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Abstract 
 

 

Thermal radiation is important in many applications, and its analysis is difficult in the 

presence of a participating medium. In traditional engineering studies, the transient term of 

the radiative transfer equation (RTE) can be neglected. The assumption does not lead to 

important errors since the temporal variations of the observables e.g. temperature are slow as 

compared to the time of light of a photon. However in many new applications such as pulsed 

LASER interaction with materials, the transient effect must be considered in the RTE. In the 

transient phase, the reflected and the transmitted signals have temporal signatures that persist 

for a time period greater than the duration of the source pulse. This could be a source of 

information about the properties field inside the medium. Hence sufficiently accurate solution 

methods are required. Predicted signals are dependent on the considered models. The results 

vary significantly from approximate models. 

 

In the last few years, the finite volume method (FVM) and discrete transfer method have 

emerged as one of the most attractive methods for modeling steady state radiative transfer.  

 

The present research work deals with the analysis of transient radiative transfer in one 

dimensional scattering medium using FVM. One boundary is subjected to short pulse 

irradiation and the other boundary is assumed to be diffused. The effects of short pulse 

LASER on variation of transmittance and reflectance with time have been observed for a 

given value of optical thickness and scattering albedo. The results obtained were in 

accordance with that obtained from the discrete transfer method (DTM). 
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Chapter 1 
 
 

INTRODUCTION 
 

Thermal radiation is important in many applications and its analysis is difficult in the 

presence of participating medium. Thermal radiation being electromagnetic waves, it 

propagates at the speed of light. In most of the traditional engineering application, such as in 

the thermal analysis of boilers, furnaces, IC engines etc. as temporal variations in thermal 

quantities of interests are much slower than the time scale associated with the propagation of 

thermal radiation, transient term from the radiative transfer equation is neglected, i.e. 

radiation is assumed an instantaneous(steady state) process. However there are certain 

situations in which temporal variations are required at time scales as low as 10-12   to 10-15 

seconds. Therefore such situations necessitate inclusion of transient term in the radiative 

transfer equation, thereby making the problems further complicated. 

 

Some examples where transient nature of thermal radiation has to be considered are the micro 

scale systems, pulsed laser interaction with materials, laser induced shock waves, laser 

therapy, optical tomography, remote sensing of turbid area of ocean and atmosphere, probing 

the characteristics of the particulate medium by examining the transmitted or back scattered 

intensities, particle detection and sizing. A detail review dealing in various aspects of 

transient radiative transport has been done. The details of transport phenomenon involving 

thermal radiation can be found in Chandrasekhar [30]. 

 

In the literature, applications of various existing methods used for solving steady state 

radiative transport problems have been extended to the analysis of transient radiative transfer 

transport in the participating medium. Rackmill and Buckius [15] used the finite difference 

method with adding double scheme to solve transient equation of transfer for a plane parallel 

slab. Diffusion approximation has been used by Yamada [8] and Flock et al [16]. As is true 

with the solution of steady state radiative transport problems, diffusion approximation has 

been found to give correct predictions only for optically thick conditions. For thin optical 

thickness condition it has not been found suitable. Kumar et al.[18] and mitra et al.[19] have 

extended the use of P1 approximation to the solution of     
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transient radiative transport for 1D and 2D rectangular geometries. Mitra and Churnside [11] 

have applied discrete ordinate method for the solution of transient radiative equation applied 

to oceanographic lidar. Monte carlo method has been used by Guo et al. [20] and Schwieger 

et al.[21]. Tan and Hsu [22] have used a time dependent integral formulation for modeling 

transient radiative transfer, and the application of the radiation element method for this class 

of problems has been extended by Guo and Kumar [23].  

 

A comparative study of two-flux method, P1 approximation and the discrete ordinate method 

has been presented by Mitra and Kumar [24]. They compared both the parabolic as well as 

the hyperbolic nature of the short pulse radiative transport, and found that for higher optical 

thickness, both hyperbolic ad parabolic solutions become identical. Also it has been observed 

that the wave propagation speed depends upon the method used. With two-flux method and 

P1 approximation, propagation speed of wave front has been found to be far away from the 

speed of pulse. This lower propagation speed could have the potential drawback of predicting 

results that have a significant temporal mismatch with observed data. But such discrepancy is 

low with the DOM. However DOM, is prone to ray and fall scattering effects and it is severe 

in multidimensional geometries hence scope for further study remains open with other 

numerical methods.  

 

Discrete transfer method (DTM) [25] is one of the popular methods for solving radiative 

transfer problems. For steady state problems, this method has been extensively used for pure 

radiation as well as radiation, conduction and/or convection heat transfer problems. However 

for the transient radiative heat transfer problems, applicability of this method has not been 

explored so far.  

1.1 Present objectives 
Following are the objectives in the present work. 

 Analysis of transient radiative transfer equation subjected to short pulse laser at one 

boundary of a homogeneous 1-D planar medium. The medium is assumed absorbing, 

emitting/non-emitting and scattering. 
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 Applicability of finite volume method to transient radiative transfer problems. 

 Variation of heat flux with respect to optical thickness. 

 Variation if transmittance with respect to time. 

 Validation of finite volume method with discrete transfer method(DTM) 

 

1.2 REVIEW OF EXISTING METHODS 

1.2.1 EXACT ANALYTICAL METHOD 

Analytical solution of transient radiative heat transfer problem is a very difficult task and can 

only be obtained for a highly simplified and idealized situations such as a 1D plane parallel 

medium. Transient radiative transfer has got its wide application in the areas of atmospheric 

sciences, neutron transport, laser applications etc. Tan and Hsu have given an integral 

formulation for the case of an 1D plane parallel absorbing, non-emitting and scattering 

medium. The non-emission assumption is valid in many situations where short pulse laser or 

light source is directed into a cold medium. The non-emission assumption is also valid in the 

situation where temperature disturbance caused by the incident pulse in the material cannot 

be immediately revealed within the time scale of the radiative transport. 

 

When a radiation beam travels through a participating medium, it is attenuated by absorption 

and by out scattering and at the same gains energy by emission as well as by in-scattering 

from other direction into the direction of travel. The resulting equation is shown in Eq.(1.2 

.1)The equation for transient radiative transfer of the intensity in the direction s is given by 
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where D, represents the substantial derivative, a - the absorption coefficient, k and σ are 

scattering coefficients and I is the intensity inside the medium. Equation (1.2.1) is the 

Lagrangian viewpoint and Eq. (1.2.2) the Eulerian. It is found that the Lagrangian view point 

can simplify the analysis of the time-of-f1ight of a photon and allows for deduction of the 

domain of influence. Since in the Lagrangian viewpoint the observer is moving with the 

wave, the dependence upon sand t could not be separated from each other. The dependence is 

evident from the relationship of dt = . Therefore, only one independent variable (either t or 

s) is needed in the transient analysis. Once the distance ds through which the radiation travels 

along a certain path is given, the relative location s + ds and the time interval dt = ds/c 

(hence the instant t' = t + ds/ c) can be determined definitely. 

In the figure (1.1 the layer width is Zo in the z direction. The transient radiative transfer 

equation can be written as (Lagrangian viewpoint) 

 

 

 

where ¢(θ', θ) is the scattering phase function. For isotropic scattering, ¢(θ', θ) = 1.  
This leads to  
 
 
 
 
where G(z, t) is the incident( or integrated) radiation defined as  
 
 
 
 
Using an integrating factor, Eq. (1.2.4) can be written as 
 
 
 
 
 
 
 
 
 

 
 
4 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
Figure 1.1: Geometry for analysis of exact analytical method.  

Integrating Eq. (1.2.6) on both sides, one obtains  
 
 
 
 
 
 
 
 
 
When s' = s, the corresponding coordinate is z' = z and t' = t, which are the location and the 

instant under consideration (Fig. 1.1). Since the time interval between s’ = 0 and s’ = s is Δt 

= s/c, therefore, at s’  = 0 the same photon can be described by z' = 0 and t' = t – s/c. 

Substituting the above relationships into the left hand side of Eq. (1.2.8) gives  
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In order to carryout the integration on the right side of Eq. (1.2.9), the dummy variables z' and 

t' of the integrated intensity G should be expressed in terms of the integrating variables s', 

which can easily be found. Therefore Eq. (1.2.9) becomes  

 
                       (z-(s-s’)cosθ,t-(s-s’)/c) ds’     (1.2.10)                                      
Physically, one can readily appreciate that the first term on the right-hand side of Eq. (1.2.10) 

is the contribution to the local intensity by the intensity entering the medium from the 

boundary at s' = 0, which decays exponentially due to extinction over the optical distance ks 

(Fig. 1.1 ). Since it takes the photon an amount of time s/c to travel from the boundary (at s' = 

s), the boundary contribution can only come from the radiation entering the medium at the 

instant of t' = t - s / c. The integrand of the second term, σG(z',t')ds'/4π, is the contribution from 

the local scattering at s', attenuated exponentially by extinction over the distance between the 

scattering point and the point under consideration, s - s'. Since the time interval between these 

two points is Δt = (s-s')/c, only the photons at and after the instant of t' = t - (s - s')/ c, and in 

the position z' >= z - (s - s') cos θ contribute to the radiative intensity at the location z at the 

instant t, I(z, θ, t). The integral sums all of the contributions over the entire scattering path from 

s' = 0 to s' = s. Eq.(1.10) shows that radiative intensity in a certain direction depends on the 

time history along the path in that direction. Furthermore, radiative intensity at location z, at 

time t and in direction e depends on the radiation emitted from the boundary at an earlier 

instant (t - s / c) in the same direction and the entire time history of incident intensity along the 

path of travel, rather than the values at the same instant t. Thus, transient radiative transfer 

presents a strong time dependence, which in turn implies a path length dependence. 

 

1.2.2. Collapsed Dimension Method 
 
This method was proposed by [28] and its detailed information and development is given by 

Mishra [29]. This method seems to be promising in terms of accuracy and applicability to 

conjugate and complex geometries problem. In CDM, 3-D radiative information mapped into 

2-D plane in terms of effective intensity and optical thickness coefficient (OTC). At a point in 

the system, all the actual intensities contained in the discrete plane are represented by an 

effective intensity. Since effective intensities are obtained only in 2-D plane, it is unlike  
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actual intensities contained in dictate plane are represented by an effective intensity. Since 

effective intensities are obtained only in 2-D plane, it is unlike actual intensities where we 

need two angles one is polar and another is azimuthally angles, here in CDM, they are 

identified by only one angle, i.e., planar angle. Due to application of a single angle in 

effective intensity, mathematical expressions for all radiation parameters (radiative heat flux, 

incident radiation, divergence of radiative heat flux, boundary intensity) are different from 

other methods. Thus, absence of one angular dimension from the analysis makes formulation 

and solution procedure simpler. Collapsed Dimension Method (CDM) developed by Mishra 

[29] is employed. 

 
1.2.3. Discreate Ordinate Method 
 
This method was developed by Chandrasekhar [30] to astrophysical problems and later 

applied to neutron transport by Carlson and Lathrop. This method was initially used in 

radiative heat transfer by Hyde and Truelove. The DOM is based on a discrete representation 

of directional variation of radiative intensity. In this method angular intensity at any point in 

space can be represented by a discrete set intensities which can span over entire solid angle of 

4π. Any quantity that involves the integral of intensity is estimated by an angular quadrature 

scheme. For instance, the irradiance is expressed as 

     (1.2.15) 

Where wi are the quadrature weights, M is the total number of discrete directions. The 

evaluation of radiant het amounts to the solution of the RTE in these specific directions as M 

= N (N + 2). 

This method was implemented by Khail and Truelove  for cylindrical enclosures and by 

Fiveland  for two and three dimensional rectangular enclosures with anisotropic scattering 

medium. The S4 method is generally found slightly more accurate than the spherical 

harmonics P3 method with better computational economy.  The major drawback of this 

method is the presence of ray effects, i.e., inability to discretize intensity distribution to fully 

represent the actual continuous distribution especially when radiant energy conservation is 

not insisted upon. Consequently, radiation can not be ‘lost’ if it does not fall into one of the  

 

 

7 



 

discrete ordinate directions where ray effects can not be totally eliminated. Another drawback 

of SN method is to extend its application beyond Cartesian geometry . This is evidenced even 

in the simple cylindrical system where formulation is made complicated by additional 

restrictions entailed by the presence of curved surface. 

 

 

1.2.4 Simple Harmonics (PN - Approximation) 
 
 

This method is a vehicle to obtain an approximate arbitrary high order (i.e., accuracy), by 

transforming the equation of transfer into a set of simultaneous partial differential equations. 

In this method radiative intensity field I(r,s) at location r within the medium as the value of 

scalar function on the surface of a sphere of unit radius, surrounding the point r. Any such 

function may be expressed in terms of a two-dimensional generalized series. 

   (1.2.16) 

Where  , are space functions and the spherical harmonics ,  are defined in terms 

of the associated Legendre polynomials . The factor N specifies the truncation 

polynomial series and the order of approximations. The general procedure to determine 

 is to substitute in Eq. (1.2.16) into RTE and integrate over 4π the product of the RTE 

and . This step essentially forces the assumed functional form of intensity to satisfy the 

RTE over the entire solid angle of 4π. The result is (N + 1)2 coupled PDE for the (N + 1)2 

unknowns of  All the coefficient are replaced by the moments of intensity in these 

equations which are then solved to determine the radiant  

heat fluxes. Because of strong mathematical basis, determination of radiative heat  

transfer by this method is better than the simple flux method. The PN method has been 

applied to one, two and three dimensional problems with good accuracy . Incorporation of 

antisotropic scattering has also been achieved in combustion system by Men u  and by 

Viskanta  and Verma and Men u  . The main weakness of this method is its inflexibility. 

The order of approximation N, cannot be changed without a substantial derivation of the  
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governing equations. Actually, the P3 approximation is considered the accurate one, because  

changing N from 3 to 5 requires complex derivations and high computational cost with 

marginal improvement in accuracy as quoted by Men u  and Viskanta. Accurate results 

below 0.5 optical thickness and/or sharp intensity distributions have sharp angular variations. 

And, the result are sensitive to boundary condition, the table (1.1) shown above shows 

summary of various methods used in solving transient radiative transfer problem. 
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Method Summary and Remarks 

Exact These solutions are obtained by solving RTE analytically. These are accurate 

byt can only obtained in highly idealized situations [22]. 

PN RTE is transformed into set of PDE’s. Here angularly dependent intensity field 

is expressed in a series of approximations. It provide accurate results for simple 

as well as for complex geometries [37 – 42] 

DOM In this method, angular distribution of intensity, at any point in the enclosure is 

represented by a discrete set of intensities spanned over the entire solid angle of 

4π. This is widely used in the field of astrophysics [33,34]. The major 

drawback is presence of ray effect and false scattering.  

DTM Method was proposed by Lockwood [27] and Shah [25]. This is a combination 

of zone method, MCM and flux method. This is numerically exact and 

geometrically flexible. It can easily be implemented on conjugate problems. 

The weakness is large number of rays needed for complex geometry. 

CDM This is a ray tracing method proposed by Mishra [29], actual intensities are 

mapped into 2-D plane and instead of two angles, i.e., polar and azimuthal only 

one angle, i.e., planar angle is used. This method is computationally less 

expensive. 

 

Table 1.1: Summary of Various Radiative Heat Transfer Method 
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Chapter 2 
 

FORMULATION 
 
 

2.1 TRANSIENT RADIATIVE TRANSPORT EQUATION 

 

Radiation Transfer Phenomenon can take place in two ways. 

1.Non Participating medium  e.g. (Vacuum) 

2.Participating medium e.g. (Glass, Wood, tissue) 

Radiation energy passing through dA1 and falling  

(at a later time) on dA2

= ( )
( )2

12

21
11211 ,

SS
dAdAdtSIddAdI
−

=Ω − λλ λλ  

1
21

12 t
C

SS
tt ≈

−
+=  

Radiation energy passing through dA2 from dA1 

= ( )
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222 ,

SS
dAdAdtSI
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( )SI λ⇒ = Constant for surface radiation. 

Radiation in Participating medium Absorption:- 

dSIKdI λλλ −=  

λK = absorption coefficient 

∫∫ −= Kds
I

dI

λ

λ  

( ) ∫−
=

S

O
kds

eII 0λλ  

∫
S

O

Kds  = optical thickness of the medium 
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Dimensionless absorption coefficient 

KsdsKdsKZ
S

O

S

O

==== ∫ ∫λλ  

Emission-: Augmentation of intensity inside the medium 

sbdIKdI λλ =  

bI = Intensity of radiation of black body 

π/4aI=  

Z 

Z = 0 

Z = i 

 

 

Absorbing Emitting medium 
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eIeIZI
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Scattering-: it may be of two types 

i) OUTSCATTERING: - involves/results in the attenuation of radiation energy. 

            dIλ = -asλIλds  where asλ is scattering coefficient. 

 

ii) INSCATTERING: - augmentation of radiation energy. 

Radiation energy falling onto dA within the solid angle dΩi.  = IλdλdACosθdΩi

Radiation energy after traveling through distance ds  

= (asλIλ dλdACosθdΩi)ds/Cosθ. 
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Radiative Energy Balance:- 
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2.2 Formation of TRTE using Finite Volume method 
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Фll = Phase function from the direction l to the direction l. 

 Фl’l = Phase function from direction l’ to the direction l where l’ = 1 to M and l’ ≠ M 
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mβ   =  modified extinction Coefficient. 

Sm = Modified Source function. 
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Integrating equation (2) over a Control Volume, over a Control angle and over a time 

interval t to t+∆t 
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Hence equation -3 for a typical control volume in a given orientation as shown in 
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In a 2-dimensional control volume 

Is
l ≠ Iw

l and In = Ie = Ip

 
2.3 Non dimensional TRTE equation 
 
The TRTE equation using finite volume formulation is  
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Integrating equation (2) over a Control Volume, over a Control angle and over a time 

interval t *to t*+∆t*
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Hence equation -3 for a typical control volume in a given orientation as shown in 

figure is given by 
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where ap
l, aw

l, as
l,  and bl  can be found out by equating the coefficients. 

 

2.4 SOLUTION PROCEDURE 

1. Advance the time step t = t + Δt 

2. Guess the intensity field in all the interior grids in the computational domain. 

3. Start the calculation from one of the boundaries in the current time step. 

4. Calculate the modified source function and modified extinction coefficient. 

5.  Compute Ip based on the guessed values. 

6. Approximate the values of 5p at the boundaries using immediate neighbor values. 

7. Calculate the maximum error from all the interior grid points. 

Guess Ipn  -  Ip 

8. Check (max error < tolerance limit) 

If no 

 guess Ip = Ip 
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Go to step (3) 

If yes  

Check (time required = time step reached) 

If yes stop. 

If no  

repeat step 1-7 
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Chapter 3 
 
RESULTS AND DISCUSSIONS 
 

First the grid independent tests were performed to check the values of number of control 

volumes, number of control angles and the incremental time at which the result did not 

change from their neighboring values. In the following sections, the results of the time-

varying non-dimensional transmissivity and reflectivity obtained from the FVM are presented 

for a particular value of optical thickness T for a scattering medium (scattering albedo ω = 

0.998). For pulse LASER irradiation normal to the top boundary (μ0=1), all these results are 

presented for the non-dimensional pulse width βct=1. 

 

In figure-3.1, the variation of dimensionless heat flux (ψ) with optical thickness (T) for 

normal collimated irradiation using different control volume sizes is plotted. It is found that 

the results did not change for number of control volumes greater than 40. 

 

In figure-3.2, the variation of dimensionless heat flux (ψ) with optical thickness (T) for 

normal collimated irradiation using different control angle sizes is plotted taking number of 

control volumes as 40. It is found that the results did not change for number of control angles 

greater than 30. 

 

In figure-3.3, the variation of dimensionless heat flux (ψ) with optical thickness (T) for 

normal collimated irradiation using different time step increments is plotted with number of 

control volumes as 40 and number of control angles as 30. it is found that the results did not 

vary for time step increment less than 0.01. 

 

In figure-3.4 the variation of dimensionless heat flux (ψ) with optical depth (Y) at different 

times are plotted. In this case albedo=1, the number of control volumes CV=40, number of 

control angles CA=30. dimensionless time increment DT=0.01. from this plot we find that at 

time t*=8, the non-dimensional heat flux becomes constant throughout the optical thickness 

and thus the steady state is achieved. The divergence of flux is zero. 
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In figure-3.5 the transient characteristics is studied. It shows that in transient radiation  

analysis, radiation takes some finite time to travel the optical depth of the medium. The 

greater the optical depth of the medium, the more time is taken by the radiation to travel from 

one boundary to the other. So the transmittance signals are found available only after the time 

radiation has reached the other boundary. However as found from figure-3.6, the reflected 

signal is available as soon as the boundary is subjected to the pulsed-laser source. 
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Figure-3.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

ψ

CA=15
 CA=30
CA=45

T

ω  =1

 
Figure-3.2 
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Figure-3.3 
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Figure-3.4 
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Figure-3.5 
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Figure-3.6 

 
 

 

 

Conclusion 
Application of the finite volume method has been made, to solve transient radiative transport 

problems in a participating medium. The formulation presented has been validated by solving 

transient radiative transfer problems in a one-dimensional planar absorbing and scattering 

medium, one boundary of which is subjected to a short-pulse laser and the other boundary of 

which is cold. Effects of optical thickness on transmittance and reflectance have been studied. 

For some sample cases, results have been compared with those available in the literature. The 

finite volume method has been found to work well for the transient radiative transport 

problems. 
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