

Various Nonlinear Models and their Identification,

Equalization and Linearization

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Telematics and Signal Processing

By

P.SUJITH KUMAR

ROLL No: 20607023

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

 2006-2008

Various Nonlinear Models and their Identification,

Equalization and Linearization

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Telematics and Signal Processing

By

P.SUJITH KUMAR

ROLL No: 20607023

Under the Guidance of

Prof. G. Panda

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

 2006-2008

National Institute Of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Various Nonlinear Models and their

Identification, Linearization and Equalization” submitted by P.Sujith Kumar

in partial fulfillment of the requirements for the award of Master of Technology

Degree in Electronics & Communication Engineering with specialization in

“Telematics and Signal Processing” at the National Institute of Technology,

Rourkela (Deemed University) is an authentic work carried out by him under my

supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or

Diploma.

 Date: Prof. G. Panda (FNAE, FNASc)

 Dept. of Electronics & Communication Engg.

 National Institute of Technology

 Rourkela-769008

ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it

would be impossible without people (especially my family) who supported me and

believed in me.

I would like to extend my gratitude and my sincere thanks to my honorable,

esteemed supervisor Prof. G. Panda, Head, Department of Electronics and

Communication Engineering. He is not only a great lecturer with deep vision but

also and most importantly a kind person. I sincerely thank for his exemplary

guidance and encouragement. His trust and support inspired me in the most

important moments of making right decisions and I am glad to work with him.

I want to thank all my teachers Prof. G.S. Rath, Prof. S.K. Patra, Prof. K.

K. Mahapatra, and Prof. S. Meher for providing a solid background for my

studies and research thereafter.

I would like to thank my friends and all those who made my stay in

Rourkela an unforgettable and rewarding experience.

 P.SUJITH KUMAR

 ROLL No: 20607023

CONTENTS

ABSTRACT .. i

THESIS LAYOUT .. ii

LIST OF FIGURES ... iii

ABBREVIATIONS USED ... v

CHAPTER 1. WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

1.1. Introduction ... 1

1.2. Wilcoxon norm. .. 1

1.3. Wilcoxon Neural Network .. 2

1.4. Wilcoxon Functional Link Artificial Neural Network .. 8

1.5. Simulation & Results .. 10

CHAPTER 2. NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

2.1. Introduction ... 35

2.2. Volterra Kernels Estimation and input vectors: .. 37

2.3. Volterra Kernels Estimation by the LMS Adaptive Algorithm ... 39

2.4. Volterra Kernels Estimation by the RLS Adaptive Algorithm .. 42

2.5. Nonlinearity compensation using Exact Inverse of Volterra models .. 44

2.6. Simulation & Results: ... 47

CHAPTER 3. WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

3.1. Introduction ... 50

3.2. Block Structured Models: ... 51

3.3. Weiner Model and its parameter estimation : ... 52

3.4. Hammerstein Model and its parameter estimation ... 55

3.5. Inverse of the Weiner and Hammerstein Models:... 57

3.6. Simulation & Results .. 58

CHAPTER 4. HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING

GENETIC ALGORITHM

4.1. Introduction ... 64

4.2. Genetic algorithm .. 66

4.3. Parameters OF GA. ... 71

4.4. Pruning of FLANN structure along with parameter estimation using GA. 72

4.5. Simulation & Results .. 75

CONCLUSIONS ... 81

 REFERENCES .. 82

i

ABSTRACT

System identification is a pre-requisite to analysis of a dynamic system and design of an

appropriate controller for improving its performance. The more accurate the mathematical model

identified for a system, the more effective will be the controller designed for it. The

identification of nonlinear systems is a topic which has received considerable attention over the

last two decades. Generally speaking, when it is difficult to model practical systems by

mathematical analysis method, system identification may be an efficient way to overcome the

shortage of mechanism analysis method. The goal of the modeling is to find a simple and

efficient model which is in accord with the practical system. In many cases, linear models are not

suitable to present these systems and nonlinear models have to be considered. Since there are

nonlinear effects in practical systems, e.g. harmonic generation, intermediation, desensitization,

gain expansion and chaos, we can infer that most control systems are nonlinear. Nonlinear

models are more widely used in practice, because most phenomena are nonlinear in nature.

Indeed, for many dynamic systems the use of nonlinear models is often of great interest and

generally characterizes adequately physical processes over their whole operating range. Thus,

accuracy and performance of the control law increase significantly. Therefore, nonlinear system

modeling is much more important than linear system identification. We will deal with various

nonlinear models and their processing.

ii

THESIS LAYOUT

Identification, equalization in presence of outliers in training signal is a challenge and a

very useful method is dealt in this work in chapter1 which is very robust to outliers. Volterra

modeling is very useful in representing nonlinear models and many nonlinear devices needs to be

linearized before use. This is dealt in chapter 2. Chapter 3 introduces two important block

models namely Weiner model and Hammerstein model. These two models are very useful as

most of the nonlinear devices can be represented by this model. Their identification and

linearization is studied in this chapter. Chapter 4 introduces genetic algorithm, and its

simultaneous use in pruning a FLANN structure and identifying parameters of a Hammerstein

model with linear part represented by an IIR structure. Finally conclusions are given which were

derived from the work done.

 iii

LIST OF FIGURES

Figure 1 Wilcoxon neural network ... 7

Figure 2 Wilcoxon functional link network. .. 9

Figure 3 Simulations for ANN and WNN of Example 1: (a) uncorrupted data, (b) 20% corrupted data 13

Figure 4 Simulations for FLANN and WFLANN of Example 1: (a) uncorrupted data, (b) 20% corrupted data

(c) 30% corrupted data (d) 40% corrupted data ... 15

Figure 5 Simulations for ANN and WNN of Example 2: (a) uncorrupted data, (b) 10% corrupted data (c)

20% corrupted data (d) 40% corrupted data .. 17

Figure 6 Simulations for FLANN and WFLANN of Example 2: (a) uncorrupted data, (b) 20% corrupted data

(c) 30% corrupted data (d) 40% corrupted data ... 19

Figure 7 Digital communication system with equalizer. .. 21

Figure 8 LIN Structure .. 22

Figure 9 MLP Structure .. 23

Figure 10 FLANN Structure .. 24

Figure 11 Simulations for ANN and WNN of Example 3 with training using : (a) uncorrupted data, (b) 20%

corrupted data (c) 30% corrupted data (d) 40% corrupted data ... 27

Figure 12 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data,

(b) 10% corrupted data (c) 20% corrupted data (d) 30% corrupted data (e) 40% corrupted data 29

Figure 13 Simulations for ANN and WNN of Example 4 with training using : (a) uncorrupted data, (b) 10%

corrupted data (c) 20% corrupted data (d) 30% corrupted data (e) 40% corrupted data 31

Figure 14 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data,

(b) 10% corrupted data (c) 20% corrupted data (d) 30% corrupted data ... 33

Figure 15 Pth order Volterra Model ... 36

Figure 16 Volterra kernel identification using adaptive method .. 39

Figure 17 Predistortion filter for nonlinearity compensation .. 44

Figure 18 Structure of pre-distortion Filter(exact inverse model used) ... 46

Figure 19 Nonlinear system identification using volterra model with LMS algorithm 47

Figure 20 Nonlinear system identification using volterra model with RLS algorithm 48

Figure 21 Linearization of Volterra Model .. 48

Figure 22 Weiner System ... 52

file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598812
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598813
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598818
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598819
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598820
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598821
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598826
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598827
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598828
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598829
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598833

iv

Figure 23 Derivation of Weiner Model ... 53

Figure 24 Hammerstein Model .. 55

Figure 25 Derivation of Hammerstein model ... 56

Figure 26 Exact inverse of Weiner system .. 58

Figure 27 Exact inverse of Hammerstein system .. 58

Figure 28 System and identified model output response matching ... 59

Figure 29 Actual output and precompensated nonlinear system output matching with different length

of inverse FIR filter. a) 3 taps b) 24 taps .. 60

Figure 30 System and identified model output response matching.. 61

Figure 31 Actual output and precompensated nonlinear system output matching with d different length

of inverse FIR filter. ... 62

Figure 32 Gene crossover (a) Single point crossover (b) Double point crossover 70

Figure 33 Mutation operation in GA.. 70

Figure 34 Bit allocation scheme for pruning and weight updating ... 73

Figure 35 FLANN based static nonlinear system identification model showing updating weight and

pruning weights. .. 76

Figure 36 GA used in identification and pruning of FLANN structure and identification of weights for

dynamic plant.. 78

Figure 37 FLANN based static nonlinear system identification model showing updating weight and

pruning weights... 80

file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598834
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598835
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598836
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598837
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598838
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598845
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598846
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598846
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598847
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598847
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598848
file:///C:\Documents%20and%20Settings\dsp%20lab\Desktop\Thesis%20(Repaired).docx%23_Toc199598848

v

ABBREVIATIONS USED

AF Adaptive Filter

 WNN Wilcoxon Neural Network

 WFLANN Wilcoxon Functional Link Artificial Neural Network

LMS Least Mean Square

RLS Recursive Least Square

ANN Artificial Neural Network

MLP Multi Layer Perceptron

FLANN Functional Link Artificial Neural Network

DSP Digital Signal Processing

FIR Finite Impulse Response

MSE Mean Square Error

NMSE Normalised Mean Square Error

BER Bit Error Rate

GA Genetic Algorithm

Chapter 1

WILCOXON LEARNING AND ITS USE IN

MLP AND FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 1

1.1. Introduction

Robust and non-parametric smoothening is a central idea in statistics that aim to

simultaneously estimate and model the under lying structure. One important method belonging to

this category is the Wilcoxon approach, which is usually robust against outliers. Outliers are

observations that are separated in some fashion from the rest of the data. Hence, outliers are data

points that are not typical of the rest of the data. Depending on their location, outliers may have

moderate to severe effects on the regression model. A regressor or a learning machine is said to

be robust if it is not sensitive to outliers in the data.

Our motivation for robust and nonparametric regression is different from those which

were previously developed. As is well known in statistics, the resulting linear regressor by using

the rank-based Wilcoxon approach to linear regression problems are usually robust against (or

insensitive to) outliers. It is then natural to generalize the Wilcoxon approach for linear

regression problems to nonparametric Wilcoxon learning machines for nonlinear regression

problems.

In the following section, two new learning machines are investigated which are very

effective in dealing with various problems in presence of outliers namely Wilcoxon neural

network(WNN) and Wilcoxon functional link approximation neural network(WFLANN).Then

these learning algorithms will be applied to various applications like function approximation,

channel equalization and system identification.

1.2. Wilcoxon norm.

Before investigating the Wilcoxon learning machines, we first introduce the Wilcoxon

norm of a vector [22], which will be used as the objective function for all Wilcoxon learning

machines. To define the Wilcoxon norm of a vector, we need a score function. A score function

is a function which is non-decreasing such that

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 2

The score associated with the score function is defined by

Where l is a fixed positive integer.

Then Wilcoxon norm of a given vector v is given by

where denotes the rank of among

 are the ordered values of

Though there are other score functions available, the one presented here is the most frequently

used one.

1.3. Wilcoxon Neural Network

The robustness of linear Wilcoxon robustness against outliers motivates us to consider

the Wilcoxon neural networks (WNNs).

 Consider the NN as shown in Figure. (1). There are one input layer with nodes,

one hidden layer with nodes, and one output layer with nodes. We also have bias

terms at the output nodes.

Let the input vector be

or

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 3

Let denote the connection weight from the th input node to the input of the th hidden node.

Then, the input and output of the th hidden node are given by, respectively

where is the activation function of the th hidden node.

Commonly used activation functions are sigmoidal functions, i.e., monotonically increasing S-

shaped functions and in this work we mainly use bipolar sigmoidal function given by

Let denote the connection weight from the output of the th hidden node to the input of the

th output node. Then, the input and output of the th output node are given by,

respectively

where is the activation function of the th output node. For classification problems, the

output activation functions can be chosen as sigmoidal functions, while for regression problems,

the output activation functions can be chosen as linear functions with unit slope.

The final output of the network is given by

where is the bias.

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 4

Define

From (1.2) – (1.4) , we get

Suppose we are given the training set

here subscript q is used to represent qth example.

In a WNN, the approach is to choose network weights that minimizes the Wilcoxon norm of the

total residuals

The Wilcoxon norm of residuals at the output node is given by

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 5

From (1.6) and (1.7)

Thus we can minimize the total residual vector by minimizing the individual residual vector for

each output.

The NN used here is the same as that used in standard ANN, except the bias terms at the

outputs. The main reason is that the Wilcoxon norm is not a usual norm, but a pseudo norm

(semi norm).Without the bias terms, the resulting predictive function with small Wilcoxon norm

of total residuals may deviate from the true function by constant offsets.

Now, we introduce an incremental gradient–descent algorithm. In this algorithm, s are

minimized in sequence. From the definition of in (1.6a) together with (1.6b), we have

Updating of output weights is carried on according to the equation

–

Where is the learning rate. From (1.8), we have

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 6

where denotes the total derivative of w.r.t. its arguments.

Hence, the updating rule becomes

i.e. ,

Updating of input weights is carried on according to the equation

 –

Now we have

Where denotes the total derivative of w.r.t. its arguments.

Hence, the updating rule becomes

The bias term , is given by the median of the residuals at the th output node, i.e.,

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 7

We can write the above update equations in terms of sensitivities and can also include

momentum term () as:

 –

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Figure 1 Wilcoxon neural network

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 8

1.4. Wilcoxon Functional Link Artificial Neural

Network

 Define

Where is the input vector which is functionally expanded using trigonometric function to get

vector , ,which will then be multiplied with the corresponding weight vector and

passed through an activation function to get the th output.

By using the same procedure used in WNN, we get the weight update equation as

 –

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 9

Where is the learning rate, and denotes the total derivative of w.r.t. its

arguments.

The bias term , is given by the median of the residuals at the th output node , i.e. ,

 .

We can write the above update equation in terms of sensitivities and can also include momentum

term () as:

 –

+

FE

1

1

1

x1

x2

.

xn

W

+

+

Figure 2 Wilcoxon functional link network.

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 10

1.5. Simulation & Results

In this section, we compare the performances of various learning machines for several

illustrative nonlinear regression problems. Emphasis is put particularly on the robustness against

outliers for various learning machines. We wish to point out that different parameter settings for

learning machines might produce different results. For “fair” comparison, similar machines will

use the same set of parameters in the simulation. Thus, for ANN and WNN, we use the same

number of hidden nodes, the same activation functions for hidden nodes, and the output node.

Similarly, for FLANN and WFLANN, we use the same expansions for both machines.

We will apply WNN and WFLANN to various applications like non-linear function

approximation, system identification and channel equalization in presence of outliers and

compare them with the results obtained using ANN and FLANN respectively.

1.5.1. Function approximation

In each simulation of Examples 1 and 2, the uncorrupted training data set consists of 50

randomly chosen points (training patterns) with the corresponding values (target values)

evaluated from the underlying true function. The corrupted training data set is composed of the

same points as the corresponding uncorrupted one but with randomly chosen values

corrupted by adding random values from a uniform distribution defined on . It would be

interesting to know what happens if the noise is progressively increased and if the number of

outliers is increased. To this end, 20%, 30%, and 40% randomly chosen -values of the training

data points will be corrupted.

Example 1 :

Suppose the true function is given by the sinc function

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 11

In this example, we compare the performances of ANN, WNN, FLANN, and WFLANN.

For ANN and WNN, the number of hidden nodes is 30, the activation functions of the hidden

nodes are bipolar sigmoidal functions, and the activation function of the output node is a linear

function with unit slope. For FLANN and WFLANN, the number of hidden nodes is 10,

trigonometric expansion is used, and the activation function of the output node is a linear

function with unit slope.

The simulation results for ANN and WNN are shown in Fig.(1). For uncorrupted data

shown in Fig.(1)(a), WNN performs better than ANN. For corrupted data shown in Fig.(1)(b) –

(1)(d) with progressively increased corruption ,WNN estimates are almost unaffected by these

corrupted outliers and outperforms ANN estimates

(a)

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
ut

pu
t M

ag
ni

tu
de

True and estimated function

True function

outlier

MLP

WNN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 12

(b)

(c)

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
u
tp

u
t

M
a
g
n
it
u
d
e

True and estimated function

true function

outlier

WNN

MLP

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

M
a
g
n
it
u
d
e

True and estimated function

true function

outliers

WNN

ANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 13

(d)

Figure 1 Simulations for ANN and WNN of Example 1: (a) uncorrupted data, (b) 20% corrupted data

(c) 30% corrupted data (d) 40% corrupted data

Results are shown in Fig.(2) for WFLANN and FLANN approximates.

 (a)

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

M
ag

ni
tu

de

True and estimated function

true function

outliers

WNN

ANN

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
u
tp

u
t

M
a
g
n
it
u
d
e

True and estimated function

true function

outliers

WFLANN

FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 14

 (b)

 (c)

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
ut

pu
t

M
ag

ni
tu

de
True and estimated output

true function

outliers

WFLANN

FLANN

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
ut

pu
t m

ag
ni

tu
de

True and estimated function

true function

outliers

WFLANN

FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 15

 (d)

Figure 2 Simulations for FLANN and WFLANN of Example 1: (a) uncorrupted data, (b) 20% corrupted data (c) 30% corrupted
data (d) 40% corrupted data

Example 2:

Suppose the true function is given by the Hermite function

In this example, we compare the performances of ANN, WNN, FLANN, and WFLANN.

For ANN and WNN, the number of hidden nodes is 20, the activation functions of the hidden

nodes are bipolar sigmoidal functions, and the activation function of the output node is a linear

function with unit slope. For FLANN and WFLANN, the number of hidden nodes is 10,

trigonometric expansion is used, and the activation function of the output node is a linear

function with unit slope.

The simulation results for ANN and WNN are shown in Fig.(3). For uncorrupted data

shown in Fig.(3)(a), WNN performs better than ANN.For corrupted data shown in Fig.(3)(b) –

(3)(d) with progressively increased corruption ,WNN estimates are almost unaffected by these

corrupted outliers and outperforms ANN estimates

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample

O
ut

pu
t m

ag
ni

tu
de

True and estimated function

true function

outliers

WFLANN

FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 16

(a)

(b)

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

true function

outliers

WNN

ANN

0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

true function

Outliers

WNN

ANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 17

 (c)

 (d)

Figure 3 Simulations for ANN and WNN of Example 2: (a) uncorrupted data, (b) 10% corrupted data (c) 20% corrupted data
(d) 40% corrupted data

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

true function

outliers

WNN

ANN

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

outliers

true function

WNN

ANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 18

Results are shown in Fig. (4) for WFLANN and FLANN approximates.

(a)

(b)

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

WFLANN

outliers

true function

FLANN

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

true function

outlier

WFLANN

FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 19

 (c)

 (d)

Figure 4 Simulations for FLANN and WFLANN of Example 2: (a) uncorrupted data, (b) 20% corrupted data (c) 30% corrupted
data (d) 40% corrupted data

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

true function

outliers

FLANN

WFLANN

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

true function

outliers

WFLANN

FLANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 20

In previous examples we saw the effectiveness of Wilcoxon learning in non-linear function

approximation.

In the following examples we will see the performance of these machine learning algorithms

when these are applied to non-linear channel equalization in the presence of outliers.

1.5.2. Channel Equalization

Adaptive channel equalization has been found to be very important for effective digital

data transmission over linear dispersive channels. In high speed data transmission, the amplitude

and phase distortion due to variation of channel characteristics to which the data signal will be

subjected is to be suitably compensated. This compensation is usually accomplished by passing

samples of the received signal through a linear adaptive equalizer consisting of a tapped delay

line (TDL) having adjustable coefficients. In this form of equalizer structure, the current and past

values of the received signal are linearly weighted by equalizer coefficients and summed to

produce the output. Most of the known methods used to adjust the tap coefficients of the

equalizer are iterative in which some error criterion is minimized. In such techniques, a known

sequence of a white spectrum is transmitted; based on the difference between this known

sequence and the output sequence of the equalizer its coefficients are determined. However, the

distortion caused by the dispersive channel is nonlinear in nature in most of the practical

situations. The received signal at each sample instant may be considered as a nonlinear function

of the past values of the transmitted symbols. Further, since the nonlinear distortion varies with

time and from place to place, effectively the overall channel response becomes a nonlinear

dynamic mapping. Because of this, the performance of the linear TDL equalizer is limited.

Because of their large parallelism and nonlinear processing characteristics, ANNs and

FLANNs are capable of performing complex nonlinear mapping between their input space and

output space. They are capable of forming arbitrarily nonlinear decision boundaries to take up

complex classification tasks. Channel equalizers using a multilayer perceptron (MLP) and

Functional link approximation network(FLANN) has been reported before. In this it has been

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 21

shown that the ANN and FLANN based equalizers are capable of performing quite well in

compensating the nonlinear distortion introduced by the channel.

A basic block diagram of channel equalization is shown in Fig.(5).The transmitted signal x(n)

passes through the channel .The block N.L accounts for the nonlinearity associated with the channel

and q(n) is the Gaussian noise added through the channel. The equalizer is placed at the receiver end.

The output of the equalizer is compared with the delayed version of the transmitted signal to

calculate the error signal e (n), which is used by the update algorithm to update the equalization

coefficient such that the error becomes minimum.

Structures which are normally used for equalizers are:

a) LIN Structure:

The block diagram of a LIN structure is depicted in Fig.(6).The input signals are first

passed through a bank of k delays to form ,

where the subscript denotes the transpose of a matrix, and this signal vector obtained is

multiplied with a set of weights which gives us

e(n)
Update

Algorithm

 +

q (n)

Channel

Equalizer

NL

Delay

x(n) a(n) b(n)

y(n) = x(n-D)

Noise

y(n)

Figure 5 Digital communication system with equalizer.

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 22

. The error function is computed as the difference between and . This

error is then minimized in several iterations using LMS algorithm.

b) MLP Structure

 The block diagram of a system exploiting MLP networks is given in Fig. (7). The

multilayer structure of an MLP networks is composed of an input layer, an output layer

and one or more hidden layers. It is indicated in previous works that about 2 to 3 hidden

layers are enough for most systems. In the figure the structure has inputs, 2 hidden

layers with and nodes respectively and outputs. The structure of a system

applying MLP network is pretty simply. The node output from each of the layers is

directed used as the input to the successive layer nodes. The numbers of nodes as well

as the transfer functions in the layers are allowed to be different from each other.

)

)

)

)

∑

Figure 6 LIN Structure

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 23

Through the multilayer structure, we can attain nonlinear mapping from input to output

signals. Generally, we use the BP algorithm to train the MLP networks.

c) FLANN Structure

The block diagram of a system with FLANN is shown in Fig. (8), where the block

labeled F.E. denotes a functional expansion. These functions map the input signal

vector into linearly independent functions.

 . The linear combination of these function values is

presented in its matrix form, that is, , where , and is

the dimensional weighting matrix. The matrix is fed into a bank of identical

nonlinear functions to generate the equalized output , where

 , . Here the nonlinear function is normally defined as

Figure 7 MLP Structure

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

∑

∑

∑

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 24

 or any other activation function. The major difference between the hardware

structures of MLP and FLANN is that FLANN has only input and output layers, and

the hidden layers are completely replaced by the nonlinear mappings. In fact, the task

performed by the hidden layers in MLP is carried out by functional expansions in

FLANN. Since the input signals are nonlinearly mapped into the output signal space,

FLANN has also the ability to resolve the equalization problems for nonlinear channels.

Similar to MLP, the FLANN uses the BP algorithm to train the neural networks.

However, since the FLANN has much simpler structure than MLP, its speed of

convergence for training process is a lot faster than MLP.

In each simulation of Examples 3 and 4, the training data set consists of 100 randomly

chosen binary (-1,1) points (training patterns) with the corresponding values (target

values) composed of the same points but with randomly chosen position where the binary

values are reversed and these acts as outliers in the process of channel equalization. To this end,

20%, 30%, and 40% randomly chosen -values of the training data points will be corrupted. Then

the trained equalizer will be used for testing. The channel is represented using a linear part in

series with the non-linearity. Noise representing error in channel is added after the nonlinearity.

FE

∑

∑

∑

1

1

1

x1

x2

.

xn

Input layer

W

Figure 8 FLANN Structure

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 25

Example 3:

CH =

NL =

In this example, we compare the performances of LIN, ANN, WNN, FLANN, and

WFLANN. For LIN structure we use an 8 tap linear filter . For ANN and WNN, we use a

structure consisting of 4 inputs, 1 hidden layer with 8 nodes and an output node and a unit bias at

each hidden and output node..The activation functions of the hidden nodes as well as output

nodes are bipolar sigmoidal functions. For FLANN and WFLANN, the number of functional

expansion is 18 along with a unit bias, trigonometric expansion along with cross multiplication

of input signals is used, and the activation function of the output node is a bipolar sigmoidal

function.

The below figure shows the comparision between performance of WNN,MLP & linear structure

in equalization:

 (a)

2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

LMS

WNN

MLP

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 26

 (b)

 (c)

2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Nonlinear channel equalization

WNN

LMS

ANN

2 4 6 8 10 12 14 16
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

LMS

WNN

ANN

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 27

 (d)

Figure 9 Simulations for ANN and WNN of Example 3 with training using : (a) uncorrupted data, (b) 20% corrupted data (c)
30% corrupted data (d) 40% corrupted data

The below figure shows the comparision between performance of WFLNN,FLANN & linear

structure in equalization:

 (a)

2 4 6 8 10 12 14 16
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

LMS

WNN

MLP

2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR

BE
R

Nonlinear channel equalization

WFLANN

FLANN

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 28

 (b)

 (c)

2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Nonlinear channel equalization

LMS

FLANN

WFLANN

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

WFLANN

FLANN

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 29

 (d)

Figure 10 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data, (b) 10% corrupted
data (c) 20% corrupted data (d) 30% corrupted data (e) 40% corrupted data

Example 4:

CH =

NL =

In this example, we compare the performances of LIN, ANN, WNN, FLANN, and

WFLANN. For LIN structure we use an 8 tap linear filter. For ANN and WNN, we use a

structure consisting of 4 inputs, 1 hidden layer with 8 nodes and an output node and a unit bias at

each hidden and output node..The activation functions of the hidden nodes as well as output

nodes are bipolar sigmoidal functions. For FLANN and WFLANN, the number of functional

expansion is 18 along with a unit bias, trigonometric expansion along with cross multiplication

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

WFLANN

FLANN

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 30

of input signals is used, and the activation function of the output node is a bipolar sigmoidal

function.

The below figure shows the comparison between performance of WNN,MLP & linear structure

in equalization:

 (a)

 (b)

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR

BE
R

Nonlinear channel equalization

LMS

MLP

WNN

2 4 6 8 10 12 14 16 18 20 22
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

WNN

MLP

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 31

 (c)

 (d)

Figure 11 Simulations for ANN and WNN of Example 4 with training using : (a) uncorrupted data, (b) 10% corrupted data (c)
20% corrupted data (d) 30% corrupted data (e) 40% corrupted data

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Nonlinear channel equalization

WNN

MLP

LMS

2 4 6 8 10 12 14 16 18 20 22 24
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

WNN

MLP

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 32

The below figure shows the comparison between performance of WNN,MLP & linear structure

in equalization:

 (a)

 (b)

2 4 6 8 10 12 14 16 18 20 22 24
10

-4

10
-3

10
-2

10
-1

10
0

WFLANN

FLANN

LMS

2 4 6 8 10 12 14 16 18 20 22 24
10

-4

10
-3

10
-2

10
-1

10
0

WFLANN

FLANN

LMS

WILCOXON LEARNING AND ITS USE IN MLP AND FLANN

NIT ROURKELA 33

 (c)

 (d)

Figure 12 Simulations for FLANN and WFLANN of Example 3 with training using : (a) uncorrupted data, (b) 10% corrupted
data (c) 20% corrupted data (d) 30% corrupted data

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Nonlinear channel equalization

FLANN

WFLANN

LMS

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Nonlinear channel equalization

FLANN

WFLANN

LMS

CHAPTER 2

NON-LINEAR SYSTEM MODELING USING

VOLTERRA SERIES AND ITS

LINEARIZATION

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 35

2.1. Introduction

Volterra series expansions form the basis of the theory of polynomial nonlinear systems.

Volterra expansion is a general method to model nonlinear systems with soft or weak

nonlinearities. This includes saturation type nonlinearities observed in power amplifiers and

loudspeakers.

A truncated p-th order Volterra expansion is given as:

In this representation, is the k-th order operator and

is called the k-th order volterra kernel. Volterra series expansion is linear w.r.t. the kernel

coefficients. In other words, the nonlinearity of the expansions is completely due to the multiple

products of the delayed input values.

Volterra series can be regarded as a power series with memory or the extension of FIR

filters to representation of nonlinear systems. Small loudspeakers and other non linear devices

can be sufficiently modeled by a 2nd or 3rd order Volterra model. The 2nd order Volterra model

is given as:

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 36

The first term is a constant and is generally assumed to be zero, the second term is the

linear response (H1), and the third term is the nonlinear response (H2) .

Figure. (13) shows the p-th order Volterra model based on equation (2.1).The model

parameters are found by minimizing the weighted mean square error(WMSE).

Where, is the weight factor, N is the adaptation length and d(n) is the desired nonlinear

system output. The minimization is accomplished using the LMS or RLS algorithms [17].

The Volterra series have been widely applied as nonlinear system modeling technique

with considerable success. When the nonlinear system order is unknown, adaptive methods and

algorithms are widely used for the Volterra kernel estimation. The accuracy of the Volterra

kernels will determine the accuracy of the system model and the accuracy of the inverse system

used for compensation of the nonlinearity of the system.

H1

H2

Hp

+ -
x(n) y(n)

d (n)

e(n)

Figure 13 Pth order Volterra Model

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 37

2.2. Volterra Kernels Estimation and input vectors:

A third order nonlinear system with memory is identified using the adaptive algorithm

(LMS / RLS) for Volterra kernels estimation. The implementation of the adaptive Volterra filter

is based on the extended input vector and on the extended filter coefficients vector. Due to the

linearity of the input-output relation of the Volterra model with respect to filter coefficients, the

implementation of the adaptive algorithm was realized as an extension of the algorithm for linear

filters.

Next we will introduce the input vectors corresponding to different orders kernels. The

first order input vector, corresponding to a filter length M = 3, is defined as follows:

If we consider equal memories for different orders filters, “the second order input vector”

can be expressed by:

For symmetric kernels only the elements , having , of , are selected in the

input-output relation of the Volterra filter. Hence “the second order input vector”, written in

vector form is:

 (2.4)

and has the dimension (1×6).

For "the third order input vector" we propose to express the multiple input delayed signal

products by matrices elements. These matrices can be generated by multiplying “the second

order input vector" defined according to Eq. (2.3) by the elements of the first order input vector.

If we consider equal filters, M=3, and symmetric kernels it follows:

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 38

Hence, "the third order input vector" consists in fact, in that case, of 3 matrices as

indicated in Equations and corresponds to a symmetric third order Volterra

kernel. We can write "the third order input vector" in vector form as follows:

its dimension is (1×10).

The defined input vectors will be used to implement the LMS and RLS Volterra filter in a

typical nonlinear system identification application.

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 39

2.3. Volterra Kernels Estimation by the LMS Adaptive

Algorithm

A typical adaptive technique employing LMS algorithm used for Volterra kernels

identification is shown in Figure. (14).

The Volterra filter of fixed order and fixed memory adapts to the unknown nonlinear

system using one of the various adaptive algorithms. A simple and commonly used algorithm

uses an LMS adaptation criterion. The aim of this section is to discuss the simplest of the

algorithms, the LMS algorithm. Although the LMS algorithm has its weaknesses, such as its

dependence on signal statistics, which can lead to low speed or large residual errors, it is very

simple to implement and well behaved compared to the faster recursive algorithms. The main

topic of this section is to discuss the extension of the algorithm to the nonlinear case using the

previously defined input vectors. The discrete time impulse response of a first order (linear)

system with memory span M, is written in vector form as in Eq. (2.9) and the input vector as in

Eq.(2.10).

 +

Nonlinear System

LMS Volterra Filter _

Figure 14 Volterra kernel identification using adaptive method

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 40

In Eq.(2.9) the filter order is written as superscript. This notation will be kept consistent

for the rest of the section. Then, the output of a linear system is written as:

At sample k, the desired output is and the linear adaptive filter output is . For the

LMS algorithm, we minimize the Eq.(2.12).

The vector that minimizes the Eq. (2.12) is given by :

Where: is the input correlation matrix and

The well known LMS update equation for a first order filter is:

where μ is a small positive constant (referred to as the step size) that determines the speed of

convergence and also affects the final error of the filter output.

The extension of the LMS algorithm to higher order (nonlinear) Volterra filters involves

a few simple changes. Firstly the vector of the impulse response coefficients becomes the vector

of Volterra kernels coefficients. Also the input vector, which for the linear case contained only a

linear combination, for nonlinear Volterra filters, complicates.

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 41

Consider the Volterra representation with symmetric kernels. There are two parts of this

representation: (1) the Volterra kernel estimates, and (2) the products of the delayed input signal.

If we express the Volterra kernels and the input signal products in vector form, then we can write

the adaptive Volterra filter output using the vector notation. Each Volterra kernel (estimate at

sample k) can be written in vector form.

For simplicity we have constructed the nonlinear adaptive filter considering only first

order and 3rd order Volterra kernels.

The Eq.(2.13) gives “the input matrix” at sample k, containing the first, second and the

third order input vectors defined previously.

The size of the input matrix is determined by the size of the third order input vector .

“The filter coefficients matrix” at sample k is given by:

where is given by the Eq. (2.10), and are the second and third order

kernel expressed in vector form as indicated in Eq.(2.15) and (2.16) respectively.

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 42

The update equation for the LMS Volterra filter can be written also in matrix form:

 (2.17)

In the nonlinear case it is possible to set different step sizes for different order kernels.

Consequently we have introduced the step size matrix M, defined by

2.4. Volterra Kernels Estimation by the RLS Adaptive

Algorithm

The Volterra filter of a fixed order and a fixed memory adapts to the unknown nonlinear

system using one of the various adaptive algorithms. The use of adaptive techniques for Volterra

kernel estimation has been well studied. A simple and commonly used algorithm is based on the

LMS adaptation criterion. Adaptive Volterra filters based on the LMS adaptation algorithm are

computational simple but suffer from slow and input signal dependant convergence behavior and

hence are not useful in many applications.

The aim of this section is to discuss the efficient implementation of the RLS adaptive

algorithm on a third order Volterra filter. Due to the linearity of the input-output relation of the

Volterra model with respect to filter coefficients, the implementation of the RLS algorithm can

be realized as an extension of the RLS algorithm for linear filters. Hence we define the extended

input vector, for a third order Volterra filter, as:

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 43

and the extended filter coefficients vector as:

The elements of the extended input vector can be easily actualized based on the first

order, second order and third order input vectors using the proposed relations

As in the linear case the adaptive nonlinear system minimizes the following cost function at each

time:

Where H(n) and X(n) are the coefficients and the input signal vectors, respectively, as

defined in (2.19) and (2.18), λ is a factor that controls the memory span of the adaptive filter and

 represents the desired output. The solution of equation (2.20) can be obtained recursively

using the RLS algorithm.

The RLS algorithm updates the filter coefficients according to the following steps:

I. Initialization:

Define the filter memory length for H (n) and X (n).

H (0) = [0 0 … 0];

where is a small positive constant ;

II. Operations: for an iteration (n)

1. Create the input vector:

 X (n)

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 44

2. Compute the error:

3. Compute the scalar:

4. Compute the matrix:

5. Updates the filter vector:

6. Updates the matrix :

In the relations above denotes the inverse autocorrelation matrix of the extended input

signal. Inversion was done according to the matrix inversion lemma.

2.5. Nonlinearity compensation using Exact Inverse of

Volterra models

To compensate for the nonlinearity of the nonlinear system, the signal is passed through a

predistortion filter placed between the input signal and the nonlinear system as the shown in

figure (15).

The function h(x) is approximated by a third order Volterra model as described in section

2.3 or section 2.4.

Ideally, the inverse of a nonlinear system must exactly compensate for both the linear and

nonlinear distortions of the system. In contrast to the Volterra inverse that has a specific

structure, we do not impose any constraints on the structure of the exact inverse. Instead of

d (n) dpre (n) (n) Predistortion

Filter g(x)

Nonlinear

System h(x) Input signal

Figure 15 Predistortion filter for nonlinearity compensation

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 45

defining the filter structure and finding its parameters as is customary, we directly compute the

output of the predistortion filter so as to minimize the precompensation error

(n) as shown in fig (15). Input signal d (n) is fed into a time-varying predistortion

filter. The output of the predistortion filter is routed into a mathematical model of the nonlinear

system and also to the actual nonlinear system. The mathematical model of the loudspeaker

predicts the next output of the loudspeaker (n). This predicted output is used to derive a

precompensation error signal

((n)) that is the difference between the ideal output and the predicted

nonlinear system output. The parameters of the predistortion filter are then adjusted so that the

instantaneous precompensation error e (n) is minimized.

For exact compensation, we have:

Assuming in Eq. (2.1), the value of that

satisfies (2.21) is given as the solution of the following equation:

Where the coefficients { A(n) , B(n) , C(n) ,D(n) } are given as:

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 46

Figure 8 shows the structure of the predistortion filter based on the inverse technique

described called exact inverse technique. As seen here, the predistorted signal is the

root of a quadratic equation whose coefficients depend on the parameters of the lnonlinear

system model {H1,H2,H3} , the past values of the predistortion signal (the states) and

the input signal d(n) .

The exact inverse is a nonlinear filter with parameters varying on a sample-by-sample

basis as illustrated by equations (2.22) and (2.26).

For a p-th order loudspeaker model, the exact inverse is given as the root of a p-th order

polynomial whose coefficients can be computed in a fashion similar to the derivation of (2.22)

through (2.26). If p is odd, at least one real root is guaranteed to exist. If p is even and no real

Nonlinear Model

Parameters
State Buffer

Polynomial Coefficient Calculator

Polynomial Root Solver

Input

d(n)

dpre(n)

Figure 16 Structure of pre-distortion Filter (exact inverse model used)

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 47

root exists, a (p-1)-th order polynomial is derived from the p-th order polynomial by

differentiating relative to . The derived polynomial has order (p-1) which will be odd

and is guaranteed to have a real root. The real root of the (p-1)-th order polynomial minimizes

the precompensation error. If there are multiple real roots, the root with the smallest absolute

value is selected.

2.6. Simulation & Results:

a) We will identify first a nonlinear system described below:

System used is a 10 tap linear FIR filter followed by nonlinearity given by nonlinearity given by:

b(n)=a(n)+0.5*a
3
(n)

A noise is added such that SNR=20dB.

LMS algorithm took more than 10000 samples for convergence whereas RLS algorithm took less

than 5000 samples for convergence and also gave better result. The below figure shows the

identification results:

Figure 17 Nonlinear system identification using volterra model with LMS algorithm

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

Sample

M
a
g
n
it
u
d
e

Nonlinear output

System response

Model response

NON-LINEAR SYSTEM MODELING USING VOLTERRA SERIES AND ITS LINEARIZATION

NIT ROURKELA 48

 Figure 18 Nonlinear system identification using Volterra model with RLS algorithm

b) After identification we use the linearization technique using precompensator described in

section 2.5.

The figure below shows perfect linearization and contains both input and linearized output

overlapping.

Figure 19 Linearization of Volterra Model

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

Sample

M
a
g
n
it
u
d
e

System and model response

System response

model response

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Sample

M
a
g
n
it
u
d
e

Input and linearized output

input

linearized output

CHAPTER 3

WIENER AND HAMMERSTEIN MODEL

IDENTIFICATION AND THEIR

LINEARIZATION

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 50

3.1. Introduction

Many devices such as amplifiers, transmitters used in satellite channels and transducers

like electrodynamic loudspeakers exhibit nonlinear behavior especially at high signal levels.

Power amplifiers operating at nominal power levels are assumed linear, when driven at higher

power levels, they show saturation-type nonlinearities. Small loudspeakers used in cell phones

produce acceptable sound quality at low playback levels and are suitable for applications where

the phone is held close to the ear. In hands-free or multimedia applications such as videophones,

the loudspeaker is at about an arm's length from the user requiring higher sound levels. To

reduce the nonlinear distortion of these devices, their characteristics must be modeled and

inverse of these models must be computed. Many approaches have been used in the literature to

address this problem. Physical models have been extensively used in characterizing amplifiers.

Physical models such as the Small-Thiele model have also been developed for loudspeakers.

Identification of physical models usually requires extensive measurements and does not lend

itself to frequent parameter identification.

Volterra expansion [5] is a general method for modeling weak nonlinearities (i.e.

saturation-type) with memory. Adaptive algorithms such as LMS and RLS [21] have been

developed to determine the Volterra model parameters using the input/output measurements only

[17]. A major limitation of the Volterra model is that the number of parameters grows

exponentially with the model order; third or higher order models typically require several

thousand parameters. Hammerstein and Wiener models consisting of the cascade of linear

systems and memory-less polynomial nonlinearities are simpler models of nonlinearity and have

far fewer parameters. The major disadvantage of these models is that due to the lack of memory

they may not adequately model the inter-modulation distortions. To compensate for the nonlinear

distortions, inverse of the nonlinear model must be found. Both feedback and open-loop

solutions based on physical and Volterra models have been reported in the literature. Feedback

based solutions typically use microphone, acceleration or impedance feedback. Adaptive

nonlinear filters for open-loop compensation have been studied for some time, and applied in

other fields as well . Most Volterra based pre-compensators use the p-th order inverse developed

by Schetzen [18]. One disadvantage of the p-th order inverse is that high orders are needed to

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 51

find a proper inverse which is computationally very intensive. Exact inverse of the Volterra

model with the same order as the forward model have also been reported in [7] and is

computationally much more economical. The solution in [7] may not always result in a stable

inverse and suboptimal pseudo-exact inverses may have to be used. Although Wiener and

Hammerstein models are limited in their modeling capabilities, they are parsimonious and lend

themselves to having an exact nonlinear inverse. An adaptive linearization scheme for Wiener

systems is reported in [4].

In the following section we will derive the LMS algorithm for identification of Weiner

and Hammerstein model. Also we will present an exact inverse for the Wiener and Hammerstein

models that are fast and result in complete removal of the nonlinear distortions.

3.2. Block Structured Models:

Block structured models are nonlinear systems made up of interconnected linear and nonlinear

subsystems. The problem in their identification is to find a model and their parameter values for

each subsystem. Major constraint with block model is that the inner signals between the

subsystems are not measurable. Basic building blocks for block-oriented models are a linear

dynamic system and a nonlinear static transformation.

Typical block oriented models are

A Wiener model: In this a dynamic linear system is followed by a static non-linear system.

A Hammerstein model: In this a static non-linear system is followed by a dynamic linear system.

A Hammerstein-Wiener model: In this a dynamic linear system is placed between two static non-

linear systems.

Block models mentioned above are important as they depict most of the practical system which

exhibits some kind of non-linearities.

Many approaches have been proposed before for the identification of these structures:

• Iterative approach

• Over parameterization method

• Separable least-squares approach

• Frequency domain approach

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 52

• Stochastic method (kernel approach)

• Subspace approach

In this chapter we will go with an adaptive method of identifying the Weiner and Hammerstein

model parameters using gradient descent algorithm which works well as shown in the results.

3.3. Weiner Model and its parameter estimation :

Figure .20 shows the block diagram of a Wiener system that consists of a linear system

followed by a memory less polynomial nonlinearity. The linear system can be specified by a

finite impulse response (FIR) filter or an IIR (pole-zero)

transfer function .

We derive the parameters of the Wiener models using a gradient descent algorithm. The

arrangement is shown in Figure 21 The adaptation algorithm computes the parameters of the

linear system and the coefficients of the polynomial nonlinearity such that the error between the

model output and the desired output of the Wiener model is a minimum. We use the mean square

error criterion and the gradient algorithm to perform this minimization. Assuming that the linear

system is represented by a FIR impulse response, the signals at various stages of the Wiener

system can be written as:

Linear System f(y)=
x(n) y(n) z(n)

Figure 20 Weiner System

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 53

The sample error at time is given by :

The total error over a frame of length N is given by:

From (3.3) , the gradient is given as:

- e(n)

s(n)

f(y)= z(n)

Linear System
x(n) y(n)

Figure 21 Derivation of Weiner Model

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 54

From (3.2), we have :

Let:

be the vector of model parameters. Then starting from an initial guess and using

the gradient descent algorithm with a step size , the parameter vector at iteration can

be updated as:

From (3.1b), we have

From (3.1a), (3.1c) we have

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 55

The gradient vector can be computed by substituting (3.8) and (3.9) into (3.5b) and then

(3.5b) into (3.4). The parameter vector is then updated according to equation (3.7). The

algorithm continues until some termination criterion is met such as a predetermined number of

iterations is reached or the total error E is below some predetermined value E.

3.4. Hammerstein Model and its parameter estimation

Figure .22 shows the Hammerstein system consisting of a memoryless polynomial

nonlinearity followed by a linear system. Again, the linear system can be specified by a FIR

filter

 or an IIR (pole- zero) transfer function .

We derive the parameters of the Hammerstein models using a gradient descent algorithm.

The arrangement is shown in Figure. 23. The adaptation algorithm computes the parameters of

the linear system and the coefficients of the polynomial nonlinearity such that the error between

the model output and the desired output of the Hammerstein model is a minimum. We use the

mean square error criterion and the gradient algorithm to perform this minimization. Assuming

that the linear system is represented by a FIR impulse response, the signals at various stages of

the Hammerstein system can be written as:

f(x)=

Linear System x(n) y(n) z(n)

Figure 22 Hammerstein Model

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 56

The sample error at time is given by:

The total error over a frame of length N is given by:

From (3.14) , the gradient is given as:

From (3.13), we have:

e(n)

s(n)

-

f(x)=

Linear System x(n) y(n) z(n)

Figure 23 Derivation of Hammerstein model

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 57

Let:

be the vector of model parameters. Then starting from an initial guess and using

the gradient descent algorithm with a step size , the parameter vector at iteration can

be updated as:

From (3.12), we have

and

The gradient vector can be computed by substituting (3.18) and (3.19) into (3.16) and then (3.16)

into (3.15). The parameter vector is then updated according to equation (3.17). The algorithm

continues until some termination criterion is met such as a predetermined number of iterations is

reached or the total error E is below some predetermined value E.

3.5. Inverse of the Weiner and Hammerstein Models:

Figure. 24 show the exact inverse of the Wiener model. The cascade of this system with

the system in Figure.20 yields an identity system. Similarly Figure.25 shows the exact inverse of

the Hammerstein system. Again we observe that the inverse always exists and by construction is

stable.

In Figure. 24, the first part consists of a root solver that finds the roots of the polynomial

.that are passed through the linear inverse system H to produce the pre-distorted

signal . We note that this inverse always exists because we can always find the roots of

the polynomial equation f(y) =x (n). If the polynomial's order is odd, there is at least one real

root. The linear FIR part H may not be a minimum phase impulse response. In such cases, a

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 58

stable delayed inverse of the FIR impulse response can always be found using the QR

decomposition or the FFT method.

The input signal in Figure 25 is passed through the inverse of the linear FIR impulse

response H to generate which is then passed through a polynomial root solver that finds the

roots of .

The roots form the pre-distorted signal . It will be verified that passing

through the Hammerstein system in Figure 22 will yield back x (n) the original input signal.

3.6. Simulation & Results

a) Here we try to identify a given Weiner system which represents a nonlinear system

using the technique described in section 3.3. The system contains a linear part which is an

FIR filter with 3 taps and a third order nonlinear part in cascade with the linear part. Also

noise is added after the nonlinear part to make the system look practical. For training the

model random input is passed through both the system and the model.2000 input samples

were used in this example.

Roots of

f(y)=x(n)

Inverse Linear

System(H-1)

x(n)

dpre (n)

y(n) dpre (n) x(n) Inverse Linear

System(H1
-1)

Roots of

f(x)=y(n)

Figure 24 Exact inverse of Weiner system

Figure 25 Exact inverse of Hammerstein system

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 59

After the model is trained a single tone signal of frequency 10 Hz was passed through

the model and the response of the model was compared with the response of the actual

system Figure 26.

After this a pre-compensator was placed before the model as was described in Section

3.5. The inverse FIR was designed using the inverse FFT method. We find in simulation

that more the number of taps we take in inverse FIR filter better is the linearized output

obtained. The input to this the pre-compensator is the input to the total system and its

output is the input to the nonlinear model. The output of the nonlinear model preceded by

the pre-compensator is shown in Figure 27.

Figure 26 System and identified model output response matching

.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

6

8

10

No of iterations

R
e

s
p

o
n

s
e

 m
a

tc
h

in
g

System response

Model response

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 60

(a)

(b)

Figure 27 Actual output and precompensated nonlinear system output matching with different length of inverse FIR filter.
a) 3 taps b) 24 taps

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No of iterations

In

p
u

t a
n

d
 L

in
e

a
ri

ze
d

 O
u

tp
u

t
input

linearized output

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No of iterations

In
p

u
t

a
n

d
 L

in
e

a
ri

z
e

d
 O

u
tp

u
t

input

linearized output

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 61

 b) Now will identify a given Hammerstein system which represents a nonlinear

system using the technique described in section 3.4. The system contains a nonlinear part

(third order) in cascade with a 3 tap FIR filter. Also noise is added after the linear part to

make the system look practical. For training the model random input is passed through

both the system and the model.2000 input samples were used in this example.SNR of

20dB is used in the simulation.

After the model is trained a single tone signal of frequency 10 Hz was passed through the

model and the response of the model was compared with the response of the actual

system Figure 28.

After this a pre-compensator was placed before the model as was described in Section

3.5. The inverse FIR was designed using the inverse FFT method. We find in simulation

that more the number of taps we take in inverse FIR filter better is the linearized output

obtained. The input to this the pre-compensator is the input to the total system and its

output is the input to the nonlinear model. The output of the nonlinear model preceded by

the pre-compensator is shown in Figure 29.

Figure 28 System and identified model output response matching.

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5

6

No of iterations

R
es

p
o

n
se

 m
at

ch
in

g

System response

Model response

WIENER AND HAMMERSTEIN MODEL IDENTIFICATION AND THEIR LINEARIZATION

NIT ROURKELA 62

 (a)

(b)

Figure 29 Actual output and precompensated nonlinear system output matching with d different length of inverse FIR filter.

a) 3 taps b) 24 taps

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

No of iterations

In
p

u
t

a
n

d
 L

in
e

a
ri

z
e

d
 O

u
tp

u
t

input

linearized output

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No of iterations

In
p

u
t

a
n

d
 L

in
e

a
ri

z
e

d
 O

u
tp

u
t

input

linearized output

CHAPTER 4

HAMMERSTEIN MODEL IDENTIFICATION

WITH IIR LINEAR STRUCTURE USING

GENETIC ALGORITHM

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 64

4.1. Introduction

System identification is a pre-requisite to analysis of a dynamic system and design of an

appropriate controller for improving its performance. The more accurate the mathematical model

identified for a system, the more effective will be the controller designed for it. In many identification

processes, however, the obtainable model using available techniques is generally crude and

approximate.

In conventional identification methods, a model structure is selected and the parameters of that

model are calculated by optimizing an objective function. The methods typically used for optimization of

the objective function are based on gradient descent techniques. On-line system identification used to

date are based on recursive implementation of off-line methods such as least squares, maximum likely-

hood or instrumental variable. Those recursive schemes are in essence local search techniques. They go

from one point in the search point to another at every sampling instant, as a new input-output pair

becomes available. This process usually requires a large set of input/output data from the system which

is not always available. In addition the obtained parameters may be locally optimal.

Gradient – descent training algorithm are the most common form of training algorithms in signal

processing today because they have a solid mathematical foundation . Gradient – descent training

however leads to suboptimal performance under nonlinear conditions. Genetic algorithm has been used

in many applications to produce a global optimal solution. Ths approach is a probablistic guided

optimization process which simulates the genetic evolution. The algorithm cannot be trapped in the

local minima as it employs a random mutation approach.In contrast to classical optimization algorithm,

genetic algorithms are not guided in their search process by local derivatives. Trough coding the

population with stronger fitness are identified and maintained while population with weaker fitness are

removed. This process ensures that better offsprings are produced from their parents.This search

process is stable and robust and can identify global optimal parameters of a system.GA has been applied

tinto many diverse areas such as function optimization .image processing and system identification .

The identification of nonlinear systems is a topic which has received considerable

attention over the last two decades. Generally speaking, when it is difficult to model practical

systems by mathematical analysis method, system identification may be an efficient way to

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 65

overcome the shortage of mechanism analysis method. The goal of the modeling is to find a

simple and efficient model which is in accord with the practical system. In many cases, linear

models are not suitable to present these systems and nonlinear models have to be considered.

Since there are nonlinear effects in practical systems, e.g. harmonic generation, intermediation,

desensitization, gain expansion and chaos, we can infer that most control systems are nonlinear.

Nonlinear models are more widely used in practice, because most phenomena are nonlinear in

nature. Indeed, for many dynamic systems the use of nonlinear models is often of great interest

and generally characterizes adequately physical processes over their whole operating range.

Thus, accuracy and performance of the control law increase significantly. Therefore, nonlinear

system identification is much more important than linear system identification. There is no

common approach to nonlinear system identification, and some efficient methods of

identification are only fit to specific nonlinear systems.

A simple and useful model of nonlinear systems is the Hammerstein model. Recently,

Hammerstein model has been received great attention by researchers, because its structure is

simple and it can effectively reflect nonlinearity of dynamic system. Several identification

algorithms for the Hammerstein model have been investigated by using correlation theory,

orthogonal functions, polynomials, neural networks, piecewise linear model, and so on.

Hammerstein models are composed of a static nonlinear gain and a linear dynamics part.

In some situations, they may be a good approximation for nonlinear plants. The problem of

identifying plants based on such a class of models has been given a great deal of interest over the

last years. The basic approach is to suppose polynomial (or polygonal) for the nonlinear element

of the model. Then, the identification problem turns out to be a parametric one since it consists

in estimating the parameters of the model linear and nonlinear parts.

 Here we will follow a different approach, we will use a FLANN structure to

model the nonlinear structure as it is very useful in identifying nonlinearity, and then use genetic

algorithm to identify the parameter of model linear and nonlinear part. In this chapter GA is used

for simultaneously pruning of functional links and weight updation of the total parameters. While

constructing an functional link artificial neural network the designer is often faced with the

problem of choosing a network of the right size for the task to be carried out. The advantage of

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 66

using a reduced neural network is that it’s less costly and faster in operation. However, a much

reduced network cannot solve the required problem while a fully FLANN may lead to accurate

solution. Choosing an appropriate FLANN architecture of a learning task is then an important

issue in training neural networks. To achieve the cost and speed advantage, appropriate pruning

of FLANN structure is required. Procedure for simultaneous pruning and training of weights

have been carried out in subsequent sections to obtain a low complexity reduced structure

4.2. Genetic algorithm

In the case of deterministic search, algorithm methods such as steepest gradient methods

are employed (using gradient concept), where as in stochastic approach, random variables are

introduced. Whether the search is deterministic or stochastic, it is possible to improve the

reliability of the results. GA’s are stochastic search mechanisms that utilize a Darwin criterion of

population evolution. The GA has robustness that allows its structural functionality to be applied

to many different search problems. This effectively means that once the search variables are

encoded into a suitable format, the GA scheme can be applied in many environments. The

process of natural selection, described by Darwin, is used to raise the effectiveness of a group of

possible solutions to meet an environmental optimum.

 Genetic algorithms are very different from most of the traditional optimization methods.

Genetic algorithms need design space to be converted into genetic space. So genetic algorithm

works with coding variables. The advantage of working with a coding variable space is that

coding discretizes the search space even though the function may be continuous. A more striking

difference between genetic algorithms and most of the traditional optimization methods is that

GA uses a population of points at one time in contrast to the single point approach by traditional

optimization methods. This means that GA processes a number of designs at the same time.

4.2.1. GA Operations

The GA operates on the basis that a population of possible solutions, called

chromosomes, is used to access the cost surface of the problem. The GA evolutionary process

can be thought of as solution breeding in that it creates a new generation of solutions by crossing

two chromosomes. The solution variables or genes that provide a positive contribution to the

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 67

population will multiply and be passed through each subsequent generation until an optimal

combination is obtained.

 The population is updated after each learning cycle through three evolutionary

processes: selection, crossover and mutation. These create the new generation of solution

variables. From the population a pool of individuals is randomly selected, some of these survive

into the next iterations population. A mating pool is randomly created and each individual is

paired off. These pairs undergo evolutionary operators to produce two new individuals that are

added to the new population.

 The selection function creates a mating pool of parent solution string based upon

the “survival of the fittest” criterion. From the mating pool the crossover operator exchanges

gene information. This essentially crosses the more productive genes from within the solution

population to create an improved, more productive, generation. Mutation randomly alters

selected genes, which helps prevent premature convergence by pulling the population into

unexplored areas of the solution surface and add new gene information into the population.

4.2.2. Population Variable

A chromosome consists of the problem variables, where these can be arranged in a vector

or a matrix. In the gene crossover process, corresponding genes are crossed so that there is no

inter- variable crossing and therefore each chromosome uses the same fixed structure. An initial

population that contains a diverse gene pool offers a better picture of the cost surface where each

chromosome within the population is initialized independently by the same random process.

 In the case of binary-genes each bit is generated randomly and the resulting bit-words

are decoded into their real value equivalent .The binary number is used in the genetic search

process and the real value is used in the problem evaluation. This type of initialization results in

a normally distributed population of variables across a specific range. A GA population, P,

consists of a set of N chromosomes and N fitness values where the

fitness is some function of the error matrix.

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 68

The GA is an iterative update algorithm and each chromosome requires its fitness to be

evaluated individually. Therefore, N separate solutions need to be assessed upon the same

training set in each training iteration. This is a large evaluation overhead where population sizes

can range between twenty and a hundred, but the GA is seen to have learning rates that evens

this overhead out over the training convergence.

4.2.3 Chromosome selection.

The selection process is used to weed out the weaker chromosomes from the population

so that the more productive genes may be used in the production of next generation. The

chromosomes fitness are used to rank the population with each individual assigned a fitness

value, f

The solution cost value of the ith chromosome in the population is calculated from a training

block of M training signals and from this cost an associated fitness is assigned:

The fitness can be considered to be the inverse of the cost but the fitness function in Eq () is

preferred for stability reasons, i.e.

When the fitness of each chromosome in the population has been evaluated, two pools are

generated, a survival pool and a mating pool. The chromosomes from the mating pool will be

used to create a new set of chromosomes through the evolutional processes of natural selection

and the survival pool allows a number of chromosomes to pass onto the next generation. The

chromosomes are selected randomly from the two pools but biased towards the fittest. Each

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 69

chromosome may be chosen more than once and the fitter chromosomes are more likely to be

chosen so that they will have a greater influence in the new generation of solutions.

4.2.4 Gene Crossover

The crossover operator exchanges gene information between two selected chromosomes.

This operation aims to improve the diversity of the solution vectors. The pair of chromosomes,

taken from the mating pool, becomes the parents of the two offspring chromosomes for the new

generation.

In the case of a binary crossover operation the least significant bits are exchanged

between corresponding genes of the two parents. For each gene- crossover a random position

along the bit sequence is chosen and then all of the bits right of the crossover point is exchanged.

In Figure 30 (a) , which shows a single point crossover , the fifth position is randomly chosen,

where the first position corresponds to the left side. The bits from the right of the fourth bit will

be exchanged. Figure 30(b) shows a two point crossover in which two points are randomly

chosen and the bits in between them are exchanged. At the start of learning process the extent of

crossing over the whole population can be decided allowing the evolutionary process to

randomly select the individual genes. The probability of a gene crossing, P (crossing), provides a

percentage estimate of the genes that will be affected within each parent. P (crossing) = 1 allows

all the gene values to be crossed and P (crossing) = 0 leaves the parents unchanged, where a

random gene selection value, ω ∈ is governed by this probability of crossing.

 1 0 1 0 0 1 0 1

 Before crossover

 0 0 1 0 1 1 1 0

 1 0 1 0 1 1 1 0

 After crossover

 0 0 1 0 0 1 0 1

(a)

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 70

 1 0 1 0 0 1 0 1

 Before crossover

 0 0 1 0 1 1 1 0

 1 0 1 0 1 1 0 1

 After crossover

 0 0 1 0 0 1 1 0

(b)

Figure 30 Gene crossover (a) Single point crossover (b) Double point crossover

The crossover does not have to be limited to this simple operation. The crossover

operator can be applied to each chromosome independently, taking different random crossing

points in each gene. This operation would be more like grafting parts of the original genes onto

each other to create the new gene pair. All of a chromosome's genes are not altered within a

single crossover. A probability of gene-crossover is used to randomly select a percentage of the

genes and those genes that are not crossed remain the same as one of the parents.

 4.2.5 Chromosome Mutation

The last operator within the breeding process is mutation. Each chromosome is

considered for mutation with a probability that some of its genes will be muted after the

crossover operation. A random number is generated for each gene, if this value is within the

specified mutation selection probability, P(mutation), the gene will be mutated. The probability

of mutation occurring tends to be low with around one percent of the population genes being

affected in a single generation. In the case of a binary mutation operator, the state of the

randomly selected gene-bits is changed, from zero to one or vice-versa.

 1 0 1 1 0 0 1 0 Before Mutation

 1 0 1 1 1 0 1 0 After Mutation

Figure 31 Mutation operation in GA

Selected bit for mutation

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 71

A simple genetic algorithm treats the mutation as a secondary operator with the role of

restoring lost genetic materials. For example consider the following population having four

eight-bit strings.

 0 1 1 0 1 0 1 1

 0 0 1 1 1 1 0 1

 0 0 0 1 0 1 1 0

 0 1 1 1 1 1 0 0

All the four strings have a zero in the left most bit position. If the true optimum solution

requires a one in that position, then neither reproduction nor crossover operator will be able to

create a one in that position. Only mutation operation can change that zero to one.

4.3. Parameters OF GA.

There are some parameters value required for GA. To get the desired result these parameters

should be chosen properly.

(a) Crossover and Mutation Probability:

There are two basic parameters of GA - crossover probability and mutation probability.

Crossover probability: This probability controls the frequency at which the crossover

occurs for every chromosome in the search process. This is a number between (0, l) which is

determined according to the sensitivity of the variables of the search process. The crossover

probability is chosen small for systems with sensitive variables. If there is crossover, offspring

are made from parts of both parent’s chromosome. Crossover is made in hope that new

chromosomes will contain good parts of old chromosomes and therefore the new chromosomes

will be better. However, it is good to leave some part of old populations survive to next

generation.

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 72

Mutation probability: This parameter decides how often parts of chromosome will be

mutated. If there is no mutation, offspring are directly copied from crossovered ones without any

change. If mutation is performed, one or more parts of a chromosome are changed. If mutation

probability is 100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation

generally prevents the GA from falling into local extremes. Mutation should not occur very

often, because then GA will in fact change to random search.

 (b) Other Parameters. There are also some other parameters in GA. One important parameter is

population size.

Population size: How many chromosomes are in population in one generation. If there are

too few chromosomes, GA has few possibilities to perform crossover and only a small part of

search space is explored. On the other hand, if there are too many chromosomes, GA slows

down. Research shows that after some limit (which depends mainly on encoding and the

problem) it is not useful to use very large populations because it does not solve the problem

faster than moderate sized populations.

4.4. Pruning of FLANN structure along with

parameter estimation using GA.

In this Section a new algorithm for simultaneous training and pruning of weights using binary

coded genetic algorithm is studied. Such a choice has lead to effective pruning of branch and update

of weights. The pruning strategy is based on the idea of successive elimination of less productive

paths (functional expansions) and elimination of weights from the FLANN structure. As a result the

overall architecture of the FLANN based model is reduced which in turn reduces the corresponding

computational cost associated with the model without sacrificing the performance. Various steps

involved in this algorithm are dealt in this section.

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 73

Step 1- Initialization in GA:

A population of M chromosomes is selected in GA in which each chromosome constitutes

(T×E)× (L+1) + L×W number of random binary bits where the first T×E number of bits are

called Pruning bits (P) and the next T×E×L bits represent the weights associated with various

branches (functional expansions) of the FLANN model and the last L×W bits represents the

weight associated with the linear part of the model placed after the FLANN in the Hammerstein

model .Again (T) represents the number of inputs and E represents the number of expansions

specified for each input. Thus each chromosome can be schematically represented as shown in

the Fig. (32).

 A pruning bit (p) from the set P indicates the presence or absence of expansion branch which

ultimately signifies the usefulness of a feature extracted from the time series. In other words a

binary 1 will indicate that the corresponding branch contributes and thus establishes a physical

connection whereas a 0-bit indicates that the effect of that path is insignificant and hence can be

neglected.

Step 2- Generation of input training data:

K (≥500) number of signal samples is generated.

Step 3- Decoding:

 Each chromosome in GA constitutes random binary bits. So these chromosomes need to be

converted to decimal values lying between some ranges to compute the fitness function. The

equation that converts the binary coded chromosome in to real numbers is given by:

T×E bits

Pruning

bits (P)

L bits L bits L bits L bits L bits L bits

V=T×E×L bits V=W×L bits

Figure 32 Bit allocation scheme for pruning and weight updating

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 74

where , ,RV,DV represents the minimum range, maximum range, decimal and

decoded value of an L bit coding scheme representation.The first T×E number of bits is not

decoded since they represent pruning bits.

Step 4 – Compute the estimated output

At nth instant the estimated output of the neuron can be computed as

where (n) represents jth expansion of the ith signal sample at the nth instant. and

 represents the jth expansion weight and jth pruning weight of the ith signal sample for

mth chromosome at kth instant. corresponds to the bias value fed to the neuron.

This is then passed through the linear part of the model to get the estimated output.

Step 5 – Calculation of cost function:

Each of the desired output is compared with corresponding estimated output and K errors are

produced. The mean square corresponding to m-th chromosome is determined by using the

relation:

This is repeated for M times.

Step 6 – Operations of GA:

Here the GA is used to minimize the MSE. The crossover, mutation and selection operators are

carried out sequentially to select the best M individuals which will be treated as parents in the

next generation.

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 75

Step 7 – Stopping Criteria:

The training procedure will be ceased when the MSE settles to a desirable level. At this moment

all the chromosomes attain the same genes. Then each gene in the chromosome represents an

estimated weight.

4.5. Simulation & Results

a) In this example a static system is used. Nonlinearity given by:

 b=(a.^3)+0.3*(a.^2)-0.4*a;

 In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the

input and

 n =0, 1, 2, 3,4,5,6.

Probability of crossover used is pc=0.8 and that of mutation is pm=0.1.

The identification result using the structure as shown in Figure 33 is shown below:

Pruned weights come out to be:

1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0

 The normalize mean square error plot given by NMSE= 10*log10 () is shown below:

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Actual

Identified

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 76

b) In this example a dynamic system with static nonlinearity is identified. Nonlinearity is given

by:

 b = - 0.1*(a.^3) + 0.2*(a.^2) + a;

 In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the

input and

 n =0, 1, 2, 3.

Probability of crossover used is pc=0.8 and that of mutation is pm=0.1.

0 20 40 60 80 100 120 140 160 180 200
-25

-20

-15

-10

-5

0

Iteration

NM
SE

GA based

algorithm

noise

w11

w1E

p11

p1E

x (n) . . .
. . .

11

12

1E

w12 p12

. . .

 Non-Linear Plant

d (n) x (n) e (n)

 +
 —

y (n)

FLANN model

using Pruning

Figure 33 FLANN based static nonlinear system identification model showing updating weight and pruning
weights.

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 77

The identification result using the structure as shown in Figure 34 is shown below:

Pruned weights come out to be:

 1 0 0 1 1 0 0 0 0 1

The normalize mean square error is shown below:

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Actual

identified

0 10 20 30 40 50 60 70 80 90 100
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Iterations

NM
SE

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 78

3) In this example a Hammerstein type system with static nonlinearity and IIR linear part is

used.

 Nonlinearity is given by:

 b = a + 0.5*(a. ^3);

 Linear structure is given by:

 Forward network: B=[0.4 0.2];

 and Reverse network: A=[0.8 0.6];

 In the FLANN structure the expansions used are x, sin (n*pi*x), cos (n*pi*x) where x is the

input and

 n =0, 1,2,3,4, 5, 6.

w11

w1E

p11

p1E

x(n) . . .
. . .

11

12

1E

w12 p12

. . .

x(n-1) . . .
. . .

21

22

2E

w22 p22

w21

w2E

p21

p2E

. . .

Z-1

. . .
Z-1

wT1

wTE

pT1

pTE

x(n-T+1)

. . .
. . .

T1

T2

TE

wT2 pT2

. . .

∑

+1

Plant(FIR

structure)
NL

noise

d(n) x(n)

y(n)

GA based

algorithm

e(n)
 +

 —

Non-Linear Plant

FLANN model

using Pruning

Figure 34 GA used in identification and pruning of FLANN structure and identification of weights for dynamic
plant

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 79

 The normal FLANN structure without pruning is also used and the results are compared.

The pruning result is very close to the normal structure and reduces the hardware requirement

to a great level. Probability of crossover used is pc=0.8 and that of mutation is pm=0.1.The

identification using the pruned structure and normal structure as shown in Figure 35 is shown

below:

Pruned weights come out to be:

 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4) This is same like the previous example but with different linear and nonlinear structure.

 Nonlinearity is given by:

 b = a + 3*(a.^2) + 2*(a.^3);

 Linear structure is given by:

 Forward network: B= [1 .5 .4 2];

and Reverse network: A=[.5 -.4 -.26 -.03];

Probability of crossover used is pc=0.85and that of mutation is pm=0.1.The identification using

the pruned structure and normal structure as shown in Figure 35 is shown below:

0 50 100 150 200 250 300
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

original

pruned

GA

HAMMERSTEIN MODEL IDENTIFICATION WITH IIR LINEAR STRUCTURE USING GENITIC ALGORITHM

NIT ROURKELA 80

Pruned weights comes out to be:

 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

30

original

pruned

GA

Figure 35 FLANN based static nonlinear system identification model showing updating weight and pruning weights

noise

e(n)

 (n)

GA based

algorithm

FLANN model

using Pruning

 NL
d (n) x (n)

w1

wE

p1

pE

x(n)

(n)

1

2

E

w2 p2

. . .

—

+

Z-1

Z-1

Z-1

Z-1

+

—

Z-1

Z-1

Z-1

Z-1

+

—

b1=0.4

b2=0.2

a1=0.8

a2=0.6

d

(n)

b1
’

b2
’

a1
’

a2
’

NIT ROURKELA 81

CONCLUSIONS

1) In this a modified backpropogation learning algorithm for MLP and FLANN was discussed and

the resulting network was called WNN and WFLANN respectively. These were then used in

function approximation and channel equalization and results show its effectiveness in dealing

with outliers present in training sequence.

2) Volterra series expansion was studied and then these models were applied in nonlinear system

identification whose weights were applied using both LMS and RLS equation and results showed

that RLS needs much smaller training pattern than LMS and thus is very useful.

The resulting model parameters were then used to find the coefficients of the polynomial

equation whose root are named as precompensator output, which when applied to nonlinear

system gives a linear output. This method is very efficient as it’s very simple and easy to design.

3) Two very useful block models namely Weiner model and Hammerstein model were studied and

its parameters were derived by very simple LMS algorithm. Also there linearization was

performed and results showed that the linear inverse is better when the number of taps in the

inverse filter was increased.

4) Finally genetic algorithm was used for identification of Hammerstein model in which linear part

is an IIR structure. Genetic algorithm could easily identify such complex structure. Pruning was

also applied to the FLANN structure used for modeling nonlinearity and results proved that

without lose in quality it reduces the number of expansions required to a great level and thus

reduces the implementation cost and complexity.

 Thus this work gives very good scope in various applications were nonlinearities are to be dealt

with.

NIT ROURKELA 82

REFERENCES

[1]. Jer-Guang Hsieh, Yih-Lon Lin, and Jyh-Horng Jeng, “Preliminary Study on Wilcoxon Learning

machines”, IEEE Trans. on neural networks, Vol. 19, No. 2, February 2008.

[2]. Jagdish C. Patra, Ranendra N. Pal, B. N. Chatterji, and Ganapati Panda, “Identification of Nonlinear

Dynamic Systems Using Functional Link Artificial Neural Networks”, IEEE Trans. on systems, Vol.

29, No. 2, April 1999.

[3]. Tomohiro Hachino, Katsuhisa Deguchi and Hitoshi Takata, “Identification of Hammerstien Model

Using Radial Basis Function Networks and Genetic Algorithm”, 5th Asian Control Conference

2004.

[4]. Khosrow Lashkari, Akshaya Puranik, “Exact Linearization of Wiener and Hammerstien System”,

IEEE 2005.

[5]. V.John Mathews, “Polynomial Signal Processing”, Wiley Inter-Science,2000.

[6]. Hazem M. Abbas , Mohamed M. Bayoumi ,”An adaptive evolutionary algorithm for Volterra

system identification”,ELSEVIER 2005.

[7]. Khosrow Lashkari, “High Quality Sound from Small Loudspeakers Using the Exact Inverse”, IEEE

2004.

[8]. Arthur J. Redfern and G. Tong Zhou,”A Root Method for Volterra System Equalization” ,IEEE

Signal Processing Letters, Vol. 5, No. 11, November 1998.

[9]. John Tsimbinost JS and Kenneth V. Lever,” The Computational Complexity of Nonlinear

Compensators based on the Volterra Inverse”, IEEE 1996.

[10]. Chandrakumar Bhumireddy and C. L. Philip Chen ,”Genetic Learning of Functional Link

Networks”, IEEE 2003.

[11]. Nader Sadegh,” A Perceptron Network for FunctionalIdentification and Control of Nonlinear

Systems”, IEEE Transactions On Neural Networks, Vol. 4, No. 6 , November 1993.

[12]. Khosrow Lashkari, “A Modified Volterra-Wiener-Hammerstein Model for Loudspeaker

Precompensation”, IEEE 2005.

[13]. K.S.Narendra and P.G.Gallman,” An Iterative Method for the IdentScation of Nonlinear Systems

Using a Hammerstein Model ”, IEEE Trans. on Automatic Control.

NIT ROURKELA 83

[14]. W. Lin and P.X. Liu,”Hammerstein model identification based on bacterial foraging”,

ELECTRONICS LETTERS 9th November 2006 Vol. 42 No. 23.

[15]. H.-X. Li," Identification of Hammerstein models using genetic Algorithms", IEE, 1999

[16]. Kristinn Kristinsson and Guy A. Dumont, "System Identification and Control Using Genetic

Algorithms", IEEE Transactions On Systems, Man, And Cybernetics, Vol. 22, No. 5, September

2001.

[17]. V. J. Matthews, "Adaptive Polynomial Filters", IEEE SP magazine, Vol. 8, No. 3, pp. 10-26, July

1991.

[18]. M. Schetzen, "Theory of pth-order Inverses of Nonlinear Systems", IEEE Trans. On Circuits and

Systems, CAS-23, No. 5, May 1976, pp. 285-291.

[19]. Martin T. Hagan, Howard B. Demuth and Mark Beale,"Neural Network Design".

[20]. Kumpati S. Narendra, and Kannan Parthasarathy," Identification and Control of Dynamical

Systems Using Neural Networks", IEEE Transactions On Neural Networks. Vol. 1. No. 1. March

1990

[21]. Bernard Widrow and Samuel D.Stearns,”Adaptive Signal Processing”,Pearson education.

