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ABSTRACT 
 

System identification is a pre-requisite to analysis of a dynamic system and design of an 

appropriate controller for improving its performance. The more accurate the mathematical model 

identified for a system, the more effective will be the controller designed for it. The 

identification of nonlinear systems is a topic which has received considerable attention over the 

last two decades. Generally speaking, when it is difficult to model practical systems by 

mathematical analysis method, system identification may be an efficient way to overcome the 

shortage of mechanism analysis method. The goal of the modeling is to find a simple and 

efficient model which is in accord with the practical system. In many cases, linear models are not 

suitable to present these systems and nonlinear models have to be considered. Since there are 

nonlinear effects in practical systems, e.g. harmonic generation, intermediation, desensitization, 

gain expansion and chaos, we can infer that most control systems are nonlinear. Nonlinear 

models are more widely used in practice, because most phenomena are nonlinear in nature. 

Indeed, for many dynamic systems the use of nonlinear models is often of great interest and 

generally characterizes adequately physical processes over their whole operating range. Thus, 

accuracy and performance of the control law increase significantly. Therefore, nonlinear system 

modeling is much more important than linear system identification. We will deal with various 

nonlinear models and their processing. 
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THESIS LAYOUT 

 
Identification, equalization in presence of outliers in training signal is a challenge and a 

very useful method is dealt in this work in chapter1 which is very robust to outliers. Volterra 

modeling is very useful in representing nonlinear models and many nonlinear devices needs to be 

linearized before use. This is dealt in chapter 2. Chapter 3 introduces two important block 

models namely Weiner model and Hammerstein model. These two models are very useful as 

most of the nonlinear devices can be represented by this model. Their identification and 

linearization is studied in this chapter. Chapter 4 introduces genetic algorithm, and its 

simultaneous use in pruning a FLANN structure and identifying   parameters of a Hammerstein 

model with linear part represented by an IIR structure. Finally conclusions are given which were 

derived from the work done. 
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1.1. Introduction 

 
Robust and non-parametric smoothening is a central idea in statistics that aim to 

simultaneously estimate and model the under lying structure. One important method belonging to 

this category is the Wilcoxon approach, which is usually robust against outliers. Outliers are 

observations that are  separated in some fashion from the rest of the data. Hence, outliers are data 

points that are not   typical of the rest of the data. Depending on their location, outliers may have 

moderate to severe effects on the regression model. A regressor or a learning machine is said to 

be robust if it is not sensitive to outliers in the data.  

Our motivation for robust and nonparametric regression is different from those which 

were previously developed. As is well known in statistics, the resulting linear regressor by using 

the rank-based Wilcoxon approach to linear regression problems are usually robust against (or 

insensitive to) outliers. It is then natural to generalize the Wilcoxon approach for linear 

regression problems to nonparametric Wilcoxon learning machines for nonlinear regression 

problems. 

In the following section, two new learning machines are  investigated which are very 

effective in dealing with various problems in  presence of outliers namely Wilcoxon neural 

network(WNN) and Wilcoxon functional link  approximation neural network(WFLANN).Then 

these learning algorithms will be applied to  various applications like function approximation, 

channel equalization and system identification. 

 

1.2. Wilcoxon norm. 

 
Before investigating the Wilcoxon learning machines, we first introduce the Wilcoxon 

norm of a vector [22], which will be used as the objective function for all Wilcoxon learning 

machines. To define the Wilcoxon norm of a vector, we need a score function. A score function 

is a function which is non-decreasing such that  
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The score associated with the score function  is defined by 

 

Where l is a fixed positive integer. 

Then Wilcoxon norm of a given vector v is given by 

 

 

 

 

where  denotes the rank of  among  

            are the ordered values of   

            

 

Though there are other score functions available, the one presented here is the most frequently 

used one. 

 

1.3. Wilcoxon Neural Network 
 

The robustness of linear Wilcoxon robustness against outliers motivates us to consider 

the Wilcoxon neural networks (WNNs). 

 

 Consider the NN as shown in Figure. (1). There are one input layer with nodes, 

one hidden layer with  nodes, and one output layer with nodes. We also have  bias 

terms at the output nodes. 

 

Let the input vector be 

 

  

or 
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Let denote the connection weight from the th input node to the input of the th hidden node.   

Then, the input and output  of the th hidden node are given by, respectively 

 

  

 

where  is the activation function of the th hidden node. 

 

Commonly used activation functions are sigmoidal functions, i.e., monotonically increasing S-

shaped functions and in this work we mainly use bipolar sigmoidal function given by 

 

 

 

Let  denote the connection weight from the output of the th hidden node to the input of the  

th output node. Then, the input  and output  of the th output node are given by, 

respectively 

 

            

           

where   is the activation function of the  th output node. For classification problems, the 

output activation functions can be chosen as sigmoidal functions, while for regression problems, 

the output activation functions can be chosen as linear functions with unit slope. 

The final output of the network is given by 

 

 

 

where  is the bias. 
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Define 

                 

       

  

  

  

   

  

From (1.2) – (1.4) , we get 

 

 

Suppose we are given the training set  

 

       

   

here subscript q is used to represent qth example.                  

 

In a WNN, the approach is to choose network weights that minimizes the Wilcoxon norm of the 

total residuals 

 

The Wilcoxon norm of residuals at the  output node is given by 
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From (1.6) and (1.7) 

 

  

 

Thus we can minimize the total residual vector by minimizing the individual residual vector for 

each output. 

 

The NN used here is the same as that used in standard ANN, except the bias terms at the 

outputs.  The main reason is that the Wilcoxon norm is not a usual norm, but a pseudo norm 

(semi norm).Without the bias terms, the resulting predictive function with small Wilcoxon norm 

of total residuals may deviate from the true function by constant offsets. 

 

Now, we introduce an incremental gradient–descent algorithm. In this algorithm, s  are 

minimized in sequence. From the definition of in (1.6a) together with (1.6b), we have 

 

   

        

        

 

Updating of output weights is carried on according to the equation 

  

–     

 

Where      is the learning rate. From (1.8), we have 
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where   denotes the total derivative of    w.r.t. its arguments. 

 

Hence, the updating rule becomes 

 

  

 

i.e. , 

 

  

 

Updating of input weights is carried on according to the equation  

  

 –  

 

Now we have 

 

  

 

Where   denotes the total derivative of    w.r.t. its arguments. 

 

Hence, the updating rule becomes 

 

  

 

The bias term   , is given by the median of the residuals at the th output node, i.e., 
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We can write the above update equations in terms of sensitivities and can also include 

momentum term (  ) as: 

 

  

 

  

  

 –  
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Figure 1   Wilcoxon neural network 

 



WILCOXON LEARNING AND ITS USE IN MLP AND FLANN 
 

NIT ROURKELA   8 
 

 

1.4. Wilcoxon Functional Link Artificial Neural 

Network  
 

 Define 

 

     

      

      

 

Where  is the input vector  which is functionally expanded using trigonometric function to get 

vector   ,   ,which will then be multiplied with the corresponding weight vector and 

passed through an activation function to get the th output. 

 

  

 

    

 

    

 

    

 

By using the same procedure used in WNN, we get the weight update equation as 

 

 –  
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Where   is the learning rate, and   denotes the total derivative of    w.r.t. its 

arguments. 

 

The bias term   , is given by the median of the residuals at the th output node , i.e. , 

 . 

 

We can write the above update equation in terms of sensitivities and can also include momentum 

term (  ) as: 

 

  

 

 –  
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Figure 2   Wilcoxon functional link network. 
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1.5. Simulation & Results 

 
In this section, we compare the performances of various learning machines for several 

illustrative nonlinear regression problems. Emphasis is put particularly on the robustness against 

outliers for various learning machines. We wish to point out that different parameter settings for 

learning machines might produce different results. For “fair” comparison, similar machines will 

use the same set of parameters in the simulation. Thus, for ANN and WNN, we use the same 

number of hidden nodes, the same activation functions for hidden nodes, and the output node. 

Similarly, for FLANN and WFLANN, we use the same expansions for both machines. 

 

We will apply WNN and WFLANN to various applications like non-linear function 

approximation, system identification and channel equalization in presence of outliers and 

compare them with the results obtained using ANN and FLANN respectively. 

 

1.5.1. Function approximation 

 

In each simulation of Examples 1 and 2, the uncorrupted training data set consists of 50 

randomly chosen points (training patterns) with the corresponding values (target values) 

evaluated from the underlying true function. The corrupted training data set is composed of the 

same points as the corresponding uncorrupted one but with randomly chosen values 

corrupted by adding random values from a uniform distribution defined on . It would be 

interesting to know what happens if the noise is progressively increased and if the number of 

outliers is increased. To this end, 20%, 30%, and 40% randomly chosen -values of the training 

data points will be corrupted. 

 

Example 1 : 

 

Suppose the true function is given by the sinc function 
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In this example, we compare the performances of ANN, WNN, FLANN, and WFLANN. 

For ANN and WNN, the number of hidden nodes is 30, the activation functions of the hidden 

nodes are bipolar sigmoidal functions, and the activation function of the output node is a linear 

function with unit slope. For FLANN and WFLANN, the number of hidden nodes is 10, 

trigonometric expansion is used, and the activation function of the output node is a linear 

function with unit slope. 

 

The simulation results for ANN and WNN are shown in Fig.(1). For uncorrupted data 

shown in Fig.( 1)( a), WNN performs better than  ANN. For corrupted data shown in Fig.(1)(b) – 

(1)(d) with progressively increased corruption ,WNN estimates are almost unaffected by these 

corrupted outliers and outperforms ANN estimates 
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(b) 
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(d)  

Figure 1 Simulations for ANN and WNN of Example 1: (a) uncorrupted data, (b) 20% corrupted data 

(c) 30% corrupted data (d) 40% corrupted data 

  

Results are shown in Fig.(2) for WFLANN and FLANN approximates. 
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             (d) 

Figure 2 Simulations for FLANN and WFLANN of Example 1: (a) uncorrupted data, (b) 20% corrupted data (c) 30% corrupted 
data (d) 40% corrupted data 

Example 2: 

 

Suppose the true function is given by the Hermite function 

 

 

In this example, we compare the performances of ANN, WNN, FLANN, and WFLANN. 

For  ANN and WNN, the number of hidden nodes is 20, the activation functions of the hidden 

nodes  are bipolar sigmoidal functions, and the activation function of the output node is a linear 

function with unit slope. For  FLANN and WFLANN, the number of hidden nodes is 10, 

trigonometric expansion is used, and the activation function of the output node is a linear 

function with unit slope. 

 

The simulation results for ANN and WNN are shown in Fig.(3). For uncorrupted data 

shown in Fig.(3)(a), WNN performs better than  ANN.For corrupted data shown in Fig.(3)(b) –   

(3)(d) with progressively increased corruption ,WNN estimates are almost unaffected by these 

corrupted outliers and outperforms ANN estimates 
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        (c) 

 

      (d) 

Figure 3 Simulations for ANN and WNN of Example 2: (a) uncorrupted data, (b) 10% corrupted data (c) 20% corrupted data 
(d) 40% corrupted data 
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Results are shown in Fig. (4) for WFLANN and FLANN approximates. 
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            (c) 

 

           (d) 

Figure 4 Simulations for FLANN and WFLANN of Example 2: (a) uncorrupted data, (b) 20% corrupted data (c) 30% corrupted 
data (d) 40% corrupted data 
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In previous examples we saw the effectiveness of Wilcoxon learning in non-linear function 

approximation. 

 

In the following examples we will see the performance of these machine learning algorithms 

when these are applied to  non-linear channel equalization in the presence of  outliers. 

 

1.5.2. Channel Equalization 

 

Adaptive channel equalization has been found to be very important for effective digital 

data transmission over  linear dispersive channels. In high speed data transmission, the amplitude 

and phase distortion due to variation  of channel characteristics to which the data signal will be 

subjected is to be suitably compensated. This  compensation is usually accomplished by passing 

samples of the received signal through a linear adaptive  equalizer consisting of a tapped delay 

line (TDL) having adjustable coefficients. In this form of equalizer structure, the current and past 

values of the received signal are linearly weighted by equalizer coefficients and  summed to 

produce the output. Most of the known methods used to adjust the tap coefficients of the 

equalizer are iterative in which some error criterion is minimized. In such techniques, a known 

sequence of a white  spectrum is transmitted; based on the difference between this known 

sequence and the output sequence of the equalizer its coefficients are determined. However, the 

distortion caused by the dispersive channel is nonlinear in nature in most of the practical 

situations. The received signal at each sample instant may be considered as a  nonlinear function 

of the past values of the transmitted symbols. Further, since the nonlinear distortion varies  with 

time and from place to place, effectively the overall channel response becomes a nonlinear 

dynamic  mapping. Because of this, the performance of the linear TDL equalizer is limited. 

 

Because of their large parallelism and nonlinear processing characteristics, ANNs and 

FLANNs are capable of performing  complex nonlinear mapping between their input space and 

output space. They are capable of forming arbitrarily  nonlinear decision boundaries to take up 

complex classification tasks. Channel equalizers using a multilayer  perceptron (MLP)  and 

Functional link approximation network(FLANN) has been reported before. In this it has been 
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shown that the ANN and FLANN based equalizers are capable of  performing quite well in 

compensating the nonlinear distortion introduced by the channel.  

 

A basic block diagram of channel equalization is shown in Fig.(5).The transmitted signal x(n) 

passes through the channel .The block N.L accounts for the nonlinearity associated with the channel 

and q(n) is the Gaussian noise added through the channel. The equalizer is placed at the receiver end. 

The output of the equalizer is compared with the delayed version of the transmitted signal to 

calculate the error signal e (n), which is used by the update algorithm to update the equalization 

coefficient such that the error becomes minimum. 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

Structures which are normally used for equalizers are: 

 

a) LIN Structure: 

 

The block diagram of a LIN structure is depicted in Fig.(6).The input signals are first 

passed through a bank of k delays to form   , 

where the subscript   denotes the transpose of a matrix, and this signal vector obtained is 

multiplied with a set of weights   which gives us 

e(n) 
Update 

Algorithm 

 + 

q (n) 

Channel 

Equalizer 

NL 

Delay 

 

x(n) a(n) b(n) 

y(n) = x(n-D) 

Noise 

y(n) 

Figure 5 Digital communication system with equalizer. 
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. The error function  is computed as the difference between  and  . This 

error is then minimized in several iterations using LMS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) MLP Structure    

    

 The block diagram of a system exploiting MLP networks is given in Fig. (7). The 

multilayer structure of an MLP networks is composed of an input layer, an output layer 

and one or more hidden layers. It is indicated in previous works that about 2 to 3 hidden 

layers are enough for most systems. In the figure the structure has  inputs, 2 hidden 

layers with  and  nodes respectively and outputs. The structure of a system 

applying MLP   network is pretty simply. The node output from each of the layers is 

directed used as the input to the successive layer nodes. The numbers of nodes as well 

as the transfer functions in the layers are allowed to be different from each other. 

 

 

 

) 

) 

) 

) 

 

 

 

 

 
∑ 

Figure 6 LIN Structure 



WILCOXON LEARNING AND ITS USE IN MLP AND FLANN 
 

NIT ROURKELA   23 
 

Through the multilayer structure, we can attain nonlinear mapping from input to output 

signals. Generally, we use the BP algorithm to train the MLP networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)   FLANN Structure 

 

The block diagram of a system with FLANN is shown in Fig. (8), where the block 

labeled F.E. denotes a functional expansion. These functions map the input signal 

vector  into  linearly independent functions. 

 . The linear combination of these function values is 

presented in its matrix form, that is, , where , and  is  

the  dimensional weighting matrix. The matrix  is fed into a bank of identical 

nonlinear functions to generate the  equalized output  , where 

 ,  . Here the nonlinear function is normally defined as 

 

Figure 7 MLP Structure 
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  or any other activation function. The major difference between the  hardware 

structures of MLP and FLANN is that FLANN has only input and output layers, and 

the hidden layers  are completely replaced by the nonlinear mappings. In fact, the task 

performed by the hidden layers in MLP is  carried out by functional expansions in 

FLANN. Since the input signals are nonlinearly mapped into the output  signal space, 

FLANN has also the ability to resolve the equalization problems for nonlinear channels. 

Similar to  MLP, the FLANN uses the BP algorithm to train the neural networks. 

However, since the FLANN has much  simpler structure than MLP, its speed of 

convergence for training process is a lot faster than MLP. 

 

  

 

 

  

 

 

 

 

 

 

 

In each simulation of Examples 3 and 4, the training data set consists of 100 randomly 

chosen binary (-1,1) points (training patterns) with the corresponding values (target 

values) composed of the same points but with randomly chosen position where the binary 

values are reversed and these acts as outliers in the process of channel equalization. To this end, 

20%, 30%, and 40% randomly chosen -values of the training data points  will be corrupted. Then 

the trained equalizer will be used for testing. The channel is represented using a linear part in 

series with the non-linearity. Noise representing error in channel is added after the nonlinearity. 
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Figure 8 FLANN Structure 
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Example 3: 

 

CH  =   

 

NL  =   

 

In this example, we compare the performances of LIN, ANN, WNN, FLANN, and 

WFLANN. For LIN structure we use an 8 tap linear filter . For  ANN and WNN, we use a 

structure consisting of 4 inputs, 1 hidden layer with 8 nodes and an output node and a unit bias at 

each hidden and output node..The activation functions of the hidden nodes as well as output 

nodes  are bipolar sigmoidal functions. For  FLANN and WFLANN, the number of functional 

expansion  is 18 along with a unit bias, trigonometric expansion along with cross multiplication 

of input signals  is used, and the activation function of the output node is a bipolar sigmoidal 

function. 

 

The below figure shows the comparision between  performance of WNN,MLP & linear structure 

in equalization: 

 

              (a) 

2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

 

 

LMS

WNN

MLP



WILCOXON LEARNING AND ITS USE IN MLP AND FLANN 
 

NIT ROURKELA   26 
 

 

 

 

              (b) 
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             (d) 

Figure 9 Simulations for ANN and WNN of Example 3 with training using : (a) uncorrupted data, (b) 20% corrupted data (c) 
30% corrupted data (d) 40% corrupted data 

 

The below figure shows the comparision between  performance of WFLNN,FLANN & linear 

structure in equalization: 
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             (d) 

Figure 10 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data, (b) 10% corrupted 
data  (c) 20% corrupted data (d) 30% corrupted data (e) 40% corrupted data 

 

Example 4: 

 

CH  =   

 

NL  =   

 

 

In this example, we compare the performances of LIN, ANN, WNN, FLANN, and 

WFLANN. For LIN structure we use an 8 tap linear filter. For ANN and WNN, we use a 

structure consisting of 4 inputs, 1 hidden layer with 8 nodes and an output node and a unit bias at 

each hidden and output node..The activation functions of the hidden nodes as well as output 

nodes are bipolar sigmoidal functions. For FLANN and WFLANN, the number of functional 

expansion is 18 along with a unit bias, trigonometric expansion along with cross multiplication 
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of input signals is used, and the activation function of the output node is a bipolar sigmoidal 

function. 

The below figure shows the comparison between performance of WNN,MLP & linear structure 

in equalization: 

 

 

 

            (a) 

 

             (b) 

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR

BE
R

Nonlinear channel equalization

 

 

LMS

MLP

WNN

2 4 6 8 10 12 14 16 18 20 22
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

 

 

WNN

MLP

LMS



WILCOXON LEARNING AND ITS USE IN MLP AND FLANN 
 

NIT ROURKELA   31 
 

 

 

            (c) 

 

 

           (d) 

Figure 11 Simulations for ANN and WNN of Example 4 with training using : (a) uncorrupted data, (b) 10% corrupted data  (c) 
20% corrupted data (d) 30% corrupted data (e) 40% corrupted data 

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Nonlinear channel equalization

 

 

WNN

MLP

LMS

2 4 6 8 10 12 14 16 18 20 22 24
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

 

 

WNN

MLP

LMS



WILCOXON LEARNING AND ITS USE IN MLP AND FLANN 
 

NIT ROURKELA   32 
 

The below figure shows the comparison between  performance of WNN,MLP & linear structure 

in equalization: 
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              (c) 

 

              (d) 

Figure 12 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data, (b) 10% corrupted 
data  (c) 20% corrupted data (d) 30% corrupted data
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NON-LINEAR SYSTEM MODELING USING 

VOLTERRA SERIES AND ITS 

LINEARIZATION 
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2.1. Introduction 

 
Volterra series expansions form the basis of the theory of polynomial nonlinear systems. 

Volterra expansion is a general method to model nonlinear systems with soft or weak 

nonlinearities. This includes saturation type nonlinearities observed in power amplifiers and 

loudspeakers. 

A truncated p-th order Volterra expansion is given as: 

 

 

In this representation,  is the k-th order operator and  

is called the k-th order volterra kernel. Volterra series expansion is linear w.r.t. the kernel 

coefficients. In other words, the nonlinearity of the expansions is completely due to the multiple 

products of the delayed input values. 

 

 

 

Volterra series can be regarded as a power series with memory or the extension of FIR 

filters to representation of nonlinear systems. Small loudspeakers and other non linear devices 

can be sufficiently modeled by a 2nd or 3rd order Volterra model. The 2nd order Volterra model 

is given as: 
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The first term is a constant and is generally assumed to be zero, the second term is the 

linear response (H1), and the third term is the nonlinear response (H2) . 

 

Figure. (13) shows the p-th order Volterra model based on equation (2.1).The model 

parameters are found by minimizing the weighted mean square error(WMSE). 

 

 

 

Where,  is the weight factor, N is the adaptation length and d(n) is the desired nonlinear 

system output. The minimization is accomplished using the LMS or RLS algorithms [17]. 

  

 

 

 

 

 

 

 

 

 

 

The Volterra series have been widely applied as nonlinear system modeling technique 

with considerable success. When the nonlinear system order is unknown, adaptive methods and 

algorithms are widely used for the Volterra kernel estimation. The accuracy of the Volterra 

kernels will determine the accuracy of the system model and the accuracy of the inverse system 

used for compensation of the nonlinearity of the system. 

 

  

H1 

H2 

Hp 

+ - 
x(n) y(n) 

d (n) 

e(n) 

Figure 13 Pth order Volterra Model 
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2.2. Volterra Kernels Estimation  and input vectors: 
 

A third order nonlinear system with memory is identified using the adaptive algorithm 

(LMS / RLS) for Volterra kernels estimation. The implementation of the adaptive Volterra filter 

is based on the extended input vector and on the extended filter coefficients vector. Due to the 

linearity of the input-output relation of the Volterra model with respect to filter coefficients, the 

implementation of the adaptive algorithm was realized as an extension of the algorithm for linear 

filters.  

 

Next we will introduce the input vectors corresponding to different orders kernels. The 

first order input vector, corresponding to a filter length M = 3, is defined as follows: 

 

 

 

If we consider equal memories for different orders filters, “the second order input vector” 

can be expressed by: 

 

 

 

For symmetric kernels only the elements   , having , of   , are selected in the 

input-output relation of the Volterra filter. Hence “the second order input vector”, written in 

vector form is: 

 

                           (2.4) 

and has the dimension (1×6). 

 

For "the third order input vector" we propose to express the multiple input delayed signal 

products by matrices elements. These matrices can be generated by multiplying “the second 

order input vector" defined according to Eq. (2.3) by the elements of the first order input vector. 

If we consider equal filters, M=3, and symmetric kernels it follows: 
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Hence, "the third order input vector" consists in fact, in that case, of 3 matrices as 

indicated in Equations and corresponds to a symmetric third order Volterra 

kernel. We can write "the third order input vector" in vector form as follows: 

 

 

 

its dimension is (1×10). 

 

The defined input vectors will be used to implement the LMS and RLS Volterra filter in a 

typical nonlinear system identification application. 
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2.3. Volterra Kernels Estimation by the LMS Adaptive 

Algorithm 
 

A typical adaptive technique employing LMS algorithm used for Volterra kernels 

identification is shown in Figure. (14). 

 

 

 

 

 

 

 

 

 

  

 

The Volterra filter of fixed order and fixed memory adapts to the unknown nonlinear 

system using one of the various adaptive algorithms. A simple and commonly used algorithm 

uses an LMS adaptation criterion. The aim of this section is to discuss the simplest of the 

algorithms, the LMS algorithm. Although the LMS algorithm has its weaknesses, such as its 

dependence on signal statistics, which can lead to low speed or large residual errors, it is very 

simple to implement and well behaved compared to the faster recursive algorithms. The main 

topic of this section is to discuss the extension of the algorithm to the nonlinear case using the 

previously defined input vectors. The discrete time impulse response of a first order (linear) 

system with memory span M, is written in vector form as in Eq. (2.9) and the input vector as in 

Eq.(2.10). 

 

 

 

 

 +    

 

 

Nonlinear System 

LMS Volterra Filter _ 

Figure 14  Volterra kernel identification using adaptive method 
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In Eq.(2.9) the filter order is written as superscript. This notation will be kept consistent 

for the rest of the section. Then, the output of a linear system is written as: 

 

 

 

 

At sample k, the desired output is  and the linear adaptive filter output is  . For the 

LMS algorithm, we minimize the Eq.(2.12). 

 

 

 

 

The vector  that minimizes the Eq. (2.12 ) is given by : 

 

 

Where:  is the input correlation matrix and   

The well known LMS update equation for a first order filter is: 

 

 

 

where μ is a small positive constant (referred to as the step size) that determines the speed of 

convergence and also affects the final error of the filter output. 

 

The extension of the LMS algorithm to higher order (nonlinear) Volterra filters involves 

a few simple changes. Firstly the vector of the impulse response coefficients becomes the vector 

of Volterra kernels coefficients. Also the input vector, which for the linear case contained only a 

linear combination, for nonlinear Volterra filters, complicates.  
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Consider the Volterra representation with symmetric kernels. There are two parts of this 

representation: (1) the Volterra kernel estimates, and (2) the products of the delayed input signal.  

If we express the Volterra kernels and the input signal products in vector form, then we can write 

the adaptive Volterra filter output using the vector notation. Each Volterra kernel (estimate at 

sample k) can be written in vector form. 

 

For simplicity we have constructed the nonlinear adaptive filter considering only first 

order and 3rd order Volterra kernels. 

 

The Eq.(2.13) gives “the input matrix” at sample k, containing the first, second  and the 

third order input vectors defined previously. 

 

  

 

 

The size of the input matrix is determined by the size of the third order input vector .  

“The filter coefficients matrix” at sample k is given by: 

  

 

 

where   is given by the Eq. (2.10),  and  are the second and third order 

kernel  expressed in vector form as indicated in Eq.(2.15) and  (2.16) respectively. 
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The update equation for the LMS Volterra filter can be written also in matrix form: 

 

                                           (2.17) 

 

In the nonlinear case it is possible to set different step sizes for different order kernels.  

Consequently we have introduced the step size matrix M, defined by 

 

 

 

2.4. Volterra Kernels Estimation by the RLS Adaptive 

Algorithm 
 

The Volterra filter of a fixed order and a fixed memory adapts to the unknown nonlinear 

system using one of the various adaptive algorithms. The use of adaptive techniques for Volterra 

kernel estimation has been well studied.  A simple and commonly used algorithm is based on the 

LMS adaptation criterion. Adaptive Volterra filters based on the LMS adaptation algorithm are 

computational simple but suffer from slow and input signal dependant convergence behavior and 

hence are not useful in many applications. 

 

The aim of this section is to discuss the efficient implementation of the RLS adaptive 

algorithm on a third order Volterra filter. Due to the linearity of the input-output relation of the 

Volterra model with respect to filter coefficients, the implementation of the RLS algorithm can 

be realized as an extension of the RLS algorithm for linear filters. Hence we define the extended 

input vector, for a third order Volterra filter, as: 
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and the extended filter coefficients vector as: 

 

 

 

The elements of the extended input vector can be easily actualized based on the first 

order, second order and third order input vectors using the proposed relations   

As in the linear case the adaptive nonlinear system minimizes the following cost function at each 

time: 

 

 

 

Where H(n) and X(n) are the coefficients and the input signal vectors, respectively, as 

defined in (2.19) and  (2.18), λ is a factor that controls the memory span of the adaptive filter and  

 represents the desired output. The solution of equation (2.20) can be obtained recursively 

using the RLS algorithm. 

 

The RLS algorithm updates the filter coefficients according to the following steps: 

 

I. Initialization: 

Define the filter memory length for H (n) and X (n). 

H (0) = [0 0 … 0]; 

where  is a small positive constant ; 

 

II. Operations: for an iteration (n) 

1. Create the input vector: 

         X (n) 
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2. Compute the error: 

        

3. Compute the scalar: 

 

4. Compute the matrix: 

      

5. Updates the filter vector: 

 

6. Updates the matrix  : 

    

In the relations above  denotes the inverse autocorrelation matrix of the extended input 

signal.  Inversion was done according to the matrix inversion lemma. 

 

2.5. Nonlinearity compensation using Exact Inverse of 

Volterra models 

 
To compensate for the nonlinearity of the nonlinear system, the signal is passed through a 

predistortion filter placed between the input signal and the nonlinear system as the shown in 

figure (15). 

 

The function h(x) is approximated by a third order Volterra model as described in section 

2.3 or section 2.4.  

 

 

 

 

        

Ideally, the inverse of a nonlinear system must exactly compensate for both the linear and 

nonlinear distortions of the system. In contrast to the Volterra inverse that has a specific 

structure, we do not impose any constraints on the structure of the exact inverse. Instead of 

d (n) dpre (n) (n) Predistortion      

Filter g(x) 

Nonlinear 

System h(x) Input signal 

Figure 15 Predistortion filter for nonlinearity compensation 
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defining the filter structure and finding its parameters as is customary, we directly compute the 

output of the predistortion filter  so as to minimize the precompensation error 

(n) as shown in fig (15). Input signal d (n) is fed into a time-varying predistortion 

filter. The output of the predistortion filter is routed into a mathematical model of the nonlinear 

system and also to the actual nonlinear system. The mathematical model of the loudspeaker 

predicts the next output of the loudspeaker (n). This predicted output is used to derive a 

precompensation error signal  

 

( (n)) that is the difference between the ideal output and the predicted 

nonlinear system output. The parameters of the predistortion filter are then adjusted so that the 

instantaneous precompensation error e (n) is minimized. 

 

For exact compensation, we have: 

 

 

 

Assuming   in Eq. (2.1), the value of  that 

satisfies (2.21) is given as the solution of the following equation: 

 

 

 

Where the coefficients { A(n)  ,  B(n)  , C(n)  ,D(n) } are given as: 
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Figure 8 shows the structure of the predistortion filter based on the inverse technique 

described called exact inverse technique. As seen here, the  predistorted signal   is the 

root of a quadratic equation whose coefficients depend on the parameters of the lnonlinear 

system model {H1,H2,H3}  , the past values of the predistortion signal   (the states) and 

the input signal d(n) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The exact inverse is a nonlinear filter with parameters varying on a sample-by-sample 

basis as illustrated by equations (2.22) and (2.26). 

For a p-th order loudspeaker model, the exact inverse is given as the root of a p-th order 

polynomial whose coefficients can be computed in a fashion similar to the derivation of (2.22) 

through (2.26). If p is odd, at least one real root is guaranteed to exist. If p is even and no real 

Nonlinear Model 

Parameters 
State Buffer 

Polynomial Coefficient Calculator 

Polynomial Root Solver 

Input 

d(n) 

dpre(n) 

Figure 16 Structure of pre-distortion Filter (exact inverse model used) 
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root exists, a (p-1)-th order polynomial is derived from the p-th order polynomial by 

differentiating relative to  . The derived polynomial has order (p-1) which will be odd 

and is guaranteed to have a real root. The real root of the (p-1)-th order polynomial minimizes 

the precompensation error. If there are multiple real roots, the root with the smallest absolute 

value is selected. 

 

2.6. Simulation & Results: 

 
a)  We will identify first a nonlinear system described below:  

 

System used is a 10 tap linear FIR filter followed by nonlinearity given by nonlinearity given by: 

b(n)=a(n)+0.5*a
3
(n) 

 

A noise is added such that SNR=20dB. 

 

LMS algorithm took more than 10000 samples for convergence whereas RLS algorithm took less 

than 5000 samples for convergence and also gave better result. The below figure shows the 

identification results: 

 

Figure 17 Nonlinear system identification using volterra model with LMS algorithm 
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        Figure 18 Nonlinear system identification using Volterra model with RLS algorithm 

                                    

b) After identification we use the linearization technique using precompensator described in 

section 2.5. 

 

The figure below shows perfect linearization and contains both input and linearized output 

overlapping.

 

Figure 19 Linearization of Volterra Model
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3.1. Introduction 

 
Many devices such as amplifiers, transmitters used in satellite channels and transducers 

like electrodynamic loudspeakers exhibit nonlinear behavior especially at high signal levels. 

Power   amplifiers operating at nominal power levels are assumed linear, when driven at higher 

power levels, they show saturation-type nonlinearities. Small loudspeakers used in cell phones 

produce acceptable sound quality at low playback levels and are suitable for applications where 

the phone is held close to the ear. In hands-free or multimedia applications such as videophones, 

the loudspeaker is at about an arm's length from the user requiring higher sound levels. To 

reduce the nonlinear distortion of these devices, their characteristics must be modeled and 

inverse of these models must be computed. Many approaches have been used in the literature to 

address this problem. Physical models have been extensively used in characterizing amplifiers. 

Physical models such as the Small-Thiele model have also been developed for loudspeakers.  

Identification of physical models usually requires extensive measurements and does not lend 

itself to frequent parameter identification. 

Volterra expansion [5] is a general method for modeling weak nonlinearities (i.e. 

saturation-type) with memory. Adaptive algorithms such as LMS and RLS [21] have been 

developed to determine the Volterra model parameters using the input/output measurements only 

[17]. A major limitation of the Volterra model is that the number of parameters grows 

exponentially with the model order; third or higher order models typically require several 

thousand parameters. Hammerstein and Wiener models consisting of the cascade of linear 

systems and memory-less polynomial nonlinearities are simpler models of nonlinearity and have 

far fewer parameters. The major disadvantage of these models is that due to the lack of memory 

they may not adequately model the inter-modulation distortions. To compensate for the nonlinear 

distortions, inverse of the nonlinear model must be found. Both feedback and open-loop 

solutions based on physical and   Volterra models have been reported in the literature. Feedback 

based solutions typically use microphone, acceleration or impedance feedback. Adaptive 

nonlinear filters for open-loop compensation have been studied for some time, and applied in 

other fields as well . Most Volterra based pre-compensators use the p-th order inverse developed 

by Schetzen [18]. One disadvantage of the p-th order inverse is that high orders are needed to 
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find a proper inverse which is computationally very intensive. Exact inverse of the Volterra 

model with the same order as the forward model have also been reported in [7] and is 

computationally much more economical. The solution in [7] may not always result in a stable 

inverse and suboptimal pseudo-exact inverses may have to be used. Although Wiener and 

Hammerstein models are limited in their modeling capabilities, they are parsimonious and lend 

themselves to having an exact nonlinear inverse. An adaptive linearization scheme for Wiener 

systems is reported in [4]. 

 

In the following section we will derive the LMS algorithm for identification of Weiner 

and Hammerstein model. Also we will present an exact inverse for the Wiener and Hammerstein 

models that are fast and result in complete removal of the nonlinear distortions. 

 

3.2. Block Structured Models: 
 

Block structured models are nonlinear systems made up of interconnected linear and nonlinear 

subsystems. The problem in their identification is to find a model and their parameter values for 

each subsystem. Major constraint with block model is that the inner signals between the 

subsystems are not measurable. Basic building blocks for block-oriented models are a linear 

dynamic system and a nonlinear static transformation. 

Typical block oriented models are 

A Wiener model: In this a dynamic linear system is followed by a static non-linear system. 

A Hammerstein model: In this a static non-linear system is followed by a dynamic linear system. 

A Hammerstein-Wiener model: In this a dynamic linear system is placed between two static non-

linear systems. 

Block models mentioned above are important as they depict most of the practical system which 

exhibits some kind of non-linearities. 

Many approaches have been proposed before for the identification of these structures: 

• Iterative approach 

• Over parameterization method 

• Separable least-squares approach 

• Frequency domain approach 
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• Stochastic method (kernel approach) 

• Subspace approach 

In this chapter we will go with an adaptive method of identifying the Weiner and Hammerstein 

model parameters using gradient descent algorithm which works well as shown in the results. 

 

3.3. Weiner Model  and its parameter estimation : 
 

Figure .20 shows the block diagram of a Wiener system that consists of a linear system 

followed by a memory less polynomial nonlinearity. The linear system can be specified by a 

finite impulse response (FIR) filter   or an IIR (pole-zero) 

transfer function . 

 

 

 

 

 

 

 

We derive the parameters of the Wiener models using a gradient descent algorithm. The 

arrangement is shown in Figure 21 The adaptation algorithm computes the parameters of the 

linear system and the coefficients of the polynomial nonlinearity such that the error between the 

model output and the desired output of the Wiener model is a minimum. We use the mean square 

error criterion and the gradient algorithm to perform this minimization. Assuming that the linear 

system is represented by a FIR impulse response, the signals at various stages of the Wiener 

system can be written as: 

 

 

 

Linear System f(y)=  
x(n) y(n) z(n) 

 

Figure 20 Weiner System 
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The sample error  at time  is given by : 

 

 

 

The total error over a frame of length N is given by: 

 

 

 

From (3.3) , the gradient is given as: 

- e(n) 

s(n) 

f(y)=  z(n) 

 

Linear System 
x(n) y(n) 

Figure 21 Derivation of Weiner Model 
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From (3.2), we have : 

 

 

 

 

 

Let: 

 

 

 

be the vector of  model parameters. Then starting from an initial guess  and using 

the gradient descent algorithm with a step size   , the parameter vector  at iteration   can 

be updated as:  

 

 

 

From (3.1b), we have 

 

 

 

From (3.1a), (3.1c) we have 
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The gradient vector can be computed by substituting (3.8) and (3.9) into (3.5b) and then 

(3.5b) into (3.4). The parameter vector is then updated according to equation (3.7). The 

algorithm continues until some termination criterion is met such as a predetermined number of 

iterations is reached or the total error E is below some predetermined value E. 

 

3.4. Hammerstein Model  and its parameter estimation  

 
Figure .22 shows the Hammerstein system consisting of a memoryless polynomial 

nonlinearity  followed by a linear system. Again, the linear system can be specified by a FIR 

filter 

 or an IIR (pole- zero) transfer function . 

 

 

 

 

 

 

We derive the parameters of the Hammerstein models using a gradient descent algorithm. 

The arrangement is shown in Figure. 23. The adaptation algorithm computes the parameters of 

the linear system and the coefficients of the polynomial nonlinearity such that the error between 

the model output and the desired output of the Hammerstein model is a minimum. We use the 

mean square error criterion and the gradient algorithm to perform this minimization. Assuming 

that the linear system is represented by a FIR impulse response, the signals at various stages of 

the Hammerstein system can be written as: 

 

 

 

f(x)=  

 

Linear System x(n) y(n) z(n) 

 

 

 
Figure 22 Hammerstein Model 
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The sample error  at time  is given by: 

 

The total error over a frame of length N is given by: 

 

From (3.14) , the gradient is given as: 

 

 

From (3.13), we have: 

 

 

 

e(n) 

s(n) 

- 

f(x)=  

 

Linear System x(n) y(n) z(n) 

 

 

Figure 23 Derivation of Hammerstein model 
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Let: 

 

be the vector of  model parameters. Then starting from an initial guess  and using 

the gradient descent algorithm with a step size   , the parameter vector  at iteration   can 

be updated as: 

 

From (3.12), we have 

 

and 

 

 

The gradient vector can be computed by substituting (3.18) and (3.19) into (3.16) and then (3.16) 

into (3.15). The parameter vector is then updated according to equation (3.17). The algorithm 

continues until some termination criterion is met such as a predetermined number of iterations is 

reached or the total error E is below some predetermined value E. 

 

3.5. Inverse of the Weiner and Hammerstein Models: 
 

Figure. 24 show the exact inverse of the Wiener model. The cascade of this system with 

the system in Figure.20 yields an identity system. Similarly Figure.25 shows the exact inverse of 

the Hammerstein system.  Again we observe that the inverse always exists and by construction is 

stable. 

In Figure. 24, the first part consists of a root solver that finds the roots of the polynomial         

.that are passed through the linear inverse system H to produce the pre-distorted 

signal  . We note that this inverse always exists because we can always find the roots of 

the polynomial equation f(y) =x (n). If the polynomial's order is odd, there is at least one real 

root. The linear FIR part H may not be a minimum phase impulse response. In such cases, a 
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stable delayed inverse of the FIR impulse response can always be found using the QR 

decomposition or the FFT method. 

 

 

 

 

 

 

 

 

 

 

 

 

The input signal  in Figure 25 is passed through the inverse of the linear FIR impulse 

response H to generate  which is then passed through a polynomial root solver that finds the 

roots of . 

The roots form the pre-distorted signal . It will be verified that passing   

through the Hammerstein system in Figure 22 will yield back x (n) the original input signal. 

 

3.6. Simulation & Results 

 
a)    Here we try to identify a given Weiner system which represents a nonlinear system 

using the technique described in section 3.3. The system contains a linear part which is an 

FIR filter with 3 taps and a third order nonlinear part in cascade with the linear part. Also 

noise is added after the nonlinear part to make the system look practical. For training the 

model random input is passed through both the system and the model.2000 input samples 

were used in this example. 

Roots of 

f(y)=x(n) 

Inverse Linear       

System(H-1) 

x(n) 

 

dpre (n) 

y(n) dpre (n) x(n) Inverse Linear       

System(H1
-1) 

 

Roots of 

f(x)=y(n) 

 

Figure 24 Exact inverse of Weiner system 

 

Figure 25 Exact inverse of Hammerstein system 
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After the model is trained a single tone signal of frequency 10 Hz   was passed through 

the model and the response of the model was compared with the response of the actual 

system Figure 26.  

After this a pre-compensator was placed before the model as was described in Section 

3.5. The inverse FIR was designed using the inverse FFT method. We find in simulation 

that more the number of taps we take in inverse FIR filter better is the linearized output 

obtained. The input to this the pre-compensator is the input to the total system and its 

output is the input to the nonlinear model. The output of the nonlinear model preceded by 

the pre-compensator is shown in Figure 27.   

 

 

Figure 26  System  and  identified model output response matching 

 

. 

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

6

8

10

No of iterations

R
e

s
p

o
n

s
e

 m
a

tc
h

in
g

 

 

System response

Model response



WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION 
 

NIT ROURKELA  60 
 

 

(a)       

 

(b) 

Figure 27 Actual output and precompensated nonlinear system output matching with different length of inverse FIR filter.    
a) 3 taps                        b)    24 taps 
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   b)      Now will identify a given Hammerstein system which represents a nonlinear 

system using the technique described in section 3.4. The system contains a nonlinear part 

(third order) in cascade with a 3 tap FIR filter. Also noise is added after the linear part to 

make the system look practical. For training the model random input is passed through 

both the system and the model.2000 input samples were used in this example.SNR of 

20dB is used in the simulation. 

After the model is trained a single tone signal of frequency 10 Hz was passed through the 

model and the response of the model was compared with the response of the actual 

system Figure 28. 

After this a pre-compensator was placed before the model as was described in Section 

3.5. The inverse FIR was designed using the inverse FFT method. We find in simulation 

that more the number of taps we take in inverse FIR filter better is the linearized output 

obtained. The input to this the pre-compensator is the input to the total system and its 

output is the input to the nonlinear model. The output of the nonlinear model preceded by 

the pre-compensator is shown in Figure 29.   

 

Figure 28  System  and  identified model output response matching. 
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                                                                                                   (a) 

 

(b) 

Figure 29  Actual output and  precompensated nonlinear system output matching with d different length of inverse FIR filter. 

a) 3 taps                        b)    24 taps

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

No of iterations

In
p

u
t 

a
n

d
 L

in
e

a
ri

z
e

d
 O

u
tp

u
t

 

 

input

linearized output

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No of iterations

In
p

u
t 

a
n

d
 L

in
e

a
ri

z
e

d
 O

u
tp

u
t 

 

 

input

linearized output



 

 
 

CHAPTER 4 
 

 

 

HAMMERSTEIN MODEL IDENTIFICATION 

WITH IIR LINEAR STRUCTURE USING 

GENETIC ALGORITHM 
 

 

 

 



HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM 
 

NIT ROURKELA  64 
 

4.1. Introduction 
 

System identification is a pre-requisite to analysis of a dynamic system and design of an 

appropriate controller for improving its performance. The more accurate the mathematical model 

identified for a system, the more effective will be the controller designed for it. In many identification 

processes, however, the obtainable model using available techniques is generally crude and 

approximate.  

In conventional identification methods, a model structure is selected and the parameters of that 

model are calculated by optimizing an objective function. The methods typically used for optimization of 

the objective function are based on gradient descent techniques. On-line system identification used to 

date are based on recursive implementation of off-line methods such as least squares, maximum likely-

hood or instrumental variable. Those recursive schemes are in essence local search techniques. They go 

from one point in the search point to another at every sampling instant, as a new input-output pair 

becomes available. This process usually requires a large set of input/output data from the system which 

is not always available. In addition the obtained parameters may be locally optimal.  

Gradient – descent training algorithm are the most common form of training algorithms in signal 

processing today because they have a solid mathematical foundation . Gradient – descent training 

however leads to suboptimal performance under nonlinear conditions. Genetic algorithm has been used  

in many applications to produce a global optimal solution. Ths approach is a probablistic guided 

optimization process which simulates the genetic evolution. The algorithm cannot be trapped in the 

local minima  as it employs a  random mutation approach.In contrast to classical optimization algorithm, 

genetic algorithms are not guided in their search process by local derivatives. Trough coding the 

population with stronger fitness are identified and maintained while population with weaker fitness are 

removed. This process ensures that better offsprings are produced from their parents.This search 

process is stable and robust and can identify global optimal parameters of a system.GA has been applied 

tinto many diverse areas such as function optimization .image processing  and system identification . 

The identification of nonlinear systems is a topic which has received considerable 

attention over the last two decades. Generally speaking, when it is difficult to model practical 

systems by mathematical analysis method, system identification may be an efficient way to 
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overcome the shortage of mechanism analysis method. The goal of the modeling is to find a 

simple and efficient model which is in accord with the practical system. In many cases, linear 

models are not suitable to present these systems and nonlinear models have to be considered. 

Since there are nonlinear effects in practical systems, e.g. harmonic generation, intermediation, 

desensitization, gain expansion and chaos, we can infer that most control systems are nonlinear. 

Nonlinear models are more widely used in practice, because most phenomena are nonlinear in 

nature. Indeed, for many dynamic systems the use of nonlinear models is often of great interest 

and generally characterizes adequately physical processes over their whole operating range. 

Thus, accuracy and performance of the control law increase significantly. Therefore, nonlinear 

system identification is much more important than linear system identification. There is no 

common approach to nonlinear system identification, and some efficient methods of 

identification are only fit to specific nonlinear systems. 

A simple and useful model of nonlinear systems is the Hammerstein model. Recently, 

Hammerstein model has been received great attention by researchers, because its structure is 

simple and it can effectively reflect nonlinearity of dynamic system. Several identification 

algorithms for the Hammerstein model have been investigated by using correlation theory, 

orthogonal functions, polynomials, neural networks, piecewise linear model, and so on.  

Hammerstein models are composed of a static nonlinear gain and a linear dynamics part. 

In some situations, they may be a good approximation for nonlinear plants. The problem of   

identifying plants based on such a class of models has been given a great deal of interest over the 

last years. The basic approach is to suppose polynomial (or polygonal) for the nonlinear element 

of the model.  Then, the identification problem turns out to be a parametric one since it consists 

in estimating the parameters of the model linear and nonlinear parts. 

 

             Here we will follow a different approach, we will use a FLANN structure to 

model the nonlinear structure as it is very useful in identifying nonlinearity, and then use genetic 

algorithm to identify the parameter of model linear and nonlinear part. In this chapter GA is used 

for simultaneously pruning of functional links and weight updation of the total parameters. While 

constructing an functional link artificial neural network the designer is often faced with the 

problem of choosing a network of the right size for the task to be carried out. The advantage of 
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using a reduced neural network is that it’s less costly and faster in operation. However, a much 

reduced network cannot solve the required problem while a fully FLANN may lead to accurate 

solution. Choosing an appropriate FLANN architecture of a learning task is then an important 

issue in training neural networks. To achieve the cost and speed advantage, appropriate pruning 

of FLANN structure is required. Procedure for simultaneous pruning and training of weights 

have been carried out in subsequent sections to obtain a low complexity reduced structure 

4.2.  Genetic algorithm 
 

In the case of deterministic search, algorithm methods such as steepest gradient methods 

are employed (using gradient concept), where as in stochastic approach, random variables are 

introduced. Whether the search is deterministic or stochastic, it is possible to improve the 

reliability of the results. GA’s are stochastic search mechanisms that utilize a Darwin criterion of 

population evolution. The GA has robustness that allows its structural functionality to be applied 

to many different search problems. This effectively means that once the search variables are 

encoded into a suitable format, the GA scheme can be applied in many environments. The 

process of natural selection, described by Darwin, is used to raise the effectiveness of a group of 

possible solutions to meet an environmental optimum. 

 Genetic algorithms are very different from most of the traditional optimization methods. 

Genetic algorithms need design space to be converted into genetic space. So genetic algorithm 

works with coding variables. The advantage of working with a coding variable space is that 

coding discretizes the search space even though the function may be continuous. A more striking 

difference between genetic algorithms and most of the traditional optimization methods is that 

GA uses a population of points at one time in contrast to the single point approach by traditional 

optimization methods. This means that GA processes a number of designs at the same time.  

 

4.2.1.            GA Operations  

 

The GA operates on the basis that a population of possible solutions, called 

chromosomes, is used to access the cost surface of the problem. The GA evolutionary process 

can be thought of as solution breeding in that it creates a new generation of solutions by crossing 

two chromosomes. The solution variables or genes that provide a positive contribution to the 
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population will multiply and be passed through each subsequent generation until an optimal 

combination is obtained. 

        The population is updated after each learning cycle through three evolutionary 

processes: selection, crossover and mutation. These create the new generation of solution 

variables. From the population a pool of individuals is randomly selected, some of these survive 

into the next iterations population. A mating pool is randomly created and each individual is 

paired off. These pairs undergo evolutionary operators to produce two new individuals that are 

added to the new population.  

            The selection function creates a mating pool of parent solution string based upon 

the “survival of the fittest” criterion. From the mating pool the crossover operator exchanges 

gene information. This essentially crosses the more productive genes from within the solution 

population to create an improved, more productive, generation. Mutation randomly alters 

selected genes, which helps prevent premature convergence by pulling the population into 

unexplored areas of the solution surface and add new gene information into the population.  

 

4.2.2.          Population Variable  

 

A chromosome consists of the problem variables, where these can be arranged in a vector 

or a matrix. In the gene crossover process, corresponding genes are crossed so that there is no 

inter- variable crossing and therefore each chromosome uses the same fixed structure. An initial 

population that contains a diverse gene pool offers a better picture of the cost surface where each 

chromosome within the population is initialized independently by the same random process.  

 In the case of binary-genes each bit is generated randomly and the resulting bit-words 

are decoded into their real value equivalent .The binary number is used in the genetic search 

process and the real value is used in the problem evaluation. This type of initialization results in 

a normally distributed population of variables across a specific range. A GA population, P, 

consists of a set of N chromosomes  and N fitness values  where the 

fitness is some function of the error matrix.  
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The GA is an iterative update algorithm and each chromosome requires its fitness to be 

evaluated individually. Therefore, N separate solutions need to be assessed upon the same 

training set in each training iteration. This is a large evaluation overhead where population sizes 

can range between twenty and a hundred, but the GA is seen to have learning rates that evens 

this overhead out over the training convergence.  

 

4.2.3           Chromosome selection. 

 

The selection process is used to weed out the weaker chromosomes from the population 

so that the more productive genes may be used in the production of next generation. The 

chromosomes fitness are used to rank the population with each individual assigned a fitness 

value, f 

 

 

 

The solution cost value   of the ith chromosome in the population is calculated from a training 

block of M training signals and from this cost an associated fitness   is assigned: 

 

 

 

The fitness can be considered to be the inverse of the cost but the fitness function in Eq ( ) is 

preferred for stability reasons, i.e.  

 

When the fitness of each chromosome in the population has been evaluated, two pools are 

generated, a survival pool and a mating pool. The chromosomes from the mating pool will be 

used to create a new set of chromosomes through the evolutional processes of natural selection 

and the survival pool allows a number of chromosomes to pass onto the next generation. The 

chromosomes are selected randomly from the two pools but biased towards the fittest. Each 
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chromosome may be chosen more than once and the fitter chromosomes are more likely to be 

chosen so that they will have a greater influence in the new generation of solutions. 

 

4.2.4               Gene Crossover 

 

The crossover operator exchanges gene information between two selected chromosomes. 

This operation aims to improve the diversity of the solution vectors. The pair of chromosomes, 

taken from the mating pool, becomes the parents of the two offspring chromosomes for the new 

generation. 

In the case of a binary crossover operation the least significant bits are exchanged 

between corresponding genes of the two parents. For each gene- crossover a random position 

along the bit sequence is chosen and then all of the bits right of the crossover point is exchanged. 

In Figure 30 (a) , which shows a single point crossover , the fifth position is randomly chosen, 

where the first position corresponds to the left side. The bits from the right of the fourth bit will 

be exchanged. Figure 30(b) shows a two point crossover in which two points are randomly 

chosen and the bits in between them are exchanged. At the start of learning process the extent of 

crossing over the whole population can be decided allowing the evolutionary process to 

randomly select the individual genes. The probability of a gene crossing, P (crossing), provides a 

percentage estimate of the genes that will be affected within each parent.  P (crossing) = 1 allows 

all the gene values to be crossed and P (crossing) = 0 leaves the parents unchanged, where a 

random gene selection value, ω ∈  is governed by this probability of crossing. 

 

                                                      1  0  1  0  0  1  0  1   

                                                                                              Before crossover 

                                                      0  0  1  0  1  1  1  0  

 

 

                                                      1  0  1  0  1  1  1  0  

                                                                                              After crossover 

                                                      0  0  1  0  0  1  0  1  

 
(a) 
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                                                      1  0  1  0  0  1  0  1 

                                                                                              Before crossover 

                       0  0  1  0  1  1  1  0 

 

 

                                                      1  0  1  0  1  1  0  1  

                                                                                               After crossover 

                                                      0  0  1  0  0  1  1  0 

                                                                        
(b) 

 
Figure 30  Gene crossover (a) Single point crossover (b) Double point crossover 

 

The crossover does not have to be limited to this simple operation. The crossover 

operator can be applied to each chromosome independently, taking different random crossing 

points in each gene. This operation would be more like grafting parts of the original genes onto 

each other to create the new gene pair. All of a chromosome's genes are not altered within a 

single crossover. A probability of gene-crossover is used to randomly select a percentage of the 

genes and those genes that are not crossed remain the same as one of the parents. 

 

 4.2.5            Chromosome Mutation  

 
The last operator within the breeding process is mutation. Each chromosome is 

considered for mutation with a probability that some of its genes will be muted after the 

crossover operation. A random number is generated for each gene, if this value is within the 

specified mutation selection probability, P(mutation), the gene will be mutated. The probability 

of mutation occurring tends to be low with around one percent of the population genes being 

affected in a single generation. In the case of a binary mutation operator, the state of the 

randomly selected gene-bits is changed, from zero to one or vice-versa.  

                                                       

                                 

 

                                  1  0  1  1  0  0  1  0     Before Mutation 

 

                                  1  0  1  1  1  0  1  0      After Mutation 

 
Figure 31  Mutation operation in GA 

Selected bit for mutation 
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A simple genetic algorithm treats the mutation as a secondary operator with the role of 

restoring lost genetic materials. For example consider the following population having four 

eight-bit strings. 

                                        0 1 1 0 1 0 1 1 

                                        0 0 1 1 1 1 0 1 

                                        0 0 0 1 0 1 1 0 

                                        0 1 1 1 1 1 0 0 

 

All the four strings have a zero in the left most bit position. If the true optimum solution 

requires a one in that position, then neither reproduction nor crossover operator will be able to 

create a one in that position. Only mutation operation can change that zero to one. 

 

  

4.3.  Parameters OF GA.  
 

There are some parameters value required for GA. To get the desired result these parameters 

should be chosen properly. 

 

(a) Crossover and Mutation Probability:  

 

There are two basic parameters of GA - crossover probability and mutation probability. 

  

Crossover probability: This probability controls the frequency at which the crossover 

occurs for every chromosome in the search process. This is a number between (0, l) which is 

determined according to the sensitivity of the variables of the search process. The crossover 

probability is chosen small for systems with sensitive variables. If there is crossover, offspring 

are made from parts of both parent’s chromosome. Crossover is made in hope that new 

chromosomes will contain good parts of old chromosomes and therefore the new chromosomes 

will be better. However, it is good to leave some part of old populations survive to next 

generation. 
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Mutation probability: This parameter decides how often parts of chromosome will be 

mutated. If there is no mutation, offspring are directly copied from crossovered ones without any 

change. If mutation is performed, one or more parts of a chromosome are changed. If mutation 

probability is 100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation 

generally prevents the GA from falling into local extremes. Mutation should not occur very 

often, because then GA will in fact change to random search. 

 

 (b) Other Parameters. There are also some other parameters in GA. One important parameter is 

population size. 

  

Population size: How many chromosomes are in population in one generation. If there are 

too few chromosomes, GA has few possibilities to perform crossover and only a small part of 

search space is explored. On the other hand, if there are too many chromosomes, GA slows 

down.  Research shows that after some limit (which depends mainly on encoding and the 

problem) it is not useful to use very large populations because it does not solve the problem 

faster than moderate sized populations. 

 

4.4.  Pruning of FLANN structure along with 

parameter estimation using GA.  
 

In this Section a new algorithm for simultaneous training and pruning of weights using binary 

coded genetic algorithm is studied. Such a choice has lead to effective pruning of branch and update 

of weights. The pruning strategy is based on the idea of successive elimination of less productive 

paths (functional expansions) and elimination of weights from the FLANN structure. As a result the 

overall architecture of the FLANN based model is reduced which in turn reduces the corresponding 

computational cost associated with the model without sacrificing the performance. Various steps 

involved in this algorithm are dealt in this section. 
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Step 1- Initialization in GA:  

 

A population of M chromosomes is selected in GA in which each chromosome constitutes 

(T×E)× (L+1) + L×W  number of random binary bits where the first T×E  number of bits are 

called Pruning bits (P) and the next T×E×L  bits represent the weights associated with various 

branches (functional expansions) of the FLANN  model and the last L×W bits represents the 

weight associated with the linear part of the model placed after the FLANN in the Hammerstein 

model .Again (T) represents the number of inputs  and E represents the number  of expansions 

specified for each input. Thus each chromosome can be schematically represented as shown in 

the Fig. (32). 

 A pruning bit (p) from the set P indicates the presence or absence of expansion branch which 

ultimately signifies the usefulness of a feature extracted from the time series. In other words a 

binary 1 will indicate that the corresponding branch contributes and thus establishes a physical 

connection whereas a 0-bit indicates that the effect of that path is insignificant and hence can be 

neglected.  

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Step 2- Generation of input training data: 

K (≥500) number of signal samples is generated.  

 

Step 3- Decoding: 

 Each chromosome in GA constitutes random binary bits. So these chromosomes need to be 

converted to decimal values lying between some ranges to compute the fitness function. The 

equation that converts the binary coded chromosome in to real numbers is given by: 

T×E bits 

Pruning  

bits (P) 

L bits L bits L bits L bits L bits L bits 

V=T×E×L bits V=W×L bits 

Figure 32  Bit allocation scheme for pruning and weight updating 
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where  , ,RV,DV represents the minimum range, maximum range, decimal and 

decoded value of an L bit coding scheme representation.The first T×E number of bits is not 

decoded since they represent pruning bits. 

 

Step 4 – Compute the estimated output 

At nth instant the estimated output of the neuron can be computed as 

 

where (n) represents jth expansion of the ith signal sample at the nth instant.  and 

 represents the jth expansion weight and jth pruning weight of the  ith signal sample for 

mth chromosome at kth instant.  corresponds to the bias value fed to the neuron. 

 

This is then passed through the linear part of the model to get the estimated output.  

 

Step 5 – Calculation of cost function: 

Each of the desired output is compared with corresponding estimated output and K errors are 

produced. The mean square corresponding to m-th chromosome is determined by using the 

relation: 

 

 

This is repeated for M times. 

 

Step 6 – Operations of GA: 

Here the GA is used to minimize the MSE. The crossover, mutation and selection operators are 

carried out sequentially to select the best M individuals which will be treated as parents in the 

next generation. 
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Step 7 – Stopping Criteria: 

The training procedure will be ceased when the MSE settles to a desirable level. At this moment 

all the chromosomes attain the same genes. Then each gene in the chromosome represents an 

estimated weight. 

 

 

4.5. Simulation & Results  

 
a)   In this example a static system is used. Nonlinearity given by: 

                b=(a.^3)+0.3*(a.^2)-0.4*a;  

       In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the 

input and 

           n =0, 1, 2, 3,4,5,6.  

Probability of crossover used is pc=0.8 and that of mutation is pm=0.1. 

The identification result using the structure as shown in Figure 33 is shown below:

 

Pruned weights come out to be:   

1 0 1  1  1  0  1  0  0  1  0  0  0  0  0  0   

  The normalize mean square error plot given by NMSE= 10*log10 ( ) is shown below: 
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b) In this example a dynamic system with static nonlinearity is identified. Nonlinearity is given 

by: 

                b = - 0.1*(a.^3) + 0.2*(a.^2) + a; 

       In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the 

input and 

           n =0, 1, 2, 3.  

Probability of crossover used is pc=0.8 and that of mutation is pm=0.1. 
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11 

12 

1E 
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. . . 
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d (n) x (n) e (n) 
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     — 

y (n) 

FLANN model 

using Pruning 

Figure 33  FLANN based static  nonlinear system identification model showing updating weight and pruning 
weights. 
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The identification  result using the structure as shown in Figure 34 is shown below: 

 

Pruned weights come out to be:   

     1   0   0   1   1   0   0   0   0   1 

 

The normalize mean square error is shown below: 
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3)  In this example a Hammerstein type system with static nonlinearity and IIR linear part is 

used.       

      Nonlinearity is given by: 

                b = a + 0.5*(a. ^3); 

     Linear structure is given by: 

               Forward network: B=[ 0.4    0.2 ]; 

    and    Reverse network: A=[ 0.8    0.6 ]; 

       In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the 

input and 

           n =0, 1,2,3,4, 5, 6.  
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Figure 34  GA used in identification and pruning  of FLANN structure and identification of weights for dynamic 
plant 
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  The normal FLANN structure without pruning is also used and the results are compared.  

The pruning result is     very close to the normal structure and reduces the hardware requirement 

to a great level. Probability of crossover used is pc=0.8 and that of mutation is pm=0.1.The 

identification using the pruned structure and normal structure as shown in Figure 35 is shown 

below: 

 

 

Pruned weights come out to be:   

      1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  

 

4)  This is same like the previous example but with different linear and nonlinear structure.       

      Nonlinearity is given by: 

                b =  a + 3*(a.^2) + 2*(a.^3); 

     Linear structure is given by: 

               Forward network: B= [ 1  .5  .4    2]; 
     
and    Reverse network: A=[ .5 -.4 -.26 -.03]; 
 

Probability of crossover used is pc=0.85and that of mutation is pm=0.1.The identification using 

the pruned structure and normal structure as shown in Figure 35 is shown below: 
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Pruned weights comes out to be:   

   1  0  1  1  1  1  0  0  0  1  0  0  0  0  0 
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Figure 35  FLANN based static  nonlinear system identification model showing updating weight and pruning weights 

noise 

e(n) 

 (n) 

GA based 

algorithm 

FLANN model 

using Pruning 

    NL 
d (n) x (n) 

w1 

wE 

p1 

pE 

x(n) 

(n) . . . . . . 

1 

2 

 

 

 

E 

w2 p2 

. . . 

     

— 

      

+ 

Z-1 

Z-1 

Z-1 

Z-1 

+ 

     

— 

Z-1 

Z-1 

Z-1 

Z-1 

+ 

     

— 

b1=0.4 

b2=0.2 

a1=0.8 

a2=0.6 

d 

(n) 

b1
’ 

b2
’ 

a1
’ 

a2
’ 



 

NIT ROURKELA  81 
 

CONCLUSIONS 
 

1) In this a modified backpropogation learning algorithm for MLP and FLANN was discussed and 

the resulting network was called WNN and WFLANN respectively. These were then used in 

function approximation and channel equalization and results show its effectiveness in dealing 

with outliers present in training sequence.  

2) Volterra series expansion was studied and then these models were applied in nonlinear system 

identification whose weights were applied using both LMS and RLS equation and results showed 

that RLS needs much smaller training pattern than LMS and thus is very useful. 

The resulting model parameters were then used to find the coefficients of the polynomial 

equation whose root are named  as precompensator output, which when applied to nonlinear 

system gives a linear output.  This method is very efficient as it’s very simple and easy to design. 

3) Two very useful block models namely Weiner model and Hammerstein model were studied and 

its parameters were derived by very simple LMS algorithm. Also there linearization was 

performed and results showed  that the linear inverse is better when the number of taps in the 

inverse filter was increased. 

4) Finally genetic algorithm was used for identification of Hammerstein model in which linear part 

is an IIR structure. Genetic algorithm could easily identify such complex structure. Pruning was 

also applied  to the FLANN structure used for modeling nonlinearity and results proved that 

without lose in quality it reduces the number of expansions required to a great level and thus 

reduces the implementation cost and complexity. 

          Thus this work gives very good scope in various applications were nonlinearities are to be dealt   

with. 
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