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ABSTRACT 

 
 
The data encryption standard (DES) is an algorithm that was formerly considered to be 

the most popular method for private key encryption. DES is still appropriate for 

moderately secured communication. In this project I have implemented DES algorithm 

for voice data encryption by using the Texas Instruments TMS320C6713 dsp processor. 

TMS320C6713 is a 32-bit floating point dsp processor which is one of the Texas 

TMS320C6x family. Digital signal processors such as the TMS320C6x (C6x) family of 

processors are like fast special-purpose microprocessors with a specialized type of 

architecture and an instruction set appropriate for signal processing. The architecture of 

the C6x digital signal processor is very well suited for numerically intensive calculations. 

Based on a very-long-instruction-word (VLIW) architecture, the C6x is considered to be 

TI’s most powerful processor. 
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INTRODUCTION 
 
Cryptography is the art of communicating with secret data. In voice communication, 

cryptography refers to the encrypting and decrypting of voice data through a possibly 

insecure data line. The goal is to prevent anyone who does not have a “key” from 

receiving and understanding a transmitted message. 

 

    The data encryption standard (DES) is an algorithm that was formerly considered to be 

the most popular method for private key encryption. DES is still appropriate for 

moderately secured communication. 

 

    IN this project I have implemented DES algorithm to voice data by using the 

TMS320C6713 dsp processor. TMS320C6713 is a 32-bit floating point dsp processor 

which is one of the Texas TMS320C6x family. Digital signal processors such as the 

TMS320C6x (C6x) family of processors are like fast special-purpose microprocessors 

with a specialized type of architecture and an instruction set appropriate for signal 

processing. The architecture of the C6x digital signal processor is very well suited for 

numerically intensive calculations. Based on a very-long-instruction-word (VLIW) 

architecture, the C6x is considered to be TI’s most powerful processor. 

 

    Digital signal processors are used for a wide range of applications, from 

communications and controls to speech and image processing. The general-purpose 

digital signal processor is dominated by applications in communications (cellular). 

Applications embedded digital signal processors are dominated by consumer products. 

They are found in cellular phones, fax/modems, disk drives, radio, printers, hearing aids, 

MP3 players, high-definition television (HDTV), digital cameras, and so on. 
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  DES is a bit-manipulation technique with a 64-bit block cipher that uses an effective key 

of 56 bits. It is an iterated Feistel-type cipher with 16 rounds. The general model of DES 

has three main components for: (1) initial permutation; (2) encryption—the core 

iteration/f-function (16 rounds); and (3) final permutation. 

 

    This thesis consists of five chapters. For processing this project first there is a need of 

knowing about the TMS320C6713 dsp processor that means we want to know about its 

architecture and how its take inputs and how its produce outputs etc. that’s why in second 

chapter I have explained about the total architecture of  TMS320C67 processor and in 

third chapter I have explained how this processor takes inputs and how its produce 

outputs and in fourth chapter I have explained about the architecture and instruction set of 

TMS320C67 processor. In fourth chapter I have explained about DES algorithm and the 

procedure to implement the DES algorithm for voice signal by using TMS320C67 

processor. 
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CHAPTER-1 
 
 
 
 

 
Data Encryption Standard Algorithm 
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1.1 DES Model 

 
Cryptography is the art of communicating with secret data. In voice communication, 

cryptography refers to the encrypting and decrypting of voice data through a possibly 

insecure data line. The goal is to prevent anyone who does not have a “key” from 

receiving and understanding a transmitted message. 

 

    The data encryption standard (DES) is an algorithm that was formerly considered to be 

the most popular method for private key encryption. DES is still appropriate for 

moderately secured communication. 

 

    DES is a bit-manipulation technique with a 64-bit block cipher that uses an effective 

key of 56 bits. It is an iterated Feistel-type cipher with 16 rounds. The general model of 

DES has three main components for (see Figure 4.1): (1) initial permutation; (2) 

encryption—the core iteration/f-function (16 rounds); and (3) final permutation. X and Y 

are the input and output data streams in 64-bit block segments, respectively, and K1 

through K16 are distinct keys used in the encryption algorithm. The initial permutation is 

based on the predefined Table 1.1. The value at each position is used to scramble the 

input before the encryption routine. For example, the 58th data to be moved into the first 

position  
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Fig 1.1: DES Model 

 
Table 1.1: Initial permutation table: 

 
 

of a 64-bit array, the 50th bit into position 2, and so on. The input stream is permutated 

using a nonrepetitive random table of 64 integers (1–64) that corresponds to a new 

position of each bit in the 64-bit data block. The final permutation is the reverse of the 

initial permutation to reorder the samples into the correct original formation. The initial 

permutation is followed by the actual encryption. The permutated 64-bit block is divided 

into a left and a right block of 32 bits each.  

 

1.2 Sixteen Rounds of DES 

 

Sixteen rounds take place, each undergoing a similar procedure, as illustrated in Figure 

1.3. The right block is placed into the left block of the next round, and the left block is 

combined with an encoded version of the right block and placed into the right block of 

the next round, or 

                                          Li = Ri-1 

                                       Ri = Li-1  XOR  f(Ri-1,ki) 

 

where Li-1 and Ri-1 are the left and right blocks, respectively, each with 32 bits, and ki is 

the distinct key for the particular round of encryption. The original key is sent through a 
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key scheduler that alters the key for each round of encryption. The left block is not 

utilized until the very end, when it is XORed with the encrypted right block. 

    The f-function operating on a 32-bit quantity expands these 32 bits into 48 bits using 

the expansion table (see Table 1.2). This expansion table performs a permutation while 

duplicating 16 of the bits (the rightmost two columns). For example, the first integer is 

32, so that the first bit in the output block will be bit 32; the second integer is 1, so that 

the second bit in the output block will be bit 1; and so on. 

 
Fig 1.2: Encryption process—one round. 

  

 

Table 1.2: Expansion of 32 bits to 48. 
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Table 1.3: S-Box example,S1 

 
 

 

    The 48-bit key transformations are XORed with these expanded data, and the results 

are used as the input to eight different S-boxes. Each S-box takes 6 consecutive bits and 

outputs only 4 bits. The 4 output bits are taken directly from the numbers found in a 

corresponding S-box table. This process is similar to that of a decoder where the 6 bits act 

as a table address and the output is a binary representation of the value at that address. 

The zeroth and fifth bits determine the row of the S-box, and the first through fourth bits 

determine which column the number is located in. For example, 110100 points to the 

third row (10) and 10th column (1010). The first 6 bits of data correspond to the first of 

eight S-box tables, shown in Table 1.3. The 32 bits of output from the S-boxes are 

permutated according to the P-box shown in Table 1.4, and then output from the f-

function shown in Figure 1.3. For example, from Table1.4, bits 1 and 2 from the input 

block will be moved to bits 16 and 7 in the output, respectively. After the 16 rounds of 

encryption, a final permutation occurs, which reverses the initial permutation, yielding an 

encrypted data signal. 

 

Table 1.4: P-BOX 
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Fig 1.3: Core f-function of DES 
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CHAPTER-2 
 
 
 
 

INTRODUCTION TO TMS320C6713 DSPKIT 
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2.1 INTRODUCTION 
    

 Digital signal processors such as the TMS320C6x (C6x) family of processors are like 

fast special-purpose microprocessors with a specialized type of architecture and an 

instruction set appropriate for signal processing. The C6x notation is used to designate a 

member of Texas Instruments’ (TI) TMS320C6000 family of digital signal processors. 

The architecture of the C6x digital signal processor is very well suited for numerically 

intensive calculations. Based on a very-long-instruction-word (VLIW) architecture, the 

C6x is considered to be TI’s most powerful processor. 

 

    Digital signal processors are used for a wide range of applications, from 

communications and controls to speech and image processing. The general-purpose 

digital signal processor is dominated by applications in communications (cellular). 

Applications embedded digital signal processors are dominated by consumer products. 

They are found in cellular phones, fax/modems, disk drives, radio, printers, hearing aids, 

MP3 players, high-definition television (HDTV), digital cameras, and so on. These 

processors have become the products of choice for a number of consumer applications, 

since they have become very cost-effective. They can handle different tasks, since they 

can be reprogrammed readily for a different application. DSP techniques have been very 

successful because of the development of low-cost software and hardware support. For  

Example, modems and speech recognition can be less expensive using DSP techniques. 

 
    DSP processors are concerned primarily with real-time signal processing. Real-time 

processing requires the processing to keep pace with some external event, whereas non-

real-time processing has no such timing constraint. The external event to keep pace with 

is usually the analog input. Whereas analog-based systems with discrete electronic 

components such as resistors can be more sensitive to temperature changes, DSP-based 

systems are less affected by environmental conditions. DSP processors enjoy the 

advantages of microprocessors. They are easy to use, flexible, and economical. 
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     The basic system consists of an analog-to-digital converter (ADC) to capture an input 

signal. The resulting digital representation of the captured signal is then processed by a 

digital signal processor such as the C6x and then output through a digital-to-analog 

converter (DAC). Also included within the basic system are a special input filter for anti-

aliasing to eliminate erroneous signals and an output filter to smooth or reconstruct the 

processed output signal. 

 

2.2 DSK SUPPORT TOOLS 
 
Most of the work presented in this book involves the design of a program to implement a 

DSP application. To perform the experiments, the following tools are used: 

 

1. TI’s DSP starter kit (DSK). The DSK package includes: 

 

    (a) Code Composer Studio (CCS), which provides the necessary software 

          Support tools. CCS provides an integrated development environment 

          (IDE), bringing together the C compiler, assembler, linker, debugger, and 

           so on. 

 

    (b) A board, shown in Figure 1.1 that contains the TMS320C6713 (C6713) 

          Floating-point digital signal processor as well as a 32-bit stereo codec for 

          Input and output (I/O) support. 

 

    (c) A universal synchronous bus (USB) cable that connects the DSK board 

          to a PC. 

 

    (d) A 5V power supply for the DSK board. 

 

2. An IBM-compatible PC. The DSK board connects to the USB port of the PC 

    Through the USB cable included with the DSK package. 
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3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is 

    optional. Shareware utilities are available that utilize the PC and a sound card 

    to create a virtual instrument such as an oscilloscope, a function generator, or 

    a spectrum analyzer. 

 

2.2.1 DSK Board 
 

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary 

hardware and software support tools for real-time signal processing. It is a complete DSP 

system. The DSK board, with an approximate size of 5 * 8 in., includes the C6713 

floating-point digital signal processor and a 32-bit stereo codec TLV320AIC23 (AIC23) 

for input and output. 

 

    The onboard codec AIC23 uses a sigma–delta technology that provides ADC and 

DAC. It connects to a 12-MHz system clock. Variable sampling rates from 8 to 96 kHz 

can be set readily. 

 

    A daughter card expansion is also provided on the DSK board. Two 80-pin connectors 

provide for external peripheral and external memory interfaces. Two project examples in 

Chapter 10 illustrate the use of the external memory interface (EMIF) with light-emitting 

diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum display. 

 

    The DSK board includes 16MB (megabytes) of synchronous dynamic random access 

memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors on the 

board provide input and output: MIC IN for microphone input, LINE IN for line input, 

LINE OUT for line output, and HEADPHONE for a headphone output (multiplexed with 

line output). The status of the four user dip switches on the DSK board can be read from 

a program and provides the user with a feedback control interface. The DSK operates at 

225MHz.Also onboard the DSK are voltage regulators that provide 1.26 V for the C6713 

core and 3.3 V for its memory and peripherals. 
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FIGURE 2.0. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of 
Texas Instruments) 
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2.2.2 TMS320C6713 Digital Signal Processor 
 
The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well 

suited for numerically intensive algorithms. The internal program memory is structured 

so that a total of eight instructions can be fetched every cycle. For example, with a clock 

rate of 225MHz, the C6713 is capable of fetching eight 32-bit instructions every 1/(225 

MHz) or 4.44 ns. 

 

   Features of the C6713 include 264 kB of internal memory (8kB as L1P and L1D Cache 

and 256kB as L2 memory shared between program and data space), eight functional or 

execution units composed of six arithmetic-logic units (ALUs) and two multiplier units, a 

32-bit address bus to address 4 GB (gigabytes), and two sets of 32-bit general-purpose 

registers. 

 

    The C67xx (such as the C6701, C6711, and C6713) belong to the family of the C6x 

floating-point processors, whereas the C62xx and C64xx belong to the family of the C6x 

fixed-point processors. The C6713 is capable of both fixed- and floating-point 

processing. 

 

2.3 CODE COMPOSER STUDIO 
 
CCS provides an IDE to incorporate the software tools. CCS includes tools for code 

generation, such as a C compiler, an assembler, and a linker. It has graphical capabilities 

and supports real-time debugging. It provides an easy-to-use software tool to build and 

debug programs. 

 

    The C compiler compiles a C source program with extension .c to produce an 

assembly source file with extension.asm.The assembler assembles an.asm source file to 

produce a machine language object file with extension.obj.The linker combines object 

files and object libraries as input to produce an executable file with extension.out. This 

executable file represents a linked common object file format (COFF), popular in Unix-
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based systems and adopted by several makers of digital signal processors. This 

executable file can be loaded and run directly on theC6713 processor.  

 

   To create an application project, one can “add” the appropriate files to the project. 

Compiler/linker options can readily be specified. A number of debugging features are 

available, including setting breakpoints and watching variables; viewing memory, 

registers, and mixed C and assembly code; graphing results; and monitoring execution 

time. One can step through a program in different ways (step into, over, or out). 

 

    Real-time analysis can be performed using real-time data exchange (RTDX) . RTDX 

allows for data exchange between the host PC and the target DSK, as well as analysis in 

real time without stopping the target. Key statistics and performance can be monitored in 

real time. Through the joint team action group (JTAG), communication with on-chip 

emulation support occurs to control and monitor program execution. The C6713 DSK 

board includes a JTAG interface through the USB port. 

 

2.4(a) QUICK TEST OF DSK 
 

    1. On power, a program post.c (Power On Self Test), stored in onboard flash 

        memory, uses the board support library (BSL) to test the DSK. It tests the 

        internal, external, and flash memories, the two multichannel buffered serial 

        ports (McBSP), direct memory access (DMA), the onboard codec, and the 

        LEDs. If all tests are successful, all four LEDs blink three times and stop               

      (with all LEDs on). During the testing of the codec, a 1-kHz tone is generated  

      for 1 sec.     

   2. Launch CCS from the icon on the desktop. A USB enumeration process     

     Takes place. Then CCS will be opened and the LEDs will turn off. Press GEL        
       Æ Check DSK Æ Quick Test. The Quick Test can be used for confirmation       
       Of correct operation and installation. The following message is then  

     displayed: 
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                                         Switches: 15 

                                     Board Revision: 1 

                                     CPLD Revision: 2 

                    This assumes that the four dip switches 

 

    This assumes that the four dip switches (0, 1, 2, 3) are all in the up position. Change 

the switches to (1110)2 so that the first three switches (0, 1, 2) are up and press the fourth 

switch (3) down. Repeat the procedure to select GEL Æ Check DSK Æ Quick Test and 

verify that the value of the switches is now 7 (with the display “Switches: 7”).You can set 

the value of the four user switches from 0 to 15.Within your program you can then direct 

the execution of your code based on these 16 values. 

 

2.4(b) Alternative Quick Test of DSK 
 
  1. Open/launch CCS from the icon on the desktop if this has not been done 

      already. Select File ÆLoad Program. Click on the folder sine8_LED\Debug 

      within myprojects to load the file sine8_LED.out.This loads the executable 

      file sine8_LED.out into the C6713 processor. This assumes that you have 

      already copied all the folders on the accompanying CD into your folder: 

      c:\c6713\myprojects. 

  2. Select Debug Æ Run. Press the dip switch #0, which should light LED #0 on 

      and generate a 1-kHz tone. Connect the LINE OUT (or the HEADPHONE) 

      on the DSK board to a speaker or to an oscilloscope and verify the 

      generation of the 1-kHz tone. The four connectors on the DSK board for I/O 

      (MIC, LINE IN, LINE OUT, and HEADPHONE) use a 3.5-mm jack audio 

      cable. 
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CHAPTER-3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

INPUT AND OUTPUT TO THE DSK 
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3.1 INTRODUCTION 
 
Typical applications using DSP techniques require at least the basic system shown in 

Figure 2.1, consisting of analog input and output. Along the input path is an antialiasing 

filter for eliminating frequencies above the Nyquist frequency, defined as one-half of the 

sampling frequency Fs Otherwise, aliasing occurs, in which case a signal with a 

frequency higher than one-half Fs is used as a signal with a lower frequency. The 

sampling theorem tells us that the sampling frequency must be at least twice the highest-

frequency component f in a signal, so that 

                                 
                                   Fs > 2 
 
Which s also 
 
                                   1/Ts > 2(1/T) 
 
Where Ts is the sampling period.  Or 
 
                               Ts < T/2 
 
    The sampling period Ts must be less than one-half the period of the signal. For 

example, if we assume that the ear cannot detect frequencies above 20 kHz, we can use a 

lowpass input filter with a bandwidth or cutoff frequency at 20 kHz to avoid aliasing. We 

can then sample a music signal at Fs > 40 kHz (typically, 44.1 or 48 kHz) and remove 

frequency components higher than 20 kHz. Figure 2.2 illustrates an aliased signal. Let the 

sampling frequency Fs = 4 kHz, or a sampling period of Ts = 0.25ms. It is impossible to 

determine whether it is the 5- or 1-kHz signal that is represented by the sequence (0, 1, 0, 

-1). A 5-kHz signal will appear as a 1-kHz signal; hence, the 1-kHz signal is an aliased 

signal. Similarly, a 9-kHz signal would also appear as a 1-kHz aliased signal. 
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3.2 TLV320AIC23 (AIC23) ONBOARD STEREO CODEC FOR INPUT AND 
OUTPUT 
 
The DSK board includes the TLV320AIC23 (AIC23) codec for input and output. The 

ADC circuitry on the codec converts the input analog signal to a digital representation to 

be processed by the DSP. The maximum level of the input signal to be converted is 

determined by the specific ADC circuitry on the codec, which is 6V p-p with the onboard 

codec. After the captured signal is processed, the result needs to be sent to the outside 

world. Along the output path in Figure 2.1 is a DAC, which performs the reverse 
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operation of the ADC. An output filter smoothes out or reconstructs the output signal. 

ADC, DAC, and all required filtering functions are performed by the single-chip codec 

AIC23 on board the DSK. 

 

    The AIC23 is a stereo audio codec based on sigma–delta technology. The functional 

block diagram of the AIC23 codec is shown in Figure 2.3. It performs all the functions 

required for ADC and DAC, lowpass filtering, oversampling, and so on. The AIC23 

codec contains specifications for data transfer of words with length 16, 20, 24, and 32 

bits. A diagram of the AIC23 codec interfaced to the C6713 DSK is shown in 

6713_dsk_schem.pdf, included with the CCS package. 

 

    Sigma–delta converters can achieve high resolution with high oversampling ratios but 

with lower sampling rates. They belong to a category in which the sampling rate can be 

much higher than the Nyquist rate. Sample rates of 8, 16, 24, 32, 44.1, 48, and 96 kHz are 

supported and can be readily set in the program. 

 

    A digital interpolation filter produces the oversampling. The quantization noise power 

in such devices is independent of the sampling rate. A modulator is included to shape the 

noise so that it is spread beyond the range of interest. The noise spectrum is distributed 

between 0 and Fs/2, so that only a small amount of noise is within the signal frequency 

band. Therefore, within the actual band of interest, the noise power is considerably lower. 

A digital filter is also included to remove the out-ofband noise. 

 

    A 12-MHz crystal supplies the clocking to the AIC23 codec (as well as to the DSP and 

the USB interface). Using this 12-MHz master clock, with oversampling rates of 250Fs 

and 272Fs, an exact audio sample rate of 48 kHz (12MHz/250) and a CD rate of 44.1kHz 

(12MHz/272) can be obtained. The sampling rate is set by the codec’s register 

SAMPLERATE. 

 

    The ADC converts an input signal into discrete output digital words in a 

2’scomplement format that corresponds to the analog signal value. The DAC includes an 
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interpolation filter and a digital modulator. A decimation filter reduces the digital data 

rate to the sampling rate.The DAC’s output is first passed through an internal lowpass 

reconstruction filter to produce an output analog signal. Low noise performance for both 

ADC and DAC is achieved using oversampling techniques with noise shaping provided 

by sigma–delta modulators. 

 

    Communication with the AIC23 codec for input and output uses two multichannel 

buffered serial ports McBSPs on the C6713. McBSP0 is used as a unidirectional channel 

to send a 16-bit control word to the AIC23. McBSP1 is used as a bidirectional channel to 

send and receive audio data. 

 

    Alternative I/O daughter cards can be used for input and output. Such cards can plug 

into the DSK through the external peripheral interface 80-pin connector J3 on the DSK 

board. 

 

3.3 PROGRAMMING EXAMPLES USING C CODE 
 
Several examples follow to illustrate input and output with the DSK. They are included to 

familiarize you with both the hardware and software tools and provide some background 

to implement a specific application. The example sine2sliders illustrates the use of two 

sliders, an echo example demonstrates the effects of a variable-length buffer on an echo, 

a noise generator example is used in Chapter 4 as the input to a digital filter, an example 

illustrates the use of onboard flash memory, and so on. 
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Example 3.1: Loop Program Using Interrupt (loop_intr) 
 
This example illustrates input and output with the AIC23 codec. Figure 2.4 shows 

the C source program loop_intr.c, which implements the loop program. It is interrupt-

driven using INT11. 

 

    This program example is very important since it can be used as a base program to build 

on. For example, to implement a digital filter, one would need to insert the appropriate 

algorithm between the input and output functions. The two functions input_sample and 

output_sample, as well as the function comm_intr, are included in the communication 

support file C6713dskinit.c.This is done so that the C source program is kept as small as 

possible. 

 

    After the initialization and selection/enabling of an interrupt, execution waits within 

the infinite while loop until an interrupt occurs. Upon interrupt, execution proceeds to the 

ISR c_int11, as specified in the vector file vectors_intr.asm. An interrupt occurs every 

sample period Ts = 1/Fs = 1/(8 kHz) = 0.125ms, at which time an input sample value is 

read from the codec’s ADC and then sent as output to the codec’s DAC. 

 

    Execution returns from interrupt to the while(1) statement waiting for a subsequent 

interrupt. [Note that in lieu of waiting within the while(1) infinite loop, one could be 

processing code.] Upon interrupt, execution proceeds to ISR, “services” the necessary 

task dictated by ISR, then returns to the calling function waiting for the occurrence of a 

subsequent interrupt. 

 

 

//Loop_intr.c Loop program using interrupt.Output=delayed input 

#include "dsk6713_aic23.h" //codec-DSK support file 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

 

interrupt void c_int11() //interrupt service routine 

{ 
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short sample_data; 

 

sample_data = input_sample(); //input data 

output_sample(sample_data); //output data 

return; 

} 

 

void main() 

{ 

comm_intr(); //init DSK, codec, McBSP 

while(1); //infinite loop 

} 

FIGURE 2.4. Loop program using interrupt (loop_intr.c). 

 

1. Within the function output_sample, support functions from the BSL are 

    included to write data using the two serial ports: McBSP0 for control and 

    McBSP1 for data transfer (MCBSP_write). Most of the programs in the book 

    will output using 16 bits. In this fashion, output_sample is made to default 

    to the left 16-bit channel and no adapter need be used (see the comments in 

    C6713dskinit.c). Otherwise, one would need to use output_right_sample. 

2. Within the function comm_intr, the following tasks are performed. 

    (a) Initialize the DSK. 

    (b) Configure/select INT11. 

    (c) Enable the specific interrupt. 

    (d) Enable the global enable interrupt (GIE) bit and the nonmaskable 

          interrupt. 

    (e) Initiate communication. 
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    The interrupt functions called for the tasks above are within the board and chip support 

files included with CCS. Create and build this project as loop_intr. The main C source 

file is in the folder loop_intr. Use the same support files as in Example 1.2: the vector file 

for the interrupt-driven and linker command file located in the folder support, and the 

runtime support, board support, and chip support library files that can be added with the 

building option for the linker. 

 

    Input a sinusoidal waveform to the LINE IN connector on the DSK, with amplitude of 

approximately 2 V p-p and a frequency between approximately 1 and 3 kHz. Connect the 

output of the DSK, LINE OUT to a speaker or to an oscilloscope and verify a tone of the 

same input frequency, but attenuated to approximately 0.8 V p-p. Using an oscilloscope, 

the output is a delayed version of the input signal. 

 

    Increase the amplitude of the input sinusoidal waveform beyond 6V p-p and observe 

that the output signal becomes distorted. 

 

Input with Gain 
 
To adjust the gain of the left line-input channel, the corresponding header support file 

c6713dskinit.h of the communication/init “black box” file needs to be modified slightly. 

First, copy this header file AND c6713dskinit.c from the support folder into the folder 

loop_intr so that you do not modify the original header file. Remove the init file from the 

project and replace it with the one in the folder loop_intr.This will keep the original init 

support file unchanged in the folder support. Modify the setup register 0, which controls 

the left input volume, from 0x0017 to 0x001c in order to increase the left line-input 

volume. 

 

    Rebuild the project, making sure that you are adding c6713dskinit.c from the folder 

loop_intr (and not from the folder support). In this fashion, the corresponding header file 

c6713dskinit.h that will be included will come from that same folder.  Load/run the 

executable file loop_intr.out, and verify that the output amplitude is not attenuated and is 
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the same as the input amplitude of 2V p-p. Values for the set-up register 0 from 0x0018 

to 0x001c will cause the output amplitude to increase from 0.8 to 2V p-p. 

 

    The left input channel was selected since input_sample and output_sample default to 

the left channel. Otherwise, if the right line-input volume is to be increased by modifying 

the set-up register 1, an adapter/connector with two inputs and one single-ended output 

connections would be needed. See Example 2.3 (loop_stereo/ sine_stereo). 

 
Input from a Microphone 
 
To select an input from a microphone in lieu of line input, modify the header file set-up 

register 4 from 0x0011 to 0x0015 (third LSB as a 1) so that the ADC gets its input from 

MIC IN. The microphone input and line input are multiplexed, and only one is active at a 

time. Rebuild the project to verify your output, with the input to the MIC IN connector. 

 

Example 3.2: Loop Program Using Polling (loop_poll) 
 
This example implements a polling-based loop program to illustrate the input and output 

of a sample value every sample period Ts. Note that the program loop_intr.c in Example 

2.1 is an interrupt-driven program. The C source program loop_poll.c shown in Figure 

2.5 implements this loop program. The polling technique uses a continuous procedure of 

testing when the data are ready. Although it is simpler than the interrupt technique, it is 

less efficient since the input and output data need to be continuously tested to determine 

when they are ready to be received or transmitted. 
 

 
//loop_poll.c Loop program using polling.Output=delayed input 

 

#include "DSK6713_AIC23.h" //codec-DSK file support 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

 

void main() 
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{ 

short sample_data; 

comm_poll(); //init DSK, codec, McBSP 

while(1) //infinite loop 

{ 

sample_data = input_sample(); //input sample 

output_sample(sample_data); //output sample 

} 

} 

FIGURE 2.5. Loop program using polling (loop_poll.c). 

 

1. The input to the ADC is from the data receive register (DRR) of the McBSP1. 

     Since this is a polling-driven program, the SPCR bit 1, which is the receive 

     ready register (RRDY), is first tested to determine if it is a 1 or enabled (see 

     Figure B.8).Within input_sample, execution of the statement 

 

     While (!MCBSP_rrdy()) 
 
     remains in an infinite loop until RRDY becomes 1 or enabled. Execution then 

     proceeds to read/receive the data. 

2. Within the function output_sample, the MCBSP1 writes the output from 

    the DAC to the data transmit register (DXR) of McBSP1. Since this is a 

    polling-driven program, the transmit ready register (XRDY) bit 17 of SPCR 

    is first tested to see if it is a 1 or enabled. Within output_sample, execution 

   of the statement 

 

       While (!MCBSP_xrdy()) 
 

remains in an infinite loop until the transmit ready register becomes 1 or 

enabled. Execution then proceeds to transmit/write the data. 
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    The same support files as in Example 1.1 are used: the “black box” communication/ 

init file c6713dskinit.c, the vector file vectors_poll.asm, the linker command file 

c6713dsk.cmd (all three from the folder support), and the three library-support files. 

 

   Create and build this project as loop_poll. Use the same input as in Example 

2.1 and verify the same results. 

 

Example 3.3: Stereo Input and Stereo Output (loop_stereo/sine_stereo) 
 
Loop Program with Stereo Input and Stereo Output (loop_stereo) 

This example demonstrates input and output using the stereo capability of the onboard 

AIC23 codec. It requires the use of an adapter with two inputs and one output that 

connects to the DSK. Such an adapter has one input connector white (or silver) that 

represents the left channel and another input connector red (or gold) that represents the 

right channel. This adapter becomes essential for some of the examples on adaptive 

filtering that require two separate input signals, processing each input separately. Figure 

2.6 shows the loop program loop_stereo to illustrate. 

//Loop_stereo.c Stereo input and output with both channels 
 
#include "dsk6713_aic23.h" //codec-DSK support file 
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 
 
#define LEFT 0 //reversed in init file 
#define RIGHT 1 
union {Uint32 combo; short channel[2];} AIC23_data; 
 
interrupt void c_int11() //interrupt service routine 
{ 
AIC23_data.combo = input_sample(); //input 32-bit sample 
output_left_sample(AIC23_data.channel[LEFT]);//left channels for I/O 
return; 
} 
void main() //main function 
{ 
comm_intr(); //init DSK, codec, McBSP 
while(1); //infinite loop 
} 
FIGURE 2.6. Loop program with stereo input and output (loop_stereo.c). 
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Within the function input_sample, support functions from the BSL are included to read a 

32-bit data. The function input_sample captures 32-bit data, 16 bits from the left input 

channel and 16 bits from the right input channel.The union statement is used to process 

each channel independently.The union of AIC23_data and combo contains these 32-bit 

input data.The line of code for output is from the left channel (by default) to output 16-bit 

data from the left input channel. 

 

    Build and run this project as loop_stereo using the support files as in Example 1.2 for 

an interrupt-driven program. The main C source file loop_stereo.c is contained in the 

folder loop_stereo. Connect a 1 kHz (with approximate amplitude of 2 V p-p) sine wave 

into the left input channel and a 2-kHz sine wave into the right input channel. Verify that 

the left (default) output channel has the same input signal frequency of 1kHz, but reduced 

in amplitude (as expected).You do not need a second adapter for the output side since the 

output defaults to the left channel. Change the output line of code to 

 

output_left_sample(AIC23_data.channel[RIGHT]); 
 
 
and verify that the output is the 2-KHz sine wave from the right input channel.With the 

line of code 

output_right_sample(AIC23_data.channel[RIGHT]); 
 
 
//Sine_stereo.c Sine generation with output to both channels 

 

#include "dsk6713_aic23.h" //codec-DSK support file 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

 

#define LEFT 0 //reversed in init file 

#define RIGHT 1 

union {Uint32 combo; short channel[2];} AIC23_data; 
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short loop = 0, gain = 10; 

short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values 

 

interrupt void c_int11() //interrupt service routine 

{ 

AIC23_data.channel[RIGHT]=sine_table[loop]*gain; //for right channel 

AIC23_data.channel[LEFT]=sine_table[loop]*gain; //for left channel 

output_sample(AIC23_data.combo); //output to both channels 

 

if (++loop > 7) loop = 0; //reint index if @ end of table 

} 

void main() 

{ 

comm_intr(); //init DSK, codec, McBSP 

while(1); //infinite loop 

} 

FIGURE 2.7. Sine generation with stereo outputs (sine_stereo.c). 
 
two adapters are required to verify that the output from the right channel is the 2-kHz sine 

wave from the right input channel. You can also use one adapter at the input side to 

capture the two different signals and one stereo cable at the output side. 

 

    Experiment with this project, inputting different signals into each channel and 

outputting from each channel using adapters and stereo cable. Verify that you can select 

each input and output channel independently. 

 

Sine Generation with Stereo Output (sine_stereo) 

 

Figure 2.7 shows the C source file sine_stereo.c, included in the folder sine_stereo, to 

illustrate further the codec as a stereo device. Build and run this project as sine_stereo. 

Verify that the generated 1 kHz sinusoid is through both output channels, using an 

adapter or stereo cable at the output side of the DSK. 
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Example 3.4: Sine Generation with Two Sliders for Amplitude and 
Frequency Control (sine2sliders) 
 
The polling-based program sine2sliders.c in Figure 2.8 generates a sine wave. Two 

sliders are used to vary both the amplitude (gain) and the frequency of the sinusoid 

 

//Sine2sliders.c Sine generation with different # of points 

 

#include "DSK6713_AIC23.h" //codec-DSK interface support 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

short loop = 0; 

short sine_table[32]={0,195,383,556,707,831,924,981,1000, 

981,924,831,707,556,383,195,0,-195,-383,-556,-707,-831,-924, 

-981,-1000,-981,-924,-831,-707,-556,-383,-195}; //sine data 

short gain = 1; //for gain slider 

short frequency = 2; //for frequency slider 

void main() 

{ 

comm_poll(); //init DSK,codec,McBSP 

while(1) //infinite loop 

{ 

output_sample(sine_table[loop]*gain);//output scaled value 

loop += frequency; //incr frequency index 

loop = loop % 32; //modulo 32 to reinit index 

} 

} 

FIGURE 2.8. Sine generation making use of two sliders to control the amplitude and 

frequency of the sine wave generated (sine2sliders.c). 
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/*Sine2sliders.gel Two sliders to vary gain and frequency*/ 

 

menuitem "Sine Parameters" 

slider Gain(1,8,1,1,gain_parameter) /*incr by 1,up to 8*/ 

{ 

gain = gain_parameter; /*vary gain*/ 

} 

slider Frequency(2,8,2,2,frequency_parameter) /*incr by 2,up to 8*/ 

{ 

frequency = frequency_parameter; /*vary frequency*/ 

} 

FIGURE 2.9. GEL file with two slider functions to control the amplitude and frequency 

of the sine wave generated (sine2sliders.gel). 

 

generated. Using a lookup table with 32 points, the variable frequency is obtained by 

selecting a different number of points per cycle. The gain slider scales the 

volume/amplitude of the waveform signal.The appropriate GEL file sine2sliders.gel is 

shown in Figure 2.9. 

 

    The 32 sine data values in the table or buffer correspond to sin(t), where t = 0,11.25, 

22.5, 33.75, 45, . . . , 348.75 degrees (scaled by 1000).The frequency slider takes on a 

value from 2 to 8, incremented by 2.The modulo operator is used to test when the end of 

the buffer that contains the sine data values is reached.When the loop index reaches 32, it 

is reinitialized to zero. For example, with the frequency slider at position 2, the loop or 

frequency index steps through every other value in the table. This corresponds to 16 data 

values within one cycle. 

 

    Build this project as sine2sliders. Use the appropriate support files for a pollingdriven 

program. The main C source file sine2sliders.c is contained in the folder sine2sliders. 

Verify that the frequency generated is f = Fs/16 = 500Hz. Increase the slider position (the 

use of a slider was introduced in Example 1.1) to 4, 6, 8 and verify that the signal 
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frequencies generated are 1000, 1500, and 2000Hz, respectively. Note that when the 

slider is at position 4, the loop or frequency index steps through the table selecting the 

eight values (per cycle): sin[0], sin[4], sin[8], . . . , sin[28] that correspond to the data 

values 0, 707, 1000, 707, 0, -707, -1000, and -707.The resulting frequency generated is 

then f = Fs/8 = 1 kHz (as in Example 1.1). 

 
Example 3.5: Loop Program with Input Data Stored in Memory 
(loop_store) 
 
The program loop_store.c in Figure 2.10 is an interrupt-based program and is included in 

the folder loop_store. Each time an interrupt INT11 occurs, a sample is read from the 

codec’s ADC and written to the codec’s DAC. Furthermore, each sample is written to a 

512-element circular buffer implemented using an array buffer and an index i that is 

incremented after each sample is stored. The index is reset to zero when it reaches the 

end of the buffer. Consequently, the array always contains the 512 most recent sample 

values. 

 

//Loop_store.c Data acquisition.Input data stored also into buffer 

 

#include "DSK6713_AIC23.h" //codec-DSK interface support 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

#define BUFFER_SIZE 512 //buffer size 

short buffer[BUFFER_SIZE]; //buffer where data is stored 

int i = 0; 

interrupt void c_int11() //interrupt service routine 

{ 

output_sample((short)input_sample());//output acquired data 

buffer[i] =((short)input_sample());//store input data into buffer 

i++; //increment buffer index 

if (i==BUFFER_SIZE) i = 0; //reinit index if buffer full 

return; //return from ISR 
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} 

void main() 

{ 

comm_intr(); //init DSK, codec, McBSP 

while(1); //infinite loop 

} 

FIGURE 2.10. Loop program with input data stored in memory (loop_store.c). 

 

FIGURE 2.11. CCS graphs with the loop_store program: (a) time-domain plot of stored 

input data representing a 1-kHz sine wave; (b) FFT magnitude of stored data representing 

a 1-kHz sine wave. 
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    Build this project as loop_store. Input a sinusoidal signal with amplitude of 

approximately 1/2 V p-p and a frequency of 1 kHz. Run and verify your output 

results. 

 

    Use CCS to plot the stored input data in both the time and frequency domains (see also 

Example 1.2). Select View Æ Graph Æ Time/Frequency. For the timedomain plot, 

specify a starting address “buffer,” 512 points for the acquisition buffer size, 64 points for 

the data size display (for a clearer plot), a 16-bit signed integer for the data type, and 

8000 for the sampling rate.Verify the 1-kHz time-domain sinewave plot within CCS, as 

shown in Figure 2.11a. 

 

    Select View Æ Graph Æ Time/Frequency again and FFT magnitude for display to 

obtain a frequency-domain plot of the stored input data. Specify a display data size of 512 

with an FFT order of M = 9, where 2M = 512.The spike at 1 kHz in Figure 2.11b 

represents the 1-kHz sine wave plot within CCS. 

 

 

//Loop_print.c Data acquisition.Loop with data printed to a file 

 

#include "DSK6713_AIC23.h" //codec-DSK support file 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

#include <stdio.h> 

#define BUFFER_SIZE 64 //buffer size 

int i=0, j=0; 

short buffer[BUFFER_SIZE]; //buffer for data 

FILE *fptr; //file pointer 

interrupt void c_int11() //ISR 

{ 

buffer[i]=((short)input_sample()); //store data in buffer 
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i++; //increment buffer count 

if (i==BUFFER_SIZE - 1) //if buffer full 

{ 

fptr = fopen("sine.dat","w"); //create output data file 

for (j=0; j<BUFFER_SIZE; j++) 

fprintf(fptr,"%d\n",buffer[j]);//write buffer data to file 

fclose(fptr); //close file 

i = 0; //initialize buffer count 

puts("done"); //finished storing to file 

} 

output_sample((short)input_sample()); //output data 

return; //return from ISR 

} 

void main() 

{ 

comm_intr(); //init DSK, codec, McBSP 

puts("start\n"); //print "start" indicator 

while(1); //infinite loop 

} 

FIGURE 2.12. Loop program to store I/O data in memory and in a file (loop_print.c). 

 

Example 3.6: Loop with Data in a Buffer Printed to a File (loop_print) 
 

This example extends the preceding loop program so that the acquired input data are 

stored in a memory buffer and then printed to a file. Figure 2.12 shows the C source 

program loop_print.c (included in the folder loop_print) that implements this example. It 

takes a long time (more than 3000 cycles) to execute the printf statement in the program 

(see Example 1.3).This can be reduced to about 30 cycles using DSP/BIOS. 
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 After initialization of the DSK, the puts statement prints the word start as an indicator 

within the CCS command window; then execution proceeds to the infinite while loop. 

Upon each interrupt, execution proceeds to ISR, and a newly acquired data value is stored 

in a buffer of size 64. 

 

    The buffer index i is incremented to store each new sampled data value. When the end 

of the buffer is reached, indicating that the buffer is full, a file sine.dat is “opened” and 

the contents of the buffer are written into that file. Then the indicator done is printed 

within the CCS window. This process is repeated continuously so that a new set of 64 

data points is acquired, and the done indicator is again displayed (after each set of data 

fills the buffer and is written to sine.dat). 

 

    Build and run this project as loop_print. Input a sine-wave signal of approximately 1/2 

V p-p with a 1-kHz frequency. Halt execution after the indicator done is displayed. The 

buffer of 64 input data representing the sine wave can be retrieved from the file sine.dat 

in the same folder loop_print\Debug. Note that the third set of 64 points will be stored in 

the buffer and printed in the file sine.dat if execution of the program is halted after the 

third done indicator. A plot program or MATLAB can be used to plot sine.dat and verify 

a 1-kHz sine wave.You can also verify your results by plotting the content of the buffer 

within CCS, as in the previous example. Note that the output is not displayed 

appropriately in real time due to the slow execution of the print statement. You can 

comment the section of code that is associated with printing the input data into a file to 

verify that a loop program is also implemented. 

 

Example 3.7: Square-Wave Generation Using a Lookup Table 
(squarewave) 
 
This example generates a square wave using a lookup table. Figure 2.13 shows a listing 

of the program squarewave.c (located in the folder squarewave) that implements this 

project example. A buffer of size 64 is created.Within main, the buffer table is loaded 

with data: the first half with (215 - 1) = 32,767 and the second half with -215 = -32,768. 

Upon each interrupt that occurs every sample period Ts, one data value from the buffer is 
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sent for output. After each data value from the. table is output, execution returns to the 

infinite while loop, waiting for the next interrupt to occur and output the subsequent 

value in the table. When the end of the buffer (table) is reached, the buffer index is 

reinitialized to the beginning of the buffer. 

 

    Build and run this project as squarewave. Verify a square-wave output signal of 

approximately 3V p-p. Note that the valid input data to the codec are between -215 and 

(215 - 1) or between -32,768 and 32,767. Change the values in the first half of the table 

using 0x8000 = 32,768 in lieu of 0x7FFF = 32,767. Rebuild/run and verify that the 

square-wave signal is no longer generated. 

 

    Note that increasing the number of points in the table produces a more pronounced 

charging/discharging effect (since it is AC coupled) due to the output capacitor (see the 

block diagram of the AIC23 codec). For example, with 64 points, the fundamental 

frequency is at 8 kHz/64 = 125Hz. Doubling the number of points will double the period 

of the square wave, and the discharging effect will be more pronounced (time constant 

reduced relative to one-half of the period of the square wave). Change the sampling 

frequency to 16 or 24 kHz and verify that the charching/ discharging effect of the 

capacitor is less pronounced. 

 

//Squarewave.c Generates a squarewave using a look-up table 

 

#include "dsk6713_aic23.h" //codec-DSK interface support 

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

#define table_size (int)0x40 //size of table=64 

short data_table[table_size]; //data table array 

int i; 

interrupt void c_int11() //interrupt service routine 

{ 

output_sample(data_table[i]); //output value each Ts 

if (i < table_size) ++i; //if table size is reached 
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else i = 0; //reinitialize counter 

return; //return from interrupt 

} 

main() 

{ 

for(i=0; i<table_size/2; i++) //set 1st half of buffer 

data_table[i] = 0x7FFF; //with max value (2^15)-1 

for(i=table_size/2;i<table_size;i++) //set 2nd half of buffer 

data_table[i] = -0x8000; //with -(2^15) 

i = 0; //reinit counter 

comm_intr(); //init DSK, codec, McBSP 

while (1); //infinite loop 

} 

FIGURE 2.13. Square-wave generation program (squarewave.c). 
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4.1 INTRODUCTION 
 
Texas Instruments introduced the first-generation TMS32010 DSP in 1982, the 

TMS320C25 in 1986, and the TMS320C50 in 1991. Several versions of each of these 

processors—C1x, C2x, and C5x—are available with different features, such as faster 

execution speed. These 16-bit processors are all fixed-point processors and are code-

compatible. 

 

    In a von Neumann architecture, program instructions and data are stored in a single 

memory space. A processor with a von Neumann architecture can make a read or a write 

to memory during each instruction cycle. Typical DSP applications require several 

accesses to memory within one instruction cycle. The fixed-point processors C1x, C2x, 

and C5x are based on a modified Harvard architecture with separate memory spaces for 

data and instructions that allow concurrent accesses. 

 

    Quantization error or round-off noise from an ADC is a concern with a fixedpoint 

processor. An ADC uses only a best-estimate digital value to represent an input. For 

example, consider an ADC with a word length of 8 bits and an input range of ±1.5V.The 

steps represented by the ADC are: input range/28 = 3/256 = 11.72mV. This produces 

errors that can be up to ±(11.72mV)/2 = ±5.86mV. Only a best estimate can be used by 

the ADC to represent input values that are not multiples of 11.72mV.With an 8-bit ADC, 

28 or 256 different levels can represent the input signal. An ADC with a larger word 

length, such as a 16-bit ADC (or larger, currently very common), can reduce the 

quantization error, yielding a higher resolution.The morebits an ADC has, the better it 

can represent an input signal. 

 

    The TMS320C30 floating-point processor was introduced in the late 1980s. The C31, 

the C32, and the more recent C33 are all members of the C3x family of floating-point 

processors. The C4x floating-point processors, introduced subsequently , are code-

compatible with the C3x processors and are based on the modified Harvard architecture. 

The C62x is not code-compatible with the previous generation of fixed-point processors. 

Subsequently, the TMS320C6701 (C67x) floating-point processor was introduced as 
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another member of the C6x family of processors. The instruction set of the C62x fixed-

point processor is a subset of the instruction set of the C67x processor. Appendix A 

contains a list of instructions available on the C6x processors. 

 

    An application-specific integrated circuit (ASIC) has a DSP core with customized 

circuitry for a specific application. A C6x processor can be used as a standard general-

purpose DSp programmed for a specific application. Specific-purpose digital signal 

processors are the modem, echo canceler, and others. 

 

    A fixed-point processor is better for devices that use batteries, such as cellular phones, 

since it uses less power than does an equivalent floating-point processor. The fixed-point 

processors, C1x, C2x, and C5x, are 16-bit processors with limited dynamic range and 

precision. The C6x fixed-point processor is a 32-bit processor with improved dynamic 

range and precision. In a fixed-point processor, it is necessary to scale the data. Overflow, 

which occurs when an operation such as the addition of two numbers produces a result 

with more bits than can fit within a processor’s register, becomes a concern. 

 

    A floating-point processor is generally more expensive since it has more “real estate” 

or is a larger chip because of additional circuitry necessary to handle integer as well as 

floating-point arithmetic. Several factors, such as cost, power consumption, and speed, 

come into play when choosing a specific DSp. The C6x processors are particularly useful 

for applications requiring intensive computations. Family members of the C6x include 

both fixed-point (e.g., C62x, C64x) and floating-point (e.g., C67x) processors. Other 

DSp’s are also available from companies such as Motorola and Analog Devices. 

 

    Other architectures include the Super Scalar, which requires special hardware to 

determine which instructions are executed in parallel. The burden is then on the processor 

more than on the programmer, as in the VLIW architecture. It does not necessarily 

execute the same group of instructions, and as a result, it is difficult to time. Thus, it is 

rarely used in DSP. 
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4.2 TMS320C6x ARCHITECTURE 
 
The TMS320C6713 onboard the DSK is a floating-point processor based on the VLIW 

architecture. Internal memory includes a two-level cache architecture with 4 kB of level 1 

program cache (L1P), 4 kB of level 1 data cache (L1D), and 256 kB of level 2 memory 

shared between program and data space. It has a glueless (direct) interface to both 

synchronous memories (SDRAM and SBSRAM) and asynchronous memories (SRAM 

and EPROM). Synchronous memory requires clocking but provides a compromise 

between static SRAM and dynamic DRAM, with SRAM being faster but more expensive 

than DRAM. 

 

    On-chip peripherals include two McBSPs, two timers, a host port interface (HPI), and 

a 32-bit EMIF. It requires 3.3 V for I/O and 1.26 V for the core (internal). Internal buses 

include a 32-bit program address bus, a 256-bit program data bus to accommodate eight 

32-bit instructions, two 32-bit data address buses, two 64-bit data buses, and two 64-bit 

store data buses. With a 32-bit address bus, the total memory space is 232 = 4GB, 

including four external memory spaces: CE0, CE1, CE2, and CE3. Figure 3.1 shows a 

functional block diagram of the C6713 processor included with CCS. 

 

 

    Independent memory banks on the C6x allow for two memory accesses within one 

instruction cycle. Two independent memory banks can be accessed using two 

independent buses. Since internal memory is organized into memory banks, two loads or 

two stores of instructions can be performed in parallel. No conflict results if the data 

accessed are in different memory banks. Separate buses for program, data, and direct 

memory access (DMA) allow the C6x to perform concurrent program fetches, data read 

and write, and DMA operations. With data and instructions residing in separate memory 

spaces, concurrent memory accesses are possible. The C6x has a byte-addressable 

memory space. Internal memory is organized as separate program and data memory 

spaces, with two 32-bit internal ports (two 64- bit ports with the C64x) to access internal 

memory. 
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    The C6713 on the DSK includes 264kB of internal memory, which starts at 

0x00000000, and 16MB of external SDRAM, mapped through CE0 starting at 

0x80000000.The DSK also includes 512 kB of Flash memory (256 kB readily available 

to the user), mapped through CE1 starting at 0x90000000. Figure 3.2 shows the L2 

internal memory configuration, included with CCS. Table 3.1 shows the memory map, 

also included with CCS. 

 

    With the DSK operating at 225MHz, one can ideally achieve two multiplies and 

accumulates per cycle, for a total of 450 million multiplies and accumulates (MACs) per 

second. With six of the eight functional units in Figure 3.1 (not the .D units described 

below) capable of handling floating-point operations, it is possible to perform 1350 

million floating-point operations per second (MFLOPS). Operating at 225MHz, this 

translates into 1800 million instructions per second (MIPS) with a 4.44-ns instruction 

cycle time. 

 

4.3 FUNCTIONAL UNITS 
 

The CPU consists of eight independent functional units divided into two data paths, A 

and B, as shown in Figure 3.1. Each path has a unit for multiply operations (.M), for 

logical and arithmetic operations (.L), for branch, bit manipulation, and arithmetic 

operations (.S), and for loading/storing and arithmetic operations (.D). The .S and .L units 

are for arithmetic, logical, and branch instructions. All data transfers make use of the .D 

units. 

 

    The arithmetic operations, such as subtract or add (SUB or ADD), can be performed by 

all the units, except the .M units (one from each data path). The eight functional units 

consist of four floating/fixed-point ALUs (two .L and two .S), two fixed-point ALUs (.D 

units), and two floating/fixed-point multipliers (.M units). Each functional unit can read 

directly from or write directly to the register file within its own path. Each path includes a 

set of sixteen 32-bit registers, A0 through A15 and B0 through B15. Units ending in 1 

write to register file A, and units ending in 2 write to register file B. 
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    Two cross-paths (1x and 2x) allow functional units from one data path to access a 32-

bit operand from the register file on the opposite side. There can be a maximum of two 

cross-path source reads per cycle. Each functional unit side can access data from the 

registers on the opposite side using a cross-path (i.e., the functional units on one side can 

access the register set from the other side). There are 32 generalpurpose registers, but 

some of them are reserved for specific addressing or are used for conditional instructions. 

 

 

 

4.4 FETCH AND EXECUTE PACKETS 
 

The architecture VELOCITI, introduced by TI, is derived from the VLIW architecture. 

An execute packet (EP) consists of a group of instructions that can be executed in parallel 

within the same cycle time. The number of EPs within a fetch packet (FP) can vary from 

one (with eight parallel instructions) to eight (with no parallel instructions). The VLIW 

architecture was modified to allow more than one EP to be included within an FP. 

 

    The least significant bit of every 32-bit instruction is used to determine if the next or 

subsequent instruction belongs in the same EP (if 1) or is part of the next EP (if 0). 

Consider an FP with three EPs: EP1, with two parallel instructions, and EP2 and EP3, 

each with three parallel instructions, as follows: 

 

Instruction A 

||       Instruction B 

 

 

Instruction C 

||       Instruction D 
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||       Instruction E 

 

Instruction F 

||       Instruction G 

||       Instruction H 
 

    EP1 contains the two parallel instructions A and B; EP2 contains the three parallel 

instructions C, D, and E; and EP3 contains the three parallel instructions F, G, and H. The 

FP would be as shown in Figure 3.3. Bit 0 (LSB) of each 32-bit instruction contains a “p” 

bit that signals whether it is in parallel with a subsequent instruction. For example, the 

“p” bit of instruction B is zero, denoting that it is not within the same EP as the 

subsequent instruction C. Similarly, instruction E is not within the same EP as instruction 

F. 

 

4.5 PIPELINING 
 
Pipelining is a key feature in a DSp to get parallel instructions working properly, 

requiring careful timing. There are three stages of pipelining: program fetch, decode, and 

execute. 

 

1.  The program fetch stage is composed of four phases: 

    (a) PG: program address generate (in the CPU) to fetch an address 

    (b) PS: program address send (to memory) to send the address 

    (c) PW: program address ready wait (memory read) to wait for data 

    (d) PR: program fetch packet receive (at the CPU) to read opcode from memory 

2.  The decode stage is composed of two phases: 

    (a) DP: to dispatch all the instructions within an FP to the appropriate functional units. 

    (b) DC: instruction decode 

3.  The execute stage is composed of 6 phases (with fixed point) to 10 phases 

     (with floating point) due to delays (latencies) associated with the following   

     functional units. 

    (a) Multiply instruction, which consists of two phases due to one delay 
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    (b) Load instruction, which consists of five phases due to four delays 

    (c) Branch instruction, which consists of six phases due to five delays 

 

    Table 3.2 shows the pipeline phases, and Table 3.3 shows the pipelining effects. The 

first row in Table 3.3 represents cycle 1, 2, . . . , 12. Each subsequent row represents an 

FP. The rows represented PG, PS, . . . illustrate the phases associated with each FP. The 

program generate (PG) of the first FP starts in cycle 1, and the PG of the second FP starts 

in cycle 2, and so on. Each FP takes four phases for program fetch and two phases for 

decoding. However, the execution phase can take from 1 to 10 phases (not all execution 

phases are shown in Table 3.3).We are assuming that each FP contains one EP. 

 

 
    For example, at cycle 7, while the instructions in the first FP are in the first execution 

phase E1 (which may be the only one), the instructions in the second FP are in the 

decoding phase, the instructions in the third FP are in the dispatching phase, and so on. 

All seven instructions are proceeding through the various phases. Therefore, at cycle 7, 

“the pipeline is full.” 
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    Most instructions have one execute phase. Instructions such as multiply (MPY), load 

(LDH/LDW), and branch (B) take two, five, and six phases, respectively. Additional 

execute phases are associated with floating-point and double-precision types of 

instructions, which can take up to 10 phases. For example, the double-precision multiply 

operation (MPYDP), available on the C67x, has nine delay slots, so that the execution 

phase takes a total of 10 phases. 

 

   The functional unit latency, which represents the number of cycles that an instruction 

ties up a functional unit, is 1 for all instructions except double-precision instructions, 

available with the floating-point C67x. Functional unit latency is different from a delay 

slot. For example, the instruction MPYDP has four functional unit latencies but nine 

delay slots. This implies that no other instruction can use the associated multiply 

functional unit for four cycles. A store has no delay slot but finishes its execution in the 

third execution phase of the pipeline. 

 

    If the outcome of a multiply instruction such as MPY is used by a subsequent 

instruction, a NOP (no operation) must be inserted after the MPY instruction for the 

pipelining to operate properly.Four or five NOPs are to be inserted in case an instruction 

uses the outcome of a load or a branch instruction, respectively. 

 

4.6 REGISTERS 
 

Two sets of register files, each set with 16 registers, are available: register file A (A0 

through A15) and register file B (B0 through B15). Registers A0, A1, B0, B1, and B2 are 

used as conditional registers. Registers A4 through A7 and B4 through B7 are used for 

circular addressing. Registers A0 through A9 and B0 through B9 (except B3) are 

temporary registers. Any of the registers A10 through A15 and B10 through B15 used are 

saved and later restored before returning from a subroutine. 
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    A 40-bit data value can be contained across a register pair. The 32 least signifi- cant 

bits (LSBs) are stored in the even register (e.g., A2), and the remaining 8 bits are stored 

in the 8 LSBs of the next-upper (odd) register (A3). A similar scheme is used to hold a 

64-bit double-precision value within a pair of registers (even and odd). 

 

    These 32 registers are considered general-purpose registers. Several specialpurpose 

registers are also available for control and interrupts: for example, the address mode 

register (AMR) used for circular addressing and interrupt control registers. 

 

4.7 LINEAR AND CIRCULAR ADDRESSING MODES 
 
Addressing modes determine how one accesses memory. They specify how data are 

accessed, such as retrieving an operand indirectly from a memory location. Both linear 

and circular modes of addressing are supported. The most commonly used mode is the 

indirect addressing of memory. 

 

4.7.1 Indirect Addressing 
 
Indirect addressing can be used with or without displacement. Register R represents one 

of the 32 registers A0 through A15 and B0 through B15 that can specify or point to 

memory addresses. As such, these registers are pointers. Indirect addressing mode uses a 

“*” in conjunction with one of the 32 registers. To illustrate, consider R as an address 

register. 

 

1. *R. Register R contains the address of a memory location where a data value 

    is stored. 

2. *R++(d). Register R contains the memory address (location). After the 

    memory address is used, R is postincremented (modified) such that the new 

    address is the current address offset by the displacement value d. If d = 1 (by 

    default), the new address is R + 1, or R is incremented to the next higher 

    address in memory. A double minus (--) instead of a double plus would 

    update or postdecrement the address to R - d. 
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3. *++R(d). The address is preincremented or offset by d, such that the current 

    address is R + d. A double minus would predecrement the memory address 

    so that the current address is R - d. 

4. *+R(d). The address is preincremented by d, such that the current address is 

    R + d (as with the preceding case). However, in this case, R preincrements 

    without modification. Unlike the previous case, R is not updated or modified. 

 

4.7.2 Circular Addressing 
 
Circular addressing is used to create a circular buffer. This buffer is created in hardware 

and is very useful in several DSP algorithms, such as in digital filtering or correlation 

algorithms where data need to be updated.  

 

    The C6x has dedicated hardware to allow a circular type of addressing. This addressing 

mode can be used in conjunction with a circular buffer to update samples by shifting data 

without the overhead created by shifting data directly. As a pointer reaches the end or 

“bottom” location of a circular buffer that contains the last element in the buffer, and is 

then incremented, the pointer is automatically wrapped around or points to the beginning 

or “top” location of the buffer that contains the first element. 

 

    Two independent circular buffers are available using BK0 and BK1 within the AMR. 

The eight registers A4 through A7 and B4 through B7, in conjunction with the two .D 

units, can be used as pointers (all registers can be used for linear addressing).The 

following code segment illustrates the use of a circular buffer using register B2 (only side 

B can be used) to set the appropriate values within AMR: 

 

      MVKL .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer 

   MVKH .S2 0x0005,B2 ;upper 16 bits to B2. Select BK0, set N = 5 

   MVC .S2 B2,AMR ;move 32 bits of B2 to AMR 
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    The two move instructions MVKL and MVKH (using the .S unit) move 0x0004 into 

the 16 LSBs of register B2 and 0x0005 into the 16 most significant bits (MSBs) of B2. 

The MVC (move constant) instruction is the only instruction that can access the AMR 

and the other control registers (shown in Appendix B) and executes only on the B side in 

conjunction with the functional units and registers on side B. A 32- bit value is created in 

B2, which is then transferred to AMR with the instruction MVC to access AMR. 

 

   The value 0x0004 = (0100)b into the 16 LSBs of AMR sets bit 2 (the third bit) to 1 and 

all other bits to 0. This sets the mode to 01 and selects register A5 as the pointer to a 

circular buffer using block BK0. 

 

    Table 3.4 shows the modes associated with registers A4 through A7 and B4 through 

B7.The value 0x0005 = (0101)b into the 16MSBs of AMR sets bits 16 and 18 to 1 (other 

bits to 0). This corresponds to the value of N used to select the size of the buffer as 2N+1 

= 64 bytes using BK0. For example, if a buffer size of 128 is desired using BK0, the 

upper 16 bits of AMR are set to (0110)b = 0x0006. If assembly code is used for the 

circular buffer, as execution returns to a calling C function, AMR needs to be reinitialized 

to the default linear mode. Hence the pointer’s address must be saved. 
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4.8 TMS320C6x INSTRUCTION SET 
 

4.8.1 Assembly Code Format 
 
An assembly code format is represented by the field 
 
Label || [ ] Instruction Unit Operands ;comments 
 
A label, if present, represents a specific address or memory location that contains an 

instruction or data. The label must be in the first column. The parallel bars (||) are there if 

the instruction is being executed in parallel with the previous instruction. The subsequent 

field is optional to make the associated instruction conditional. Five of the registers—A1, 

A2, B0, B1, and B2—are available to use as conditional registers. For example, [A2] 

specifies that the associated instruction executes if A2 is not zero. On the other hand, 

with [!A2], the associated instruction executes if A2 is zero. All C6x instructions can be 

made conditional with the registers A1, A2, B0, B1, and B2 by determining when the 

conditional register is zero. The instruction field can be either an assembler directive or a 

mnemonic. An assembler directive is a command for the assembler. For example, 

 

.word value 
 

reserves 32 bits in memory and fill with the specified value. A mnemonic is an actual 

instruction that executes at run time. The instruction (mnemonic or assembler directive) 

cannot start in column 1. The Unit field, which can be one of the eight CPU units, is 

optional. Comments starting in column 1 can begin with either an asterisk or a semicolon, 

whereas comments starting in any other columns must begin with a semicolon. 

 

    Code for the floating-point processors C3x/C4x is not compatible with code for the 

fixed-point processors C1x, C2x, and C5x/C54x. However, the code for the fixed-point 

processors C62x is compatible with the code for the floating-point C67x. C62x code is 

actually a subset of C67x code. Additional instructions to handle double-precision and 

floating-point operations are available only on the C67x processor. Also, some additional 

instructions are available only on the fixed-point C64x processor. 

 



 65

   Several code segments are presented to illustrate the C6x instruction set. Assembly 

code for the C6x processors is very similar to C3x/C4x code. Single-task types of 

instructions available for the C6x make it easier to program than either the previous 

generation of fixed- or floating-point processors. This contributes to an efficient 

compiler. Additional instructions available on the C64x (but not on the C62x) resemble 

the multitask types of instructions for C3x/C4x processors. It is very instructive to read 

the comments in the programs discussed in this book. Appendix A contains a list of the 

instructions for the C62x/C67x processors. 

 

4.8.2 Types of Instructions 
 

The following illustrates some of the syntax of assembly code. It is optional to specify the 

eight functional units, although this can be useful during debugging and for code 

efficiency and optimization. 

 

 
1. Add/Subtract/Multiply 

   (a) The instruction 

 

     ADD .L1 A3,A7,A7 ;add A3 + A7 ÆA7 (accum in A7) 

 

     adds the values in registers A3 and A7 and places the result in register 

     A7. The unit .L1 is optional. If the destination or result is in B7, the unit 

     would be .L2. 

 (b). The instruction 

 

     SUB .S1 A1,1,A1 ;subtract 1 from A1 

 

       subtracts 1 from A1 to decrement it using the .S unit. 

(c). The parallel instructions 
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     MPY .M2 A7,B7,B6 ;multiply 16 LSBs of A7, B7 Æ B6 

     || MPYH .M1 A7,B7,A6 ;multiply 16MSBs of A7, B7 ÆA6 

 

    multiplies the lower or least significant 16 bits (LSBs) of both A7 and B and places the 

product in B6, in parallel (concurrently within the sameexecution packet) with a second 

instruction that multiplies the higher or most significant 16 bits (MSBs) of A7 and B7 

and places the result in A6. In this fashion, two MAC operations can be executed within a 

single  instruction cycle. This can be used to decompose a sum of products into two sets 

of sum of products: one set using the lower 16 bits to operate on  the first, third, fifth, . . . 

number and another set using the higher 16 bits to operate on the second, fourth, sixth, . . 

. number. Note that the parallel  symbol is not in column 1. 

 

2. Load/Store 

   (a) The instruction 

 

                   LDH .D2 *B2++,B7 ;load (B2) Æ B7, increment B2 

      || LDH .D1 *A2++,A7 ;load (A2) Æ A7, increment A2 

 

       loads into B7 the half-word (16 bits) whose address in memory is speci- 

       fied/pointed to by B2.Then register B2 is incremented (postincremented) 

       to point at the next higher memory address. In parallel is another indirect 

       addressing mode instruction to load into A7 the content in memory whose 

       address is specified by A2. Then A2 is incremented to point at the next 

       higher memory address. 
 

           The instruction LDW loads a 32-bit word. Two paths using .D1 and .D2 

      allow for the loading of data from memory to registers A and B using the 

      instruction LDW.The double-word load floating-point instruction LDDW on 

      the C6713 can simultaneously load two 32-bit registers into side A and 

      two 32-bit registers into side B. 
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(b) The instruction 

 

           STW .D2 A1,*+A4[20] ;store A1Æ(A4) offset by 20 

 

      stores the 32-bit word A1 in memory whose address is specified by A4 

      offset by 20 words (32 bits) or 80 bytes. The address register A4 is                   

      preincremented with offset but  it is not modified (two plus signs are used if 

      A4 is to be modified). 

 

3. Branch/Move. The following code segment illustrates branching and data 

                            transfer: 

 

           Loop MVKL .S1 x,A4 ;move 16 LSBs of x address ÆA4 

           MVKH .S1 x,A4 ;move 16 MSBs of x address ÆA4 

           . 

           . 

           . 

           SUB .S1 A1,1,A1 ;decrement A1 

           [A1] B .S2 Loop ;branch to Loop if A1 # 0 

           NOP 5 ;five no-operation instructions 

           STW .D1 A3,*A7 ;store A3 into (A7) 

 

The first instruction moves the lower 16 bits (LSBs) of address x into register A4.The 

second instruction moves the higher 16 bits (MSBs) of address x into A4, which now 

contains the full 32-bit address of x. One must use the instructions MVKL/MVKH in 

order to get a 32-bit constant into a register. 

 

    Register A1 is used as a loop counter. After it is decremented with the SUB 

instruction, it is tested for a conditional branch. Execution branches to the label or 

address Loop if A1 is not zero. If A1 = 0, execution continues and data in register A3 are 

stored in memory whose address is specified (pointed) by A7. 
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5.1 Implementation of speech signal encryption by using DES 
 
In this project I have used 32-bit floating point TMS320C6713 for real time 
implementation of DES encryption algorithm. The reason for choosing TMS320C6713 
Processor is  
 
 

1. High speed arithmetic. 
 

2. Robust in data transfer to and from real world. 
 

3. Multiple access memory structure. 
 

4. Less power and cheap. 
 
Features of  TMS320C6713 DSK processor 
 

1. Floating point device. 
 

2. Operating frequency 225MHz. 
 

3. VLIW architecture. 
 

4. 264Kb internal cache, 16Mb SDRAM, 512 Kb flash. 
 

5. 1800 MIPS or 1350 MFLOPS per Second. 
 

6. TLV320AIC23 (AIC23) Onboard Stereo Codec for I/O operations (range 8KHz-
96KHz) 

 
7. +5v universal power supply. 

 

 

    In this project I have implemented DES algorithm on TMS320C6713. For testing 

purposes, the first three onboard switches were utilized: sw0 for selecting different keys; 

sw1 to enable encryption only, or both encryption and decryption; and sw2 as an on/off 

switch (a loop program). 
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   In this project I have replaced each sample of voice by 15 binary bits. Here I have taken 

four samples at a time and converted them into 60 binary digits. For example take 4 

samples of speech as follows 

 

Amplitude of sample 1 is: ‘4’ 

It is replaced as follows 

0000000000000100 

 

In this 1st bit represents the sign of the sample if it is positive then it is ‘0’ else it is ‘1’. 

Like this I have obtained 16 binary bits. 

 

Now take second sample as ‘-4’ 

It is replaced as follows 

1000000000000100 

 

Here 1st bit ‘1’ represents that the amplitude of sample is negative. 

 

    Like this I have replaced amplitude of 1st four samples by 64 binary bits and then I 

have applied DES algorithm for these 64 bits with the given key. After this I have taken 

next four samples and applied DES algorithm like wise this process continues for all 

samples of given speech signal. 

 

5.1 MATLAB Results for DES Algorithm: 
In this project first I have write a matlab code for the DES algorithm. Here I have taken 

64-bit data and 56-bit key for encryption. 

 

Here I have taken the input data ‘x’ as 

x = 111100001111000011111111000011110000000011111111111100000000 

This is the 64-bit input data. 

 

And key ‘k’ is  
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k =010110011110110101110011101110011110110011110110011 

 

I have got the cipher text output as  

Cipher out = 

0110011101100111011011000110110001100111011001110110110110001101100 

 

And then I have got the decipher output same as given data in put 

Decipher output= 

111100001111000011111111000011110000000011111111111100000000 

 

So here I have got the output decipher data same as the given input data which means I 

am recollecting the same data after decryption. 

 

The matlab plots for DES algorithm are given below 

 

 
Fig 5.1: Matlab results for DES algorithm. 
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In the above plot first plot the is plot of input 64-bit data ‘x’. Second plot is the is 

corresponding cipher output and third one is the decipher output which is same as input. 

 

5.2 Code composer studio Results for DES Algorithm: 

 
For implementing the DES algorithm to voice data I have used TMS320C6713 DSK and 

I have used the CCS 3.1 version for simulation. The simulation output of CCS 3.1 studio 

for thousand samples of voice data is given by  

 

 
Fig 5.2: CCS output for DES algorithm 

 
This is the final output I have got. In the above figure 1st plot is for the input voice data. 
Here I have taken only thousand samples. The second plot shows the decipher output 
which is same as the input data means I am recollecting the same voice data after 
decryption. There is slight difference between two figures in the above plot it is due to 
the delay means the program for this DES algorithm is very complex that’s why its taking 
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time to execute the program. But in the speaker I am recognizing thee same voice with 
less disturbance. This problem may be avoided by using the two DSK’s one for 
encryption and another for decryption but maintaining synchronism between two DSK’s 
is important.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 74

CONCLUSION 
 

Now a days there are many situations to keep voice secret in voice communication. This 

can be achieved by voice encryption by using different encryption algorithms. In this 

project I have implemented DES algorithm on TMS320C6713 DSK for voice encryption. 

DES algorithm is a symmetric key algorithm means it uses the same key for encryption 

and decryption. In this DES algorithm input data is 64-bit length and key is 56-bits. In 

this project I have done simulations in both matlab and in the code composer studio 

version 3.1. In this project I have used TMS 320C6713 DSK for real time 

implementation. It is a 32-bit floating point processor. In this thesis I have presented the 

results in matlab and in CCS 3.1.  
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