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ABSTARCT 

 

Beamforming is a technique in which an array of antennas is exploited to achieve 

maximum reception in a specified direction by estimating the signal arrival from a 

desired direction (in the presence of noise) while signals of the same frequency from 

other directions are rejected. This is achieved by varying the weights of each of the 

sensors (antennas) used in the array. It basically uses the idea that, though the signals 

emanating from different transmitters occupy the same frequency channel, they still 

arrive from different directions. This spatial separation is exploited to separate the desired 

signal from the interfering signals. In adaptive beamforming the optimum weights are 

iteratively computed using complex algorithms based upon different criteria. 

 

INTRODUCTION  

 

Beamforming is generally accomplished by phasing the feed to each element of an array 

so that signals received or transmitted from all elements will be in phase in a particular 

direction. The phases (the inter element phase) and usually amplitudes are adjusted to 

optimize the received signal.  

 

EXPERIMENTATION AND SIMULATION 

 

For simulation purposes a 4-elemnt linear array is used with its individual element spaced 

at half-wavelength distance. The desired signal arriving is a simple complex sinusoidal-

phase modulated signal of the following form, 

                                    s(t)=e
jsin(wt) 

The interfering signals arriving are also of the above form. by doing so it can be shown in 

simulations how interfering signals of the same frequency can be separated to achieve 

rejection of co-channel interference. Illustrations are provided to give a better 

understanding of the different aspects of the lms algorithm with respect to adaptive 

beamforming.For simplicity purpose the reference signal d(t) is considered to be the same 

as the desired signal 
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ANALYSIS 

The various methods used by us to achieve adaptive antenna beamforming i.e. 

                        
And then estimating the weight vector w using various algorithms listed below. 

1.SMI algorithm 

  In this algorithm the weights are chosen such that the mean-square error between 

the beamformer output and the reference signal is minimized. 

              
2. LMS algorithm 

This algorithm like the preceding one requires a reference signal and it computes 

the weight vector using the equation  

       
3. CMA algorithm 

            The configuration of CMA adaptive beamforming is the same as that of the SMI 

system discussed above except that it requires no reference signal 

                              
RESULTS 

          Among various methods used 4 beams firming is found to be the most effective 
algorithm is CMA algorithm. 

 

CONCLUSION 

             The study is important in the determination of blind beam firming. The CMA 

technique of adaptive beamforming is better then lms algorithm technique. 
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1.1 ADAPTIVE BEAMFORMING  [5] 
 

 

Adaptive Beamforming is a technique in which an array of antennas is exploited 

to achieve maximum reception in a specified direction by estimating the signal arrival 

from a desired direction (in the presence of noise) while signals of the same frequency 

from other directions are rejected. This is achieved by varying the weights of each of the 

sensors (antennas) used in the array. It basically uses the idea that, though the signals 

emanating from different transmitters occupy the same frequency channel, they still 

arrive from different directions. This spatial separation is exploited to separate the desired 

signal from the interfering signals. In adaptive beamforming the optimum weights are 

iteratively computed using complex algorithms based upon different criteria.  

Beamforming is generally accomplished by phasing the feed to each element of 

an array so that signals received or transmitted from all elements will be in phase in a 

particular direction. The phases (the interelement phase) and usually amplitudes are 

adjusted to optimize the received signal. The array factor for an N-element equally 

spaced linear array is given,  

 

              

Note that variable amplitude excitation is used.  

 

The interelement Phase shift is given by  
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φ0 is the desired beam direction. At wavelength λ0  the phase shift corresponds to a time 

delay that will steer the beam to φ0.  

 

1.2 Adaptive beamforming problem setup  
 

To illustrate different beamforming aspects, let us consider an adaptive 

beamforming configuration shown below in figure.  

 

 

 
                              Figure 1.1: An Adaptive Array System 

 

The output of the array y(t) with variable element weights is the weighted sum of 

the received signals si(t) at the array elements and the noise n(t) the receivers connected 

to each element. The weights wme iteratively computed based on the array output y(t) 

reference.
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Signal d(t) that approximates the desired signal, and previous weights. The 

reference signal is approximated to the desired signal using a training sequence or a 

spreading code, which is known at the receiver. The format of the reference signal varies 

and depends upon the system where adaptive beamforming is implemented. The 

reference signal usually has a good correlation with the desired signal and the degree of 

correlation influences the accuracy and the convergence of the algorithm.  

The array output is given by  

                       

                             
 

Where denotes the complex conjugate transpose of the weight vector w.  

 

In order to compute the optimum weights, the array response vector from the 

sampled data of the array output has to be known. The array response vector is a function 

of the incident angle as well as the frequency. The baseband received signal at the N-th 

antenna is a sum of phase-shifted and attenuated versions of the original signal. Si(t). 

 

                   
The si(t) consists of both the desired and the interfering signals.  
 

Rk (θi) is the delay, fc is the carrier frequency.  
 

 

      

 

Now,  

 

 
So that, 
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With noise,  

 
a(θ) is referred to as the array propagation vector or the steering vector for a 

particular value of a.  

 

The beamformer response can be expressed in the vector form as,  

                
This includes the possible dependency of a(θ) on ω as well.  

 

To have a better understanding let us re-write x(t) in equation by separating the 

desired signal from the interfering signals. Let s(t) denote the desired signal arriving at an 

angle of incidence θ0 at the array and the ui(t) denotes the number of undesired 

interfering signals arriving at angles of incidence θi. It must be noted that, in this case, the 

directions of arrival are known a priori using a direction of arrival (DOA) algorithm.  

The output of the antenna array can now be re-written as;  

                       

                          
 where,  

 a(θi) I s the array propagation vector of the i
th
 interfering signal. 

 a(θ0) is the array propagation vector of the desired signal.  
 

Therefore, having the above information, adaptive algorithms are required to 

estimates(t) from x(t) while minimizing the error between the estimate s(t) and the 

original signal s(t).  

 

                 

Let d*(t) represent a signal that is closely correlated to the original desired signal 

s(t).d*(t) is referred to as the reference signal, the mean square error (MSE) ε2(t) between 

the beamformer output and the reference signal can now be computed as follows;  
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After taking an expectation on both sides of the equation we get,  

 

                                         
 

where r=E{[d*(t)x(t)]} is the cross-correlation matrix between the desired signal 

and the received signal R=E[x(t)xh(t)] is the auto-correlation matrix of the received 

signal also known as the covariance matrix. The minimum MSE can be obtained by 

setting the gradient vector of the above equation with respect to equal to zero, i.e. 

     
  

Therefore the optimum solution for the weight wopt is given by  

 

                          
 

This equation is referred to as the optimum Weiner solution.  
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The following discussion explains various beamforming approaches and adaptive 

algorithms in a brief manner.  

 

2.1 SIDE LOBE CANCELLERS  [5] 
This simple beamformer shown below consists of a main antenna and one or more 

auxiliary antennas. The main antenna is highly directional and is pointed in the desired 

signal direction. It is assumed that the main antenna receives both the desired signal and 

the interfering signals through its sidelobes. The auxiliary antenna primarily receives the 

interfering signals since it has very low gain in the direction of the desired signal. The 

auxiliary array weights are chosen such that they cancel the interfering signals that are 

present in the sidelobes of the main array response. 

 

  

Figure2.1: Sidelobe canceller beamforming  

 

If the responses to the interferers of both the channels are similar then the overall 

response of the system will be zero, which can result in white noise. Therefore the 

weights are chosen to trade off interference suppression for white noise gain by 
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minimizing the expected value of the total output power. Therefore the criteria can be 

expressed mathematically as follows;  

     
 

The optimum weights which correspond to the sidelobe canceller’s adaptive component 

were found to be  

   
 

 

 is the auxiliary array correlation matrix and the vector is the cross 

correlation between auxiliary array elements and the main array. This technique is simple 

in operation but it is mainly effective when the desired signal is weaker compared to the 

interfering signals since the stronger the desired signal gets (relatively), its contribution to 

the total output power increases and in turn increases the cancellation percentage. It can 

even cause the cancellation of the desired signal.  

 

 2.2 LINEARLY CONSTRAINED MINIMUM VARIANCE (LCMV)[5]  
 

Most of the beamforming techniques discussed require some knowledge of the 

desired signal strength and also the reference signal. These limitations can be overcome 

through the application of linear constraints to the weight vector. LCMV spatial filters are 

beamformers that choose their weights so as to minimize the filter's output variance or 

power subject to constraints. This criterion together with other constraints ensures signal 

preservation at the location of interest while minimizing the variance effects of signals 

originating from other locations.  

In LCMV beamforming the expected value of the array output power is minimized, i.e.  

is minimized subject to   

 

where Rx denotes the covariance matrix of x(t), C is the constraint matrix 

which contains K column vectors and is the response vector which contains K 
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scalar constraint values. The solution to the above equation using Lagrange 

multipliers gives the optimum weights as  

 

      

This beam forming method is flexible and does not require reference signals to 

compute optimum weights but it requires computation of a constrained weight vector. C  

2.3 NULL STEERING BEAMFORMING [5] 
 

Unlike other algorithms null steering algorithms do not look for the signal 

presence and then enhance it, instead they examine where nulls are located or the desired 

signal is not present and minimize the output signal power. One technique based on this 

approach is to minimize the mean squared value of the array output while constraining 

the norm of the weight vector to be unity.  

 

 

The matrix A, a positive-definite symmetric matrix, serves to balance the relative 

importance of portions of the weight vectors over others. The optimum weight vector 

must satisfy the following equation;  

 

 

2.4 SAMPLE MATRIX INVERSION (SMI) ALGORITHM: [5]  

In this algorithm the weights are chosen such that the mean-square error between 

the beamformer output and the reference signal is minimized. The mean square error is 

given by  

 

x(t) is the array output at time t; r(t) is the reference signal; is the signal 

covariance matrix. Rr=E[r(t)x(t)] defines the covariance between the reference signal and 
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the data signal. The weight vector, for which the above equation becomes minimum, it is 

obtained by setting its gradient vector with respect to, to zero, i.e.   

        

Therefore,  

                

The optimum weights can be easily obtained by direct inversion of the covariance matrix. 

This algorithm requires a reference signal and is computational intensive. It is definitely 

faster than LMS.



.  
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Least Mean Square (LMS) 

Recursive Least Square (RLS) 

 

 

 



 

3.1 Introduction [1] [8] 

 
The preceding chapter, an overview of beamforming was studied in terms of the 

Physical components needed to perform such a task. While at this point that topic is well 

Understood, it is still not known how to determine the weights necessary for 

beamforming. In the following discussion, it is desired to study means in which specific 

characteristics of the received signal incident upon the array (in addition to the spatial 

separation among users in the environment) can be exploited to steer beams in directions 

of desired users and nulls in directions of interferers. In particular, the Mean Square Error 

(MSE) criterion of a particular weight vector will be minimized through the use of 

statistical expectations, time averages and instantaneous estimates. As well, the distorted 

constant modulus of the array output envelope due to noise in the environment will be 

restored. Finally, knowledge of the spreading sequences of a CDMA mobile environment 

will be utilized to improve the performance of algorithms exploiting the two criterions 

discussed above. Each of the characteristics described above correspond to adaptive 

algorithms which can be classified into two categories: 1.) Non-Blind Adaptive 

algorithms & 2.) Blind Adaptive Algorithms. Non-blind adaptive algorithms need 

statistical knowledge of the transmitted signal in order to converge to a weight solution. 

This is typically accomplished through the use of a pilot training sequence sent over the 

channel to the receiver to help identify the desired user. On the other hand, blind adaptive 

algorithms do not need any training, hence the term “blind”. They attempt to restore some 

type of characteristic of the transmitted signal in order to separate it from other users in 

the surrounding environment. Note on Notation: For the discussion to follow which 

includes, scalars, vectors and matrices, the following notation will be followed: vector – 

lower case letter with arrow (Ex. xUU ), scalar – lower case letter (Ex.. d) Matrix – 

Capitalized letter (Ex. R) 

 

 
 

 

 



 

3.2 Non-Blind Adaptive Beamforming Algorithms [1] [2] [4] [8]   

 
 

As was noted above, non-blind adaptive algorithms require a training sequence, d(k) in 

order to extract a desired user from the surrounding environment. This in itself is 

undesirable for the reason that during the transmission of the training sequence, no 

communication in the channel can take place. This dramatically reduces the spectral 

efficiency of any communications system. Additionally, it can be very difficult to 

understand the statistics of the channel in order to characterize a reasonable estimate of 

d(k) needed to accurately adapt to a desired user. With this in mind, the following 

summarizes the basic concepts of non-blind adaptive algorithms. 

 

WEINER OPTIMUM SOLUTION 

 

Consider the least mean square (LMS) adaptive array shown below in Figure 
 

  

 
                                        Figure3.1: LMS Adaptive Array 

Through a feedback loop the weights, w1 , ... , wN , are updated by the time sampled 

error signal: e(k) = d(k) − y(k) (4.1) where: The training sequence, d(k), is a near replica 

of the desired signal and y(k) is the output of the adaptive array described by equation 

3.40. The feedback system attempts to direct the weights at each element to their optimal 

weights, opt w. The adaptive processor adjusts the weight vector to minimize the mean 

square error (MSE) of the error signal, e(k), given by: 

[ 2] [ 2 ] E e(k) = E d(k) − y(k)  



 

 

where: E is the expectation operator. Substituting equation 3.41 into equation 4.2 and 

expanding the argument of the MSE term 

 

 

 

It is apparent from either equation 4.3 or 4.4 that the MSE of the LMS adaptive array is a 

quadratic function in w where the extremer of this quadratic surface is a unique 

minimum. By plotting the MSE vs. the weights for equation 4.3, we achieve the 

following quadratic surface, which is also called the performance surface. 



 

 

Figure3.2: Quadrative Surface for MSE Criterion of Adaptive LMS Array 

The shape, location, and orientation of the performance surface depicted above depend on 

the array geometry and the signals incident upon the array. If the incident signals, their 

AOA’s and power are time variant, then the performance surface will move around in 

space thus altering the value of opt w . It is the job of the adaptive array to force the 

optimum weight vector to track to the bottom of the surface. The unique minimum of the 

performance surface can be found by performing the vector gradient operator, U ( ), of 

the mean square error defined in equation 4.4 with respect to the array weights and 

setting the result equal to zero. 

 



 

There exist some disadvantages in using the Weiner Solution to determine the optimum 

weight vector. In particular, if the number of elements in the ULA is large, then it is 

computationally complex to invert the NxN covariance matrix, Rxx. This is a problem 

only if the inverse of the covariance matrix is nonsingular, which is not always the case. 

It first would have to be assumed that the matrix is positive semi-definite to begin with in 

order to use the Weiner solution. Additionally, the Weiner solution requires the use of an 

expectation operator in both Rxx and xd r$ . This assumes that the statistics of the 

communications channel and the desired signal estimate, d(k), can be perfectly 

characterized to produce an adequate training sequence. 

 

3.3 SAMPLE MATRIX INVERSION (SMI) 
 

In practice, the mobile channel environment is constantly changing making estimation of 

the desired signal quite difficult. These frequent changes will require a continuous update 

of the weight vector, which would be difficult to produce for reasons already stated. 

However, Reed, Mallet, and Brennan [31] proposed an estimate to the Weiner solution 

through the use of time averages called Sample Matrix Inversion (SMI). Suppose we take 

K time samples of the received signal to form an input data matrix, X, defined by: 



 

 



 

where: L is the number of iterations required for the algorithm to converge. 

Typically it is a rule of thumb to allow the block size, K > 2N. This means the number of 

samples must be greater than or equal to twice the number of elements in the adaptive 

array. For a further discussion on why this is true, the reader is referred to for the 

dynamic block size SMI method; the MSE for each element can be determined by: 

                                                 

 below depicts the MSE of the 3rd element for the dynamic SMI method with a block size 

of 10 where the received signal consists of one desired user whose signal is polar NRZ 

and one interfering multipath component. 

 

 

                 Figure 3.3: MSE of Dynamic SMI Method w/block size of 10 

From the above results, we can see that the error for each iteration is very small. The 

stability of the SMI method depends on the ability to invert the NxN estimate of the 

covariance matrix given in equation 4.11. Typically, noise is added to the system to offset 

the diagonal elements of the input data vector in order to avoid singularities when 

inverting the covariance matrix. These singularities are caused by the number of received 

signals to be resolved being less than the number of elements in the array. The SMI 

method is a particularly desirable algorithm to determine the complex weight vector due 

to the fact that the convergence rate is usually greater than a typical LMS adaptive array 

and is independent of signal powers, AOA’s and other parameters. The number of 

multiplications needed to form the estimated covariance matrix is proportional to N 3. 

Also, the number of linear equations needed to solve equation 4.16 increases as N 3. 



 

Therefore, the SMI method operates at its best when the number of elements in the 

adaptive ray is small. Figure 4.4 below depicts the beampattern for an 8-element ULA 

where the weights ere determined using the SMI method. We assume a multipath 

scenario where the received signal is a polar NRZ waveform whose values appear with 

equal probability. The desired user’s amplitude was five times greater than that of the 

multipath component. The desired user’s AOA was -45o and the interferer’s AOA were 

30. 

 

3.4 LEAST MEAN SQUARES [1] [2] [4] [6] 
 A very computationally efficient adaptive algorithm is the least mean squares (LMS) 

algorithm. LMS is an iterative solution to solve for the weights which track to the bottom 

of the performance surface. In the case of LMS, the statistics of the channel and incident 

signal beampattern for 8-Element ULA using SMI Method 22 are not known. The LMS 

algorithm estimates the gradient of the error signal, e(k), by employing the method of 

steepest descent, which is summarized below. Let k w represent the Nx1 weight vector at 

time sample k. The weight vector can be updated at time sample k+1 by offsetting ) (k w 

by some small quantity which drives the weight vector one step closer to the bottom of 

the performance surface. This small quantities the value of the error gradient for time 

sample k, which is given as: 

 

where: µ is an incremental correction factor known as the step-size parameter or weight 

convergence parameter. It is a real valued positive constant generally less than one. 

Substituting equations 4.5 & 4.6 into the above equation yields: 



 

 

 

          

 

When a proper step size parameter is chosen and enough iteration is performed then the 

above result will converge to the optimum weight vector given in equation 4.9. However, 

as was previously stated obtaining the statistics of the channel and developing an 

adequate estimate of the received signal are quite difficult. In this case, we can use the 

LMS algorithm to form an instantaneous estimate of the error signal. Dropping the 

expectation operator in equation 4.22 allows the algorithm to update the weights as the 

data are sampled, which is given by: 

                               

The LMS algorithm is a very desirable algorithm in many circumstances. One of its great 

weaknesses is its slow convergence rate. The algorithm updates the weight vector for 

every incoming sample of the received signal vector, x$(k) which is offset by the step 

size parameter, µ. If µ is large, then the algorithm will converge faster, but your resulting 

weight vector will be less accurate, vice versa for when it is small. Below is a plot of 

several convergence curves for the LMS algorithm given different step sizes. 

 



 

 

           Figure 3.4: LMS Algorithm Convergence Curves for different Step Sizes 

In the above plot, an identical scenario used for displaying the results of the SMI method 

in Figure 3.6 was assumed, which was a multipath scenario where the received signal is a 

polar NRZ waveform. The desired user’s amplitude was five times greater than the 

multipath component. The desired user’s AOA was -45o and the interferer’s AOA was 

30o. Additive White Gaussian Noise (AWGN) with a signal to noise ratio of 10 dB was 

assumed, 23 Figures 4.5 & 4.6 created by program LMS. 

66 which is quite high. It is apparent that if the step size parameter is decreased, then a 

slower convergence is achieved. Also note the maladjustment at each iteration. This is 

somewhat due to the noise present in the channel, but mostly caused by the gradient 

search method used to track the weights to the bottom of the performance surface. Below 

is a plot of the resulting beam pattern for this particular scenario. In the backdrop is a 

shadow of the beampattern using the SMI method, which is used as a benchmark. It is 

clear to see that the two beampatterns are nearly identical. Also, it can be seen from the 

asterisk marking the interferer arriving at 30o that the SMI method provides a deeper null 

than that using the LMS algorithm. 



 

 

                       Figure 3.5: Beampattern for 8-element ULA using SMI 

 

3.5 RECURSIVE LEAST SQUARES [4] 
 

  Contrary to the LMS algorithm, which uses the steepest descent method to determine 

the complex weight vector, the Recursive Least Squares (RLS) algorithm uses the method 

of least squares. The weight vector is updated by minimizing an exponentially weighted 

cost function consisting of two terms: 1.) sum of weighted error squares and 2.) a 

regularization term. Together the cost function is given by: 

                                 

where: e(i) is the error function defined by equation 4.1 and λ is called the forgetting 

factor, which is a positive constant close to, but less than one. It emphasizes past data in a 

Non-stationary environment so that the statistical variations of the data can be tracked 

Sum of Weighted Error Squares Regularization term 67 and not “forgotten”. In a stationary 

environment, λ = 1 corresponds to infinite memory. Expanding equation 4.26 and 

collecting terms, the weight summation of the covariance matrix for the received signal, 

x$(k) , can be determined by:  

                                     

Performing the matrix inversion lemma to the result in equation 4.27, we can create a 



 

recursive equation to solve for the complex weight vector. A thorough description of the 

derivation is described in [19]. A summary of the RLS algorithm is provided below: 

                       

 

At time sample k = 1, the initial conditions for the RLS algorithm can be described by: 

1.) Set ) 0 ( w 

U 

to either a column vector of all zeros, or to the first column vector of 

an NxN identity matrix. 

2.) Setting k = 0 in equation 4.27 yields: Φ(0) = δ I = P(0), 

       

         where: δ=small positive constant for high SNR 

                          large positive constant for low SNR 

RLS is a desirable algorithm because it has the ability to retain information about the 

input data vector, xU(k) , since the moment the algorithm was started. Therefore, the 

convergence of the RLS algorithm is much greater than that of the LMS algorithm by 

nearly an order of magnitude, but at the cost of increased computational complexity. An 

important feature of the RLS algorithm is its ability to replace the inversion of the 

covariance matrix in the Weiner solution with a simple scalar division. Figure 3.6 below 

depicts the convergence curve for the RLS algorithm with a forgetting factor of 1 for the 

multipath scenario encountered previously 

 

 



 

 

               Figure 3.6: Convergence Curve for RLS Algorithm w/ λ = 1. 

 

Additionally, Figure 3.7 below plots the beampattern for an N = 8 element ULA for the 

same senario. 

 

 

 

                            Figure 3.7: Beam pattern for RLS algorithm 

 

   

 

 

 

 

 

 

 

 

 



 

Chapter 4 
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                                                              BEAMFORMING 

ALGORITHMS 
 

Introduction 

Constant Modulus Algorithm (CMA) 

Steepest Descent Decision Directed Algorithm (SD-DD) 

Least Square Constant Modulus Algorithm (LS-CMA) 

Recursive Least Squares Constant Modulus Algorithm (RLS-CMA) 

 

 

 

 

 

 

 

 



 

4.1 INTRODUCTION 

As was stated previously, “blind” adaptive algorithms do not need a training sequence in 

order to determine the required complex weight vector. They attempt to restore some type 

of property to the received signal for estimation. A common property between polar NRZ 

waveforms and DS-SS signals is the constant modulus of received signals. Therefore, this 

study focuses on blind adaptive algorithms which exploit this characteristic. 

 

4.2 CONSTANT MODULUS ALGORITHM (CMA) [1] [3] [4] [6] [7] [8 

 
A typical polar NRZ signal possesses an envelope which is constant, on average. During 

transmission, corruption from the channel, multipath, MAI, and noise can distort 24 

Figures 4.7 & 4.8 created by program RLS.m this envelope. Using the constant modulus 

algorithm (CMA), the envelope of the adaptive array output, y(k), can be restored to a 

constant by measuring the variation in the signal’s modulus and minimizing it by using 

the cost function defined below: 

The constant modulus cost function is a positive definite measure of how much the array 

output’s envelope varies from the unity modulus used to minimize the result. Setting p= 

1, q = 2, we can develop a recursive update method to determine the proper weights by 

utilizing the method of steepest descent for the following cost function: 

 

                    



 

 

 

The p = 1, q = 2 solution is typical because it provides the deepest nulls of the four 

configurations and provides the best signal to interference noise ratio (SINR). Figure 4.9 

below depicts the convergence curve for the constant modulus algorithm with p =1, q = 2. 



 

Also, shows the beampattern for an N = 8 element ULA for the multipath scenario 

discussed previously. 

 

                  Figure 4.1: Convergence Curves for CMA w/ p = 1, q = 2. 

 

                                    Figure 4.2: Beampattern for CMA 

 

It is obvious from the above results that by decreasing the value of the step size 

parameter, a faster convergence is achieved. Likewise, due to the high correlation 

between the transmitted signal and its multipath component, the null formed at 30o is 

very shallow compared to that formed by the SMI method. 

 

 

 

 

 

 

 

 



 

 

 

4.3 STEEPEST DESCENT DECISION DIRECTED ALGORITHM 

(SD-DD) [1] [3] [7] 

 
 

 

4.4 LEAST SQUARES CONSTANT MODULUS ALGORITHM (LS-

CMA)  
 As was studied previously, the constant modulus algorithm utilizes the method of 

steepest descent to adapt the weight vector. Additionally, Agee proposed in [1] an 

algorithm based upon the method of nonlinear least squares, also known as Gauss’ 

Method which states that if a cost function can be expressed in the form: 

 



 

 



 

 



 

covariance matrix increases. The resulting beampattern for this scenario is displayed in 

Figure 4.3 below 

 

                                  Figure 4.3: Beampattern for LSCMA 

 

It is apparent to note that again the null formed by the SMI method is deeper than that 

formed by the LS-CMA algorithm. Additionally, the beampattern for the LS-CMA 

algorithm is nearly symmetric. This is due to the fact that when computing the estimate of 

the covariance matrix, much of the phase information needed is eliminated when 

multiplying the two input data matrices. The required maxima and minima are produced, 

but false maxima and minima are also formed at both 45o and -30o due to this phase 

ambiguity. Also, we can see that the main lobe directed to the desired user does not peak 

at exactly -45. 

 

4.5 RECURSIVE LEAST SQUARES CONSTANT MODULUS 

ALGORITHM (RLS-CMA) [8] 
The newly developed Recursive Least Squares Constant Modulus (RLS-CMA) 

Algorithm proposed in [8] combines adaptive beamforming using the constant modulus 

criterion via the RLS iterative update solution. This particular algorithm possesses the 

convergence properties of the RLS algorithm and the tracking capabilities of the CMA 

define the dynamic complex limited array output. algorithm. Together they form an 

algorithm which is capable of restoring the modulus of the array output. It is clear from 

both Figures 4.7 & 4.9 the RLS optimization technique provides a faster convergence rate 

than that of the CMA algorithm. However, the constant modulus cost function described 



 

by equation 4.32 is non quadratic in the array weights, therefore making application of 

the RLS algorithm impossible. The RLS-CMA algorithm attempts  

to modify the constant modulus cost function to allow use of the RLS algorithm for the 

special case where q = 2. Replacing the expectation operator in equation 4.32 with the 

exponential sum of weighted error squares yields a modified cost function for q = 2 given 

by 

                                            

 

Figure 4.4 below depicts the convergence curve for the RLS-CMA algorithm w/ p 

= 1, and λ = 0.99 versus the convergence curve for the CMA algorithm w/ p = 1, q = 2 

and µ = 1×10−3 for the multipath scenario described in the above section  

 



 

 

 

Figure 4.4: Convergence Curve for RLS-CMA vs. CMA w/ p = 1, q = 2 and λ = 0.99. 

The beampattern for this scenario is provided in Figure 4.5 below. 

 

 

                               Figure 4.5: Beampattern for RLS-CMA 

 

 

then the algorithm is much more capable of adapting to the proper weights without 

divergent error and issues with stability no matter what signals are incident upon the 

array. It is quite possible that since the approximation in equation 4.59 alters the weight 

update to reflect previous weights, the ability of the algorithm to combat phase 



 

ambiguities presented by tracking the variations in the envelope are diminished. 

Remember that for the CM cost function, the phase shifted version of a weight vector 

which produces an output possessing a constant envelope also produces an output with a 

constant envelope. This is not necessarily the case with the RLS-CMA algorithm. Its 

ability to measure the variations in the envelope of the array output is troubled when the 

two signals are highly correlated. Either way, it still provides a greater convergence rate 

than that of the CMA algorithm but lacks the ability to significantly decrease the 

contribution from interferers with equal modulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  5 
 

 

 

 

 

 

 

 
 

 

 

 

 

SIMULATIONS AND RESULTS 

 
LMS ALGORITM 

 

CMA ALGORITHM 

 
                                                                          

 
 

 



 

5.1 LMS ALGORITM  [1] [5] 
 

An adaptive array is simulated in MATLAB by using the LMS algorithm. When an array 

of 4 antennas is used with a separation of _/2 (_ is wavelength), there is a maximum of 3 

nulls that can eliminate the interferer. Figures 2-4 shows the convergence of the array for 

2 interferers. The interference signals are Gaussian white noise, zero mean with a sigma 

of 1. The extra system noise to all antennas is white noise with zero mean and a sigma of 

0.1. The received signals are MSK signals with an up-sampling of 4 and have amplitude 

of 1 in the simulations. The true array output y(t) is converging to the desired signal d(t). 

The resulting array vector has an amplitude response as shown in Figure 5. The 

interferers are cancelled by placing nulls in the direction of the interferers. The received 

signal arrives at an angle of 35 degrees and the array response is 0 dB. The LMS 

algorithm clearly works sufficient as the strong interferers are educed. The source code 

for the MATLAB simulations can be found in Appendix 
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   The graph is obtained between phase of desired signal n LMS output. Here we see tow 

lines a red and a blue. red is the phase of desired signal and blue is the phase of lms 

output. So in this way we see there is not much difference in the desired and the obtained 

output. 

 

 

 

 

                                   Figure 5.1: Phase of desired signal and LMS output 

 



 

 

 

This is graph obtained between magnitude of desired signal and lms output. In the figure 

we see that the lms output is a blue line while the desired output  shows a little about the 

Lms output line. 

 

 

 

 

 
 

              Figure 5.2: Magnitude of desired signal and LMS output 



 

 

 

 

 

 

 

 

 
 

 

 

                       Figure 5.3: Error between desired signal and LMS output 

 

 

 

 

 



 

 

 

 

 

 

Another graph is obtained for the amplitude response after beamforming. 

 

 

 

 
 

 

                                     Figure 5.4: Amplitude response after beamforming 

 

 

 

 



 

 

 

 

5.2 CONSTANT MODULUS ALGORITHM: 
 
The graph is obtained between phases of desired signal n CMA output. Here we see tow 

lines a red and a blue. red is the phase of desired signal and blue is the phase of CMA 

output. So in this way we see there is not much difference in the desired and the obtained 

output. 

 
 
       

 
 
 
                      Figure 5.5: Phase of desired signal and CMA output 
 
 



 

 
 
 

This is graph obtained between magnitude of desired signal and CMA output. In the 

figure we see that the CMA output is a blue line while the desired output shows a little 

about the  

Lms output line 

 

 

 

 

 
 
 
 
                    Figure 5.6: Magnitude of desired signal and CMA output 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This graph is between the errors of desired signal and CMA output 

 

 

 

 

 
 



 

 
Figure 5.7: Error between desired signal and CMA output 
 
 
 
 
 
 
 
 
 
 
 
Another graph is obtained for the amplitude response after beamforming 
 
 
 
 

 
                         Figure 5.8: Amplitude response after beamforming 



 

 

   

 

CM algorithm converges slower than LMS algorithm. During the efforts to simulate the 

CM algorithm it was clear that the algorithm is less stable than the LMS algorithm. CM 

algorithm seems to be more sensitive to gradient constant µ and also for both algorithms, 

µ can be calculated adaptively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 

MATLAB Code for comparing beamforming using LMS algo with 
CMA (blind) algo 

 
clc; 
close all; 
clear all; 
% INITIALIZATIONS 
NumofAntenna = 4; % Number of antennas in the array 
NumofSamples = 100; % Number of bits to be transmitted 
SigmaSystem = 0.1; % System Noise Variance 
theta_x = 35 * (pi/180); % direction of signal x 
theta_n1 = 0 * (pi/180); % direction of noise source 1 
theta_n2 = -20 * (pi/180); % direction of noise source 2 
% TIME SETTINGS 
theta = pi*[-1:0.005:1]; 
BitRate = 100; 
SimFreq = 4*BitRate; % Simulation frequency 
Ts = 1/SimFreq; % Simulation sample period 
% GENERATE A COMPLEX MSK DATA TO BE TRANSMITTED 
for k=1:NumofSamples 
q=randperm(2); 
Data(k)=-1^q(1); 
end 
Data = upsample(Data, SimFreq/BitRate); % Upsample data 
t = Ts:Ts:(length(Data)/SimFreq); % Timeline 
faz=(cumsum(Data))/8; 
signal_x = cos(pi*faz)+j*sin(pi*faz); % The signal to be received 
% GENERATE INTERFERER NOISE -> uniform phase (-pi,pi), gaussian amplitude 
% distribution(magnitude 1) 
signal_n1 = normrnd(0,1,1,length(t)).*exp (j*(unifrnd(-pi,pi,1,length(t)))); 
signal_n2 = normrnd(0,1,1,length(t)).*exp (j*(unifrnd(-pi,pi,1,length(t)))); 
% GENERATE SYSTEM NOISES for EACH ANTENNA -> uniform phase (-pi,pi), 
gaussian 
% amplitude distribution(magnitude 1) 
noise = zeros(NumofAntenna, length(t)); 
for i = 0:NumofAntenna-1, 
noise(i+1,:) = normrnd(0,SigmaSystem,1,length(t)).*exp (j*(unifrnd(-pi,pi,1,length(t)))); 
end; 
% ARRAY RESPONSES for DESIRED SIGNAL (X) and INTERFERER NOISES (N1 
and N2) 
Kd = pi; % It is assumed that antennas are seperated by lambda/2. 
response_x = zeros(1,NumofAntenna); 
response_n1 = zeros(1,NumofAntenna); 
response_n2 = zeros(1,NumofAntenna); 
for k = 0:NumofAntenna-1, 



 

response_x(k+1) = exp(j*k*Kd*sin(theta_x)); 
response_n1(k+1) = exp(j*k*Kd*sin(theta_n1)); 
response_n2(k+1) = exp(j*k*Kd*sin(theta_n2)); 
end; 
% TOTAL RECEIVED SIGNAL (SUM of X.*Hx, N1.*Hn1 and N2.*Hn2) 
x = zeros(NumofAntenna, length(t)); 
n1 = zeros(NumofAntenna, length(t)); 
n2 = zeros(NumofAntenna, length(t)); 
for i = 0:NumofAntenna-1, 
x(i+1,:) = signal_x .* response_x(i+1); % received signal from signal source x 
n1(i+1,:) = signal_n1 .* response_n1(i+1); % received signal from noise source n1 
n2(i+1,:) = signal_n2 .* response_n2(i+1); % received signal from noise source n2 
end; 
signal_ns = (noise + n1+n2+x); % total received signal 
% EVALUATUING WEIGHTs THOSE SATISFY BEAMFORMING at DESIRED 
DIRECTION 
y = zeros(1,length(t)); % output 
mu = 0.05; % gradient constant 
e = zeros(1,length(t)); % error 
method = input('Enter the type of beamforming algorithm (lms (1) or cm (2)): '); 
switch method 
case 1 
w = zeros(1,NumofAntenna); % weights 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%LMS Algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
for i=0:length(t)-1, 
y(i+1) = w * signal_ns(:,i+1); 
e(i+1) = signal_x(i+1)-y(i+1); 
w = w + mu *e(i+1)*(signal_ns(:,i+1))'; 
end; 
case 2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%Constant Modulus Algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
w = zeros(1,NumofAntenna); w(1)=eps; % weights 
for i=0:length(t)-1, 
y(i+1) = w * signal_ns(:,i+1); 
e(i+1) = y(i+1)/norm(y(i+1))-y(i+1); 
w = w + mu *e(i+1)*(signal_ns(:,i+1))'; 
end; 
otherwise 
disp('Unknown method!') 
end 
% PLOTS 
close all; 
plot(phase(y),'r'); 



 

hold; 
plot(phase(signal_x),'--b'); 
ylabel('phase(rad)'); 
xlabel('samples'); 
title('Desired Signal: 25 degrees & Interferers: 0 and -40 degrees') 
legend('phase(d)','phase(y)') 
hold off; 
figure; 
plot(abs(y),'r'); 
hold; 
plot(abs(signal_x),'--b'); 
ylabel('amplitude'); 
xlabel('samples'); 
legend('magnitude(d)', 'magnitude(y)') 
hold off; 
figure; 
plot(abs(e)); 
ylabel('amplitude'); 
xlabel('samples'); 
figure; 
for k = 0:NumofAntenna-1, 
response(k+1,:) = exp(j*k*Kd*sin(theta)); 
end; 
% CALCULATE ARRAY RESPONSE 
R = w*response; 
plot((theta*180/pi), 20*log10(abs(R))); 
title('Amplitude Response for given Antenne Array'); 
ylabel('Magnitude(dB)'); 
xlabel('Angle(Degrees)'); 
axis([-90,+90,-50,10]); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

CONCLUSION 
                                                                   

 
                      In this study of  beamforming we have giving an introduction to most of the 

adaptive beam forming algorithms. They can be characterized in two heading i.e non-

blind algorithm and blind algorithm. 

                      In non–blind algorithm we discussed Sample Matrix Inversion, {SMI}, 

Least Mean Square {LMS}. Recursive Least Squares {RLS}.and in the above methods 

we need to generate a signal having maximum co-relation with a desired signal. and in 

the blind algorithms  such as Constant Modulus Algorithms{CMA}, Recursive Least 

Squares Constant Modulus Algorithm (RLS-CMA), Least Squares Constant Modulus 

Algorithm (LS-CMA}, Steepest Descent Decision Directed Algorithm (SD-DD}.we need 

to know just the signal characteristics to get the desired signal. 

                       In this study we have compared two algorithms one is a non-blind 

beamforming algorithm{LMS} and other is a blind beamforming algorithm{CMA}.and 

have compared the results with regards to smart antenna array system. 
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