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Abstract 

 

 

       With today's great demand for secure communications systems, there is a growing 

demand for real-time implementation of cryptographic algorithms. In this thesis we present a 

hardware implementation of the RC6 algorithm using VHDL Hardware Description 

Language. And the goal of the thesis was to implement a subset of the IPSec protocol using a 

Microcontroller and an FPGA. IPSEC is a framework for security that operates at the 

Network Layer by extending the IP packet header. IPSec protocol is to guarantee the security 

of data while traveling through the network. The motivation was to enable network 

application and cryptography to assembly and VHDL languages and to develop a prototype of 

their system. In this thesis many different sub-systems had to communicate with each other to 

achieve the final product: the PC and the Microcontroller through a serial connection, the 

Microcontroller and the FPGA through a bidirectional bus, and the Microcontroller and a 

terminal using a serial connection. Data was to be encrypted and decrypted using an RC6 

algorithm including key scheduling application. The crypto-coprocessor (to implement RC6 

algorithms) was implemented within an FPGA and connected to the Microcontroller bus.  

 

 

 

 

 

 

 

 

 

 

 

 

 III



CONTENTS 
CHAPTER 1                 1 

INTRODUCTION                 1 

 

CHAPTER 2                                                                                                   5 

MOTIVATION                   5 

        2.1 Simplicity                                                                                                              6 

        2.2 Good performance for a given level of security                                              9 

        2.3 Security                                                                                                                 9 

 

CHAPTER 3                                                                                                   14 

OUTLINE OF THE THESIS                                                                                  14 

  

CHAPTER 4                                                                                                   18 

STRUCTURE OF THE RC6 CIPHER ALGORITHM                                   18 

           4.1 Basic Operations                                                                                       19 

           4.2  Key Schedule                                                                                                   19 

           4.3 Encryption                                                                                                         21 

           4.4 Decryption                                                                                                         23 

           4.5 Design Analysis                                                                                                24 

                  4.5.1 Multiplication                                                                                            24 

                  4.5.2 Variable Shifting                                                                                       24 

                  4.5.3 Other Operations                                                                                       24 

           4.6 Design Architecture                                                                                            25 

                 4.6.1 RC6 Key Schedule Module                                                                       25 

                 4.6.2 RC6 Main Module                                                                                     27 

                 4.6.3 RC6 Core Module                                                                                      28 

                 4.6.4 RC6 Block diagram                                                                                   30 

                 4.6.5 Control Unit                                                                                               32 

 
 
 

 IV



 
CHAPTER 5                                                                                                   35 

STRUCTURE OF THE IPSec PROTOCOL                                                   35 

          5.1 Transport mode                                                                                        36 

          5.2 Tunnel mode                                                                                            36 

          5.3 Authentication header (AH)                                                                      37 

          5.4 Encapsulating Security Payload (ESP)                                                    38                           

          5.5 Point-to-Point Protocol                                                                                    39 

 

CHAPTER 6                                                                                                  43 

STEPS OF THE PROJECT                                                                            43 
 

         6.1 PC – Microcontroller communication                                                            44 

         6.2 Datagram definition                                                                                          45 

         6.3 Crypto-coprocessor to encrypt the data                                                         46 

         6.4 Datagram validation and data extraction                                                      47 

         6.5 Crypto-coprocessor to decrypt the data                                                        48 

         6.6  Complete system                                                                                            49 

                                                                                 

CHAPTER 7                                                                                                  50 

RESULTS                                                                                            50  
        7.1 Testing                                                                                                                51 

        7.2 Waveforms                                                                                                         52 

        7.3 Obtained Results                                                                                               52 

 

CHAPTER 8                                                                                                 56 

CONCLUSION AND FUTURE WORK                                                      56 

        8.1 Conclusions                                                                                                      57 

        8.2 Future Work                                                                                                     57 

 

REFERENCES                                                                                             59 

 

 V



LIST OF FIGURES 

FIG. 1.1 RC6 Cipher block diagram                                                                                      3 

FIG. 1.2  Layers involved during a communication with in the  

               PC and Microcontroller                                                                                           4 

FIG. 3.1: Design for creating the datagram and encryption process                                     16                                         

FIG. 3.2: Design for extracting the data and decryption process                                          17  

FIG. 4.2.1 : RC6 Key Mix                                                                                                     20 

FIG. 4.3.1 : Encryption with RC6-w/r/b Here f(X) = (X (2X + 1)) mod 2w                           22 

FIG. 4.6.1 - RC6 Key Schedule Module                                                                               26 

FIG. 4.6.2 - RC6 Main Module                                                                                             27 

FIG. 4.6.3 - RC6 Core Module                                                                                             29 

FIG. 4.6.4 : RC6 Block diagram                                                                                           31 

FIG. 4.6.5.1 – ASM chart of the Control Unit                                                                      33 

FIG. 4.6.5.2 – Control Unit                                                                                                   34 

FIG. 5.3 : AH packet diagram                                                                                               37 

FIG. 5.4 : An ESP packet diagram                                                                                        38 

FIG. 5.5 : Six Fields Make Up the PPP Frame                                                                     40 

FIG. 6.3 : Crypto-processor block diagram                                                                          47 

FIG. 7.3.1: The result of the encryption process                                                                  53 

FIG. 7.3.2: The result of the decryption process                                                                  54 

FIG. 7.3.3 : Microcontroller and the links to the FPGA and the terminal                            55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 VI



 
 
 
 
 
 
 
 

  

         Chapter  1 

 
 

                INTRODUCTION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1



 1. INTRODUCTION 
 

        RC6 is a symmetric key block cipher derived from RC5. It was designed by Ron Rivest, 

Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced 

Encryption Standard (AES) competition by the National Institute of Standards and 

Technology (NIST). The algorithm was one of the five finalists, and was also submitted to the 

NESSIE and CRYPTREC projects. Though the algorithm was not eventually selected, RC6 

remains a good choice for security applications. It is proprietary of RSA Security.  

 

        The design of RC6 began with a consideration of RC5 as a potential candidate for an 

AES submission. Modifications were then made to meet the AES requirements, to increase 

security, and to improve performance. The inner loop, however, is based around the same 

“half-round" found in RC5. RC5 was intentionally designed to be extremely simple, to invite 

analysis shedding light on the security provided by extensive use of data-dependent rotations. 

Since RC5 was proposed in 1995, various studies provided a greater understanding of how 

RC5's structure and operations contribute to its security. While no practical attack on RC5 has 

been found, the studies provide some interesting theoretical attacks, generally based on the 

fact that the “rotation amounts" in RC5 do not depend on all of the bits in a register. RC6 was 

designed to thwart such attacks, and indeed to thwart all known attacks, providing a cipher 

that can offer the security required for the lifespan of the AES. 

 

            The philosophy of RC5 is to exploit operations (such as rotations) that are efficiently 

implemented on modern processors. RC6 continues this trend, and takes advantage of the fact 

that 32-bit integer multiplication is now efficiently implemented on most processors. Integer 

multiplication is a very effective “diffusion" primitive, and is used in RC6 to compute rotation 

amounts, so that the rotation amounts are dependent on all of the bits of another register, 

rather than just the low-order bits (as in RC5). As a result the new RC6 has much faster 

diffusion than RC5. This also allows RC6 to run with fewer rounds at increased security and 

with increased throughput. 

 

      RC6 is more exactly specified as RC6-w/r/b, where the parameters w, r, and b respectively 

express the word size (in bits), the number of rounds, and the size of the encryption key (in 

bytes). Since the AES submission is targeted at w = 32 and r = 20, we implemented this 
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version of RC6 algorithm, using a 32 bits word size, 20 rounds and 16 bytes (128 bits) 

encryption key lengths. The RC6 block cipher diagram as shown in the fig 1.1. 

        A key schedule generates 2r + 4 words (w bits each) from the b-bytes key provided by 

the user. These values (called round keys) are stored in an array S [0, 2r+3] and are used in 

both encryption and decryption. RC6 works on a block size of 128 bits and it is very similar to 

RC5 in structure, using data-dependent rotations, modular addition and XOR operations; in 

fact, RC6 could be viewed as interweaving two parallel RC5 encryption processes. However, 

RC6 does use an extra multiplication operation not present in RC5 in order to make the 

rotation dependent on every bit in a word, and not just the least significant few bits. The 

computation of f(X) = (X × (2X + 1)) mod 2w is the most critical arithmetic operation of this 

block cipher. The goal of this thesis is to implement the RC6 Cipher with FPGA as the target 

technology. 

 

 

 
Encryption/Decryption

Circuit. 

Plain text 

Ke  
Cipher 

y

 
 

                            Fig 1.1: RC6 Cipher block diagram 
 

 

 

        The goal of the thesis was to implement on a microcontroller a subset of the IPSec 

protocol. IPSec is part of the IPv6 protocol to guarantee the security of data while traveling 

through the network (i.e. authentication, privacy and integrity). In this thesis two entities were 

communicating, a PC and a microcontroller. The PC was sending the data to the 

microcontroller using a point-to-point protocol over a serial link. Then the microcontroller 

processed the datagram, checking its validity and extracting the data. In dealing with IPSec, 

the data was encrypted so it was necessary to first decrypt the data to get the original plain 

text. Furthermore to speed up the decryption task, a crypto-coprocessor was considered. To 

manage the thesis several skills were necessary, from networking to micro-programming and 

hardware design. Generally IP is associated with TCP and well known as TCP/IP. In this 
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thesis in order to manage the complexity of the system the TCP layer was not considered and 

the data was provided directly after the IP layer as show in Figure 1.2. Thus from the PC side, 

the data was encrypted using the RC6 algorithm before being encapsulated into a datagram. 

To obtain the final datagram two layers were considered which are successively the IP and the 

PPP layers. The physical layer splits the datagram in order to meet serial link requirements. 

From the Microcontroller side the same steps were considered but in the reverse order. Once 

the data was extracted from the datagram it was sent to the crypto-coprocessor in order to 

retrieve the plain text. The crypto-coprocessor was implemented within an FPGA and 

connected to the Microcontroller bus. 
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     Fig 1.2: Layers involved during a communication with in the  
                  PC and Microcontroller 
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2. MOTIVATION 
  
 
         To attack RC6 the best approach available to the cryptanalyst is that of exhaustive 

search for the b-byte encryption key. The more advanced attacks of differential and linear 

cryptanalysis, while being feasible on small-round versions of the cipher, do not extend well 

to attacking the full 20-round RC6 cipher. The RC6 key schedule is secure through mixing, 

one way function and no key separation. Therefore, RC6 provides a solid, well tuned margin 

for security. 

 
         RC6 facilitates and encourages analysis by allowing rapid understanding of security and 

making direct analysis straightforward. It also enables easy implementation by allowing 

compilers to produce high quality code for software implementations, and by preventing 

complicated optimizations and providing good performance with minimal effort for hardware 

implementations. RC6 is known to have good performance on 8, 16 and 32-bit platforms. 

 

2.1 simplicity 
 

             The simplicity of RC5 has made it an attractive object for research. By being readily 

accessible to both crude and sophisticated analysis many people have been encouraged to look 

at the cipher and to assess the security it offers. RC6 was designed to build on the experience 

gained in using RC5 and to build on the security offered by a remarkably simple cipher. One 

can view the design of RC6 as progressing through the following steps: 

 
1. Start with the basic half-round loop of RC5: 
 
 
    for i = 1 to r do 
   { 
    A = ((A  xor B)<<<B) + S[i] 
    (A, B) = (B, A) 
   } 
 
2. Run two copies of RC5 in parallel: one on registers A, B and one on registers C,D. 
 
    for i = 1 to r do 
   { 
    A = ((A xor B)<<<B) + S[2i] 
    C = ((C xor D)<<<D) + S[2i+ 1] 
    (A,B) = (B,A) 
    (C,D) = (D,C) 
   } 
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3. At the swap stage, instead of swapping A with B and C with D, permute the registers    by 

(A, B, C, D) = (B, C, D, A), so that the AB computation is mixed with the CD    computation. 

At this stage the inner loop looks like: 

 
 
   for i = 1 to r do 
   { 
   A = ((A xor B)<<<B) + S[2i] 
   C = ((C xor D)<<<D) + S[2i+ 1] 
   (A, B, C, D) = (B, C, D, A) 
   } 
 
4. Mix up the AB computation with the CD computation further, by switching where the 
rotation amounts come from between the two computations: 
 
   for i = 1 to r do 
   { 
   A = ((A xor B)<<<D) + S[2i] 
   C = ((C xor D)<<<B) + S[2i+ 1] 
   (A, B, C, D) = (B, C, D, A) 
   } 
 
5. Instead of using B and D in a straightforward manner as above, we use transformed    

versions of these registers, for some suitable transformation. Our security goals are that    the 

data-dependent rotation amount that will be derived from the output of this transformation 

should depend on all bits of the input word and that the transformation    should provide good 

mixing within the word. The particular choice of this    transformation for RC6 is the function 

f(x) = x × (2x + 1)(mod 2w) followed by a left    rotation by five bit positions. This 

transformation appears to meet our security goals    while taking advantage of simple 

primitives that are efficiently implemented on most    modern processors. Note that f(x) is 

one-to-one modulo 2w, and that the high-order bits of f(x), which determine the rotation 

amount used, depend heavily on all the bits of x. This gives us: 

 
for i = 1 to r do 
{ 
 t = (B × (2B + 1))<<<5 
 u = (D × (2D + 1))<<<5 
 A = ((A xor t)<<<u) + S[2i] 
 C = ((C xor u)<<<t) + S[2i+ 1] 
 (A, B, C, D) = (B, C, D, A) 
} 
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6. At the beginning and end of the r rounds, add pre-whitening and post-whitening steps. 

Without these steps, the plaintext reveals part of the input to the first round of encryption and 

the cipher text reveals part of the input to the last round of encryption. The pre- and post-

whitening steps help to disguise this and leaves us with RC6: 

 
B = B + S[0] 
D = D + S[1] 
for i = 1 to r do 
{ 
t = (B × (2B + 1))<<<5 
u = (D × (2D + 1))<<<5 
A = ((A xor t)<<<u) + S[2i] 
C = ((C xor u)<<<t) + S[2i+ 1] 
(A, B, C, D) = (B, C, D, A) 
} 
A = A + S[2r + 2] 
C = C + S[2r + 3] 
 
 
         While it might appear that the evolution from RC5 to RC6 was straightforward, it in fact 

involved the design and analysis of literally dozens of alternatives. RC6 is the design that 

captures the spirit of our three goals of security, simplicity and performance the most 

effectively. Note that in the preceding development, the decision to expand to four 32-bit 

Registers was made first (for performance reasons), and then the decision to use the quadratic 

function f(x) = x × (2x + 1)(mod 2w) was made later. If we had decided to stick with a two 

register version of RC6 then we might have had the following encryption scheme as an 

intermediate: 

B = B + S[0] 
for i = 1 to r do 
{ 
t = B × (2B + 1)<<<5 
A = ((A xor t)<<<t) + S[i] 
(A, B) = (B, A) 
} 
A = A + S[r + 1] 
 
 

       This variant of RC6 may be of independent interest, particularly when support for 64-bit 

arithmetic in C improves. However we merely mention this as an aside here. 

 
 
 
 
 

 8



2.2 Good performance for a given level of security 
 

          While the latest techniques demonstrate that RC5-32/12/b, i.e. a 12-round version of 

RC5, might not be suitable for longer-term security needs, these attacks currently fall short of 

providing any real avenue for practical attack against a 16-round version. Most existing 

cryptanalytic results on RC5 depend on what might be viewed as a relatively slow avalanche 

of change between rounds. The integer addition helps to provide a reasonable amount of 

change due to the effect of the carry, but the most dramatic changes take place when two 

different rotation amounts are used at a similar point during the encryption of two related 

plaintexts. Typically an attacker would aim to control the evolution of the differences from 

round to round and, in versions of RC5 with fewer rounds, this can allow an attack to be 

mounted. The incremental changes in arriving at RC6 from RC5 have already been outlined. 

Two significant changes are the introduction of the quadratic function B × (2B + 1) (Similarly 

: D × (2D + 1)) and the fixed rotation by five bits. The quadratic function is aimed at 

providing a faster rate of diffusion there by improving the chances that simple differentials 

will spoil rotation amounts much sooner than is accomplished with RC5. The quadratically 

transformed values of B and D are used in place of B and D to modify the registers A and C, 

increasing the nonlinearity of the scheme while not losing any entropy (since the 

transformation is a permutation). The fixed rotation by five bits plays a simple yet important 

role in complicating both linear and differential cryptanalysis. 

 
 
2.3 Security 
 
 
          We conjecture that to attack RC6 the best approach available to the cryptanalyst is that 

of exhaustive search for the b-byte encryption key (or the expanded key array S[0; : : : ; 43] 

when the user-supplied encryption key is particularly long). The work effort required for this 

is min{28b; 21408} operations. Don Coppersmith observes, however, that at the expense of 

considerable memory and off-line pre-computation one can mount a meet-in-the-middle 

attack to recover the expanded key array S[0; : : : ; 43]. This would require 2704 on-line 

computations and so the work effort required to recover the expanded key array might best be 

estimated by min{28b; 2704} operations. 

 

          The more advanced attacks of differential and linear cryptanalysis, while being feasible 

on small-round versions of the cipher, do not extend well to attacking the full 20-round RC6 
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cipher. The main difficulty is that it is hard to find good iterative characteristics or linear 

approximations with which an attack might be mounted. 

 
          It is an interesting challenge to establish the most appropriate goals for security against 

these more advanced attacks. To succeed, these attacks typically require large amounts of 

data, and obtaining 2a blocks of known or chosen plaintext-cipher text pairs is a very different 

task from trying to recover one key from among 2a possibilities (this latter task can be readily 

parallelized). It is worth observing that with a cipher running at the rate of one terabit per 

second (that is, encrypting data at the rate of 1012 bits/second), the time required for 50 

computers working in parallel to encrypt 264 blocks of data is more than a year; to encrypt 280 

blocks of data is more than 98, 000 years; and to encrypt 2128 blocks of data is more than 1019 

years. 

 
        While having a data requirement of 264 blocks of data for a successful attack might be 

viewed as sufficient in practical terms, we have aimed to provide a much greater level of 

security. The community as a whole will decide which level of security a cipher, in particular 

an AES candidate should satisfy. Should this be less than a data requirement of 2128 blocks of 

data then the number of rounds of RC6 could potentially be reduced from our initial 

suggestion of 20 rounds, thereby providing an improvement in performance. 

 

 

           For attacking an eight-round version of the cipher, RC6-32/8/b, one can construct six-

round characteristics or linear approximations. Assuming that these could be used to attack 

the eight-round version of the cipher (an assumption that, while reasonable, overlooks a vast 

number of practical details) the estimated data required to mount a differential cryptanalytic 

attack on RC6-32/8/b would be around 256 chosen plaintext pairs, and to mount a linear 

cryptanalytic attack would be around 247 known plaintexts. This includes some consideration 

of more sophisticated phenomena such as differentials and linear hulls, but we might still 

expect more customized techniques to reduce these figures by a moderate amount. However 

they provide a reasonable illustration of the security that might be offered by a version of RC6 

with a few rounds. Currently, it seems that a differential attack on the full 20-round RC6 

cipher appears to be most easily accomplished by using a six-round iterative characteristic 

(although we have identified useful three- and four-round characteristics) together with some 

customized beginning and ending characteristics. Considering a variety of options, the 

probability of one of the best 18-round characteristics we are aware of in attacking RC6 is 
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around 2-238 and uses integer subtraction as the notion of difference. (For technical reasons, 

using exclusive-or as the notion of difference can be more problematical.) To use this 

characteristic in an attack would require more than the total number of available chosen 

plaintext/cipher text pairs. While we expect the amount of data required for an attack to drop 

as more detailed analysis takes place we do not believe that differential cryptanalysis can be 

successfully applied to RC6. 

 
         To mount a linear cryptanalytic attack, there appear to be two different options. The first 

might be to find a linear approximation over several rounds that uses a linear approximation 

across the quadratic function. Since there appear to be some very suitable linear 

approximations using the least significant bits of this function, this might be an appealing 

strategy. Indeed, one can establish useful six-round iterative linear approximations that can, at 

least in principle, be used to attack reduced-round versions of RC6. However, the bias of 

these approximations drops rapidly as more rounds are added, and soon the amount of data 

required for a successful attack exceeds the amount of data available. Instead, we note that an 

attacker might well pursue an alternative approach. It is possible to find a two-round iterative 

linear approximation that does not use an approximation across the combination of the 

quadratic function and fixed rotation by five bit positions. Using basic but established 

techniques to predict the bias of such an approximation, we observe that the data requirements 

to exploit this approximation over a version of RC6 with 16 rounds are about 2142 known 

plaintexts. Further analysis suggests that additional techniques might potentially be used to 

bring the data requirements down to a little under 2128 known plaintexts. This provided our 

rationale for choosing 20 rounds for RC6. 

 
               With our current knowledge, the most successful avenue for a linear cryptanalytic 

attack on RC6 would be to use the two-round iterative approximation we have just mentioned 

to build up an 18-round linear approximation with which to attack the cipher. Using the same 

techniques as before to predict the data requirements to use this approximation at first sight, 

we might need 2182 known plaintexts, an amount which exceeds the available data. Enhanced 

techniques might be useful in reducing this figure by a moderate amount (a pessimistic view 

suggests that such reductions would still leave an attack requiring 2155 known plaintexts) but 

in the final assessment we believe that the number of known plaintexts needed to exploit this 

approximation readily exceeds the maximum number of plaintexts available. We conclude 

that a linear cryptanalytic attack against RC6 is not possible using these techniques. Further, 
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we believe that the use of more sophisticated techniques are exceptionally unlikely to provide 

sufficient gains as to offer an attack requiring less than 2128 known plaintexts. 

 

 

         We are aware of several potential enhancements to the essential attacks we have 

described (in particular, the use of truncated and higher-order differentials), and we are also 

aware of some alternative approaches. However, all these techniques have so far failed to 

improve on the attacks outlined here, and we believe that all currently available sophisticated 

cryptanalytic attacks will require more data than there is available. A report on our work and 

findings is in reparation. 

 
        RC6 can easily be implemented in such a way as to be invulnerable to “timing attacks". 

Many modern processors have constant-time rotation and multiplication instructions. Other 

processors may have a rotation or shift time that depends linearly with the amount of rotation, 

but in this case it is usually easy to arrange the work so that the total compute time is data-

independent (for example, by computing a rotate of t bits using a left-shift of t bits and a right-

shift of w-t bits). In either case, the RC6 encrypt/decrypt time is data-independent, causing 

any potential timing attacks to fail. 

 

          Studies of RC5 have failed to reveal any weakness in the key setup. This provided one 

of the motivations for using the same key setup in RC6 as was used in RC5. The process of 

transforming the supplied key to the table of round keys appears to be well-modeled by a 

pseudo-random process. Thus, while there is no proof that no two keys yield the same table of 

round keys, it appears to be highly unlikely. It can be estimated that the chance that there exist 

two 256-bit keys yielding the same table of 44 32-bit round keys is approximately 22×256-44×32 

= 2-896 = 10-270 (approximately). We feel that there is value in the “one-way" structure of the 

key-setup routine that is more important than the (infinitesimal) chance that there might be 

two keys that yield the same table of round keys. One such value is the protection it provides 

against related-key attacks, for example. 
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We can summarize on the security of RC6 as follows: 

 

1. The best attack on RC6 appears to be exhaustive search for the user-supplied Encryption 

key. 

2. The data requirements to mount more sophisticated attacks on RC6 such as Differential and 

linear cryptanalysis exceed the available data. 

3. There are no known examples of what might be termed “weak" keys. 
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3. OUTLINE OF THE THESIS 
 
 
        In this thesis as mentioned previously several aspects were considered, the first one was 

related to the datagram definition which requires a general understanding of the IP (and 

IPSec) and PPP layers. The original data was encrypted and gathered with the AH header and 

the IP header. Each of these headers contains specific information in order to provide a valid 

datagram. The resulting datagram was then encapsulated within the PPP layer to provide the 

final datagram. As for IP, PPP contains specific parameters that were defined. In order to 

reduce the complexity of the global system a simplified version of the IP and PPP layers was 

considered (the corresponding protocols can be very complex). For example the SA step was 

not considered and predefined key and algorithm for the cryptography solution were selected. 

Furthermore in a first step the authentication algorithm was not handled. Only the 

cryptography part was targeted. Obviously, the complexity of the system could have evolved 

depending on the results obtained during the thesis.  

 

       As an initial step, the plan was to manually write a text file corresponding to the data to 

be sent. Then it was necessary to transferred it through the serial interface to the 

microcontroller (P89C51RD2). The PC was sending the data to the microcontroller using a 

point-to-point protocol over a serial link. The microcontroller received the data, and stored the 

data in its memory. The original data was gathered with the AH header and the IP header. 

Once that step performed it was necessary to send the data to the crypto-coprocessor to 

encrypt the original data. All the tasks performed on the microcontroller required quite a large 

hand-written ASM program, so a rigorous test plan was required for debugging in order to 

manage the complexity of the code. Finally it was necessary to understand the RC6 

cryptographic algorithm to be able to build the corresponding hardware design. For that 

purpose a VHDL code was defined. In order to implementation of the RC6 encryption we 

considering key scheduling also. Once the data was encrypted it was necessary to send it back 

to the microcontroller so that it was displayed on a terminal. Figure 3.1 illustrates the system 

that has been built. 
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      Fig 3.1: Design for creating the datagram and encryption process 
 
 
 
     After getting the datagram from the terminal it is necessary to decrypt to get original data, 

the plan was to manually write a text file corresponding to the data to be sent. Then it was 

necessary to transferred it through the serial interface to the microcontroller (P89C51RD2). 

The microcontroller received the datagram, checked its validity and stored the data in its 

memory. To provide this functionality it was necessary to configure the serial interface of the 

microcontroller in order to be able to receive the datagram. Then the various parameters from 

the headers were checked to verify the validity of the communication (for example, are the IP 

source and destination addresses correct). Once that step performed it was necessary to send 

the data to the crypto-coprocessor to determine the original data. Finally the RC6 

cryptographic algorithm to be able to build the corresponding hardware design. For that 

purpose a VHDL code was defined. In order to help the implementation of the RC6 decryptor 

we considered the RC6 algorithm including key scheduling. Once the data was decrypted it 

was necessary to send it back to the microcontroller so that it was displayed on a terminal. 

Figure 3.2 illustrates the system that has been built. 
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4. STRUCTURE OF THE RC6 CIPHER ALGORITHM 
 
 
 
4.1 BASIC OPERATIONS 
 
        RC6-w/r/b operates on units of four w-bit words using the following six basic operations. 

The base-two logarithm of w will be denoted by lg w. 

 

• a + b integer addition modulo 2w 

• a - b integer subtraction modulo 2w 

• a xor b bitwise exclusive-or of w-bit words 

• a X b integer multiplication modulo 2w 

• a<<<b rotate the w-bit word a to the left by the amount given by the least 

significant lg w bits of b 

•  a>>>b rotate the w-bit word a to the right by the amount given by the least 

significant lg w bits of b 

 
 
4.2 KEY SCHEDULE 
 
          The user supplies a key of b bytes. From this key, 2r + 4 words (w bits each) are 

derived and stored in the array S [0, 2r + 3]. This array is used in both encryption and 

decryption. Sufficient zero bytes are appended to give a key length equal to a non-zero 

integral number of words; these key bytes are then loaded in little-endian fashion into an array 

of c w-bit (w = 32 bits in our case) words L [0], … , L [c - 1]. Thus the first byte of key is 

stored as the low-order byte of L [0], etc., and L [c - 1] is padded with high-order zero bytes if 

necessary. The number of w bit (32 bit) words that will be generated for the additive round 

keys is 2r + 4 and these are stored in the array S [0; … ;2r + 3]. The constants P32 = 

B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the same “magic constants" as used in the 

RC5 key schedule. Fig 4.2.1 shows how we are mixing the user supplied key with the stored 

array S [0, 2r+3] keys. 
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Procedure for Key Scheduling: 
 
S [0] = P32 
for i = 1 to 2r + 3 do 
S [i] = S [i - 1] + Q32 
A = B = i = j = 0 
v = 3 X max{c, 2r + 4} 
for s = 1 to v do 
{ 
A = S [i] = (S [i] + A + B) <<< 3 
B = L [j] = (L [j] + A + B) <<< (A + B) 
i = (i + 1) mod (2r + 4) 
j = (j + 1) mod c 
} 
 

 

 
 

                          Fig 4.2.1 : RC6 Key Mix 
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4.3 ENCRYPTION 
 

         Encryption is the process of converting a plaintext message into cipher text which can 

be decoded back into the original message. An encryption algorithm along with a key is used 

in the encryption and decryption of data. There are several types of data encryptions which 

form the basis of network security. Encryption schemes are based on block or stream ciphers. 

         The type and length of the keys utilized depend upon the encryption algorithm and the 

amount of security needed. In conventional symmetric encryption a single key is used. With 

this key, the sender can encrypt a message and a recipient can decrypt the message but the 

security of the key becomes problematic. In asymmetric encryption, the encryption key and 

the decryption key are different. One is a public key by which the sender can encrypt the 

message and the other is a private key by which a recipient can decrypt the message. 

 
           RC6 works with four w-bit registers A, B, C, D which contain the initial input plaintext 

as well as the output cipher text at the end of encryption. The first byte of plaintext is placed 

in the least significant byte of A, the last byte of plaintext is placed into the most-significant 

byte of D. We use (A, B, C, D) = (B, C, D, A) to mean the parallel assignment of values on 

the right to registers on the left. Fig 4.3.1 show the RC6 algorithm. 

 
 
Input: 
 
 

• Plain text stored in four w-bit input registers A, B, C, D 

• Number r of rounds 

• w-bit round keys S[0, … ,2r + 3] 

 
 
Output: 
 

• Cipher text stored in A, B, C, D 
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Procedure for Encryption: 
 
B = B + S [0] 
D = D + S [1] 
for i = 1 to r do 
{ 
t = (B X (2B + 1)) <<< lg w 
u = (D X (2D + 1)) <<< lg w 
A = ((A �t) <<< u) + S [2i] 
C = ((C �u) <<< t) + S [2i+ 1] 
(A, B, C, D) = (B, C, D, A) 
} 
A = A + S [2r + 2] 
C = C + S [2r + 3] 
 

 
 

 

Fig. 4.3.1 : Encryption with RC6-w/r/b Here f(X) = (X (2X + 1)) mod 2w
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4.4 DECRYPTION 
 
 
          RC6 decryption works with four w-bit registers A, B, C, D which contain the initial 

input cipher text as well as the output plain text at the end of decryption. The first byte of 

cipher text is placed in the least significant byte of A, the last byte of cipher text is placed into 

the most-significant byte of D. We use (A, B, C, D) = (B, C, D, A) to mean the parallel 

assignment of values on the right to registers on the left. 

 
 
 
Input: 
 

• Cipher text stored in four w-bit input registers A, B, C, D 

• Number r of rounds 

• w-bit round keys S[0; … ; 2r + 3] 

 
Output: 
 

• Plaintext stored in A, B, C, D 
 
 
 
 
Procedure for Decryption: 
 
C = C – S [2r + 3] 
A = A – S [2r + 2] 
for i = r downto 1 do 
{ 
(A, B, C, D) = (D, A, B, C) 
u = (D X (2D + 1)) <<< lg w 
t = (B X (2B + 1)) <<< lg w 
C = ((C – S [2i + 1]) >>> t) �u 
A = ((A – S [2i]) >>> u) � t 
} 
D = D – S [1] 
B = B – S [0] 
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4.5 DESIGN ANALYSIS 
 

 
4.5.1MULTIPLICATION 
 
         When implementing the RC6 algorithm, it was first determined that the RC6 modulo 232 

multiplication was the dominant element of the round function in terms of required logic 

resources. Each RC6 round requires two copies of modulo 232 multiplier. However, it was 

found that the RC6 round function does not require a general modulo 232 multiplier. The RC6 

multipliers implement the function A (2A + 1) which may be implemented as 2A2 + A. 

Therefore, the multiplication operation was replaced with an array squarer with summed 

partial products, requiring fewer hardware resources and resulting in a faster implementation. 

 
 
4.5.2 VARIABLE SHIFTING 
 
         Variable shifting operations have the potential to require considerable hardware 

resources, the 5-bit variable shifting required by the RC6 round function required few 

hardware resources. Instead of implementing a 32-to-1 multiplexer for each of the thirty-two 

rotation output bits (controlled by the five shifting bits), a multi-level multiplexing approach 

was used. The variable rotation is broken into multiple stages, each of which is controlled by 

one of the five shifting bits. For each rotation output bit of a given stage, a 2-to-1 multiplexer 

controlled by the stage's shifting bit is used. This implementation requires a total of 160 2-to-1 

multiplexers as opposed to the thirty-two 32-to-1 multiplexers required for a one-stage 

implementation. However, using 2-to-1 multiplexers to form the five-stage barrel-shifter 

results in an overall implementation that is smaller and faster when compared to the one-stage 

barrel- shifter implementation. 

 
 
4.5.3 OTHER OPERATIONS 
 
         The remaining components of the RC6 round functions, consisting of fixed shifting, bit-

wise XOR, and modulo 232 addition, were found to be simple in structure, and requiring few 

hardware resources. 
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4.6 DESIGN ARCHITECTURE 
 
4.6.1 RC6 Key Schedule Module 
 
        The majority of the research papers done so far about the RC6 algorithm and its 

implementation in hardware, and more specifically in FPGAs, assume that key scheduling is 

done outside of the FPGA. All of the sub keys are downloaded to the key storage unit of the 

FPGA and are then used in both encryption and decryption. Our project is different in the 

sense that we are performing key scheduling and generating all of the sub keys inside the 

FPGA. Once the key schedule algorithm has executed and all of the sub keys have been 

generated, encryption and decryption will be started. If the user wishes to input a new key, the 

key schedule algorithm will run again and a new set of sub keys will be generated to be later 

used in en encryption and decryption. Fig 4.6.1 shows the diagram for RC6 Key Schedule 

Module 
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Fig.4.6.1 - RC6 Key Schedule Module 
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4.6.2 RC6 Main Module 
 
 
 
 
 

 
 
 
Fig. 4.6.2 - RC6 Main Module 
 
 
 
Input: 

• Key Input: Key to be used by ecnr/decr 

• Key Avail: Indicates that the key is available to be read 

• Data Input: Message/Cipher text is entered into the cipher 

• Data Avail: Indicates data is available to be read for enc/dec 

• Clock: Master Clock 

• Reset: Master Reset 
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• Enc/Dec: Enc/Dec 0/1 encryption/ decryption selection 

• Full: Indicates output full and cannot output data 

 

Output: 

• Key Read: Indicates the key has been read 

• Data Read: Entered into the cipher 

• Data Out: Cipher text/ Plaintext is output through this port 

• Data Write: Data becomes available on output bus 

• Ready: Indicates that the key has been generated and the unit is ready for enc/dec. 

 

 
 
4.6.3 RC6 Core Module 
 
 
       The RC6 core module is where the function f(X) = (X × (2X + 1)) mod 2w is 

implemented. As we can see the data is first broken down to four words, each 32 bits wide 

represented by A, B, C and D. Key scheduler prepares two 32 bit words from the S array, one 

value from the even addresses and one from the odd addresses. In the case of encryption A 

and C are added with these two values from S. Also u and t are calculated using the function f. 

u and t are shifted by 5 before they are Xored with output from the barrel shifter. Fig 4.6.3 

shows the diagram for core module for RC6 algorithm. 
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Fig. 4.6.3 - RC6 Core Module 
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4.6.4 RC6 Block diagram 
 
 
       To begin with, the data is first read in 128 bits and broken down to 4 x 32 bits words (A, 

B, C and D). Initially, and in case of encryption, the first two words in the S array are added 

to B and D. For Decryption, the two words are subtracted from C and A. These four blocks 

make the initial 128 bits that will be fed to a register before going into the core module 

through a multiplexer that controls the input for the core for every round. After completing all 

the rounds the output is sent to a register where it will be saved. Finally, this 128 bit is broken 

down to four blocks again, so the final addition and subtraction will be done before sending it 

as the cipher data. RC6 block diagram is shown in below Fig 4.6.4 
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                          Fig 4.6.4 : RC6 Block diagram 
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4.6.5 Control Unit 
 
 
             The control unit for RC6 is a very complete one due to the fact that it also generates 

different signals for generating the array of S keys. Two counters are controlled using these 

signals. A 5 bit counter is used in key generating and preparing the array S of keys in the 

rounds. Each control signal is controlled by a state and in some cases by other values as well. 

This unit also generates output signals for feeding the data in and sending the data out. The 

ASM chart shows when the signals are set and reset. The diagram is shown in Figure 4.6.5.1. 
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Fig. 4.6.5.1 – ASM chart of the Control Unit 
 
 
The next block diagram in Fig. 4.6.5.2 shows the signals needed to control key generation for 

encryption/decryption units. 
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                                Fig. 4.6.5.2 – Control Unit 
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5. STRUCTURE OF THE IPSec PROTOCOL 
 

 

 

        IPSEC is a framework for security that operates at the Network Layer by extending the 

IP packet header (using additional protocol numbers, not options). This gives it the ability to 

encrypt any higher layer protocol, including arbitrary TCP and UDP sessions, so it offers the 

greatest flexibility of all the existing TCP/IP cryptosystems. Flexibility, however, often comes 

at the price of complexity, and IPSEC is not an exception. Configuring which addresses and 

ports to encrypt using which IPSEC options often begins to look like configuring packet 

filtering, then add in the additional complexities of key management. While conceptually 

simple, setting up IPSEC is much more complex that installing SSH, for example. The IP 

security architecture uses the concept of a security association as the basis for building 

security functions into IP. A security association is simply the bundle of algorithms and 

parameters (such as keys) that is being used to encrypt and authenticate a particular flow in 

one direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair of 

security associations. The actual choice of encryption and authentication algorithms (from a 

defined list) is left to the IPSec administrator. 

 
 
There are two modes of IPSec operation: transport mode and tunnel mode. 
 
 
5.1 Transport mode

       In transport mode, only the payload (the data you transfer) of the IP packet is encrypted 

and/or authenticated. The routing is intact, since the IP header is neither modified nor 

encrypted; however, when the authentication header is used, the IP addresses cannot be 

translated, as this will invalidate the hash value. The transport and application layers are 

always secured by hash, so they cannot be modified in any way. Transport mode is used for 

host-to-host communications. 

 
5.2 Tunnel mode

         In tunnel mode, the entire IP packet (data plus the message headers) is encrypted and/or 

authenticated. It must then be encapsulated into a new IP packet for routing to work. Tunnel 
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mode is used for network-to-network communications or host-to-network and host-to-host 

communications over the internet. 

Two protocols have been developed to provide packet-level security for IPv6. 

• The IP Authentication Header provides integrity and authentication and non-

repudiation, if the appropriate choice of cryptographic algorithms is made.  

• The IP Encapsulating Security Payload provides confidentiality, along with optional 

(but strongly recommended) authentication and integrity protection.  

 
5.3 Authentication header (AH) 
 
        The AH is intended to guarantee connection less integrity and data origin authentication 

of IP data grams. Further, it can optionally protect against replay attacks by using the sliding 

window technique and discarding old packets. AH protects the IP payload and all header 

fields of an IP datagram except for mutable fields. 

 
 
 
 
 

0 - 7 bit 8 - 15 bit 16 - 23 bit 24 - 31 bit 

Next header Payload length RESERVED 

Security parameters index (SPI) 

Sequence number 

Authentication data (variable) 

 
 
               Fig  5.3 : AH packet diagram 
  
 

Field meanings: 

Next header   
Identifies the protocol of the transferred data.  

Payload length   
Size of AH packet.  

RESERVED   
Reserved for future use (all zero until then).  
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Security parameters index (SPI)   
Identifies the security parameters, which, in combination with the IP address, then 
identify the security association implemented with this packet.  

Sequence number   
A monotonically increasing number, used to prevent replay attacks.  

Authentication data   
Contains the integrity check value (ICV) necessary to authenticate the packet; it may 
contain padding.  

 
 
 
 
 
5.4 Encapsulating Security Payload (ESP)

       The ESP protocol provides origin authenticity, integrity, and confidentiality protection of 

a packet. ESP also supports encryption-only and authentication-only configurations, but using 

encryption without authentication is strongly discouraged because it is insecure. Unlike AH, 

the IP packet header is not protected by ESP. 

 
 
 
 
                                     
 
 
 
 
 
 
                                     Payload data (variable) 

Pad length Next Header 

Authentication data (variable)

 Padding (0 to 255 bytes)

Sequence number

Security Parameter Index (SPI)

0 – 7 bit 8 – 15 bit 16 – 23 bit 24 – 31 bit 

 
  
                     Fig 5.4 : An ESP packet diagram 
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Field meanings: 

 index (SPI)   

er   
number, used to prevent replay attacks.  

ta   

ers to pad the data to the full length of a block.  

uthentication data   
Contains the data used to authenticate the packet.  

.5 Point-to-Point Protocol 

pports 

ther protocols, including Novell's Inter network Packet Exchange (IPX) and DECnet.  

PP Components 

mitting data grams over serial point-to-point links. PPP 

 

Security parameters
Identifies the security parameters in combination with IP address.  

Sequence numb
A monotonically increasing 

Payload da
The data to be transferred.  

Padding   
Used with some block ciph

Pad length   
Size of padding in bytes.  

Next header   
Identifies the protocol of the transferred data.  

A

 

 

 

 

5

 

        The Point-to-Point Protocol (PPP) originally emerged as an encapsulation protocol for 

transporting IP traffic over point-to-point links. PPP also established a standard for the 

assignment and management of IP addresses, asynchronous (start/stop) and bit-oriented 

synchronous encapsulation, network protocol multiplexing, link configuration, link quality 

testing, error detection, and option negotiation for such capabilities as network layer address 

negotiation and data-compression negotiation. PPP supports these functions by providing an 

extensible Link Control Protocol (LCP) and a family of Network Control Protocols (NCPs) to 

negotiate optional configuration parameters and facilities. In addition to IP, PPP su

o

 

P

 

PPP provides a method for trans

contains three main components:  
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• A method for encapsulating data grams over serial links. PPP uses the High-Level 

      Data Link  Control (HDLC) protocol as a basis for encapsulating data grams over 

. 

     PPP is designed to allow the simultaneous use of multiple network layer protocols.  

til some external event occurs (for example, 

an inactivity timer expires or a user intervenes).  

 

      point-to-point links.  

• An extensible LCP to establish, configure, and test the data link connection.  

• A family of NCPs for establishing and configuring different network layer protocols

 

General Operation  

       To establish communications over a point-to-point link, the originating PPP first sends 

LCP frames to configure and (optionally) test the data link. After the link has been established 

and optional facilities have been negotiated as needed by the LCP, the originating PPP sends 

NCP frames to choose and configure one or more network layer protocols. When each of the 

chosen network layer protocols has been configured, packets from each network layer 

protocol can be sent over the link. The link will remain configured for communications until 

explicit LCP or NCP frames close the link, or un

 

  

                  Fig 5.5 : Six Fields Make Up the PPP Frame 

The following descriptions summarize the PPP frame fields illustrated in Figure 5.5:  

tes the beginning or end of a frame. The flag field consists 

of the binary sequence 01111110.  

111, the standard 

broadcast address. PPP does not assign individual station addresses.  

 

• Flag— A single byte that indica

• Address— A single byte that contains the binary sequence 11111
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• Control— A single byte that contains the binary sequence 00000011, which calls for 

transmission of user data in an unsequenced frame. A connectionless link service similar to 

that of Logical Link Control (LLC) Type 1 is provided.  

• Protocol— Two bytes that identify the protocol encapsulated in the information field of 

the frame. The most up-to-date values of the protocol field are specified in the most recent 

Assigned Numbers Request For Comments (RFC).  

• Data— Zero or more bytes that contain the datagram for the protocol specified in the 

protocol field. The end of the information field is found by locating the closing flag sequence 

and allowing 2 bytes for the FCS field. The default maximum length  

of the information field is 1,500 bytes. By prior agreement, consenting PPP implementations 

can use other values for the maximum information field length.  

• Frame check sequence (FCS)—Normally 16 bits (2 bytes). By prior agreement, 

consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.  

The LCP can negotiate modifications to the standard PPP frame structure. Modified frames, 

however, always will be clearly distinguishable from standard frames.  

 

 

PPP Link-Control Protocol 

The PPP LCP provides a method of establishing, configuring, maintaining, and terminating 

the point-to-point connection. LCP goes through four distinct phases.  

First, link establishment and configuration negotiation occur. Before any network layer 

datagrams (for example, IP) can be exchanged, LCP first must open the connection and 

negotiate configuration parameters. This phase is complete when a configuration-

acknowledgment frame has been both sent and received.  

This is followed by link quality determination. LCP allows an optional link quality 

determination phase following the link-establishment and configuration-negotiation phase. In 

this phase, the link is tested to determine whether the link quality is sufficient to bring up 
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network layer protocols. This phase is optional. LCP can delay transmission of network layer 

protocol information until this phase is complete.  

At this point, network layer protocol configuration negotiation occurs. After LCP has finished 

the link quality determination phase, network layer protocols can be configured separately by 

the appropriate NCP and can be brought up and taken down at any time. If LCP closes the 

link, it informs the network layer protocols so that they can take appropriate action.  

Finally, link termination occurs. LCP can terminate the link at any time. This usually is done 

at the request of a user but can happen because of a physical event, such as the loss of carrier 

or the expiration of an idle-period timer.  

Three classes of LCP frames exist. Link-establishment frames are used to establish and 

configure a link. Link-termination frames are used to terminate a link, and link-maintenance 

frames are used to manage and debug a link. These frames are used to accomplish the work of 

each of the LCP phases.  
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6. STEPS OF THE THESIS 
 

 

 

There are five several steps in this thesis as fallows 
 

A. PC-Microcontroller communication 

B. Datagram definition 

C. Crypto-coprocessor to encrypt the data 

D. Datagram validation and extraction 

E. Crypto-coprocessor to decrypt the data 

F. Complete system 

  
     From one PC side the data is encrypted by using crypto-coprocessor, then defining the 

necessary information to the data, i.e. adding the headers to the data. Then sending this 

encrypted data serially to the Microcontroller. The Microcontroller will receive the data and 

extract the data. After extracting the data it sends to the crypto-coprocessor to decrypt the 

data. After getting the original data it will displayed on the terminal. 

 

 

6.1 PC – Microcontroller communication 
 

       The PC was sending the data to the microcontroller using a point-to-point protocol over a 

serial link. In this part of the thesis, the task was to write C code which would enable the 

serial transmission of a text file (the data), to the Microcontroller and then to write assembly 

code which would take in the serial transmission and store it into Microcontroller memory. 

Without any data being sent, there would be no way of testing the Microcontroller code for 

storing the data into memory. Other reasons for C code being done first was that it was 

simpler, not requiring any hardware other than a PC. Serial transmission of the data was 

accomplished by using the windows.h library, which allowed for com ports to be selected and 

used to send or receive data at specified baud rates. Once the com port was selected and setup, 

the rest of the code was simply a matter of opening and preparing the datagram file to be sent 

through it serially to the Microcontroller. The assembly was then written for storage of the 
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data sent by the C code. Once the first byte was detected, it would be stored into 

Microcontroller memory. 

 

 

6.2 Datagram definition  
 
        In a general network stack, data is encapsulated inside of a frame by appending fields to 

the beginning and end of the data. The datagram represents the final result of data that has 

been encapsulated by the following process:  

 

1. The original data is wrapped in an IPv6 packet 

2. This IPv6 packet is encrypted, which encrypts only the data portion of the packet,  

    and  the corresponding Authentication headers are inserted in the packet. 

3. This encrypted IPv6 packet is then encapsulated in a PPP frame, which includes  

    data appended to both the beginning and end of the frame. 

 

      The IP security architecture uses the concept of a security association as the basis for 

building security functions into IP. A security association is simply the bundle of algorithms 

and parameters (such as keys) that is being used to encrypt and authenticate a particular flow 

in one direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair of 

security associations. The actual choice of encryption and authentication algorithms (from a 

defined list) is left to the IPsec administrator. 

 

 

 

 

       This complete structure is the final datagram. This structure requires several fields for 

each step from the above list. The first step in creating this datagram was to define each of the 

values for the protocol headers. After determining each constant value and computing the 

dynamic values, a ASM program was defined to construct the datagram. The initial ASM 

program was intended to construct a single static datagram in memory, then save that 

datagram as a file. Starting in this manner provided an easy upgrade path for the planned 

modification to the code to produce a dynamic datagram based on user input or an input file. 

After writing the initial ASM code to hold the required data, the required functions for the 
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dynamic fields were researched. Specifically, an RC6 encryption algorithm inserted into the 

code. 

 

       After completing the encryption task the data was sent into the datagram file and store 

into the Microcontroller memory. Once the data is received from the crypto-processor it is 

displayed on a terminal as shown in Figure 2. 
 
 

 

 

6.3 Crypto-coprocessor to encrypt the data 
 
          

         The first step in the design of the FPGA coprocessor was to define a bus protocol 

between the Microcontroller and the FPGA. The protocol was to take into account the 

asynchronous properties of the two devices. In order to implement such a protocol, a hand 

shake method was used. With the bus protocol decision finalized a high level FSM (Finite 

State Machine) was designed. The FSM was then split into separate modules: the data input; 

the encryptor, and the data output. The block diagram of crypto-coprocessor was shown in 

figure 6.3. The beginning of the FPGA consisted of the serial to parallel converter. This 

module was designed to take one bit at a time and to output 4 x 32 bits to the encryptor. This 

is also named as serial to parallel converter. Each set of 32 bits output to the decryptor 

consisted of 32 originally input, so the input sequence required four buffers, each capable of 

holding 32 bits. The middle of the FPGA code was a encryptor which encrypted 128-bit plain 

text blocks into 128-bit cipher text blocks using the RC6 algorithm. Here we are using RC6 

algorithm including key scheduling. The protocol between the input/output modules and the 

encryptor had to be established. The end of the FPGA consisted of the output. The output took 

in and stored 4 x 32 bits at once. Each 32-bit word was stored into a 32-bitwide register. 

Again here one parallel serial converter is need to send the data. Each bit then sent to the 

Microcontroller each time the Microcontroller requested data, serially. The encryption process 

is as fallows.  
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Encryption and  

Decryption 

 
Key schedule 

Data in 

Key input 

Data out 

clock 

Key avail 

Data avail 

Data ready

Key ready 

 
 
 
                      
                               Fig 6.3 : Crypto-processor block diagram 
 
 

 

 

 

 

6.4 Datagram validation and data extraction 
 
 
         Following the process of storing the datagram in Micocontroller memory, it is required 

that the Microcontroller checks the validity of certain parameters within the datagram, most 

importantly the Payload, Destination Address, and Data portions. These parameters are 

checked to verify the validity of the communication. The first step in extracting this datagram 

was to define each of the values for the protocol headers. After determining each constant 

value and computing the dynamic values, a ASM program was defined to extract the 

datagram.  Following the extraction and checking of each parameter, the next step is to send 
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the encrypted data portion of the datagram to the crypto-processor. The crypto-processor 

performs decryption and sends the original data (the data before encryption) back to the 

microcontroller to be stored back in Microcontroller memory. The encrypted data will be 

written over the decrypted data in the same memory range. Once the data is received from the 

rypto-processor it is displayed on a terminal as shown in Figure 3. 

.5 Crypto-coprocessor to decrypt the data 

r each time the Microcontroller requested data, serially. The decryption process 

 as fallows. 

c
 
 
 
 

 

 

 

6
 
           In this task also we will use same procedure as in encrypting the data. The first step 

was to define a bus protocol between the Microcontroller and the FPGA. The protocol was to 

take into account the asynchronous properties of the two devices. In order to implement such 

a protocol, a hand shake method was used. With the bus protocol decision finalized a high 

level FSM (Finite State Machine) was designed. The FSM was then split into separate 

modules: the data input; the decryptor; and the data output. The beginning of the FPGA 

consisted of the input. This module was designed to take one bit at a time and to output 4 x 32 

bits to the decryptor. Each set of 32 bits output to the decryptor consisted of 32 originally 

input, so the input sequence required four buffers, each capable of holding 32 bits. The middle 

of the FPGA code was a decryptor which decrypted 128-bit cipher text blocks into 128-bit 

plaintext blocks using the RC6 algorithm. The protocol between the input/output modules and 

the decryptor had to be established. The end of the FPGA consisted of the output. The goal of 

the output was to perform the reverse of the input module. The output took in and stored 4 x 

32 bits at once. Each 32-bit word was stored into a 32-bitwide register. Each bit sent to the 

Microcontrolle

is
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6.6 Complete system 

ts of the project was being 

onsistent for what banks of memory were used for what purposes. 

 
         The task is to integrating the parts of the system into a whole. This involved a 

debugging stage. Many bugs were encountered and dealt with. It was necessary that all of the 

portions fit and work together as though they were one homogonous piece of code. This 

involved aligning the variable names, adding code to join two parts, removing parts what 

were unnecessary or duplicated, and making sure the bus communications matched on both 

sides. Another design choice used when combining the different par

c
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7. RESULTS 
 
Use VHDL to simulate hardware implementation. Field Programmable Gate Arrays (FPGAs) 

consist of arrays of configurable logic blocks that implement logical functions of gates that 

are easily reconfigurable. In contrast, Application Specific Integrated Circuits (ASICs) 

provide only the functionality needed for a specific task. An ASIC chip will support a 

particular application for which it is designed, but not a modified version of the same 

application introduced after the ASIC design is completed. On the other hand, the 

configuration of an FPGA can be easily reprogrammed to accommodate a design 

modification. Other key factors that favor the use of FPGAs for hardware implementation of 

ciphers include faster turnaround design time, scalable security, and variable architecture 

parameters. For those reasons we have chosen FPGAs as the target technology. 

 

Selection of a target FPGA 

• Xilinx Spartan3E XC3S500E  
 

Selection of a target Microcontroller 

• Philips P89C51RD2 

 
 

7.1 Testing 
 
         The first step in the design process is to check for the functional correctness of the 

design using simulations. Then, the FPGA synthesis tool is used to interpret logic components 

from the VHDL code. The synthesis tool produces a net list which does not have accurate 

timing information since placement and routing of the logic components on the FPGA is not 

yet determined. The post-synthesis net list can however be used to check the correct inference 

of logic components from the VHDL code. The final step in the process is to map the design 

to the target FPGA. The FPGA implementation tool, which is vendor-specific, generates a net 

list which has accurate timing as well as logic information. The final net list is used for 

simulation to check if the design will actually work when configured physically on the FPGA. 

This type of simulation is known as timing simulation. Our design did pass timing simulation 

under the control of test bench. Test benches were written in VHDL in order to verify the 

functionality of the design. The test benches were designed to read test vectors from a file and 
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compare the produced output with expected outputs stored in another file. Extensive testing 

was done for checking both the encryption as well as decryption functionality. 

 
 
7.2 Waveforms 
 
Key setup: The following waveform shows when signal ready turns to 1 meaning that the key 

schedule is done and the data is being read. Here we read the input 

“075978ABDEA7863946BCFA273D763DEC” 

And the key input is “9876543210abcdef9876543210abcdef” 

 

 

Encryption: The following waveform shows when the input 

“075978ABDEA7863946BCFA273D763DEC” is encrypted and the 

cipher text “2DE1684C2658B2E7892D7633C4E6A5A6” is 

outputted. 

Decryption: The following waveform shows when the cipher 

“2DE1684C2658B2E7892D7633C4E6A5A6” is decrypted 

and the original text “075978ABDEA7863946BCFA273D763DEC” 

is outputted. 

 
 
 
7.3 Obtained Results 
 
After running the VHDL code, checking for functionality, synthesizing and then 

implementing the code, we got the following results which are summarized in the following. 
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                          Fig 7.3.1: The result of the encryption process  
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                              Fig 7.3.2: The result of the decryption process  
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          Fig 7.3.3 : Microcontroller and the links to the FPGA and the terminal 
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8. CONCLUSION AND FUTURE WORK 
 
 
 
8.1 CONCLUSIONS 
 
        RC6 is a secure, compact and simple block cipher. It offers good performance and 

considerable flexibility. To handle networking, processor based design and reconfigurable 

architecture which provide a good overview of a system level design. Another extension of 

the project could be to dynamically adapt the cryptography algorithms in order to take benefit 

of dynamic reconfiguration. 

 

 

 
        

        Advantages  
 
         Disadvantages  

     With Key 
      Schedule  

  No need to reload the 
  Round keys every time the 
  user changes the input  
  Key 

  1- Lower throughput 
 
  2- More hardware resources  

   Without Key 
     Schedule  

  1- Higher throughput 
 
  2- Less hardware resources 

  Every time the input key is  
  changed, the round keys  
  must be reloaded to the  
  FPGA  

 
 
 

 
 
 
 
 
8.2 FUTURE WORK 
 
 
        What we would recommend as future work/extension to this thesis is to implement the 

key schedule in a way that it will be able to generate the sub keys faster by pipelining the 

intitial S generate values in the S array. In our design, encryption/ decryption cannot be 

started until the key schedule algorithm has completed and all of the subkeys are generated. 

Key scheduling takes the most amount of time. So a possible extension to this thesis is to try 
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and generate the sub keys that is used for first few rounds and then generating the rest while 

encryption starting to use these. We see from the algorithm and in our implementation that the 

keys are needed faster than the time it takes to generate them. This will save a significant 

amount of time and improve the performance of the design. 
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