
 1

REAL TIME IMPLEMENTATION OF DES
ALGORITHM BY USING TMS3206713 DSK.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Telematics & Signal Processing

By

B.Rajesh

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

REAL TIME IMPLEMENTATION OF DES
ALGORITHM BY USING TMS3206713 DSK.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in
Telematics & Signal Processing

By

B.Rajesh

Under the Guidance of

Prof. G.S.Rath.

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2008

 3

National Institute Of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Real Time Implementation of DES Algorithm

by using TMS320C6713 DSK” submitted by B.Rajesh in partial fulfillment of the

requirements for the award of Master of Technology Degree in Electronics &

communication Engineering with specialization in “Telematics & Signal Processing”

at the National Institute of Technology, Rourkela (Deemed University) is an authentic

work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University / Institute for the award of any Degree or Diploma.

 Prof. G.S.Rath.
 Dept. of Electronics & Communication Engg.

Date: 29-05-2008. National Institute of Technology
 Rourkela-769008

 4

Acknowledgement
 First of all, I would like to express my deep sense of respect and gratitude towards my

advisor and guide Prof. G. S. Rath, who has been the guiding force behind this work. I

am greatly indebted to him for his constant encouragement, invaluable advice and for

propelling me further in every aspect of my academic life. His presence and optimism

have provided an invaluable influence on my career and outlook for the future. I

consider it my good fortune to have got an opportunity to work with such a wonderful

person.

 Next, I want to express my respects to Prof. G. Panda, Prof. K. K. Mahapatra,

Prof. S.K. Patra and Dr. S. Meher for teaching me and also helping me how to learn.

They have been great sources of inspiration to me and I thank them from the bottom of

my heart.

 I would like to thank all faculty members and staff of the Department of Electronics

and Communication Engineering, N.I.T. Rourkela for their generous help in various ways

for the completion of this thesis.

 I would also like to mention the names of madhu and arun for helping me a lot during

the thesis period.

 I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the

obvious. I’ve enjoyed their companionship so much during my stay at NIT, Rourkela.

 I am especially indebted to my parents for their love, sacrifice, and support. They are

my first teachers after I came to this world and have set great examples for me about how

to live, study, and work.

 Rajesh.B

 Roll No: 20607025

Dept of ECE, NIT, Rourkela

 5

Contents

1. Certificate 1

2. Acknowledgement 4

3. Abstract. 7

4. List of figures 8

5. List of tables 9

6. Introduction 10

7. Chapter 1
 Data Encryption Standard Algorithm
 1.1 DES Model 13
 1.2 Sixteen Rounds of DES 14

8. Chapter 2
 Introduction to TMS320C6713 DSK
 2.1 Introduction 19
 2.2 DSK Support Tools 20
 2.2.1 DSK Board 21
 2.2.2 TMS320C6713 Digital Signal Processor 23
 2.3 Code Composer Studi006F 23
 2.4 Quick Test of DSK 24

9. Chapter 3
 Input and Output with DSK
 3.1 Introduction 27
 3.2 TLV320AIC23 (AIC23) Onboard Stereo Codec for Input and Output 28
 3.3 Programming Examples Using C Code 30

10. Chapter 4
 Architecture and Instruction set of the C6x processor
 4.1 Introduction 50
 4.2 TMS320C6x Architecture 52
 4.3 Functional Units 53
 4.4 Fetch and Execute Packets 57

 6

 4.5 Pipelining 58
 4.6 Registers 60
 4.7 Linear and Circular Addressing Modes 61
 4.7.1 Indirect Addressing 61
 4.7.2 Circular Addressing 62
 4.8 TMS320C6713 Instruction set 64
 4.8.1 Assembly code format 64
 4.8.2 Types of Instruction set 65

11. Chapter 5
 Real Time implementation of DES Algorithm by using
 TMS320C6713 Processor
 5.1 Implementation of DES Algorithm for Voice by using TMS320C6713 69
 Processor.
 5.2 Matlab Results. 70
 5.3 CCS Results. 72

12. Conclusion. 74

13. References. 75

 7

ABSTRACT

The data encryption standard (DES) is an algorithm that was formerly considered to be

the most popular method for private key encryption. DES is still appropriate for

moderately secured communication. In this project I have implemented DES algorithm

for voice data encryption by using the Texas Instruments TMS320C6713 dsp processor.

TMS320C6713 is a 32-bit floating point dsp processor which is one of the Texas

TMS320C6x family. Digital signal processors such as the TMS320C6x (C6x) family of

processors are like fast special-purpose microprocessors with a specialized type of

architecture and an instruction set appropriate for signal processing. The architecture of

the C6x digital signal processor is very well suited for numerically intensive calculations.

Based on a very-long-instruction-word (VLIW) architecture, the C6x is considered to be

TI’s most powerful processor.

 8

List of figures:

a. Fig 1.1: DES Model. 13

b. Fig 1.2: Encryption process—one round. 15

c. Fig 1.3: Core f-function of DES. 17

d. Figure 2.0: TMS320C6713-based DSK board: (a) board; (b) diagram 22.

 (Courtesy of Texas Instruments)

e. Figure 2.1: DSP System with input and output. 28

f. Figure 2.2: Aliased sinusoidal signal. 28

g. Figure 2.3: TLV320AIC23 codec block diagram. 31

h. Figure 2.4: Loop program using interrupt (loop_intr.c). 32

i. Figure 2.5: Loop program using polling (loop_poll.c). 35

j. Figure 2.6: Loop program with stereo input and output (loop_stereo.c). 37

k. Figure 2.7: Sine generation with stereo outputs (sine_stereo.c). 38

l. Figure 2.8: Sine generation making use of two sliders to control the 40

 amplitude and frequency of the sine wave generated (sine2sliders.c).

m. Figure 2.9: GEL file with two slider functions to control the amplitude 41

 and frequency of the sine wave generated (sine2sliders.gel).

n. Figure 2.10: Loop program with input data stored in memory 42

 (loop_store.c).

o. Figure 2.11: CCS graphs with the loop_store program: (a) time-domain 43

 plot of stored input data representing a 1-kHz sine wave; (b) FFT

 magnitude of stored data representing a 1-kHz sine wave.

p. Figure 2.12: Loop program to store I/O data in memory and in a file 44

(loop_print.c).

q. Figure 2.13: Square-wave generation program (squarewave.c). 47

r. Figure 3.1: Functional Block Diagram of TMS320C6713. 54

s. Figure 3.2: Internal memory configuration of L2. 55

t. Figure 3.3: One FP with three EPs showing “p” bit of each instruction. 57

u. Matlab plots for DES algorithm. 71

v. CCS plots for DES. 72

 9

List of tables:

a. Table 1.1: Initial permutation table. 14

b. Table 1.2: Expansion of 32 bits to 48. 15

c. Table 1.3: S-Box example, S1. 16

d. Table 1.4: P-BOX. 16

e. Table 3.1: Memory map. 56

f. Table 3.2: Pipeline Phases. 59

g. Table 3.3: Pipelining Effects. 59

h. Table 3.4: AMR Mode and Decryption. 63

 10

INTRODUCTION

Cryptography is the art of communicating with secret data. In voice communication,

cryptography refers to the encrypting and decrypting of voice data through a possibly

insecure data line. The goal is to prevent anyone who does not have a “key” from

receiving and understanding a transmitted message.

 The data encryption standard (DES) is an algorithm that was formerly considered to be

the most popular method for private key encryption. DES is still appropriate for

moderately secured communication.

 IN this project I have implemented DES algorithm to voice data by using the

TMS320C6713 dsp processor. TMS320C6713 is a 32-bit floating point dsp processor

which is one of the Texas TMS320C6x family. Digital signal processors such as the

TMS320C6x (C6x) family of processors are like fast special-purpose microprocessors

with a specialized type of architecture and an instruction set appropriate for signal

processing. The architecture of the C6x digital signal processor is very well suited for

numerically intensive calculations. Based on a very-long-instruction-word (VLIW)

architecture, the C6x is considered to be TI’s most powerful processor.

 Digital signal processors are used for a wide range of applications, from

communications and controls to speech and image processing. The general-purpose

digital signal processor is dominated by applications in communications (cellular).

Applications embedded digital signal processors are dominated by consumer products.

They are found in cellular phones, fax/modems, disk drives, radio, printers, hearing aids,

MP3 players, high-definition television (HDTV), digital cameras, and so on.

 11

 DES is a bit-manipulation technique with a 64-bit block cipher that uses an effective key

of 56 bits. It is an iterated Feistel-type cipher with 16 rounds. The general model of DES

has three main components for: (1) initial permutation; (2) encryption—the core

iteration/f-function (16 rounds); and (3) final permutation.

 This thesis consists of five chapters. For processing this project first there is a need of

knowing about the TMS320C6713 dsp processor that means we want to know about its

architecture and how its take inputs and how its produce outputs etc. that’s why in second

chapter I have explained about the total architecture of TMS320C67 processor and in

third chapter I have explained how this processor takes inputs and how its produce

outputs and in fourth chapter I have explained about the architecture and instruction set of

TMS320C67 processor. In fourth chapter I have explained about DES algorithm and the

procedure to implement the DES algorithm for voice signal by using TMS320C67

processor.

 12

CHAPTER-1

Data Encryption Standard Algorithm

 13

1.1 DES Model

Cryptography is the art of communicating with secret data. In voice communication,

cryptography refers to the encrypting and decrypting of voice data through a possibly

insecure data line. The goal is to prevent anyone who does not have a “key” from

receiving and understanding a transmitted message.

 The data encryption standard (DES) is an algorithm that was formerly considered to be

the most popular method for private key encryption. DES is still appropriate for

moderately secured communication.

 DES is a bit-manipulation technique with a 64-bit block cipher that uses an effective

key of 56 bits. It is an iterated Feistel-type cipher with 16 rounds. The general model of

DES has three main components for (see Figure 4.1): (1) initial permutation; (2)

encryption—the core iteration/f-function (16 rounds); and (3) final permutation. X and Y

are the input and output data streams in 64-bit block segments, respectively, and K1

through K16 are distinct keys used in the encryption algorithm. The initial permutation is

based on the predefined Table 1.1. The value at each position is used to scramble the

input before the encryption routine. For example, the 58th data to be moved into the first

position

 14

Fig 1.1: DES Model

Table 1.1: Initial permutation table:

of a 64-bit array, the 50th bit into position 2, and so on. The input stream is permutated

using a nonrepetitive random table of 64 integers (1–64) that corresponds to a new

position of each bit in the 64-bit data block. The final permutation is the reverse of the

initial permutation to reorder the samples into the correct original formation. The initial

permutation is followed by the actual encryption. The permutated 64-bit block is divided

into a left and a right block of 32 bits each.

1.2 Sixteen Rounds of DES

Sixteen rounds take place, each undergoing a similar procedure, as illustrated in Figure

1.3. The right block is placed into the left block of the next round, and the left block is

combined with an encoded version of the right block and placed into the right block of

the next round, or

 Li = Ri-1

 Ri = Li-1 XOR f(Ri-1,ki)

where Li-1 and Ri-1 are the left and right blocks, respectively, each with 32 bits, and ki is

the distinct key for the particular round of encryption. The original key is sent through a

 15

key scheduler that alters the key for each round of encryption. The left block is not

utilized until the very end, when it is XORed with the encrypted right block.

 The f-function operating on a 32-bit quantity expands these 32 bits into 48 bits using

the expansion table (see Table 1.2). This expansion table performs a permutation while

duplicating 16 of the bits (the rightmost two columns). For example, the first integer is

32, so that the first bit in the output block will be bit 32; the second integer is 1, so that

the second bit in the output block will be bit 1; and so on.

Fig 1.2: Encryption process—one round.

Table 1.2: Expansion of 32 bits to 48.

 16

Table 1.3: S-Box example,S1

 The 48-bit key transformations are XORed with these expanded data, and the results

are used as the input to eight different S-boxes. Each S-box takes 6 consecutive bits and

outputs only 4 bits. The 4 output bits are taken directly from the numbers found in a

corresponding S-box table. This process is similar to that of a decoder where the 6 bits act

as a table address and the output is a binary representation of the value at that address.

The zeroth and fifth bits determine the row of the S-box, and the first through fourth bits

determine which column the number is located in. For example, 110100 points to the

third row (10) and 10th column (1010). The first 6 bits of data correspond to the first of

eight S-box tables, shown in Table 1.3. The 32 bits of output from the S-boxes are

permutated according to the P-box shown in Table 1.4, and then output from the f-

function shown in Figure 1.3. For example, from Table1.4, bits 1 and 2 from the input

block will be moved to bits 16 and 7 in the output, respectively. After the 16 rounds of

encryption, a final permutation occurs, which reverses the initial permutation, yielding an

encrypted data signal.

Table 1.4: P-BOX

 17

Fig 1.3: Core f-function of DES

 18

CHAPTER-2

INTRODUCTION TO TMS320C6713 DSPKIT

 19

2.1 INTRODUCTION

 Digital signal processors such as the TMS320C6x (C6x) family of processors are like

fast special-purpose microprocessors with a specialized type of architecture and an

instruction set appropriate for signal processing. The C6x notation is used to designate a

member of Texas Instruments’ (TI) TMS320C6000 family of digital signal processors.

The architecture of the C6x digital signal processor is very well suited for numerically

intensive calculations. Based on a very-long-instruction-word (VLIW) architecture, the

C6x is considered to be TI’s most powerful processor.

 Digital signal processors are used for a wide range of applications, from

communications and controls to speech and image processing. The general-purpose

digital signal processor is dominated by applications in communications (cellular).

Applications embedded digital signal processors are dominated by consumer products.

They are found in cellular phones, fax/modems, disk drives, radio, printers, hearing aids,

MP3 players, high-definition television (HDTV), digital cameras, and so on. These

processors have become the products of choice for a number of consumer applications,

since they have become very cost-effective. They can handle different tasks, since they

can be reprogrammed readily for a different application. DSP techniques have been very

successful because of the development of low-cost software and hardware support. For

Example, modems and speech recognition can be less expensive using DSP techniques.

 DSP processors are concerned primarily with real-time signal processing. Real-time

processing requires the processing to keep pace with some external event, whereas non-

real-time processing has no such timing constraint. The external event to keep pace with

is usually the analog input. Whereas analog-based systems with discrete electronic

components such as resistors can be more sensitive to temperature changes, DSP-based

systems are less affected by environmental conditions. DSP processors enjoy the

advantages of microprocessors. They are easy to use, flexible, and economical.

 20

 The basic system consists of an analog-to-digital converter (ADC) to capture an input

signal. The resulting digital representation of the captured signal is then processed by a

digital signal processor such as the C6x and then output through a digital-to-analog

converter (DAC). Also included within the basic system are a special input filter for anti-

aliasing to eliminate erroneous signals and an output filter to smooth or reconstruct the

processed output signal.

2.2 DSK SUPPORT TOOLS

Most of the work presented in this book involves the design of a program to implement a

DSP application. To perform the experiments, the following tools are used:

1. TI’s DSP starter kit (DSK). The DSK package includes:

 (a) Code Composer Studio (CCS), which provides the necessary software

 Support tools. CCS provides an integrated development environment

 (IDE), bringing together the C compiler, assembler, linker, debugger, and

 so on.

 (b) A board, shown in Figure 1.1 that contains the TMS320C6713 (C6713)

 Floating-point digital signal processor as well as a 32-bit stereo codec for

 Input and output (I/O) support.

 (c) A universal synchronous bus (USB) cable that connects the DSK board

 to a PC.

 (d) A 5V power supply for the DSK board.

2. An IBM-compatible PC. The DSK board connects to the USB port of the PC

 Through the USB cable included with the DSK package.

 21

3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is

 optional. Shareware utilities are available that utilize the PC and a sound card

 to create a virtual instrument such as an oscilloscope, a function generator, or

 a spectrum analyzer.

2.2.1 DSK Board

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary

hardware and software support tools for real-time signal processing. It is a complete DSP

system. The DSK board, with an approximate size of 5 * 8 in., includes the C6713

floating-point digital signal processor and a 32-bit stereo codec TLV320AIC23 (AIC23)

for input and output.

 The onboard codec AIC23 uses a sigma–delta technology that provides ADC and

DAC. It connects to a 12-MHz system clock. Variable sampling rates from 8 to 96 kHz

can be set readily.

 A daughter card expansion is also provided on the DSK board. Two 80-pin connectors

provide for external peripheral and external memory interfaces. Two project examples in

Chapter 10 illustrate the use of the external memory interface (EMIF) with light-emitting

diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum display.

 The DSK board includes 16MB (megabytes) of synchronous dynamic random access

memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors on the

board provide input and output: MIC IN for microphone input, LINE IN for line input,

LINE OUT for line output, and HEADPHONE for a headphone output (multiplexed with

line output). The status of the four user dip switches on the DSK board can be read from

a program and provides the user with a feedback control interface. The DSK operates at

225MHz.Also onboard the DSK are voltage regulators that provide 1.26 V for the C6713

core and 3.3 V for its memory and peripherals.

 22

FIGURE 2.0. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of
Texas Instruments)

 23

2.2.2 TMS320C6713 Digital Signal Processor

The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well

suited for numerically intensive algorithms. The internal program memory is structured

so that a total of eight instructions can be fetched every cycle. For example, with a clock

rate of 225MHz, the C6713 is capable of fetching eight 32-bit instructions every 1/(225

MHz) or 4.44 ns.

 Features of the C6713 include 264 kB of internal memory (8kB as L1P and L1D Cache

and 256kB as L2 memory shared between program and data space), eight functional or

execution units composed of six arithmetic-logic units (ALUs) and two multiplier units, a

32-bit address bus to address 4 GB (gigabytes), and two sets of 32-bit general-purpose

registers.

 The C67xx (such as the C6701, C6711, and C6713) belong to the family of the C6x

floating-point processors, whereas the C62xx and C64xx belong to the family of the C6x

fixed-point processors. The C6713 is capable of both fixed- and floating-point

processing.

2.3 CODE COMPOSER STUDIO

CCS provides an IDE to incorporate the software tools. CCS includes tools for code

generation, such as a C compiler, an assembler, and a linker. It has graphical capabilities

and supports real-time debugging. It provides an easy-to-use software tool to build and

debug programs.

 The C compiler compiles a C source program with extension .c to produce an

assembly source file with extension.asm.The assembler assembles an.asm source file to

produce a machine language object file with extension.obj.The linker combines object

files and object libraries as input to produce an executable file with extension.out. This

executable file represents a linked common object file format (COFF), popular in Unix-

 24

based systems and adopted by several makers of digital signal processors. This

executable file can be loaded and run directly on theC6713 processor.

 To create an application project, one can “add” the appropriate files to the project.

Compiler/linker options can readily be specified. A number of debugging features are

available, including setting breakpoints and watching variables; viewing memory,

registers, and mixed C and assembly code; graphing results; and monitoring execution

time. One can step through a program in different ways (step into, over, or out).

 Real-time analysis can be performed using real-time data exchange (RTDX) . RTDX

allows for data exchange between the host PC and the target DSK, as well as analysis in

real time without stopping the target. Key statistics and performance can be monitored in

real time. Through the joint team action group (JTAG), communication with on-chip

emulation support occurs to control and monitor program execution. The C6713 DSK

board includes a JTAG interface through the USB port.

2.4(a) QUICK TEST OF DSK

 1. On power, a program post.c (Power On Self Test), stored in onboard flash

 memory, uses the board support library (BSL) to test the DSK. It tests the

 internal, external, and flash memories, the two multichannel buffered serial

 ports (McBSP), direct memory access (DMA), the onboard codec, and the

 LEDs. If all tests are successful, all four LEDs blink three times and stop

 (with all LEDs on). During the testing of the codec, a 1-kHz tone is generated

 for 1 sec.

 2. Launch CCS from the icon on the desktop. A USB enumeration process

 Takes place. Then CCS will be opened and the LEDs will turn off. Press GEL
 Æ Check DSK Æ Quick Test. The Quick Test can be used for confirmation
 Of correct operation and installation. The following message is then

 displayed:

 25

 Switches: 15

 Board Revision: 1

 CPLD Revision: 2

 This assumes that the four dip switches

 This assumes that the four dip switches (0, 1, 2, 3) are all in the up position. Change

the switches to (1110)2 so that the first three switches (0, 1, 2) are up and press the fourth

switch (3) down. Repeat the procedure to select GEL Æ Check DSK Æ Quick Test and

verify that the value of the switches is now 7 (with the display “Switches: 7”).You can set

the value of the four user switches from 0 to 15.Within your program you can then direct

the execution of your code based on these 16 values.

2.4(b) Alternative Quick Test of DSK

 1. Open/launch CCS from the icon on the desktop if this has not been done

 already. Select File ÆLoad Program. Click on the folder sine8_LED\Debug

 within myprojects to load the file sine8_LED.out.This loads the executable

 file sine8_LED.out into the C6713 processor. This assumes that you have

 already copied all the folders on the accompanying CD into your folder:

 c:\c6713\myprojects.

 2. Select Debug Æ Run. Press the dip switch #0, which should light LED #0 on

 and generate a 1-kHz tone. Connect the LINE OUT (or the HEADPHONE)

 on the DSK board to a speaker or to an oscilloscope and verify the

 generation of the 1-kHz tone. The four connectors on the DSK board for I/O

 (MIC, LINE IN, LINE OUT, and HEADPHONE) use a 3.5-mm jack audio

 cable.

 26

CHAPTER-3

INPUT AND OUTPUT TO THE DSK

 27

3.1 INTRODUCTION

Typical applications using DSP techniques require at least the basic system shown in

Figure 2.1, consisting of analog input and output. Along the input path is an antialiasing

filter for eliminating frequencies above the Nyquist frequency, defined as one-half of the

sampling frequency Fs Otherwise, aliasing occurs, in which case a signal with a

frequency higher than one-half Fs is used as a signal with a lower frequency. The

sampling theorem tells us that the sampling frequency must be at least twice the highest-

frequency component f in a signal, so that

 Fs > 2

Which s also

 1/Ts > 2(1/T)

Where Ts is the sampling period. Or

 Ts < T/2

 The sampling period Ts must be less than one-half the period of the signal. For

example, if we assume that the ear cannot detect frequencies above 20 kHz, we can use a

lowpass input filter with a bandwidth or cutoff frequency at 20 kHz to avoid aliasing. We

can then sample a music signal at Fs > 40 kHz (typically, 44.1 or 48 kHz) and remove

frequency components higher than 20 kHz. Figure 2.2 illustrates an aliased signal. Let the

sampling frequency Fs = 4 kHz, or a sampling period of Ts = 0.25ms. It is impossible to

determine whether it is the 5- or 1-kHz signal that is represented by the sequence (0, 1, 0,

-1). A 5-kHz signal will appear as a 1-kHz signal; hence, the 1-kHz signal is an aliased

signal. Similarly, a 9-kHz signal would also appear as a 1-kHz aliased signal.

 28

3.2 TLV320AIC23 (AIC23) ONBOARD STEREO CODEC FOR INPUT AND
OUTPUT

The DSK board includes the TLV320AIC23 (AIC23) codec for input and output. The

ADC circuitry on the codec converts the input analog signal to a digital representation to

be processed by the DSP. The maximum level of the input signal to be converted is

determined by the specific ADC circuitry on the codec, which is 6V p-p with the onboard

codec. After the captured signal is processed, the result needs to be sent to the outside

world. Along the output path in Figure 2.1 is a DAC, which performs the reverse

 29

operation of the ADC. An output filter smoothes out or reconstructs the output signal.

ADC, DAC, and all required filtering functions are performed by the single-chip codec

AIC23 on board the DSK.

 The AIC23 is a stereo audio codec based on sigma–delta technology. The functional

block diagram of the AIC23 codec is shown in Figure 2.3. It performs all the functions

required for ADC and DAC, lowpass filtering, oversampling, and so on. The AIC23

codec contains specifications for data transfer of words with length 16, 20, 24, and 32

bits. A diagram of the AIC23 codec interfaced to the C6713 DSK is shown in

6713_dsk_schem.pdf, included with the CCS package.

 Sigma–delta converters can achieve high resolution with high oversampling ratios but

with lower sampling rates. They belong to a category in which the sampling rate can be

much higher than the Nyquist rate. Sample rates of 8, 16, 24, 32, 44.1, 48, and 96 kHz are

supported and can be readily set in the program.

 A digital interpolation filter produces the oversampling. The quantization noise power

in such devices is independent of the sampling rate. A modulator is included to shape the

noise so that it is spread beyond the range of interest. The noise spectrum is distributed

between 0 and Fs/2, so that only a small amount of noise is within the signal frequency

band. Therefore, within the actual band of interest, the noise power is considerably lower.

A digital filter is also included to remove the out-ofband noise.

 A 12-MHz crystal supplies the clocking to the AIC23 codec (as well as to the DSP and

the USB interface). Using this 12-MHz master clock, with oversampling rates of 250Fs

and 272Fs, an exact audio sample rate of 48 kHz (12MHz/250) and a CD rate of 44.1kHz

(12MHz/272) can be obtained. The sampling rate is set by the codec’s register

SAMPLERATE.

 The ADC converts an input signal into discrete output digital words in a

2’scomplement format that corresponds to the analog signal value. The DAC includes an

 30

interpolation filter and a digital modulator. A decimation filter reduces the digital data

rate to the sampling rate.The DAC’s output is first passed through an internal lowpass

reconstruction filter to produce an output analog signal. Low noise performance for both

ADC and DAC is achieved using oversampling techniques with noise shaping provided

by sigma–delta modulators.

 Communication with the AIC23 codec for input and output uses two multichannel

buffered serial ports McBSPs on the C6713. McBSP0 is used as a unidirectional channel

to send a 16-bit control word to the AIC23. McBSP1 is used as a bidirectional channel to

send and receive audio data.

 Alternative I/O daughter cards can be used for input and output. Such cards can plug

into the DSK through the external peripheral interface 80-pin connector J3 on the DSK

board.

3.3 PROGRAMMING EXAMPLES USING C CODE

Several examples follow to illustrate input and output with the DSK. They are included to

familiarize you with both the hardware and software tools and provide some background

to implement a specific application. The example sine2sliders illustrates the use of two

sliders, an echo example demonstrates the effects of a variable-length buffer on an echo,

a noise generator example is used in Chapter 4 as the input to a digital filter, an example

illustrates the use of onboard flash memory, and so on.

 31

 32

Example 3.1: Loop Program Using Interrupt (loop_intr)

This example illustrates input and output with the AIC23 codec. Figure 2.4 shows

the C source program loop_intr.c, which implements the loop program. It is interrupt-

driven using INT11.

 This program example is very important since it can be used as a base program to build

on. For example, to implement a digital filter, one would need to insert the appropriate

algorithm between the input and output functions. The two functions input_sample and

output_sample, as well as the function comm_intr, are included in the communication

support file C6713dskinit.c.This is done so that the C source program is kept as small as

possible.

 After the initialization and selection/enabling of an interrupt, execution waits within

the infinite while loop until an interrupt occurs. Upon interrupt, execution proceeds to the

ISR c_int11, as specified in the vector file vectors_intr.asm. An interrupt occurs every

sample period Ts = 1/Fs = 1/(8 kHz) = 0.125ms, at which time an input sample value is

read from the codec’s ADC and then sent as output to the codec’s DAC.

 Execution returns from interrupt to the while(1) statement waiting for a subsequent

interrupt. [Note that in lieu of waiting within the while(1) infinite loop, one could be

processing code.] Upon interrupt, execution proceeds to ISR, “services” the necessary

task dictated by ISR, then returns to the calling function waiting for the occurrence of a

subsequent interrupt.

//Loop_intr.c Loop program using interrupt.Output=delayed input

#include "dsk6713_aic23.h" //codec-DSK support file

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

interrupt void c_int11() //interrupt service routine

{

 33

short sample_data;

sample_data = input_sample(); //input data

output_sample(sample_data); //output data

return;

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.4. Loop program using interrupt (loop_intr.c).

1. Within the function output_sample, support functions from the BSL are

 included to write data using the two serial ports: McBSP0 for control and

 McBSP1 for data transfer (MCBSP_write). Most of the programs in the book

 will output using 16 bits. In this fashion, output_sample is made to default

 to the left 16-bit channel and no adapter need be used (see the comments in

 C6713dskinit.c). Otherwise, one would need to use output_right_sample.

2. Within the function comm_intr, the following tasks are performed.

 (a) Initialize the DSK.

 (b) Configure/select INT11.

 (c) Enable the specific interrupt.

 (d) Enable the global enable interrupt (GIE) bit and the nonmaskable

 interrupt.

 (e) Initiate communication.

 34

 The interrupt functions called for the tasks above are within the board and chip support

files included with CCS. Create and build this project as loop_intr. The main C source

file is in the folder loop_intr. Use the same support files as in Example 1.2: the vector file

for the interrupt-driven and linker command file located in the folder support, and the

runtime support, board support, and chip support library files that can be added with the

building option for the linker.

 Input a sinusoidal waveform to the LINE IN connector on the DSK, with amplitude of

approximately 2 V p-p and a frequency between approximately 1 and 3 kHz. Connect the

output of the DSK, LINE OUT to a speaker or to an oscilloscope and verify a tone of the

same input frequency, but attenuated to approximately 0.8 V p-p. Using an oscilloscope,

the output is a delayed version of the input signal.

 Increase the amplitude of the input sinusoidal waveform beyond 6V p-p and observe

that the output signal becomes distorted.

Input with Gain

To adjust the gain of the left line-input channel, the corresponding header support file

c6713dskinit.h of the communication/init “black box” file needs to be modified slightly.

First, copy this header file AND c6713dskinit.c from the support folder into the folder

loop_intr so that you do not modify the original header file. Remove the init file from the

project and replace it with the one in the folder loop_intr.This will keep the original init

support file unchanged in the folder support. Modify the setup register 0, which controls

the left input volume, from 0x0017 to 0x001c in order to increase the left line-input

volume.

 Rebuild the project, making sure that you are adding c6713dskinit.c from the folder

loop_intr (and not from the folder support). In this fashion, the corresponding header file

c6713dskinit.h that will be included will come from that same folder. Load/run the

executable file loop_intr.out, and verify that the output amplitude is not attenuated and is

 35

the same as the input amplitude of 2V p-p. Values for the set-up register 0 from 0x0018

to 0x001c will cause the output amplitude to increase from 0.8 to 2V p-p.

 The left input channel was selected since input_sample and output_sample default to

the left channel. Otherwise, if the right line-input volume is to be increased by modifying

the set-up register 1, an adapter/connector with two inputs and one single-ended output

connections would be needed. See Example 2.3 (loop_stereo/ sine_stereo).

Input from a Microphone

To select an input from a microphone in lieu of line input, modify the header file set-up

register 4 from 0x0011 to 0x0015 (third LSB as a 1) so that the ADC gets its input from

MIC IN. The microphone input and line input are multiplexed, and only one is active at a

time. Rebuild the project to verify your output, with the input to the MIC IN connector.

Example 3.2: Loop Program Using Polling (loop_poll)

This example implements a polling-based loop program to illustrate the input and output

of a sample value every sample period Ts. Note that the program loop_intr.c in Example

2.1 is an interrupt-driven program. The C source program loop_poll.c shown in Figure

2.5 implements this loop program. The polling technique uses a continuous procedure of

testing when the data are ready. Although it is simpler than the interrupt technique, it is

less efficient since the input and output data need to be continuously tested to determine

when they are ready to be received or transmitted.

//loop_poll.c Loop program using polling.Output=delayed input

#include "DSK6713_AIC23.h" //codec-DSK file support

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

void main()

 36

{

short sample_data;

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

sample_data = input_sample(); //input sample

output_sample(sample_data); //output sample

}

}

FIGURE 2.5. Loop program using polling (loop_poll.c).

1. The input to the ADC is from the data receive register (DRR) of the McBSP1.

 Since this is a polling-driven program, the SPCR bit 1, which is the receive

 ready register (RRDY), is first tested to determine if it is a 1 or enabled (see

 Figure B.8).Within input_sample, execution of the statement

 While (!MCBSP_rrdy())

 remains in an infinite loop until RRDY becomes 1 or enabled. Execution then

 proceeds to read/receive the data.

2. Within the function output_sample, the MCBSP1 writes the output from

 the DAC to the data transmit register (DXR) of McBSP1. Since this is a

 polling-driven program, the transmit ready register (XRDY) bit 17 of SPCR

 is first tested to see if it is a 1 or enabled. Within output_sample, execution

 of the statement

 While (!MCBSP_xrdy())

remains in an infinite loop until the transmit ready register becomes 1 or

enabled. Execution then proceeds to transmit/write the data.

 37

 The same support files as in Example 1.1 are used: the “black box” communication/

init file c6713dskinit.c, the vector file vectors_poll.asm, the linker command file

c6713dsk.cmd (all three from the folder support), and the three library-support files.

 Create and build this project as loop_poll. Use the same input as in Example

2.1 and verify the same results.

Example 3.3: Stereo Input and Stereo Output (loop_stereo/sine_stereo)

Loop Program with Stereo Input and Stereo Output (loop_stereo)

This example demonstrates input and output using the stereo capability of the onboard

AIC23 codec. It requires the use of an adapter with two inputs and one output that

connects to the DSK. Such an adapter has one input connector white (or silver) that

represents the left channel and another input connector red (or gold) that represents the

right channel. This adapter becomes essential for some of the examples on adaptive

filtering that require two separate input signals, processing each input separately. Figure

2.6 shows the loop program loop_stereo to illustrate.

//Loop_stereo.c Stereo input and output with both channels

#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define LEFT 0 //reversed in init file
#define RIGHT 1
union {Uint32 combo; short channel[2];} AIC23_data;

interrupt void c_int11() //interrupt service routine
{
AIC23_data.combo = input_sample(); //input 32-bit sample
output_left_sample(AIC23_data.channel[LEFT]);//left channels for I/O
return;
}
void main() //main function
{
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}
FIGURE 2.6. Loop program with stereo input and output (loop_stereo.c).

 38

Within the function input_sample, support functions from the BSL are included to read a

32-bit data. The function input_sample captures 32-bit data, 16 bits from the left input

channel and 16 bits from the right input channel.The union statement is used to process

each channel independently.The union of AIC23_data and combo contains these 32-bit

input data.The line of code for output is from the left channel (by default) to output 16-bit

data from the left input channel.

 Build and run this project as loop_stereo using the support files as in Example 1.2 for

an interrupt-driven program. The main C source file loop_stereo.c is contained in the

folder loop_stereo. Connect a 1 kHz (with approximate amplitude of 2 V p-p) sine wave

into the left input channel and a 2-kHz sine wave into the right input channel. Verify that

the left (default) output channel has the same input signal frequency of 1kHz, but reduced

in amplitude (as expected).You do not need a second adapter for the output side since the

output defaults to the left channel. Change the output line of code to

output_left_sample(AIC23_data.channel[RIGHT]);

and verify that the output is the 2-KHz sine wave from the right input channel.With the

line of code

output_right_sample(AIC23_data.channel[RIGHT]);

//Sine_stereo.c Sine generation with output to both channels

#include "dsk6713_aic23.h" //codec-DSK support file

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define LEFT 0 //reversed in init file

#define RIGHT 1

union {Uint32 combo; short channel[2];} AIC23_data;

 39

short loop = 0, gain = 10;

short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values

interrupt void c_int11() //interrupt service routine

{

AIC23_data.channel[RIGHT]=sine_table[loop]*gain; //for right channel

AIC23_data.channel[LEFT]=sine_table[loop]*gain; //for left channel

output_sample(AIC23_data.combo); //output to both channels

if (++loop > 7) loop = 0; //reint index if @ end of table

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.7. Sine generation with stereo outputs (sine_stereo.c).

two adapters are required to verify that the output from the right channel is the 2-kHz sine

wave from the right input channel. You can also use one adapter at the input side to

capture the two different signals and one stereo cable at the output side.

 Experiment with this project, inputting different signals into each channel and

outputting from each channel using adapters and stereo cable. Verify that you can select

each input and output channel independently.

Sine Generation with Stereo Output (sine_stereo)

Figure 2.7 shows the C source file sine_stereo.c, included in the folder sine_stereo, to

illustrate further the codec as a stereo device. Build and run this project as sine_stereo.

Verify that the generated 1 kHz sinusoid is through both output channels, using an

adapter or stereo cable at the output side of the DSK.

 40

Example 3.4: Sine Generation with Two Sliders for Amplitude and
Frequency Control (sine2sliders)

The polling-based program sine2sliders.c in Figure 2.8 generates a sine wave. Two

sliders are used to vary both the amplitude (gain) and the frequency of the sinusoid

//Sine2sliders.c Sine generation with different # of points

#include "DSK6713_AIC23.h" //codec-DSK interface support

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

short loop = 0;

short sine_table[32]={0,195,383,556,707,831,924,981,1000,

981,924,831,707,556,383,195,0,-195,-383,-556,-707,-831,-924,

-981,-1000,-981,-924,-831,-707,-556,-383,-195}; //sine data

short gain = 1; //for gain slider

short frequency = 2; //for frequency slider

void main()

{

comm_poll(); //init DSK,codec,McBSP

while(1) //infinite loop

{

output_sample(sine_table[loop]*gain);//output scaled value

loop += frequency; //incr frequency index

loop = loop % 32; //modulo 32 to reinit index

}

}

FIGURE 2.8. Sine generation making use of two sliders to control the amplitude and

frequency of the sine wave generated (sine2sliders.c).

 41

/*Sine2sliders.gel Two sliders to vary gain and frequency*/

menuitem "Sine Parameters"

slider Gain(1,8,1,1,gain_parameter) /*incr by 1,up to 8*/

{

gain = gain_parameter; /*vary gain*/

}

slider Frequency(2,8,2,2,frequency_parameter) /*incr by 2,up to 8*/

{

frequency = frequency_parameter; /*vary frequency*/

}

FIGURE 2.9. GEL file with two slider functions to control the amplitude and frequency

of the sine wave generated (sine2sliders.gel).

generated. Using a lookup table with 32 points, the variable frequency is obtained by

selecting a different number of points per cycle. The gain slider scales the

volume/amplitude of the waveform signal.The appropriate GEL file sine2sliders.gel is

shown in Figure 2.9.

 The 32 sine data values in the table or buffer correspond to sin(t), where t = 0,11.25,

22.5, 33.75, 45, . . . , 348.75 degrees (scaled by 1000).The frequency slider takes on a

value from 2 to 8, incremented by 2.The modulo operator is used to test when the end of

the buffer that contains the sine data values is reached.When the loop index reaches 32, it

is reinitialized to zero. For example, with the frequency slider at position 2, the loop or

frequency index steps through every other value in the table. This corresponds to 16 data

values within one cycle.

 Build this project as sine2sliders. Use the appropriate support files for a pollingdriven

program. The main C source file sine2sliders.c is contained in the folder sine2sliders.

Verify that the frequency generated is f = Fs/16 = 500Hz. Increase the slider position (the

use of a slider was introduced in Example 1.1) to 4, 6, 8 and verify that the signal

 42

frequencies generated are 1000, 1500, and 2000Hz, respectively. Note that when the

slider is at position 4, the loop or frequency index steps through the table selecting the

eight values (per cycle): sin[0], sin[4], sin[8], . . . , sin[28] that correspond to the data

values 0, 707, 1000, 707, 0, -707, -1000, and -707.The resulting frequency generated is

then f = Fs/8 = 1 kHz (as in Example 1.1).

Example 3.5: Loop Program with Input Data Stored in Memory
(loop_store)

The program loop_store.c in Figure 2.10 is an interrupt-based program and is included in

the folder loop_store. Each time an interrupt INT11 occurs, a sample is read from the

codec’s ADC and written to the codec’s DAC. Furthermore, each sample is written to a

512-element circular buffer implemented using an array buffer and an index i that is

incremented after each sample is stored. The index is reset to zero when it reaches the

end of the buffer. Consequently, the array always contains the 512 most recent sample

values.

//Loop_store.c Data acquisition.Input data stored also into buffer

#include "DSK6713_AIC23.h" //codec-DSK interface support

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define BUFFER_SIZE 512 //buffer size

short buffer[BUFFER_SIZE]; //buffer where data is stored

int i = 0;

interrupt void c_int11() //interrupt service routine

{

output_sample((short)input_sample());//output acquired data

buffer[i] =((short)input_sample());//store input data into buffer

i++; //increment buffer index

if (i==BUFFER_SIZE) i = 0; //reinit index if buffer full

return; //return from ISR

 43

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.10. Loop program with input data stored in memory (loop_store.c).

FIGURE 2.11. CCS graphs with the loop_store program: (a) time-domain plot of stored

input data representing a 1-kHz sine wave; (b) FFT magnitude of stored data representing

a 1-kHz sine wave.

 44

 Build this project as loop_store. Input a sinusoidal signal with amplitude of

approximately 1/2 V p-p and a frequency of 1 kHz. Run and verify your output

results.

 Use CCS to plot the stored input data in both the time and frequency domains (see also

Example 1.2). Select View Æ Graph Æ Time/Frequency. For the timedomain plot,

specify a starting address “buffer,” 512 points for the acquisition buffer size, 64 points for

the data size display (for a clearer plot), a 16-bit signed integer for the data type, and

8000 for the sampling rate.Verify the 1-kHz time-domain sinewave plot within CCS, as

shown in Figure 2.11a.

 Select View Æ Graph Æ Time/Frequency again and FFT magnitude for display to

obtain a frequency-domain plot of the stored input data. Specify a display data size of 512

with an FFT order of M = 9, where 2M = 512.The spike at 1 kHz in Figure 2.11b

represents the 1-kHz sine wave plot within CCS.

//Loop_print.c Data acquisition.Loop with data printed to a file

#include "DSK6713_AIC23.h" //codec-DSK support file

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>

#define BUFFER_SIZE 64 //buffer size

int i=0, j=0;

short buffer[BUFFER_SIZE]; //buffer for data

FILE *fptr; //file pointer

interrupt void c_int11() //ISR

{

buffer[i]=((short)input_sample()); //store data in buffer

 45

i++; //increment buffer count

if (i==BUFFER_SIZE - 1) //if buffer full

{

fptr = fopen("sine.dat","w"); //create output data file

for (j=0; j<BUFFER_SIZE; j++)

fprintf(fptr,"%d\n",buffer[j]);//write buffer data to file

fclose(fptr); //close file

i = 0; //initialize buffer count

puts("done"); //finished storing to file

}

output_sample((short)input_sample()); //output data

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

puts("start\n"); //print "start" indicator

while(1); //infinite loop

}

FIGURE 2.12. Loop program to store I/O data in memory and in a file (loop_print.c).

Example 3.6: Loop with Data in a Buffer Printed to a File (loop_print)

This example extends the preceding loop program so that the acquired input data are

stored in a memory buffer and then printed to a file. Figure 2.12 shows the C source

program loop_print.c (included in the folder loop_print) that implements this example. It

takes a long time (more than 3000 cycles) to execute the printf statement in the program

(see Example 1.3).This can be reduced to about 30 cycles using DSP/BIOS.

 46

 After initialization of the DSK, the puts statement prints the word start as an indicator

within the CCS command window; then execution proceeds to the infinite while loop.

Upon each interrupt, execution proceeds to ISR, and a newly acquired data value is stored

in a buffer of size 64.

 The buffer index i is incremented to store each new sampled data value. When the end

of the buffer is reached, indicating that the buffer is full, a file sine.dat is “opened” and

the contents of the buffer are written into that file. Then the indicator done is printed

within the CCS window. This process is repeated continuously so that a new set of 64

data points is acquired, and the done indicator is again displayed (after each set of data

fills the buffer and is written to sine.dat).

 Build and run this project as loop_print. Input a sine-wave signal of approximately 1/2

V p-p with a 1-kHz frequency. Halt execution after the indicator done is displayed. The

buffer of 64 input data representing the sine wave can be retrieved from the file sine.dat

in the same folder loop_print\Debug. Note that the third set of 64 points will be stored in

the buffer and printed in the file sine.dat if execution of the program is halted after the

third done indicator. A plot program or MATLAB can be used to plot sine.dat and verify

a 1-kHz sine wave.You can also verify your results by plotting the content of the buffer

within CCS, as in the previous example. Note that the output is not displayed

appropriately in real time due to the slow execution of the print statement. You can

comment the section of code that is associated with printing the input data into a file to

verify that a loop program is also implemented.

Example 3.7: Square-Wave Generation Using a Lookup Table
(squarewave)

This example generates a square wave using a lookup table. Figure 2.13 shows a listing

of the program squarewave.c (located in the folder squarewave) that implements this

project example. A buffer of size 64 is created.Within main, the buffer table is loaded

with data: the first half with (215 - 1) = 32,767 and the second half with -215 = -32,768.

Upon each interrupt that occurs every sample period Ts, one data value from the buffer is

 47

sent for output. After each data value from the. table is output, execution returns to the

infinite while loop, waiting for the next interrupt to occur and output the subsequent

value in the table. When the end of the buffer (table) is reached, the buffer index is

reinitialized to the beginning of the buffer.

 Build and run this project as squarewave. Verify a square-wave output signal of

approximately 3V p-p. Note that the valid input data to the codec are between -215 and

(215 - 1) or between -32,768 and 32,767. Change the values in the first half of the table

using 0x8000 = 32,768 in lieu of 0x7FFF = 32,767. Rebuild/run and verify that the

square-wave signal is no longer generated.

 Note that increasing the number of points in the table produces a more pronounced

charging/discharging effect (since it is AC coupled) due to the output capacitor (see the

block diagram of the AIC23 codec). For example, with 64 points, the fundamental

frequency is at 8 kHz/64 = 125Hz. Doubling the number of points will double the period

of the square wave, and the discharging effect will be more pronounced (time constant

reduced relative to one-half of the period of the square wave). Change the sampling

frequency to 16 or 24 kHz and verify that the charching/ discharging effect of the

capacitor is less pronounced.

//Squarewave.c Generates a squarewave using a look-up table

#include "dsk6713_aic23.h" //codec-DSK interface support

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define table_size (int)0x40 //size of table=64

short data_table[table_size]; //data table array

int i;

interrupt void c_int11() //interrupt service routine

{

output_sample(data_table[i]); //output value each Ts

if (i < table_size) ++i; //if table size is reached

 48

else i = 0; //reinitialize counter

return; //return from interrupt

}

main()

{

for(i=0; i<table_size/2; i++) //set 1st half of buffer

data_table[i] = 0x7FFF; //with max value (2^15)-1

for(i=table_size/2;i<table_size;i++) //set 2nd half of buffer

data_table[i] = -0x8000; //with -(2^15)

i = 0; //reinit counter

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 2.13. Square-wave generation program (squarewave.c).

 49

CHAPTER-4

ARCHITECTURE AND INSTRUCTION SET OF

THE C6713 PROCESSOR

 50

4.1 INTRODUCTION

Texas Instruments introduced the first-generation TMS32010 DSP in 1982, the

TMS320C25 in 1986, and the TMS320C50 in 1991. Several versions of each of these

processors—C1x, C2x, and C5x—are available with different features, such as faster

execution speed. These 16-bit processors are all fixed-point processors and are code-

compatible.

 In a von Neumann architecture, program instructions and data are stored in a single

memory space. A processor with a von Neumann architecture can make a read or a write

to memory during each instruction cycle. Typical DSP applications require several

accesses to memory within one instruction cycle. The fixed-point processors C1x, C2x,

and C5x are based on a modified Harvard architecture with separate memory spaces for

data and instructions that allow concurrent accesses.

 Quantization error or round-off noise from an ADC is a concern with a fixedpoint

processor. An ADC uses only a best-estimate digital value to represent an input. For

example, consider an ADC with a word length of 8 bits and an input range of ±1.5V.The

steps represented by the ADC are: input range/28 = 3/256 = 11.72mV. This produces

errors that can be up to ±(11.72mV)/2 = ±5.86mV. Only a best estimate can be used by

the ADC to represent input values that are not multiples of 11.72mV.With an 8-bit ADC,

28 or 256 different levels can represent the input signal. An ADC with a larger word

length, such as a 16-bit ADC (or larger, currently very common), can reduce the

quantization error, yielding a higher resolution.The morebits an ADC has, the better it

can represent an input signal.

 The TMS320C30 floating-point processor was introduced in the late 1980s. The C31,

the C32, and the more recent C33 are all members of the C3x family of floating-point

processors. The C4x floating-point processors, introduced subsequently , are code-

compatible with the C3x processors and are based on the modified Harvard architecture.

The C62x is not code-compatible with the previous generation of fixed-point processors.

Subsequently, the TMS320C6701 (C67x) floating-point processor was introduced as

 51

another member of the C6x family of processors. The instruction set of the C62x fixed-

point processor is a subset of the instruction set of the C67x processor. Appendix A

contains a list of instructions available on the C6x processors.

 An application-specific integrated circuit (ASIC) has a DSP core with customized

circuitry for a specific application. A C6x processor can be used as a standard general-

purpose DSp programmed for a specific application. Specific-purpose digital signal

processors are the modem, echo canceler, and others.

 A fixed-point processor is better for devices that use batteries, such as cellular phones,

since it uses less power than does an equivalent floating-point processor. The fixed-point

processors, C1x, C2x, and C5x, are 16-bit processors with limited dynamic range and

precision. The C6x fixed-point processor is a 32-bit processor with improved dynamic

range and precision. In a fixed-point processor, it is necessary to scale the data. Overflow,

which occurs when an operation such as the addition of two numbers produces a result

with more bits than can fit within a processor’s register, becomes a concern.

 A floating-point processor is generally more expensive since it has more “real estate”

or is a larger chip because of additional circuitry necessary to handle integer as well as

floating-point arithmetic. Several factors, such as cost, power consumption, and speed,

come into play when choosing a specific DSp. The C6x processors are particularly useful

for applications requiring intensive computations. Family members of the C6x include

both fixed-point (e.g., C62x, C64x) and floating-point (e.g., C67x) processors. Other

DSp’s are also available from companies such as Motorola and Analog Devices.

 Other architectures include the Super Scalar, which requires special hardware to

determine which instructions are executed in parallel. The burden is then on the processor

more than on the programmer, as in the VLIW architecture. It does not necessarily

execute the same group of instructions, and as a result, it is difficult to time. Thus, it is

rarely used in DSP.

 52

4.2 TMS320C6x ARCHITECTURE

The TMS320C6713 onboard the DSK is a floating-point processor based on the VLIW

architecture. Internal memory includes a two-level cache architecture with 4 kB of level 1

program cache (L1P), 4 kB of level 1 data cache (L1D), and 256 kB of level 2 memory

shared between program and data space. It has a glueless (direct) interface to both

synchronous memories (SDRAM and SBSRAM) and asynchronous memories (SRAM

and EPROM). Synchronous memory requires clocking but provides a compromise

between static SRAM and dynamic DRAM, with SRAM being faster but more expensive

than DRAM.

 On-chip peripherals include two McBSPs, two timers, a host port interface (HPI), and

a 32-bit EMIF. It requires 3.3 V for I/O and 1.26 V for the core (internal). Internal buses

include a 32-bit program address bus, a 256-bit program data bus to accommodate eight

32-bit instructions, two 32-bit data address buses, two 64-bit data buses, and two 64-bit

store data buses. With a 32-bit address bus, the total memory space is 232 = 4GB,

including four external memory spaces: CE0, CE1, CE2, and CE3. Figure 3.1 shows a

functional block diagram of the C6713 processor included with CCS.

 Independent memory banks on the C6x allow for two memory accesses within one

instruction cycle. Two independent memory banks can be accessed using two

independent buses. Since internal memory is organized into memory banks, two loads or

two stores of instructions can be performed in parallel. No conflict results if the data

accessed are in different memory banks. Separate buses for program, data, and direct

memory access (DMA) allow the C6x to perform concurrent program fetches, data read

and write, and DMA operations. With data and instructions residing in separate memory

spaces, concurrent memory accesses are possible. The C6x has a byte-addressable

memory space. Internal memory is organized as separate program and data memory

spaces, with two 32-bit internal ports (two 64- bit ports with the C64x) to access internal

memory.

 53

 The C6713 on the DSK includes 264kB of internal memory, which starts at

0x00000000, and 16MB of external SDRAM, mapped through CE0 starting at

0x80000000.The DSK also includes 512 kB of Flash memory (256 kB readily available

to the user), mapped through CE1 starting at 0x90000000. Figure 3.2 shows the L2

internal memory configuration, included with CCS. Table 3.1 shows the memory map,

also included with CCS.

 With the DSK operating at 225MHz, one can ideally achieve two multiplies and

accumulates per cycle, for a total of 450 million multiplies and accumulates (MACs) per

second. With six of the eight functional units in Figure 3.1 (not the .D units described

below) capable of handling floating-point operations, it is possible to perform 1350

million floating-point operations per second (MFLOPS). Operating at 225MHz, this

translates into 1800 million instructions per second (MIPS) with a 4.44-ns instruction

cycle time.

4.3 FUNCTIONAL UNITS

The CPU consists of eight independent functional units divided into two data paths, A

and B, as shown in Figure 3.1. Each path has a unit for multiply operations (.M), for

logical and arithmetic operations (.L), for branch, bit manipulation, and arithmetic

operations (.S), and for loading/storing and arithmetic operations (.D). The .S and .L units

are for arithmetic, logical, and branch instructions. All data transfers make use of the .D

units.

 The arithmetic operations, such as subtract or add (SUB or ADD), can be performed by

all the units, except the .M units (one from each data path). The eight functional units

consist of four floating/fixed-point ALUs (two .L and two .S), two fixed-point ALUs (.D

units), and two floating/fixed-point multipliers (.M units). Each functional unit can read

directly from or write directly to the register file within its own path. Each path includes a

set of sixteen 32-bit registers, A0 through A15 and B0 through B15. Units ending in 1

write to register file A, and units ending in 2 write to register file B.

 54

 55

 56

 57

 Two cross-paths (1x and 2x) allow functional units from one data path to access a 32-

bit operand from the register file on the opposite side. There can be a maximum of two

cross-path source reads per cycle. Each functional unit side can access data from the

registers on the opposite side using a cross-path (i.e., the functional units on one side can

access the register set from the other side). There are 32 generalpurpose registers, but

some of them are reserved for specific addressing or are used for conditional instructions.

4.4 FETCH AND EXECUTE PACKETS

The architecture VELOCITI, introduced by TI, is derived from the VLIW architecture.

An execute packet (EP) consists of a group of instructions that can be executed in parallel

within the same cycle time. The number of EPs within a fetch packet (FP) can vary from

one (with eight parallel instructions) to eight (with no parallel instructions). The VLIW

architecture was modified to allow more than one EP to be included within an FP.

 The least significant bit of every 32-bit instruction is used to determine if the next or

subsequent instruction belongs in the same EP (if 1) or is part of the next EP (if 0).

Consider an FP with three EPs: EP1, with two parallel instructions, and EP2 and EP3,

each with three parallel instructions, as follows:

Instruction A

|| Instruction B

Instruction C

|| Instruction D

 58

|| Instruction E

Instruction F

|| Instruction G

|| Instruction H

 EP1 contains the two parallel instructions A and B; EP2 contains the three parallel

instructions C, D, and E; and EP3 contains the three parallel instructions F, G, and H. The

FP would be as shown in Figure 3.3. Bit 0 (LSB) of each 32-bit instruction contains a “p”

bit that signals whether it is in parallel with a subsequent instruction. For example, the

“p” bit of instruction B is zero, denoting that it is not within the same EP as the

subsequent instruction C. Similarly, instruction E is not within the same EP as instruction

F.

4.5 PIPELINING

Pipelining is a key feature in a DSp to get parallel instructions working properly,

requiring careful timing. There are three stages of pipelining: program fetch, decode, and

execute.

1. The program fetch stage is composed of four phases:

 (a) PG: program address generate (in the CPU) to fetch an address

 (b) PS: program address send (to memory) to send the address

 (c) PW: program address ready wait (memory read) to wait for data

 (d) PR: program fetch packet receive (at the CPU) to read opcode from memory

2. The decode stage is composed of two phases:

 (a) DP: to dispatch all the instructions within an FP to the appropriate functional units.

 (b) DC: instruction decode

3. The execute stage is composed of 6 phases (with fixed point) to 10 phases

 (with floating point) due to delays (latencies) associated with the following

 functional units.

 (a) Multiply instruction, which consists of two phases due to one delay

 59

 (b) Load instruction, which consists of five phases due to four delays

 (c) Branch instruction, which consists of six phases due to five delays

 Table 3.2 shows the pipeline phases, and Table 3.3 shows the pipelining effects. The

first row in Table 3.3 represents cycle 1, 2, . . . , 12. Each subsequent row represents an

FP. The rows represented PG, PS, . . . illustrate the phases associated with each FP. The

program generate (PG) of the first FP starts in cycle 1, and the PG of the second FP starts

in cycle 2, and so on. Each FP takes four phases for program fetch and two phases for

decoding. However, the execution phase can take from 1 to 10 phases (not all execution

phases are shown in Table 3.3).We are assuming that each FP contains one EP.

 For example, at cycle 7, while the instructions in the first FP are in the first execution

phase E1 (which may be the only one), the instructions in the second FP are in the

decoding phase, the instructions in the third FP are in the dispatching phase, and so on.

All seven instructions are proceeding through the various phases. Therefore, at cycle 7,

“the pipeline is full.”

 60

 Most instructions have one execute phase. Instructions such as multiply (MPY), load

(LDH/LDW), and branch (B) take two, five, and six phases, respectively. Additional

execute phases are associated with floating-point and double-precision types of

instructions, which can take up to 10 phases. For example, the double-precision multiply

operation (MPYDP), available on the C67x, has nine delay slots, so that the execution

phase takes a total of 10 phases.

 The functional unit latency, which represents the number of cycles that an instruction

ties up a functional unit, is 1 for all instructions except double-precision instructions,

available with the floating-point C67x. Functional unit latency is different from a delay

slot. For example, the instruction MPYDP has four functional unit latencies but nine

delay slots. This implies that no other instruction can use the associated multiply

functional unit for four cycles. A store has no delay slot but finishes its execution in the

third execution phase of the pipeline.

 If the outcome of a multiply instruction such as MPY is used by a subsequent

instruction, a NOP (no operation) must be inserted after the MPY instruction for the

pipelining to operate properly.Four or five NOPs are to be inserted in case an instruction

uses the outcome of a load or a branch instruction, respectively.

4.6 REGISTERS

Two sets of register files, each set with 16 registers, are available: register file A (A0

through A15) and register file B (B0 through B15). Registers A0, A1, B0, B1, and B2 are

used as conditional registers. Registers A4 through A7 and B4 through B7 are used for

circular addressing. Registers A0 through A9 and B0 through B9 (except B3) are

temporary registers. Any of the registers A10 through A15 and B10 through B15 used are

saved and later restored before returning from a subroutine.

 61

 A 40-bit data value can be contained across a register pair. The 32 least signifi- cant

bits (LSBs) are stored in the even register (e.g., A2), and the remaining 8 bits are stored

in the 8 LSBs of the next-upper (odd) register (A3). A similar scheme is used to hold a

64-bit double-precision value within a pair of registers (even and odd).

 These 32 registers are considered general-purpose registers. Several specialpurpose

registers are also available for control and interrupts: for example, the address mode

register (AMR) used for circular addressing and interrupt control registers.

4.7 LINEAR AND CIRCULAR ADDRESSING MODES

Addressing modes determine how one accesses memory. They specify how data are

accessed, such as retrieving an operand indirectly from a memory location. Both linear

and circular modes of addressing are supported. The most commonly used mode is the

indirect addressing of memory.

4.7.1 Indirect Addressing

Indirect addressing can be used with or without displacement. Register R represents one

of the 32 registers A0 through A15 and B0 through B15 that can specify or point to

memory addresses. As such, these registers are pointers. Indirect addressing mode uses a

“*” in conjunction with one of the 32 registers. To illustrate, consider R as an address

register.

1. *R. Register R contains the address of a memory location where a data value

 is stored.

2. *R++(d). Register R contains the memory address (location). After the

 memory address is used, R is postincremented (modified) such that the new

 address is the current address offset by the displacement value d. If d = 1 (by

 default), the new address is R + 1, or R is incremented to the next higher

 address in memory. A double minus (--) instead of a double plus would

 update or postdecrement the address to R - d.

 62

3. *++R(d). The address is preincremented or offset by d, such that the current

 address is R + d. A double minus would predecrement the memory address

 so that the current address is R - d.

4. *+R(d). The address is preincremented by d, such that the current address is

 R + d (as with the preceding case). However, in this case, R preincrements

 without modification. Unlike the previous case, R is not updated or modified.

4.7.2 Circular Addressing

Circular addressing is used to create a circular buffer. This buffer is created in hardware

and is very useful in several DSP algorithms, such as in digital filtering or correlation

algorithms where data need to be updated.

 The C6x has dedicated hardware to allow a circular type of addressing. This addressing

mode can be used in conjunction with a circular buffer to update samples by shifting data

without the overhead created by shifting data directly. As a pointer reaches the end or

“bottom” location of a circular buffer that contains the last element in the buffer, and is

then incremented, the pointer is automatically wrapped around or points to the beginning

or “top” location of the buffer that contains the first element.

 Two independent circular buffers are available using BK0 and BK1 within the AMR.

The eight registers A4 through A7 and B4 through B7, in conjunction with the two .D

units, can be used as pointers (all registers can be used for linear addressing).The

following code segment illustrates the use of a circular buffer using register B2 (only side

B can be used) to set the appropriate values within AMR:

 MVKL .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer

 MVKH .S2 0x0005,B2 ;upper 16 bits to B2. Select BK0, set N = 5

 MVC .S2 B2,AMR ;move 32 bits of B2 to AMR

 63

 The two move instructions MVKL and MVKH (using the .S unit) move 0x0004 into

the 16 LSBs of register B2 and 0x0005 into the 16 most significant bits (MSBs) of B2.

The MVC (move constant) instruction is the only instruction that can access the AMR

and the other control registers (shown in Appendix B) and executes only on the B side in

conjunction with the functional units and registers on side B. A 32- bit value is created in

B2, which is then transferred to AMR with the instruction MVC to access AMR.

 The value 0x0004 = (0100)b into the 16 LSBs of AMR sets bit 2 (the third bit) to 1 and

all other bits to 0. This sets the mode to 01 and selects register A5 as the pointer to a

circular buffer using block BK0.

 Table 3.4 shows the modes associated with registers A4 through A7 and B4 through

B7.The value 0x0005 = (0101)b into the 16MSBs of AMR sets bits 16 and 18 to 1 (other

bits to 0). This corresponds to the value of N used to select the size of the buffer as 2N+1

= 64 bytes using BK0. For example, if a buffer size of 128 is desired using BK0, the

upper 16 bits of AMR are set to (0110)b = 0x0006. If assembly code is used for the

circular buffer, as execution returns to a calling C function, AMR needs to be reinitialized

to the default linear mode. Hence the pointer’s address must be saved.

 64

4.8 TMS320C6x INSTRUCTION SET

4.8.1 Assembly Code Format

An assembly code format is represented by the field

Label || [] Instruction Unit Operands ;comments

A label, if present, represents a specific address or memory location that contains an

instruction or data. The label must be in the first column. The parallel bars (||) are there if

the instruction is being executed in parallel with the previous instruction. The subsequent

field is optional to make the associated instruction conditional. Five of the registers—A1,

A2, B0, B1, and B2—are available to use as conditional registers. For example, [A2]

specifies that the associated instruction executes if A2 is not zero. On the other hand,

with [!A2], the associated instruction executes if A2 is zero. All C6x instructions can be

made conditional with the registers A1, A2, B0, B1, and B2 by determining when the

conditional register is zero. The instruction field can be either an assembler directive or a

mnemonic. An assembler directive is a command for the assembler. For example,

.word value

reserves 32 bits in memory and fill with the specified value. A mnemonic is an actual

instruction that executes at run time. The instruction (mnemonic or assembler directive)

cannot start in column 1. The Unit field, which can be one of the eight CPU units, is

optional. Comments starting in column 1 can begin with either an asterisk or a semicolon,

whereas comments starting in any other columns must begin with a semicolon.

 Code for the floating-point processors C3x/C4x is not compatible with code for the

fixed-point processors C1x, C2x, and C5x/C54x. However, the code for the fixed-point

processors C62x is compatible with the code for the floating-point C67x. C62x code is

actually a subset of C67x code. Additional instructions to handle double-precision and

floating-point operations are available only on the C67x processor. Also, some additional

instructions are available only on the fixed-point C64x processor.

 65

 Several code segments are presented to illustrate the C6x instruction set. Assembly

code for the C6x processors is very similar to C3x/C4x code. Single-task types of

instructions available for the C6x make it easier to program than either the previous

generation of fixed- or floating-point processors. This contributes to an efficient

compiler. Additional instructions available on the C64x (but not on the C62x) resemble

the multitask types of instructions for C3x/C4x processors. It is very instructive to read

the comments in the programs discussed in this book. Appendix A contains a list of the

instructions for the C62x/C67x processors.

4.8.2 Types of Instructions

The following illustrates some of the syntax of assembly code. It is optional to specify the

eight functional units, although this can be useful during debugging and for code

efficiency and optimization.

1. Add/Subtract/Multiply

 (a) The instruction

 ADD .L1 A3,A7,A7 ;add A3 + A7 ÆA7 (accum in A7)

 adds the values in registers A3 and A7 and places the result in register

 A7. The unit .L1 is optional. If the destination or result is in B7, the unit

 would be .L2.

 (b). The instruction

 SUB .S1 A1,1,A1 ;subtract 1 from A1

 subtracts 1 from A1 to decrement it using the .S unit.

(c). The parallel instructions

 66

 MPY .M2 A7,B7,B6 ;multiply 16 LSBs of A7, B7 Æ B6

 || MPYH .M1 A7,B7,A6 ;multiply 16MSBs of A7, B7 ÆA6

 multiplies the lower or least significant 16 bits (LSBs) of both A7 and B and places the

product in B6, in parallel (concurrently within the sameexecution packet) with a second

instruction that multiplies the higher or most significant 16 bits (MSBs) of A7 and B7

and places the result in A6. In this fashion, two MAC operations can be executed within a

single instruction cycle. This can be used to decompose a sum of products into two sets

of sum of products: one set using the lower 16 bits to operate on the first, third, fifth, . . .

number and another set using the higher 16 bits to operate on the second, fourth, sixth, . .

. number. Note that the parallel symbol is not in column 1.

2. Load/Store

 (a) The instruction

 LDH .D2 *B2++,B7 ;load (B2) Æ B7, increment B2

 || LDH .D1 *A2++,A7 ;load (A2) Æ A7, increment A2

 loads into B7 the half-word (16 bits) whose address in memory is speci-

 fied/pointed to by B2.Then register B2 is incremented (postincremented)

 to point at the next higher memory address. In parallel is another indirect

 addressing mode instruction to load into A7 the content in memory whose

 address is specified by A2. Then A2 is incremented to point at the next

 higher memory address.

 The instruction LDW loads a 32-bit word. Two paths using .D1 and .D2

 allow for the loading of data from memory to registers A and B using the

 instruction LDW.The double-word load floating-point instruction LDDW on

 the C6713 can simultaneously load two 32-bit registers into side A and

 two 32-bit registers into side B.

 67

(b) The instruction

 STW .D2 A1,*+A4[20] ;store A1Æ(A4) offset by 20

 stores the 32-bit word A1 in memory whose address is specified by A4

 offset by 20 words (32 bits) or 80 bytes. The address register A4 is

 preincremented with offset but it is not modified (two plus signs are used if

 A4 is to be modified).

3. Branch/Move. The following code segment illustrates branching and data

 transfer:

 Loop MVKL .S1 x,A4 ;move 16 LSBs of x address ÆA4

 MVKH .S1 x,A4 ;move 16 MSBs of x address ÆA4

 .

 .

 .

 SUB .S1 A1,1,A1 ;decrement A1

 [A1] B .S2 Loop ;branch to Loop if A1 # 0

 NOP 5 ;five no-operation instructions

 STW .D1 A3,*A7 ;store A3 into (A7)

The first instruction moves the lower 16 bits (LSBs) of address x into register A4.The

second instruction moves the higher 16 bits (MSBs) of address x into A4, which now

contains the full 32-bit address of x. One must use the instructions MVKL/MVKH in

order to get a 32-bit constant into a register.

 Register A1 is used as a loop counter. After it is decremented with the SUB

instruction, it is tested for a conditional branch. Execution branches to the label or

address Loop if A1 is not zero. If A1 = 0, execution continues and data in register A3 are

stored in memory whose address is specified (pointed) by A7.

 68

CHAPTER-5

REAL TIME IMPLEMENTATION OF THE DES
ENCRYPTION ALGORITHM BY USING

TMS320C6713 DSP PROCESSOR

 69

5.1 Implementation of speech signal encryption by using DES

In this project I have used 32-bit floating point TMS320C6713 for real time
implementation of DES encryption algorithm. The reason for choosing TMS320C6713
Processor is

1. High speed arithmetic.

2. Robust in data transfer to and from real world.

3. Multiple access memory structure.

4. Less power and cheap.

Features of TMS320C6713 DSK processor

1. Floating point device.

2. Operating frequency 225MHz.

3. VLIW architecture.

4. 264Kb internal cache, 16Mb SDRAM, 512 Kb flash.

5. 1800 MIPS or 1350 MFLOPS per Second.

6. TLV320AIC23 (AIC23) Onboard Stereo Codec for I/O operations (range 8KHz-
96KHz)

7. +5v universal power supply.

 In this project I have implemented DES algorithm on TMS320C6713. For testing

purposes, the first three onboard switches were utilized: sw0 for selecting different keys;

sw1 to enable encryption only, or both encryption and decryption; and sw2 as an on/off

switch (a loop program).

 70

 In this project I have replaced each sample of voice by 15 binary bits. Here I have taken

four samples at a time and converted them into 60 binary digits. For example take 4

samples of speech as follows

Amplitude of sample 1 is: ‘4’

It is replaced as follows

0000000000000100

In this 1st bit represents the sign of the sample if it is positive then it is ‘0’ else it is ‘1’.

Like this I have obtained 16 binary bits.

Now take second sample as ‘-4’

It is replaced as follows

1000000000000100

Here 1st bit ‘1’ represents that the amplitude of sample is negative.

 Like this I have replaced amplitude of 1st four samples by 64 binary bits and then I

have applied DES algorithm for these 64 bits with the given key. After this I have taken

next four samples and applied DES algorithm like wise this process continues for all

samples of given speech signal.

5.1 MATLAB Results for DES Algorithm:
In this project first I have write a matlab code for the DES algorithm. Here I have taken

64-bit data and 56-bit key for encryption.

Here I have taken the input data ‘x’ as

x = 111100001111000011111111000011110000000011111111111100000000

This is the 64-bit input data.

And key ‘k’ is

 71

k =010110011110110101110011101110011110110011110110011

I have got the cipher text output as

Cipher out =

0110011101100111011011000110110001100111011001110110110110001101100

And then I have got the decipher output same as given data in put

Decipher output=

111100001111000011111111000011110000000011111111111100000000

So here I have got the output decipher data same as the given input data which means I

am recollecting the same data after decryption.

The matlab plots for DES algorithm are given below

Fig 5.1: Matlab results for DES algorithm.

 72

In the above plot first plot the is plot of input 64-bit data ‘x’. Second plot is the is

corresponding cipher output and third one is the decipher output which is same as input.

5.2 Code composer studio Results for DES Algorithm:

For implementing the DES algorithm to voice data I have used TMS320C6713 DSK and

I have used the CCS 3.1 version for simulation. The simulation output of CCS 3.1 studio

for thousand samples of voice data is given by

Fig 5.2: CCS output for DES algorithm

This is the final output I have got. In the above figure 1st plot is for the input voice data.
Here I have taken only thousand samples. The second plot shows the decipher output
which is same as the input data means I am recollecting the same voice data after
decryption. There is slight difference between two figures in the above plot it is due to
the delay means the program for this DES algorithm is very complex that’s why its taking

 73

time to execute the program. But in the speaker I am recognizing thee same voice with
less disturbance. This problem may be avoided by using the two DSK’s one for
encryption and another for decryption but maintaining synchronism between two DSK’s
is important.

 74

CONCLUSION

Now a days there are many situations to keep voice secret in voice communication. This

can be achieved by voice encryption by using different encryption algorithms. In this

project I have implemented DES algorithm on TMS320C6713 DSK for voice encryption.

DES algorithm is a symmetric key algorithm means it uses the same key for encryption

and decryption. In this DES algorithm input data is 64-bit length and key is 56-bits. In

this project I have done simulations in both matlab and in the code composer studio

version 3.1. In this project I have used TMS 320C6713 DSK for real time

implementation. It is a 32-bit floating point processor. In this thesis I have presented the

results in matlab and in CCS 3.1.

 75

References:
1. Digital signal processing and applications with the C6713 and C6416 DSK by

Rulph Chassaing, 2005.

2. Improved Data Encryption by Seung-Jo Han, Heang-Soo oh, Jongan Park, ieee

2001.

3. Energy consumption of Encryption schemes by Sohail Harani, April 9, 2003.

4. Willam Stallings “cryptography and network security” , fourth edition, 2003.

5. Implementation of DES algorithm on TMS320C6713 by Rulph Chassaing, 2004.

6. ABRA87 Abrams, M., and Podell, H. Computer and Network Security. Los

Alamitos, CA: IEEE Computer Society Press,1997.

7. Implementation approaches for the Advanced Encryption Standard algorithm,

 Xinmiao Zhang; Parhi, K.K.; IEEE Circuits and Systems Magazine, Volume: 2

 Issue: 4 Fourth Quarter 2002 Page(s): 24 –46.

8. IEEE P1363a and IEEE 1363: Standard Specification for Public key

 Cryptography.

 9. IJCSNS International Journal of Computer Science and Network Security, VOL.6

 No.1B, January 2006 “Cryptanalysis of Simplified Data Encryption Standard via

 Optimisation Heuristics”.

 10. Clark A and Dawson Ed, “Optimization Heuristics for the Automated
 Cryptanalysis of Classical Ciphers”, Journal of Combinatorial Mathematics
 and Combinatorial Computing, Vol. 28,pp. 63-86, 1998.

 76

