
A STUDY OF THE EFFECT OF CRYOGENIC TREATMENT ON 
THE PERFORMANCE OF HIGH SPEED STEEL TOOLS AND 

CARBIDE INSERTS 

 

A THESIS SUBMITTED IN PARTIAL FULFILMENT 
OF THE REQUIREMENTS FOR THE DEGREE OF 

 
 

Master of Technology 

in 

Mechanical Engineering      

              

By 

 AMRITA PRIYADARSHINI 

 

 

 

 
 

 
 

Department of Mechanical Engineering 
National Institute of Technology 

Rourkela  
2007 

  

  



 
A STUDY OF THE EFFECT OF CRYOGENIC TREATMENT ON 
THE PERFORMANCE OF HIGH SPEED STEEL TOOLS AND 

CARBIDE INSERTS  
 
 

A THESIS SUBMITTED IN PARTIAL FULFILMENT 
OF THE REQUIREMENTS FOR THE DEGREE OF 

 
 

Master of Technology 

in 

Mechanical Engineering 

By 

 AMRITA PRIYADARSHINI 
 

Under the Guidance of   

PPrrooff..  KK..PP..  MMAAIITTYY  
  
  
  
 

 

 

 
 
 
 

 
 

Department of Mechanical Engineering 
National Institute of Technology 

Rourkela  
2007 



 
 
 
 
 
 

 
 

 
National Institute of Technology 

Rourkela 

   

 CERTIFICATE 

This is to certify that thesis entitled, “A STUDY OF THE EFFECT OF CRYOGENIC 

TREATMENT ON THE PERFORMANCE OF HIGH SPEED STEEL TOOLS AND CARBIDE 

INSERTS” submitted by Ms. AMRITA PRIYADARSHINI in partial fulfillment of the 

requirements for the award of Master of Technology Degree in Mechanical Engineering with 

specialization in “Production Engineering” at National Institute of Technology, Rourkela 

(Deemed University) is an authentic work carried out by her under my supervision and guidance.  

To the best of my knowledge, the matter embodied in this thesis has not been submitted to any 

other university/ institute for award of any Degree or Diploma. 

 

Date: 21.05.07                                                                    
Prof.K.P.Maity 

Professor 
 Dept. of Mechanical Engineering 

                                                                                          National Institute of Technology 
                                                                                          Rourkela-769008 

 i



 

ACKNOWLEDGEMENT 

 
I convey  my deep sense of gratitude  to my supervisor Prof. K.P.Maity,Professor,  Department 

of Mechanical Engineering, National Institute of Technology, Rourkela. It was due to his able 

efforts and dedication that I am able to complete my M- Tech project successfully. He has been 

instrumental in directing the work in the most systematic and desired manner.  

            I express my sincere thanks to Prof. B.K.Nanda, Head of the Department of 

Mechanical Engineering, NIT, Rourkela for providing me the necessary facilities in the 

department. I once again  express my sincere gratitude to Prof. K.P.Maity, Co-ordinator of M.E. 

course for his timely help during the course of work .For direct and indirect assistance I would  

like to thank each and every one from mechanical engineering department. I acknowledge 

Prof.C.K.Biswas for giving me the permission to carry out my experimental works in the 

production laboratory and thank Mr. P. Mohanty for assisting me while conducting the 

experiments in the laboratory.I am grateful to Mr. Samal and Mr. Ali without whose help and 

cooperation I would have never been able to conduct the experimental works in the machine 

shop of Central Workshop. My special thanks are to Mr. Kunal Nayak for rendering all possible 

help as well for being a constant support in all of my experimental works. I also thank Mr. 

Biswanath Mukjerjee of Cryogenics Laboratory to kindly devote his time in my project work. 

 I am extremely indebted to the department of Metallurgical and Materials engineering for 

the outstanding support especially to those who are associated with heat treatment laboratory, 

XRD Laboratory and SEM Laboratory. My special thanks are to Dr. M. Kumar, Asst. Professor 

for his valuable suggestions and providing facility to carry out experimental work. I am also 

thankful to the department of Ceramics engineering for rendering me the desired facilities. 

 Lastly I owe to all my friends as well as to my family members who have been a constant 

source of encouragement and support without which it would have been difficult to carry out the 

project successfully. 

  
Date : 21.05.07       AMRITA PRIYADARSHINI 

        ROLL NO. 20503048 
 

 ii



 
 

ABSTRACT 
 

Cryogenic treatment has been acknowledged by some as means of extending tool life of 

many cutting tool materials, thus improving productivity significantly. However real 

mechanisms which guarantee better tool performance are still dubious. This implies the need of 

further investigations in order to control the technique more significantly. Studies on 

cryogenically treated HSS tools show microstructural changes in material that can influence tool 

lives. However little research has been done on other cutting tool materials. Cryogenic treatment 

of carbides has yet to be extensively studied. This work aims to study the effect of cryogenic 

treatment on M2 and S400 as well as Carbide inserts of SNMS120408 and SNMG120412MP 

grades. The tools were cryo-treated for 24 hours. The flank wear tests, sliding wear tests and 

hardness tests were conducted. In the process of ascertaining these findings, it was shown in this 

study that in flank wear tests cryogenically treated tool showed an increase in tool life. However 

in sliding wear test, weight loss in case of cryogenically treated tools was found to be more 

indicating the fact that the tool becomes more brittle after cryogenic treatment due to 

transformation of retained austenite to martensite as well as due to carbide refinement. 

Microstructural analysis and SEM analysis were done to support the results obtained.   

 Performance of cryogenically treated tools largely depends upon the cutting conditions. 

Hence design of experiment (DOE) was employed to study the effect of cutting parameters on 

tool wear and tool life equations were developed illustrating the significant factors that affect 

performance of cryogenically treated tools. 
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CHAPTER 1 
 

INTRODUCTION 

 
1.1. BACKGROUND 

 

  Metal cutting process forms the basis of the engineering industry and is 

involved either directly or indirectly in the manufacture of nearly every product of 

our modern civilization. The cutting tool is one of the important elements in realizing 

the full potential out of any metal cutting operation. Over the years the demands of 

economic competition have motivated a lot of research in the field of metal cutting 

leading to the evolution of new tool materials of remarkable performance and vast 

potential for an impressive increase in productivity. Changes in work piece materials, 

manufacturing processes and even government regulations catalyze parallel advances 

in metal cutting tooling technology.  

   

  As manufacturers continually seek and apply new manufacturing materials 

that are lighter and stronger and therefore more fuel efficient it follows that cutting 

tools must be so developed that can machine new materials at the highest possible 

productivity. The most important elements in the design of cutting tools is the 

material construction and there judicious selection. The properties that a tool material 

must process are as follows: 

 

• Capacity to retain form stability at elevated temperatures during high cutting 

speeds. 

• Cost and ease of fabrication 

• High resistance to brittle fracture 

• Resistance to diffusion 

• Resistance to thermal and mechanical shock 
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  Developmental activities in the area of cutting tool materials are guided by 

the knowledge of the extreme conditions of stress and temperature produced at the 

tool-work piece interface. Tool wear occurs by one or more complex mechanisms 

which includes abrasive wear, chipping at the cutting edge, thermal cracking etc.  

Since most of these processes are greatly accelerated by increased temperatures, the 

more obvious requirements for tool materials are improvements in physical, 

mechanical and chemical properties at elevated temperature. 

 

1.2. TECHNOLOGICAL DEVELOPMENT 

 

  Tool materials have improved rapidly during the last sixty years and in 

many instances, the development of new tool materials has necessitated a change in 

the design trend of machine tools to make full use of the potentialities of tool 

materials for high productivity. Progress from carbon tool steels, high speed steels 

and cast alloys to carbides and ceramics has facilitated the application of higher 

speeds at each stage of development. With the advent of carbides and ceramics 

radical changes have taken place in the design of tool holders and cutters and the 

concept of the throw away tipped tool where the insert is held mechanically and is 

discarded after use represents a major advance in the metal removing technology of 

modern times. 

 

  Till 1900 machining was performed by plain carbon tool steel, shortly after 

1900 high speed steel was introduced which has undergone many modifications 

giving rise to several types of HSS. The next notable improvement came with the 

introduction of cobalt bonded sintered tungsten carbide. However shortage of 

tungsten has led to the development of many non-tungsten cutting tool materials. 

Ceramic tools exhibit very high hardness and wear resistance facilitating the use of 

higher cutting speeds. UCON a new tool material consisting of columbium, tungsten, 

titanium permits 60% increase in the cutting speed when compared with tungsten 

carbide. Cubic Boron Nitride with hardness next to diamond which is claimed to give 

speed 5 to 8 times that of carbide can be used to cut hardened materials. 
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Polycrystalline diamond bonded to tungsten carbide substrate has been successfully 

employed for machining non-ferrous materials. 

 

  But no single tool material has all the desired properties to withstand wide 

range of stresses, temperatures, abrasion and thermal shock to which a cutting tool is 

subjected during metal cutting. Each cutting tool has a unique combination of 

properties that are important to its performance. Hence by fine tuning combinations 

of tool material compositions, coatings and geometries tool makers enable users to 

make more parts faster and at reduced cost. 

 

  Traditional tool materials such as HSS continue to undergo substantial 

improvement in there properties through suitable modifications in their composition 

by optimizing the processing technique as well as incorporating various surface 

treatments. As a result of these technological advances HSS are still in use having 

surviving competition from carbides and ceramics. Carbide because of the ability to 

retain its strength and hardness at very high temperatures, to withstand cutting speeds 

6 or more than 6 times higher than tools of HSS and the economical price has become 

a logical choice of many cutting industries. However with the incorporation of 

suitable surface treatments, its service life as well as its properties can be enhanced 

even more. 

 

 

1.3. SURFACE TREATMENTS 

 

  Advances in manufacturing technologies (increased cutting speeds, dry 

machining, etc.) triggered the fast commercial growth of various surface treatments 

for cutting tools; on the other hand these surface coating technologies enabled these 

advances in manufacturing technologies. No single treatment will solve every 

problem and their use should be restricted to those operations where extra expense of 

the treatment can be justified by a substantial performance gain. 
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The processes of surface treatments more formally surface engineering tailor the 

surfaces of engineering materials to: 

 

• Control friction and wear  

• Improve corrosion resistance  

• Change physical property 

• Vary appearance 

• Reduce cost 

Ultimately the functions on service lines of the materials can be improved. 

 

  Common surface treatments can be divided into two major categories: 

a. Treatments that cover surfaces 

b. Treatments that alter surfaces 

 

  Treatments covering surfaces: 

• Organic coatings  such as paints, cements, laminates, fused powders, 

lubricants, or floor toppings on the surfaces of materials 

• Inorganic coating such as electroplating, autocatalytic platings (electroless 

platings), conversion coatings, thermal sprayings, hot dippings, furnace 

fusing, or coat thin films on the surfaces of the materials (PVD and CVD) 

 

  Treatments altering surfaces: 

• High energy treatments such as ion implantation, laser glazing/fusion, and 

electron beam treatment. 

• Diffusion treatments include boronizing, and other high temperature reaction 

processes, e.g., TiC, VC. 

• Hardenings such as flame, induction, laser or electron beam 

• Heavy diffusion treatments include carburizing, nitriding, and carbonitriding 

• Special treatments  such as cryogenic, magnetic and sonic treatment 
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  Cryogenic treatment is an inexpensive one time permanent treatment affecting the 

entire section or bulk of the component unlike coatings. The treatment is an add on process 

over conventional heat treatment in which the samples are cooled down to prescribed 

cryogenic temperature for a long time and then heated back to room temperature. It is 

believed that life of cutting tool get substantially extended due to cryogenic treatment. 

However, researchers have been skeptical about the process because it imparts no apparent 

visible change. Moreover mechanism is also unpredictable and research articles are also not 

sufficient to support the treatment. So in general cryogenic treatment is still in the dormant 

level. 

  Over the past few years there has been an increase in interest in the application of 

cryogenic temperature to different materials. Some literature says that the cryogenic 

treatment can improve the life span would depend a lot on the cutting conditions. Hence 

various research works are being carried out to study the effects of this treatment on the 

performance of various cutting tools so that it could be added to the regular heat treatment 

cycle for the components the production sector manufacture. However for evaluating the 

performance of the cutting tools it is very necessary to study the effect of cutting 

parameters (cutting speed, depth of cut and feed) on the tool wear. This necessitates 

planning experiments in advance so that maximum benefit can be derived from data 

obtained from organized sets of experiment. Designs of experiment (DOE) is one such 

approach that has proved to be a powerful technique in getting a quantitative relationship 

among the variables (in the form equations). One important benefit of DOE is that this not 

only evaluates the significant effect of each of the individual factors (parameters) but also 

determines the interaction effects among all the factors. When an interaction is large the 

corresponding main effect cease to have much meaning. Hence, it is very important to 

determine the interaction effects of various process variables to fully evaluate the 

performance of the tools. 
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1.4. OBJECTIVE  

 

• To make a comparative study on the hardness and wear resistance of cryogenically 

treated HSS samples and carbide inserts with that of untreated tools. 

• To study the effect of different cutting parameters on the tool life of cryogenically 

treated tool (HSS and carbides) and development of tool life equations employing 

design of experiment (DOE) technique. 

• To study the microstructural changes. 
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CHAPTER 2 

 

LITERATURE SURVEY 

  

 In recent decades, there has been an increase in interest in the application of cryogenic 

treatment to different materials. Research has shown that cryogenic treatment increases product 

life, and in most cases, provides additional qualities to the product, such as stress relieving. In the 

area of cutting tools, extensive study has been done on tool steels, which include high-speed steel 

(HSS) and medium carbon steels. It has been reported that cryogenic treatment can double the 

service life of HSS tools, and also increase hardness and toughness simultaneously [34][3]  

 Cryogenic treatment of cutting tool materials such as tungsten carbide, have yet to be 

extensively studied. Tungsten carbide has been proven to be much more efficient than HSS when 

machining hard materials such as steel itself. If cryogenic treatments can double the service life 

of HSS, it could probably do the same for tungsten carbide tools [31]. Unlike coatings that are 

only a superficial treatment, the cryogenic treatment is applied to the whole volume of the 

material, reaching the core of the tools. This guarantees maintenance of their properties even 

after regrinding or resharpening. One of the most prevalent claims in low-temperature treatment 

is an increase in wear resistance of certain steels [10][22][34] However, most researchers believe 

that cryogenic treatment promotes the complete transformation of retained austenite into 

martensite at cryogenic temperatures, which is attributed to improved wear resistance [14][ 32]. 

Others claim that cryogenic treatment facilitates the formation of fine carbides in the martensite, 

thus improving the wear resistance [22] [33]. However, the lack of common sense in the 

literature regarding to the metallurgical aspects that cryogenic treatment confers better wear 

resistance and consequently higher tool lives as well as contradictory results that are also 

encountered [3] [4][5] lead to many doubts and questions involving the practical application of 

this sort of treatment.  
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 Several different cryogenic processes have been tested by researchers. These involve a 

combination of deep freezing and tempering cycles. Generally, they can be described as a 

controlled lowering of temperature from room temperature to the boiling point of liquid nitrogen 

(−196 °C), maintenance of the temperature for about twenty four hours, followed by a controlled 

raising of the temperature back to room temperature. Subsequent tempering processes may 

follow [30]. There are different levels of treatment temperatures. In order to avoid confusion, 

cryogenic treatment has been classified into shallow cryogenic treatment (SCT) and deep 

cryogenic treatment (DCT) depending upon the temperatures in which the material is treated 

[26].The common practice for shallow cryogenic treatment is to keep the specimens in a 

mechanical freezer at 193 K for 5 h and then exposed to room temperature. But in deep 

cryogenic treatment the materials are slowly brought down from room temperature to 77 K at 

1.26 K/min, held at the same temperature for 24 h and subsequently brought back to room at 

0.63 K/min. In order to achieve deep cold temperatures, materials cannot be directly kept in 

freezer at 77 K similar to that of shallow cryogenic treatment because the temperature difference 

is very high and fast cooling will lead to quench cracks. 

 The conventional heat treatment normally uses cooling conditions only until room 

temperature, which may leave some retained austenite on the microstructure. This fact must be 

considered during heat treatment of tool steels. This retained austenite is soft and unstable at 

lower temperatures that it is likely to transform into martensite under certain conducive 

conditions. It should be noted that freshly formed martensite is also brittle and only tempered 

martensite is acceptable. To further aggravate this problem the transformation of austenite to 

martensite yields a 4% volume expansion [29] causing distortion which cannot be ignored. Thus 

retained austenite should be alleviated to the maximum possible before any component or tool is 

put into service. The degree of undercooling decides the potential to transform retained austenite 

to martensite completely [15]. In this context cryogenic treatment is handy. It also causes the 

precipitation of finely dispersed carbides in the martensite. It would be the interest of researchers 

to quantify the benefits and also know the conditions at which the treatment derives maximum 

benefits. For instance in case of  the eutectoid steel the Mf temperature is of approximately of 

−50 °C, therefore after quenching some percentage of retained austenite will be present [8]. 

Lately this structure can be transformed into martensite if the material is submitted to reheating 

or to a stress field, causing distortion on its body. This non-tempered martensite may cause 
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cracks, particularly in complex shape tools made of highly alloyed steels [9]. The subzero 

treatment will transform a great deal of this retained austenite by reaching the Mf line, giving 

more dimensional stability in the tool microstructure.  

 The main variables during heat treatment have a great deal of influence on the results. A 

research done in steels equivalent to M2, varying the cryogenic cycles has quantified the 

precipitated particles and verified their influence onto the material properties [22]. Their research 

involved seven steel samples, each of them submitted to different heating and cooling (up to 

−70 °C) cycles. The microstructure was analyzed and the carbide particles quantified using SEM, 

X-ray difractometer, quantitative metallography and differential dilatometer. The results 

confirmed an increase in carbide precipitation (from 6.9% to 17.4%), a reduction of the retained 

austenite (from 42.6% to 0.9%) and an increase in the martensite content (from 66% to 81.7%). 

The machining tests carried out with bits in turning AISI 1050 steels showed a significant 

increase in tool lives of cryogenically treated tools. These results can be attributed to minimum 

quantity of retained austenite, higher amount of martensite content, higher density of fine 

carbides (smaller than 1 μm) and a more favourable distribution of the alloying elements among 

the carbide of the matrix.  

 When temperature was applied  [6] in the range of −80 to −100 °C for periods of about 

30 min–1 h, and the improvement on tool life was credited to the transformation of retained 

austenite (softer) into martensite (harder) and the production of a more stable structure. In 

general the addition of alloying elements lowers the Ms (temperature of the beginning of 

martensite transformation) and Mf (final transformation temperature) lines in a way that the latter 

dwells at subzero temperatures.  

 Barron [14] after cryogenically treating several materials including the M2 high speed 

steel at −84 °C (maintaining it at this temperature for 24 h) observed a significant improvement 

on the wear resistance in sliding abrasion tests [15] when compared to conventionally heat 

treated steel (quenched and tempered). When the temperature of the cryogenic treatment was 

reduced further to −196 °C, the wear resistance was increased even more. He has attributed the 

improvement of the wear resistance of these tools to another mechanism besides the 

transformation of the retained austenite into martensite. He verified that the tool steels submitted 

to conventional heat treatment presented only a small amount of retained austenite, but those 
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submitted to cryogenic treatment showed better performance during machining. This new 

mechanism would be time and temperature dependent due to the long period (8 h or more) 

during which the tools would have to stay at cryogenic temperatures. Before the cryogenic 

treatment the microstructure showed relatively large carbides (20 μm) dispersed in the matrix. 

After the cryogenic treatment, carbide particles as small as 5 μm were found. The carbide 

refinement could in such a way contribute to the improvement of the wear resistance of the tool. 

Barron thus attributed this achievement both to austenite transformation and to the presence of 

hard and small carbide particles well distributed among the larger carbide particles within the 

martensite matrix [10]. 

 Dong et al. [29] did a detailed study on the effects of varying the deep freezing and 

tempering cycles on high speed steel and confirmed that in tool steels, this treatment affects the 

material in two ways. Firstly, it eliminates retained austenite, and hence increases the hardness of 

the material. Secondly, this treatment initiates nucleation sites for precipitation of large numbers 

of very fine carbide particles, resulting in an increase in wear resistance. 

 Popandopulo and Zhukova [11] carried out dilatometry studies and microstructure 

analysis during cryogenic treatment. They observed volume reduction of the specimen at the 

temperature range of −90 to +20 °C. This behaviour was attributed to partial decomposition of 

the martensite and precipitation of carbon atoms at dislocation lines and formation of 

ultramicroscopic carbides.  

 Paulin [2] also verified the presence of fine precipitated carbide particles and their 

importance to the material properties. The precipitated carbides reduce internal tension of the 

martensite and minimize micro cracks susceptibility, while the uniform distribution of fine 

carbides of high hardness enhances the wear resistance. Huang et al. [12] confirmed that 

cryogenic treatment not only facilitate the carbide formation but can also make the carbide 

distribution more homogeneous.  

 Yun et al. [17] verified changes in the microstructure of M2 high speed steel when this 

material was submitted to different cycles of cryogenic treatment at −196 °C. Comparing the 

conventional quenching cycle with other cryogenic cycles it was observed increases of 11.5% in 

the bending strength, 43% in the toughness and changes in the room temperature and hot 
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hardness. The results were again attributed to transformation of the retained austenite into 

martensite and precipitation of ultra-fine carbides, with this latter being considered the key point 

for the changes in the properties. 

 Molinari [18] found out that the deep cryogenic treatment (−196°C) of quenched and 

tempered high speed steel tools improves their properties; in particular, it increases the hardness 

and improves the hardness homogeneity, reduces the tool consumption and the down time for the 

equipments set up, thus leading to about 50% cost reduction [30].The greatest improvement in 

properties is obtained by carrying out the deep cryogenic treatment between quenching and 

tempering. However, a significant improvement can be obtained even by treating the tools at the 

end of the usual heat treatment cycle, i.e. the finished tools. This last solution is more flexible 

than the other one and can extend the use of the treatment to many practical applications [17] 

 Mohan Lal et al[19]., made a comparative study on wear resistance improvement of 

cryogenically treated samples with standard heat-treated samples through flank wear test and 

sliding wear test. Untempered samples when cryogenically treated yield 3%, 10% and 10.6% 

extra life over tempered and cryogenically treated T1, M2 and D3 samples, respectively. Hence 

it is suggested to cryogenically treat without tempering. Tempered samples when cryogenically 

treated at 133 K for 24 h yielded negative results, but when cryogenically treated at 93 K for 24 h 

the results were favourable. Hence tempered samples if treated at still lower temperatures may 

yield still better results on par with untempered cryotreated samples. This also suggested to 

conclude that the stabilization of phases that would take place during tempering requires 

sufficient degree of undercooling and time to get transformed to stable harder/tougher phases 

that offer better wear resistance.  Cryogenic treatment done at 93 K as per the prescribed cycle 

yields 20% extra life as compared to the maximum life achieved through cold treatment. 

Cryogenic treatment at 93K for 24 hours [8] is superior to TiN coatings also. The effect of 

cryotreatment on TiN coating is not favourable which may be because of uneven contraction of 

the coating material and the substrate leading to incipient cracks at the interface. Hence 

cryotreatment should not follow TiN coating [14]. 

 Meng and Tagashira [28] studied the wear resistance and microstructure of Fe–12Cr–

Mo–V-1.4C tool steel both with and without cryogenic treatment. The study reveals that 

cryogenically treated samples show improvement from 110% to 600% through sliding wear test. 
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The conventionally heat-treated and cryogenically treated specimens showed the largest and 

smallest wear volume at all sliding distance, respectively. From the microstructure of the steel it 

is reported that the improvement in wear resistance after cryogenic treatment can be attributed to 

η-carbide precipitates. 

 It was found that wear resistance has been improved by 85% for shallow cryogenic 

treatment  and 372% for deep cryogenic treatment over conventional heat treatment and also the 

wear resistance improvement of deep cryogenic treatment is 152% over shallow cryogenic 

treatment. Wear is found to increase linearly with load at constant sliding speeds and with sliding 

speed at constant loads [2]. Studies [10] show that the wear improvement of samples treated at 

83 K (close to DCT) was approximately 2.6 times higher than the wear resistance of sample 

treated at 188 K (close to SCT). Also it was found that the improvement of wear resistance for 

the above alloys when treated at 188 K ranges by factors from 1.2 to 2.0 whereas the same alloys 

when treated at 83 K improves the wear resistance by factors ranging from 2.0 to 6.6. 

 Seah et al. [31] did some study on the effect of cryogenic treatment on tungsten carbide 

and found that such treatment increases its wear resistance. They attributed this to an increase in 

the number of η-phase particles after cryogenic treatment, a theory which he supported with 

photographs taken using a scanning electron microscope (SEM). The experimental procedures 

that were used to perform the cutting on the workpiece were "repeated turning operations". Such 

"repeated turning operations" refers to using the same cutting edge for subsequent cutting 

operations, instead of switching to a brand new cutting edge for each new cut. By doing so, they 

managed to show that cryogenically treated tungsten carbide tools had a much greater resistance 

to chipping compared to the untreated ones. In addition, the cryogenically treated tools also 

performed better than the untreated tools at higher cutting speeds.  

 So far, few researchers have proposed other mechanisms that explain the effect of 

cryogenic treatment on tungsten carbide. Bryson [32] attributes the wear resistance, and hence 

the increase in tool life, of carbide tools to the improvement in the holding strength of the binder 

after cryogenic treatment. He believes that cryogenic treatment also acts to relieve the stresses 

introduced during the sintering process under which carbide tools are produced. However, 

Bryson also warned that under certain conditions, cryogenic treatment would have little or no 

effect on carbide tools, such as when reprocessed carbides are used.  
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 In a more recent work [36] it was verified that cryogenic treatment no doubt improves the 

resistance to chipping of tools and to a less significant extent, improves flank wear resistance but 

however, under certain conditions, such as prolonged exposure to high temperatures during long 

continuous cutting operations, cryogenically treated tools can lose their superior properties. In 

light of the fact that cryogenically treated tools perform best when the tool temperature is kept 

low, their effectiveness can be extended if coolants or suitable methods of cooling are used to 

keep the tool temperatures low. Hence, the validity of claims that cryogenic treatment can 

improve the lifespan of cutting tools would depend a lot on the cutting conditions. Tools under 

mild cutting conditions stand to gain from cryogenic treatment, but heavy duty cutting operations 

with long periods of heating of the cutting tool will not benefit from it.  

 The real mechanisms which guarantee better tool performance after cryogenic treatment 

are still dubious. This implies in the need of further investigation in order to control the 

technique more scientifically. 
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CHAPTER 3 
 
CRYOGENIC TREATMENT 
 

 
3.1. INTRODUCTION

 

 Cryogenics is defined as the branches of physics and engineering that study very low 

temperatures, how to produce them, and how materials behave at those temperatures. Rather than 

the familiar temperature scales of Fahrenheit and Celsius, cryogenicists use the Kelvin and 

Rankine scales.  

 The word cryogenics literally means "the production of icy cold"; however the term is 

used today as a synonym for the low-temperature state. It is not well-defined at what point on the 

temperature scale refrigeration ends and cryogenics begins. The workers at the National Institute 

of Standards and Technology at Boulder, Colorado have chosen to consider the field of 

cryogenics as that involving temperatures below –180 °C (93.15 K). This is a logical dividing 

line, since the normal boiling points of the so-called permanent gases (such as helium, hydrogen, 

neon, nitrogen, oxygen, and normal air) lie below -180 °C while the Freon refrigerants, hydrogen 

sulfide, and other common refrigerants have boiling points above -180 °C. Cryogenic 

temperatures are achieved either by the rapid evaporation of volatile liquids or by the expansion 

of gases confined initially at pressures of 150 to 200 atmospheres. The expansion may be simple, 

that is, through a valve to a region of lower pressure, or it may occur in the cylinder of a 

reciprocating engine, with the gas driving the piston of the engine. The second method is more 

efficient but is also more difficult to apply. 

 Cryogenic treatment is a one-time permanent treatment process and it affects the entire 

cross-section of the material usually done at the end of conventional heat treatment process but 

before tempering. Also it is not a substitute process but rather a supplement to conventional heat 

treatment process. It is believed to improve wear resistance as well the surface hardness and 

thermal stability of various materials. 

 This treatment is done to make sure there is no retained austenite during quenching. 

When steel is at the hardening temperature, there is a solid solution of Carbon and Iron, known 

as Austenite. The amount of martensite formed at quenching is a function of the lowest 
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temperature encountered. At any given temperature of quenching there is a certain amount of 

martensite and the balance is untransformed austenite. This untransformed austenite is very 

brittle and can cause loss of strength or hardness, dimensional instability, or cracking. Fig 3.1 

shows the structure of austenite and martensite. 

    

 

 

(a)    (b) 

Fig. 3.1. Structure of austenite and martensite 

 Quenches are usually done to room temperature. Most medium carbon steels and low 

alloy steels undergo transformation to 100 % martensite at room temperature. However, high 

carbon and high alloy steels have retained Austenite at room temperature. To eliminate retained 

Austenite, the temperature has to be lowered. 

 Liquefied gases, such as liquid nitrogen and liquid helium, are used in many cryogenic 

applications. Liquid nitrogen is the most commonly used element in cryogenics and is legally 

purchasable around the world. Liquid helium is also commonly used and allows for the lowest 

attainable temperatures to be reached. These gases are held in either special containers known as 

Dewar flasks, which are generally about six feet tall (1.8 m) and three feet (91.5 cm) in diameter, 

or giant tanks in larger commercial operations. Cryogenic transfer pumps are the pumps used on 

LNG piers to transfer Liquefied Natural Gas from LNG Carriers to LNG storage tanks. 
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3.2 THE MAKING OF LIQUID NITROGEN 

 

 A common method for production of liquid nitrogen is the liquefaction of air. 

Liquefaction is the phase change of  a substance from the  gaseous phase to the liquid phase. In 

the liquid nitrogen compressors or generators, air is compressed, expanded and cooled via the 

Joule-Thompson’s effect as depicted in fig3.2 and fig. 3.3. Fig.3.4 shows the set up for making 

nitrogen. Since nitrogen boils at a different temperature than oxygen, the nitrogen can be 

distilled out of the liquid air, recompressed and re-liquefied. Once liquid nitrogen is removed 

from the distillation chamber it is stored in a pressurized tank or a well insulated deewar 

flask.Liquid nitrogen is converted to a gas before it enters the chamber so that at no time does 

liquid nitrogen come in to contact with the parts assuring that the dangers of cracking from too 

rapid cooling are eliminated. 

 

 

 
 

Fig. 3.2. Making of liquefied nitrogen 
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Fig. 3.4. Set up for nitrogen making 
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Fig. 3.3.  Use of a Joule-Thomson system to generate a liquid cryogen. 

 

3.3. CRYOGENIC TREATMENT PROCEDURE 

The liquid nitrogen as generated from the nitogen plant is stored in storage vessels.With help of 

transfer lines, it is directed to a closed vacuum evacuated chamber called cryogenic freezer 

through a nozzle.The supply of liquid nitrogen into the cryo-freezer is operated with the help of 

soleniod valves.Inside the chamber gradual cooling occurs at a rate of 2º C /min from the room 

temperature to a temperature of -196º C.Once the sub zero temperature is reached, specimens are 

transferred to the nitrogen chamber or soaking chamber where in they are are stored for 24 hours 

with continiuos supply of liquid nitrogen. Fig. 3.5 illustrates the entire set up for cryogenic 

treatment. The entire process is schematically shown in fig. 3.6. 
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Fig. 3.5. Photograph of the cryogenic treatment set up  
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CHAPTER 4 
 

DESIGN OF EXPERIMENT 
 

 
4.1. INTRODUCTION 

 

 Design of Experiments is a statistical method of planning experiments in advance so that 

maximum benefit can be derived from data obtained from organized sets of experiments. 

Compared to single factor experiments where one parameter is varied at a time keeping other 

parameters constant, statistical design of experiment permits variation of several parameters at a 

time in a predetermined manner. This leads to reducing the number of experiments to the least 

possible for getting a quantitative relationship among the variables (in the form of equations) 

thereby saving considerable amount of time, money and material. Finally an important benefit of 

statistical design of experiment is its ability to determine the interaction effects of various 

process variables at their different levels, which are otherwise difficult to be obtained through 

single factor experiments since a single factor experiment is likely to provide only a number of 

disconnected pieces of information that cannot be easily put together. 

 In order to conduct an experiment on a single factor A, some decision must be taken on the 

levels of other factors viz., B, C, D, that are to be used in the experiment. The experiment reveals 

the effect of A on the particular combination of B, C and D, but no information is provided for 

predicting the effects of A with any other combination of B, C and D. 

 With a factorial approach, on the other hand, the effects of A are examined for every 

combination of B, C and D that is included in the experiment. Thus a great deal of information is 

accumulated both about the effects of the factors and their inter-relationship (interactions). 

 

4.2. FACTORS 

 

 Factors are experimental variables that are controlled by the investigator. In order to 

investigate/optimize a desired parameter/property (called response), it is important to identify the 

probable factors that may influence the property. There may be a number of variables which may 

influence the response, but the magnitudes with which these factors affect the response are not 

the same. Consequently, less important factors may be kept at constant level while other 
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important factors may be included in the study. This is critical, since when an important factor is 

fixed at a certain level, a false idea of the optimum is obtained and there is no guarantee that the 

fixed level is the optimal one. On the other hand if factors are increased to a large number, huge 

trials will be necessary. Therefore, when the number of factors is large it is necessary to resort to 

methods of eliminating less important factors.  

Factors may be independent, i.e., the level of one factor can be varied independently of 

the levels of other factors. However, two or more factors may interact with one another, i.e., the 

effect on the response of one variable depends on the levels of the other variables. Interactions 

between the factors are obtained by varying the factors simultaneously in a statistically 

predetermined way rather than varying one factor at a time. Fig. 4.1 illustrates the different types 

of behavior between factors (x1 and x2) and the response (y). 

Xa

Xc

1
2

3 4

5 6

7 8

Xb

  

Fig. 4.1. Three factors at two levels 

 

 

4.3. FACTORIAL DESIGN OF THE TYPE  Pn 

 

For the present work it is necessary to elucidate the effect of each factor and the possible 

ways in which each factor is modified by the variation of the others. In the design of  Pn factorial 

experiments, n is a positive integer which denotes the number of factors varied at a time and P is 

the number of levels in which each factor is varied. 

The simplest and the most common type of factorial design is of the type 2n, where each factor is 

varied at two levels. There are two advantages of factorial design of the type 2n experiments. 
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First, the number of experimental runs is reduced. Second, the computational method for this is 

easy and simple. The disadvantage of this type of design with two levels is that it takes care of 

linear order effects only and does not account for the higher order effects. To obliviate this 

difficulty a sufficiently small interval of variation is often chosen within which the response 

surface is almost planer in nature.  

For a 23 design factors are varied between two levels; the higher level being denoted by 

+1 and the lower level by -1. A particular treatment combination of factors is written using the 

special Yates notation and is shown in Table 4.1 for a 23 type factorial design. The presence of a 

lowercase letter (representing a factor) indicates the factor is at a higher level while the absence 

of a letter indicates that the factor is at a lower level. The treatment combination (1) denotes all 

the factors (x1, x2, x3 etc.) are at the lower level (i.e., at –1). For a 23 factorial design (no. of 

levels P=2, no. of factors n=3), there are 23=8 possible combinations of factors and hence the 

number of experimental runs required is 8.  

Treatment 
combinations 

 Run  No.           

         Level  of  Factor 

(Yates std. order)       X1      X2      X3 

      (1)       1       -1        -1       -1 

       x1       2       +1       -1       -1 

       x2       3       -1       +1       -1 

       x1 x2*       4       +1       +1       -1 

       x3       5       -1       -1       +1 

       x1 x3*       6       +1       -1       +1 

       x2 x3*        7       -1       +1       +1 

       x1 x2x3+       8       +1       +1       +1 

  * First order interaction,     + Second order interaction 

  +1 indicates higher level,     -1 indicates lower level 

Table 4.1 Three factor 23 Factorial Design 
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 The main effect of a factor is the change in response produced by a change in the level of 

the factor. So, when a factor is examined at two levels only, the effect is simply the difference 

between the average response of all trials carried out at the higher level of the factor and that of 

all trials at the lower level. This average effect of the factor has to be an average overall level of 

other factors.  

The main of a factor is given by the following expression: 

Main effect of  x =
responses at high x  -       responses at low x     

half the no.  of experimental runsi 
i i∑∑  

 If the effect of one factor is different at different levels of another factor the two factors 

are said to interact. The interaction effect is the difference between the effects of changing a 

factor from its lower level to higher level in one case with the other factors at lower level and in 

another case with the other factors at higher level. 

 When an interaction is large the corresponding main effects cease to have much meaning. 

The existence of a large interaction means that the effect of one factor is markedly dependent on 

the level of the other. A large interaction coefficient signifies that the levels of the factors are too 

widely spaced and further experimental work at intermediate levels is necessary. 

4.4. ANALYSIS OF VARIANCE (ANOVA) 

 ANOVA is a basic step in the Design Of Experiment (DOE), which is a powerful 

statistical tool aimed at statistically quantifying interactions between independent variables 

through their methodical modifications to determine their impact on the predicted variables.  

 The ANOVA pre requires the following assumptions:  

• the treatment data must be normally distributed,  

• the variance must be the same for all treatments,  

• all samples are randomly selected  

• and all the samples are independent  

 In the analysis of Variance, the total variance is subdivided into two independent 

variances: the variance due to the treatment and the variance due to random error. The 
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computation of the ANOVA is done through the Sums of squares of the treatments, the error and 

their total. Total sum of square is given by: 

Total SS = SSk + SSE  

 SSk measures the variations between factors; it represents the sum of square of the 

columns that generate the sum of square between treatments. The SSE is the sum of Square for 

errors measures the within- treatment variations.  

 The one-way ANOVA table is shown in table 4.2 

Source of Variation  Sum of Squares Degrees of Freedom Mean Square  F-Statistic  

Between Treatments SS k k-1 MS k = SS k /(k-1) F = MS k /MSE 

Error SSE N-k MSE = SSE/(N-k)  

Total TSS N-1   

Table 4.2. The one-way ANOVA table 

SS k = sum of squares between treatments  

SSE = sum of squares due to error 

SSE = TSS - SST  

TSS = total sum of squares 

MS k = mean square for treatments 

MSE = mean square for error 

t = number of treatment levels 

n = number of runs at a particular level 

N = total number of runs 

F = the calculated F statistic with t -1 and N -t degrees of freedom 
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CHAPTER 5 

 

EXPERIMENTAL DETAILS 
 

5.1. CUTTING TOOLS 

 

5.1.1. High speed steel 

 

  High speed steels owe their name to the fact that they were originally developed 

for high speed metal cutting. The properties of high resistance to wear and heat high initial 

hardness of about 60 to 65 RC at service temperature of 600 to 650 ºC and the economical 

price of HSS have made them a logical choice of many cutting industries. This finds 

applications as turning tools, twist drills, counter bores, taps and dies, reamers, broaches, 

milling cutters, hobs, saws, etc.The perfect combination of alloying elements and the 

domain of heat treatment processes confers excellent hardness and wear resistance 

properties allied to good toughness[ 35]  

  The HSS tool samples considered in this work are M2 and S400 steels procured 

from Miranda (ISO – 9002 company) with dimensions 12.70 x 152.40 mm. Some of the 

HSS tool bit blanks were made into single point cutting tools for turning with standard tool 

signature as given in table 5.1 while other tool blanks were used for micro structure 

analysis and sliding wear tests. 

 

Back rake angle  0º 

Side Clearance Angle 10º 

Side Rake Angle 10º 

Principal Cutting edge Angle 90º 

 

Table 5.1.Description of single point HSS tools 
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 5.1.2. Tungsten carbide  

 

  Tungsten carbide has been proved to be much more efficient than HSS when 

machining hard materials such as steel itself. Due to its extreme hardness, tungsten carbide 

is largely used in the manufacture of cutting tools as cheaper and more heat resistant 

alternative to diamond. This is useful when machining tough materials and may leave 

better surface finish on the parts. 

  The cutting tools used were squares inserts with cheap breakers of two different 

grades: SNMG120412MP (Kennametal) and SNMS12048 (Kennametal). The inserts were 

clamped onto a tool holder with a designation of PSBNR2020K12D5L (WIDAX). 

 

5.2. LABORATORY TESTS 

 

5.2.1. Flank wear tests 

 

  Tool wear is almost always used as a tool life criterion because it is easy to 

determine quantitatively. Various types of tool wear are shown in fig. 5.1 

 

Fig. 5.1 Tool wear phenomena 
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  The amount of flank wear is often used as a criterion because it is the flank wear 

that influences work material surface roughness and accuracy. A standard tool life is the 

time to develop a flank wear land of recommended size based on the material and operation 

as depicted in table 5.2.  

  

Wear (in) Tool Material Remarks 

0.030 (0.76 mm) Carbide Roughing passes 

0.010-0.015 (0.25-0.38 mm) Carbide Finishing passes 

0.060 or total destruction(1.25 mm) H.S.S. Roughing passes 

0.010-0.015 (0.25-0.38 mm) H.S.S. Finishing passes 

0.010-0.015 (0.25-0.38 mm) Cemented oxides Roughing and finishing passes

 

Table 5.2. Recommended size of flank wear 

 

Fig. 5.2 shows the typical stages of tool wear as well as illustrates the method to evaluate 

tool life from flank wear graphically. 

 

Fig. 5.2. Typical stages of tool wear in normal cutting situation 

  In the present work, the tool samples were subjected to turning operation in a high 

speed lathe (HMT NL26) with a maximum spindle speed of 1200 RPM. As soon as lathe 

was started, stop watch was switched on to note down the machining time. At the end of 

each run, flank wear was measured in a tool maker’s microscope. The flank wear was 
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normally observed at every 2 minutes interval. The total machining time before reaching a 

minimum of 0.3 mm flank wear was considered to be the tool life of the sample. 

 

5.2.2. Sliding wear tests  

 

  The materials considered for this were the cryogenically treated as well as 

untreated S400 and M2 grade HSS samples with dimensions 20 x 16 x 16 mm. The test 

was conducted on a machine called disc and pinion (make: SD scientific industries) as 

shown in fig.5.3. The sample was mounted perpendicularly on a stationary vice such that 

its one of the face is forced to press against the abrasive that is fixed on the revolving disc. 

Hence it is the abrasive paper that tends to wear the surface of the samples. When the disc 

rotates for a particular period of time the sample can be loaded at the top to press against 

the disc with the help of a lever mechanism. 

The speed of revolution can also be varied and thus the test can be conducted with the 

following parameters- 

(1) Load             (2) Speed              (3) Time 

In the present experimental work, speed and time wear kept constant while the load was 

varied from 0 to 1.2 kg. Parameters that remained constant through out all the experiments 

are given in table (3). 

 

RPM 300 

Time 1hr 

Type of abrasive paper Emery 

 

Table 5.3. Parameters taken constant in sliding wear test 

 

 For each of the sample, test was conducted for 5 times and the average of all the samples 

was taken as the observed values in each case. 

Once the parameter is set and work piece is mounted, the test is carried on for the 

desired time. The wear track so formed on the rotating disc is a circle. After each test 

only the mass loss of the specimen was considered as the wear. 
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Fig.5.3. Disc and pinion apparatus 
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The wear rate of each sample was calculated from the weight loss, the amount of wear is 

determined by weighing the specimen before and after the test using precession electronic 

weighing machine with accuracy 0.0001 gm. Since the mass loss is measured it is 

converted to volume loss using the density of the specimen. Hence wear rate and wear 

resistance can be calculated from equation 5.1 and equation 5.2 respectively. 

 

                                                                                     ... (5.1) 

          … (5.2) 

w
W

D
w =

V w

=
1

 

 

Where  w= Wear rate 

W=Wear resistance 

           Vw = Wear volume 

           D = Distance traveled  

  A comparison has been made to identify effects of cryogenic treatment on wear 

improvement on S400 and M2 grade HSS samples. The test was conducted for 5 times for 

each of the samples. 

 

5.2.3. Hardness test 

 

  Rockwell hardness testing (the apparatus being shown in fig. 5.4) is a general 

method for measuring the bulk hardness of metallic and polymer materials. Although 

hardness testing does not give a direct measurement of any performance properties, 

hardness correlates with strength, wear resistance, and other properties. Hardness testing is 

widely used for material evaluation due to its simplicity and low cost relative to direct 

measurement of many properties. This method consists of indenting the test material with a 

diamond cone or hardened steel ball indenter. The indenter is forced into the test material 

under a preliminary minor load F0 (Fig. 5.5 A) usually 10 kgf. When equilibrium has been 

reached, an indicating device, which follows the movements of the indenter and so 

responds to changes in depth of penetration of the indenter, is set to a datum position. 

While the preliminary minor load is still applied an additional major load is applied with 

resulting increase in penetration (Fig. 5.5 B). When equilibrium has again been reach, the  
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Fig. 5.4. Rockwell hardness measuring machine 
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additional major load is removed but the preliminary minor load is still maintained. 

Removal of the additional major load allows a partial recovery, so reducing the depth of 

penetration (Fig. 5.5 C). The permanent increase in depth of penetration, resulting from the 

application and removal of the additional major load is used to calculate the Rockwell 

hardness number.  

 

Fig. 5.5.Rockwell Principle 

 

  In the present experimental work Rockwell Hardness was measured on 

cryogenically treated and untreated S400 and M2 grade HSS samples with a minimum of 

four indentations in each. The average of these measurements was considered for 

comparison. 

 

5.2.4. Metallographic examination 

 

  This part of the work had the objective of analyzing the changes that occurred in 

the micro structure of the S400 and M2 high speed steel after the cryogenic treatment. 

Metallographic study basically includes the following: 

 

Optical micro- (micro structure) examination 

  This is defined as the method of studying microstructure constituents (grains, 

phases, micro pores, etc) by means of a metallurgical microscope. In order to carry the 

analysis first the samples were polished using emery paper of four different grits. This was 

followed by mirror finishing by polishing the samples on velvet cloth which is mounted on 

a rotating disc. After this these samples were etched with 2% nital and dried in air. 

Microstructure examination was carried out using an optical microscope 
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Scanning Electron Microscope (SEM) examination 

  Scanning electron microscope creates images by using electrons instead of light 

waves while conventional microscopes use a series of lenses to bend light waves and create 

magnified image. The SEM shows very detailed three dimensional images at much higher 

magnification. The images obtained from this are black and white only as this does not 

work on the principles of light waves. 

 

X-Ray Diffraction (XRD) analysis 

  It is a versatile non destructive technique that reveals detailed information about 

the chemical composition and crystallographic structures of natural and manufactured 

materials. 

 

5.3. IMPLEMENTATION OF DOE FOR WEAR BEHAVIOR AND TOOL LIFE 

PREDICTION 

 

  The goal of this experimental work was to investigate the effects of cutting 

parameters on tool wear and to establish a correlation between them. In order for this 

cutting velocity, depth of cut and feed rate were chosen as process parameters. The work 

material was mild steel. The turning tests were conducted on HMT lathe having maximum 

spindle speed of 1020 RPM.The cutting tools used were: 

(1) cryogenically treated S400 HSS single point cutting tools 

(2) cryogenically treated carbide inserts 

For each of the tools a 2³ Factorial design was selected. This indicates two levels 

were specified for each of the three parameters. The parameter levels were chosen within 

the intervals recommended by the cutting tool manufacturer. Three process parameter at 

two levels lead to a total of 8 tests. Flank wear was measured at regular intervals of two 

minutes with the help of tool maker’s microscope. 

Significant factors affecting the tool wear were found using DOE and tool life 

equations were developed illustrating the significant factors. 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 
 

6.1. LABORATORY TESTS 

 

6.1.1 Flank wear tests 

 

  Single point M2 grade HSS tools as well as carbide inserts were subjected to 

turning operation in HMT NL26 lathe according to the machining specifications given in 

table 6.1. 

 

 M2 HSS Carbide 

Cutting velocity (m/min) 46.7 67.8 

Depth of cut (mm) 0.5 0.5 

Feed (mm/rev) 0.05 0.05 

Cutting condition Dry Dry 

Work piece material Mild steel Mild steel 

 

 

Table 6.1. Machining specifications for turning HSS tools and carbide inserts 

 

Results of Flank wear test for both cryogenically treated and untreated samples are shown 

in table 6.2 and table table 6.3 respectively. 
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Sl. No. Time (min) Flank wear (mm) 

1 10 0.245 

2 20 0.270 

3 30 0.290 

4 40 0.320 

5 50 0.375 

6 60 0.405 

 

Table6.2. Results of flank wear test for untreated HSS tools 

 

Sl. No. Time (min) Flank wear (mm) 

1 10 0.140 

2 20 0.165 

3 30 0.180 

4 40 0.245 

5 50 0.275 

6 60 0.380 

 

Table 6.3. Results of flank wear test for treated HSS tools 

 

Fig 6.1 illustrates the graph that are plotted to evaluate the tool life in each of the cases so 

as to make necessary comparison.  
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Fig.6.1.Flank wear development in HSS tools 

 

From the graph it was observed that cryogenically treated HSS tools showed slightly higher 

value of tool life. 

  Carbide inserts were tested by performing orthogonal turning on mild steels on 

HMT lathe. Machining specifications as well as the results of the turning tests for both 

cryogenically treated and untreated tool inserts are given in table 6.4 and table 6.5 

respectively. 

 

Sl. No. Time (min) Flank wear (mm) 

1 10 0.066 

2 20 0.076 

3 30 0.078 

4 40 0.080 

5 50 0.125 

6 60 0.280 

 

Table 6.4 Results of flank wear tests for untreated carbides 
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Sl. No. Time (min) Flank wear (mm) 

1 10 0.060 

2 20 0.070 

3 30 0.072 

4 40 0.074 

5 50 0.105 

6 60 0.184 

 

Table 6.5 Results of flank wear tests for treated carbides 

 

Graphs as shown in fig 6.2 were plotted to compare the tool lives in both the cases. 
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Fig. 6.2. Flank wear development in carbide inserts 
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Cryogenically treated carbide inserts presented longer tool lives as compared to the 

untreated. 
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Fig. 6.3. Tool life comparisons between treated and untreated samples 

 

  There is an increase of tool life by 19.2% and 17.18% for cryogenically treated 

HSS and carbide inserts respectively in comparison to the untreated tools. Hence it is 

evident that there is increase in tool life both fore cryogenically treated  HSS  tool and 

carbide insert. 

  The superior performance of cryogenically treated HSS can be attributed to the 

transformation of almost all retained austenite into martensite, a harder structure and 

precipitation of fine and hard carbides[36 ],[1]. The results for cryogenically treated 

carbide inserts seem to be in accordance with the results obtained by Seah et. al[36]. 

According to him increase in number of η phase particles are most likely responsible for 

these positive results. However the performance of cryogenically treated tools depends on 

cutting conditions and cutting environment.  

  The experiments were also conducted to determine tool life for machining mild 

steel using cryogenically treated HSS tools and carbide inserts using design of experiments 

for two levels. The details results have been discussed later. The experiments were also 

conducted to determine tool wear in cryogenically carbide inserts for machining 
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aluminium. It is observed that no flank wear developed in carbide inserts for a time period 

of machining. 

 

6.1.2.  Sliding wear test  

 

  S400 and M2 grade HSS samples were subjected to sliding wear test to evaluate 

the effect of cryogenic treatment on the wear resistance. 

  First the tests were conducted on S400 samples by varying the load from 0 to 1.2 

kg, other parameters being constant. The main aim of the test was to study the effect of 

load on the wear resistance of the HSS samples as well as to find a suitable value of load 

based on which the further comparative tests could be conducted more quantitatively. 

Table 6.6 shows the results of this. 

 

Sl. No. Load 

(N) 

Wt. Loss for untreated HSS 

(g) 

Wt. Loss for treated HSS 

(g) 

1 0 0 0 

2 2.11 0 0 

3 7.526 0.0006 0.002 

4 11.76 0.0024 0.00046 

 

Table 6.6.Effect of load on wear rate in terms of weight loss 

 

  The results indicate that with the increase of force wear rate becomes more 

prominent. Hence the load weighing 1.2 kg (11.76 N) was decided to be set for all further 

tests. Moreover it was observed that the cryogenically treated samples are showing higher 

value of weight loss. So in order to confirm this, the test was repeated for minimum of 5 

times for both cryogenically treated and untreated S400 and M2steels by keeping all the 

three parameters (speed, time, load) constant through out the experiment. The average 

values of wear rate and wear resistance are shown in table 6.7 and table 6.8 (the 

calculation being explained in the previous chapter). 
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Sl. 

No. 

Specimen 

type 

Wt. loss 

(g) 

Wear rate 

(cm²) 

Wear resistance 

(cm ²ֿ )

1 Untreated  0.0012 1.448 x 10¯¹º 0.6904 x 10¯¹º 

2 Treated 0.0039 4.707 x 10¯¹º 0.2124 x 10¯¹º 

 

Table 6.7. Results of sliding wear tests for  S400 HSS steel 

 

Sl. 

No. 

Specimen 

type 

Wt. loss 

(g) 

Wear rate 

(cm²) 

Wear resistance 

(cm ²ֿ )

1 Untreated  0.0023 2.776x 10¯¹º 0.3602x 10¯¹º 

2 Treated 0.0033 3.983x 10¯¹º 0.2510 x 10¯¹º 

 

Table 6.8. Results of sliding wear tests for M2 steel 

 

  Results showed untreated samples for both S400 and M2 grade superior 

performance over the treated ones. In case of S400 steel wear resistance decreased almost 

3 times after cryogenic treatment while in case of M2 steel wear resistance decreases by 

1.4 times. Fig. 6.4 illustrates the comparison wear resistances between cryogenically 

treated and untreated samples. 
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Fig. 6.4. Comparison of wear resistance between treated and untreated HSS 

 

  The transformation of retained austenite into martensite after cryogenic treatment 

did not lead to a significant alteration of the abrasive wear rate at the conditions used in 

the disc and pinion tests. Literature results[36] showed that depending on the parameters 

such a s normal load, average grain size and type of the abrasive, quantity and shape of 

the carbides among others, the increasing of the amount of retained austenite can lead to 

an increase or decrease in the wear rate of ferro alloys.  

  In the present work increase in wear rate for cryogenically treated HSS samples 

can be attributed to the fact that the tool becomes more brittle after the treatment. The 

wear resistance can be increased by incorporating tempering or plasma nitriding with the 

cryogenic treatment. 
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6.1.3. Hardness test  

 

 Table 6.9 and table 6.10 shows the hardness of both cryogenically treated and untreated 

S400 and M2 grade HSS samples. They are practically the same thus indicating that the 

cryogenic treatments had no influence on this property of this tools. 

 

 Specimen type 

(S400) 

Hardness (HRc) 

Untreated 66 

Treated 66 

 

 

  

 

 

Table 6.9. Results of hardness test for S400 HSS 

 
Specimen type 

 

 

 

      

(M2) 

Hardness (HRc) 

Untreated 68 

Treated 68 

 

Table 6.10. Results of hardness tests for M2 HSS 

 

  The results obtained in the present study are in accordance with the results 

obtained by Barron and Flavio [36]. Even the microhardness results also did not show 

conspicuous difference between the treated and untreated tools [10]. The precipitation of 

fine carbides during the cryogenic treatment cycle may affect the wear resistance and the 

tool toughness but only a small, if any in tool hardness [2]. It was observed that initially 

the hardness falls sharply at the cryogenic cycle and when the tool is heated to the room 

temperature the hardness is totally recovered. 
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6.1.3.  Metallographic examination 

 

Characterization by optical microscope 

Fig 6.5 shows the microstructures of S400 and M2 grade HSS samples. Not much could 

be inferred from this as no significant changes in microstructure after the cryogenic 

treatment observed literature data indicates transformation of retained austenite into 

martensite as well a carbide refinement [36][3]. But it was very difficult to detect such 

changes with the help of an optical microscope. 

 

X-Ray diffraction (XRD) analysis 

XRD analysis was carried out for both cryogenically treated and untreated HSS tools 

using X-ray generator (make: Philips). Fig6.6 shows results from XRD investigations on 

untreated and cryogenically treated HSS samples respectively. 

 

SEM analysis 

SEM was carried for both cryogenically treated and untreated HSS samples to study the 

microstructural changes. Results of the SEM analysis are shown in fig. 6.7 and fig. 6.8 

for cryogenically treated and untreated HSS samples respectively. The results showed the 

presence of the fine precipitated carbide particles in case of cryogenically treated samples 

which verify that the refinement of carbides takes place after the cryogenic treatment. 
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 (a) x200 magnification ( untreated S400) (b)x400 magnification(untreatedS400) 

 

   
(c) x200 magnification (untreated M2) (d) x400 magnification (untreated M2) 

 

   
(e) x200 magnification (treated S400) (f) x400 magnification (treated S400) 

   
(g) x200 magnification (treated M2)  (h)x400 magnification (treated M2) 

Fig. 6.5. Microstructure of cryogenically treated and untreated S400 M2 HSS samples at  

  x200 and x 400 magnification  
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Fig. 6.6. (a) XRD analysis for untreated HSS samples 
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Fig. 6.6. (b)  XRD analysis for treated HSS samples 
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Fig. 6.7. Results of SEM for cryogenically treated HSS samples 
 

  
 

  

 

Fig. 6.8. Results of SEM analysis for untreated HSS samples 
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 6.2. IMPLEMENTATION OF DOE FOR WEAR BEHAVIOR AND TOOL   

 LIFE PREDICTION 

 

6.2.1. Tool life equation for cryogenically treated single point HSS tools  

 

Table 6.11 shows the process parameters (factors) that were chosen for machining 

mild steel using cryogenically treated HSS single point cutting tools. Two levels were 

specified for each parameters. Turning tests were conducted on lathe and flank wear was 

measured with the help of a tool makers microscope. Tool life was evaluated by 

calculating the time to reach a flank wear of 0.3mm. 

      
 
Factor Levels 

 
Symbol 

 
Factors 

-1 +1 
A Cutting Velocity (m/min) 30 60 
B Depth of  cut (mm) 0.5 1 
C Feed (mm/rev) 0.05 0.1 

 
Table 6.11. Cutting parameters for 2³ factorial design 

 

Table 6.12 illustrates the experimental results for tool life. 

 

Level of Factors Run 

A B C AB BC AC ABC 

Tool Life 

(min) 

1 -1 -1 -1 +1 +1 +1 -1 17.8 

2 +1 -1 -1 -1 +1 -1 +1 18.3 

3 -1 +1 -1 -1 -1 +1 +1 20 

4 -1 +1 -1 +1 -1 -1 -1 16.8 

5 +1 -1 +1 +1 -1 -1 +1 17.0 

6 -1 -1 +1 -1 -1 +1 -1 15.4 

7 +1 +1 +1 -1 +1 -1 -1 16.0 

8 -1 +1 +1 +1 +1 +1 +1 12.0 

 

Table 6.12. Results for tool life for cryogenically treated HSS tools 
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  Table 6.13 depicts the factor effect summary. It was observed that the only 

significant factor for the tool life is feed which explains 50% of total variation. The second 

largest contribution comes from cutting velocity with 22% of total variation. The depth of 

cut alone has almost no statistical signification. However it has some contribution in 

combination with speed and feed with 11.92% and 8.33% of total variation respectively. 

   

 

 

Factor Effect Estimate Sums of Squares(SS) %Contribution 

A -2.075 8.61125 22.0695 

B -0.925 1.71125 4.385 

C -3.125 19.53125 50.056 

AB -1.525 4.65125 11.92 

BC -1.275 3.25125 8.332 

AC -0.725 1.05125 2.694 

ABC 0.325 0.21125 0.541 

 

Table 6.13. Factor effect summary for cryogenically treated HSS 

 

 

The experimental results were then analyzed with ANOVA, as shown in table 6.14. 
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Source of  

Variation 

Sums of Square 

(SS) 

DOF Mean Square 

(MS=SS/DOF) 

Fo 

A 8.61125 1 8.61125 19,68,285.714 

B 1.71125 1 1.71125 3,91,142.8571 

C 19.53125 1 19.53125 44,64,285.714 

AB 4.65125 1 4.65125 10,63,142.857 

BC 3.25125 1 3.25125 7,43,285.8571 

AC 1.05125 1 1.05125 2,40,285.7143 

ABC 0.21125 1 0.21125 48,285.714 

Error 0.000035 8 0.00000437  

Total 39.01875 15   

 

Table 6.14. ANOVA results for cryogenically treated HSS tools 

 

  F-statistic is calculated which came out to be 12, 74, 080.49. Since its value is 

large, it is stated that at least one variable has non zero effect. Each of the factor is tested 

for significance using the F-statistic. From this it was confirmed that feed (C) and cutting 

velocity (A) are the most significant factors, while the depth of cut does not have any 

impact on tool life. Most significant interaction effects were found between cutting velocity 

and depth of cut as well as feed and depth of cut. 

  The main effects of A and C are plotted in fig 6.9 (a) and fig.6.9 (b). Both the 

effects are negative and if only these effects are considered, the two factors i.e. cutting 

velocity and feed would be run at the low level to obtain higher tool life. However, it is 

always necessary to examine any interaction effects that are important because the main 

effects do not have much meaning when they are involved in significant interactions. 

   The AB and BC interactions are plotted in fig.6.9(c) and fig. 6.9(d). From the AB 

interaction it was noted that velocity effect is very small when depth of cut is low and very 

large when depth of cut is high with the best results obtained with low velocity and high 

 51



depth of cut. From the BC interaction it was observed that depth of effect is comparatively 

more when feed is high showing higher tool life in case of low feed and high depth of cut. 

In both the cases of interaction, higher depth of cut was found to be favourable. 
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(a)Main effect plot for cutting velocity (A) 
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(b) Main effect plot for feed rate (C) 
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(c)Interaction effect plot for cutting velocity (A) and depth of cut (B) 
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(d) Interaction effect plot for depth of cut (B) and feed rate (C) 

 

Fig. 6.9. Main effect and interaction effect plots for HSS samples 
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The tool life equation was developed for cryogenically treated HSS tools comprising of the 

significant factors with effect estimate values in the brackets which is as shown: 
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R²=0.923 

 

  R² values for the equation are high enough to obtain the reliable estimates. 

For further check, the equation so developed is applied to all the 8 tests to calculate the 

average percentage error. Residuals being the difference between the observed and 

predicted value were also calculated as shown in table 6.15 

 

 Predicted value(y) Measured value(y') Residual (e=y-y') 

(1) 17.8 17.82625 -0.02625 

a 18.3 17.27625 1.02375 

b 20 20.62625 -0.62625 

ab 16.8 17.02625 -0.22625 

c 17.0 15.98755 1.014125 

ac 15.4 15.49825 -0.09825 

bc 16.0 16.29875 -0.29875 

abc 12.0 12.71125 0.71125 

 

Table 6.15. Differences between predicted values and measured values for tool life 
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It was observed that of residuals in most of the cases differences between predicted values 

and observed values were found to be less than 1 thus contributing fairly low average 

percentage of error. 

 

2.2 Tool life equation for cryogenically treated carbide inserts 

 

  The cutting parameters (factors) along with their levels are listed in table 6.16. 

The cutting tool used was cryogenically treated carbide insert with ISO designation of 

SNMS120408 (Kennametal).The flank wear test was carried out and tool life was 

calculated for each of the test runs. 

 

Factor Levels Symbol Factors 
-1 +1 

A Cutting Velocity (m/min) 85 135 
B Depth of  cut (mm) 0.5 1 
C Feed (mm/rev) 0.05 0.1 

 
Table 6.16. Cutting parameters for 2³ factorial design 

 

The experimental results for the tool life given in table6.17. 

 

Level of Factors Run 

A B C AB BC AC ABC 

Tool Life 

(min) 

1 -1 -1 -1 +1 +1 +1 -1 12 

2 +1 -1 -1 -1 +1 -1 +1 4 

3 -1 +1 -1 -1 -1 +1 +1 10 

4 -1 +1 -1 +1 -1 -1 -1 12 

5 +1 -1 +1 +1 -1 -1 +1 16 

6 -1 -1 +1 -1 -1 +1 -1 4 

7 +1 +1 +1 -1 +1 -1 -1 4.5 

8 -1 +1 +1 +1 +1 +1 +1 11 

 

Table 6.17. Results for tool life for carbide insert 
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Table 6.18 and table 6.19 illustrate the effect estimate summary and results of ANOVA 

respectively.  

 

 

Factor Effect Estimate Sums of Squares %Contribution 

A -2.875 16.53125 11.644 

B 0.375 0.28125 0.198 

C -0.625 0.78125 0.55 

AB 7.125 101.53125 71.51 

BC -2.625 13.78125 9.707 

AC 0.125 0.03125 0.02 

ABC 2.125 9.03125 6.361 

 

Table 6.18. Effect estimate summary for tool life of carbides 

 

From the table it is inferred that the cutting velocity has some significant effect on the tool 

life, with 11.647% of total variation in comparison to that of depth of cut and feed rate 

which are considered to be statistically insignificant. The interactions among cutting 

velocity and depth pf cutting seem to dominate all the main effects greatly with 71.51% of 

total variation. The interaction between depth of cut and feed rate also affects the tool life 

though with a lower level of contribution (9.75% of total variation) as compared to the 

main effects of A and interacting effects of AB. 
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Source of 

Variation 

Sums of Square 

(SS) 

DOF Mean Square 

(MS) 

Fo 

A 16.53125 1 16.53125 26,45,000 

B 0.28125 1 0.28125 45,000 

C 0.78125 1 0.78125 1,25,000 

AB 101.53125 1 101.53125 1,62,45,000 

BC 13.78125 1 13.78125 22,05,000 

AC 0.03125 1 0.03125 5,000 

ABC 9.03125 1 9.03125 14,45,000 

Error 0.00005 8 0.00000625  

Total 141.96875 15   

 

Table 6.19. Results of ANOVA for tool life of cryogenically treated carbides 

 

  F statistic calculated came out to 32, 44,999 which is quite a large value thus 

indicating the fact that atleast one variable has a non- zero effect. Each of the factorial 

effects were tested individually using the F statistic to identify the factors significantly 

affecting performance measures. The factors that have Fo values greater or nearly closer to 

the value of F statistic are considered to be statistically significant. 

  Effect plots can be used to help understand the nature of main effects and 

interaction effects as shown in fig.6.10.The main effects of A are plotted in fig. 

6.10(a).Tool life appears to be almost linear decreasing function of cutting velocity. The 

decrease in tool life may be attributed to significant increased heat involved in the cutting 

process leading to tool wear. Hence if only the main effects are considered, cutting velocity 

when decreased from 135m/min to 85 m/min would give a higher tool life.AB interaction is 

plotted in fig 6.8(b). It is noticed that velocity effect is significantly high at low depth of cut 

and depth of cut effect is very high at low cutting velocity with the best results obtained at 

low velocity and low depth of cut. From BC interaction as shown in fig. 6.10 (c)it is 

inferred that interaction effect is more prominent for higher value of depth of cut. When the 
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feed is decreased from 0.1mm/ rev to 0.5 mm / rev at high depth of cut, favourable results 

for tool life are obtained. 
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(a) Main effect plot for cutting velocity (A) 
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(b) Interaction effect plot for cutting velocity (A) and depth of cut (B) 
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(c) Interaction effect plot for depth of cut (B) and feed rate (C) 

 

Fig.6.10. Main effect and interaction plots for tool life of carbide inserts 

 

  The tool life equation showing the significant factors along with the effect 

estimates is given as follows: 
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The R² values for the developed model were calculated which are given as follows: 

R²=0.9286 

R²adj=0.9988 

 

  Residuals were calculated by applying the regression equation developed to the 8 

test points as listed in table 6.20 
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 Predicted value (y) Measured value (y)' Residuals (e=y-y') 

(1) 12 12.875 -0.875 

a 4 2.875 1.125 

b 10 8.3375 1.625 

ab 12 12.625 -0.625 

c 16 15.5 0.5 

ac 4 5.5 -1.5 

bc 4.5 5.75 -1.25 

abc 11 10 1 

 

Table 6.20. Difference between predicted value and measured value of tool life 

 

  It is observed that there is much difference between the predicted values and the 

measured values which indicates that the tool life equation developed for carbide inserts for 

machining mild steel can give rough estimates. 
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2.3.Flank wear prediction model for carbide inserts 

 

  The flank wear behaviour of cryogenically treated carbide with ISO designation 

SNMG120412MP (Kennametal) was studied while machining mild steel considering the 

cutting conditions as shown in table 6.21 

 

Factor Levels Symbol Factors 

-1 +1 
A Cutting Velocity (m/min) 45 85 

B Depth of  cut (mm) 0.5 1 

C Feed (mm/rev) 0.05 0.1 

 

Table 6.21. Cutting parameters for 2³ factorial design for carbide inserts 
 

   Turning test were carried and flank wear measurements were done at regular 

intervals of 2 minutes for a fixed time period of 16 minutes in each of the test runs. Table 

6.22 illustrates the experimental results for flank wear. 

 

Level of Factors Run 

A B C AB BC AC ABC 

Flank Wear (mm) 

 

1 -1 -1 -1 +1 +1 +1 -1 0.155 

2 +1 -1 -1 -1 +1 -1 +1 0.085 

3 -1 +1 -1 -1 -1 +1 +1 0.138 

4 -1 +1 -1 +1 -1 -1 -1 0.130 

5 +1 -1 +1 +1 -1 -1 +1 0.105 

6 -1 -1 +1 -1 -1 +1 -1 0.149 

7 +1 +1 +1 -1 +1 -1 -1 0.135 

8 -1 +1 +1 +1 +1 +1 +1 0.140 

 

Table 6.22. Results of flank wear for carbide inserts 
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  Fig. 6.11. Experimental results of flank wear 

 

  The experimental results were analysed with ANOVA which is used for 

identifying the factors significantly affecting the performance measures. The effect 

estimate summary and results of ANOVA are shown in table 6.23 and table 6.24 
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Factor Effect Estimate Sums of Squares(SS) %Contribution 

A -0.007125 0.000101531 2.65 

B 0.01225 0.000300125 7.87 

C 0.00525 0.000055125 1.44 

AB 0.00575 0.000066125 1.729 

BC 0.0005 0.000005 0.013 

AC 0.0285 0.0016245 42.48 

ABC -0.0265 0.0014045 36.72 

 

Table 6.23 Factor effect summary for flank wear of carbides 

 

Source of 

Variation 

Sums of Square 

(SS) 

DOF Mean Square 

(MS) 

Fo 

A 0.000101531 1 0.000101531 2.992102084 

B 0.000300125 1 0.000300125 8.844635016 

C 0.000055125 1 0.000055125 1.624524799 

AB 0.000066125 1 0.000066125 1.948693013 

BC 0.000005 1 0.000005 0.014736221 

AC 0.0016245 1 0.0016245 47.87375122 

ABC 0.0014045 1 0.0014045 41.39038694 

Error 0.000271469 8 0.000033933  

Total 0.003823875 15   

 

Table 6.24. Results of ANOVA for flank wear of carbides 

 

The tables showed that the interaction effect of cutting velocity and the feed rate has the 

most dominant effect on flank wear which explains 42.48% of total variation. The next 

significant contribution comes from the interaction effect of cutting velocity, depth of cut 
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and feed rate with 36.72% of total variation followed by depth of cut having much lower 

level of contribution. 

  To check the adequacy of the model, Fstatistic was calculated which came out to 

be 14.9555468.Since F statistic is large, it can be concluded that atleast one variable has 

non-zero effect on tool wear. Each of the factorial effect was tested using Fstatistic and it 

was confirmed that AC interaction and ABC interaction are the only significant factors that 

affect flank wear in the present case. 

  Main effect and interaction effect plots are drawn to study the behaviour of flank 

wear properly. Fig. 6.12 (a) explains the cutting velocity effect on flank wear. Tool wear 

appears to be increasing as the depth of cut increases from 0.5 mm to 1 mm. In fig. 6.12 (b) 

it is observed that at low level of feed rate tool wear is greatly affected by the cutting 

velocity. With low cutting velocity and high feed rate, tool wear increases drastically. This 

can be explained in terms of built up edge (BUE) formation which are supposed to 

disappear at higher values of cutting velocity. Hence minimum tool wear can be obtained 

with high cutting velocity and low feed rate. Fig 6.12 (c) illustrates the interaction effect 

between cutting velocity, depth of cut and feed rate. 
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(a) Main effect plot for depth of cut (B) 
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(b) Interaction effect plot for cutting velocity (A) and feed rate (C) 

 

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 20 40 60 80 100

A

To
ol

 li
fe

 (m
in

)

bc
BC

 
 

(d) Interaction plot for cutting velocity (A), depth of cut (B) and feed rate (C) 

 

Fig. 6.12. Main effect and interaction effect plots for the flank wear in case of carbides 
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  Following flank wear equation for machining carbide by using cryogenically 

treated carbide inserts showing the significant factors with the respective effect summary is 

shown as follows: 
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The R² values for the developed model were calculated which are given as follows: 

R²=0.870   

  The flank wear equation so developed was applied to each of the test points to 

evaluate the residuals. Table 6.25 shows the predicted values and the residuals. 

 

 

 Predicted value (y) Observed value(y)' Residuals (e=y-y') 

(1) 0.155 0.150875 0.004125 

a 0.085 0.095875 -0.010875 

b 0.138 0.136515 0.001485 

ab 0.130 0.134875 -0.000875 

c 0.105 0.124375 -0.019375 

ac 0.149 0.150825 0.001875 

bc 0.135 0.134875 0.000125 

abc 0.140 0.130625 0.009375 

 

Table 6.25. Difference between predicted values and measured values of flank wear 
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   The predicted values and the observed values are found to be fairly close 

indicating the fact that the flank wear equation developed for carbide (SNMG120412MP) 

insert while machining mild steel can be used for reliable estimates. 
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CHAPTER 7 

 

CONCLUSION 
 

1. The tool life is increased by 19% for M2 grade HSS single point cutting tools and 17% 

for carbide inserts for machining mild steel after the cryogenic treatment. 

2. In the sliding wear test, the weight loss of cryogenically treated tools is more as 

compared to that of untreated tools. This can be attributed to the fact that tool becomes 

brittle after cryogenic treatment. 

3. From SEM analysis, it is evident that refinement of carbides is more in case of 

cryogenically treated HSS tools in comparison to that of untreated tools. 

4. There is not much difference in hardness between cryogenically treated and untreated M2 

as well as S400 HSS tools. 

5. Tool life equations have been developed using design of experiment (DOE) for 

machining mild steel by cryogenically treated HSS tools and carbide inserts. 

6. For cryogenically treated HSS tools feed rate was found to affect the tool life most 

significantly. The second most significant factor came out to be the interaction effect of 

cutting velocity and depth of cut followed by the interaction effect of depth of cut and 

feed rate while machining mild steel. 

7. For cryogenically treated carbide inserts (SNMG120412MP ) the significant factor was 

found to be the interaction effect of cutting velocity and feed followed by the cutting 

velocity, depth of cut and feed rate followed by the depth of cut with much lower level of 

contribution while machining mild steel. 

  

 

 

 

 

 

 

 

 69



CHAPTER 8 

 

REFERENCES 

 

[1] Machado,M.B. da Silva, Metal Machining. Brazil : MG, (2003)  

[2] Paulin, Frozen gears, Gear Technol. (1993), pp. 26–28.  

[3] Smolnikov, Kossovich, “Cold Treatment of Cutting Tools” Volume No. 10, (1980): pp. 5–

7.  

Tool Life of High Speed Steel 

Cutters After Cold Treatment”. Volume No. 10, (1980):pp. 7–9.  

[5] Zhmud E.S., “Improved Tool Life after Shock Cooling”. Volume No.10, (1980): pp. 3–5.  

 high speed steels to improve the cutting 

properties”, Metallurgy

[4] Tseitlin,. Kolensnichenko, Karnaushenko, Umanets, Zhmud, “

[6] Gulyaev A.P., “Improved methods of heat treating

 .Volume No.12 1937 :p. 65.  

proved tool life by the cryotough treatment”. Metallurgia[7]  Reasbeck, “Im  .(1989): pp. 178–

179.  

“Control of distortion in tools steels”, The Heat Treating Source Book[8] Zamborsky D.S., , 

(1986) : pp. 73–79.  

[9] Heberling J.M., Tool steel tutorial, Heat Treating 1992  

reatments Can Save You Money! Here's Why”,.Tapi [10] Barron F.R., “Yes—Cryogenic T  

Volume No. 57 ,(1974) : pp. 35–40.  

sformations in High Speed Steels During Cold Treatment”. 

Volume No.10, (1980): pp. 9–11.  

[11] Popandopulo, Zhukova, “Tran

 70

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib10
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib11


[12] Huang, Zhu, Liao, Beyerlein, M.A. Bourke and T.E. Mitchell, Microstructure of cryogenic 

treated M2 tool steel, Material Sci. Eng.( 2003): pp. 241–244.  

[14]  Vaccari J.A., “Deep freeze improves products”. Amer. Machinist Automated Manuf. March 

(1986)

[15] Barron R.F., “Cryogenic treatment of metals to improve wear resistance” Cryogenics 

(1982): pp. 409–413.  

[16] Moore M.A., A review of two-boby abrasive wear, Wear Volume No. 27, (1974): pp. 1–17.  

[17] Yun, Xiaoping ,Hongshen, “Deep cryogenic treatment of high-speed steel and its 

mechanism”. Heat Treat. Met. (1998): pp. 55–59.  

[18] Molinari, Pellizzari, Gialanella, Straffelini,. Stiasny, “Effect of deep cryogenic treatment on 

the mechanical properties of tool steels”, J. Mater. Process. Technol. Volume No. 118 (2001): 

pp. 350–355.  

[19] D. Mohan Lal, Renganarayanan. Kalanidhi, “Cryogenic treatment to augment wear 

resistance of tool and die steels”, Cryogenics . Volume No. 41,(2001): pp. 149–155.  

[20] Huang,. Gao ,Huang, “Study on cryogenic phase change and wear characteristic of high 

speed steel”, Acta Metall. Sin. Volume No.16 ,(2003):pp. 524–530.  

[21] Leskovsek ,Ule, “Influence of deep cryogenic treatment on microstructure, mechanical 

properties and dimensional changes of vacuum heat-treated high-speed steel”, Heat Treat. Met. 

Volume No. 29,(2002) (3): pp. 72–76.  

[22] Mahmudi, Ghasemi ,Faradji, “Effect of cryogenic treatments on the mechanical properties 

and wear behaviour of high-speed steel M2”, Heat Treat. Met.Volume No.27 ,(2000): pp. 69–72.  

[23] Lin, Dong Wang, “Study on cryogenic treatment technology and mechanism of high speed 

steels”, Trans. Met. Heat Treat. Volume No.19, (1998) : pp. 21–25.  

 71

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib12
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWR-43HK6J2-2&_user=1657113&_coverDate=03%2F31%2F2001&_fmt=full&_orig=search&_cdi=5569&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=8cba7083a6b83a122efc6111783318#bbib6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWR-43HK6J2-2&_user=1657113&_coverDate=03%2F31%2F2001&_fmt=full&_orig=search&_cdi=5569&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=8cba7083a6b83a122efc6111783318#bbib6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib17
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib21
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib22


[24] Collins D.N., “Deep cryogenic treatment of tool steels: a review”, Heat Treat. Met. (1996) 

(2): pp. 40–42.  

[25] Zum Gahr, Microstructure and Wear of Materials, Amsterdam:Elsevier Science Publishers 

Inc., 1987 

[26] J.D. Kamody, “Using deep cryogenics to advantage”, Adv. Mater. Process.Volume No. 10 

(1998): pp. 215–218.  

[27] Cohen ,Kamody, “Cryogenics goes deeper”, Cutting Tool Eng.Volume No.l50 , (1998) (7): 

pp. 46–50.  

[28] Meng ,Tagashira, “Wear resistance and microstructure of cryogenic treated Fe–1.4Cr–1C 

bearing steel”. Scri Metall Mater.Volume No. 31 (1994): pp. 865–868.  

[29] Dong, Lin ,Xiao, “Deep cryogenic treatment of high-speed steel and its mechanism”.Heat 

Treatment of Metals.Volume .No. 3, (1998): pp. 55–59.  

[30] Collins ,Dormer, “Deep cryogenic treatment of a D2 cold-work tool steel”. Heat Treatment 

of Metals. Volume No. 3, (1997): pp. 71–74.  

[31] Seah, Rahman ,Yong, “Performance evaluation of cryogenically treated tungsten carbide 

cutting tool inserts”. Journal of Engineering Manufacture .Volume No. 1, (2003): pp. 29–43.  

[32] W.E. Bryson. Cryogenics, Cincinnati :Hanser Gardner Publications, 1999.  

 [33] Dong, Lin, Xiao. Heat Treatment of Metals .1998, p. 55.  

[34]S.H. Avner. Introduction to physical metallurgy. New York: McGraw-Hill, 1982. 

[35] Flávio J. da Silva, “Performance of cryogenically treated HSS tools”. ”. Journal of 

Engineering Manufacture . Volume No. 1, (2006): pp. 50–59 

[36] K. Seah,Rahman,Yong, “Performance evaluation of cryogenically treated tungsten carbide 

tools in turning”. Journal of Engineering Manufacture . Volume No. 2, (2006): pp. 40–46 

 

 72

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib27
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib30
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWR-4HP6GD5-1&_user=1657113&_coverDate=12%2F31%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=d422d4ed032cccc0999b5b04bcfa#bbib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#bbib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5B-4JFGF6D-1&_user=1657113&_coverDate=09%2F20%2F2006&_alid=572914522&_rdoc=2&_fmt=full&_orig=search&_cdi=5782&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#hit2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#hit2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4B-4J9N0RW-1&_user=1657113&_coverDate=12%2F31%2F2006&_alid=572914522&_rdoc=1&_fmt=full&_orig=search&_cdi=5754&_sort=d&_docanchor=&view=c&_ct=3&_acct=C000053917&_version=1&_urlVersion=0&#hit3

