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Abstract

In this thesis,the problem of object recognition and reconstruction is ad-
dressed using tmage moments. Initially,scale,rotation and translation invari-
ants properties of Geometric moments are studied. The central moments are
translation invariants moments, are in used for object recognition. An object
1s recognised by its moments. The moments of an object and its differents
occluded version are determined. An neural network is trained using above
determined moments as the training set and target set corresponds to the mo-
ments of unoccluded object. The Artificial neural network(ANN) consider is
feedforward network and back propagation algorithm is used to train the net-
work. After training the moments of the differents of occluded object is used
for prediction of the true moments. The predicted moments are matche with
the orginal moments for object recognition. This is verified with different set of
test images. The problem of object reconstruction using Zernike and Pseudo-
zerntke moments is also studied. The minimum order moments necessary for

recostructing an object with minimum error is studied.



Chapter 1

INTRODUCTION

One of the basic problems in the design of an object recognition system
relates to the selection of a set of appropriaet statistical features to be ex-
tracted from the object of interest for purpose of object classification.The
recognition of object from image may be achieved with many methods by
identifying an occluded object as a member of a set of known object.Efficient
object recognition techniques taking characterization uniquely from objects
representation. Research on use of moments purpose of object characterisa-
tion in both invariants and noninvariants tasks has received good topic in
few decades. Mathematical concepts of moments has been utilized in many
fields ranging from mechanics and statistics to pattern recognition and image
understanding. Describing images with moments instead of other more com-
monly used image features, means the global properties of the image are used
rather than local properties. Historically, the first significant work consider-
ing moments for pattern recognition was performed by Hu[l]. From method
of algebric invariants, he derived a set of seven moment invariants, using
non-linear combinations of geometric moments. These invariant remain the
same under image translation, rotation and scaling. Since, then moments

and functions of moments are widely used in pattern recognition, ship iden-



tification, aircraft identification, pattern matching and scene matching. In
addition, the completeness of their description results in one of their cited
attributes, the ability to reconstruction an object from its set of moments.

The fundamental theorem of moment invariants stated by Hu was infact
incorrect. It was corrected by Reiss[2]. The error was only a slight one for
it affects neither the scale invariance nor the rotation invariants but affect
the features Hu proposed as being invariant to linear transformation. He has
also introduced a new invariants which is invariant to change in illumination.
Raveenderran, Jegannathan and Omatu[3] have proposed moment invariants
that donot change in unequal scaling in X- and Y-directions. They have also
tested it for mirror images. Suk and Flusser[4] have proposed radiometric
invariants, which is invariant to change in intensity function and they have
combined radio-metric geometric invariant. Tianxu and Jin[5] have used
complex moment invariants to recognise blured images which are not affected
by Gaussian bluring, rotation and scale of images.

Teh and Chin[6] have discussed different types of moments such as geo-
metric or reguler moments, Legendre moments, Zernike moments, Pseudo-
Zernike moments, Rotational moments and complex moments. They have
also examined the properties of these moments and discussed the inter rela-
tionship among themselves. Besides these they have also discussed the image
representation ability, noise sensitivity and information redundancy

It is easier to reconstruct the image from a set fo its orthogonal moments
like Legendre, Zernike and Pseudo-Zernike moments than non orthogonal
moments like Geometric,Rotational and Complex moments. A.Khotanzad
and Y.H.Hong[7] have used Zernike moments for reconstruction of an image
and also studied the invariance properties of Zernike moments. Like Zernike

moments one can construct the image from the set of its Pseudo-Zernike mo-



ments. The reconstruction ability, noise sensitivity, information redundancy
properties of Pseudo-Zernike moments[6] are better than that of Zernike mo-
ments, but the computation time of Pseudo-Zernike moments are more than
that of Zernike moments.

One of the main difficulties concerning the use of Zernike moments as well
as Pseudo-Zernike moments as features in image analysis applications is the
high computation time to derive them. The long computation time to derive
the Zernike as well as Pseudo-Zernike moments are due to the factorial terms
present in the radial polynomials. The computation of factorial terms also
leads to numerical instabilities for higher order moments. Hence it is required
to compute the radial polynimials for both the Zernike and Pseudo-Zernike
moments, which require less computation time.

Different authors[8][9][10] have been proposed different methods and al-
gorithms to compute the radial polynomials. C. Wee, P.Raveendran and F.
Takeda[9] have proposed hybrid algorithms to compute the Zernike radial
polynomials. This algorithm takes less computation time to compute the
Zernike radial polynomials than other methods. C. Chong, R. Mukundan and
P.Raveendran[10] have proposed p-recursive method to compute the Pseudo-
Zernike radial polynomials. Which is taking less computation time than
other methods for computing the same. In recently,[13]proposed new type
of moment,called Eigenmoments(EM)EM are obtained by performing eigen
analysis in the moment space generated by geometric moments(GM).This is
the transformation of the moment space in to the feature space where the
signal to noise ratio(SNR) is maximized.Another different type of moments
proposed by Ping [14]called Jacobi-Fourier Moments(JFM).It is one type of

multi-distorted invariants orthogonal moments.



For accurate reconstruction, to get zero error, theoritically it requires in-
finity number of moments. Which is practically impossible for these above
mentioned contineous orthogonal moments. They have also some difficul-
ties like numerical approximation of continuous integrals, large variation in
the dynamic range of values, coordinates space transformation, while imple-
menting the moment functions. The above problem can be avoided by using
discrete orthogonal polynomials as the basis set or kernel function, and to
define the corresponding moments directly on the image coordinate space.
Different discrete orthogonal polynomiala are Tchebuchef[11], Krawtchowk,
Charlier, Meixner and Hann polynomials. Krawtchowk moments[12] can be
employed to extract local features of an image, unlike other orthogonal mo-
ments which generally capture the global features.

The problem of object recognition using moments as investigated. Initially
the invariance properties of such as translational scaling and rotation invari-
ance of Geometric moments are translational invariant. This is studied in
chapter2.

This invariance properties are exploited to study the object recognition. The
first few low order moments together with the invariant moments are consid-
ered for recognition. The problem of recognition of a machine vision system
for different degree of occlusion are computed. These moments together
with the moments of the unoccluded objects are used as a training set for
an Artificial Neural Network (ANN). The network is performed three layered
network. The topology of the network is fixed by trial and error. The net-
work is trained with the moments of a given object with a wide veriety of
occlusions. The training of the network is achieved by Back Propagation(BP)
algorithm. After training the moments of other occluded cases of the same

object is used for prediction. The predicted value is compared with the orig-



inal moments of object and if the difference is withen a threshold, then the
object recognition task is completed. This has been tested for indoor as well
as outdoor images of gray as well as binary images. This is dealt in chapter3.
The problem of image reconstruction using Zernike and Pseudo Zernike mo-
ments are studied in chapter4. It is observed that higher order moments
are necessary (i.e even upto 50th order) for reconstruction of the image with
less error. It is also observed that with the same order, the Pseudo Zernike

moments yielded better results than that of using Zernike moments.



Chapter 2

INVARIANCE PROPERTIES
OF MOMENTS

Moments and functions of moments have been utilized as pattern fetures in
a number of applications to achieve invariant recognition of two-dimensional
image pattern. The various applications of moments are for aircraft iden-
tification, scene matching, shape analysis, image normalization, character
recognition,color texture recognition and image retrival as they are invariant
to translation(shift), to change of scale and to rotation. Hence it is an im-
portant tool for image analysis. Hu[l] first introduced moment invariant in
1961, based on the method of algebric invariants. Using nonlinear combina-
tion of regular moments(geometric moments), he derived a set of invariant
moments which has the desirable properties of being invariant under image
translation, scaling and rotation. The fundamental theorem of moment in-
variants stated by Hu was in fact incorrect. It was corrected by Reiss|2].
The error was only a slight one, for it affects neither the scale invariants nor
the rotation invariants but affect the features Hu presented as being invari-
ant to linear transformation. He also introduced a new invariant which is
invariant to change in illumination. Teh and Chin|[6] have discussed different

types of moments,their inter relationships and discussed in presence of noise.



Raveenderran, Jegannathan and Omatu[3] have proposed moment invariants
that donot change in unequal scaling in X- and Y-directions. They have
also tested it for mirror images. Suk and Flusser[4] have proposed radio-
metric invariants, which is invariant to change in intensity function and they
have combined radio-metric geometric invariants. Tianxu and Jin[5] have
used complex moment invariants to recognise blured images, which are not
affected by Gaussian bluring, rotation and scale of images.

Different types of moments, their invariants properties and their inter-
relationships are discussed here. Invariant properties i.e. invariant to scale,
translation and rotation of geometric moments and rotational invariant prop-

erties of Zernike moments are also examined here.

2.1 MOMENTS
2.1.1 General Definition of Moments

A general definition of moment functions ¢,, of order (p + ¢) of an image

intensity function f(z,y) can be given as follows.

bpa= [ [ ol v) (@ v)drdy (21)

Here we assume that the real image intensity function f(z,y) is a piece
wise contineous function and has bounded support. Where v,,(z,y) is the
moment weighting kernel. The basis functions may have a range of useful
properties that may be passed on to the moments, producing descriptions
which can be invariant under rotation, scale and translation. To apply this

to digital image, (2.1) need to be expressed in discrete form.

Ppg = Z prq(iﬂ,y)f(ﬂc,y) (2.2)



Moreover, the orthogonality property of the basis function is passed on to
the moments. Thus, non orthogonla basis functions result in non orthogo-
nal moments and orthogonal basis functions result in orthogonal moments.
Again orthogonal moments can be divided in to two parts i.e. contineous

orthogonal moments and discrete orthogonal moments.

2.1.2 Geometric Moments

Geometric moments or regular moments[1] are the most popular types of
moments and have been frequently used for a number of image processing
tasks. Given the intensity function of an image f(z,y), which is assumed to
be piecewise contineous and with compact support, one can define the two

dimentional geometric moments of order (p + ¢q) as.

+00  p+oo
Mypg = /OO /OO 2Py f(x,y)dzdy, p,q=0,1,2,...... (2.3)

The two-dimentional moment for a (N x N) discrete image is given by

“+00 +00

Mpg = > > 2Py f(z,y) (2.4)

-
The monomial product xPy? is the basis function for this moment definition.
However, the basis set {2Py?} while complete(Weierstrass approximation the-
orem) is not orthogonal. Thus, geometric moments are not orthogonal since
this basis function is not orthogonal.

Given the above assumption on f(z,y) one can prove that moments of
all order exists. This is known as existance theorem. The infinite set of
moments uniquely determines f(z,y) and conversely are themselves uniquely
determine by f(z,y). This is known as uniqueness theorem. These two
theorems give rise to the reconstruction property of moments. It should
be noted that the finiteness assumption is important, otherwise, the above

uniqueness theorem meight not hold.



Moments of low orders can be used for normalizing the density distrubu-
tion function f(z,y). The zero order moment mygg represents the total image
power and can be used, in conjuction with the first order moments my and

mg; to locate the centroid of the density distribution. Which is given by

m m
T=— and y=—2= (2.5)
Moo Moo

The second order moments mog, mge, M1 characterise the size and orienta-
tion of image. So, the low order moments contain the most basic information

regarding the shape size and orientation of the image.

Moment Generating Function

The moment generating function of f(x,y) is defined as

—+00 400
M) = [ [ et p(a y)dndy (2.6)

Where u and v are real. If moments of all order exists, then M (u,v) can be

expanded into a power series in terms of the moments m,, as follows.

Mu,v) =33 myy oY (2.7)

p=04¢=0 p ! q!
Central Moments

Central moments p,, are defined as

+oo p+o00
Hpq = ‘/700 /*oo (.’13 - E)p(y - y)qf(x,y)dxdy, p,g=0,1,2,.... (28)

Where T and 7 is given by(2.5).

The central moments are equivalent to the regular moments of an image
that has been shifted such that the image centroid (Z,7) coincide with the
origin. As a result central moments are invariant to translation(shift) of the

image.



For simplicity, it will be assumed that in the following that the origin has
been choosen to coincide with the centroid of the image; therefore, j,, and

M (u,v) can be expressed as

“+o00o +oo
fipg = /_C><> /_Oo e’y f(z,y)dzdy,  p,q=0,1,2,..... (2.9)
M(u,v) = Z Z Hpg— — (2.10)
p=0¢=0 p-q:

2.1.3 Legendre Moments

The Legendre moments of order (m + n) are defined as

(2m + 1)(
4

)\mn =

2n+1) [foo oo

L [ ha@ i ey (211)
Where m,n=0,1,2,........ ,00 The Legendre polynomials {p,,(z)} are a com-
plete orthogonal basis set on the interval [-1,1].

" d 2 0, 2.12
[, putodma(oris = 5 (212)

The nth-order Lgendre polynomial is

R
~onpldxn

pu(z) = ioam-xj (z? —1)" (2.13)

By the orthogonality principle, the image function f(z,y) can be written as
an infinite series expansion in terms of the Legendre polynomials over the
square [-1< z,y < 1]
0 0o
F@.y) =D > Munbm(@)Pa(y) (2.14)
m=0n=0
Where the Legendre moments {\,,} are computed over the same square. If
only Legendre moments of order <N are given; then the function f(z,y) can
be approximated by a continuous function which is a truncated series.

F@) ~ 33 Annnbinn(@)pa(y) (2.15)

m=0n=0

10



Using equations(2.3), (2.11) and (2.13) the Legendre moments and geometric
moments are related by

2m+1)(2n+1)

A = i Z Z U Qe M (2.16)

7j=0k=0

Thus, a given Legendre moment depends only on geometric moments of the

same order and lower, and conversely.

2.1.4 Zernike Moments

The complex Zernike moments of order n with repetition [ are defined as

1 2w
Ap = nt / / Va(r, ). f(r cosl, r sinf)r dr df (2.17)

Where n = 0,1,2, .......... ,00 and [ takes on positive and negative integer
values subject to the conditions n — |l|=even, and |l| < n. The symbol

denotes the complex conjugate. The Zernike polynomials
Vni(2,y) = Viu(r cosh, r sinf) = Ry (r)e™ (2.18)

are a complete set of complex-valued functions orthogonal on the unit disk

2?2+ <1

27 1 . T
/0 /0 (Vo (r, O) Vi (1, 0)r dlr d6 = —— OO (2.19)

n

The real valued radial polynomials R,,;(r) satisfy the relations

1

and are defined as
(n—11)

)= 5

11



The function f(z,y) can be expanded in terms of the Zernike polynomials
over the unit disk as

o o0

flzy) =) > AnVu(z,y). (2.22)
n=0 [ = —oo
n —|l| = even

I <n

Where the zernike moments {A,;} are computed over the unit disk. If the
series expansion is truncated at a finite order N, then the truncated expansion
is the optimum approximation to f(x,y).
N %
flz,y) =~ > A Vou(z,y). (2.23)
n=0 l
n—|l| = even

[ <n

Because of the orthogonality of the Legendre and Zernike polynomials, both
the Legendre moments {\,,,} and the Zernike moments {A,,} are in each
case independent. It can be shown that Zernike moments and geometric

moments are related by

n+1 n LI R ]
A, = > > w™. . BrjixMe—2j—m,2j+m
Q j=0m=0 j m
k=l
n —k = even
(2.24)
where
—1 1f >0
w= f (2.25)
+i if <0

g=1(k—1l]),and i =v-1

12



2.1.5 Pseudo-Zernike Moments

Zernike polynomials, being invariant in form with respect to rotation of axis
about the origin, are polynomials in x and y. A related orthogonal set of
polynomials in z, y, and r which has the properties analogus to those of
Zernike polynomials. These set of polynomials, which we shall call Pseudo-
Zernike polynomials, differs from that of Zernike in that the real-valued radial

polynomials are defined as

i 2n+1-—s)! =
Ry(r) = (=1)% : rt = Snkr”.
) = 2 N == S+ 1+ 1= ,EU g
(2.26)
Where now n =0,1,2,........ ,00 and [ takes on positive and negative integer

values subject to |I| < n only. By simple enumeration, these set of Pseudo-
Zernike polynomial contains (n + 1)? linearly independent polynomials of
degree < n, whereas the set of Zernike polynomials contains only %(n +
1)(n+2) linearly independent polynomials of degree < n due to the additional
condition n — |/|=even eliminated. Since the Pseudo-Zernike polynomials are
also a complete set of functions orthogonal on the unit disk, both the series
expansions of f(z,y) in(2.22) and (2.23) hold with the conditions n— |l/|=even
eliminated, and {A,;} and {V,(z,y)} are now the Pseudo-Zernike moments
and the Pseudo-Zernike polynomial respectively. In addition, the Pseudo-
Zernike moments are independent. Pseudo-Zernike moments are less sensitive

to image noise than are the conventional Zernike moments.

2.1.6 Rotational Moments

The rotational moments of order n with repetition [ are defined as

2m  poo B
D, = / / e~ f(r cosh, r sin)r dr df (2.27)
o Jo

13



Where i = +/—1,n=0,1,2, ........ ,00 and [ takes on positive and negative in-
teger values. It can be shown that Zernike moments and rotational moments
are related by i

ntl ) By Dy (2.28)

k=l

Anl =
T
n —k = even
From which it follows that rotational moments can also be obtained from

geometric moments by

q |l
m | y
Dy=>3 > w™ BE My _2j—m2j+m (2.29)
j=0m=0 ] m
where w is given by
—i 1f1>0
w = (2.30)
+i if 1 <0

and ¢ = £(n — |I|). Unlike Legendre and Zernike moments, the rotational
moments {D,;} are not independent.
2.1.7 Complex Moments
The complex moments of order (p + q) are defined as
+0o  p+oo . )
Cpy = / / (z +1y)P(z — 1y)? f(z,y)dzdy (2.31)

Where p,q = 0,1,2, ...... ,00, and 7 = y/—1. The complex moment of order
(p + ¢) is a linear combination with complex coefficients of the geometric

moments { M, } satisfying r + s =p +q.

AN p q : —(r+s —s
Cpq = Z Z . P (r )_(_1)q Mr+s,p+q7(r+s)- (2'32)
=0 s=0 r S

In polar coordinates, the complex moment of order (p+ ¢) can be written as
2w roo . 0
Cpy = / / rPraeP=D0 £ (1 cosh, 1 sin)r dr db (2.33)
o Jo

14



Thus, it is related to the rotational moments as
Dy = C%(nfl),%(m-l) (2.34)

from which it also follows that the Zernike moments and complex moments

are related by

n+1 "
Z Bn|l|kc%(k_l),%(k+l)- (235)

k=1l

Anl =

™

n — k = even

The repetition of C), is defined as p — ¢. Like the rotational moments, the

complex moments {C,,} are not independend.

2.2 MOMENT INVARIANTS
2.2.1 Algebric Forms and Invariants

The following homogeneous polynomial of two variables u and v[1],

p -1 p —2.2
f = apu? + ap- 11U’ + apo2uP V" 4+ L.

+ P a1 p 1uv? ! + agy? (2.36)
p—1
is called a binary algebric form, or simply a binary form, of order p. Using a

notation, introduced by Cayley, the above form may be written as

[ = (apo; Gp_1,1; -3 A1 p—1; Gop) (U, v)P (2.37)

A homogeneous polynomial I(a) of the coefficients a,, ...... , Qo 1s an algebric

invariant of weight w, if

I(apOa """ ’ U'Op) = Aw[(aﬁl)O: ----- ) aOp) (238)



Where a;,o, ...... ,ap, are the new coefficients obtained from substituting the

/4

following general linear transformation into the original form(2.37).

0 P L I IR LR (2.39)

!

v v 6 v v 6
If w = 0, the invariant is called an absolute invariant; if w # 0 it is called
a relative invariant. The invariant defined above may depend upon the co-
efficients of more than one form; A may not be limited to the determinant
of the transformation. By eleminating A between two relative invariants, a

non integral absolute invariant can always be obtained.
In the study of invariants, it is helpful to introduced another pair of
variables x and y, whose transformation with respect to the above equation

is as follows:

x o x

= 4 (2.40)
y v 90 y

The transformation (2.40) is referred to as cogredient transformation, and
(2.39) is referred to as contragredient transformation. The variable z and

y are referred to as covariant variables, and u v as contravariant variables.

They satisfies the following invariant relation
ur +vy=uz +vy (2.41)
2.2.2 A Fundamental Theorem of Moment Invariants

The moment generating function with the exponential factor expanded into

series form is

+oo ptoo X ]
M (u,v) = / / > E(ux +vy)? f(z,y)dzdy (2.42)
—0o0 —00 p:() .
Interchanging the integration and summation process, we have
X1
M(u,v) = E(,upo, ..... , Mop) (u, v)P (2.43)
p=0 £~
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By applying the transformation (40) to (42), and denoting the coefficient of

# and 7y in transformed factor (ux +wvy) by u and v', respectively we obtain

+oo —l—oooo 1 » 1
/ / ux+vy)f(w y)|J|

Where f'(z',y) = f(z,y), |J\ is the absolute value of the Jacobian of the

dz' dy (2.44)

transformation(2.40), and M; (v, v') is the moment generating function after

the transformation. If the transformed central moments ,u;q are defined as

“+oo +oo ,
/ / qf (x y)d:c dy', p,g=0,1,2,...... (2.45)

then we have

! 1 s 1 ! ! ! !
Mi(u,v) mz‘;a(upo, ..... s Hop) (U, v)
p:
1t )
= — |, | (u,v 2.46
S (e i) ) (249
Equating coefficients we get
1, lop\ , 1
(Bp0s ----s Hhop) (U, V)P = <|—5(|), ..... : ﬁ) (u,v)? (2.47)
Or
(1 105 s | ) 0 07 = (g o i) (00 (248)

Fundamental Theorem: If the binary form of order p has an algebric invariant

of weight w and order k
I(ayg, -y agy) = A¥I(apo, -5 Gop) (2.49)
then the moments of order p have the invariant
Ity v o) = AL( Tt ey | T ) (2.50)

I(fpgs oo u;)p) = AT *(11po, ---ens tiop) (2.51)

This theorem holds also between algebric invariants containing coefficients
from two or more forms of different orders and moment invariants containing

moments of the corresponding orders.
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2.2.3 Translation Invariants

Central moments are invariant to translation.The central moments are equiv-
alent to the regular moments of an image that has been shifted such that the
image centroid (Z,7) coincide with the origin. As a result central moments
are invariant to translation(shift) of the image. The central moments fi,, is

given by

+oo  p+4oo
Hpq = ~/—oo ~/—oo (x —T)p(y —y)qf(x,y)dxdy, b,q= 07 1:27 (252)

7= — Mig 7 — Moy
where T = — and j e

2.2.4 Scale Invariants

Under the similitude transformation, i,e, the change of size,

!

T a 0 z
= , « = constant, (2.53)

y 0 a)\y
Each coefficient of any algebric form is an invariant

!

ap, = P ay, (2.54)

where « is not the determinant. For moment invariants we have
/"L;)q =Pty (2.55)
By eliminating o between the zeroth order relation,

po= o’ (2.56)

and the remaining ones, we have the following absolute similitude moment

invariants:
_ ,u;,q _ Hpq _
At = NG~ prea PTOE 23 (2.57)
and
Mo = Hor =0 (2.58)
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2.2.5 Orthogonal Moment Invariants

Under the following proper following orthogonal transformation or rotation:

T cosl  sinf z
| = (2.59)
Y —sinf cosl Y
We have
cosf  sinb

—sinf  cosf
Therefore the moment invariant are exactly the same as the algebric invari-

ants. If we treat the moments as the coefficients of an algebric form

(Hp0; -----, thop) (U, V)P (2.61)

Under the following contragredient transformation:

!

U cosl —sinf U
= ) (2.62)
v sinf  cosO v

then we can derive the moment invariants by the following algebric method.

If we subject both u, v and v’ , v' to the following transformation:

U 1( 1 =2 U
== , (2.63)

1% 2\ 1 - v

U 11 i u
== , (2.64)

1% 2\ 1 - v

then the orthogonal transformation is converted into the following simple

relations,

!

U=Ue™ V =Ve? (2.65)

We have the following identities:

(Ipo, ...... s IOp)(Ua V)p = ('U,po, ..... s ,uop)(u, ’U)p



! !

= (/'[’pOa """ ) /'l’Op)(u » U )P
= (Iyg, ooneey Iop) (Ue ¥, Ve )P, (2.66)
Where I, ......, Ip, and I;O, ...... ,I(')p are the corresponding coefficients after

the substitutions. From the identity in U and V, the coefficients of various

monomials UP~"V" on the sides must be the same. Therefore,

I iph . ! _ _i(p—2)0 . .
Lo=¢€"Io; I_ ,=e®2L,_ 1 ;... :

! —i(p—2)0 .
Il,p—l =¢ P2 Il,p—la-[

=e P, (2.67)

These are (p + 1) linearly independent moment invariants under proper or-
thogonal transformations, and A = e* which is not the determinant of the
transformation. From the identity of first two expressions, it can be seen

that I, ,_, is the complex conjugate of I,_,,
[P p [P o
Tpo = pipo — i L B K e I S (—%)? pop,

10 = (ppo + p—22) = (0 — 2)(Hp—1,0 + Hp—33) + oo + (=07 (b2p—2 + H1oy),
Ip-22 = (kpo + 20p—22 + pp-s4) — i(p — 4) (1p-1,1 + 2Up—33 + Hp—55) + ---eoc

..+ (—i)p74(u4,p,4 + 2/112,1972 + NOp)a

Iy p = [(1p05 tp—2,25 onon.- s tp—or2r) (1, 1)
(Hp—1,15 Hp—3,3] +veer Hp—2r—1,2r+1) (1, 1) o
(Harp—or; Hort2.p 2r 95 -eees siop) (1, 1)7](1, —9)P~*, p—2r>0 (2.68)
and
p/2 /2

p
Ipj2p72 = bwo + 1 Pp—22 + ) Pp-a4 + oo + phop, P = eveEn
(2.69)
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It may be noted that these (p + 1) I's are linearly independent linear
functions of the s, and vice versa.

For the following improper orthogonal transformation, 7.e., rotation and

reflection:
T cosfl  sinf x cos  sinf
, = y == —1 (2.70)
Y sinf  —cost Y sinf —cost
Similarly, we have
U=Ve? V =Ue™ (2.71)
and
Lo=e "Iy I, 1=e "0, 1o
I, 1 =@ 0L, 5Ty, = eI, (2.72)
Where I, ...... , Iop and II')O, ...... , I(')p are the same as those given by (2.68)

2.2.6 A Complete System of Absolute Orthogonal Mo-
ment Invariants

From (2.67) and (2.72), we may derive the following system of moment in-

variants by eliminating the factor e®

For the second-order moments, the two independent invariants are
I, I501gs. (2.73)
For the third-order moments, the three independent invariants are
I301o3, I Iy,
(Iso Iy + losI5y).- (2.74)
A fourth one dependending also on the third order moments only is
%(130132 — IosI) (2.75)
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There exists an algebric relation between the above four invariants given
in (2.74) and(2.75) . The first three given by (2.74) are absolute invariants
for both proper and improper rotations but the last one goven by(2.75) is
invariant under proper rotation, and changes sign under improper rotation.
This will be called a skew invariant. Therefore it is useful for distinguishing
morror images One more independent absolute invariant may be formed from

second and third order moments as follows:
(Ino 175 + TooT3) (2.76)

For pth order moments,p > 4 we have [p/2], the integral part of p/2,
invariants

IpOIOp; 3 Ip—l,ljl,p—l; 3 Ip—T‘,T‘IT,p—T; ...... (277)

If p is even, we also have

Ly2p/2 (2.78)

And also combined with (p — 2)th order moments, we have [p/2 — 1]

invariants
(Ip—1,11op—2 + T p-11p-2,),
(Ip—22l1 p—3+ L1 p—11p—20), ...

Ip—rplr—rpri1 + LrprIpri1g-1),cp — 20 > 0 (2.79)
Wheather p is odd or even we always have (p + 1) independent absolute in-
variants. By changing the above sum into differences we get skew invariants.
All the independent moment invariants together form a complete system, for
any given invariant, it is always possible to express it in terms of the above
invariants.

For the second and third order moments, we have the following six abso-

lute orthogonal invariants:
¢1 = poo + Loz (2.80)
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bo = (20 — po2)” + 4pt (2.81)
¢3 = (pso — 3pa2)® + (321 — fros)” (2.82)
b1 = (p3o + pi2)? + (pio1 + po3)’ (2.83)
ds5 = (130 — 3p12) (a0 + pa2) (130 + p12)® — 3(p2r + pios)’]
+(3h21 — ptoa) (21 + Ho3)-[3(1a0 + p112)” — (21 + pio3)?] (2.84)

b6 = (120 — po2) (130 +112)” — (p121 + 103 ) *) + A1 (30 + pa2) (21 + fio3) (2.85)

and one skew orthogonal invariants,

¢7 = (Buar — pos) (3o + p12)[ (130 + p12)” — 3(pa1 + fios)’]

— (a0 — 3pa2) (a1 + p03)-[3(130 + p12)® — (pa1 + f103)°] (2.86)

This skew invariant is useful in distinguishing mirror images. The above

mentioned invariants are commonly known as Hu’s invariants.

2.2.7 Moment Invavariants Under Unequal Scaling

The conventional regular moments can be defined as[3]:

+00 ptoo
Mypq = /foo [w xpyq‘f(x’ y)dxdya b, q= 07 17 2’ """ (287)

Usually these moments are made invariant to translation and scaling by

forming the following invariants:

Hpq

qu = W pP,q = 0, 1, 2, ...... (288)
00
Where
+oo  ptoo . .
,qu :‘/_ ‘/_ (:c—aﬁ)p(y—y)qf(x,y)dxdy, p,q= 071:27"" (289)
and

23



7 — Mmig = _ mo1
= Il = .
x ™Moo and Y moo

Consider the unequal scaled image. It is related to original image as

9(z,y) = f(az,by) (2.90)

If now )\, is evaluated for g(z,y), we obtain

>

g — rr(pfq)/2)\pq fofr p, q = 0’ ]_’ 2, e (2-91)

In the above equation, the sign ‘-’ denites the moment formed using g(z, y)
and r = a/b; a and b are the scaling constant in the z and y direction

respectively. If » =1 then qu is same as \p,. For r #0

1

Fipg = —iipgrites P, 1=0,1,2, ... (2.92)

2.2.8 Blur Invariants

An important class of radiometric degradations we are faced with often in
practice is image bluring[4][5]. Bluring can be caused by camera defocus, at-
mospheric turbulance etc. If the scene is flat, bluring can be ususlly described

by a convolution
9(z,y) = f(z,y) ® h(z,y) (2.93)

where f(x,y) is an original(ideal) image, g(x,y) is an accuired image and
h(z,y) is a point spread function(PSF) of the image system. Since in most
practical tasks the PSF is unknown, having invariant to convolution is of
prime importance when recognizing objects in a blured scene.

theorem: Let f(z,y) be an image function. Let us define the following

function C) : Ny x Ny — R. If (p + q) is even then

C(P,Q)Y =0 (2.94)
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If (p+g) is odd then C(P,Q)\) = uf —

m =0
0O<m+n<p+q
Then C(p, ¢)¥) is invariant to convolution with any centrosymmetric function
n(z,y), ie.

C(p, )" = C(p,q) "™ (2.96)

for any p and gq.

As an example, for a Gaussian point spread function can be defined as

1 m2+y2

o (2.97)

h’(x7 y) = 271-0-2

theorem: In a complex moment C,,, as long as at least one of the subscripts
(p or q) is zero it will not be affected by Gaussian bluring.
In special case it can be proved that C, and Cy; are also invariant to

Gaussian bluring, though there is neither p nor ¢ is zero.

2.2.9 Rotational Invariant Features of Zernike Moments

Consider a rotation of the image through an angle «. If the rotated image
is denoted by f7, the relationship between the original and rotated image in

the same polar coordinate is

fr(p’ 0) = f(pa 60— (l/) (298)

From the definition, the zernike moments of the original image is given by

n

27 1
=" [ [ 10, 0).Wialp,0))p dp a0

n+1 2 1 B
= /0 /0 f(p, 0).Ru(p)e™"p dp db (2.99)

™
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The Zernike moment of the rotated image in the same coordinate is

r n—+1

2w 1 }
w= " [T S0, 0= ) Bualp)e " p dp o (2:100)

By achange of variable #; = 0 — «

n+

1 p2r gl ot
Ay =" [ [ 10, 00)-Rualp)e 0 p dp oy

n+1 2 pl p -
- [ m /o /0 Fp, 61).Ru(p)e™"") p dp db; | €7
= A (2.101)

The above equation shows that Zernike moments have simple rotational
transformation properties; each Zernike moments merely acquires a phase
shift on rotation. This simple property leads to the conclusion that the mag-
nitude of the Zernike moments of the rotated image function remain identical
to those before rotation. Thus |A,;|, the magnitude of the Zernike moment,
can be taken as rotation invariant feature of the underlying image function.
Since A, _; = A}, then |A, ;| = |An,—i|; thus one can concentrate on |A, |

with [ > 0 as far as the defined Zernike features are concerned.

2.2.10 Rotational Invariant Features of Complex Mo-
ments

As discussed earlier the complex moment of order (p + ¢) are defined as

Cra = /+oo /+oo(”’ +iy)?(z — iy)*f (z, y)dzdy (2.102)

Where p,q=0,1,2,...... ,00, and 7 = v/—1.

This complex moment is rotationally invariant if p = ¢, so that the an-
gular part can be eliminated. In general the expression Cp,Cys....Ch, is rota-
tional invariant if only p+r + ...+t = ¢+ s+ ... + u. As an example the

complex moments C11, Cos...., Cp, are rotational invariant. We know that Cp
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and Cjy, is invariant to Gaussian bluring for p = 0,1,2,...... ,00. S0 it can

be proved that CpyCl, is invariant to both Gaussian bluring and rotation for

2.3 RESULTS AND DISCUSSION

We have validated the invariant properties of Geometric moments. The trans-
lational, scaling and rotational invariance properties have been sucessfully
tested for binary images. As mentioned in section 2.2, Geometric central
moments are translational invariant. The image shown in Fig. 2.1(a) is let-
ter A and Fig. 2.1(b), (c¢), (d), (e), (f) and (g) show the image translated
to different positions. Because if the translation the centriod of the image
changes and given in Table. 2.1. T and 7 denotes the centroid of the image in
Table 2.1. Central moments computed for these translated images are given
in Table. 2.1. For example the moment poq is constant for all the images
which has letter A translated to different positions. As seen from Table.
2.1 other moments such as pg2, 11, fo1, M12, H30, Mos are constant for the
translated image. This indicates that although letter A has been translated
can be recognised by these moments.

The ratio Ay, that is defined by using central moments as follows has also

been found to be scale invariant

Fpq _ _ Hwg
(u)etat2)/2 (p+a+2)/27

Apg = P+qg=2,3,.. (2.103)

where p7, denotes (p + g)th order central moment of one image and i,
denotes (p + ¢)th order central moment of scaled image. g, denotes Oth
order moment of one image and poy denotes Oth order moment of scaled
image.

Fig. 2.2(a) show the same letter A and the scaled versions are shown in
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Fig. 2.2(b) (c) and (d). The object A has been scaled down from as shown
in Fig. 2.2(b) to Fig. 2.2(d). The change in moments are very small as
given in Table. 2.2. As seen from Table. 2.2, for example A5y changes from
69.973 x 1075 to 76.906 x 10~°. Which is very marginal. Similar observations
are also made for other moments, such as Aoy A11 o1 A2 Azg and Agg. Hence
these ratio of moments are scale invariants even though these moments are
both scale and translation invariants. This will be an indicator for recognition
of objects from different view points or distances.

It is known that Hu’s[1] first seven moments are rotational invariant.
However, only first three moments ¢, ¢o, ¢35 are verified. The image con-
sidered is shown in Fig. 2.3(a) i.e the letter A. The object i.e. letter A is
rotated by 30° each time to obtain the rotated image of Fig. 2.3(b), (c),
(d),.....,(1). The image shown in Fig. 2.3(1) correspond to a rotation of 330°.
The first three moments computed for each rotation is tabulated in Table.
2.3. Tt is observed from the Table. 2.3 that there is small variation in the
first moment i.e. starting from 122.42 to 132.42. Similarly for ¢, and ¢3 also
the moment vary within a small range. hence these moments are rotational
invariant.

The notion of rotational invariance is also verified for Zernike moments.
It is known that magnitude part of the Zernike moments are rotational invari-
ant. We have considered the four lower order moments. i.e. Agy, Ao, Az, Ass.
The moments computed for each rotation is tabulated in Table. 2.4. It is
observed from Table. 2.4, that the moments Ay, varies fron 37.32 to 40.59.
Which is within a small threshold. The variation for Ay, is still less. Similar

observations are also made for other moments.
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Al Al A

(a) (b) (c)

AR [° 5

(d) (e) (f) (2)

Figure 2.1: Translated images of letter A

1.1(a) | 1.1(b) | 1.1(c) | T.1(d) | 1.1(e) | L.1(F) | L.1(g)
31 31 46 46 31 16 16
31 46 46 31 16 16 31

oo | 20902 | 25902 | 25902 | 25902 | 25902 | 25902 | 25902

o2 | 16894 | 16894 | 16894 | 16894 | 16894 | 16894 | 16894

p11 | 2354 2354 2354 2354 2354 2354 2354

o1 | 3224 | -3224 | -3224 | -3224 | -3224 | -3224 | -3224

Hi2 | 88522 | 88522 | 88522 | 88522 | 88522 | 88522 | 88522

W30 | -44492 | -44492 | -44492 | -44492 | -44492 | -44492 | -44492

Moz | 43706 | 43706 | 43706 | 43706 | 43706 | 43706 | 43706

| g

Table 2.1: Translation invariance of letter A given in Fig. 2.1 by using
translation invariance properties of Geometric moments

EVENENES

(a) (b) (c) (d)

Figure 2.2: Scaled images of letter A
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Fig. 1.2(a) | Fig. 1.2(b) | Fig. 1.2(c) | Fig. 1.2(d)
Ao X 107° 97.226 97.5397 99.775 102.451
o2 X 1075 69.973 70.746 71.077 76.906
A x 107° 61.445 62.915 60.790 66.31
Aop X 107° 2.180 2.257 2.116 2.378
Az x 107° 2.052 2.108 2.025 2.234
Agg X 107° 4.010 4.016 4.192 4.272
dos X 10 5| 2.486 2.507 2.546 2.761

Table 2.2: Scale invariance of letter A given
invariance properties of geometric moments

in Fig. 2.2 by using scale

AlP|v (<

(a) (b) (c) (d)

&lp|v(d

(e) (f) (2) (h)

EE3k2E]

(i) §) (k) (1)

Fig.2.3 Rotated images of letter A
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b1 P2 }3
1.3(a) 132.42 | 9.89 | 10.43
1.3(0) 132.76 | 9.35 | 9.48
1.3(c) 131.28 | 11.37 | 7.87
1.3(d) 122.42 | 7.91 | 7.86
1.3(6) 120 | 132.84 | 6.94 | 10.04
1.3(f) | 150 | 133.48 | 10.38 | 9.39
1.3(g) | 180 | 124.08 | 858 | 9.63
1.3(h) 210 | 129.12 | 8.18 | 11.78
1.3(i) 240 | 129.59 | 9.41 | 10.28
1.3(j) | 270 | 123.84 | 7.58 | 9.87
T3(k) [ 300 | 130.52 | 8.74 | 11.66
T3() [ 330 | 130.42 | 9.79 | 9.94

Table 2.3: Rotational invariance of letter A given in Fig.
rotational invariance properties of Geometric moments

6

| Ag|

| Ag|

| Az |

| Ass|

13(@) | 0

38.41

2.63

23.49

1.01

1.3(b) | 30

37.28

2.46

22.46

0.93

1.3(c) | 60

37.62

2.48

22.58

0.94

90

40.73

2.76

24.74

1.06

37.79

2.57

23.10

0.99

150

37.32

2.56

22.77

0.99

)
) | 120
)

40.43

2.79

24.78

1.08

)
180
) | 210

38.72

2.66

23.74

1.03

1.3(i) | 240

37.89

2.59

23.17

0.99

270

40.59

277

24.82

1.06

()
1.3(k) | 300

37.78

2.52

22.83

0.96

1.3(1) | 330

37.41

2.46

22.49

0.92

Table 2.4: Rotational invariance of letter A given in Fig.

rotational invariance properties of Zernike moments
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Chapter 3

OBJECT RECOGNITION

Object recognition by image moments has been studies for quite some by
many new methodology and strategies[3][4][5][14][13] have been proposed in
the literature.In high security Zone, recognation of improtent aspect of iden-
tification.Instead of matching the images, its takes large amount of storage
space and computational time,becomes a horrendous task. In military ap-
pliactions recognition object such as tanks, war plants and other aviation
becomes a crutial task. the usual image processing and matching task will
take sufficient amount of computational time thus defeating the whole pro-
cess of recognition. In such situation moment based object recognition will be
quite helpful. The invariants properties together with some other approapriet
moments could be used for recognition.the challeging task lies when there is
subtantial amount of occlusion of the object.In this section ,the issue of mo-
ment based object recognition for occluded object is considered.Specifically
in outdoor scene consisting of aeroplane flying in open sky may be occluded
due to patches of sudden clouds.In an indoor sense, broken bottle may causes
hinderance for recognition in case of machine vision systems.A new approach

is proposed here for such cases and the limitation also are highlighted.
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3.1 NEURAL NETWORK

An Artificial Neural Network (ANN) is an information processing that is
inspired by the way biological nervous systems, such as the brain, process
information. The key element of this is the novel structure of the information
processing system. It is composed of a large number of highly interconnected
processing elements (neurones) working in unison to solve specific problems.
ANNSs, like people, learn by example. An ANN is configured for a spe-
cific application, such as pattern recognition or data classification, through a
learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurones. This is true of ANNs
as well. Neural networks, with their remarkable ability to derive meaning
from complicated or imprecise data, can be used to extract patterns and
detect trends that are too complex to be noticed by either humans or other

computer techniques.Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the

data given for training or initial experience.

2. Self-Organisation: An ANN can create its own organisation or repre-

sentation of the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in paral-
lel, and special hardware devices are being designed and manufactured

which take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruc-
tion of a network leads to the corresponding degradation of perfor-
mance. However, some network capabilities may be retained even with

major network damage.
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It is apparent that a neural network devices its computing power through,first,its
massively parallel distributed structure and,second,its ability to learn and
therefore generalize.Generalization refers to the neural network producing
reasonable outputs for inputs not encountered during training (learning).These
two information-processing capabilities make it possible for neural networks

to solve complex problem.

3.1.1 Network Architechtures

The manner in which the neuron of a neural network are structure is in-
timately link with a learning used to train the network. We may therefor
speak of learning algorithm used in the design of neural network as been

structured.

3.1.2 Single-Layer Feedforward Networks

Feed-forward ANNs allow signals to travel one way only; from input to out-
put. There is no feedback (loops) i.e. the output of any layer does not affect
that same layer. Feed-forward ANNs tend to be straight forward networks
that associate inputs with outputs. They are extensively used in pattern
recognition. This type of organisation is also referred to as bottom-up or

top-down.
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3.1.3 Multilayer Feedforwad Networks

Hidden layer Qutputs

(a)

Figure 3.1: Schamatic diagram of typical a multilayer feedforward network

35



This class of a feedforward neural network distinguises by its self by the
presence of one or more hidden layers,whose computation nodes are corre-
spondingly called hidden neurons or hidden units.The function of hidden
neurons is to intervene between the external input and the network output
in some useful manner .By adding one or more hidden layers,the network is
enabled to extact higher-order statistics.The ability of hidden neurons to ex-
tract higher-order statistic is particularly valuable when the size of the input
layer is large. The backpropagation[17] algorithm is used to train a given
feed-forward multilayer neural network for a given set of input patterns with
known classifications. When each entry of the sample set is presented to
the network, the network examines its output response to the sample input
pattern. The output response is then compared to the known and desired
output and the error value is calculated. Based on the error, the connection
weights are adjusted. The backpropagation algorithm is based on Widrow-
Hoff delta learning rule in which the weight adjustment is done through mean
square error of the output response to the sample input. The set of these
sample patterns are repeatedly presented to the network until the error value
is minimized. Now Fig(3.1) presents the architectural layout of a multilayer
perceptron .The sequential updating of weights is the preffered method for

online implementation of the back propagation algorithm.For this mode of op-

N
n=1

eration,the algorithm cycles through the training sample {(X (n),d (n))
as follows:

1.Initialization. Assuming that no prior information is available,pick the
synaptic weight and thresholds from a uniform distribution whose mean is
zero and whose variance is chosen to make the standard deviation of the in-
duced local fields of the neurons lie at the transition between the linear and

satuareted parts of the sigmoid activation function.
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2.Presentations and Training Examples. Present the network with an epoch
of training examples.For each example in the set ,ordered in some fashion
,perform the sequence of forward and backward computations describe un-
der points 3 and 4 , respectively.

3.Forward Computation. Let a training example in the epoch be denoted
by (X (n),d(n)), with the input vector z (n) applied to the input layer of
sensory nodes and the desired response vector d (n) presented to the output
layer of computation nodes .Compute the induced local fields and function

signals of the network by proceding forward through the network , layer by

(0

layer. The induced local field v;” (n) for neuron j in layer £ is

vf (n) = g_ol Wiy (n) '™V (n) (3.1)

(-1

where y; "’ (n) is the output(function) signal of neuron 7 in the previous layer

[ — 1 at iteration n and w%) (n) is the synaptic weight of neuron j in layer [

that is fed from neuron 4 in the layer { — 1 .For i = 0 ,we have y{ " (n) = +1

and wj(-g) = bg-l) (n) is the bias applied to neuron j in layer j.Assuming the use

of a sigmoid function ,the output signal of neuron j in layer [ is

i) = 0;(v;(n)) (3.2)

If neuron j is in the first hidden layer (i.e,£ = 1), set

y(n) = z;(n) (3.3)

where z;(n) is the jth element of the input vector z(n).If neuron j is in the

output layer (i.e,l=L, where L is reffered to as the depth of the network), set

y; = ogn) (3.4)

Compute the error signal
ej(n) = d;(n) — 0j(n) (3.5)
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where d;(n) is the jth element of the desired response vector d(n).
4. Backward Computation.Compute the ds(i.e,local gradients) of the network
,defined by

eg-L) (n) golj (UJ(-L) (n)) for neuron jin output layer L

5 (n) =
<p'j(vj(-") (n)) Xk (5,(cl+1) (n)w,(cl;rl(n) for neuron jin hidden layer 1
(3.6)
where the prime in <p;() denotes differentiation with respect to the argu-
ment. adjust the synaptic weights of the network in layer [ according to the

generalized delta rule:
W (n+1) =Wl () + alwl(n — ]+ 18P ()l V() (3.7)

where 7 is the learning rate parameter and « is the momentum constant.
5.1teration.Iterate the forward and backward computation under points 3
and 4 by presenting new epochs of training examples to the network until

the stopping criterion is met.

3.2 RECOGNITION

We considered two typical cases one outdoor and one indoor cases. In partic-
ular we addressed the issue of object recognition with occlusion of different
part of the object .Since, concern is to recognised the object and try for ex-
act reconstruction, some lower order moments that is viewed to represent the
smooth part and less edges are considered. In case of machine vision system
the object may here translation, rotation and scalling.Geometric moments
are possces invariants the properties.In this consider,some translation invari-
ants moments together with lower order moments for recognition in case of

machine vision systems.
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When an object is occluded,the moments will change.The following Schemes
is adopted for such a process.The inputs consists of translational invariants

moments and some lower order moments.

Inputs sets Target sets
— ANN e

Learning phase

Predicted output
Thresholds
Test set output
ANN Matching for Decesion P
Learning making

(moments for different amount

of occlusion) Recogpnition phase

(a)

Figure 3.2: Block diagram of recognition

We have consider ten such moments upto third order.Moments set with dif-
ferent amounts of occlusion of the object are computed.These set of moments
from the inputs tranning set for a Artificial Neural Network.The target set
consists of the moments of the objects.The ANN,consider is a feedforward
multilayered network.The ANN is trained with these training set using Back-
propagation(BP)learning algorithm . This is demostrated in Fig.3.2.0Onece the
network is trained with the data set,the weights are freezed and used for the
prediction.Difference set of moments for a wide variety of occlusion have been
computed and are used as the input sets.The target set is stored and pre-
dicted moments is matched with the store moments for decesion making of
the object.the output is either the systems recognises or fails.This is shown
in Fig.3.2.Particularly, we have investigated with specific situation that is
aeroplane flying or indoor object.However,this Scheme can be extended for

wide class of object whose moments are with in a certain threshold.
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3.3 RESULTS AND DISCUSSION

In simulation, real as well as binary images are consider.One indoor,Two out-
door or one binary outdoor image is considered.Fig3.4(a) shows the indoor
image consisting of a bottle.Different occluded version are created and are
shown in Fig.3.4(b,c,d,e,f).Ten lower order geometric moments for each oc-
cluded object is computed and these five training sets are formed.The target
set correponds to the respective moments of the original image as shown in
Fig.3.4(a).The training set is tabulated in table(3.1).The ANN consists of ten
inputs neurons ,five hidden neurons and ten outputs neurons.The activation
function use is the sigmoidal function and the slope A = 0.1 .The learning
rate n of the BP algorithm is fixed at 0.4.The learning curve is shown in
Fig.3.3(a) where the network is trained after 50 to 100 interation.This could
be due to less amount of occlusion of the object. The test sets of images are in
shown in Fig3.5.The corresponding prediction and Percentage prediction er-
ror are tabulated in table 3.2 and table 3.3.For occulasion of different portion
of the object,the prediction error is within 0.25(%) and hence matching fol-
lowed by recognition is possible.For quite a different object that is aeroplane
in the sky,the error are quite large as tabulated in table 3.3. The second
set of training images are shown in Fig.3.6,different amount of occlusion.The
normalised training set is provided in table 3.4. The ANN topology remains
same as the previous example.The network is trained and the learning curve
is shown in Fig.3.3(b).The test set of images are shown in Fig.3.7.The pre-
dicted output and the percentage of error are tabulated in table.3.5,table.3.6
and table.3.7.It is observed that for a wide variety of occlusion ,the predic-
tion error is very less while the object changed,the error is quite large that
differentiating one object from other.

The third set of training images at the set of aeroplane images as shown in
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Fig.3.9. The corresponding moments are given in table.3.8. The training
set includes different amount of occlusion. The test set of images are shown
in Fig.3.10 and Fig.3.11. For the images shown in Fig.3.10, the prediction
error is very large for the test images of Fig.3.11. Thus for different images
the network fails. this also visually true as observed from Fig.3.11(a) and
Fig.3.11(b). Binary images of aeroplane are also considered for training the
network. The training set is presented in table 3.12 . There are occlusion in
different portion of the image. For the test images shown in Fig3.13(a) and
Fig.3.13(b). The prediction error is within threshold and for Fig.3.13(c) and
Fig.3.13(d) the error is very large and hence fault to recognised the object.
The prediction error are tabulated in tabe 3.14.

It is observed , that for different amount of occlusions , the network would be

recognize the object while beyond certain portion of occlusions, The network

fails .

Moments | Fig.3.4(b) Fig.3.4(c) Fig.3.4(d) Fig.3.4(e) Fig.3.4(f)
Hoo 0.000395997 | 0.000396022 | 0.000400603 | 0.000398358 | 0.000395937
H1o0 0.018908862 | 0.018891382 | 0.019245777 | 0.019149784 | 0.018935144
Ho1 0.020193356 | 0.020196084 | 0.020425924 | 0.020314765 | 0.020188507
H20 0.333060819 | 0.333778301 | 0.335079324 | 0.335369647 | 0.332788623
Ho2 0.337588445 | 0.337601938 | 0.337620544 | 0.337620718 | 0.337679613
Hi1 0.001794388 | 0.0018751 | 0.001172884 | 0.001042956 | 0.001572844
H30 0.014393618 | 1.000000000 | 0.108532159 | 0.110830607 | 0.020512623
12 0.428192875 | 0.427701665 | 0.09123853 | 0.091992131 | 0.428940545
Ha1 0.313142537 | 0.309282165 | 0.311471909 | 0.307545466 | 0.315146345
Ho3 0.670367549 | 0.670416142 | 0.67023937 | 0.670341741 | 0.669774382

Table 3.1: Inputs moments of bottle
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Fig.3.5(a) Fig.3.5(b)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000394482 | 0.000402 2.03 0.000375 4.82
H10 0.018858878 | 0.019043 0.98 0.018407 2.39
Ho1 0.020128074 | 0.020320 0.95 0.019656 2.34
H20 0.332729498 | 0.333087 0.10 0.331819 0.27
102 0.337162876 | 0.337507 0.01 0.336284 0.26
H11 0.001320147 | 0.001342 0.00 0.001265 4.17
H30 0.020035019 | 0.020227 0.95 0.019563 2.35
12 0.425431293 | 0.425603 0.04 0.424991 0.10
Ho1 0.990872375 | 0.990765 0.01 0.991136 0.02
Ho3 0.666641673 | 0.666290 0.05 0.667538 0.13

Table 3.2: Prediction and percentage of error of test images

Fig.3.5(c) Fig.3.5(d)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000394482 | 0.000393 0.25 0.000433 9.89
H1o0 0.018858878 | 0.018837 0.11 0.019740 4.67
Ho1 0.020128074 | 0.020105 0.11 0.021048 4.57
H20 0.332729498 | 0.332680 0.01 0.334433 0.51
Ho2 0.337162876 | 0.337115 0.01 0.338806 0.48
H11 0.001320147 | 0.001317 0.22 0.001429 8.25
H30 0.020035019 | 0.020012 0.11 0.020955 4.59
12 0.425431293 | 0.425407 0.00 0.426252 0.19
a1 0.990872375 | 0.990885 0.00 0.990355 0.05
Ho3 0.666641673 | 0.666690 0.00 0.664965 0.25

Table 3.3: Prediction and percentage of error of test images
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Figure 3.4: Training set of images

Figure 3.5: Test set of images
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Moments | Fig.3.6(b) Fig.3.6(c) Fig.3.6(d) Fig.3.6(e) Fig.3.6(f)
Hoo 0.00021875 | 0.000220553 | 0.000218953 | 0.000219771 | 0.000211147
H1o0 0.010767352 | 0.010998742 | 0.010853392 | 0.010863965 | 0.010304975
Ho1 0.011120432 | 0.011454806 | 0.011526242 | 0.011475357 | 0.010926435
H20 0.190612938 | 0.194260108 | 0.193311535 | 0.192205209 | 0.190045758
Ho2 0.169602901 | 0.176296987 | 0.169974077 | 0.174413908 | 0.173114137
M11 0.983961389 | 0.988992659 | 0.991157803 | 0.990781482 | 0.989262468
H30 0.979149889 | 0.072832424 | 0.057729102 | 0.027247133 | 0.556803279
M12 0.732884237 | 0.945165459 | 0.889121823 | 0.928803705 | 0.051437744
o1 0.443211277 | 0.380573048 | 0.219920424 | 0.227933159 | 0.364586389
o3 0.5570663 | 0.307161857 | 1.000000000 | 0.822046491 | 0.317576971

Table 3.4: input car moment
Fig.3.7(a) Fig.3.7(b)

Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000224756 | 0.000225 0.44 0.000221 1.33
H1o0 0.011207859 | 0.011201 0.05 0.011104 0.91
o1 0.01163371 | 0.011627 0.05 0.011527 0.91
H20 0.194294363 | 0.194252 0.02 0.193832 0.23
102 0.176668947 | 0.176628 0.02 0.176208 0.26
M1 0.98896782 | 0.988974 0.00 0.989070 0.01
H30 0.073077202 | 0.073052 0.03 0.072720 0.48
Hi2 0.945358454 | 0.945379 0.00 0.945663 0.03
Hi21 0.380255451 | 0.380230 0.00 0.380019 0.06
Ho3 0.302836943 | 0.302799 0.01 0.302465 0.12

Table 3.5: Prediction and percentage of error of test images
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Figure 3.7: Test set of images
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Fig.3.7(c) Fig.3.7(d)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000224756 | 0.000225 0.13 0.000232 3.57
H1o0 0.011207859 | 0.011200 0.06 0.011380 1.54
o1 0.01163371 | 0.011626 0.06 0.011810 1.52
H20 0.194294363 | 0.194247 0.02 0.195015 1.90
Ho2 0.176668947 | 0.176623 0.02 0.177392 0.40
H11 0.98896782 | 0.988975 0.00 0.988798 0.01
H30 0.073077202 | 0.073048 0.03 0.073657 0.79
H12 0.945358454 | 0.945383 0.00 0.944862 0.05
H21 0.380255451 | 0.380227 0.00 0.380612 0.09
Ho3 0.302836943 | 0.302795 0.01 0.303403 0.18

Table 3.6: Prediction and percentage of error of test images

Figure 3.8: Test set of images
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Fig.3.8(a) Fig.3.8(b)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000224756 | 0.000227 1.33 0.000224 0.00
H10 0.011207859 | 0.011269 0.55 0.011180 0.24
Ho1 0.01163371 | 0.011696 0.54 0.011605 0.24
H20 0.194294363 | 0.194541 0.12 0.194160 0.06
Ho2 0.176668947 | 0.176917 0.14 0.176535 0.07
i1 0.98896782 | 0.988908 0.00 0.988996 0.00
H30 0.073077202 | 0.073280 0.27 0.072978 0.13
12 0.945358454 | 0.945184 0.01 0.945442 0.00
Ho1 0.380255451 | 0.380374 0.03 0.380183 0.01
Ho3 0.302836943 | 0.303027 0.06 0.302725 0.03

Table 3.7: Prediction and percentage of error of test images
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Moments | Fig.3.9(b) Fig.3.9(c) Fig.3.9(d) Fig.3.9(e) Fig.3.9(f)
Hoo 0.000147829 | 0.000147211 | 0.000147706 | 0.00014816 | 0.000147064
H10 0.007753164 | 0.007717136 | 0.00774841 | 0.007746076 | 0.007703335
Ho1 0.007537576 | 0.007487081 | 0.007501113 | 0.007486512 | 0.007468541
H20 0.050640543 | 0.050630273 | 0.050652235 | 0.0508578 | 0.050680295
Ho2 0.049601456 | 0.049147311 | 0.049073046 | 0.049857249 | 0.049063181
M1t 1.000072957 | 1.000001611 | 1.000001756 | 1.000425006 | 1.000017714
H30 0.972458709 | 0.972394909 | 0.972533954 | 0.969734201 | 0.971943293
12 0.04452373 | 0.043014379 | 0.043071725 | 0.03391268 | 0.04282493
o1 0.047560659 | 0.04730305 | 0.047313641 | 0.042453009 | 0.04712503
Ho3 0.092450584 | 0.082267779 | 0.080917277 | 0.063360991 | 0.08090235

Table 3.8: Inputs moments of aeroplane
Fig.3.10(a) Fig.3.10(b)

Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000146244 | 0.000150 2.73 0.000150 2.73
H1o0 0.007667079 | 0.007667 0.00 0.007667 0.00
Ho1 0.007429526 | 0.007429 0.00 0.007429 0.00
H20 0.050627434 | 0.050627 0.00 0.050627 0.00
102 0.049043626 | 0.049043 0.00 0.049043 0.00
M1 1.000000000 | 0.999961 0.00 0.999961 0.00
H30 0.972402349 | 0.972403 0.00 0.972403 0.00
H12 0.042975071 | 0.042974 0.00 0.042974 0.00
Ha1 0.047281415 | 0.047281 0.00 0.047281 0.00
Ho3 0.081013108 | 0.081012 0.00 0.081012 0.00

Table 3.9: Prediction and percentage of error of test images
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Figure 3.9: Training set of images
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Figure 3.10: Test set of images
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Fig.3.10(c) Fig.3.10(d)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000146244 | 0.000150 2.73 0.000150 2.73
H1o0 0.007667079 | 0.007667 0.00 0.007667 0.00
o1 0.007429526 | 0.007430 0.01 0.007430 0.00
H20 0.050627434 | 0.050628 0.00 0.050629 0.00
Ho2 0.049043626 | 0.049045 0.00 0.049045 0.00
Hi11 1.000000000 | 0.999961 0.00 0.999961 0.00
H30 0.972402349 | 0.972402 0.00 0.972402 0.00
H12 0.042975071 | 0.042976 0.00 0.042976 0.00
H21 0.047281415 | 0.047282 0.00 0.047283 0.00
Ho3 0.081013108 | 0.081014 0.00 0.081015 0.00

Table 3.10: Prediction and percentage of error of test images

(b)

Figure 3.11: Test set of images
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Fig.3.11(a) Fig.3.11(b)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000146244 | 0.000334 128 0.000172 17.80
H10 0.007667079 | 0.011832 54.32 0.008255 7.66
Ho1 0.007429526 | 0.011488 54.63 0.008002 7.71
H20 0.050627434 | 0.064668 27.73 0.052791 4.27
Ho2 0.049043626 | 0.062805 28.06 0.051161 4.31
M11 1.000000000 | 0.999900 0.01 0.999954 0.00
H30 0.972402349 | 0.962519 1.01 0.970923 0.15
12 0.042975071 | 0.055866 29.99 0.044945 4.58
Ho1 0.047281415 | 0.060788 28.56 0.049356 4.38
Ho3 0.081013108 | 0.098528 21.61 0.083775 3.40

Table 3.11: Prediction and percentage of error of test images
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Moments | Fig.3.12(b) | Fig.3.12(c) | Fig.3.12(d) | Fig.3.12(e) | Fig.3.12(f)
Hoo 0.000486819 | 0.000494959 | 0.000487285 | 0.000488067 | 0.000489806
H10 0.024574799 | 0.024976417 | 0.024266027 | 0.024993421 | 0.024726304
Ho1 0.025087143 | 0.025337473 | 0.02475833 | 0.024800148 | 0.024455426
H20 0.451406978 | 0.451753778 | 0.462315353 | 0.462718151 | 0.451535043
Ho2 0.45823772 | 0.444546248 | 0.442754733 | 0.442771285 | 0.458091006
M1t 0.000052721 | 1.001925928 | 0.000708135 | 1.001605701 | 0.000160503
H30 0.675796736 | 0.675763599 | 0.703762803 | 0.701237918 | 0.676052448
12 0.232199241 | 0.224761107 | 0.662804867 | 0.246149472 | 0.231100849
a1 0.889691452 | 0.891126675 | 0.330571813 | 0.332306867 | 0.78181702
Ho3 0.291563963 | 0.795503546 | 0.0862587 | 0.086386952 | 0.924974338

Table 3.12: Inputs moments of binary aeroplane

93




+
7-»-\-

(e)

,.)

Figure 3.12: Training set of images
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Fig.3.13(a) Fig.3.13(b)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000477048 | 0.000474 0.62 0.000508 6.49
H1o0 0.024079478 | 0.024008 0.29 0.024793 2.96
Ho1 0.024497701 | 0.024426 0.28 0.025218 2.94
H20 0.451464339 | 0.451425 0.00 0.451834 0.08
Ho2 0.440715875 | 0.440670 0.01 0.441149 0.09
M1t 0.000166977 | 0.000168 1.20 0.000182 9.63
H30 0.66984873 | 0.669973 0.00 0.668660 0.17
H12 0.217559591 | 0.217382 0.08 0.219269 0.78
M2t 1.000000000 | 0.999961 0.00 0.999957 0.00
Ho3 0.027764911 | 0.027686 0.28 0.028551 2.83

Table 3.13: Prediction and percentage of error of test images
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Figure 3.13: Test set of images
Fig.3.13(c) Fig.3.13(d)
Moments Target Prediction | Error(%) | Prediction | Error(%)
Hoo 0.000477048 | 0.000521 9.22 0.000509 6.70
H1o 0.024079478 | 0.025081 4.15 0.024812 3.04
o1 0.024497701 | 0.025508 4.12 0.025237 3.02
H20 0.451464339 | 0.451980 0.11 0.451844 0.08
Hoz2 0.440715875 | 0.441321 0.13 0.441160 0.10
K11 0.000166977 | 0.000187 12.6 0.000182 9.63
H30 0.66984873 | 0.668188 0.24 0.668629 0.18
Hi2 0.217559591 | 0.219949 1.09 0.219315 0.80
H21 1.000000000 | 0.999956 0.00 0.999957 0.00
Ho3 0.027764911 | 0.028867 3.97 0.028572 2.90

Table 3.14: Prediction and percentage of error of test images
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Chapter 4

RECONSTRUCTION USING
ZERNIKE AND
PSEUDO-ZERNIKE
MOMENTS

Moment function are used in several computer vision and related applica-
tion such as pattern recognition, object identification,template matching and
pose estimation.Zernike,pseudo-Zernike moment use continuos orthogal poly-
nomials as basis function and its give better feature represent capability
.But different type of other moments also have used for recostruction pur-
pose. different authors have been propose different method and algorithm for
computational and minimum error.R.mukundan[15] have proposed discrete
orthogonal moments that have several computational advantage over contin-
uous moments.In another paper Mukundan[16] proposed radial Tchebichef
moments. This moments have a radial -polar form similar to Zernike mo-
ments. The first significant work considering moments for patter recognition
was performed by Hu[l]. The completeness of their description results in
one of their often cited attributes, the ability to reconstruct an object from

its set of moments. It is quite difficult to reconstruct of an image from non
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orthogonal moments, as their kernel functions are not orthogonal.

There are two methods to reconstruct an image from non orthogonal ge-
ometric moments.One is moment matching method and another is Fourier
transform method.In moment matching method, derives a contineous func-

tion.

9(z,y) = goo + g10T + Go1y + 920T° + g11TY + Go2y” + e (4.1)

Whose moments exactly match the moments, {m,,} of f(z,y) through order
Nz However, this method is shown to be impractical as it requires the so-
lution to an increasing number of coupled equations as higher order moments
are considered.In fourier transform method, as kernels are not orthogonal it
requires more number of moments for reconstruction. The reconstruction of
an image from complex moments is also quite difficult.

Image can be reconstructed easily from a set of orthogonal moments,
such as Legendre, Zernike[7] and Pseudo-Zernike moments. As their ker-
nel functions are orthogonal, it require less number of moments than that
of non orthogonal moments. The orthogonal moments are better than the
other types of moments in terms of information redundancy. Performance
of Zernike and Pseudo-Zernike moments are better in presence of noise[6],
but the main problen is co compute the radial polynomials, which takes long
computation time to derive the Zernike and Pseudo-Zernike moments.

Since the contineous orthogonal moments are defined only inside a limit
domain([-1,1] for Legendre moments and the unit circle for the case of Zernike
and Pseudo-Zernike moments), the computation of those required a coordi-
nate transformation. Another problem with the aforementioned moment
is approximation of contineous integral, which not only leads to numerical
errors but also severely affects the analytical properties which they were in-

tended it satisfy, such as invariance and orthogonality.
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4.1 RECONSTRUCTION USING ZERNIKE
MOMENTS

Zernike function introduced by Frits Zernike, a Dutch mathematician and
physician, is a set of complex orthogonal functions with asimple rotational
property which forms a complete orthogonal basis over the class of square
integrable functions defined over the unit disk. The kernel of Zernike mo-
ments is the orthogonal Zernike polynomials defined over polar coordinates
inside a unit circle[7]. The two-dimentional Zernike moments of order p with

repetition ¢ of an image intensity function f(r, @) are defined as follow.

Zpg = p+1//_7r (r,0)]*.f(r,0)r dr df (4.2)

where r < 1 and 2% + y*> < 1. The Zernike polynomials V,,(r, ) of order p
are defined as

Via(1,0) = Ry, (T)ejqa (4.3)

and its real valued radial polynomial is given by

I~
=)
)~

p—|

r) = _1)\s ( ) rp—?s: > krk
Ryy(r) sgo (1) .8( ) (p — ) ) :Zm Byjq

— |q| = even
(4.4)

where 0 < |¢| < p and p > 0. the orthogonal Zernike polynomials satisfy the

following condition

p+1

/01 ‘/_7;[‘/;"1(,“ 0)][an('f', 0)]*_](.(7" 6)7‘ dr do

(4.5)

_ pilépnéqm pr =n, g=m
0 otherwise
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The radial function also satisfy the orthogonality relation

1

m%n (4.6)

/Ol[qu(Ta )[R (7, 0)]"r dr df =

where §;; is the Kronecker delta. The discrete approximation of Zernike

moments is expressed as follow

Zpq = Z Z Tpqu(r)eijqef(T: 0) (4.7)

where 7, is the normalizing constant based on the mapping transformation.

Since Zernike moments are defined in terms of polar coordinates (r,0)
with |r| < 1, the computation of Zernike polynomials requires a linear trans-
formation of the image coordinates (i, 5),4,j = 0,1,2, ...... , N —1 to a suitable
domain (z,y) € R? inside a unit circle. Two commonly used cases of the the
transformations are shown in Fig. 4.1(b) and 4.1(c). Based on these fig-
ures, we have the following discrete approximation of the contineous Zernike
moments’ integral in Eq(4.2):

N-1N-1
Zpg = Alp, N) 2(:) 2% Ry (rij)e 7% f(i,5), 0<ry; <1  (4.8)
i=0 j=
where the most general image coordinate transformation to the interior of

the unit circle is given by

r=/(cri + )2 + (c1] + ) (4.9)
6 =tan™" (w) (4.10)
C1? + Co

In particular, for Fig. 4.1(b)

p+1 2

Alp, N) = o “Tn-p @71 (4.11)
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For Fig. 4.1(c)

Alp, N) = %, ¢ = % cr = \_/—; (4.12)

One of the main difficulties concerning the use of Zernike moments as fea-
tures in image analysis applications is the high computation time to derive
them. The long computation time to derive the Zernike moments is due to
the factorial terms in the radial polynomials. The computation of factorial
terms also leads to numerical instabilities for higher order moments. Hence,
it is required to compute the Zernike radial polynomial which require less

computation time.

4.1.1 Hybrid Algorithm

The hybrid algorithm used for computing the full set of Zernike moments
consists of Prata’s simplified Kinther’s method and coefficient methods. The
hybrid algorithm uses most of Prata’s method followed by coefficient and sim-
plified Kintner’s methods in computing the Zernike moments. The Prata’s
recurrence relation is selected as the main component of this hybrid algo-
rithm due to its linear relation between Zernike radial polynomials and less
recurrence coefficients as compaired with other recurrence relations.
Whenever Prata’s method is not applicable in such cases as (p = ¢) and
(¢ = 0), the coefficient and simplified Kinther’s methods are used. The co-
efficient method is used for cases where (p = ¢) and simplified Kinther’s
method is used to derive the radial polynomials with cases (¢ = 0) except
for Ry due to its limitations. Zernike radial polynomial for R, is solved
using coefficient method. The hybrid algorithm for computation of full set

of radial polynomials is summarized below.
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Step-I:For cases (p = ¢), Zernike radial polynomial are derived using the

equation(3.46.) from the coefficient method
Ryp(r) = 1P

Step-11:For the case of Ryy,Zernike radial polynomial are derived using the

equation(3.47) from the coefficient method

Rpp—2) (r) = pRpp(T) - (- 1)R(p—2)(p—2) (r)

Step-III:For cases (¢ = 0) except Ry, Zernike polynomials are derived using

the simplified Kinther’s method
Rpq(r) = (Mi1* + Mo) Riy-2)q(r) + MzR(p-1)4(r)

Step-IV:For renmaining cases, Zernike polynomials are calculated using the

Prata’s method
Rpo(r) = LiR(p-1)(q-1) (1) + L2Rp-2)

By using the hybrid algorithm, the full set of Zernike moments is obtained
through the recurrence relations between its radial polynomials without using
any of factorial terms. The hybrid algorithm perform better than other
existing fast computation methods due to fewer recurrence coefficients and
the linear relation in Prata’s method. Fewer recurrence coefficients reduce
the number of multiplication in computing tha Zernike radial polynomials
while the linear relation reduces the process of computing the power series

of radius.
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Fig.4.1(a) Image plane NxN, (b) mapping of image plane NxN over a unit
circle and (c)mapping of image plane NxN inside a unit circle.
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4.2 RECONSTRUCTION USING PSEUDO-
ZERNIKE MOMENTS

In similar manner like Zernike moments, images can be reconstructed easily
from finite set of Pseudo-Zernike moments. Infact accuracy of reconstruc-
tion using Pseudo-Zernike moments is better than that of Zernike moments.
Pesudo-Zernike moments have better feature representation capability, and

are more robust to image noise than those of convensional Zernike moments.

4.2.1 p-recursive Method

The drawdacks of coefficient method can be avoided by using this p-recursive
method. This method uses recurrence relation for Pseudo-Zernike radial
polynomials. R,,(r), to accelerate the computation of Pseudo-Zernike mo-
ments. The recurrence relation associates R, (r) with combination of Rp,_1)4(7)

and R(p—2)4(r), which is given as follows:
Ryg(r) = (Mir + M2) Rip-1)g (1) + My Rp-2)4(r) (4.13)

where the coefficient M;, My and Mj3 are given by

M, = 2p+1)(2p) (4.14)

(P+q+1)(p-19q)
p+9)p—q—1)
2p —1

(p+q-1)(p—q-2)
2

My, = —2p + M, (4.15)

Ms=(2p—1)(p—1) - My +2(p—1)M;  (4.16)

The initial values for Eq.(4.13) in cases where p = ¢ and p — ¢ = 1 can be

obtained using the following equations:
Ryp(r) =17 (4.17)

Rpp-1)(r) = (2p + 1) Ryp(r) — 2pRp_1)p—1) (7) (4.18)
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The complexity of computing Pseudo-Zernike moments of order < p using
p-recursive method is O(N?p?). This method provides a recursive scheme
over order p except in cases when (p—¢ < 1). For such a result, Ry, R;; and
Ry, etc. are obtained using Eqs.(4.17) and(4.18). These initial values are
then used to derive the remaining polynomials with conditions (p — ¢ > 1)
using Eq(4.6)

There is no factorial function involved in the p-recursive method. Fast

k and

computation is achieved since the calculation of power of radius, r
polynomial coefficients, By, are not required in computing R,,(r). Moments
computed using Eq.(4.6) will there fore avoid large variation in the dynamic
range of values for different orders of p.This method is useful in applications

where fixed polynomial index ¢ is needed.

4.3 RESULTS AND DISCUSSION

In simulation gray image aswell as binary images are considered. Zernike and
Pseudo-Zernike moments has been used to reconstruct the images. Hybrid
algorithm and p-recursive algorithm as presented in section 4.1 and section
4.2 is used to reconstruct the images Fig.4.1 shows gray scale images re-
constructed with different order of moments. As observed fromb Fig.4.1, the
aeroplane flying could be reconstructed using 50th order moments while with
lower order moments the edges of higher frequency components of the images
are missing. This is quite evident from Fig.4.1(f). This phenomenon is differ-
ent in case of binary aeroplane image as shown in Fig.4.2. The images with
hazy edges could be reconstructed with ever 15th order moments. Sharper
edges that represent the high frequency component reconstructed with 25th
and 50th order moment. The reconstructed image could preserve edges. This

is the evident from the Fig.4.2(f) and Fig.4.2(g). Hence, for gray scale im-
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ages much higher order moments are neccesary to reconstruct the images. In
case of Zernike moments, the image reconstruction needs much higher order
as compare to Pseudo-zernike moments. This is depicted in Fig.4.3(b) and
Fig.4.3(d). It can be observed from this figure that even with 15th order
moments the reconstructed image is loosing edges while 20th Pseudo-zernike
moments could yield better results as seen from Fig.4.2(f). Analogus obser-
vation is also made for the bottle images. Hence, Pseudo-zernike moments

are more appropiate for image reconstruction than Zernike moments.

Figure 4.1: Recostruction of the 100x100 image aeroplane in using
pseudo-zernike moment of different order,reconstructed images upto order
2nd,5th,10th,15th,20th,25th,50th respectively a,b,c,d,e.f,g
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Figure 4.2: Recostruction of the 100x100 image aeroplane in using
pseudo-zernike moment of different order,reconstructed images upto order
2nd,5th,10th,15th,20th,25th,50th respectively a,b,c,d,e.f,g

(c)

Figure 4.3: Recostruction of the 100x100 images in using Zernike moment of
different order,reconstructed images order 50th respectively a,b,c,d
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Chapter 5

CONCLUSIONS

In this thesis,the problem of object recognition using moments has been in-
vestigated. The The translation,rotation and scalling properties of Geometric
moments are studied. The invariance properties of the Geometric moments,
specifically central moments are used for recognition. This problem is ad-
dressed keeping in view of a machine vision system. Indoor as well as outdoor
images are considered for experimentation. Different occlusion are created
normally and the correponding Geometric moments are computed. Feedfor-
ward multilayered ANN is used for training as well as prediction different
occluded version of the images. Although this has been tested for a specified
images,this notion can be extended to a class of images. It is observed that
,the trained ANN could yield correct moments for a wide variety of occlu-
sion. This implies that objects occluded from different view pointa can be
recognised object,other than trained object could not be recognized. The
scheme could be succesfully tested for indoor as well as outdoor objects. The
problem of considering a large ANN for prediction of large moments for the
proposed of image reconstruction will be pursued. The problem of image re-
constrution is also studied. It is observed that the Pseudo-zernike moments

could be reconstruct better images than that of Zernike moments.
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