
FPGA Implementation of RC6 Algorithm
for IPSec protocol

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT
 OF THE REQUIREMENTS FOR THE DEGREE OF

 Master of Technology
 In
 VLSI DESIGN and EMBEDDED SYSTEM

 By
 SUDHEER REDDY ENUGU
 Roll No : 20607006

 Under the Guidance of
 Prof.K.K.MAHAPATRA

 Department of Electronics & Communication Engineering
 National Institute of Technology
 Rourkela
 2006 - 2008

 I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENT

This project is by far the most significant accomplishment in my life and it would be

impossible without people who supported me and believed in me.

I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Prof. K.K.Mahapatra, Department of Electronics and Communication

Engineering. He is not only a great lecturer with deep vision but also and most importantly a

kind person. I sincerely thank for his exemplary guidance and encouragement. His trust and

support inspired me in the most important moments of making right decisions and I am glad

to work with him.

I want to thank all my teachers Prof. G.S. Rath, Prof. G.Panda, Prof. S.Mehar,

Prof. S.K. Patra and for providing a solid background for my studies and research thereafter.

They have been great sources of inspiration to me and I thank them from the bottom of my

heart.

I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious.

I’ve enjoyed their companionship so much during my stay at NIT, Rourkela.

I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

Last but not least I would like to thank my parents, who taught me the value of hard

work by their own example. They rendered me enormous support during the whole tenure of

my stay in NIT Rourkela.

 SUDHEER REDDY. E

 II

Abstract

 With today's great demand for secure communications systems, there is a growing

demand for real-time implementation of cryptographic algorithms. In this thesis we present a

hardware implementation of the RC6 algorithm using VHDL Hardware Description

Language. And the goal of the thesis was to implement a subset of the IPSec protocol using a

Microcontroller and an FPGA. IPSEC is a framework for security that operates at the

Network Layer by extending the IP packet header. IPSec protocol is to guarantee the security

of data while traveling through the network. The motivation was to enable network

application and cryptography to assembly and VHDL languages and to develop a prototype of

their system. In this thesis many different sub-systems had to communicate with each other to

achieve the final product: the PC and the Microcontroller through a serial connection, the

Microcontroller and the FPGA through a bidirectional bus, and the Microcontroller and a

terminal using a serial connection. Data was to be encrypted and decrypted using an RC6

algorithm including key scheduling application. The crypto-coprocessor (to implement RC6

algorithms) was implemented within an FPGA and connected to the Microcontroller bus.

 III

CONTENTS
CHAPTER 1 1

INTRODUCTION 1

CHAPTER 2 5

MOTIVATION 5

 2.1 Simplicity 6

 2.2 Good performance for a given level of security 9

 2.3 Security 9

CHAPTER 3 14

OUTLINE OF THE THESIS 14

CHAPTER 4 18

STRUCTURE OF THE RC6 CIPHER ALGORITHM 18

 4.1 Basic Operations 19

 4.2 Key Schedule 19

 4.3 Encryption 21

 4.4 Decryption 23

 4.5 Design Analysis 24

 4.5.1 Multiplication 24

 4.5.2 Variable Shifting 24

 4.5.3 Other Operations 24

 4.6 Design Architecture 25

 4.6.1 RC6 Key Schedule Module 25

 4.6.2 RC6 Main Module 27

 4.6.3 RC6 Core Module 28

 4.6.4 RC6 Block diagram 30

 4.6.5 Control Unit 32

 IV

CHAPTER 5 35

STRUCTURE OF THE IPSec PROTOCOL 35

 5.1 Transport mode 36

 5.2 Tunnel mode 36

 5.3 Authentication header (AH) 37

 5.4 Encapsulating Security Payload (ESP) 38

 5.5 Point-to-Point Protocol 39

CHAPTER 6 43

STEPS OF THE PROJECT 43

 6.1 PC – Microcontroller communication 44

 6.2 Datagram definition 45

 6.3 Crypto-coprocessor to encrypt the data 46

 6.4 Datagram validation and data extraction 47

 6.5 Crypto-coprocessor to decrypt the data 48

 6.6 Complete system 49

CHAPTER 7 50

RESULTS 50
 7.1 Testing 51

 7.2 Waveforms 52

 7.3 Obtained Results 52

CHAPTER 8 56

CONCLUSION AND FUTURE WORK 56

 8.1 Conclusions 57

 8.2 Future Work 57

REFERENCES 59

 V

LIST OF FIGURES

FIG. 1.1 RC6 Cipher block diagram 3

FIG. 1.2 Layers involved during a communication with in the

 PC and Microcontroller 4

FIG. 3.1: Design for creating the datagram and encryption process 16

FIG. 3.2: Design for extracting the data and decryption process 17

FIG. 4.2.1 : RC6 Key Mix 20

FIG. 4.3.1 : Encryption with RC6-w/r/b Here f(X) = (X (2X + 1)) mod 2w 22

FIG. 4.6.1 - RC6 Key Schedule Module 26

FIG. 4.6.2 - RC6 Main Module 27

FIG. 4.6.3 - RC6 Core Module 29

FIG. 4.6.4 : RC6 Block diagram 31

FIG. 4.6.5.1 – ASM chart of the Control Unit 33

FIG. 4.6.5.2 – Control Unit 34

FIG. 5.3 : AH packet diagram 37

FIG. 5.4 : An ESP packet diagram 38

FIG. 5.5 : Six Fields Make Up the PPP Frame 40

FIG. 6.3 : Crypto-processor block diagram 47

FIG. 7.3.1: The result of the encryption process 53

FIG. 7.3.2: The result of the decryption process 54

FIG. 7.3.3 : Microcontroller and the links to the FPGA and the terminal 55

 VI

 Chapter 1

 INTRODUCTION

 1

 1. INTRODUCTION

 RC6 is a symmetric key block cipher derived from RC5. It was designed by Ron Rivest,

Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced

Encryption Standard (AES) competition by the National Institute of Standards and

Technology (NIST). The algorithm was one of the five finalists, and was also submitted to the

NESSIE and CRYPTREC projects. Though the algorithm was not eventually selected, RC6

remains a good choice for security applications. It is proprietary of RSA Security.

 The design of RC6 began with a consideration of RC5 as a potential candidate for an

AES submission. Modifications were then made to meet the AES requirements, to increase

security, and to improve performance. The inner loop, however, is based around the same

“half-round" found in RC5. RC5 was intentionally designed to be extremely simple, to invite

analysis shedding light on the security provided by extensive use of data-dependent rotations.

Since RC5 was proposed in 1995, various studies provided a greater understanding of how

RC5's structure and operations contribute to its security. While no practical attack on RC5 has

been found, the studies provide some interesting theoretical attacks, generally based on the

fact that the “rotation amounts" in RC5 do not depend on all of the bits in a register. RC6 was

designed to thwart such attacks, and indeed to thwart all known attacks, providing a cipher

that can offer the security required for the lifespan of the AES.

 The philosophy of RC5 is to exploit operations (such as rotations) that are efficiently

implemented on modern processors. RC6 continues this trend, and takes advantage of the fact

that 32-bit integer multiplication is now efficiently implemented on most processors. Integer

multiplication is a very effective “diffusion" primitive, and is used in RC6 to compute rotation

amounts, so that the rotation amounts are dependent on all of the bits of another register,

rather than just the low-order bits (as in RC5). As a result the new RC6 has much faster

diffusion than RC5. This also allows RC6 to run with fewer rounds at increased security and

with increased throughput.

 RC6 is more exactly specified as RC6-w/r/b, where the parameters w, r, and b respectively

express the word size (in bits), the number of rounds, and the size of the encryption key (in

bytes). Since the AES submission is targeted at w = 32 and r = 20, we implemented this

 2

version of RC6 algorithm, using a 32 bits word size, 20 rounds and 16 bytes (128 bits)

encryption key lengths. The RC6 block cipher diagram as shown in the fig 1.1.

 A key schedule generates 2r + 4 words (w bits each) from the b-bytes key provided by

the user. These values (called round keys) are stored in an array S [0, 2r+3] and are used in

both encryption and decryption. RC6 works on a block size of 128 bits and it is very similar to

RC5 in structure, using data-dependent rotations, modular addition and XOR operations; in

fact, RC6 could be viewed as interweaving two parallel RC5 encryption processes. However,

RC6 does use an extra multiplication operation not present in RC5 in order to make the

rotation dependent on every bit in a word, and not just the least significant few bits. The

computation of f(X) = (X × (2X + 1)) mod 2w is the most critical arithmetic operation of this

block cipher. The goal of this thesis is to implement the RC6 Cipher with FPGA as the target

technology.

Encryption/Decryption

Circuit.

Plain text

Ke
Cipher

y

 Fig 1.1: RC6 Cipher block diagram

 The goal of the thesis was to implement on a microcontroller a subset of the IPSec

protocol. IPSec is part of the IPv6 protocol to guarantee the security of data while traveling

through the network (i.e. authentication, privacy and integrity). In this thesis two entities were

communicating, a PC and a microcontroller. The PC was sending the data to the

microcontroller using a point-to-point protocol over a serial link. Then the microcontroller

processed the datagram, checking its validity and extracting the data. In dealing with IPSec,

the data was encrypted so it was necessary to first decrypt the data to get the original plain

text. Furthermore to speed up the decryption task, a crypto-coprocessor was considered. To

manage the thesis several skills were necessary, from networking to micro-programming and

hardware design. Generally IP is associated with TCP and well known as TCP/IP. In this

 3

thesis in order to manage the complexity of the system the TCP layer was not considered and

the data was provided directly after the IP layer as show in Figure 1.2. Thus from the PC side,

the data was encrypted using the RC6 algorithm before being encapsulated into a datagram.

To obtain the final datagram two layers were considered which are successively the IP and the

PPP layers. The physical layer splits the datagram in order to meet serial link requirements.

From the Microcontroller side the same steps were considered but in the reverse order. Once

the data was extracted from the datagram it was sent to the crypto-coprocessor in order to

retrieve the plain text. The crypto-coprocessor was implemented within an FPGA and

connected to the Microcontroller bus.

DATA

IP

PPP

SCI

DATA

IP

PPP

SCI

Network Layer

Data Link Layer

Physical Layer

Physical Link

PC Microcontroller

 Fig 1.2: Layers involved during a communication with in the
 PC and Microcontroller

 4

 Chapter 2

 MOTIVATION

 5

2. MOTIVATION

 To attack RC6 the best approach available to the cryptanalyst is that of exhaustive

search for the b-byte encryption key. The more advanced attacks of differential and linear

cryptanalysis, while being feasible on small-round versions of the cipher, do not extend well

to attacking the full 20-round RC6 cipher. The RC6 key schedule is secure through mixing,

one way function and no key separation. Therefore, RC6 provides a solid, well tuned margin

for security.

 RC6 facilitates and encourages analysis by allowing rapid understanding of security and

making direct analysis straightforward. It also enables easy implementation by allowing

compilers to produce high quality code for software implementations, and by preventing

complicated optimizations and providing good performance with minimal effort for hardware

implementations. RC6 is known to have good performance on 8, 16 and 32-bit platforms.

2.1 simplicity

 The simplicity of RC5 has made it an attractive object for research. By being readily

accessible to both crude and sophisticated analysis many people have been encouraged to look

at the cipher and to assess the security it offers. RC6 was designed to build on the experience

gained in using RC5 and to build on the security offered by a remarkably simple cipher. One

can view the design of RC6 as progressing through the following steps:

1. Start with the basic half-round loop of RC5:

 for i = 1 to r do
 {
 A = ((A xor B)<<<B) + S[i]
 (A, B) = (B, A)
 }

2. Run two copies of RC5 in parallel: one on registers A, B and one on registers C,D.

 for i = 1 to r do
 {
 A = ((A xor B)<<<B) + S[2i]
 C = ((C xor D)<<<D) + S[2i+ 1]
 (A,B) = (B,A)
 (C,D) = (D,C)
 }

 6

3. At the swap stage, instead of swapping A with B and C with D, permute the registers by

(A, B, C, D) = (B, C, D, A), so that the AB computation is mixed with the CD computation.

At this stage the inner loop looks like:

 for i = 1 to r do
 {
 A = ((A xor B)<<<B) + S[2i]
 C = ((C xor D)<<<D) + S[2i+ 1]
 (A, B, C, D) = (B, C, D, A)
 }

4. Mix up the AB computation with the CD computation further, by switching where the
rotation amounts come from between the two computations:

 for i = 1 to r do
 {
 A = ((A xor B)<<<D) + S[2i]
 C = ((C xor D)<<<B) + S[2i+ 1]
 (A, B, C, D) = (B, C, D, A)
 }

5. Instead of using B and D in a straightforward manner as above, we use transformed

versions of these registers, for some suitable transformation. Our security goals are that the

data-dependent rotation amount that will be derived from the output of this transformation

should depend on all bits of the input word and that the transformation should provide good

mixing within the word. The particular choice of this transformation for RC6 is the function

f(x) = x × (2x + 1)(mod 2w) followed by a left rotation by five bit positions. This

transformation appears to meet our security goals while taking advantage of simple

primitives that are efficiently implemented on most modern processors. Note that f(x) is

one-to-one modulo 2w, and that the high-order bits of f(x), which determine the rotation

amount used, depend heavily on all the bits of x. This gives us:

for i = 1 to r do
{
 t = (B × (2B + 1))<<<5
 u = (D × (2D + 1))<<<5
 A = ((A xor t)<<<u) + S[2i]
 C = ((C xor u)<<<t) + S[2i+ 1]
 (A, B, C, D) = (B, C, D, A)
}

 7

6. At the beginning and end of the r rounds, add pre-whitening and post-whitening steps.

Without these steps, the plaintext reveals part of the input to the first round of encryption and

the cipher text reveals part of the input to the last round of encryption. The pre- and post-

whitening steps help to disguise this and leaves us with RC6:

B = B + S[0]
D = D + S[1]
for i = 1 to r do
{
t = (B × (2B + 1))<<<5
u = (D × (2D + 1))<<<5
A = ((A xor t)<<<u) + S[2i]
C = ((C xor u)<<<t) + S[2i+ 1]
(A, B, C, D) = (B, C, D, A)
}
A = A + S[2r + 2]
C = C + S[2r + 3]

 While it might appear that the evolution from RC5 to RC6 was straightforward, it in fact

involved the design and analysis of literally dozens of alternatives. RC6 is the design that

captures the spirit of our three goals of security, simplicity and performance the most

effectively. Note that in the preceding development, the decision to expand to four 32-bit

Registers was made first (for performance reasons), and then the decision to use the quadratic

function f(x) = x × (2x + 1)(mod 2w) was made later. If we had decided to stick with a two

register version of RC6 then we might have had the following encryption scheme as an

intermediate:

B = B + S[0]
for i = 1 to r do
{
t = B × (2B + 1)<<<5
A = ((A xor t)<<<t) + S[i]
(A, B) = (B, A)
}
A = A + S[r + 1]

 This variant of RC6 may be of independent interest, particularly when support for 64-bit

arithmetic in C improves. However we merely mention this as an aside here.

 8

2.2 Good performance for a given level of security

 While the latest techniques demonstrate that RC5-32/12/b, i.e. a 12-round version of

RC5, might not be suitable for longer-term security needs, these attacks currently fall short of

providing any real avenue for practical attack against a 16-round version. Most existing

cryptanalytic results on RC5 depend on what might be viewed as a relatively slow avalanche

of change between rounds. The integer addition helps to provide a reasonable amount of

change due to the effect of the carry, but the most dramatic changes take place when two

different rotation amounts are used at a similar point during the encryption of two related

plaintexts. Typically an attacker would aim to control the evolution of the differences from

round to round and, in versions of RC5 with fewer rounds, this can allow an attack to be

mounted. The incremental changes in arriving at RC6 from RC5 have already been outlined.

Two significant changes are the introduction of the quadratic function B × (2B + 1) (Similarly

: D × (2D + 1)) and the fixed rotation by five bits. The quadratic function is aimed at

providing a faster rate of diffusion there by improving the chances that simple differentials

will spoil rotation amounts much sooner than is accomplished with RC5. The quadratically

transformed values of B and D are used in place of B and D to modify the registers A and C,

increasing the nonlinearity of the scheme while not losing any entropy (since the

transformation is a permutation). The fixed rotation by five bits plays a simple yet important

role in complicating both linear and differential cryptanalysis.

2.3 Security

 We conjecture that to attack RC6 the best approach available to the cryptanalyst is that

of exhaustive search for the b-byte encryption key (or the expanded key array S[0; : : : ; 43]

when the user-supplied encryption key is particularly long). The work effort required for this

is min{28b; 21408} operations. Don Coppersmith observes, however, that at the expense of

considerable memory and off-line pre-computation one can mount a meet-in-the-middle

attack to recover the expanded key array S[0; : : : ; 43]. This would require 2704 on-line

computations and so the work effort required to recover the expanded key array might best be

estimated by min{28b; 2704} operations.

 The more advanced attacks of differential and linear cryptanalysis, while being feasible

on small-round versions of the cipher, do not extend well to attacking the full 20-round RC6

 9

cipher. The main difficulty is that it is hard to find good iterative characteristics or linear

approximations with which an attack might be mounted.

 It is an interesting challenge to establish the most appropriate goals for security against

these more advanced attacks. To succeed, these attacks typically require large amounts of

data, and obtaining 2a blocks of known or chosen plaintext-cipher text pairs is a very different

task from trying to recover one key from among 2a possibilities (this latter task can be readily

parallelized). It is worth observing that with a cipher running at the rate of one terabit per

second (that is, encrypting data at the rate of 1012 bits/second), the time required for 50

computers working in parallel to encrypt 264 blocks of data is more than a year; to encrypt 280

blocks of data is more than 98, 000 years; and to encrypt 2128 blocks of data is more than 1019

years.

 While having a data requirement of 264 blocks of data for a successful attack might be

viewed as sufficient in practical terms, we have aimed to provide a much greater level of

security. The community as a whole will decide which level of security a cipher, in particular

an AES candidate should satisfy. Should this be less than a data requirement of 2128 blocks of

data then the number of rounds of RC6 could potentially be reduced from our initial

suggestion of 20 rounds, thereby providing an improvement in performance.

 For attacking an eight-round version of the cipher, RC6-32/8/b, one can construct six-

round characteristics or linear approximations. Assuming that these could be used to attack

the eight-round version of the cipher (an assumption that, while reasonable, overlooks a vast

number of practical details) the estimated data required to mount a differential cryptanalytic

attack on RC6-32/8/b would be around 256 chosen plaintext pairs, and to mount a linear

cryptanalytic attack would be around 247 known plaintexts. This includes some consideration

of more sophisticated phenomena such as differentials and linear hulls, but we might still

expect more customized techniques to reduce these figures by a moderate amount. However

they provide a reasonable illustration of the security that might be offered by a version of RC6

with a few rounds. Currently, it seems that a differential attack on the full 20-round RC6

cipher appears to be most easily accomplished by using a six-round iterative characteristic

(although we have identified useful three- and four-round characteristics) together with some

customized beginning and ending characteristics. Considering a variety of options, the

probability of one of the best 18-round characteristics we are aware of in attacking RC6 is

 10

around 2-238 and uses integer subtraction as the notion of difference. (For technical reasons,

using exclusive-or as the notion of difference can be more problematical.) To use this

characteristic in an attack would require more than the total number of available chosen

plaintext/cipher text pairs. While we expect the amount of data required for an attack to drop

as more detailed analysis takes place we do not believe that differential cryptanalysis can be

successfully applied to RC6.

 To mount a linear cryptanalytic attack, there appear to be two different options. The first

might be to find a linear approximation over several rounds that uses a linear approximation

across the quadratic function. Since there appear to be some very suitable linear

approximations using the least significant bits of this function, this might be an appealing

strategy. Indeed, one can establish useful six-round iterative linear approximations that can, at

least in principle, be used to attack reduced-round versions of RC6. However, the bias of

these approximations drops rapidly as more rounds are added, and soon the amount of data

required for a successful attack exceeds the amount of data available. Instead, we note that an

attacker might well pursue an alternative approach. It is possible to find a two-round iterative

linear approximation that does not use an approximation across the combination of the

quadratic function and fixed rotation by five bit positions. Using basic but established

techniques to predict the bias of such an approximation, we observe that the data requirements

to exploit this approximation over a version of RC6 with 16 rounds are about 2142 known

plaintexts. Further analysis suggests that additional techniques might potentially be used to

bring the data requirements down to a little under 2128 known plaintexts. This provided our

rationale for choosing 20 rounds for RC6.

 With our current knowledge, the most successful avenue for a linear cryptanalytic

attack on RC6 would be to use the two-round iterative approximation we have just mentioned

to build up an 18-round linear approximation with which to attack the cipher. Using the same

techniques as before to predict the data requirements to use this approximation at first sight,

we might need 2182 known plaintexts, an amount which exceeds the available data. Enhanced

techniques might be useful in reducing this figure by a moderate amount (a pessimistic view

suggests that such reductions would still leave an attack requiring 2155 known plaintexts) but

in the final assessment we believe that the number of known plaintexts needed to exploit this

approximation readily exceeds the maximum number of plaintexts available. We conclude

that a linear cryptanalytic attack against RC6 is not possible using these techniques. Further,

 11

we believe that the use of more sophisticated techniques are exceptionally unlikely to provide

sufficient gains as to offer an attack requiring less than 2128 known plaintexts.

 We are aware of several potential enhancements to the essential attacks we have

described (in particular, the use of truncated and higher-order differentials), and we are also

aware of some alternative approaches. However, all these techniques have so far failed to

improve on the attacks outlined here, and we believe that all currently available sophisticated

cryptanalytic attacks will require more data than there is available. A report on our work and

findings is in reparation.

 RC6 can easily be implemented in such a way as to be invulnerable to “timing attacks".

Many modern processors have constant-time rotation and multiplication instructions. Other

processors may have a rotation or shift time that depends linearly with the amount of rotation,

but in this case it is usually easy to arrange the work so that the total compute time is data-

independent (for example, by computing a rotate of t bits using a left-shift of t bits and a right-

shift of w-t bits). In either case, the RC6 encrypt/decrypt time is data-independent, causing

any potential timing attacks to fail.

 Studies of RC5 have failed to reveal any weakness in the key setup. This provided one

of the motivations for using the same key setup in RC6 as was used in RC5. The process of

transforming the supplied key to the table of round keys appears to be well-modeled by a

pseudo-random process. Thus, while there is no proof that no two keys yield the same table of

round keys, it appears to be highly unlikely. It can be estimated that the chance that there exist

two 256-bit keys yielding the same table of 44 32-bit round keys is approximately 22×256-44×32

= 2-896 = 10-270 (approximately). We feel that there is value in the “one-way" structure of the

key-setup routine that is more important than the (infinitesimal) chance that there might be

two keys that yield the same table of round keys. One such value is the protection it provides

against related-key attacks, for example.

 12

We can summarize on the security of RC6 as follows:

1. The best attack on RC6 appears to be exhaustive search for the user-supplied Encryption

key.

2. The data requirements to mount more sophisticated attacks on RC6 such as Differential and

linear cryptanalysis exceed the available data.

3. There are no known examples of what might be termed “weak" keys.

 13

 Chapter 3

 OUTLINE OF THE THESIS

 14

3. OUTLINE OF THE THESIS

 In this thesis as mentioned previously several aspects were considered, the first one was

related to the datagram definition which requires a general understanding of the IP (and

IPSec) and PPP layers. The original data was encrypted and gathered with the AH header and

the IP header. Each of these headers contains specific information in order to provide a valid

datagram. The resulting datagram was then encapsulated within the PPP layer to provide the

final datagram. As for IP, PPP contains specific parameters that were defined. In order to

reduce the complexity of the global system a simplified version of the IP and PPP layers was

considered (the corresponding protocols can be very complex). For example the SA step was

not considered and predefined key and algorithm for the cryptography solution were selected.

Furthermore in a first step the authentication algorithm was not handled. Only the

cryptography part was targeted. Obviously, the complexity of the system could have evolved

depending on the results obtained during the thesis.

 As an initial step, the plan was to manually write a text file corresponding to the data to

be sent. Then it was necessary to transferred it through the serial interface to the

microcontroller (P89C51RD2). The PC was sending the data to the microcontroller using a

point-to-point protocol over a serial link. The microcontroller received the data, and stored the

data in its memory. The original data was gathered with the AH header and the IP header.

Once that step performed it was necessary to send the data to the crypto-coprocessor to

encrypt the original data. All the tasks performed on the microcontroller required quite a large

hand-written ASM program, so a rigorous test plan was required for debugging in order to

manage the complexity of the code. Finally it was necessary to understand the RC6

cryptographic algorithm to be able to build the corresponding hardware design. For that

purpose a VHDL code was defined. In order to implementation of the RC6 encryption we

considering key scheduling also. Once the data was encrypted it was necessary to send it back

to the microcontroller so that it was displayed on a terminal. Figure 3.1 illustrates the system

that has been built.

 15

File

MICROCONTROLLER

 M
A
X
2
3
2

ASM program
to create datagram

VHDL design
to encrypt the data

Terminal displaying
the result

FPGA LCD Display

 Fig 3.1: Design for creating the datagram and encryption process

 After getting the datagram from the terminal it is necessary to decrypt to get original data,

the plan was to manually write a text file corresponding to the data to be sent. Then it was

necessary to transferred it through the serial interface to the microcontroller (P89C51RD2).

The microcontroller received the datagram, checked its validity and stored the data in its

memory. To provide this functionality it was necessary to configure the serial interface of the

microcontroller in order to be able to receive the datagram. Then the various parameters from

the headers were checked to verify the validity of the communication (for example, are the IP

source and destination addresses correct). Once that step performed it was necessary to send

the data to the crypto-coprocessor to determine the original data. Finally the RC6

cryptographic algorithm to be able to build the corresponding hardware design. For that

purpose a VHDL code was defined. In order to help the implementation of the RC6 decryptor

we considered the RC6 algorithm including key scheduling. Once the data was decrypted it

was necessary to send it back to the microcontroller so that it was displayed on a terminal.

Figure 3.2 illustrates the system that has been built.

 16

File containing
datagram

MICROCONTROLLER

 M
A
X
2
3
2

ASM program
to extract the datagram

VHDL design
to decrypt the data

Terminal displaying
the result

FPGA LCD Display

Fig 3.2: Design for extracting the data and decryption process

 17

 Chapter 4

STRUCTURE OF THE RC6 CIPHER
 ALGORITHM

 18

4. STRUCTURE OF THE RC6 CIPHER ALGORITHM

4.1 BASIC OPERATIONS

 RC6-w/r/b operates on units of four w-bit words using the following six basic operations.

The base-two logarithm of w will be denoted by lg w.

• a + b integer addition modulo 2w

• a - b integer subtraction modulo 2w

• a xor b bitwise exclusive-or of w-bit words

• a X b integer multiplication modulo 2w

• a<<<b rotate the w-bit word a to the left by the amount given by the least

significant lg w bits of b

• a>>>b rotate the w-bit word a to the right by the amount given by the least

significant lg w bits of b

4.2 KEY SCHEDULE

 The user supplies a key of b bytes. From this key, 2r + 4 words (w bits each) are

derived and stored in the array S [0, 2r + 3]. This array is used in both encryption and

decryption. Sufficient zero bytes are appended to give a key length equal to a non-zero

integral number of words; these key bytes are then loaded in little-endian fashion into an array

of c w-bit (w = 32 bits in our case) words L [0], … , L [c - 1]. Thus the first byte of key is

stored as the low-order byte of L [0], etc., and L [c - 1] is padded with high-order zero bytes if

necessary. The number of w bit (32 bit) words that will be generated for the additive round

keys is 2r + 4 and these are stored in the array S [0; … ;2r + 3]. The constants P32 =

B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the same “magic constants" as used in the

RC5 key schedule. Fig 4.2.1 shows how we are mixing the user supplied key with the stored

array S [0, 2r+3] keys.

 19

Procedure for Key Scheduling:

S [0] = P32
for i = 1 to 2r + 3 do
S [i] = S [i - 1] + Q32
A = B = i = j = 0
v = 3 X max{c, 2r + 4}
for s = 1 to v do
{
A = S [i] = (S [i] + A + B) <<< 3
B = L [j] = (L [j] + A + B) <<< (A + B)
i = (i + 1) mod (2r + 4)
j = (j + 1) mod c
}

 Fig 4.2.1 : RC6 Key Mix

 20

4.3 ENCRYPTION

 Encryption is the process of converting a plaintext message into cipher text which can

be decoded back into the original message. An encryption algorithm along with a key is used

in the encryption and decryption of data. There are several types of data encryptions which

form the basis of network security. Encryption schemes are based on block or stream ciphers.

 The type and length of the keys utilized depend upon the encryption algorithm and the

amount of security needed. In conventional symmetric encryption a single key is used. With

this key, the sender can encrypt a message and a recipient can decrypt the message but the

security of the key becomes problematic. In asymmetric encryption, the encryption key and

the decryption key are different. One is a public key by which the sender can encrypt the

message and the other is a private key by which a recipient can decrypt the message.

 RC6 works with four w-bit registers A, B, C, D which contain the initial input plaintext

as well as the output cipher text at the end of encryption. The first byte of plaintext is placed

in the least significant byte of A, the last byte of plaintext is placed into the most-significant

byte of D. We use (A, B, C, D) = (B, C, D, A) to mean the parallel assignment of values on

the right to registers on the left. Fig 4.3.1 show the RC6 algorithm.

Input:

• Plain text stored in four w-bit input registers A, B, C, D

• Number r of rounds

• w-bit round keys S[0, … ,2r + 3]

Output:

• Cipher text stored in A, B, C, D

 21

Procedure for Encryption:

B = B + S [0]
D = D + S [1]
for i = 1 to r do
{
t = (B X (2B + 1)) <<< lg w
u = (D X (2D + 1)) <<< lg w
A = ((A �t) <<< u) + S [2i]
C = ((C �u) <<< t) + S [2i+ 1]
(A, B, C, D) = (B, C, D, A)
}
A = A + S [2r + 2]
C = C + S [2r + 3]

Fig. 4.3.1 : Encryption with RC6-w/r/b Here f(X) = (X (2X + 1)) mod 2w

 22

4.4 DECRYPTION

 RC6 decryption works with four w-bit registers A, B, C, D which contain the initial

input cipher text as well as the output plain text at the end of decryption. The first byte of

cipher text is placed in the least significant byte of A, the last byte of cipher text is placed into

the most-significant byte of D. We use (A, B, C, D) = (B, C, D, A) to mean the parallel

assignment of values on the right to registers on the left.

Input:

• Cipher text stored in four w-bit input registers A, B, C, D

• Number r of rounds

• w-bit round keys S[0; … ; 2r + 3]

Output:

• Plaintext stored in A, B, C, D

Procedure for Decryption:

C = C – S [2r + 3]
A = A – S [2r + 2]
for i = r downto 1 do
{
(A, B, C, D) = (D, A, B, C)
u = (D X (2D + 1)) <<< lg w
t = (B X (2B + 1)) <<< lg w
C = ((C – S [2i + 1]) >>> t) �u
A = ((A – S [2i]) >>> u) � t
}
D = D – S [1]
B = B – S [0]

 23

4.5 DESIGN ANALYSIS

4.5.1MULTIPLICATION

 When implementing the RC6 algorithm, it was first determined that the RC6 modulo 232

multiplication was the dominant element of the round function in terms of required logic

resources. Each RC6 round requires two copies of modulo 232 multiplier. However, it was

found that the RC6 round function does not require a general modulo 232 multiplier. The RC6

multipliers implement the function A (2A + 1) which may be implemented as 2A2 + A.

Therefore, the multiplication operation was replaced with an array squarer with summed

partial products, requiring fewer hardware resources and resulting in a faster implementation.

4.5.2 VARIABLE SHIFTING

 Variable shifting operations have the potential to require considerable hardware

resources, the 5-bit variable shifting required by the RC6 round function required few

hardware resources. Instead of implementing a 32-to-1 multiplexer for each of the thirty-two

rotation output bits (controlled by the five shifting bits), a multi-level multiplexing approach

was used. The variable rotation is broken into multiple stages, each of which is controlled by

one of the five shifting bits. For each rotation output bit of a given stage, a 2-to-1 multiplexer

controlled by the stage's shifting bit is used. This implementation requires a total of 160 2-to-1

multiplexers as opposed to the thirty-two 32-to-1 multiplexers required for a one-stage

implementation. However, using 2-to-1 multiplexers to form the five-stage barrel-shifter

results in an overall implementation that is smaller and faster when compared to the one-stage

barrel- shifter implementation.

4.5.3 OTHER OPERATIONS

 The remaining components of the RC6 round functions, consisting of fixed shifting, bit-

wise XOR, and modulo 232 addition, were found to be simple in structure, and requiring few

hardware resources.

 24

4.6 DESIGN ARCHITECTURE

4.6.1 RC6 Key Schedule Module

 The majority of the research papers done so far about the RC6 algorithm and its

implementation in hardware, and more specifically in FPGAs, assume that key scheduling is

done outside of the FPGA. All of the sub keys are downloaded to the key storage unit of the

FPGA and are then used in both encryption and decryption. Our project is different in the

sense that we are performing key scheduling and generating all of the sub keys inside the

FPGA. Once the key schedule algorithm has executed and all of the sub keys have been

generated, encryption and decryption will be started. If the user wishes to input a new key, the

key schedule algorithm will run again and a new set of sub keys will be generated to be later

used in en encryption and decryption. Fig 4.6.1 shows the diagram for RC6 Key Schedule

Module

 25

Fig.4.6.1 - RC6 Key Schedule Module

 26

4.6.2 RC6 Main Module

Fig. 4.6.2 - RC6 Main Module

Input:

• Key Input: Key to be used by ecnr/decr

• Key Avail: Indicates that the key is available to be read

• Data Input: Message/Cipher text is entered into the cipher

• Data Avail: Indicates data is available to be read for enc/dec

• Clock: Master Clock

• Reset: Master Reset

 27

• Enc/Dec: Enc/Dec 0/1 encryption/ decryption selection

• Full: Indicates output full and cannot output data

Output:

• Key Read: Indicates the key has been read

• Data Read: Entered into the cipher

• Data Out: Cipher text/ Plaintext is output through this port

• Data Write: Data becomes available on output bus

• Ready: Indicates that the key has been generated and the unit is ready for enc/dec.

4.6.3 RC6 Core Module

 The RC6 core module is where the function f(X) = (X × (2X + 1)) mod 2w is

implemented. As we can see the data is first broken down to four words, each 32 bits wide

represented by A, B, C and D. Key scheduler prepares two 32 bit words from the S array, one

value from the even addresses and one from the odd addresses. In the case of encryption A

and C are added with these two values from S. Also u and t are calculated using the function f.

u and t are shifted by 5 before they are Xored with output from the barrel shifter. Fig 4.6.3

shows the diagram for core module for RC6 algorithm.

 28

Fig. 4.6.3 - RC6 Core Module

 29

4.6.4 RC6 Block diagram

 To begin with, the data is first read in 128 bits and broken down to 4 x 32 bits words (A,

B, C and D). Initially, and in case of encryption, the first two words in the S array are added

to B and D. For Decryption, the two words are subtracted from C and A. These four blocks

make the initial 128 bits that will be fed to a register before going into the core module

through a multiplexer that controls the input for the core for every round. After completing all

the rounds the output is sent to a register where it will be saved. Finally, this 128 bit is broken

down to four blocks again, so the final addition and subtraction will be done before sending it

as the cipher data. RC6 block diagram is shown in below Fig 4.6.4

 30

 Fig 4.6.4 : RC6 Block diagram

 31

4.6.5 Control Unit

 The control unit for RC6 is a very complete one due to the fact that it also generates

different signals for generating the array of S keys. Two counters are controlled using these

signals. A 5 bit counter is used in key generating and preparing the array S of keys in the

rounds. Each control signal is controlled by a state and in some cases by other values as well.

This unit also generates output signals for feeding the data in and sending the data out. The

ASM chart shows when the signals are set and reset. The diagram is shown in Figure 4.6.5.1.

 32

Fig. 4.6.5.1 – ASM chart of the Control Unit

The next block diagram in Fig. 4.6.5.2 shows the signals needed to control key generation for

encryption/decryption units.

 33

 Fig. 4.6.5.2 – Control Unit

 34

 Chapter 5

 STRUCTURE OF THE IPSec
 PROTOCOL

 35

5. STRUCTURE OF THE IPSec PROTOCOL

 IPSEC is a framework for security that operates at the Network Layer by extending the

IP packet header (using additional protocol numbers, not options). This gives it the ability to

encrypt any higher layer protocol, including arbitrary TCP and UDP sessions, so it offers the

greatest flexibility of all the existing TCP/IP cryptosystems. Flexibility, however, often comes

at the price of complexity, and IPSEC is not an exception. Configuring which addresses and

ports to encrypt using which IPSEC options often begins to look like configuring packet

filtering, then add in the additional complexities of key management. While conceptually

simple, setting up IPSEC is much more complex that installing SSH, for example. The IP

security architecture uses the concept of a security association as the basis for building

security functions into IP. A security association is simply the bundle of algorithms and

parameters (such as keys) that is being used to encrypt and authenticate a particular flow in

one direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair of

security associations. The actual choice of encryption and authentication algorithms (from a

defined list) is left to the IPSec administrator.

There are two modes of IPSec operation: transport mode and tunnel mode.

5.1 Transport mode

 In transport mode, only the payload (the data you transfer) of the IP packet is encrypted

and/or authenticated. The routing is intact, since the IP header is neither modified nor

encrypted; however, when the authentication header is used, the IP addresses cannot be

translated, as this will invalidate the hash value. The transport and application layers are

always secured by hash, so they cannot be modified in any way. Transport mode is used for

host-to-host communications.

5.2 Tunnel mode

 In tunnel mode, the entire IP packet (data plus the message headers) is encrypted and/or

authenticated. It must then be encapsulated into a new IP packet for routing to work. Tunnel

 36

mode is used for network-to-network communications or host-to-network and host-to-host

communications over the internet.

Two protocols have been developed to provide packet-level security for IPv6.

• The IP Authentication Header provides integrity and authentication and non-

repudiation, if the appropriate choice of cryptographic algorithms is made.

• The IP Encapsulating Security Payload provides confidentiality, along with optional

(but strongly recommended) authentication and integrity protection.

5.3 Authentication header (AH)

 The AH is intended to guarantee connection less integrity and data origin authentication

of IP data grams. Further, it can optionally protect against replay attacks by using the sliding

window technique and discarding old packets. AH protects the IP payload and all header

fields of an IP datagram except for mutable fields.

0 - 7 bit 8 - 15 bit 16 - 23 bit 24 - 31 bit

Next header Payload length RESERVED

Security parameters index (SPI)

Sequence number

Authentication data (variable)

 Fig 5.3 : AH packet diagram

Field meanings:

Next header
Identifies the protocol of the transferred data.

Payload length
Size of AH packet.

RESERVED
Reserved for future use (all zero until then).

 37

Security parameters index (SPI)
Identifies the security parameters, which, in combination with the IP address, then
identify the security association implemented with this packet.

Sequence number
A monotonically increasing number, used to prevent replay attacks.

Authentication data
Contains the integrity check value (ICV) necessary to authenticate the packet; it may
contain padding.

5.4 Encapsulating Security Payload (ESP)

 The ESP protocol provides origin authenticity, integrity, and confidentiality protection of

a packet. ESP also supports encryption-only and authentication-only configurations, but using

encryption without authentication is strongly discouraged because it is insecure. Unlike AH,

the IP packet header is not protected by ESP.

 Payload data (variable)

Pad length Next Header

Authentication data (variable)

 Padding (0 to 255 bytes)

Sequence number

Security Parameter Index (SPI)

0 – 7 bit 8 – 15 bit 16 – 23 bit 24 – 31 bit

 Fig 5.4 : An ESP packet diagram

 38

Field meanings:

 index (SPI)

er
number, used to prevent replay attacks.

ta

ers to pad the data to the full length of a block.

uthentication data
Contains the data used to authenticate the packet.

.5 Point-to-Point Protocol

pports

ther protocols, including Novell's Inter network Packet Exchange (IPX) and DECnet.

PP Components

mitting data grams over serial point-to-point links. PPP

Security parameters
Identifies the security parameters in combination with IP address.

Sequence numb
A monotonically increasing

Payload da
The data to be transferred.

Padding
Used with some block ciph

Pad length
Size of padding in bytes.

Next header
Identifies the protocol of the transferred data.

A

5

 The Point-to-Point Protocol (PPP) originally emerged as an encapsulation protocol for

transporting IP traffic over point-to-point links. PPP also established a standard for the

assignment and management of IP addresses, asynchronous (start/stop) and bit-oriented

synchronous encapsulation, network protocol multiplexing, link configuration, link quality

testing, error detection, and option negotiation for such capabilities as network layer address

negotiation and data-compression negotiation. PPP supports these functions by providing an

extensible Link Control Protocol (LCP) and a family of Network Control Protocols (NCPs) to

negotiate optional configuration parameters and facilities. In addition to IP, PPP su

o

P

PPP provides a method for trans

contains three main components:

 39

• A method for encapsulating data grams over serial links. PPP uses the High-Level

 Data Link Control (HDLC) protocol as a basis for encapsulating data grams over

.

 PPP is designed to allow the simultaneous use of multiple network layer protocols.

til some external event occurs (for example,

an inactivity timer expires or a user intervenes).

 point-to-point links.

• An extensible LCP to establish, configure, and test the data link connection.

• A family of NCPs for establishing and configuring different network layer protocols

General Operation

 To establish communications over a point-to-point link, the originating PPP first sends

LCP frames to configure and (optionally) test the data link. After the link has been established

and optional facilities have been negotiated as needed by the LCP, the originating PPP sends

NCP frames to choose and configure one or more network layer protocols. When each of the

chosen network layer protocols has been configured, packets from each network layer

protocol can be sent over the link. The link will remain configured for communications until

explicit LCP or NCP frames close the link, or un

 Fig 5.5 : Six Fields Make Up the PPP Frame

The following descriptions summarize the PPP frame fields illustrated in Figure 5.5:

tes the beginning or end of a frame. The flag field consists

of the binary sequence 01111110.

111, the standard

broadcast address. PPP does not assign individual station addresses.

• Flag— A single byte that indica

• Address— A single byte that contains the binary sequence 11111

 40

• Control— A single byte that contains the binary sequence 00000011, which calls for

transmission of user data in an unsequenced frame. A connectionless link service similar to

that of Logical Link Control (LLC) Type 1 is provided.

• Protocol— Two bytes that identify the protocol encapsulated in the information field of

the frame. The most up-to-date values of the protocol field are specified in the most recent

Assigned Numbers Request For Comments (RFC).

• Data— Zero or more bytes that contain the datagram for the protocol specified in the

protocol field. The end of the information field is found by locating the closing flag sequence

and allowing 2 bytes for the FCS field. The default maximum length

of the information field is 1,500 bytes. By prior agreement, consenting PPP implementations

can use other values for the maximum information field length.

• Frame check sequence (FCS)—Normally 16 bits (2 bytes). By prior agreement,

consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

The LCP can negotiate modifications to the standard PPP frame structure. Modified frames,

however, always will be clearly distinguishable from standard frames.

PPP Link-Control Protocol

The PPP LCP provides a method of establishing, configuring, maintaining, and terminating

the point-to-point connection. LCP goes through four distinct phases.

First, link establishment and configuration negotiation occur. Before any network layer

datagrams (for example, IP) can be exchanged, LCP first must open the connection and

negotiate configuration parameters. This phase is complete when a configuration-

acknowledgment frame has been both sent and received.

This is followed by link quality determination. LCP allows an optional link quality

determination phase following the link-establishment and configuration-negotiation phase. In

this phase, the link is tested to determine whether the link quality is sufficient to bring up

 41

network layer protocols. This phase is optional. LCP can delay transmission of network layer

protocol information until this phase is complete.

At this point, network layer protocol configuration negotiation occurs. After LCP has finished

the link quality determination phase, network layer protocols can be configured separately by

the appropriate NCP and can be brought up and taken down at any time. If LCP closes the

link, it informs the network layer protocols so that they can take appropriate action.

Finally, link termination occurs. LCP can terminate the link at any time. This usually is done

at the request of a user but can happen because of a physical event, such as the loss of carrier

or the expiration of an idle-period timer.

Three classes of LCP frames exist. Link-establishment frames are used to establish and

configure a link. Link-termination frames are used to terminate a link, and link-maintenance

frames are used to manage and debug a link. These frames are used to accomplish the work of

each of the LCP phases.

 42

 Chapter 6

 STEPS OF THE THESIS

 43

6. STEPS OF THE THESIS

There are five several steps in this thesis as fallows

A. PC-Microcontroller communication

B. Datagram definition

C. Crypto-coprocessor to encrypt the data

D. Datagram validation and extraction

E. Crypto-coprocessor to decrypt the data

F. Complete system

 From one PC side the data is encrypted by using crypto-coprocessor, then defining the

necessary information to the data, i.e. adding the headers to the data. Then sending this

encrypted data serially to the Microcontroller. The Microcontroller will receive the data and

extract the data. After extracting the data it sends to the crypto-coprocessor to decrypt the

data. After getting the original data it will displayed on the terminal.

6.1 PC – Microcontroller communication

 The PC was sending the data to the microcontroller using a point-to-point protocol over a

serial link. In this part of the thesis, the task was to write C code which would enable the

serial transmission of a text file (the data), to the Microcontroller and then to write assembly

code which would take in the serial transmission and store it into Microcontroller memory.

Without any data being sent, there would be no way of testing the Microcontroller code for

storing the data into memory. Other reasons for C code being done first was that it was

simpler, not requiring any hardware other than a PC. Serial transmission of the data was

accomplished by using the windows.h library, which allowed for com ports to be selected and

used to send or receive data at specified baud rates. Once the com port was selected and setup,

the rest of the code was simply a matter of opening and preparing the datagram file to be sent

through it serially to the Microcontroller. The assembly was then written for storage of the

 44

data sent by the C code. Once the first byte was detected, it would be stored into

Microcontroller memory.

6.2 Datagram definition

 In a general network stack, data is encapsulated inside of a frame by appending fields to

the beginning and end of the data. The datagram represents the final result of data that has

been encapsulated by the following process:

1. The original data is wrapped in an IPv6 packet

2. This IPv6 packet is encrypted, which encrypts only the data portion of the packet,

 and the corresponding Authentication headers are inserted in the packet.

3. This encrypted IPv6 packet is then encapsulated in a PPP frame, which includes

 data appended to both the beginning and end of the frame.

 The IP security architecture uses the concept of a security association as the basis for

building security functions into IP. A security association is simply the bundle of algorithms

and parameters (such as keys) that is being used to encrypt and authenticate a particular flow

in one direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair of

security associations. The actual choice of encryption and authentication algorithms (from a

defined list) is left to the IPsec administrator.

 This complete structure is the final datagram. This structure requires several fields for

each step from the above list. The first step in creating this datagram was to define each of the

values for the protocol headers. After determining each constant value and computing the

dynamic values, a ASM program was defined to construct the datagram. The initial ASM

program was intended to construct a single static datagram in memory, then save that

datagram as a file. Starting in this manner provided an easy upgrade path for the planned

modification to the code to produce a dynamic datagram based on user input or an input file.

After writing the initial ASM code to hold the required data, the required functions for the

 45

dynamic fields were researched. Specifically, an RC6 encryption algorithm inserted into the

code.

 After completing the encryption task the data was sent into the datagram file and store

into the Microcontroller memory. Once the data is received from the crypto-processor it is

displayed on a terminal as shown in Figure 2.

6.3 Crypto-coprocessor to encrypt the data

 The first step in the design of the FPGA coprocessor was to define a bus protocol

between the Microcontroller and the FPGA. The protocol was to take into account the

asynchronous properties of the two devices. In order to implement such a protocol, a hand

shake method was used. With the bus protocol decision finalized a high level FSM (Finite

State Machine) was designed. The FSM was then split into separate modules: the data input;

the encryptor, and the data output. The block diagram of crypto-coprocessor was shown in

figure 6.3. The beginning of the FPGA consisted of the serial to parallel converter. This

module was designed to take one bit at a time and to output 4 x 32 bits to the encryptor. This

is also named as serial to parallel converter. Each set of 32 bits output to the decryptor

consisted of 32 originally input, so the input sequence required four buffers, each capable of

holding 32 bits. The middle of the FPGA code was a encryptor which encrypted 128-bit plain

text blocks into 128-bit cipher text blocks using the RC6 algorithm. Here we are using RC6

algorithm including key scheduling. The protocol between the input/output modules and the

encryptor had to be established. The end of the FPGA consisted of the output. The output took

in and stored 4 x 32 bits at once. Each 32-bit word was stored into a 32-bitwide register.

Again here one parallel serial converter is need to send the data. Each bit then sent to the

Microcontroller each time the Microcontroller requested data, serially. The encryption process

is as fallows.

 46

Encryption and

Decryption

Key schedule

Data in

Key input

Data out

clock

Key avail

Data avail

Data ready

Key ready

 Fig 6.3 : Crypto-processor block diagram

6.4 Datagram validation and data extraction

 Following the process of storing the datagram in Micocontroller memory, it is required

that the Microcontroller checks the validity of certain parameters within the datagram, most

importantly the Payload, Destination Address, and Data portions. These parameters are

checked to verify the validity of the communication. The first step in extracting this datagram

was to define each of the values for the protocol headers. After determining each constant

value and computing the dynamic values, a ASM program was defined to extract the

datagram. Following the extraction and checking of each parameter, the next step is to send

 47

the encrypted data portion of the datagram to the crypto-processor. The crypto-processor

performs decryption and sends the original data (the data before encryption) back to the

microcontroller to be stored back in Microcontroller memory. The encrypted data will be

written over the decrypted data in the same memory range. Once the data is received from the

rypto-processor it is displayed on a terminal as shown in Figure 3.

.5 Crypto-coprocessor to decrypt the data

r each time the Microcontroller requested data, serially. The decryption process

 as fallows.

c

6

 In this task also we will use same procedure as in encrypting the data. The first step

was to define a bus protocol between the Microcontroller and the FPGA. The protocol was to

take into account the asynchronous properties of the two devices. In order to implement such

a protocol, a hand shake method was used. With the bus protocol decision finalized a high

level FSM (Finite State Machine) was designed. The FSM was then split into separate

modules: the data input; the decryptor; and the data output. The beginning of the FPGA

consisted of the input. This module was designed to take one bit at a time and to output 4 x 32

bits to the decryptor. Each set of 32 bits output to the decryptor consisted of 32 originally

input, so the input sequence required four buffers, each capable of holding 32 bits. The middle

of the FPGA code was a decryptor which decrypted 128-bit cipher text blocks into 128-bit

plaintext blocks using the RC6 algorithm. The protocol between the input/output modules and

the decryptor had to be established. The end of the FPGA consisted of the output. The goal of

the output was to perform the reverse of the input module. The output took in and stored 4 x

32 bits at once. Each 32-bit word was stored into a 32-bitwide register. Each bit sent to the

Microcontrolle

is

 48

6.6 Complete system

ts of the project was being

onsistent for what banks of memory were used for what purposes.

 The task is to integrating the parts of the system into a whole. This involved a

debugging stage. Many bugs were encountered and dealt with. It was necessary that all of the

portions fit and work together as though they were one homogonous piece of code. This

involved aligning the variable names, adding code to join two parts, removing parts what

were unnecessary or duplicated, and making sure the bus communications matched on both

sides. Another design choice used when combining the different par

c

 49

 Chapter 7

 RESULTS

 50

7. RESULTS

Use VHDL to simulate hardware implementation. Field Programmable Gate Arrays (FPGAs)

consist of arrays of configurable logic blocks that implement logical functions of gates that

are easily reconfigurable. In contrast, Application Specific Integrated Circuits (ASICs)

provide only the functionality needed for a specific task. An ASIC chip will support a

particular application for which it is designed, but not a modified version of the same

application introduced after the ASIC design is completed. On the other hand, the

configuration of an FPGA can be easily reprogrammed to accommodate a design

modification. Other key factors that favor the use of FPGAs for hardware implementation of

ciphers include faster turnaround design time, scalable security, and variable architecture

parameters. For those reasons we have chosen FPGAs as the target technology.

Selection of a target FPGA

• Xilinx Spartan3E XC3S500E

Selection of a target Microcontroller

• Philips P89C51RD2

7.1 Testing

 The first step in the design process is to check for the functional correctness of the

design using simulations. Then, the FPGA synthesis tool is used to interpret logic components

from the VHDL code. The synthesis tool produces a net list which does not have accurate

timing information since placement and routing of the logic components on the FPGA is not

yet determined. The post-synthesis net list can however be used to check the correct inference

of logic components from the VHDL code. The final step in the process is to map the design

to the target FPGA. The FPGA implementation tool, which is vendor-specific, generates a net

list which has accurate timing as well as logic information. The final net list is used for

simulation to check if the design will actually work when configured physically on the FPGA.

This type of simulation is known as timing simulation. Our design did pass timing simulation

under the control of test bench. Test benches were written in VHDL in order to verify the

functionality of the design. The test benches were designed to read test vectors from a file and

 51

compare the produced output with expected outputs stored in another file. Extensive testing

was done for checking both the encryption as well as decryption functionality.

7.2 Waveforms

Key setup: The following waveform shows when signal ready turns to 1 meaning that the key

schedule is done and the data is being read. Here we read the input

“075978ABDEA7863946BCFA273D763DEC”

And the key input is “9876543210abcdef9876543210abcdef”

Encryption: The following waveform shows when the input

“075978ABDEA7863946BCFA273D763DEC” is encrypted and the

cipher text “2DE1684C2658B2E7892D7633C4E6A5A6” is

outputted.

Decryption: The following waveform shows when the cipher

“2DE1684C2658B2E7892D7633C4E6A5A6” is decrypted

and the original text “075978ABDEA7863946BCFA273D763DEC”

is outputted.

7.3 Obtained Results

After running the VHDL code, checking for functionality, synthesizing and then

implementing the code, we got the following results which are summarized in the following.

 52

 Fig 7.3.1: The result of the encryption process

 53

 Fig 7.3.2: The result of the decryption process

 54

 Fig 7.3.3 : Microcontroller and the links to the FPGA and the terminal

 55

 Chapter 7

 CONCLUSION AND
 FUTURE WORK

 56

8. CONCLUSION AND FUTURE WORK

8.1 CONCLUSIONS

 RC6 is a secure, compact and simple block cipher. It offers good performance and

considerable flexibility. To handle networking, processor based design and reconfigurable

architecture which provide a good overview of a system level design. Another extension of

the project could be to dynamically adapt the cryptography algorithms in order to take benefit

of dynamic reconfiguration.

 Advantages

 Disadvantages

 With Key
 Schedule

 No need to reload the
 Round keys every time the
 user changes the input
 Key

 1- Lower throughput

 2- More hardware resources

 Without Key
 Schedule

 1- Higher throughput

 2- Less hardware resources

 Every time the input key is
 changed, the round keys
 must be reloaded to the
 FPGA

8.2 FUTURE WORK

 What we would recommend as future work/extension to this thesis is to implement the

key schedule in a way that it will be able to generate the sub keys faster by pipelining the

intitial S generate values in the S array. In our design, encryption/ decryption cannot be

started until the key schedule algorithm has completed and all of the subkeys are generated.

Key scheduling takes the most amount of time. So a possible extension to this thesis is to try

 57

and generate the sub keys that is used for first few rounds and then generating the rest while

encryption starting to use these. We see from the algorithm and in our implementation that the

keys are needed faster than the time it takes to generate them. This will save a significant

amount of time and improve the performance of the design.

 58

 REFERENCES

 59

REFERENCES

[1] Mang, I. Mang, G.E.,” Properties of the RC6 cipher for a BIST hardware

 implementation”, IEEE Trans on computer, Volume 2, 7-10 Oct. 2002

 Page(s):1356 - 1361 vol.2.

[2] Mang, I. Mang, G.E.,” Hardware implementation with off-line test capabilities of

 the RC6 block cipher” , IEEE Trans on computer, Volume 2, 7-10 Oct. 2002

 Page(s):1362 – 1367 vol.2

[3] J. Goodman, A. Chandrakasan, An Energy-Efficient Reconfigurable Public-Key

 Cryptography Processor, IEEE Journal of Solid-State Circuits, vol. 36, no. 11,

 November 2001, pp. 1808-1820.

[4] R.L. Rivest, “The RC5 Encryption Algorithm," available

 At website http://theory.lcs.mit.edu/~rivest/Rivestrc5rev.pdf

[5] Internetworking Technology Handbook. [Online]. Available:

 http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/

[6] IP Authentication Header. [Online]. Available:

 http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc2402.html#sec-2

[7] NIST Advanced Encryption Standard (AES) Development

 Effort available at website http://www.nist.qov/aes

[8] R.L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6

 Block Cipher. In First Advanced Encryption Standard (AES) Conference, 1998.

[9] R.L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L.Yin, “The RC6 Block

 Cipher," available at website http://theory.csail.mit.edu/~rivest/rc6.pdf

[10] NIST Advanced Encryption Standard (AES) Development

 Effort available at website http://www.nist.gov/aes

[11] R.L. Rivest, “The RC5 Encryption Algorithm," Proceedings

 of Fast Software Encryption - 2nd International Workshop, Leuven,

 Belgium, Springer Verlag LNCS 1008, pp. 86-96, 1995.

[12] J.-P. Kaps and C. Paar, “Fast DES Implementation for FPGAs and its Application

 To a Universal Key-search Machine," presented at Workshop in Selected Areas of

 Cryptography (SAC’98), Kingston, Ont., Aug. 1998.

 60

[13] K. Gaj, P. Chodowiec: Comparison of the Hardware Performance of the

 AES Candidates using Reconfigurable Hardware: The Third Advanced

 Encryption Standard Candidate Conference, April 13-14,2000, New York, USA.

[14] Wallace, C. S., “A Suggestion for a Fast Multiplier," IEEE Trans. on Computer,

 Vol. EC-13, pp.14-17, 1964.

 61

	 5.1 Transport mode 36
	 5.2 Tunnel mode 36
	 5.4 Encapsulating Security Payload (ESP) 38
	 5.5 Point-to-Point Protocol 39
	5.5 Point-to-Point Protocol

