigated in detail.

Ng T. Y., Lam K. Y (1999), [21] worked on the dynamic stability of simply-supported, 

isotropic cylindrical panels under combined static and periodic axial forces. An extension of 

Donnell’s shell theory to a first-order shear deformation theory was used, and a system of 

Mathieu-Hill equations were obtained via a normal-mode expansion and the parametric 

resonance response was analyzed using Bolotin’s method. Results were compared with those 

obtained using the classical shell theory. The effects of the thickness-to-radius ratio on the 

instability regions are examined in detail. Lam K. Y. and Loy C. T (1995), [18] worked on the 

natural frequencies of thin orthotropic laminated cylindrical shells. A straightforward method of 

analysis involving Love’s first approximation theory and Ritz’s procedure was used to study the 

influence of boundary conditions and fiber orientation on these shells. The boundary conditions 
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considered in his paper were clamped-clamped, clamped-simply supported, clamped-sliding, and 

clamped-free. Yu S. D., Cleghorn W. L and Fenton R. G., (1995), [29] reviewed the analytical 

methods used and the boundary conditions encountered in the accurate free vibration analysis of 

open circular cylindrical shells. The simple boundary conditions associated with the Donnell 

Mushtari theory of thin shells were classified into primary and secondary boundary conditions. 

Exact solutions for basic shells with different combinations of primary boundary conditions were 

obtained using the generalized Navier method. Accurate solutions for shells with secondary and 

mixed boundary conditions are obtained by using the method of superposition.

2.3 REVIEW OF ROTATING CYLINDRICAL SHELL

Blades are often part of machinery rotating at high speed, so it is very important to ensure 

safety while rotating. The configuration of turbo machinery blades is complex and usually thin 

with a small aspect ratio, twisted in the lengthwise direction and cambered in the chord wise 

direction. That is the reason why so many researchers have studied them for the past few 

decades. In majority of cases, a turbo machinery blade is modeled as a beam. Leissa A. W. 

(1983), [19] presented a comparison of blade and shell models. M. A. Dokanish and Rawtani 

(1971), [8] used the finite element technique to determine the natural frequencies and the mode 

shapes of a cantilever plate mounted on the periphery of a rotating disc. The plane of the plate is 

assumed to make an arbitrary angle with the plane of rotation of the disc. McGhee and Chu [20] 

carried out a three dimensional continuum vibration analysis for rotating, laminated composite 

blades using Ritz method. Full geometric nonlinearity and the coriolis acceleration term were 

included in the blade kinematics. Bhumbia, Kosmatka [3] and Reddy studied free vibration 

behavior of shear deformable, composite rotating blades including geometric non linearity in the 

form of Von Karman strains along with plane stress assumption in the constitutive relations. 

Karmakar and Sinha (1995), [14] analyzed, using finite element method, the free vibration 

characteristics of rotating laminated composite pre-twisted cantilever plates. A nine nodded three 

dimensional degenerate composite shell element was developed and used for the analysis. 

Sivadas (1995), [24] studied circular conical shells rotating about their axis of revolution. The 

shells were analyzed by using moderately thick shell theory with shear deformation and rotary 

inertia.  The natural frequencies and the damping factor due to material damping were analyzed.
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Second order strains with the in plane and transverse non-linear terms were used for the 

derivation of the geometric matrix. An iso-parametric axis-symmetric finite element with five 

degrees of freedom per node was used for the solution. The effect of rotation on the frequencies 

of the shells was studied by incorporating the Coriolis acceleration, rotational energy, pre-

stressing due to centrifugal force and torque and damping due to the material. Young-Jung Kee, 

Ji-Hwan Kim, (2004), [31] analyzed the vibration of a rotating composite blade. A general 

formulation is derived for an initially twisted rotating shell structure including the effect of 

centrifugal force and Coriolis acceleration. In this work, the blade was assumed to be a 

moderately thick open cylindrical shell that includes the transverse shear deformation and rotary 

inertia, and was oriented arbitrarily with respect to the axis of rotation to consider the effects of 

disc radius and setting angle. Based on the concept of the degenerated shell element with the 

Reissner–Mindlin’s assumptions, the finite element method was used for solving the governing 

equations. In the numerical study, effects of various parameters were investigated: initial twisting 

angles, thickness to radius ratios, layer lamination and fiber orientation of composite blades. 

In the literature, the bulk of the works on cylindrical shells are on non-rotating shells. The 

first recorded work on a rotating shell is that of Bryan (1890), [2] who studied the vibration of a 

rotating cylindrical shell by using an analysis for a spinning ring. Later works on rotating shells 

include the study of the Coriolis effect by Di Taranto and Lessen (1964), [27] that by Srinivasan 

and Lauterbach (1971), [25] for infinitely long rotating shells, and by Zohar and Aboudi (1973), 

[32], Wang and Chen (1974), [28] for finite length shells. Rand and Stavsky (1991), [23], Chun 

and Bert, (1993), [4], have also carried out Works on composite rotating cylindrical shells. Chen, 

Zhao and Shen (1993), [33], have presented a finite element analysis for a rotating cylindrical 

shell. The general equations of the vibrations of high speed rotating shells of revolution 

considering Coriolis accelerations and large deformations were established using the method of 

linear approximation. A nine node curvilinear super parametric finite element was used to solve 

the problems of high speed rotating shells of revolution.

Omer Civalek (May 2007), [6] dealt with the free vibration analysis of rotating laminated 

cylindrical shells. The analysis used discrete singular convolution (DSC) technique to determine 

frequencies. Regularized Shannon’s delta (RSD) kernel was selected as singular convolution to 
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illustrate the algorithm. The formulations were based on the Love’s first approximation shell 

theory, and included the effects of initial hoop tension and centrifugal and Coriolis accelerations 

due to rotation. The spatial derivatives in both the governing equations and the boundary 

conditions were discretized by the DSC method. Frequency parameters were obtained for 

different types of boundary conditions, rotating velocity and geometric parameters. The effect of 

the circumferential node number on the vibration behavior of the shell was also analyzed. Ji-

Hwan Kim (2004), [16] studied initially twisted rotating shell structures including the effect of 

centrifugal force and Coriolis acceleration. In his work, the blade was assumed to be a 

moderately thick open cylindrical shell that includes the transverse shear deformation and rotary 

inertia, and was oriented arbitrarily with respect to the axis of rotation to consider the effects of 

disc radius and setting angle. 

Lee (1998), [30] gave analytical solutions for the free vibration of the rotating composite 

cylindrical shells with axial stiffeners (stringers) and circumferential stiffeners (rings), that is, 

orthogonal stiffeners, using the energy method. The cylindrical shells are stiffened at uniform 

intervals and the stiffeners have the same material and geometric properties. The Love's shell 

theory based on the discrete stiffener theory was used to derive the governing equation of the 

rotating composite cylindrical shell with orthogonal stiffeners. The effect of the parameters such 

as the stiffener's height-to-width ratio, the shell thickness-to-radius ratio and the shell length-to-

radius ratio was studied. The natural frequencies were compared with the previously published 

analytical results for the un-stiffened rotating composite shell and the orthogonally stiffened 

isotropic cylindrical shells. Jafari and Bagheri (2006), [12] researched the free vibration analysis 

of simply supported rotating cylindrical shells with circumferential stiffeners. Ritz method was 

applied while stiffeners were treated as discrete elements. In strain energy formulation, by 

adopting Sander’s theorem, stretching and bending characteristics of shells were considered. 

Also stretching, bending and warping effects of stiffeners were investigated. The translational 

inertia in three directions for shell and stiffeners, and rotary inertia for stiffeners were 

considered. The effects of initial hoop tension, centrifugal and Coriolis forces due to the rotation 

of the shell were studied. Polynomial functions were used for Ritz functions. At constant total 

mass of stiffeners, the effects of non-uniform eccentricity distribution and non-uniform rings 

spacing distribution (separately and simultaneously) on natural frequencies were investigated. 
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Moreover, the influence of rotating speed on natural frequencies for the so-called non-uniform 

stiffeners distribution was studied. In similar way, Liew (2002), [28] worked on the vibration 

analysis of simply supported rotating cross ply laminated cylindrical shells with axial and 

circumferential stiffeners, that is, stringers and rings using an energy approach. The effects of 

these stiffeners were evaluated via two methods, namely by a variation formulation with 

individual stiffeners treated as discrete elements; and by averaging method whereby the 

properties of the stiffeners were averaged over the shell surface.

Kim and Bolton (2004), [15] considered the effects of rotation on wave propagation 

within a tire’s tread-band, the vibration of an inflated, circular cylindrical shell, rotating about a 

fixed axis. The equations of motion of the rotating shell were formulated in a fixed reference 

frame (i.e., Eulerian coordinates). By assuming wave-like solutions for the free vibration case, 

the natural frequencies and corresponding wave-like basis functions could then be obtained. A 

natural frequency selection procedure was introduced that can be used to associate each of the 

basis functions with a single natural frequency. The basis functions were then superimposed to 

represent the forced response of the system when driven by a point harmonic force at a fixed 

location in the reference frame. Kadivar and Samani (2000), [16] investigated the elasto-dynamic 

analysis of rotating thick composite cylindrical shells. The layer wise laminate theory was used.

Unlike the equivalent single layer (ESL) theories, the layer wise theories assumed separate 

displacement field expansions within each material layer, providing a kinematically correct 

representation of the strain field in discrete layers. In deriving the governing equations, 3-D 

strain relations were used and the centrifugal and Coriolis forces were included in the theory. The 

Navier-type solutions were presented for simply supported boundary conditions. Natural 

frequencies of forward and backward waves were presented, showing their variation with 

rotating angular velocity.

Guo and Chu (2001), [10] solved the problems of the vibration of rotating cylindrical 

shells by using a nine-node super-parametric finite element with shear and axial deformation and 

rotary inertia. The non-linear plate-shell theory for large deflection was used to handle the 

cylindrical shell before it reached equilibrium state by centrifugal force. Hamilton’s principle 

was used to present the motion equation in finite element form. The effects of Coriolis
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acceleration, centrifugal force, initial tension and geometric non-linearity due to large 

deformation were considered in this model. The effect of geometric non linearity due to large 

deformation and the effect of boundary conditions on the frequency parameter of spinning 

cylindrical shells and the effect of rotation speed on the different modes of spinning cylindrical 

shells were also investigated in detail.

Padovan (1975), [22] developed a quasi-analytical finite element procedure to obtain the 

frequency and buckling eigen values of pre-stressed rotating anisotropic shells of revolution. In 

addition to the usual centrifugal forces, the rotation effects treated also included the contribution 

of Coriolis forces. Furthermore, since a nonlinear version of Novozhilov’s shell theory was 

employed to develop the element formulation, the effects of moderately large pre-stress 

deflection states were handled. 

Zhang (2002), [34] presented the vibration analysis of rotating laminated composite 

cylindrical shells using the wave propagation approach. The influence of the shell parameters, 

the axial mode m, the  circumferential mode n, the thickness-to-radius ratio h/R, the length-to-

radius ratio L/R, the rotating speed X (rps) and the boundary conditions on the natural 

frequencies, was investigated. At low circumferential mode n, the stationary frequency was 

between the frequencies for forward and backward whirl modes. But at high circumferential 

mode n, the stationary frequency was smaller than both the forward and backward frequencies.

The boundary conditions considered were clamped-clamped, clamped-simply supported, simply 

supported-simply supported, and clamped-sliding conditions. The influence of boundary

conditions on the frequencies was more significant at small circumferential mode n. It was also 

found that the transition of fundamental frequency from the higher mode n curve to the lower 

mode n curve took place at different h/R ratios for different boundary conditions. 

The natural frequencies of the forward and backward modes of thin rotating laminated

cylindrical shells were determined by using four common thin shell theories, namely, Donnell’s,  

Flugge’s, Love’s and Sander’s theories. A unified analysis was formulated with the use of tracers 

so that it could be reduced to any of the four shell theories by giving appropriate values to the 

tracers. For simplicity, results were presented only for the case of simply supported-simply 
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supported boundary conditions, which were satisfied by expressing the displacement fields in 

terms of the products of sine and cosine functions. Numerical results presented were the non-

dimensional frequency parameters of the forward and backward traveling modes for rotating 

cylindrical shells and the non-dimensional frequency parameters for non-rotating cylindrical 

shells.

2.4 OBJECTIVE AND SCOPE OF PRESENT INVESTIGATION

In this paper, an analytical solution of frequency characteristics for the vibrations of 

rotating laminated composite cylindrical thin shells is presented by using the "First order shear 

deformation theory”. Compared with classical theory and higher order theory, the first order 

shear deformation theory combines higher accuracy and lower calculation efforts. 

2.4.1 Objectives

1. To investigate the frequency characteristics for different layer configuration on the 

natural frequency.

2. To investigate the frequency characteristics for different geometric properties.

For reasons of simplicity, the boundary conditions are simply supported at both ends of 

the shells. Figures are given to show variation of frequency with the rotating speed. The 

formulation is general. Different boundary conditions, lamination schemes (which is cross-ply), 

order of shear deformation theories, and even forms of assumed solutions can be easily 

accommodated into the analysis.

2.4.2 Present Work

The present study is carried out to find the natural frequency of vibration of laminated 

orthotropic cylindrical shells that are simply supported. A first order shear deformation theory of 

laminated shells has been developed. The thickness coordinate multiplied by the curvature is 

assumed to be small in comparison to unity and hence negligible. The governing equations, 

including the rotary inertia are presented in chapter 3. These equations are then reduced to the 

equations of motion for cylindrical shell and the Navier solution has been obtained for cross-ply 
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laminated shells. The resulting equations are suitably nondimensionalised. The Navier solution 

gives rise to an eigen value problem in matrix formulation. This matrix and its elements are 

presented in chapter 3. 

In chapter 4, the eigenvalues of the coefficient matrix are obtained by standard computer 

program and change of sign of the determinant value is checked for values of 1% on either side 

of the root. The program gives the lowest value of required frequency parameter. The results are

compared with earlier results for two layers and three layer cross-ply shell to check the 

formulation and computer program. The variation of the natural frequency for different 

geometric properties and layer configuration of the cylindrical shell is presented in chapter 4. 



CHAPTER ­3

THEORETICAL FORMULATION
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CHAPTER - 3

THEORETICAL FORMULATION

3.1 INTRODUCTION

The present study deals with the vibration of rotating thin laminated composite 

cylindrical shells. A first order shear deformation theory of shells is used. The displacements of 

the middle surface are expanded as linear functions of the thickness coordinate. In the first-order 

shear deformation theory (FSDT) for plates, the displacement components u, v, and w in the α , 

β , z directions in a laminate element can be expressed in terms of the corresponding mid-plane 

displacement components u0, v0, w0, and the rotations 1φ , 2φ of the mid-plane normal along α

and β axes.

The governing equations including the effect of shear deformation are presented in 

orthogonal curvilinear co-ordinates for laminated orthotropic shells. These equations are then 

reduced to the governing equations for vibration of laminated orthotropic rotating cylindrical

shells. The equations are non-dimensionalised. The Navier-type exact solution for natural 

vibration is presented for rotating cylindrical shells under simply supported boundary conditions. 

This gives rise to an eigen value problem in matrix formulation whose eigen values are the 

frequency parameters.

3.2 BASIC ASSUMPTIONS

A set of simplifying assumptions that provide a reasonable description of the behavior 

of thin elastic shells is used to derive the equilibrium equations that are consistent with the 

assumed displacement field:      

1. No slippage takes place between the layers.

2. The effect of transverse normal stress on the gross response of the laminate is assumed to 

be negligible.

3. The line elements of the shell normal to the reference surface do not change their length 

after deformation.
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4. The thickness coordinate of the shell is small compared to the principal radii of curvature 

(z/R1, z/R2 <<<1).

5. Normal to the reference surface of the shell before deformation remains straight, but not 

necessarily normal, after deformation (a relaxed Kirchhoff’s-Love’s hypothesis).

3.3 STRAIN DISPLACEMENT RELATIONS

Figure 3.1 (a) contains an element of a doubly curved shell. Here (α , β , z) denote the 

orthogonal curvilinear coordinates (shell coordinates) such that α - and β -curves are lines of 

curvature on the mid surface, z = 0, and z-curves are straight lines perpendicular to the surface, z 

= 0. For the doubly curved shells discussed here, the lines of principal curvature coincide with 

the co-ordinate lines. The values of the principal curvature of the middle surface are denoted by 

R1 and R2.

FIGURE 3.1: GEOMETRY OF LAMINATED SHELL.

The position vector of a point on the middle surface is denoted by r and the position of a 

point at distance, z, from the middle surface is denoted by R [see Fig. 3.1(b)]. The distance, ds, 

between points (α , β , z) and ( )dzzdd +++ ,, ββαα is determined by
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rdrdds ⋅=2)(    …………………1
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The magnitude ds of rd is given in equation (2), the vectors 
α∂

∂r and 
β∂

∂r are tangent 

to the α and β coordinate lines. Then equation (1) can be proceed as 
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In the following, we limit ourselves to orthogonal curvilinear coordinates which 

coincide with the lines of principal curvature of the neutral surface. The third term in equation 

(3) thus becomes
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Now the equation (3) becomes

( ) ( ) ( )22
2

22
1

2 βα ∂+∂= AAds  ..………………..6

This equation is called the fundamental form and A1 and A2 are the fundamental form 

parameters, Lame parameters, or surface metrics. The distance, dS, between points ( )z,, βα and 

( )dzzdd +++ ,, ββαα is given by
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It should be noted that the vectors 
α∂

∂R and 
β∂

∂R are parallel to the vectors 
α∂

∂r and 
β∂

∂r .

From the figure 3.1(a) the elements of area of the cross section are
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The strain displacement equations of a shell are an approximation, within the 

assumptions made previously, of the strain displacement relations referred to orthogonal

curvilinear coordinates. In addition, we assume that the transverse displacement, w, does not 

vary with z. As in the shear deformable theory of flat plates, we begin with the displacement 

field
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Here ( )wvu ,, = the displacement of a point (α , β , z) along the (α , β z) coordinates; 

and (u, v, w) = the displacements of a point (α , β , 0). Now substituting equation [10] in strain 

displacement relations referred to an orthogonal curvilinear coordinate system, we get
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Where 1φ and 2φ are the rotation of the reference surface, z = 0, about the β -and α -

coordinate axes, respectively. It should be noted that the displacement field in equation [10] can 

be used to derive the general theory of laminated shells.

3.4 STRESS-STRAIN RESULTANT

The stress-strain relation for the Kth orthotropic layer takes the following form:
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For special orthotropic material, in which the principal axis direction coincides with the 

axis of the material direction,

0452616 === KKK QQQ

Then,
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For generalized plane stress conditions, the above elastic module Qk
ij is related to the 

usual engineering constants as follows:
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3.5         STRESS RESULTANTS AND STRESS COUPLES

Let N1 be the tensile force, measured per unit length along a β -coordinate line, on a 
cross section perpendicular to α -coordinate line. Then the total tensile force on the differential 
element in the α -direction is ββ dN ⋅⋅1 . This force is equal to the integral of 21daσ over the 
thickness

∫
−

=
2

2

211

h

h

dzdadN σββ  ....………………15

In which h = the thickness of the shell (z = -h/2 and z = h/2 denote the bottom and top 
surfaces of the shell) and da2 is the area of cross section. Using equation (9) we can write.

∫
−









+=

2

2 2
11 1

h

h

dz
R
zdN σββ  …....……………16

Similarly, the remaining stress resultants per unit length are given as



19

dz

R
zz

R
zz

R
zz

R
zz

R
z

R
z

R
z

R
z

R
z

R
z

M
M
M
M
Q
Q
N
N
N
N

h

h
∫

−

















































































+









+









+









+









+









+









+









+









+









+

=











































2

2

1
6

2
6

1
2

2
1

1
4

2
5

1
6

2
6

1
2

2
1

21

12

2

1

2

1

21

12

2

1

1

1

1

1

1

1

1

1

1

1

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

  ......……….……17

Note that, in contrast to the plate theory (which is obtained by setting 1/R1 =0,1/R2 = 0), 

the shear stress resultants, N12 and N21, and the twisting moments, M12 and M21, are, in general, 

not equal. For shallow shells, however, one can neglect z/R1 and z/R2 in comparison with unity. 

Under this assumption, one has N12 = N21 = N6 and M12 = M21 = M6. 

FIGURE 3.2: STRESS AND MOMENT RESULTANTS
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The shell under consideration is composed of finite number of orthotropic layers of 

uniform thickness, as shown in Figure 3.2. In view of assumption 1, the stress resultant in 

equation [17] can be expressed as 
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In which N = the number of layers in the shell; Zk and Zk-1 = the top and bottom z-

coordinates of the kth lamina; and ki = the shear correction factors.

Substituting of equation [11] and [13] into equation [18] leads to the following 

expression for the stress resultants and stress couples
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Here Aij, Bij and Dij denote the extensional, flexural-extensional coupling, and flexural 

stiffness. They may be defined as:
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For i, j = 1, 2, 4, 5, 6. And hk and hk+1 are the distances measured as shown in figure 3.1
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3.6 GOVERNING EQUATIONS 

The governing differential equations, the strain energy due to loads, kinetic energy and 

formulations of the general dynamic problem are derived on the basis of Hamilton’s principle.

3.6.1 Governing Differential Equations

The equation of motion is obtained by taking a differential element of shell as shown in 

Figure 3.2 The figure shows an element with internal forces like membrane (N1, N2, and N6), 

shearing forces (Q1, and Q2) and the moment resultants (M1, M2 and M6).

 3.6.1.1 Strain energy

The strain energy of a differential shell element can be written as
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As Z / R < < < 1

It may be easily verified that the variation that the variation of strain energy U is given by

∫ ∫ ∫ ++++=
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][ 5544662211  .………………..23

Now equation [23] is independent of the material property. Substituting the variation of 

strain function we get,
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The variation of strain energy is given as:
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The above equation contains the derivative of displacement that is 
β
δ

α
δ
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∂
∂ vu , etc. 

Integrating by parts,
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Substituting in equation [25] we get
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3.6.1.2 Kinetic energy

If U be the displacement vector, the kinetic energy of the shell element is given by

dVUUT
v

..

2
1

⋅= ∫ ρ  ….……………..28

Where, ρ is the mass density and

( ) ( ) ( )kvwjwviukvjwkwjviuU Ω++Ω−+=Ω+Ω−+++= &&&&&& )(  ....……….……...29

Equation [29] represents the dot product of U . Now substituting for wvu ,, from 

equation [14], the above equation reduces to
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FIGURE 3.3:  GEOMETRY AND CO-ORDINATE SYSTEM
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Integrating over the thickness of the shell (z = -h/2 to z = h/2). And neglecting the 

Coriolis Effect and centrifugal effect, the kinetic energy is as given below

[ ] ( ) βαφφ
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The variation of kinetic energy is given as
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Equation [31] contains time derivatives of the variation i.e. •• etc. To eliminate these 

terms equation [31] is integrated by parts to obtain
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The variations of limits t = t1 and t = t2 must vanish.  Thus the above equation reduces to
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3.6.2 HAMILTON’S PRINCIPLE

The equations of equilibrium are derived by applying the dynamic version of the 

principle of virtual work that is the Hamilton’s Principle. 

It states that among the set of all admissible configurations of system, the actual motion 

makes the quantity ∫
2

1

t

t

dtL stationary, provided the configuration is known at the limits t = t1  and 

t = t2.  Mathematically this means     0
2

1

=∫
t

t

dtLδ

Here, L is called Lagrangian and is equal to 

L= T - (U – V)        ……………........34

Where, T = Kinetic energy

U= Strain energy

V= potential of all applied loads

  δ = Mathematical operation called variation. It is analogous to partial differentiation.

It is clear from equation [34] that the Lagrangian consists of kinetic, strain energy and 

potential of applied loads. Substituting for strain energy and kinetic energy, equation [34] 

becomes
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Now according to Hamilton’s principle 

( )∫∫ =−=
2

1

2

1

0
t

t

t

t

dtUTdtL δδ  ..…..……………36



27

3.6.3 EQUATION OF EQUILIBRIUM

By applying the dynamic version of the principle of virtual work (Hamilton’s Principle) 

and substituting the parameters of strain energy and the kinetic energy as given in equation [36] 

and integrating the displacement gradients by parts, the resulting equation is 
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Integrating by parts in the resulting equation and setting the coefficient of δ u, δ v, δ w, 

1δφ , 2δφ to zero separately, the following equations of equilibrium are obtained
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3.6.3.1 Cylindrical Shells

The governing equations derived in orthogonal curvilinear coordinates in the previous 

section for general shell element is reduced for circular cylindrical shell. The equation of motion 

is represented in terms of displacements. The natural frequencies of specially orthotropic 

laminated cylindrical shells having simply supported edges are calculated.

3.6.3.2 Equations of Equilibrium for Rotating Laminated Cylindrical Shell

For the cylindrical shell configuration shown in figure (3.3), the co-ordinates are given 

by ββα == ,
R
x , the Lame parameters A1 = A2 = R and the principal curvatures R1 = Infinity     

R2 = R , where ‘R’ is the radius of the mid-surface of the cylindrical shell. Neglecting the C0 term 

as it is very small as compare to unity.

Then the equation of motion in terms of the stress resultants and stress couples are

obtained from Equations [38]. The equations of motion are given as
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 ....….…………..39

The strain displacement relations [11] are substituted in the equations for the stress 

resultants and stress couples given in equation [19]. Since the solution for the equations of 

motion is done by using the Navier solution, therefore such a solution exist only for specially 

orthotropic shell for which the following laminate stiffness are zero.

0262626162616 ====== AABBDD
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The expression for the stress resultants and stress couples so obtained are then 

substituted into the equation of motion [39] for specially orthotropic cylindrical shells. The 

equation of motion in terms of the displacements hence reduces to 
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3.6.4 Boundary Condition

Up to now, the analysis has been general without reference to the boundary conditions. 

For reasons of simplicity, only simply supported boundary condition are considered along all 

edges for the rotating shell. The boundary conditions for simply supported cylindrical shell are

obtained as given below.

N1 = 0 , v = 0 , w = 0, 
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Following the Navier solution procedure, the following solution form which satisfies 

the boundary conditions in equations is assumed:
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where ,
L

Rm
m

π
λ = and U, V, W, 1Φ and 2Φ are the maximum amplitudes, m and n are 

known as the axial half wave number and circumferential wave number respectively. This 

implies during vibration, the shell generators are assumed to subdivide into m half waves and the 

circumferences subdivide into 2n half waves (Figure 3.4)

Introducing the expressions [41] into the governing equation of motion in terms of 

displacements [40]. The following equation in matrix form is obtained, which is general eigen 

value problem.

[ ] { } [ ]{ }XMXC ⋅=⋅ 2ϖ .......…………….43

Where, 

2ω  is the eigenvalue

{X} is a column matrix of amplitude of vibration or eigenvector. 

[C] is 5 x 5 matrices. The coefficient of the matrices describe in Appendix.

[M] is the 5 x 5 matrices having only diagonal element in the matrice.
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FIGURE 3.4: VIBRATION FORMS FOR CIRCULAR CYLINDRICAL SHELLS
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For convenience, the elements of the above matrices are suitably non-dimensionalised 

as follows

3
2

2
2

2

222

111

,
,
,

,
,

hEDD

hEBB

hEAA
hh

hh
hWWhww

hVVhvv
hUUhuu

ijij

ijij

ijij

⋅⋅=

⋅⋅=

⋅⋅=

⋅Φ=Φ⋅=

⋅Φ=Φ⋅=

⋅=⋅=

⋅=⋅=

⋅=⋅=

φφ

φφ

……………….44

After non dimensionalised the equation [43] in matrix form it can be written as in 

matrix form as given below

[ ] { } { }XXH ⋅=⋅ 2ϖ ........................45

Where,

2

2

22
2 






=

h
R

E
hρω

ϖ

[ ] [ ] [ ]CMH ⋅= −1

A non-trivial solution for the column matrix { }X will give the required eigenvalues, 

which are the values of the square of the frequency parameter ϖ in the present case. The lowest 

value of ϖ is of particular interest. 
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CHAPTER- 4

NUMERICAL RESULTS AND DISCUSSIONS

4.1 INTRODUCTION

The theoretical formulation presented in the previous section is a unified analysis for

determining the natural frequencies of the forward and backward travelling modes for rotating 

cylindrical shells by using FSDT. Although the formulation of the problem is general, for 

reasons of simplicity, results are to be presented only for the cases of simply supported simply  

supported, four layered [00/900/900/00], three layered [00/900/00] and two layered [00/900] finite

length rotating cylindrical shells. Results are also presented, as special cases, for non rotating 

cylindrical shells.

The frequency parameters are calculated by using a computer program for vibration of 

laminated orthotropic rotating cylindrical shells. The results obtained using the present theory is

compared to other theories and thus the derived formulation is validated. The numerical values 

of the lowest value of frequency parameter are presented for various shell parameters in this 

chapter. The frequency envelopes are plotted as a function of L/R (for shells) to study the effect 

of the number of layers, the thickness of layers and the h/R ratio on frequency.

4.2 SOLUTION OF EIGEN VALUE PROBLEM AND COMPUTER PROGRAM

The equation (43) represents a general Eigen value problem, where 2ω is the Eigen value 

and {X} is the eigenvector. For convenience the equation (43) is non-dimensionalised. Then if 

the equation is pre multiplied by [ M ]-1, (where the bar indicates the non- dimensionalised form), 

one obtains the following standard eigenvalue problem,

[ ] { } { }XXH 2ω= ……………………45

Where,

][][][ 1
22

22
2

CMH
A

hR

−=

=
ρϖ

ω
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A non trivial solution for the column matrix { }X will give the required eigenvalues, 

which are the values of the square of the frequency parameter ω in the present case. The lowest 

values of the ω is of particular interest. (for a set of fixed shell parameters, many values of 2ω

can be obtained).

A standard subroutine in the computer program to find the eigenvalue of matrices has 

been used, which consists of root power method of iteration with Wielandt’s deflection 

technique. The program will be called RTPM, which is capable of finding the required number 

of roots in descending order. The change of the sign of the determinant value is checked for 

values of one percent on either side of the root to verify the convergence. The RTPM program 

gives the highest value of eigenvalue first, so if the [ ]M matrix is taken as [ ] [ ]HC 1− , then the 

highest value of 





2

1
ϖ

is obtained, that is the lowest value of 2ϖ and ϖ which is of particular 

interest. 

4.3 NUMERICAL RESULTS AND DISCUSSION

4.3.1 The Validation of the Formulation and Numerical Results

Using the formulation developed in the previous sections, numerical studies are carried 

out. For the validation of the formulation, numerical results with present theory are compared 

first for non-rotating cylindrical shells as presented by Soldatos [26] in Table 4.1 and Lam and 

Loy [18] in Table 4.2 and with those of Lam and Loy [18] in Tables 4.3 for rotating cylindrical 

shells. 

The lowest value of the frequencies has been calculated at first for two layers and three 

layers laminated composite cylindrical shells for various values of m and n. In Table 4.1, 

comparisons are made with the results of simply supported non-rotating cylindrical shell and are

presented. This table shows the present results and those of Soldatos [26] for the non

dimensional frequency parameter 11
222 / AhLs ρϖϖ = of a two-layered [00/900] simply 

supported simply supported cylindrical shell. The geometrical and material properties used are 
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h/R = 0.01, L/R =1.0 and L/R = 2.0 and E11/E22 = 40, G12/E22 = 0.5 and 12µ = 0.25. It is seen that 

the present method yields accurate results. From the results presented in this table, it is clear that 

the present FSDT results are in excellent agreement with those obtained using other methods.

It is well documented that Love developed the first mathematical framework for a thin 

shell theory which is now known as Love’s first approximation theory. Following this, the 

Kirchhoff-Love hypothesis was put forth and has since become the foundation of many thin shell 

theories. The thin shell theories developed using the Kirchhoff-Love hypotheses differ from one 

another when the terms relevant to h/R are retained or neglected in the constitutive and strain-

displacement relations.

Table 4.1: Comparison of frequency parameter  22
2 EhL /22 ρωϖ = for non-rotating two

 layered cross ply [00/900] circular cylindrical shell with simply supported   

 boundary condition at both edges (h/R =0.01)

L/R n Soldatos [1984] Present Theory Error in Percentage

1.0 1 2.106 2.106 0%

2 1.344 1.3444 0%

3 0.9589 0.9587 -0.020%

4 0.7495 0.7493 -0.026%

5 0.6423 0.6419 -0.062%

2.0 1 1.073 1.073 0%

2 0.6710 0.6710 0%

3 0.4710 0.4709 -0.021

4 0.3774 0.3773 -0.026

5 0.3632 0.3629 -0.082

Error in Percentage = 100 * (Present Theory - Soldatos)/ soldatos
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Table 4.2: Comparison of lowest Nondimensional Frequency Parameter 22
2 EhL /22 ρωϖ =

 for a [0°/90°/0°] simply Supported non rotating Laminated Cylindrical Shell  

 (h / R = 0.002)

L/R n Lam and Loy [1995] Present

1 1 1.061284 1.061270

2 0.804054 0.803997

3 0.598331 0.598193

4 0.450144 0.449828

5 0.345253 0.344547

5 1 0.248635 0.248632

2 0.107203 0.107185

3 0.055087 0.054873

4 0.033790 0.032561

5 0.025794 0.021375

The free vibration solution for a rotating cylindrical shell is a function of the rotational 

speed. For a given rotational speed, the two smallest eigen solutions for each mode of the 

vibration, i.e. for each pair of the wave number (m, n) where m is the axial wave number and n is 

the circumferential wave number, consist of positive and negative eigen values. These two eigen

values correspond to the natural frequencies for the backward and forward travelling waves or to 

the natural frequencies for clockwise and anticlockwise rotational speed of the shell. The positive 

eigenvalue corresponding to the backward waves is due to the rotation in clockwise direction (i 

.e.  Ω > 0) and the negative eigenvalue corresponding to the forward waves is due to a rotation 

in anticlockwise direction (i. e. Ω < 0). In the case of stationary shell, these two eigenvalues are 

identical and the vibratory motion of the shell is a standing wave motion. However, as the shell 

starts to rotate, this standing wave motion is transformed and depending on the direction of 

rotation, backward or forward waves are present. Two rotational effects are introduced when the 

shell rotates at higher speed; one is centrifugal effect and the other is the Coriolis effect. To 

neglect these two effects in present study, the speed of rotation is restricted up to 1.0 revolution 

per second (i.e. Ω = 0.0, 0.1, 0.4, 1.0 revolutions per second).  
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To further verify the present analysis, the results are compared to those presented by Lam 

and Loy (1995) for the cross-ply laminated cylindrical shells of lamination scheme [0°/90°/0°]. 

The comparisons for the non-rotating shell with L/R =1 and L/R = 5 are presented in Table 4.2.

The geometrical and material properties used are E11 = 19GPa, E22 = 7.5GPa and • = 0.26. It is 

obvious that good agreement is achieved for all cases. Similarly for the rotating cylindrical 

shells, corresponding comparisons are presented in Tables 4.3 and 4.4 in which bϖ and  fϖ are 

the backward-wave and forward-wave non-dimensional frequency parameters, respectively. The 

material properties and layer configuration are chosen as earlier. Again it is evident that very

good agreement is achieved, thus further verifying the validity and accuracy of the present 

formulation.

Table 4.3: Comparison of lowest Nondimensional Frequency Parameter 22
2 EhL /22 ρωϖ =  

 for a [0°/90°/0°] simply Supported Rotating Laminated Cylindrical Shell 

 (h / R = 0.002, L/R =1)

Ω

(rps)

n Lam and Loy [1995] Present

Backward Forward Backward forward

0.1 1 1.061429 1.061140 1.061281 1.061257

2 0.804214 0.803894 0.804012 0.803981

3 0.598476 0.598157 0.598214 0.598172

4 0.450270 0.450021 0.449856 0.449800

5 0.345363 0.345149 0.344584 0.344510

0.4 1 1.061862 1.060706 1.061459 1.061080

2 0.804696 0.803415 0.804244 0.803749

3 0.598915 0.597762 0.598528 0.597858

4 0.450662 0.449667 0.450278 0.449378

5 0.345724 0.344870 0.345138 0.343955
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Table 4.4: Comparison of lowest Nondimensional Frequency Parameter 22
2 EhL /22 ρωϖ =

 for a [0°/90°/0°] simply Supported Rotating Laminated Cylindrical Shell 

 (h/R = 0.002, L/R = 5)

Ω

(rps)

n Lam and Loy [1995] Present

Backwar

d

Forward Backward forward

0.1 1 0.248917 0.248352 0.248669 0.248594

2 0.107436 0.106972 0.107293 0.107076

3 0.055267 0.054916 0.055096 0.054648

4 0.033945 0.033669 0.032945 0.032171

5 0.025943 0.025836 0.021962 0.020770

0.4 1 0.249765 0.247504 0.249239 0.248022

2 0.108143 0.106288 0.108896 0.105446

3 0.055868 0.054466 0.058347 0.051163

4 0.034608 0.033507 0.038249 0.025639

5 0.026825 0.025924 0.029397 0.007041

4.3.2: Numerical results

For further study of the effects of various shell parameters on rotating cylindrical shells, 

the material properties used and the different cross-ply lay-ups are shown in Table 4.5.
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Table 4.5: Material properties and layer thicknesses for various cross-ply shells

Cylindrical 

shell

Layer Thickness

(mm)

E (N/m2) Poisson’s

Ratio ( µ )

Two Layer 00 h/2 19.0 x 109 0.26

900 h/2 7.5 x 109 0.26

Three layer 00 h/3 19.0 x 109 0.26

900 h/3 7.5 x 109 0.26

00 h/3 19.0 x 109 0.26

Four Layer 00 h/4 19.0 x 109 0.26

900 h/4 7.5 x 109 0.26

900 h/4 7.5 x 109 0.26

00 h/4 19.0 x 109 0.26

4.3.3 Influence of rotating velocity

The effects of rotating angular velocity in rotating shells constitute one of the most 

critical investigations of this monograph. Physically, the important differences between the 

rotating and non rotating shells of revolution are the Coriolis and centrifugal acceleration, as well 

as the hoop tension arising in rotating shells due to the angular velocities. These effects have 

significant influence on the dynamic behavior of the rotating shells. For example, the frequency 

characteristics of a stationary shell structure are generally determined by the shell geometry, 

material properties and boundary condition. However when the same shell rotates, the structural 

frequency characteristics are qualitatively altered. This qualitative difference manifests itself in 

the form of bifurcation phenomena in the natural frequency parameters. For stationary shell 

revolution, the vibration of the shell is a standing wave motion. However, when the same shell 

rotates, the standing wave motion is transformed, and depending on the direction of rotation, 

backward or forward waves will emerge. In this section, the discussion is made for the influence 

of the rotating velocity on the frequency characteristics of the rotating circular cylindrical shell.
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4.3.3.1 Influence due to the circumferential wave number and L / R

Table 4.6, Table 4.7 and Table 4.8 shows the variation of the natural frequency ω with 

circumferential wave number n for the two, three and four layer cross-ply lay-ups respectively. 

The Table 4.7 illustrates the effect of rotation on the frequency of the rotating multi layered 

cylindrical shells which has three layers of construction, where the thickness of middle layer (E22

=7.6 G N/ m2, µ = 0.26, and ρ = 1643 Kg/m3) is the same as that of the outer layers (E11 =19.0 

G N/ m2, µ = 0.26, and ρ = 1643 Kg/m3). The Tables show the variation of the frequency 

parameter with the circumferential wave number ‘n’ for various speeds of rotation and L/R ratios

(L/R = 1, 5, 10), considered for both the stationary as well as rotating cylindrical shells. When an 

angular velocity is introduced to the shell, there is an increase in the frequency parameter. It is 

observed that the natural frequency characteristics of rotating shells are however not very 

different from those of stationary shell for these speeds of rotation. The frequency parameter ϖ

decreases rapidly for small circumferential wave number ( )3≤n . It is seen that the increasing 

value of rotating speed Ω increases the frequency parameter and with the increase in the 

circumferential wave number n there is a decrease in the frequency parameter ϖ for a particular 

L/R ratio.

Table 4.6 Frequency parameter for the two layered cross ply cylindrical shell [00/900].

Ω
(rps) L/R=1 n =1 n = 2 n = 3 n = 4 n = 5 n = 6

0 1 0.820836 0.598944 0.435591 0.322881 0.245026 0.190317

5 0.175633 0.074974 0.038286 0.022698 0.014895 0.010487

10 0.058649 0.020886 0.010081 0.005847 0.003796 0.002657

0.1 1 0.820844 0.598955 0.435607 0.322903 0.245055 0.190354

5 0.175663 0.075059 0.038464 0.023004 0.015363 0.011145

10 0.058738 0.021193 0.010739 0.006942 0.005345 0.004616

0.4 1 0.820970 0.599127 0.435846 0.323228 0.245487 0.190914

5 0.176106 0.076331 0.041042 0.027187 0.021173 0.018380

10 0.060063 0.025360 0.017913 0.016073 0.015523 0.015328



42

Table 4.7 Frequency parameter for the three layered symmetric cross ply cylindrical 

shell [00/900/00].

Ω
(rps) L/R n =1 n =2 n =3 n = 4 n =5 n = 6

0 1 0.85293 0.659553 0.498287 0.378423 0.291799 0.291094

5 0.207618 0.092064 0.047344 0.028141 0.018489 0.013026

10 0.07198 0.025895 0.012522 0.007267 0.00472 0.003305

0.1 1 0.852941 0.659566 0.498304 0.378447 0.29183 0.229149

5 0.20765 0.092153 0.047527 0.028456 0.01897 0.013704

10 0.072073 0.026215 0.0132 0.008424 0.006348 0.005389

0.4 1 0.853091 0.659764 0.498571 0.378801 0.292292 0.229741

5 0.208119 0.093473 0.050196 0.032815 0.025099 0.021437

10 0.07345 0.03056 0.02087 0.018384 0.017621 0.017345

The Table 4.8 illustrates the effect of rotation on the frequency of multi layered 

cylindrical shell which has four layers of construction [i.e. 00/900/900/00], where the thickness of 

middle two layers (E22 = 7.6 G N/ m2, µ =0.26, and ρ = 1643 Kg/m3) is equal to that of the 

outer two layers (E11 =19.0 G N/ m2, µ =0.26, and ρ = 1643 Kg/m3). The Table shows the 

variation of the length to radius ratio (L/R = 1, 5, 10) for both the stationary as well as rotating 

shell. It is observed that the general frequency characteristics of rotating shells are slightly higher 

than those of stationary shell. The frequency parameter ϖ decreases rapidly for small 

circumferential wave number ( )3≤n . It is again seen that with the increasing value of rotating 

speed Ω , there is an increase in the frequency parameter. With the increasing circumferential 

wave number n, there is a decrease in the frequency parameterϖ . As the circumferential wave 

number i.e. n is increasing beyond 3 (i.e. n >3) there is not much variation in the frequency 

parameter for L/R ratio 10. 
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Table 4.8 Frequency parameter for the four layered symmetric cross ply cylindrical 

shell [00/900/900/00]

Ω
(rps) L/R n =1 n = 2 n = 3 n = 4 n = 5 n = 6

0 1 0.8329 0.613571 0.44746 0.331516 0.251093 0.194553

5 0.179935 0.075999 0.038599 0.022826 0.01496 0.010525

10 0.059463 0.021005 0.010118 0.005863 0.003806 0.002663

0.1 1 0.832908 0.613582 0.447475 0.331537 0.251121 0.194589

5 0.179964 0.076084 0.038775 0.023131 0.015425 0.011181

10 0.059551 0.02131 0.010773 0.006956 0.005362 0.004619

0.4 1 0.833033 0.61375 0.447708 0.331854 0.251543 0.195137

5 0.180399 0.077339 0.041334 0.027294 0.021219 0.018402

10 0.060859 0.025459 0.017933 0.016079 0.015526 0.01533

4.3.4 Influence of length and thickness

There are generally many physical and geometrical parameters which influence the 

frequency characteristics of rotating shells. Physical parameters include the rotating angular 

velocity, material properties and boundary conditions. The major geometrical parameters include 

the length (L), radius (R), and thickness (h). In this section, discussions are made on the 

influence of the geometrical length ratio L/R and thickness ratio h/R on the frequency 

characteristics of the rotating multi layered circular cylindrical shells. The cylindrical shell has 

three layers of construction, where the thickness of the middle layer (E = 7.6 GPa, µ = 0.26, and

ρ = 1634 Kg/m3) is equal to that of the two surface layers (E = 19.0 GPa, µ = 0.26, and ρ = 

1634 Kg/m3).
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Figure 4.1 shows the variation of the natural frequency ω (Hz) with the rotating velocity 

at various thickness-to-radius ratios (h/R) and constant length-to-radius (i.e. L /R =10) for the 

rotating multilayered cylindrical shell with the simply supported boundary condition at the 

edges. It is observed that for very thin shell (i.e. h/R = 0.002) the natural frequency parameter

rapidly increases as the rotating velocity of the shell increases. But as the thickness of the shell is 

increases the natural frequency parameter slightly increases for the different thickness-to-radius 

ratios (i.e. for the case of h /R = 0.002, 0.01, 0.02,). For understanding the behavior of the length 

parameter simultaneously for different thickness of cylindrical shell Figure 4.2 and figure 4.3 

represent the graph for the L/R = 5 and L/R = 1. From these graph it can be seen that as the 

length increases the frequency is decreasing. It is due to that the as length increases the stiffness 

of the shell increases and the as stiffness increases it is decreasing the frequency parameters of 

the shell.

Figure.4.1: Variation of frequency parameter ω with thickness-to-radius ratio h / R for three  

 layers symmetric cross-ply laminated shell, m =1 and n =1 and L /R = 10
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Fig.4.2: Variation of frequency parameter ω with thickness-to-radius ratio h / R for three layers  

 symmetric cross-ply laminated shell, m =1 and n =1 and L /R = 5

Fig.4.3: Variation of frequency parameter ω with thickness-to-radius ratio h / R for three layers  

 symmetric cross-ply laminated shell, m =1 and n =1 and L /R = 5
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Figure 4.4 shows the variation of the natural frequencies ω (Hz) with the length-to-

radius ratios (L / R) for different rotating velocity Ω (rps) and for constant h/R = 0.002 for the 

rotating three layered cylindrical shell (0°/ 90°/ 0° ) with the simply supported boundary 

condition at both edges. It is observed that natural frequency decreases with the length-to 

thickness ratio (L / R) for the rotational velocities Ω . But the overlapping of the graphs illustrate 

that the there is no variation due to the rotation.  It is further observed that the influence of the 

length ratio L/R on the natural frequency of the rotating cylindrical shell is larger than of the 

thickness ratio h/R.

Figure 4.4: Variation of the natural frequencies ω (Hz) with length-to-radius ratios (L/R) for  

 different rotating velocity Ω (rps) for three layers cross ply laminated shell with   

 m =1, n =1 and h/R = 0.002
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4.3.5 Influence of layer configuration of composites

When the rotating shell is made of composite material, the influence of the layer

configuration should be considered since it is one of the most important characteristics of a 

composite material. Usually layers are made of different isotropic materials, and their principal 

directions may also be oriented differently. For laminated composites, the fiber directions 

determine layer orientation. In this section, however, the discussion is made for simplified case 

where the rotating cylindrical shells are composed of two, three, and four layer cross-ply 

laminated composite layers. The material properties and layer thicknesses are as shown in Table 

4.5.

4.3.5.1 Influence circumferential wave number on different Layer Configuration

Figure 4.3 shows the influence of the layer configuration on the natural frequencies of the 

rotating shells with simply supported boundary condition at both edges. Figure 4.3 (A) shows the 

variation of frequency with the circumferential wave number n for non-rotating shells for the

different layer configuration. The natural frequency corresponding to the backward waves for all 

the cylindrical shells decreases with the increase of the circumferential wave number. It is also 

observed that the three layer configuration (i.e. 00/900/00) has the highest frequency parameter, 

followed by the four layers and the natural frequency of the two layer shell is relatively lower.

This is true for both rotating and non rotating shells.

Figure 4.5 (A):  Non Rotating cylindrical shell i. e. Ω = 0.0 rev/sec.
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B. Rotating cylindrical shell i. e. Ω = 0.1rev/sec.

C. Rotation of the cylindrical shell i. e. Ω = 0.4rev/sec.

Figure 4.5: Natural frequency as a function of n for simply supported rotating cylindrical shell 

 with different layer configuration (m =1, L/R = 1 , h/R = 0.002) (A) Ω = 0 rps, 

 (B) Ω = 0.1rps, (C) Ω = 0.4 rps.
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4.3.5.2 Influence rotating Velocity on different Layer Configuration

Figure 4.4 shows the variation of the natural frequency with the rotating velocity for three 

different layer configurations (i.e. [0/90], [0/90/0], [0/90/90/0]). It is observed that three layer 

configuration has the highest natural frequency, followed by the four and the natural frequency 

for two layers are relatively lower. It is also observed that the as the rotational speed is increased 

there is very small increment in the natural frequency.

Figure 4.6: Natural Frequency as a function of rotating velocity for simply supported rotating  

 cylindrical shells with different layer configuration (m=1, n=1, h/R= 0.002, L/R =5)
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4.3.5.2 Influence of Length-to-radius for different layer configuration

Figure 4.5 shows the variation of the natural frequency with the length-to-radius ratio 

(L/R) for various layer configurations. As the length ratio L / R is increased for the all the 

configuration, the natural frequency decreases rapidly and this is subsequently followed by more 

gradual decrease. Once again three layer configurations have highest natural frequency, followed 

by the four and two layer lay-ups respectively.

Figure 4.7: Natural frequency as a function of the length-to-radius ratio (L / R) for simply  

 supported rotating cylindrical shells with different layer configuration ( Ω = 0.4rps, 

 h / R =0.002)



CHAPTER ­5
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CHAPTER-5

CONCLUSION
The free vibration problem of laminated thin rotating cylindrical shells is analyzed in this 

study by first order shear deformation theory, a versatile classical procedure. The illustrative 

examples of cylindrical shells with simply supported boundary conditions for convenience are

considered. The analysis is quite capable of dealing with the vibration problems of composite 

cylindrical shells with arbitrary end conditions. Versatility and validity of first order shear 

deformation theory is also aptly illustrated by comparing the results from the present work with 

the corresponding results in previous studies using quite different alternative approaches. It is

observed that there is a very good agreement between various sets of results. 

The effects of the rotating velocity, circumferential wave number, length-to-radius ratio, 

thickness-to-radius ratio, composite lamination, and geometrical properties were investigated on 

the vibration characteristics of a thin rotating cylindrical shell. From the analysis of the result 

presented in previous section the following concluding remarks can be drawn:

1. The frequency parameter increases with angular velocity of rotation, though for the 

small speeds considered the increase is not much in comparison with the non-rotating

shells.

2. The natural frequencies rapidly decrease with circumferential mode number ‘n’ up to 

mode number of 3 and for mode number beyond 3 the natural frequency gets near 

about constant for L/R of 10.

3. The rotational motion has a significant influence on the natural frequencies and these 

influences depend largely on the velocity of rotation. 

4. The influence of length-to-radius ratio on natural frequency of the rotating cylindrical 

shell is larger than that of thickness-to-radius ratio.

5. For the two layers configuration, the natural frequency parameter is lowest, while it is 

highest for the three layers as compared to the four layers configuration for a 

particular angular velocity of rotation and particular shell geometrical parameters.
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FUTURE WORK

The method studied in the present study can be used to evaluate the vibration

characteristics for the higher speed of rotation and thick rotating cylindrical shell. However, this 

study is limited to the lower rotating velocity and thin rotating cylindrical shell. This is due to the 

neglecting the Coriolis and centrifugal effect. So considering the Coriolis and centrifugal effect 

the present study can be used for higher rotating velocity and thick shells too. The present study 

can be extended for the angle ply laminated shell.
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APPENDIX

The coefficients of the [ Cij ] and [ Mij ] matrices are given below.
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The elements of the [ M ] matrix, which are not given above are zero.
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The non-dimensionalised coefficients of the [ ]C and [ ]M  matrices are given below.
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The elements of the  M matrices, which are not given above, are zero.


