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Abstract

Distributed Systems are becoming very popular day-by-day due to their applica-

tions in various fields such as electronic automotives, remote environment control like

underwater sensor network, K-connected networks. Faults may affect the nodes of

the system at any time. So diagnosing the faulty nodes in the distributed system is an

worst necessity to make the system more reliable and efficient. This thesis describes

about different types of faults, system and fault model, those are already in literature.

As the evolutionary approaches give optimum outcome than probabilistic approaches,

we have developed Genetic algorithm based fault diagnosis algorithm which provides

better result than other fault diagnosis algorithms. The GA-based fault diagnosis algo-

rithm has worked upon different types of faults like permanent as well as intermittent

faults in a K-connected system. Simulation results demonstrate that the proposed

Genetic Algorithm Based Permanent Fault Diagnosis Algorithm(GAPFDA) and Ge-

netic Algorithm Based Intermittent Fault Diagnosis Algorithm(GAIFDA) decreases the

number of messages transferred and the time needed to diagnose the faulty nodes in

a K-connected distributed system. The decrease in CPU time and number of steps are

due to the application of supervised mutation in the fault diagnosis algorithms. The

time complexity and message complexity of GAPFDA are analyzed as O(n*P*K*ng)

and O(n*K) respectively. The time complexity and message complexity of GAIFDA are

O(r*n*P*K*ng) and O(r*n*K) respectively, where ’n’ is the number of nodes, ’P’ is the

population size, ’K’ is the connectivity of the network, ’ng’ is the number of generations

(steps), ’r’ is the number of rounds. Along with the design of fault diagnosis algorithm

of O(r*k) for diagnosing the transient-leading-to-permanent faults in the actuators of a

k-fault tolerant Fly-by-wire(FBW) system, an efficient scheduling algorithm has been

developed to schedule different tasks of a FBW system, here ’r’ denotes the number of

rounds. The proposed algorithm for scheduling the task graphs of a multi-rate FBW

system demonstrates that, maximization in microcontroller’s execution period reduces

the number of microcontrollers needed for performing diagnosis.
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Chapter 1

Introduction

1.1 Introduction

Distributed computing systems are becoming popular day-by-day due to their vari-

ous applications in both computational and communication intensive tasks. Several

definitions and view points are stated in the literature about the distributed systems.

Coulouris defines a distributed system as ”A system in which hardware or software

components located at networked computers communicate and coordinate their ac-

tions only by message passing” [8]. Tanenbaum defines it as ”A collection of inde-

pendent computers that appear to the users of the system as a single computer” [42].

Leslie Lamport, a famous researcher on timing, message ordering and clock synchro-

nization in distributed systems once said that ”A distributed system is one on which I

cannot get any work done because some machine I have never heard of has crashed”,

reflecting on the huge number of challenges faced by distributed system designers.

The nodes in a distributed system are connected by an interconnection network. The

communication in between nodes in the distributed system takes place by exchang-

ing messages. Therefore these distributed systems are commonly known as message

passing distributed systems with contrast to shared memory communication, which

is extensively followed in various multiprocessor and parallel system. Some of the

distributed systems such as wireless ad-hoc networks follow an arbitrary network

topology, where the nodes are randomly deployed in the environment. Another kind

of distributed systems such as electronic automotive systems are extensively used in

1



1.1 Introduction

real time applications.

However the components of the systems are subjected to various kind of faults.

The occurrence of faults not only affect the normal system functions but also causes

the degradation in performance. Due to this fact, the failure handling has been a key

research area since the development of these distributed systems. In some distributed

systems such as Steer-By-Wire(SBW) system, Fly-By-Wire(FBW) system, Break-By-

Wire(BBW) system , if faults are not handled within a specific deadline, the system

leads to catastrophic failure. Therefore, these distributed systems are called safety-

critical real time distributed embedded systems.

The different types of faults[3] which usually occur in a distributed system are

as follows:

• Permanent Fault

• Transient Fault

• Intermittent Fault

• Byzantine Fault

The description of these faults have been discussed in section 1.3 of this chapter. In

precise, fault avoidance and fault tolerance are two important techniques for handling

faults. Fault avoidance in distributed systems are effective upto certain extent but is

least efficient in real life application. However producing the correct outcome from

the system inspite of the presence of faulty nodes is rather a better approach. The

system that produces correct outcome by counteracting the effect of fault is known as

fault tolerant system. The following two approaches are followed to achieve the fault

tolerance in distributed system.

Method 1: Detecting and Diagnosing faulty nodes by N-modular Redundancy, In-

formation Redundancy, Computational Redundancy, Dynamic Redundancy, Logic-

circuit-level testing, Component or System level testing

2



1.1 Introduction

Method 2: Masking of faulty nodes and reconfiguration of the system.

In method 1, during the detection and diagnosis of faulty nodes, the first 3 tech-

niques incur hardware overhead and computational time overhead for large computa-

tions. Dynamic redundancy is proved as the best among different redundancy schemes

as the monitoring of the units are repeated after a specific interval. Fourth technique

needs large amount of data to be generated , stored and produced that again leads to

the problem of hardware overhead. The last technique i.e component or system level

testing is cheapest among all and overcomes the problem of redundancy as well as

complexity of testing at chip-level. System level testing is the most popular among all

the diagnosis techniques, where the testing operation is accomplished among nodes

of a distributed system at system level means at the unit level. In this work, ba-

sically system level fault diagnosis technique is applied to K-connected distributed

systems(defined in chapter 3) and distributed embedded system(Fly-By-Wire system),

as this technique is suitable for diagnosing faulty nodes of distributed system of small

to large size. It is noted that, the system level fault diagnosis has been accepted as the

universal method for fault diagnosis [38]. In method 2, the faulty nodes are masked

by using certain voting on the replication of same units. Thereafter, the system is

reconfigured for carrying out normal functions.

This chapter is organized as follows. Section 1.1 gives the introduction of the

thesis work , section 1.2 discusses the factors that motivate us to carry out the research

work . Section 1.3 describes the types of faults, system level fault diagnosis technique

and the different types of models used in system level fault diagnosis . Application

of different evolutionary approaches in system level fault diagnosis is described in

section 1.4 , section 1.5 consists of the objectives of the thesis work . The organization

of the thesis is described in section 1.6, followed by the conclusion of the chapter in

section 1.7.

3



1.3 Fault Diagnosis in Distributed System

1.2 Motivation

The distributed computing history is as old as computer network. Primary motivation

for building such system is to share geographically distributed computing resources.

We have seen great strides over the past five years in the key area of distributed

system technology. Distributed embedded systems are being realized as safety critical

realtime distributed system and they are used in applications such as FBW system,

SBW system, BBW systems. Since the occurrence of faults in the distributed systems

affect the dependability of the system, the following factors motivated us to undertake

the proposed research work:

• Study of the nature of different types of faults and different types of fault models

is necessary for developing diagnosis algorithm for distributed systems.

• Application of Genetic Algorithm is considered as a new, effective and efficient

approach for fault diagnosis in distributed systems.

• The topology of small and large scale distributed systems such as wireless adhoc

network are generally K-connected.

• System level diagnosis is indispensible for safety critical real time distributed

system like Fly-By-Wire, Break-By-Wire system to provide a robust system.

• The occurrence of permanent and intermittent faults are more likely in various

nodes of the K-connected systems and transient , subsequently leading to per-

manent fault are more likely to occur in real time embedded system such as

Fly-By-Wire system.

1.3 Fault Diagnosis in Distributed System

1.3.1 Types of faults

Faults are categorized depending upon their behavior.

1)Permanent fault:When the node of a distributed system is subjected to permanent

4



1.3 Fault Diagnosis in Distributed System

fault, it responds with some erroneous outcome.

2)Intermittent Fault: The unit of the diagnosable distributed system, which is intermit-

tent faulty, sometimes behaves as a faulty node and sometimes behaves as fault free.

3)Transient fault: This type of fault occurs due to environmental parameters like change

in temperature, pressure etc. The existing period of transient fault is not long like in-

termittent fault, it affects the units for a small period and the effect vanishes after that

period.

4)Byzantine fault: A byzantine fault is an arbitrary fault, which is the superset of all

the above types of fault.

1.3.2 System Level Fault Diagnosis

A diagnosable distributed system D consists of n units,Suppose set N={n1,n2,n3,n4, ....,nn},
the nodes in the set N are connected to each other by communication links. Each unit

ni of the set N, tests the subset of the set (N−ni) but not to itself. A test link ti j defines

that the unit n j is tested by the unit ni. Complete collection of tests in N is called

test connection assignment and is represented by a directed graph G(N,E), where each

unit ni is represented as a vertex in the graph and the test link ti j represents the edge

connecting to the tester node and tested node.

Application of system level diagnosis in the system D consists of two phases.

In the 1st phase, the type and nature of fault that is to be diagnosed is studied, the number

of faults that is to be diagnosed and the model used for test result interpretation is decided i.e

whether the fault is permanent or intermittent or transient or byzantine or the fault

type is hybrid, whether the model to be used is PMC Model or Comparison Model .

In 2nd phase of System level fault diagnosis, the process for identification of faulty nodes

from the testoutcome is developed. The fault diagnosis algorithm is applied on the sys-

tem to identify the faulty nodes and faultfree nodes from the test outcome obtained in

the 1st phase.

5



1.3 Fault Diagnosis in Distributed System

1.3.3 Types of model used for test result interpretation

During the first phase of system level fault diagnosis, the units of the system those

perform testing operation are treated as tester nodes and the nodes, on which the tests

are applied by the tester nodes, known as tested nodes. In SFD, the tests are performed

by sending a signal to the tested node and waiting for the response. The rules followed

to get the testoutcomes in tabular format is termed as model.

PMC model

The first theoretical model was introduced by Preperta, Merze, Chein in the year 1967,

known as PMC model. Again the PMC model is categorized into 2 models. These are

asymmetric PMC model and symmetric PMC model. In asymmetric PMC model, the

test outcome is 0, if both the tester and tested nodes are faultfree.The test outcome is 1,

if both the tested unit and tester units are faulty. The test outcome is unreliable(either

0 or 1), if the tester unit is faulty and the tested unit is faultfree. In case of symmetric

PMC model, the result is unpredictable when the tester node is faulty. When the

tester node is faultfree and the tested node is faulty in symmetric PMC model then the

outcome of the test is 1. The test outcome is 0, if both tested node and tester node are

faultfree. Table 1.1 shows the asymmetric PMC model. Table 1.2 shows the symmetric

PMC model.

Table 1.1: Test Result Interpretation using Asymmetric PMC model

Tester Tested Outcome

Faultfree Faultfree 0
Faultfree Faulty 1

Faulty Faultfree 0/1
Faulty Faulty 1

Comparison model

The comparison model was introduced by Malek. Basically in comparison model,

either one centralized comparator node exists that performs the comparison among
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Table 1.2: Test Result Interpretation using symmetric PMC model

Tester Tested Outcome

Faultfree Faultfree 0
Faultfree Faulty 1

Faulty Faultfree 0/1
Faulty Faulty 0/1

the outcomes generated by the pair of the units, when the same job is assigned to the

pair of processors, or one of the units performs the work of a comparator from the pair

of units. Comparison model is of 2 types. These are asymmetric Comparison model

and symmetric Comparison model. In asymmetric Comparison model, the compari-

son outcome is 0, if both the compared and comparator nodes are faultfree. The test

outcome is 1, if the compared unit is faulty. The test outcome is unreliable(either 0 or

1), if the comparator unit is faulty and the compared unit is faultfree.

In case of symmetric Comparison model,the result is unpredictable when the com-

parater node is faulty but when the comparater node is faultfree, the outcome of the

comparison is 1 and the compared node is faulty and the outcome is 0 if the compared

node is faultfree. Table 1.3 shows the comparison result interpretation using asym-

metric comparison model. Table 1.4 shows the comparison result interpretation using

symmetric comparison model.

Table 1.3: Test Result Interpretation using Asymmetric Comparison model

Comparater Compared Outcome

Faultfree Faultfree 0
Faultfree Faulty 1

Faulty Faultfree 0/1
Faulty Faulty 1
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Table 1.4: Test Result Interpretation using symmetric Comparison model

Comparater Compared Outcome

Faultfree Faultfree 0
Faultfree Faulty 1

Faulty Faultfree 0/1
Faulty Faulty 0/1

1.4 Evolutionary approaches and their applications in
System level fault diagnosis(SFD)

Genetic Algorithms have become popular due to the development of robust stochastic

searching algorithm for various optimization problem.As compared In these algo-

rithms, it is necessary to represent the search individuals and generate the initial

population by establishing the fitness function based on the genetic operators such as

reproduction, crossover and mutation. In fact the use of genetic algorithm is a novel

approach to the problem of system level fault diagnosis in various recently emerging

distributed computing systems, following an arbitrary network topology.

This thesis proposes 2 algorithms to solve the diagnosis problem using genetic

algorithms. The search space is represented in a binary vector of length n, where each

bit indicates the status(faulty or faultfree) of its corresponding unit. Genetic operators

are adopted to the context of distributed system level diagnosis. The fitness function

is used as the objective function to optimize the performance with less number of iter-

ations of fault diagnosis algorithm. In the problem of fault diagnosis in the distributed

system, the estimation time for the fitness function is greatly in excess of the time taken

to perform any genetic operations. Thats why the proposed algorithms are efficient by

optimizing these operations. Infact, the time taken to compute the fitness values for

all generations is considerably low. The efficiency of these methods have been illus-

trated in the thesis by considering permanent and intermittent faults in various nodes

of the system. Instead of random mutation, the proposed algorithm uses supervised

mutation, which allows to construct an efficient mutation process. Both crossover and
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mutation operators were developed to take into account the necessary conditions for

a K-connected distributed system and guarantees that the newly generated strings are

legal.

The time needed to detect the faulty nodes from the set of nodes in a K-connected

network using GA-based approach depends mainly upon the time taken for finding

out the fitness of the chromosomes in the population at every generation. The time

taken to perform repeated selection and supervised mutation is negligible as com-

pared to the time taken to find the fitness of each chromosome. As all the nodes in the

network are not participating to detect the faulty nodes in the network, the number

of messages that is exchanged between nodes across the network is lesser than that of

other fault diagnosis algorithms. The GA-based approach therefore leads to less traffic

in the K-connected network due to which more bandwidth is available for application

specific tasks. It is experimentally verified that the time taken to diagnose the faulty

nodes using the GA-based approach varies within a certain range for a specific size

network. Searching the accurate solution from a small solution pool of constant size is

a better approach than the formation of huge network traffic by sending and receiving

of diagnosis related information. It can be also noted that many small scale distributed

networks exist where the nodes are energy or power constrained. In such type of

distributed networks GA-Based approach consume less energy as compared to that of

other fault diagnosis algorithms.

1.5 Objective

Motivated by the need of permanent, intermittent and transient fault diagnosis in

distributed systems, the following objectives are undertaken in this work.

• To develop a GA-based distributed diagnosis algorithm for diagnosing perma-

nent faulty nodes in a K-connected distributed system.

• To develop a GA-based distributed diagnosis algorithm for diagnosing intermit-

tent faulty nodes in a K-connected distributed system.
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• To develop a fault diagnosis algorithm for a safety critical Fly-By-Wire system

to diagnose transient-leading-to-permanent fault under time and resource con-

straints.

• To develop a real time scheduling algorithm for scheduling actuator control and

diagnosis tasks of a multi-rate FBW system.

1.6 Organization of the thesis

The thesis is organized as follows.

In Chapter 1, a brief introduction to fault diagnosis in distributed system is presented,

followed by motivation , contribution and objective of the thesis. The genetic algo-

rithm approach to the fault diagnosis and different types of faults that may occur in

distributed system have been presented.

In Chapter 2, a brief description of exhaustive survey of the works, those are already

available in the literature have been presented.

Chapter 3 describes a GA-based fault diagnosis algorithm for diagnosing permanently

faulty nodes in a K-connected distributed system .

In Chapter 4, a GA-based intermittent fault diagnosis algorithm is presented.

In Chapter 5, a fault diagnosis algorithm for a multi-rate fly-by -wire(FBW) system is

designed. Here the fault affecting the actuators of FBW system is taken into consider-

ation. Along with the fault diagnosis algorithm, a real time task scheduling algorithm

is proposed to schedule the actuator control and diagnosis tasks within a designer

specified deadline.

Chapter 6 contains the concluding remarks, description about the problems which is

still an open problem for us in the future.

1.7 Conclusion

In this chapter we presented the importance of fault diagnosis in distributed systems.

System level fault diagnosis is one of the most popular technique among different fault
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diagnosis techniques. The factors those motivated us to do the contributory work

are also described. Different types of fault such as intermittent fault, transient fault,

byzantyne fault and permanent fault have been described. The types of model used for

test result interpretation such as PMC and Comparison model are presented. Finally

this chapter is concluded with the objectives and organization of the thesis.
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Chapter 2

Literature review

2.1 Introduction

Fault diagnosis in a distributed system is an important problem and needs necessary

steps to devise algorithms to diagnose faulty system components. System level diagno-

sis serves as a major tool for providing universal diagnosis solutions for such systems.

System-Level Diagnosis, which was introduced by Preparata, Metze and Chien [31] in

1967, models the system by a graph and uses a diagnostic algorithm to determine the

status of each unit in multiprocessor systems [16] [23] and distributed systems [21].

It assumes a system composed by a set of units, where each unit can be either faulty or

fault-free. Units test each other exploiting the available system interconnections. Here

the units can be any system component that can diagnose the rest of the component or

can be diagnosed by any other units.

The diagnosis can be either centralized or distributed. In centralized diagnosis,

it is assumed that a centralized reliable node exist that collect the test results and

maintains the diagnosis information. The main bottleneck of this diagnosis is that it

causes a single point of failure and thus unacceptable for a large class of distributed

systems such as wireless adhoc networks. In distributed diagnosis, every node main-

tains the diagnosis information about every other node in the system [40]. Distributed

diagnosis algorithms are executed on many or all the processors of the system simul-

taneously. Based on the outcomes of the test results (known as syndrome) at various
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nodes in a distributed system, the diagnosis can be achieved by every fault-free node.

In the past, the target application of the system level diagnosis theory is the diagnosis

of massive parallel processing systems such as multiprocessor and wafer-scale VLSI

systems. In these applications, the system is represented by a regular or quasi-regular

diagnostic graph, a fact that makes the classical results of system-level diagnosis in-

adequate. The application of SLD theory to the diagnosis of communication networks

has been proposed in [36]. The computer networks such as wireless adhoc network

and distributed embedded systems are two major emerging types of networks where

these diagnosis techniques are useful. The diagnosis is based on testing the units of the

network. The results of the tests are used to infer about the status of a unit. The units

in the network are either homogeneous or heterogeneous but are assumed to be able

to test other nodes in order to determine their fault status. While the existing model

makes no assumption about the nature of the tests and how they are performed, the

fault coverage of the tests is supposed to be 100 percent. It implies that the tests are

sufficient to determine the fault status of a unit. The rest of the chapter is organized as

follows. Section 2.2 , describes the characterization of distributed system level diagno-

sis, In section 2.3 various diagnosis approaches and evaluation methods are described.

Section 2.4 describes the work that have already being done on system level diagnosis

using various evolutionary approaches. The summary of the chapter is given in section

2.5.

2.2 Characterization of distributed diagnosis

The distributed diagnosis algorithms are characterized by their system model, fault

model, diagnostic model, the fault environment and the performance measures for

evaluation. The system model specifies the hardware and software components and

the topology of the network. For example, the nodes in a hypercube or completely

connected network constitute a regular network topology, the nodes in wireless adhoc

network and Internet form an arbitrary network topology where the nodes are con-

nected arbitrarily with each other. The behavior of a faulty component specifies the
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fault model in a distributed system. For example, a crash faulty node does not respond

whereas a value faulty node responds with an incorrect value. Based on the duration

that a fault persists in a node, the faults can be classified into permanent, transient,

intermittent and Byzantine [19]. A permanent faulty node does not respond when ex-

ercised on a node. A transient fault in a system node persists only for a small duration

i.e., occurs once and disappears. An intermittently faulty unit sometimes gives correct

results and sometimes erroneous results. A lot of work on system-level diagnosis has

focused on probabilistic methods, which can diagnose intermittently faulty processing

nodes and can be applied in general situations on general interconnection networks.

An intermittently faulty node may sometime give correct results which is difficult to

capture. Several tests and diagnosis rounds are necessary to capture the intermittently

faulty nodes. A solution for the intermittent fault diagnosis has been proposed in

[35, 3]. A Byzantine faulty node behaves arbitrarily. However it is possible to spec-

ify a limited Byzantine behavior. The diagnostic tests are executed in order to detect

the faulty components. There are generally two ways to detect a fault in a network:

(i) test-based and (ii) heartbeat based testing mechanism. The test-based mechanism

involves the two messages(request and reply message) to detect a fault whereas heart-

beat based testing mechanism relies on the message transfer between every pair of

nodes. Irrespective of the type of testing mechanism a diagnosis algorithm uses, the

message transmission is used as the means to detect faulty components. Since the tests

are difficult to obtain in practice, the comparison based diagnostic model has been

suitable for the practical distributed systems.

System-level diagnosis is intended to identify faulty nodes of a distributed sys-

tem such as multiprocessor and multi computer system. Multiprocessor systems are

tightly coupled system where nodes communicate each other by shared memory. Mul-

ticomputer systems are message passing systems where the nodes communicate by

passing messages. Both the invalidation(PMC) and comparison based diagnosis mod-

els are applicable to both multiprocessor as well as multi computer systems.
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As far as diagnosis is concerned, two issues are involved: i) how every node

can acquire the information necessary for the fault location and ii) how can every node

identify the faulty nodes at a low time overhead. For the first issue, there are two

different classes of models: the test-based models and the comparison-based models.

Under a testbased model, every node of a system is assigned to test some other nodes

[31]. Under a comparison based model, the response of two nodes to the same task is

compared [44, 27, 22] and the collection of all of the comparison results (the compari-

son syndrome) is analyzed for locating the faulty nodes. The second issue deals with

the efficient algorithm for accomplishing the diagnosis function.

To perform automatic fault diagnosis of graph G, each unit ui belongs to V must be

capable of testing units of a particular subset of the remaining units in G. The complete

collection of ordered pairs of units (ui,u j) where ui (the tester unit) tests u j (the tested

unit) in G is represented by a simple directed graph referred to as test digraph. Let D =

(V, E) be the test digraph. The result of the test of u j by ui is called test outcome and may

be 0 or 1 corresponding to tester ui evaluating u j as fault free or faulty, respectively.

The test outcome may be arbitrary (either 0 or 1) regardless of the fault status of ui and

u j when the outcome is unpredictable. The assumption about the inability of a faulty

tester unit to correctly test other units is known as the fault invalidation model. The

well known fault invalidation models in the theory of system-level diagnosis are the

symmetric PMC [31] and asymmetric BGM [16] invalidation models. In symmetric

invalidation model, it is assumed that when tests performed by faulty units can pro-

duce any result. Whereas in case of asymmetric invalidation model, it is assumed that

faulty units always fail tests, even if units can invalidate the test are faulty. Both the

models have importance in large class distributed systems based on a combination of

faulty units some of which behave according to the PMC model and the others which

behave according to the BGM model.

In comparison based model, the diagnosis tasks are assigned to various nodes

in the system and results of the diagnosis tasks are compared. Based on the agreement
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in the test results, every node in the system achieves diagnosis. The comparator unit

can be either one of the testing or tested unit, or a third unit. This method is supposed

to be most practical method of diagnosis and has been proposed by many researchers

in this area. The summary of the works based on comparison model is as follows:

The MM* model proposed by Maeng and Malek [22] is a realistic comparison-based

model where a node is a comparator of two nodes if and only if the comparator is

connected to them through direct communication links. The MM* model reasonably

assumes that an agreement in the responses of two nodes being compared implies

that these two nodes are fault-free provided the comparator is fault-free, whereas a

disagreement implies that at least one of the three relevant nodes is faulty. If the re-

sults of all comparison are broadcast to all the connected units, the resulting system

can be described by the Broadcast Comparison model [6]. When a fault-free node

compares the outputs produced by two faulty nodes, the result always show a differ-

ence (asymmetric comparison model) or same (symmetric comparison model). The

comparisonbased system-level diagnosis for both hypercube and its variations can be

found in [10, 43, 20]. The comparison based distributed diagnosis has been recently

used for diagnosis of wireless adhoc networks and distributed embedded systems

[33, 34, 45]. In fact, the comparison based distributed makes it suitable for a use in the

diagnosis of Wireless Ad Hoc Networks and distributed embedded systems. When the

automatic diagnosis process is applied to these systems, they are called t-diagnosable

system. A t-diagnosable system is one in which all faulty nodes can be identified

correctly provided no more that ’t’ nodes fail simultaneously.

2.3 Description of different fault diagnosis approaches
and evaluation methods

2.3.1 Phases of distributed system level fault diagnosis

The main objective of system-level diagnosis is to identify which units of the system

are faulty and which are fault-free [10]. Several models for system-level diagnosis can

be found in the literature. Based on the system-level diagnosis theory, Kuhl and Reddy
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[21] proposed the concept of distributed diagnosis. There are three basic phases of a

distributed diagnosis process: detection, localization and recovery. Detection refers to

the ability of a test, a combination of tests, or a diagnosis strategy to determine that a

failure in some system element has occurred. The detection may be associated with

built-in tests (BITs) and may actually be the design requirement for BIT. Localization

means that a faulty system element has been identified by all other nodes in the net-

work. This is also known as diagnosis phase. Recovery is the regain of original status

from its fault status. These three phases of the diagnosis has been referred to as testing,

collecting and dissemination of diagnosis information [26].

Another diagnosis approach known as adaptive distributed system-level diagnosis

(ADSD) algorithm is, at the same time, distributed and adaptive. Each node must be

tested only one time per testing interval. All fault-free nodes achieve consistent diag-

nosis in at most N testing rounds. There is no limit on the number of faulty nodes for

fault-free nodes to diagnose the system [5, 28, 45]. In adaptive distributed diagnosis,

the algorithms operate in a distributed fashion and adapt their testing assignment to

the prevailing fault situation. Diagnosis occurs locally at each unit and evaluates the

system units as faulty or fault-free.

2.3.2 Evaluation Methods

The metrics such as CPU time needed to execute the diagnosis algorithm, the num-

ber of iterations required to diagnose the faulty nodes and the number of messages

exchanged(message complexity) are used to evaluate the diagnosis algorithms analyti-

cally as well as through simulation. The diagnostic latency is the time elapsed between

the occurrences of a fault means every newly recovered node gains the status about

the entire system within a bounded time. Accuracy means the developed diagnosis

algorithm diagnoses the nodes correctly within bounded time. These properties can be

satisfied in a synchronous system but difficult to adapt this approach for asynchronous

system. This is due to the fact that the task execution time and communication delay in

a synchronous system is bounded whereas there is no upper limit either in execution
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time or delay in communication in an asynchronous system. The analytical methods

for evaluating distributed diagnosis algorithms largely depend on the formal analysis,

probability theory, finite automata, graph theory and evolutionary methods. Many

times, the researchers find difficulty in formalizing the notion of diagnosis algorithms

using these methods. The validation of algorithms through simulation is an alternative

to study the behavior of algorithms and for verifying the analysis and correctness proof

of the proposed algorithms. Most of the diagnosis results are based on graph theory

[17].

2.4 Application of Genetic Algorithm in System level
fault diagnosis

2.4.1 Evolutionary approaches

Knowledge-based information systems are designed to mimic the performance of bio-

logical systems [2] .Figure 2.1 shows the hierarchy of Knowledge-based Information

Systems. As shown in the diagram, there are two approaches of the knowledge-based

information systems such as approximate reasoning and optimization approaches. As

the genetic algorithms are based on optimization approaches and that leads to accurate

diagnosis results, the genetic algorithm based fault diagnosis algorithms are followed

in this work. Also, the evolutionary computing algorithms are applied for efficient

fault diagnosis of distributed systems as compared to the traditional method of fault

diagnosis.

2.4.2 Genetic Algorithm

Genetic algorithms [2] are search methods that employ processes found in natural

biological evolution. These algorithms search or operate on a given population of

potential solutions to find those, that approaches some specification or criteria. To

do this, the algorithm applies the principle of survival of the fittest to find better and

better approximations. At each generation, a new set of approximations is created by

the process of selecting individual potential solutions (individuals) according to their

18



2.4 Application of Genetic Algorithm in System level fault diagnosis

Figure 2.1: Hierarchy of KnowledgeBased Information Systems(Evolutionary comput-
ing).

level of fitness in the problem domain and breeding them together using operators

borrowed from natural genetics. This process leads to the evolution of populations of

individuals that are better suited to their environment than the individuals that they

were created from, just as in natural adaptation.

The Genetic algorithms generally include four fundamental operators. (i) Selec-

tion (ii)Reproduction (iii)Crossover (iv)Mutation. In selection operation, a particular

solution reaching towards the global optima are selected and new population is repro-

duced. The crossover operation are applied on each pair of possible solutions in the

new population. The mutation operation is applied on each possible solution in the

solution space in order to generate different solutions in the solution space.

The initial population is generated. If a special condition is satisfied, the opti-

mal solution is found. If a special condition is not satisfied, selection operation is
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taken place and the individuals having highest fitness(best individuals) are selected

for new population. Fitness is the function that measures the quality and optimality

of each possible solution in the solution space. The solution having highest fitness can

survive in the new generation. Crossover and mutation operations are applied in the

new generation to produce new and more efficient individuals. The selection of high

fitness individuals and the application of crossover and mutation on those individuals

will be taken place, until a given condition is satisfied and the exact solution is found.

The steps followed by genetic algorithm are shown in Figure 2.2.

2.4.3 GA-based System Level Fault diagnosis

There are various analytical model, developed to solve the problem of system level

fault diagnosis, One of the suitable approach is the use of evolutionary approach to

solve the problem of system level fault diagnosis. An algorithm based on GA have

been developed by M. Elhadef and B. Ayeb, that work upon completely connected

multiprocessor system [11]. In the year 2001,GA-based algorithm have been designed

for diagnosing faults in small-scale multiprocessor system, where the test result is

interpreted using comparison model [12].

2.4.4 Application of other evolutionary approaches

Apart from genetic algorithm, an artificial immune system based algorithms are avail-

able in the literature to solve diagnosis problem for large scale multiprocessor sys-

tems [14, 30, 46]. To the best of our knowledge, no GA-based fault diagnosis algorithms

exist for K-connected distributed systems. A comparison among different evolutionary

system level fault diagnosis algorithms are available in the literature [29]. A percep-

tron neural network based approach is developed by Elhadef [13, 9], which applies

perceptron neural network concept in system level fault diagnosis algorithm.
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2.5 Conclusion

Any system which can be decomposed in to several units where units can test each

other, the system level fault diagnosis techniques can be applicable. A large number

of fault diagnosis algorithms for distributed systems such as multiprocessor, paral-

lel and message passing distributed systems are already available in the literature.

There are two types of fault diagnosis algorithms such as centralized diagnosis and

distributed diagnosis. The different types of fault and their behaviors, fault detection

methods such as test and heart-beat based, fault diagnosis and fault recovery methods

for various kinds of system models for distributed systems such as computer net-

works, wireless adhoc networks and distributed embedded systems have been used

for characterizing the fault diagnosis algorithms. Fault diagnosis algorithms based on

different evolutionary approaches have also been discussed in this chapter.
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Figure 2.2: Steps followed by Genetic algorithm
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Chapter 3

GA-based Permanent Fault Diagnosis
in K-connected Distributed System

3.1 Introduction

In the real life applications, the topology of many distributed systems such as world

wide web(WWW), Internet, ecological network, cellular networks are random and not

completely-connected. These systems are categorized by taking different parameters

like connectivity, maximum degree of the network (the degree of the node having

maximum number of neighbors), number of links between nodes and diameter of

network) [18]. Connectivity of the network in a distributed system is the minimum

degree of the network.

The K-connected distributed systems can be modeled as a graph consisting of ver-

tices and edges which correspond to nodes and links of the network in the distributed

system respectively. The graph representation helps in analyzing the algorithms for

these systems. As the permanent faults are more likely to occur in the nodes of the

K-connected distributed systems, in this chapter, we have proposed a fault diagnosis

algorithm for diagnosing permanently faulty nodes. The traditional fault diagnosis

algorithms are not efficient in terms of ”need of a large number of message exchanges”,

recently authors have proposed various genetic algorithm based fault diagnosis algo-

rithms (GAFD) for diagnosing permanently faulty nodes in multiprocessor and other

parallel systems which follow a completely connected network topology[11]. As the
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recent distributed systems are K-connected (or not-completely connected), we have

proposed the fault diagnosis algorithm for diagnosing permanently faulty nodes in

the K-connected distributed systems in this work. The computational overhead in

terms of CPU time and message complexity for the GAFD algorithms are usually less

as GA-based fault diagnosis algorithm always provides faster and accurate diagnosis

solutions for small and constant size of solution pool.If a graph G(n, l) is designed to

represent the nodes and links in a distributed system, where node of system is denoted

by n and the link connecting pair of nodes are denoted by l, then the connectivity

of a node n1 is the degree of n1. In a not-completely connected distributed system,

the connectivity of nodes varies with size of the system. A not-completely connected

distributed system can be termed as K-connected distributed system, where K is min-

imum degree of the system.

Mathematically a graph G with vertex set V(G) is defined as K-connected , if

the minimum degree of the graph is K. The minimum degree of a task graph is the

degree of the node having minimum number of neighbors. The maximum degree

of the network is (n-1). The maximum degree of the network is the degree of the

node having maximum number of neighbors. The example shown in Figure 3.1 is

an example of a K-connected system having connectivity K=2 , where the number of

nodes, n=5. The value of K=3, makes the distributed system 3-connected. Similarly

when K=(n-1), where n is the number of nodes in the distributed system, the system

becomes completely-connected. Figure 3.2 and Figure 3.3 represents the K-connected

system having K=3, K=1.

Figure 3.1: 2-connected Distributed System

This chapter is organized as follows. Section 3.1 introduced the various kinds
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Figure 3.2: 3-connected Distributed System

Figure 3.3: 1-connected Distributed System

of distributed systems those usually follow a K-connected topology. This section

also discussed about the requirement of permanent fault diagnosis algorithm for K-

connected distributed systems using genetic algorithms. In section 3.2, system, fault

and diagnosis model for the proposed approach has been specified. The proposed

algorithm and its analysis is presented in section 3.3. The simulation results are

presented in section 3.4. Finally this chapter is concluded in section 3.5.

3.2 System, Fault and Diagnosis Model

System model of distributed system having connectivity K is represented by a graph

GK(v,e), where nodes of the system are vertices of the graph and links among the nodes

are the edges, that connect nodes of the system, In GK(v,e), v is the set of vertices and

e is the set of edges connecting the pair of vertices.

3.2.1 System model

A K-connected distributed system is considered,where intermediate nodes relay mes-

sages between some source and destination pairs. A synchronous system is assumed

where the communication delay is bounded. This is an implicit assumption, in all

prior work on distributed system level diagnosis. A node in the distributed system
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can communicate directly with another node, provided there is a link exist between

these pair of communicating nodes. The k-connected system is a t-diagnosable system

that can allow a maximum number of t faults, where t=b(n−1)/2c.

3.2.2 Fault and Diagnosis model

Nodes in the distributed system are subjected to permanent faults. Faults assumed

to occur at node level rather than chip level. The communication link connecting the

nodes of a distributed system is assumed to be faultfree. The link faults are usually

handled by the underlying network protocols. A node becomes permanently faulty, if

it provides erroneous outcomes, when it runs a task. In fact, the permanently faulty

node gives incorrect response which leads to wrong decision at the central node (for

example sink node in a wireless sensor network).

In the K-connected distributed system, the node that tests the subset of connected

nodes, is known as tester node. The nodes, those get signal from the tester nodes

and respond to that, are known as tested nodes. As the nodes are not connected with

all their neighbors in the K-connected system, the tester nodes and tested nodes are

decided among the connected nodes. In the system, all the nodes have to be tested

atleast once, as all the nodes are likely to suffer from permanent faults. In this work,

all the nodes get the chance to become tester as well as tested nodes. But no node tests

itself. The maximum number of tests performed by a node in the system is K, where

K signifies the connectivity of the system.

The model used here for test result interpretation is the asymmetric PMC model

[31], where test results generated by faulty node is either 0 or 1. After the tests are per-

formed by applying the PMC model, the test outcome is collected from each node. The

collection of test results is a binary string of 0s and 1s. The collection of the testoutcome

is known as real test syndrome. The sequence of test outcome in the test syndrome

is maintained by the sequence of port number of respective nodes in the K-connected

distributed system. The test coverage for all the tests in the K-connected system is
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assumed to be 100 percent. The system and fault model of one 2-connected system is

explained by an example given below.

The figure 3.1 is a 2-connected system. Suppose permanently faulty node are node

3 and node 5 as shown in figure 3.4. Table 3.1 shows the tester and tested nodes of the

2-connected distributed system of figure 3.4. The real test syndrome generated after

the testing phase is denoted by TT∗.

Figure 3.4: Permanently faulty nodes in 2-connected Distributed System

Table 3.1: Tester nodes and tested nodes of 2-connected distributedsystem

Tester node Tested node

1 2,5
2 1,3
3 4,5
4 3,5
5 1,3,4

Here real test syndrome TT∗, generated after testing the nodes of Figure 3.4 is

10011111111. The test results of individual node in the system can be subdivided in

2 forms, i.e T∗ and T∗′ . T∗(node) denotes the testoutcome of the tests performed by

the node. T∗′(node) denotes the testoutcome of the tests performed by the connected

neighborhood nodes on that particular node. Table 3.2 shows the individual test

outcome(T∗ and T∗′) of every node after the testing phase is over.
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Table 3.2: Test outcome obtained individually by each node of 2-connected distributed
system

Nodes T∗ T∗′

1 1,0 1,0
2 0,1 0,1
3 1,1 1,1,1
4 1,1 1,1
5 1,1,1 1,1,1

3.3 GA-Based Permanent Fault Diagnosis Algorithm for
K-connected Distributed system(GAPFDA)

The proposed diagnosis approach consists of two algorithms. The algorithm 1 is the

main algorithm, in which faulty and faultfree nodes of the K-connected system is

found. The algorithm 1 is dependent on algorithm 2. Algorithm 2 returns the fitness

of all the chromosomes in every generation to the algorithm 1. Proposed algorithm is

similar to the genetic algorithm for permanent fault diagnosis algorithm in completly-

connected system given in [11]. The notations, those are used in the algorithm are

described below.

G(U,E)= Undirected testgraph represents the processors of the system in terms of ver-

tex ui and communication link among processors in terms of edge ei.

TT∗=Binary vector, that contains the information of testoutcomes, after the test is per-

formed on each processor. It is also known as real test syndrome.

TT= Binary vector, that contains the information of testoutcomes from the testgraph,

those are generated from chromosomes. It is also known as chromosome generated

test syndrome.

F= Set of permanently faulty nodes generated as output from algorithm 1.

FF= Set of faultfree nodes.

F∗= Fault set of real system.

FF∗= Faultfree set of real system.

C= Collection of binary bit strings of length ’n’, where n equals to the number of nodes
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in the system. Number of binary bit strings in C are fixed.

Cinit= Initial Population(Initial collection of binary bit strings of length ’n’, where n

equals to the number of nodes in the system.

FT(Ci)= Fitness of chromosome, it is defined as the degree of correctness of an expected

solution(Ci) in the solution space.

HighFT= An array that is assigned by the chromosome/expected solution(Ci) of high-

est fitness value.

FIT= An array that contains the fitness value of all the chromosomes in the population

in every generation. It is updated in every new generation.

P= Population size of population.

T∗(node) = Collection of testoutcome, when the tester node tests its connected neigh-

borhood nodes(the nodes to be tested) in the real system.

(T∗)´(node)= Collection of testoutcome, when the node is tested by its connected neigh-

borhood nodes in the real system.

T(node)=Set of testoutcome, when the node tests its neighborhood nodes of the chro-

mosome-generated testgraph.

T´(node)= Set of testoutcome , when the node is tested by its connected neighborhood

nodes of the chromosome generated testgraph.

Collect-SameOutcome1(node)= Total number of similar testoutcomes are collected by

comparing testoutcome(T∗) of tests performed on real system and testoutcome(T) of

the tests performed on chromosome generated testgraph .

Collect-SameOutcome2(node)= Total number of similar testoutcomes are calculated

by matching T’(node) and (T∗)’(node).

dout(node) and din(node)= Outdegree and Indegree of a node in the system.

PC1(node) = Probability of correctness of tests performed by tester node(the node,that

tests other nodes)

PC2(node) = Probability of correctness of tests performed on a node(tested node).

PC = The average of PC1(node) and PC2(node)

ci = The ith bit of the bitstring(Chromosome).

Ci = ith chromosome of the population C.
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Algorithm 1 GA-Based Permanent Fault Diagnosis Algorithm for K-connected Dis-
tributed system
Input:G(U,E) and the real test syndrome TT∗
Output:Faulty(F) and Faultfree(FF) nodes of the system.

1: Generate Initial population of chromosomes Cinit.
2: Evaluate fitness of each chromosome of the population Cinit by calling the subfunc-

tion FT(Cinit).
3: C=Cinit
4: HighFT←Chromosome of Cinit having highest fitness.
5: while (sum(FIT) , P) do
6: Selection(C);
7: Reproduction(C);
8: Mutation(C);
9: For all Ci belongs to C,where i varied from 1 to P ,compute the fitness by

calling the function FT(Ci);
10: HighFT←Chromosome Ci having highest fitness.
11: Collect the chromosomes of fitness having HighFT value generate new popu-

lation(C).
12: FIT←Fitness of all the chromosomes present in the population(C).
13: end while
14: The faulty nodes(Bit value 1) are identified from the chromosomes and stored in

the set F. The nodes having bit value 0 are faulfree nodes of the system and stored
in the set FF.

15: End

Algorithm 2 Algorithm for finding Fitness of each chromosome(FT(chromosome)

1: T∗(node) and (T∗)’(node) are derived from real test syndrome TT∗.
2: T(ci) and T’(ci) are derived from the testgraph Gc(U,E).
3: Collect-SameOutcome1←|(T∗)(node)

⋂
T(ci)|

4: Collect-SameOutcome2←|(T∗)′(node)
⋂

T′(ci)|
5: DOUT←|dout(node)|
6: DIN←|din(node)|
7: PC1(ci)←Collect-SameOutcome1/DOUT
8: PC2(ci)←Collect-SameOutcome2/DIN
9: PC(ci)←(PC1(ci)+PC2(ci))/2

10: Fitness of Chromosome←PC(c1)+PC(c2)+......+PC(cn))/n ,where c1,c2,c3,c4, .....,cn of
a chromosome are expected node status(faulty or faultfree) of nodes of real system.

11: return(Fitness of Chromosome)
12: End
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3.3.1 Description of GAPFDA

In GAPFDA, the input given to the algorithm is the real test syndrome TT∗ and the

testgraph of the K-connected distributed system. Here the real test syndrome(TT∗)

contains the information regarding the testoutcome generated after applying PMC

model to the real system. The testgraph represents the connection link of tester node

with tested nodes, the weight of each edge in the graph is the outcome of the test

performed by tester nodes to the tested nodes. In GAPFDA, the output is the faulty

nodes and faultfree nodes of the K-connected system. The basic steps followed by

GAPFDA is the most fundamental steps of genetic algorithm. These are

• Selection

• Supervised Mutation

• Reproduction

The following example provides the brief explanation of the genetic algorithm based

fault diagnosis algorithm. In the figure 3.5, node 1 is permanently faulty where this

3-connected distributed system consists of 5 nodes numbered in the sequence 1 to 5.

Suppose the node 1 is permanently faulty. The generated real test syndrome , TT∗ is

(111 100 000 1000 100) as per the node sequence 1 to 5. Here all the connection links are

utilized as test link. Test graph is shown in Figure 3.5. In order to get the test outcome

of individual nodes in the system, we separate TT∗ to T∗ and T∗′ as shown in Table 3.3.

Table 3.3: Test outcome obtained individually by each node of 3-connected distribut-
edsystem

Nodes T∗ T∗′

1 (1,1,1) (1,1,1)
2 (0,1,0) (1,0,0)
3 (0,0,0) (0,0,0)
4 (0,0,1,0) (0,1,0,0)
5 (0,0,1) (0,0,1)
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Figure 3.5: Test graph of 3-connected Distributed System

Figure 3.6: Representation of Initial population of chromosomes

The first step of genetic algorithm based permanent fault diagnosis is, generat-

ing initial population of chromosomes i.e a set of possible solutions. Here the solu-

tions are defined in the form of binary bit strings. In the above example, the initial

population(Cinit) is represented in figure 3.6. The size of initial population is taken

as 4 here. In the initial population, each chromosome is of length n, where n is the

number of nodes in the system. In a chromosome, 1 represents a faulty node and 0

represents a faultfree node. So one possible solution(chromosome) contains the infor-

mation regarding the status of each node in the system(not real). Chromosomes in

the population are randomly generated bitstrings. As the system is a t-diagnosable

system, each chromosome contains atmost b(n− 1)/2c number of 1[11]. Chromosome

having all the zero bits is not an expected solution, because we assume atleast fault in

the system. So finally chromosomes having all zeros and chromosomes having more
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than b(n−1)/2c number of 1s are excluded from the population.

The second step of genetic algorithm based permanent fault diagnosis(GAPFD)

is, finding the fitness of every chromosome in the population.Here fitness of a chromo-

some is the average of the fitness of every bit of chromosome. If a test graph is retrived

from the chromosome and testing is applied on it, fitness of every bit in the chromo-

some is the degree of correctness of the test outcome performed by that bit(node). In

another way, fitness of chromosome can be defined as how much it is nearer to the

actual solution of the diagnosis problem. Fitness of chromosome is denoted by FT,

where chromosome is denoted by C and ci is the ith bit of the chromosome. Here the

fitness of every bit of the chromosome of the initial population of the given example is

shown in Table 3.4.

Table 3.4: Fitness of all the chromosomes in the initial population

Chromosomes Fitness of each bit Fitness of chromosome

10010 (1 ,.66 ,.66 ,.25 ,.66) .6500
10100 (.83,.66 , 0 ,.75 ,.66) .5800
11000 (1, .33 ,.66 ,.75 , 1 ) .7500
00001 (.33,.66 ,.66 , 1 ,.33) .6000

Step 3 of GAPFDA is the selection of the chromosome having highest fitness. Here

(11000) is the chromosome, that has the highest fitness value i.e .7500.

Step 4 of GAPFDA is reproduction. In the process of reproduction, a new gen-

eration is created from old poulation, they have better fitness value than the previous

generation. But the population size remains unchanged. In the given example, the

chromosomes in the new generation is shown in figure 3.7. Then supervised mutation

is applied on the chromosomes of figure 3.7 with probability of mutation pm. As the

value assigned to pm for a particular chromosome depends on fitness value of each bit

in the chromosome, it is termed as supervised mutation. pm always holds the minimum

fitness value from all the fitness values of every bit in the chromosome. According
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to the given example, for chromosome (11000), the individual fitness of the bits are

(1, .33, .66, .75,1). So the value of pm is taken as .33 .

As fitness of individual bits say about their degree of correctness as a testernode

and tested node, the minimum fitness of a bit has the least probability of being correctly

diagnosed as well as performing the correct diagnosis on its neighbourhood nodes.

Thats why, if the bit having minimum fitness is mutated then there is a probability

of increase in degree of correctness for that particular bit. So supervised mutation is

applied on the chromosomes and the value of pm is taken as the minimum fitness value

among all the fitness values of bits. Another reason of performing supervised muta-

tion is, by mutating a bit in a chromosome changes the total fitness of chromosome as

well as the types of solution nearer to the global optima, increases in the solution space.

In the step 5 of GAPFDA, again the fitness of chromosomes of new population

is evaluated. Step 3, Step 4, Step 5 will be repeated until the fitness value of each chro-

mosome becomes 1 in a particular generation. The individual fitness of chromosomes

in the new generation as per figure 3.7 is shown in the Table 3.5. The chromosomes

generated in Table 3.5 is the optimum solution as they are having fitness as 1.

Figure 3.7: Representation of chromosomes of the new population

By applying mutation to figure 3.7, the 2nd bit of each individual chromosome

will be mutated from 1 to 0. According to step 5, the fitness of the chromosomes of

the Figure 3.7 after mutation is shown in Table 3.6. The reason ”Why the chromosome

having fitness value 1 is the optimum solution” is proved in the Lemma 3.1.
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Table 3.5: Fitness of all the chromosomes in the initial population

Chromosomes Fitness of each bit Fitness of chromosome

11000 (1.0 ,.33 ,.66 ,.75 ,1.0) .75
11000 (1.0, .33 ,.66 ,.75 ,1.0) .75
11000 (1.0, .33 ,.66 ,.75 ,1.0) .75
11000 (1.0 ,.33 ,.66 ,.75 ,1.0) .75

Table 3.6: Fitness of all the chromosomes after mutation

Chromosomes Fitness of each bit Fitness of chromosome

10000 (1.0 ,1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0, 1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0, 1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0 ,1.0 ,1.0 ,1.0 ,1.0) 1.0

3.3.2 Analysis of GAPFDA

In this section, the correctness, efficiency and message overhead of the proposed al-

gorithm GAPFDA are presented. A fault diagnosis algorithm is said to be correct if

all the faulty nodes are diagnosed as faulty and all the fault free nodes are diagnosed

as fault free. The message overhead of the diagnosis algorithm refers to the message

complexity or the total number of messages exchanged during the process of diag-

nosis. The time complexity of any fault diagnosis algorithm is the total time needed

for achieving the diagnosis. Now we prove the correctness, message complexity and

the time complexity of the proposed algorithm by using the following lemmas and

theorem.

Lemma 3.1:The proposed GA-based fault diagnosis algorithm for diagnosing faulty

nodes is correct.

Proof :

To prove the correctness of the proposed algorithm, we consider a t-diagnosable sys-

tem, where at most t number of permanent fault can exist. The proposed algorithm is

implemented on a K-connected system, where K is the connectivity of the distributed
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network. Let U is assumed as the set of all nodes (identified by their node number) of

the K-connected system. Let F∗ is the real faulty node set and FF∗ is the real fault free

node set of the system. The outcome(fault set generated) by the algorithm is F. If F∗=F

and FF∗=U-F, then the algorithm is correct.

The proof of correctness is trivial when the set of real faulty nodes are same as

that of set of faulty nodes generated during the first generation and also FF∗=U-F. If

F∗ , F and FF∗ ,U−F in the 1st generation, we need to generate another population by

selecting the highest fitness valued chromosomes from the previous generation. That

leads to TT∗ , TT , where TT∗ is the real test syndrome and TT is the chromosome

generated test syndrome. Since PC1 and PC2 of each bit ci of chromosome Ci depends

on TT and TT∗, their values will not be equal to 1. To improve the value of PC1 and PC2

towards 1, reproduction and supervised mutation are applied on each chromosome of

the population C. When we apply reproduction and supervised mutation repeatedly

over the intermediate generation, the fitness of each bit of the chromosome will be

1. When PC1=1 and PC2=1, this shows the proposed algorithm achieves the diagnosis

within a bounded number of steps by diagnosing each faulty node in the K-connected

system as faulty and each fault free nodes in the K-connected system as faultfree. Thus

F∗=F and FF∗=U-F.

Lemma 3.2:The message complexity of GAPFDA is O(K*n) and the message complexity

for completely connected system is O(n2).

Proof : The message complexity of GAPFDA, which assumes a K-connected system is

less than the GA-based diagnosis algorithm that assumes a completely-connected sys-

tem. We prove this lemma by computing the message complexity of the algorithm that

assumes a completely connected system. The total number of messages exchanged

depends on the connectivity K of the K-connected system in the algorithm GAPFDA.

Since the total number of nodes are n and each node tests at least K neighborhood

nodes, the total number of messages generated for GAPFDA is 2*n*K. We multiply 2

to the term n*K due to two messages exchanged for each test i.e we are sending a test

signal and receiving an acknowledgement from the tested node. The value of 2*n*K is
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reduced to n*K. Thus the message complexity of GAPFDA is O(n*K). If a completely

connected system is considered , each node in the system tests (n*(n-1))/2 number of

nodes. Each test consists of 2 messages as given above , which leads to O(n2). This

shows that the proposed algorithm reduces the number of messages exchanged than

the completely connected system.

Lemma 3.3:Time complexity of GAPFDA is O(K*P*n*ng), where ’K’ is the connectivity

of the network, ’P’ is the population size of the chromosomes and ’ng’ is the number

of generations, ’n’ is the number of nodes.

Proof : Time needed to diagnose the faulty nodes by GAPFDA depends upon (i)time

needed to create chromosome generated test syndromes of a population i.e O(K*n*P),

where ’P’ is the population size(number of chromosomes of the population), ’K’ is the

connectivity of the network and ’n’ is the number of nodes(length of chromosome),

(ii)time needed to get the optimum solution by (1)finding fitness of chromosomes,

(2)reproduction and supervised mutation, i.e O(ng), ng is bounded for a distributed

system of a specific network size due to the application of supervised mutation. Hence

the time complexity of GAPFDA is O(K*n*P*ng).

Theorem:The proposed GAPFDA is correct and efficient in terms of message complexity

and time complexity.

Proof : The correctness of the algorithm is trivial as all the theorom follows the Lemma

3.1, Lemma 3.2, Lemma 3.3. According to Lemma 3.1, the proposed algorithm

GAPFDA is correct and efficient. According to Lemma 3.2, the proposed algorithm

is efficient in terms of message complexity. According to Lemma 3.3, the proposed

algorithm is efficient in terms of time needed to diagnose the faulty nodes in the K-

connected system. Hence the proposed diagnosis algorithm GAPFDA is correct and

efficient in terms of message complexity and time complexity.
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3.4 Simulation Result

3.4.1 Simulation Model

A graph consisting of n number of nodes having connectivity K is created. The

connection matrix is created by the connectivity among nodes(vertices). Each row

of connection matrix is a random binary string of length n. Connectivity of each

node(vertex) is checked from the connection matrix until the connectivity of the graph

is K. If minimum connectivity of the system is found to be 1 or 0 then the connection

matrix is rejected and created for the next time.

The designed system model is applicable to K-connected distributed system of

varied network sizes starting from 5 nodes upto 500 nodes. These network sizes

are suitable for small scale as well as large scale distributed systems. The cost of a

link(edge) is directly proportional to the length of the link(edge) in the K-connected

graph(system) [37].

3.4.2 Results

The GAPFDA is simulated using MATLAB. The algorithm is evaluated in terms of

following parameters.

• Number of nodes in K-connected distributed system verses CPU time.

• Number of steps required to diagnose verses Number of nodes

• Number of message exchanged in completly-connected verses K-connected sys-

tem.

• Number of steps required to diagnose faulty nodes by applying random mutation

and supervised mutation in GAPFDA.

• Comparison of Cpu time needed to diagnose faulty nodes between non-GA based

algorithm(FIA) and proposed GA-based algorithm(GAPFDA).
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Number of nodes in K-connected distributed system verses CPU time

The total CPU time required by the ultra reliable node to diagnose the K-connected

system varies with the number of nodes in the system. As per the graph shown in

Figure 3.8, the CPU time taken to execute GAPFDA is directly propertional to the

increase in number of nodes of the system. Figure 3.9 represents the total CPU time

Figure 3.8: Graph showing the change in CPU time with increase in number of nodes
where ,(10 <= n <= 60)

needed to diagnose the faulty nodes in a largescale K-connected system, where number

of nodes in the system varies from 70 to 170.

Number of steps required to diagnose verses Number of nodes

In the GA-based fault diagnosis algorithm, the number of steps is defined as the

number of generation needed to find out the optimal solution. In the fault diagnosis

algorithm, the evaluation of new generation include the steps of supervised mutation

and reproduction. So the time required for each step depends upon the probability

of mutation of each bit. In the proposed work, the probability of mutation is set

to the minimum fitness value(i.e the bits having lowest fitness are to be mutated or

flipped). The more the number of bits to be flipped, the more time is needed by the

respective step. Here the population size and connectivity K remain fixed and the

number of nodes is increased. When the number of nodes varies in the range 10 in the
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Figure 3.9: Graph showing the change in CPU time with increase in number of nodes
where ,(70 < n < 150)

system, the number of steps are almost equal. The average case as well as worst case

outcome shown in Figure 3.11 concludes that, the number of steps required to find

the faulty nodes in the system increase with the size of network. The table 3.10 shows

that bounded number of steps are needed due to supervised mutation for diagnosing

faulty nodes of a system of constant size. Figure 3.12 shows the outcome of the

algorithm when the number of nodes varies upto 500.

Graph showing the number of message transferred in completly connected vs K-
connected system.

As K-connected distributed system works by following message passing mechanism,

the number of messages transferred in between nodes during testing and diagnosis

phase have effect on total time needed to diagnose the faulty nodes. Results show the

different case studies regarding different types of systems, such as completly connected

system and K-connected systems. In the K-connected system, the message transfer

depends upon the connectivity of the node. So the number of messages transferred

is lesser as at a time all the neighborhood nodes are not involved in testing a given

node. Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16 shows the outcome when the
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Figure 3.10: The number of steps required with increase in number of nodes

Figure 3.11: Graph showing the number of steps required with increase in number of
nodes where ,(10 <= n <= 100)

number of nodes varies upto 100 nodes, 150 nodes and 200 nodes in the K-connected

system.
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Figure 3.12: Graph showing the number of steps required with increase in number of
nodes,where , (100 <= n <= 500)

Figure 3.13: Graph showing the number of message transferred in completly connected
as well as K-connected system,where , (5 <= n <= 50)

Random Mutation vs Supervised Mutation

Figure 3.17 represents the graph, where different types of mutation technique are

used by the algorithm. By analyzing the simulation result, it is concluded that the

number of generations(steps) reduces when supervised mutation is applied rather
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Figure 3.14: Graph showing the number of message transfered in completly connected
as well as K-connected system,where , (50 <= n <= 100)

Figure 3.15: Graph showing the number of message transfered in completly-connected
as well as K-connected system,where, (100 <= n <= 150)

that random mutation. Because in random mutation , each bit of chromosome have

equal probability for improving their fitness. But supervised mutation restricted the

solution space by allowing the reduced number of qualitatitive chromosome.

Comparison of Cpu time needed to diagnose faulty nodes between non-GA based
algorithm(FIA) and proposed GA-based algorithm(GAPFDA)

Figure 3.18 represents the CPU time needed to diagnose the faulty nodes using

GAPFDA is lesser than the CPU time needed to diagnose faulty nodes by using FIA[4].
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Figure 3.16: Graph showing the number of message transfered in completly-connected
as well as K-connected system,where, (150 <= n <= 200)

Figure 3.17: Graph showing the number of steps required by applying random muta-
tion and supervised mutation in K-connected system,where, (5 <= n <= 50)

3.5 Conclusion

In this chapter, the requirment of permanent fault diagnosis in K-connected distributed

system using genetic algorithms has been introduced. The proposed algorithm along

with system, fault and diagnosis model are described in detail. The simulation result
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Figure 3.18: Graph showing the where Comparison of CPU time needed to diagnose
faulty nodes between FIA and proposed GAPFDA, (10 <= n <= 60)

shows that the proposed algorithm is correct, efficient an feasible in terms of CPU time,

number of steps needed for diagnosis and message overhead. An example illustrating

the complete functioning of the proposed fault diagnosis algorithm is presented. The

proposed diagnosis algorithm, its description and analysis have been discussed. The

time complexity and message complexity of GA-based permanent fault diagnosis

algorithm(GAPFDA) are O(n*P*K*ng) and O(n*K) respectively.
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Chapter 4

GA-based Intermittent Fault Diagnosis
In K-connected Distributed System

4.1 Introduction

In chapter 3, we presented a genetic algorithm based fault diagnosis approach to di-

agnose permanent faulty nodes in a K-connected distributed systems assuming that

most of the emerging class of distributed systems are K-connected. It should be noted

that many K-connected systems are also subjected to intermittent faults. The presence

of intermittent faults in these systems not only can degrade the performance of the

system but also reach in erroneous outcome of the tasks which are executed on these

systems. This indicates that, these faults affect both quality of service as well as reliabil-

ity of the systems. An intermittent faulty node in the K-connected distributed system

behaves as a faulty node in one duration and behaves as a faultfree node in another

consecutive duration. This process is usually repeated for a specific duration. Here the

behavior of a node is defined as the response it gives when it receives a signal from the

connected neighbourhood nodes when nodes test each other. So intermittently faulty

nodes behave in an unpredictable manner. Motivated by the need to maintain the

quality of service and reliability of a K-connected distributed system, a GA-based fault

diagnosis algorithm to diagnose intermittent faulty nodes is described in this chapter.

The chapter is organised into different sections as follows. Section 4.1 introduces

the knowledge regarding the nature of intermittent fault and describes how it is im-
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portant to diagnose the intermittently faulty nodes in the system. Section 4.2 describes

the system, fault and diagnosis model of the K-connected distributed system. Section

4.3 describes the fault diagnosis algorithm. Section 4.4 discusses the results obtained

from the simulation followed by conclusion in section 4.5.

4.2 System , Fault and Diagnosis model

The system model here is same as that of system model described in chapter 3. How-

ever, we again describe the system model here for completeness of this chapter. The

K-connected system is assumed to be synchronous. In a K-connected distributed sys-

tem, the connectivity of nodes varies with size of the system. The connectivity of

K-connected distributed system refers to the minimum degree of the network. The

nodes in the application specific K-connected distributed system uses message passing

mechanism to perform their work. The K-connected system is t-diagnosable that can

allow a maximum number of t faults where t=floor((n-1)/2).

Occurrence of faults may be at different levels of the K-connected distributed sys-

tem such as physical layer, hardware, system software, and middleware. In this

chapter, we considered the fault introduced in the K-connected distributed system is

intermittent fault. Faults assumed to occure at node or system level. The communi-

cation link connecting the nodes of a distributed system is assumed to be faultfree.

A node becomes intermittently faulty, if the faulty nodes behaves faulty for a certain

duration and behaves faultfree in the next consecutive duration. If this type of faulty

nodes are not detected for a long time, then the nodes become permanently faulty.

Hence diagnosing intermittent faulty nodes in the K-connected system are essential

for smooth functioning of the system. Diagnosis of intermittent fault reduces the effect

of permanent fault on the system because it reduces the chance of a node of leading to

permanent fault. In this chapter, the test result is interpreted using PMC model. The

table shown below, contains the information about the tester and tested nodes of the

2-connected distributed system shown in Fig 4.1. The test result is interpreted by
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Figure 4.1: Intermittently faulty nodes in 2-connected Distributed System

Table 4.1: Tester nodes and tested nodes of 2-connected distributedsystem

Tester node Tested node

1 2,5
2 1,3
3 4,5
4 3,5
5 1,3,4

using PMC model .

4.3 GA-based Intermittent Fault Diagnosis Algorithm

The GA-based Intermittent Fault Diagnosis(GAIFD) approach consists of two algo-

rithms. The algorithm 1 is the main algorithm, in which faulty and faultfree nodes of

the K-connected system is found. The algorithm 1 is dependent on algorithm 2. Algo-

rithm 2 returns the fitness of all the chromosomes in every generation to the algorithm

1. The notations, those are used in the algorithm are described:

G(U,E)= Undirected testgraph represents the processors of the system in terms of ver-

tex ui and communication link among processors in terms of edge ei.

TT∗=Binary vector, that contains the information of testoutcomes after the test is per-

formed on each processor. It is also known as real test syndrome.

TT= Binary vector, that contains the information of testoutcomes from the testgraph,

those are generated from chromosomes. It is also known as chromosome generated

test syndrome.
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F= Set of permanently faulty nodes generated as output from algorithm1.

FF= Set of faultfree nodes.

F∗= Fault set of real system.

FF∗= Faultfree set of real system.

C= Collection of binary bit strings of length ’n’ , where n equals to the number of nodes

in the system. Number of binary bit strings in C are fixed.

Cinit= Initial Population(Initial collection of binary bit strings of length ’n’, where n

equals to the number of nodes in the system.

FT(Ci)= Fitness of chromosome, it is defined as the degree of correctness of an expected

solution(Ci) in the solution space.

HighFT= An array that is assigned by the chromosome/expected solution(Ci) of high-

est fitness value.

FIT= An array that contains the fitness value of all the chromosomes in the population

in every generation.

P= Population size at each generation.

T∗(node) = Collection of testoutcome, when the tester node tests its connected neigh-

bourhood nodes(the nodes to be tested) in the real system.

(T*)´(node)= Collection of testoutcome, when the node is tested by its connected neigh-

bourhood nodes in the real system.

T(node)=Set of testoutcome, when the node tests its neighbourhood nodes of the chro-

mosome-generated testgraph.

T´(node)= Set of testoutcome , when the node is tested by its connected neighbourhood

nodes of the chromosome generated testgraph.

Collect-SameOutcome1(node)= Total number of similar testoutcomes are collected by

comparing testoutcome(T∗) of tests performed on real system and testoutcome(T) of

the tests performed on chromosome generated testgraph.

Collect-SameOutcome2(node)= Total number of similar testoutcomes are calculated

by matching T’(node) and T∗′(node).

dout(node) and din(node)= Outdegree and Indegree of a node in the system.

PC1(node) = Probability of correctness of tests performed by tester node(the node,that
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tests other nodes).

PC2(node) = Probability of correctness of tests performed on a node(tested node).

PC = The average of PC1(node) and PC2(node)

ci = The ith bit of the bitstring(Chromosome)

Ci = ith chromosome.

r= Number of rounds.

R f ixed= The number of rounds the testing phase and diagnosis phase will be exe-

cuted(experimentally set by the user).

RESULT= Matrix to store the diagnosis outcome of each round.

4.3.1 Description of GAIFDA

In GAIFDA, the input given to the algorithm is the real test syndrome TT∗ and the

testgraph of the K-connected distributed system. Here the real test syndrome(TT∗)

contains the information regarding the testoutcome generated after applying PMC

model to the real system. The testgraph represents the connection link of comparator

node with compared node, the weight of each edge in the graph is the outcome of

the test, that have been taken place by tester node and tested node. In GAIFDA, the

output is the faulty nodes and faultfree nodes of the K-connected system. The basic

steps followed by GAIFDA is the most fundamental steps of genetic algorithm. These

are (i)Selection(ii)Reproduction (iii)Supervised mutation.

The following example provides the brief explanation of the genetic algorithm

based fault diagnosis algorithm. The 3-connected system shown in Figure 4.2 con-

sists of 5 nodes numbered in the sequence 1 to 5. The node 1 is intermittently faulty.

Suppose the test graph is generated for the round r=1 from the figure 4.2 is shown in

figure 4.3. In the round r=1,suppose the node 1 is giving incorrect outcome. So the

generated real test syndrome , TT∗ is (111 100 000 1000 100) as per the node sequence 1

to 5. In order to get the test outcome of individual nodes(T∗ and T∗′) in the system, we

separate TT∗ to T* and T∗′ as shown in Table 4.2. The first step of genetic algorithm

based intermittent fault diagnosis is generating initial population of chromosomes i.e
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Algorithm 3 GA-Based Intermittent Fault Diagnosis Algorithm for K-connected Dis-
tributed system
Input:G(U,E) and the real test syndrome TT∗
Output:Faulty(F) and Faultfree(FF) node set of the system.

1: SET r=1 and RESULT=NULL.
2: while (r , R f ixed) do
3: Perform testing at node level , collect the test syndrome.
4: Generate Initial population of chromosomes Cinit.
5: Evaluate fitness of each chromosome of the population Cinit by calling the

subfunction FT(chromosome).
6: C=Cinit
7: HighFT←Chromosome of C having highest fitness.
8: while (sum(FIT) , P) do
9: Selection(C);

10: Reproduction(C);
11: Mutation(C);
12: For all Ci belongs to C,where i varied from 1 to P ,compute the fitness by

calling FT(Ci);
13: HighFT←Chromosome Ci having highest fitness.
14: Collect the chromosomes of fitness having HighFT value generate new

population(C).
15: FIT←Fitness of all the chromosomes present in the population(C).
16: end while
17: The faulty nodes(Bit value 1) are identified from the chromosomes and stored

in the set F. The nodes having bit value 0 are faulfree nodes of the system and
stored in the set FF.

18: Set RESULT[r]=diagnosed faulty node set F nodes at each round r .
19: Increment r.
20: end while
21: Identify the faulty nodes from RESULT.
22: End
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Algorithm 4 Algorithm for finding Fitness of each chromosome(FT(chromosome)

1: T*(node) and T∗′(node) are derived from real test syndrome TT∗.
2: T(ci) and T’(ci) are derived from the testgraph Gc(U,E).
3: Collect-SameOutcome1←|T∗(node)

⋂
T(ci)|

4: Collect-SameOutcome2←|T∗′(node)
⋂

T′(ci)|
5: DOUT←|dout(node)|
6: DIN←|din(node)|
7: PC1(ci)←Collect-SameOutcome1/DOUT
8: PC2(ci)←Collect-SameOutcome2/DIN
9: PC(ci)←(PC1(ci)+PC2(ci))/2

10: Fitness of Chromosome←PC(c1)+PC(c2)+......+PC(cn))/n ,where c1,c2,c3,c4, .....,cn of
a chromosome are expected node status(faulty or faultfree) of nodes of real system.

11: return(Fitness of Chromosome)
12: End

Table 4.2: Test outcome obtained individually by each node of 3-connected distribut-
edsystem

Nodes T* T∗′

1 (1,1,1) (1,1,1)
2 (0,1,0) (1,0,0)
3 (0,0,0) (0,0,0)
4 (0,0,1,0) (0,1,0,0)
5 (0,0,1) (0,0,1)

a set of possible solutions. Here the solutions are defined in the form of binary bit

strings. In the above example, the initial population is represented in figure 4.4. The

size of initial population is taken as 4. In the initial population, each chromosome is of

length n, where n is the number of nodes in the system. In a chromosome, 1 represents

a faulty node and 0 represents a faultfree node. So one possible solution(chromosome)

contains the information regarding the status of each node in the system. Chromo-

somes in the population are randomly generated bitstrings. But each chromosome

contains atmost floor((n-1)/2) number of 1. Chromosome having all the zero bits is

not an expected solution, because we assume the presence of at least one fault in the

system. So finally chromosomes having all zeros and chromosomes having more than

floor((n-1)/2) number of 1s are excluded from the population.
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Figure 4.2: A 3-connected Distributed System

The second step of genetic algorithm based intermittent fault diagnosis(GAIFD)

is, finding the fitness of every chromosome in the population. Here fitness of a chro-

mosome is the average of the fitness of every bit of chromosome. If a test graph is

retrived from the chromosome and testing is applied on it, fitness of every bit in the

chromosome is the degree of correctness of the test performed by that bit(node). In

another way, fitness of chromosome can be defined as how much it is nearer to the

actual solution of the diagnosis problem. Fitness of chromosome is denoted by FT,

where chromosome is denoted by C and ci is the ith bit of the chromosome.

Table 4.3: Fitness of all the chromosomes in the initial population

Chromosomes Fitness of each bit Fitness of chromosome

10010 (1 ,.66 ,.66 ,.25 ,.66) .6500
10100 (.83,.66 , 0 ,.75 ,.66) .5800
11000 (1, .33 ,.66 ,.75 , 1 ) .7500
00001 (.33,.66 ,.66 , 1 ,.33) .6000

Step 3 of GAIFDA is the selection of the chromosome having highest fitness. Here

(11000) is the chromosome, that has the highest fitness value i.e .7500.
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Figure 4.3: Test graph of 3-connected Distributed System

Figure 4.4: Representation of Initial population of chromosomes

Step 4 of GAIFDA is reproduction. In the process of reproduction, a new generation is

created from old poulation, they have better fitness value than the previous generation.

But the population size remains unchanged. In the given example, the chromosomes

in the new generation is shown in figure 4.5. Then supervised mutation is applied on

chromosomes with probability of mutation pm. pm always holds the minimum fitness

value from all the fitness values of every bit in the chromosome. According to the given

example, for chromosome (11000), the individual fitness of the bits are (1, .33, .66, .75,1).

So the value of pm is taken as .33 .

As fitness of individual bits say about their degree of correctness as a testern-

ode and tested node, the minimum fitness has the least probability of being correctly

diagnosed as well as performing the correct diagnosis. Thats why if the bit having min-
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Figure 4.5: Representation of chromosomes of the new population

imum fitness is mutated then there is a probability of increase in degree of correctness

for that particular bit. Thats why supervised mutation is applied on the chromosomes

and the value of pm is taken as the minimum fitness value among all the fitness values

of bits. Another reason of performing supervised mutation is by mutating a bit in a

chromosome changes the total fitness of chromosome as well as the types of solution

increases in the solution space.

In the step 5 of GAIFDA, again the fitness of chromosomes of new population

is evaluated. Step 3, Step 4, Step 5 will be repeated until the fitness value of each

chromosome becomes 1 in a particular generation. The individual fitness of chromo-

somes in the new poulation is shown in the Table4.4. In step 4, by applying probability

Table 4.4: Fitness of all the chromosomes in the initial population

Chromosomes Fitness of each bit Fitness of chromosome

11000 (1.0 ,.33 ,.66 ,.75 ,1.0) .75
11000 (1.0, .33 ,.66 ,.75 ,1.0) .75
11000 (1.0, .33 ,.66 ,.75 ,1.0) .75
11000 (1.0 ,.33 ,.66 ,.75 ,1.0) .75

of mutation to the new poulation, the 2nd bit of each individual chromosome will be

mutated from 1 to 0. According to step 5, the fitness of the chromosomes of the new

population is again calculated and shown in Table 4.5. The GAIFDA algorithm will

be executed for r rounds, in each round it will get fault set. Because at every round

the intermittently faulty nodes will give correct outcome also. In the given example

if the value of r is set to 1 and 5 rounds of execution will be performed, in the first
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Table 4.5: Fitness of all the chromosomes after mutation

Chromosomes Fitness of each bit Fitness of chromosome

10000 (1.0 ,1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0, 1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0, 1.0 ,1.0 ,1.0 ,1.0) 1.0
10000 (1.0 ,1.0 ,1.0 ,1.0 ,1.0) 1.0

round the outcome of the algorithm may be ”node 1 is faulty”. In the second round of

testing , the outcome may be ”node 1 is faultfree” i.e no node is faulty, In the 3rd round

the outcome may be ”node 1 is faulty”, followed by the outcome ”node 1 is faulty” in

the final round. The number of times the system will be checked, that improves the

confidence of getting the complete and correct fault set of the system. During each

round of execution the diagnosis algorithm will get different test syndrome depending

upon the number of identified intermittently faulty nodes in the system.

4.3.2 Analysis of GAIFDA

In this section, the correctness, efficiency and message overhead of the proposed al-

gorithm GAIFDA are presented. A fault diagnosis algorithm is said to be correct if

all the intermittently faulty nodes are diagnosed as intermittently faulty and all the

fault free nodes are diagnosed as fault free. The message overhead of the diagnosis

algorithm refers to the message complexity or the total number of messages exchanged

during the process of diagnosis . The time complexity of any fault diagnosis algorithm

is the total time needed for achieving the diagnosis. Now the correctness, message

complexity and the time complexity of the proposed algorithm is proved by using the

following lemmas and theorems.

Lemma 4.1: The proposed GA-Based intermittent fault diagnosis algorithm is cor-

rect.

Proof :

To prove the correctness of the proposed algorithm, we consider a t-diagnosable sys-
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tem, where at most t number of intermittent faults can be diagnosed. The proposed

algorithm is implemented on a K-connected system, where K is the connectivity of the

distributed network. Let U is assumed as the set of all nodes (identified by their node

number) of the K-connected system. Let F∗ is the real faulty node set and FF∗ is the real

fault free node set of the system. The outcome(fault set generated) by the algorithm is

F. If F∗=F and FF∗=U-F, then the algorithm is correct.

If F∗ , F and FF∗ , U−F in the 1st generation of all the rounds, we need to gener-

ate another population by selecting the highest fitness valued chromosomes from the

previous generation. That leads to TT∗ , TT , where TT∗ is the real test syndrome and

TT is the chromosome generated test syndrome. Since PC1 and PC2 of each bit ci of

chromosome Ci depends TT and TT∗, their values will not be equal to 1. To improve

the value of PC1 and PC2 towards 1, reproduction and supervised mutation are applied.

When we apply reproduction and supervised mutation repeatedly over the intermedi-

ate generation, the fitness of each bit of the chromosome is 1. When PC1=1 and PC2=1,

this shows the proposed algorithm achieves the diagnosis within a bounded number

of steps by diagnosing each intermittenly faulty node in the K-connected system as

faulty and each fault free nodes in the K-connected system as faultfree.Thus F∗=F and

FF∗=U-F for each round.

However an intermittent fault can be captured when the status of the node is

in F and considered to be faulty in a particular round and the status of the same node

is in FF i.e the node is faultfree in some other round. This behavior of the intermit-

tently faulty nodes depend on the comparison outcome between real test syndrome

and chromosome generated test syndrome. Though F∗=F and FF∗=U-F due to the

assumption of 100 percent test coverage, for all the rounds remains true, the number of

faulty nodes and faultfree nodes along with their identification numbers will change

from one round to another round in the occurence of intermittent faults. This shows

that the intermittent faulty nodes are captured correctly within bounded time.
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Lemma 4.2:The message complexity of GAIFDA is O(r*K*n), where ’r’ is total num-

ber of rounds, ’K’ is the connectivity of the system and ’n’ is the number of nodes in

the system.

Proof : The message complexity of GAIFDA, which assumes a K-connected system

depends upon the number of rounds, the algorithm gets executed to confirm the faulty

nodes are truely intermittently faulty. We prove this lemma by computing the mes-

sage complexity of the algorithm. The total number of messages exchanged depends

on the connectivity K of the K-connected system in the algorithm GAIFDA. Since the

total number of nodes are n and each node tests at least K neighborhood nodes, the

total number of messages generated for GAIFDA is 2*n*K. We multiply 2 to the term

n*K due to two messages exchanged for each test i.e we are sending a test signal and

receiving an acknowledgement from the tested node. The value of 2*n*K is reduced

to n*K. The number of rounds, the diagnosis phase will continue, is ’r’. Hence the

message complexity of GAIFDA is O(r*n*K).

Lemma 4.3: Time complexity of GAIFDA is O(r*K*n*P*ngi), where ’r’ is number of

rounds and ’K’ is the connectivity of the network, ’n’ is the total number of nodes, ’P’

is the population size of the GA, ’ngi’ is the number of generations of the GA.

Proof :

Time needed to diagnose the faulty nodes by GAIFDA depends upon (i)time needed to

create chromosome generated test syndrome from the chromosomes of the population

i.e O(K*n*P), where P is the number of chromosomes of the population, K is the con-

nectivity of the network and n is the number of nodes(length of chromosome), (ii)time

needed to get the optimum solution by (1)finding fitness of chromosomes, (2)repro-

duction and supervised mutation, i.e O(ngi),ngi is bounded for a distributed system

of a specific network size due to the application of supervised mutation. The number

of rounds the algorithm gets executed is r. Hence the time complexity of GAIFDA is

O(r*K*n*P*ngi).

Theorem:The proposed GAIFDA is correct and efficient in terms of message complexity
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and time complexity.

Proof : The correctness of the algorithm is trivial as all the theorem follows the Lemma

4.1, Lemma 4.2, Lemma 4.3. According to Lemma 4.1, the proposed algorithm GAIFDA

is correct and efficient. According to Lemma 4.2, the proposed algorithm is efficient

in terms of message complexity. According to Lemma 4.3, the proposed algorithm

is efficient in terms of time needed to diagnose the faulty nodes in the K-connected

system. The proposed diagnosis algorithm GAIFDA is correct and efficient in terms of

message complexity and time complexity.

4.4 Simulation Results

The GAIFDA is simulated using MATLAB. The algorithm is evaluated in terms of

following parameters.

• Number of nodes in K-connected distributed system verses CPU time.

• Number of steps required to diagnose verses Number of nodes.

• Number of messages transferred in GAPFDA and GAIFDA verses Number of

nodes.

Number of nodes verses CPU time needed to diagnose

The total CPU time required by the ultra reliable node to diagnose the K-connected

system varies with the number of nodes in the system. As per the graph shown in

Figure 4.6 and figure 4.7, the number of rounds the algorithm will be executed is

taken as 5. With the increase in number of nodes from 10 to 140, the CPU time needed

to diagnose the intermittent faulty nodes increases. But along with the number of

nodes, the second factor on which the CPU time depends, is the number of rounds

the algorithm gets executed to get the complete set of intermittently faulty nodes. If

we vary the number of rounds from 5 to 10 or 15 or 20 accordingly the diagnosis time

increases. The number of rounds is set to 5 in all the experiments.
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Figure 4.6: Graph showing the change in CPU time with increase in number of nodes
where ,(10 <= n <= 60)

Number of steps required to diagnose verses Number of nodes

The number of steps is defined as the number of generation needed to find out the

optimal solution. In the fault diagnosis algorithm, the evaluation of new generation

include the steps of supervised mutation and reproduction. So the time required

for each step depends upon the number of mutated bits. In the proposed work, the

probability of mutation is set to the minimum fitness value(i.e the bits having lowest

fitness are to be mutated or flipped). The more the number of bits to be flipped , the

more time is needed by the respective step.Here the population size and connectivity

K remain fixed and the number of nodes is increased.When the number of nodes varies

in the range 10 in the system, the number of steps are almost equal. The average case

as well as worst case outcome shown in Figure 4.9 concludes that, the number of steps

required to find the faulty nodes in the system increase with the size of network, where

the number of rounds the GAIFDA gets executed is constant.
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Figure 4.7: Graph showing the change in CPU time with increase in number of nodes
where,(10 <= n <= 130)

Number of messages transferred in GAPFDA and GAIFDA with increase in number
of nodes

In figure 4.9, the network size is increased upto 100 nodes and the total number of

message transferred is calculated. The number of messages transferred in between the

nodes of a K-connected distributed system for diagnosing intermittent fault is more

than the message transferred in diagnosing permanent fault of a system. In intermit-

tent fault diagnosis, the number of messages transferred depends upon the number of

rounds the algorithm gets executed. In the simulation model the number of rounds is

taken as 5. The total number of messages transferred is 5*(the number of test messages

transferred in 1 round).

The proposed GAIFDA is the extension of the work in chapter 3,hence the compar-

ison has been only made with the GAPFDA of chapter 3.
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Figure 4.8: Graph showing the number of steps needed to diagnose intermittently
faulty nodes with increase in number of nodes where,(10 <= n <= 100)

Figure 4.9: Graph showing the number of messages transferred in GAPFDA and
GAIFDA with increase in number of nodes where,(10 <= n <= 100)

4.5 Conclusion

In this chapter, the requirment of intermittent fault diagnosis in K-connected dis-

tributed system using GA has been introduced. The proposed algorithm along with
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system, fault and diagnosis model are described in detail. The simulation result is

shown for different network sizes. The result shows that, as we increase the net-

worksize, CPU time needed to diagnose nodes, no. of steps required to diagnose the

nodes increases. The proposed diagnosis algorithm, its description and analysis have

been discussed by suitable example. The time complexity and message complexity

of GA-based intermittent fault diagnosis algorithm(GAIFDA) are O(r*n*P*K*ngi) and

O(r*n*K) respectively.

63



Chapter 5

Fault Diagnosis in Multi Rate
Fly-By-Wire system

5.1 Introduction

Distributed Embedded Systems are being increasingly used in various application do-

mains like automotives, weather forecasting and defence field. This is due to reduction

in processing element cost and development in network technology [7]. Automotives

like Fly-By-Wire system, Steer-By-Wire system, Break-By-Wire system are distributed

embedded system comprises of smart sensors, actuators, microcontrollers connected

by a bus having limited bandwidth. In fly-by-wire system, the traditional aircraft

system is replaced by a microprocessor-controlled and networked electromechanical

one without any mechanical backup. Wires from the control stick in the cockpit to the

control surfaces on the wings and tail surfaces replaced the entire mechanical flight

control system.

The key advantage of Fly-by-wire system over fly-by-hydraulic lines is given below

[39].

• Less vulnerability to battle damage

• Maneuverability

• Smoothness

• Lighter
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• Requires less maintenance

• Reduces fuel consumption

For electric steering control sensors at hand-wheel and road-wheel position sense the

hand wheel angle and road wheel force respectively. Embedded microcontrollers

compute the desired actuation command for the actuators in steering rack motor. Due

to electromechanical failure, an actuator delivers erroneous output. This may result

in undesirable system level behavior. Faults in actuators in the Fly-By-Wire system,

may occur repeatedly due to electromechanical failure, due to undesired input from

the microcontrollers. After certain interval, the fault becomes permanent and causes

catastrophic failure if it is not diagnosed beforehand. Diagnosing the fault at system

level and making the system reliable inspite of occurrence of fault is essential for the

safety-critical fly-by-wire systems.

The System level fault diagnosis overcomes the examination of complex circuitry

at chip level. It concerns with the behavior of faulty nodes in a Fly-by-wire system.

Another way of making the system more efficient depends upon efficient communi-

cation among sensors, actuators and microcontrollers. The lesser the message trans-

mission among the nodes, lesser will be the communication overhead, lesser will be

the communication cost. The transmission protocols used for these type of real time

distributed systems are TTP [25], FlexRay [15], CAN. The author of [24] has proposed

a software-based approach, where diagnosis of failed components is done within

designer-specified deadline while meeting the performance goals of a single-rate con-

trol application. The factors that motivated us to do this work are (i) the Fly-by-wire

systems are safety-critical. The diagnosis is indispensable for such systems. (ii) the

comparison based diagnosis [32] is the most practical diagnosis methods and is suit-

able for these systems. (iii)as in case of self validating actuators, diagnostic checks

can be built into a processor, the computing power needed to execute sophisticated

behavioural models is generally not available, external diagnosis complements the

local check done by self diagnosis of the processors. (iv) Model based redundancy is
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used for fault diagnosis, where software based diagnosis tasks compare the difference

in-between actual component behaviour with the one predicted by a mathematical

model and reconfiguration takes place before the system becomes unsafe. The existing

approach is applicable in multi-rate system, where the command to actuators is given

at a varied time interval.

5.2 System , Fault and Diagnosis Model of Fly-By-Wire
System

Fig. 5.1 shows the distributed architecture of Fly-By-Wire system, in which smart

sensors, actuators, micro-controllers are connected through controller area network.

Micro-controllers, actuators, sensors in the network suffer from different types of fail-

ures, which are assumed to be bounded in numbers. Fig. 5.2 shows the integrated

Figure 5.1: Distributed architecture of fly-by-wire system

approach to fault tolerant control and distributed diagnosis for FBW system. Actuator

control portion defines all the control tasks providing command to the actuators. In

a multi-rate system like fly-by-wire system, 2k+1 modular redundancy technique is

followed to control the actuator and to make the system k-fault-tolerant. Actuator di-

agnosis portion of the system model defines all the tasks those are used to diagnose the

faulty actuator. System model signifying the control and diagnosis portion is assumed

to perform the desired function in safety critical environment.
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Figure 5.2: Integrated approach to fault tolerant control and distributed actuator diag-
nosis(adopted from [21])

5.2.1 System Model

Control architecture comprises of redundant sensors, actuators, micro-controllers of

different types connected by controller area network via a network interface, which

guarantees deterministic transmission latency. Message transmission between the

components of the control architecture follows CAN protocol, which assumes a fault -

free communication. Smart sensors of the control architecture sense the environmen-

tal parameters, the micro-controllers connected in the network compute the desired

actuator command and the voted actuation command is given to the actuator. All the

sense, compute, actuate tasks of Fig. 5.1 are mapped to the Fig. 5.3 .

Figure 5.3: Control Architecture

5.2.2 Fault and Diagnosis Model

Actuator diagnosis architecture consists of two-phase approach. In the first phase

each microcontroller independently evaluates the behavior of actuator Ai. The local

67



5.3 Fault Diagnosis Algorithm

decisions are then consolidated via a suitable agreement algorithm during phase 2 to

obtain a global view of Ai’s status. Fig. 5.4 describes the actuator diagnosis architecture.

By following the rule of analytical redundancy , dedicated microcontrollers of the k-

FT system checks the actuator’s status individually within their local execution time.

After evaluation of actuator status,the status of the actuator is determined by the help

of a mathematical model running within individual microcontrollers. Here status is

nothing but the difference in between the actual actuator command with the estimated

command derived from the mathematical model locally, the input to the mathematical

model is the information obtained from monitoring the environment, after the recent

actuation command is given to the actuator.

Figure 5.4: Diagnosis Architecture

5.3 Fault Diagnosis Algorithm

The notations used in the proposed algorithm is as follows.

r= Number of rounds.

E= Set of residues, where residue=(Estimated actuation command)-(Calculated actua-

tion command).

5.3.1 Description of the Fault Diagnosis Algorithm

The fault diagnosis algorithm is described as follows. The behavior of the actuators

in the FBW system is studied by monitoring sensors. Then the microcontrollers study

the difference in between the actual actuator command value and the value obtained
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Algorithm 5 Fault Diagnosis Algorithm

1: Number of rounds r = 1
2: while (r < n) do
3: Monitoring sensors read the actuator behavior.
4: while (|E| , 1) do
5: Microcontrollers performing checker tasks gets the input from the moni-

toring sensors and compute the actuation command.
6: The estimated value of actuation command is determined by the checker

tasks.
7: Residues in each microcontroller is obtained by comparing the estimated

actuation command with previously applied actuation command.
8: E = (e1,e2,e3, ...e2k+1),where e1,e2,...,e2k+1 set of residues obtained from the

checker tasks to each processors.
9: Remove that pair from the set E.

10: end while
11: The last element remained in the set is the obtained.
12: if (obtainedvalue >= thresholdvalue) then
13: Faulty actuator is diagnosed as transient faulty
14: end if
15: end while
16: Actuator is diagnosed as permanently faulty and recovery task is performed on

actuator
17: End
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from the manipulation of the outcome, which is obtained from the monitoring sen-

sors. Status obtained in term of residues from redundant microcontrollers performing

checking tasks again fed as input to microcontrollers set having cardinality 2k+1, Each

microcontroller in the set, applied certain voting mechanism [41] to the obtained set of

input and evaluates them against a priori defined threshold to diagnose actuator. Step

4 to step 8 in the algorithm obtain the median value of obtained residues in different

microcontrollers. In step 9 , the median value obtained from the set of residues is

compared with threshold value, which is system specific. Once the obtained value is

greater than equal to threshold value, the actuator is detected as faulty for the first time,

this fault is known as transient fault. If the transient fault remains in the actuator for a

certain period of time, that becomes permanently faulty. If the same residue is obtained

for r number of times, then transiently faulty actuator is diagnosed as permanently

faulty and recovery action is taken place.

5.3.2 Analysis of Algorithm

Monitoring sensors reads the actuator behavior in O(1) time. Step 2 to 7 takes O(2k+1)

time that is O(k). Step 1 to 10 in the algorithm takes O( r ) times. So the time complexity

of the proposed algorithm is O(r*k) for r rounds in a k-fault tolerant system like FBW.

5.4 Graph Model of FBW System

The proposed system model is mapped to the directed acyclic task graphs G1, G2, G3.

As Fly-By-Wire system is a multi-rate system, control portion of G1, G2, G3 are different

from one another. But diagnosis portion of the graphs G1,G2,G3 are taken similar to

the directed sub-graph of the steer-by-wire system proposed by author Nagrajan Kan-

daswamy in [24]. The task graph representing the diagnosis portion of Fly-By-Wire

system is shown in Fig. 5.8 . Task-graph Gi consisting of vertices and edges repre-

senting tasks and precedence constraints respectively. The weight associated with the

edges in between tasks is represented by intercommunication cost. Sometimes the

weight associated with the edges represent sampling delay. Here sampling delay is
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the time interval after which monitoring sensors of the diagnosis portion sense the

physical system.

In Fly-By-Wire system, different functionalities like electric steering control, traction

control, cruise control generate command for the actuators repeatedly at different time

intervals, task graph model differs according to the different functionalities during

takeoff, cruise control, landing of flight. The task-graphs representing steering control,

traction control and cruise control are shown in Fig. 5.5, Fig. 5.6, Fig. 5.7 respectively.

Figure 5.5: Electric steering control task graph

Figure 5.6: Cruise control task graph

5.4.1 Electric Steering Control

Electric steering work performed by the fly-by-wire system during landing is parti-

tioned into a set of tasks acquiring some execution time and the interdependent tasks

are represented by a task graph G1(V,E),where V represents the tasks and E repre-

sents the interdependency cost, E is taken as directed due to precedence constraint
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Figure 5.7: Traction control task graph

,i.e.T4(Desired hand-wheel effort) task, time period for the directed acyclic task graph

is taken as critical path will be performed after the task T1(determination Hand-wheel

position) and T2(Determination of road-wheel force).

5.4.2 Cruise Control

Cruise control work is accomplished by the fly-by-wire system during landing is also

partitioned in to different types of task. First the distance of the object near which the

flight will stay in ground is determined, as well as the current speed of the flight is

determined then desired speed is maintained for proper and smooth landing of the

flight. In second step current throttle position is determined, inwhich a separate task

is done simultaneously with the tasks associated with the first step. Depending on

the required speed and current throttle position, breaking force (a task) is applied and

command is given to the actuator present at the break and throttle. In this directed

acyclic task graph, the output of one task is feed as the input to another task. No

backward movement occurs in the task graph.
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Figure 5.8: Actuator Diagnosis Task Graph integrated with Actuator Control Task
graph

5.4.3 Traction Control

During landing, traction control is done by determining the wheel speed of all 4 wheels

(2 front wheels and 2 rear wheels) so that the yaw rate can be calculated , simultaneously

hand wheel position and lateral acceleration is calculated as two separate tasks. Then

desired breaking force is determined to actuate the throttle and break.

5.5 Task Graph Scheduling Algorithm

The efficiency in performance of fault diagnosis in the fly-by- wire system depends

on two factors. One factor is the time difference in between reading the sensor and

commanding the actuator. Another factor is the time needed for diagnosing the faulty

actuator by the fault free microcontrollers.

5.5.1 Control Period

Distributed system comprises of smart sensors, microcontrollers, actuators. Sensors

sense, microcontrollers compute actuation command, Computed commands are voted

and actuator works upon the voted command. Hence sensors, microcontrollers control

the actuators in repeated time interval. In a multi-rate system, different task graphs

have different control period, as the functionalities are different.
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5.5.2 Diagnosis Latency

The time duration within which, the faulty actuator is diagnosed after command is

given to the actuator and the system become safe is termed as diagnosis latency. It is

denoted by td. Diagnosis Latency can be defined in another way, the total time needed

by the checker tasks to generate the residues and the voter tasks needed to compare

the residues along with the communication time needed for message passing through

communication channel.

Suppose

• Tunsa f e= Time within which the physical system becomes unsafe.

• Tevalc= Time needed for comparing the actual actuation command with the actu-

ation command generated from the mathematical model.

• Tevalr = time for execution of the voting algorithm in each processor during each

step of actuator control

• tc = time taken for passing message among microcontrollers.

Diagnosis latency td within which actuator is to be diagnosed should satisfy the in-

equality given below:

td ≤ (Tunsa f e−Tevalc + Tevalr + tc) (5.1)

5.5.3 Tasks in Embedded Task graph Of Actuator Control and Diag-
nosis(adopted from [21])

The execution time range of different types of tasks in the above table is taken from

literature survey. Execution time of different tasks are obtained randomly during

simulation.

5.6 Description of Graph Scheduling Algorithm

In the fly-by-wire system, the execution period of each task graph is its critical path.

As the system is multi-rate in nature the control period of each task graph is different
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Table 5.1: Task type, Task name, Task execution time

Task Type Task name Execution Time Range(�second)

S Sense 150-200
C Compute 400-500
A Actuate 250-300
B Buffer 50-50

C Check 400-500
V Vote 350-400
M Monitor 400-500
R Recover 350-400

but smaller than the execution period. So successive iterations of different task graphs

are overlapped to get a feasible schedule. As all the graphs are sequential and directed,

all the task graphs are pipelined to achieve both the desired control performance and

diagnosis latency. The concept of pipelining or overlapping of task graphs is taken

from the concept of software pipelining.

The different tasks in the task graph are assigned priority according to their ap-

pearance order in the task graph [1]. The tasks of the task graphs are sorted according

to their priority. Task having the tightest schedule is selected and assigned to the

microcontroller if release time and deadline of the task are less than microcontroller

execution time then that task is allocated to that particular microcontroller. If release

time and deadline are greater than the microcontroller execution time then new micro-

controller is allocated for that task. If release time is less than microcontroller execution

time and deadline is greater than the processor execution time the task has splitted in

to two subtasks. One subtask is assigned to the time slot of the existing microcontroller

and another subtask is assigned to a new microcontroller. The same process is repeated

until all the tasks are scheduled and allocated to the microcontroller.
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Figure 5.9: Increase in number of microcontrollers with increase with microcontroller
execution time

5.7 Simulation Result

Matlab is used as a simulation tool. The simulation results shown below in figure 5.9,

gives the number of microcontrollers required at different control periods and different

diagnosis latency. Both the control period and diagnosis latency are varied with slack

values. Deadlines are categorized as

• Tight if (0 <= slack <= 0.3)

• Medium if (0.3 <= slack <= 0.7)

• Loose if (0.7 <= slack <= 1.0)

As the deadline of the task graph becomes tight with slack, the number of processors

required is more. When the deadline of the task graph becomes medium, the number

of microcontrollers required is less than the number of microcontrollers required in

tight deadline. When the slack value is within 0.7 to 1.0 that means in loose deadline

the number of microcontrollers required is the minimum.
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5.8 Conclusion

An algorithm for fault diagnosis of a multi-rate fly-by-wire system has been proposed.

In this work the comparison based approach is used for diagnosing the faulty actuators.

The proposed approach has been evaluated using the parameters such as number of

microcontrollers required for accomplishing both control and diagnosis tasks. The

result shows implementation of a FBW system is feasible and is proved to be the

best among other diagnosis approaches. The time complexity of the fault diagnosis

algorithm is O(r*k) for r rounds in the k-fault tolerant system like Fly-By-Wire(FBW)

system. The GA-based approach can very well be applicable to Fly-By-Wire system

being a small scale distributed newtwork. In fact, this is our future work.
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Chapter 6

Conclusion

6.1 Conclusion

The fault diagnosis problem is an important problem in distributed systems. A vast

collection of diagnosis algorithms provide a guiding framework and motivation to

carry forward the research in this direction. In the thesis, chapter 1 and 2 give a brief

introduction of system level fault diagnosis and the work already proposed in this field,

where total time taken by the algorithms are mostly dependent upon (i)the time of test

messages transferred by all nodes to their neignbourhood nodes (ii) the time needed

for performing computation(comparison) in individual processor nodes (iii)the time

needed to transfer the test outcome message to the neighbourhood nodes to collect the

actual outcome from the local diagnosis outcomes.

In chapter 3 and 4, GA-based fault diagnosis algorithm for diagnosing perma-

nent and intermittent faults is described. Once the test sysndrome is collected, the

algorithm executed in the ultra reliable node diagnose the status of each node in the

system. Hence the communication paths in between the nodes become free from

the task of transferring message obtained from local diagnosis to complete the di-

agnosis task. So other application specific tasks those need the communication link

can use the path more efficiently. The correctness of the proposed permanent and

intermittent fault diagnosis algorithms have been proved. The time complexity and

message complexity of GA-based permanent fault diagnosis algorithm(GAPFDA) are
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O(n*P*K*ng) and O(n*K) respectively, where ’n’ is the number of nodes, ’P’ is the

population size, ’K’ is the connectivity of the network, ’ng’ is the number of genera-

tions(steps). The time complexity and message complexity of GA-based intermittent

fault diagnosis algorithm(GAIFDA) are O(r*n*P*K*ng) and O(r*n*K), where ’r’ is the

number of rounds the GAIFDA gets executed to get the complete fault set. The nota-

tions ’n’, ’P’, ’K’, ’ng’ used in O(r*n*P*K*ng) have the same meaning as the notation

used in O(n*P*K*ng) and O(n*K) of GAPFDA. Now-a-days automotives are designed

to run by wire rather than by traditional system. In Chapter 5, we have presented

the fault diagnosis algorithm for diagnosising actuator fault of a Fly-by-wire(FBW)

system with in a designer-specified deadline. The time complexity of the proposed

algorithm is O(r*k) for r rounds in a k-fault tolerant system like FBW. Along with the

faultdiagnosis algorithm, one efficient scheduling algorithm is evaluated, that sched-

ules taskgraphs of different time period to various microcontrollers of the FBW system.

Our future work is to design and evaluate fault diagnosis framework that includes

all kinds of faults for distributed network such as industrial communication network.

We will also see the result after applying the fault models other than PMC model.
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