

VHDL IMPLEMENTATION OF 32-BIT

INTERLOCK COLLAPSING ALU

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

in

Electrical Engineering

By

HIMANSHU SHEKHAR ACHARYA
BIBHUTI PRASAD SAHOO

NEM KUMAR NEERAJ

 Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VHDL IMPLEMENTATION OF 32-BIT

INTERLOCK COLLAPSING ALU

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
in

Electrical Engineering

 By

HIMANSHU SHEKHAR ACHARYA
BIBHUTI PRASAD SAHOO

NEM KUMAR NEERAJ

Under the Guidance of

Prof. S. Das

 Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

 CERTIFICATE

 This is to certify that the thesis entitled,”VHDL

implementation of 32 bit Interlock Collapsing ALU” submitted by Sri Himanshu

Shekhar Acharya, Nem kumar Neeraj, Bibhuti Prasad Sahoo in partial fulfillment of the

requirements for the award of Bachelor of Technology Degree in Electrical Engineering

at the National Institute of Technology, Rourkela (Deemed University) is an authentic

work carried out by him under my supervision and guidance.

 To the best of my knowledge, the matter embodied in the thesis has not

been submitted to any other University/Institute for the award of any Degree or Diploma.

Date : Prof. S. Das

Place: Dept. of Electrical Engg.

 National Institute of technology

 Rourkela-769008

 ACKNOWLEDGEMENT

 I would like to articulate my deep gratitude to my project
guide Prof. S. Das ; Department of Electrical Engg , NIT Rourkela who has always
been my motivation for carrying out the project.

I wish to extend my sincere thanks to Prof. P. K. Nanda, Head of our Department, for
approving the request for the financial aid to develop the model.

It is my pleasure to refer Xilinx Project Navigator for simulating & Microsoft Word
exclusive of which the compilation of this report would have been impossible.

An assemblage of this nature could never have been attempted with our reference to
and inspiration from the works of others whose details are mentioned in references
section. I acknowledge my indebtedness to all of them. Last but not the least, my
sincere thanks to Prof D.Patra , Mr Chandu (M-tech senior) and all of my friends
who have patiently extended all sorts of help for accomplishing this undertaking.

 HIMANSHU SHEKHAR ACHARYA(10302007)

 BIBHUTI PRASAD SAHOO(10402068D)

 NEM KUMAR NEERAJ(10302053)

TABLE OF CONTENTS

 Page

ABSTRACT
v

CHAPTER 1 INTRODUCTION--

1

CHAPTER 2 THEORY ----
3

 2.1 Introduction-- 4

 2.2 Preliminary Design issues of ICALU------------------------- 19

 2.3 Working of the ICALU model--------------------------------- 24

 2.4 Design and Implementation of the ICALU------------------ 25

CHAPTER 3 PRELIMINARY DESIGN ISSUES OF ICALU --- 19
 4.1 Design of CLA input stage------------------------------------ 26

 4.2 Design of PRE-CLA logic block------------------------------ 29

 4.3 Binary adders and arithmetic --------------------------------- 33

 4.4 Design of CSA stage--- 40

 4.5 Design of CLA stage-- 42

 4.6 Design of POST-CLA logic block----------------------------- 46

CHAPTER 4 ICALU DATAFLOW MODEL --- 48

 5..1 Reduced ICALU model-- 50

 5..2 ALU1-- 52

 5.3 Interlock collapsing unit-- 53

 5.4 Estimation of relative delay between ALU1 and ICALU-- 53

 5.5 Determination of instruction cycle lengths of a machine

 with and without ICALU-------------------------------------- 55

CHAPTER 5 PERFORMANCE ANALYSIS ----------------------- 58

CHAPTER 6 TESTING PROCEDURES --------------------------------- 63
CHAPTER 7 SIMULATION RESULTS -------------------------- 67

CHAPTER8 CONCLUSIONS-- 73

CHAPTER 9 REFERENCE-- 75

VHDL SOURCE CODE------------------------------- 77

DETERMINATION OF INSTRUCTION LENGTHS

 FOR FREQUENTLY EXECUTED INSTRUCTIONS

ABSTRACT

 An important area in computer architecture is parallel

processing. Machines employing parallel processing are called parallel machines. A

parallel machine executes multiple instructions in one cycle. However, parallel machines

have a limitation, they cannot execute interlocked instructions. They are executed in

serial like any serial machine. It takes more than one cycle to execute multiple

instructions causing performance degradation. In addition there is hardware

underutilization as a result of serial execution in parallel machine.

 The solution requires a special kind of device called “Interlock

collapsing ALU”. The Interlock Collapsing ALU, unlike conventional 2-1 ALU’s is a 3-

1 ALU. The proposed device executes the interlocked instructions in a single instruction

cycle, unlike other parallel machines, resulting in high performance. The resulting

implementation demonstrates that the proposed 3-1 Interlock Collapsing ALU can be

designed to outperform existing schemes for ICALU, by a factor of at least two. The

ICALU is implemented in VHDL. Its functionality is verified through simulation.

 Chapter 1

INTRODUCTION

INTRODUCTION:

BACKGROUND:

 Parallel machines cannot execute interlocked instruction concurrently.Interlocked

instructions or instruction with dependencies cannot be executed concurrently in a

parallel machine, thus degrading the performance of the machine. The thesis investigates

a solution, called, “interlock collapsing”, to execute these interlocks concurrently. The

solution requires a special kind of a device called the Interlock collapsing ALU. The

Interlock collapsing ALU, unlike conventional 2-1 ALU’s, is a 3-1 ALU.

 The proposed ALU, in addition to collapsing these interlocks also should be

implemented in identical stages as the conventional ALU’s. A functional model of the

ICALU is assumed initially. The functional model is optimized by optimizing the

model’s individual blocks. The design and optimization of each block is discussed in

separate chapters.

 Finally, two parallel machines with and without the ICALU are compared

with regard to their execution times. The effect of variation of percentage interlocks in a

given code on the execution times and the percentage speed ratio of the parallel machines

is studied.

 The ICALU is implemented in VHDL. Its functionality is verified through

simulation.

 Chapter 2

THEORY

 Preliminary design issues of

ICALU

 Basic computer architecture

 Instruction formats

 Parallel machines

 Interlocked instructions

 ICALU

 Why VHDL

2.1 INTRODUCTION ::

 Computers have markedly changed over the last decade. Features,

performance, and memory sizes representing a computer that filled a room with

equipment and cost millions of dollars a decade ago now sit on top of a desk. High

performance computers are increasingly in demand in the areas of industrial automation,

medical diagnosis, aerodynamics simulation, military defense, signal processing, artificial

intelligence, expert systems and socioeconomic, among many other scientific and

engineering applications. This revolution has been brought about by major

improvements in computer architecture and processing techniques and the enabling

technology of Very Large Scale Integration (VLSI).

 This thesis involved developing a novel technique to speed up instruction

execution in parallel computers. Before moving any further, an overview of basic

computer components and its many related terms is necessary.

2.1.1 COMPUTER ARCHITECTURE ::

WHAT IS COMPUTER ARCHITECTURE ?

 Computer architecture involves the design of various aspects of computer design

such as memory design, bus structure, internal Central Processing Unit, instruction set

and the hardware implementation of the machine.

 The aim of a computer architect is to design a computer that meets the functional

requirements as well as price and performance goals.

2.1.2 BASIC COMPUTER COMPONENTS ::

Computer architecture has changed incredibly over the years. One element has remained

constant throughout the years, and that is the Von Neumann concept of computer design.

Von Neumann architecture is composed of three distinct components(or subsystems) : a

central processing unit (CPU), memory and input/output (I/O) interfaces. Fig 2.1

represents one of the several possible ways of connecting these components together.

 Fig 2.1

 (Basic computer components)

1) THE CPU ::

 The heart of any computing unit is the Central processing unit. It is responsible

for executing instructions in the computer. Fig 2.2 shows the block diagram of a simple

CPU. Usually CPU’s are available on single chips and are called microprocessors. The

major components of a CPU are ::

I) CONTROL UNIT ::

The Control Unit determines the order in which instructions should be executed.

It interprets the machine instructions. The execution of each instruction is determined by

a sequence of control signals produced by the control unit. In other words, the control

unit governs the flow of information through the system by issuing control signals to

different components. For example, to perform an addition operation, it sets the

appropriate signals to appropriate components so that an addition operation results.

II) ALU ::

The Arithmetic and Logic Unit (ALU) is arguably the most important part of the

CPU. The ALU performs the decision making operations (logical) and arithmetic

operations. Arithmetic operations involve functions such as addition, subtraction,

multiplication and division. It also performs the basic logic functions such as AND, OR,

XOR, and so on. There are a variety of techniques to design these functions. It is most

complex with regard to design, amongst all the components of the computer, and it also

contributes to most of the delay. Thus, the design of the ALU is critical to the speed of

the computer.

III) REGISTER ARRAY ::

 The Register Array consists of a number of temporary storage locations or

registers. Because the registers are often on the same chip and directly connected to the

control unit, they have faster access than memory. The ALU and the register array are

together called as the ‘dataflow’ of the computer.

 Fig 2.2

 (The CPU)

IV) PC ::

An instruction is fetched from the memory by placing the address of the location

in the program counter (PC). It keeps the address of the next instruction to be executed.

V) MAR AND MDR ::

The CPU communicates with the memory modules through the Memory.

Whenever data or instruction is fetched from memory, it is first placed in the MDR.

Address is sent out of the CPU through the MAR.

2) MEMORY ::

The computer’s memory is used to store program instructions and data. Two of

the commonly used type of memories are, RAM (random-access memory) and ROM (

read-only memory). RAM stores the data and general-purpose programs that the

machine executes and is temporary. Its contents can be changed any time or can be

erased when power to the computer is turned off. ROM is permanent and is used to store

the initial boot-up instructions of the machine.

3) INPUT/OUTPUT INTERFACES ::

 The I/O interfaces allow the computer to communicate to the user and to

secondary storage devices like the disk and tape drives.

2.1.3 INSTRUCTION FORMAT ::

 An instruction is a group of binary bits that tell the computer what has to be done.

Any computer instruction has two parts ::

i) Opcode :: Opcode (stands for operation code) field determines the function

of the instruction, i.e. it contains the operation that is to be performed by the

CPU.

ii) Operand :: Operand is the data on which the intended operation is performed.

Opcode Operand ……… Operand

 Fig 2.3a

 (Instruction format)

ADD Rd, Rs

 Fig 2.3b

 (An instruction)

Fig 2.3a shows the format of an instruction. Fig 2.3b is an example where the opcode is

ADD. The operand are the data within the registers, Rd and Rs.

Rd – Destination Register.

Rs – Source Register.

The above instruction does the following operation :

 Rd � Rd + Rs

1) A TYPICAL COMPUTER PROGRAM::

The following assembly language program adds the two numbers ::

MOVI R1, FF -- Load register R1 with number 1.

MOVI R2, OF -- Load register R2 with number 2.

ADD R1, R2 -- Add contents of R1 with that of R2, store

 Result in R1.

SUBI R1, 10 -- Subtract a number from R1, store result in

 R1.

2) STEPS IN INSTRUCTION EXECUTION::

 Fig 2.4

 (Phases of instruction execution process.)

Fig 2.4 outlines the steps in instruction execution [1,4]. Typically, it consists of four machine cycles. A ‘machine cycle’ is the
time taken to complete one phase of an operation i.e., instruction fetch or instruction decode, etc. An instruction does not
necessarily have all the machine cycles. The various phases are explained ::

I) INSTRUCTION FETCH (IF) ::

During this phase the Program Counter loads the MAR with the address of the

instruction to be executed. The address is sent out to the memory over the address lines.

The instruction is fetched from the memory location and placed in the MDR. This is a

‘memory-read’ operation.

II) INSTRUCTION DECODE (ID) ::

The Control Unit reads the instruction from the MDR and decodes it. The control

unit examines the opcode of the instruction and decides whether data needs to be

retrieved from the memory. Once the data is in the CPU, the control unit sets the

appropriate signals to perform the required operations, i.e., arithmetic, logic etc.

III) INSTRUCTION EXECUTE (EX) ::

During the instruction execute phase the ALU is loaded with the operands, and it

performs the necessary operations as set by the control unit.

IV) OPERAND WRITE OR MEMORY WRITE (MW) ::

` The result of the ALU is placed in the MDR. The PC writes the address of the
memory location where the data has to be written into the MAR. A memory write
operation is performed by the CPU to transfer the contents of MDR into memory.

An ‘instruction cycle’ is the time taken by the computer to complete the execution

of one instruction, i.e., the sum of all machine cycles.

2.1.4 PARALLEL MACHINES ::

An important area in computer architecture is parallel processing. Machines

(computers) employing parallel processing are called parallel machines. A

parallel machine executes multiple instructions in parallel, in one cycle, compared

to a serial machine (discussed so far) that can execute only one instruction. Thus a

parallel machine is faster than a serial machine.

In a parallel machine, a number of execution units (ALU’s) are connected in

parallel, so that each unit is able to handle an instruction. But for practical reasons

the number is limited to two. For example, if two such units are present in the

processor, two instructions can be handled concurrently resulting in faster

execution. Fig 2.5 shows a simple block diagram of a parallel machine unit.

 Fig 2.5

 (A parallel unit)

However, parallel machines have a limitation, they cannot execute interlocked

instructions (instructions with dependencies) in parallel [5, 6]. They are executed in

serial like any serial machine. It takes more than one cycle to execute multiple

instructions causing performance degradation in the machine. In addition, there is

hardware underutilization as a result of serial execution in the parallel machine.

To improve performance it would be necessary to be able to execute these interlocked

instructions in one cycle. Thus, interlock collapsing execution units in the form of multi-

operand ALU’s have to be employed.

2.1.5 OBJECTIVE ::

The thesis proposes design and simulation of a 32-bit 3-1 Interlock Collapsing ALU

(ICALU), to allow the execution of two interlocked instructions in a single instruction

cycle. This will improve the performance when it is degraded by data hazards. The

device will be studied to find out if it meets it’s objective which is to execute two

interlocked instruction in one instruction cycle. The collapsing of interlocks will be

confined to arithmetic and logical operations, on fixed point two’s complement

numbers.

2.1.6 INTERLOCKING IN PARALLEL COMPUTERS ::

WHAT ARE INTERLOCKED INSTRUCTIONS?

Instructions are said to be interlocked if an instruction depends on a previous

instruction for its data so that they cannot be executed simultaneously. Consider

the instruction pair of Fig. 2.6a.

 i) ADD R2, R1 ; [R2] � [R2] + [R1]

 ii) ADD R3, R2 ; [R3] � [R3] + [R2]

 Fig 2.6a
 (An interlocked instruction pair)

Instruction 2 required the result of instruction 1 (stored in R2). Instruction 2 can

be executed only after instruction 1 has been executed. Thus, instruction 2 is said

to be dependent on instruction 1. The dependency prevents the simultaneous

execution of the instructions.

 i) ADD R1, R2 ; [R1] � [R1] + [R2]

 ii) ADD R4, R3 ; [R4] � [R4] + [R3]

 Fig 2.6b
 (A non-interlocked instruction

pair)

Fig 2.6b is an example of a non-interlocked instruction pair. Instruction 2 does not

require that instruction 1 be executed before it (instruction 2) is executed. Thus

they can be executed simultaneously. Before moving on to the ICALU, consider

the data flow of a parallel machine, which can execute two instructions

concurrently

 Fig 2.7

 (Simplified view of the ALU unit for an ordinary parallel machine)

Fig 2.7 shows the ALU unit for a parallel machine which consists of two 2-1 ALU’s.

The notation ‘2-1’ stands for two input operands and a single output (result). A 2-1

ALU has one 2-1 CLA (Carry Look Adder) to perform arithmetic operations and one

logic stage to perform logical operations. The following explains the operation of the

unit for both types of instructions.

I) NON-INTERLOCKED ::

ALU1 executes the first instruction and ALU2 executes the second simultaneously.

Thus, the total execution time is one cycle.

II) INTERLOCKED ::

Since, an interlocked instruction cannot be executed simultaneously, ALU1

executes both the instructions one after the other requiring two cycles.

To resolve these interlocks a solution had been proposed previously. This can be
shown in Fig 2.8 in which the proposed dataflow of a implementation for relieving fixed
point data dependency interlocks is shown.

 FIG 2.8

 (WM’S APPROACH TO COLLAPSING INTERLOCKS)

Two ALU’s are concatenated as shown. It can result in the execution of a multi-
operation instruction, however, it requires twice the execution time of a single ALU
operation. An attempt to execute the interlock in a cycle could result in an increase in the
cycle time of the machine and unnecessarily penalize all instruction executions, resulting
in practically no performance gain.

2.1.7 THE ICALU ::

In order for an implementation to eliminate interlocks between instructions and to

execute such instructions in parallel (in addition to execution of non-interlocking

instructions in parallel), it is required to collapse the interlocks with the incorporation of

• Multiple execution units, and

• Multi-operand execution units.

Multiple execution units are required because more than one instruction is being executed at a time. The number of instructions
that can be executed is assumed to be two here and hence the number of execution units (ALU’s) is two.

Multi-operand execution units are required, since there are two interlocked

sequential instructions. The first instruction is execute by a traditional ALU. Since the

second instruction may be dependent on the first, the second ALU must be capable of

performing the collapsed instruction of both the instructions, in parallel to the first ALU.

The second ALU has three input operands, one in addition to that of first ALU.

1) DESCRIPTION AND WORKING ::

The ICALU is basically a 3-1 ALU. It has 3-1 CSA (Carry Save Adder) in

addition to the 2-1 CLA to achieve the desired 3-1 arithmetic operation. The ICALU also

has an extra logic when compared to the 2-1 ALU. The ICALU is implemented in the

parallel machine by replacing ALU2 with the ICALU. The operation of the parallel

machine employing the ICALU is explained as ::

i) NON-INTERLOCKED ::

The operation is the same as that for the parallel machine when the sequence is

non-interlocked.

ii) INTERLOCKED ::

Consider the interlocked sequence of Fig2.6a. ALU1 executes the first instruction

as usual. The ICALU collapses the two instructions into a single 3-operand instruction as

shown in Fig 2.9 :

 ADD R3, R2, R1 ; [R3] � [R3] + [R2] + [R1]

 Fig 2.9

 (The Collapsed Instruction)

Thus, the above instruction is executed in a single cycle by the ICALU. In short,

the ICALU operates on both the instructions when there is interlock and on the second

when there is no interlock.

The design of ICALU is described and simulated in VHDL. VHDL is a language

to describe or model hardware systems. The next section of this chapter gives a brief

explanation on the same.

iii) LIMITATIONS:

 At percentage of interlocked instructions(X) ≈ 3%, the gain of the machine

with ICALU is zero. Below this point the gain is negative, that is the machine with

ICALU is slower than the machine Non-ICALU machine.

2.1.8 VHDL ::

VHDL is an acronym for VHSIC Hardware Description Language. The acronym

VHSIC, in turn, stands for Very High Speed Integrated Circuit program. VHDL is a high

level programming language, used for describing digital systems, just like any other

conventional programming languages, such as C and Pascal, are used for computing

mathematical functions or manipulating data. Execution of a VHDL program results in a

simulation of the digital system.

WHY USE VHDL ?

With VHDL, we can quickly describe and synthesize circuits of five, ten, or

twenty thousand gates. Equivalent designs with schematics or Boolean equations at the

register transfer level can require several months of work by one person. In addition

VHDL provides the capabilities described below ::

1) VHDL CAPABILITIES ::

i) POWER AND FLEXIBILITY ::

VHDL has powerful language constructs with which to write succinct code
descriptions of complex control logic. It also has multiple levels of design descriptions
for controlling design implementations. It supports design libraries and reusable
components.

ii) TECHNOLOGY-INDEPENDENT DESIGN ::

VHDL permits us to create designs without having to first choose the technology.

With one design description many technologies can be targeted.

iii) PORTABILITY ::

Because VHDL design description is a standard, your design descriptions can be

taken from one simulator to another, one synthesis tool to another and one platform to

another. As a result VHDL design descriptions can be used in multiple projects.

iv) MODELING STYLES ::

Supports both modeling styles, behavioral and structural

v) DESIGN METHODOLOGIES ::

It supports various design methodologies such as top-down, bottom-up and mixed

designs.

2) LIMITATIONS ::

 i) Too wordy.

ii) Debugging is difficult.

iii) Logic implementations created by synthesis tools may not always be efficient.

iv) Synthesis varies from tool to tool.

3) AN OVERVIEW OF VHDL MODELING STYLES ::

As mentioned earlier VHDL supports all the three modeling styles :

• Behavioral

• Structural

• Data flow

i) BEHAVIORAL :

A behavioral description explicitly defines the input/output function by specifying

some sort of mathematical transfer function. For e.g., consider the Boolean equation

which needs to be implemented.

 F = A . B + C . D

A behavioral statement to implement the above equation would be :

 F <= (A and B) or (C and D)

It is clear from the above statement that the structure of implementation is not

known, until after synthesis is done. A behavioral description defines what the system

does, but it does not necessarily indicate the design is to be implemented.

ii) STRUCTURAL :

In contrast, a structural representation or modeling style describes a digital system

by specifying the interconnection of components that comprise the module. To

implement the same equation as above, the structural description would be :

 A1 : AND2_IP port map (A, B, INT1) ;

 A2 : AND2_IP port map (A, B, INT2) ;

 O1 : OR2_IP port map (INT1, INT2, Z) ;

The statements clearly imply structure of the model which has an AND stage

followed by an OR stage.

 Chapter 3

 PRELIMINARY DESIGN ISSUES OF ICALU

 Functional requirements

 Instruction category
 Working of icalu

3.1) PRELIMINARY DESIGN ISSUES OF ICALU :

As discussed earlier, the ICALU performs a 3-1 operation in case of an

interlocked sequence and a normal 2-1 operation in case of non-interlocked sequence. To

design the ICALU we start with its functional requirements.

 3.1.1) FUNCTIONAL REQUIREMENTS OF THE ICALU :

The functional requirements of the ICALU is divided into 2 modes :

1) Interlocked mode.

2) Non-interlocked mode.

1) MODE 1 (INTERLOCKED MODE) :

In Mode 1, the ICALU is in the Interlock mode, where it performs a three operand

operation. Now, consider again an interlocked pair.

 i) ADD A, B ; [A] � [A] + [B]

 ii) ADD A, C ; [A] � [A] + [C]

 Fig. 3.1a

 (An interlocked instruction pair)

In Fig 2.10a an arithmetic operation follows an arithmetic operation. Similarly,

there are other ways by which instruction can combine. The possible ways are

categorized as follows:

i) Arithmetic followed by Arithmetic.

ii) Logical followed by Arithmetic.

iii) Arithmetic followed by Logical.

iv) Logical followed by Logical.

I) CATEGORY 1 : (ARITHMETIC FOLLOWED BY ARITHMETIC)

This category is represented by :

 (A ± B ± C)

‘±’ addition or subtraction operation.

A – Operand 1

B – Operand 2

C – Operand 3

e.g., ADD A,B

 SUB A,C

II) CATEGORY 2 : (LOGICAL FOLLOWED BY ARITHMETIC)

This category is represented by :

 (A LOP B) ± C

(‘LOP’ – Logical Operation)

 e.g., AND A, B

 ADD A, C

III) CATEGORY 3 : (ARITHMETIC FOLLOWED BY LOGICAL)

This category is represented by :

 (A ± B) LOP C

 e.g., ADD A, B

 AND A, C

IV) CATEGORY 4 : (LOGICAL FOLLOWED BY LOGICAL)

 This category is represented by :

 (A LOP B) LOP C

 e.g., AND A, B

 XOR A, C

2) MODE 2 (NON-INTERLOCK MODE) :

In Mode 2 the ICALU is in the ‘Non-Interlocked’ mode. It performs a two

operand operation. Consider a Non-Interlocked pair.

i) ADD A, B [A] � [A] + [B]

ii) ADD D, C [D] � [D] + [C]

 Fig 3.1b

 (An non-interlocked instruction pair)

Since no interlock exists between the two instructions, no collapsing is required.

Thus ICALU executes only instruction 2. The categories in this mode are

i) Arithmetic.

ii) Logical

I) CATEGORY 1 (ARITHMETIC) :

This category is represented by :

 A ± B

This category can be executed as a Mode 1 – Category 1 instruction if the third

operand is forced to zero. It can be illustrated as :

(A ± B ± C) = (A ± B), when C = 0.

e.g., ADD A, B / Executed by ALU1/

 SUB C, D

II) CATEGORY 2 (LOGICAL) :

 This category is represented by :

 A LOP B

Similarly this category can be executed as Mode 1 – Category 2 instruction, by

forcing the third operand, C, to zero, as illustrated below :

(A LOP B) ± C = (A LOP B) ; when C = 0

e.g., ADD A, B / Executed by ALU1 /

 AND C, D

From the above discussion it follow that :

• Category 1 is a 3-1 arithmetic operation, which requires a 3-1 adder. This can be

achieved by cascading a 3-1 CSA followed by a 2-1 CLA.

• Category 2 & 4 require a logic stage before the adder stage. This is the Pre-CLA

Logic Block.

• Categories 3 & 4 require a logic stage after adder stage. This is the Post-CLA

Logic Block.

• The Mode 2, Non-interlocked operations is just a subset of Mode 1, Interlocked

operations. They are executed as Mode 1 operations by setting the third operand

to zero and hence do not require any additional circuitry within the ICALU.

 Taking into consideration, all the above requirements, a logical dataflow

model of the ICALU is developed. It is shown in Fig 2.11.

 Fig 3.2

 (Data flow form of ICALU)

3.3 WORKING OF THE ICALU MODEL :

3.3.1 MODE 1 :

I) CATEGORY 1 : (A ± B ± C)

The first category is executed by passing the operands through the CSA. The

output S, which is the partial sum of the addition process, is selected by multiplexer M1

as the first input to the CLA. λ, which is the carry generated as a result of addition in the

CSA, is selected by M2 to be the second input of CLA. The output of CLA, R, is the

required sum. Since there is no post logical operation, the sum is bypassed to the output

of the ALU, O. The 3-1 addition process is explained in detail in later chapters.

II) CATEGORY 2 : (A LOP B) ± C

The logical operation A LOP B is executed by the Pre-CLA Logic block. Signals

L and operand C are the two inputs for CLA. R is bypassed to output as in Category 1.

III) CATEGORY 3 : (A ± B) LOP C

A ± B is 2-1 addition. The CSA is not required here. This operation is executed

by selecting the output of Pre-CLA Logic Block L (A XOR B) as INPUT 1 and λ (A

AND B) as INPTU 2 to the CLA. R is the required sum. Since there is a post logical

operation, C LOP R, R cannot be bypassed to the output. Instead it is combined with C

in the Post CLA Logic Block, to obtain the necessary logical operation. ‘P’ is now the

output of ICALU.

IV) CATEGORY 4 : (A LOP B) LOP C

First and second inputs to CLA are L and zero respectively. The output of CLA is

L again, since addition with zero gives the same number. The next step C LOP R is same

as that in Category 3.

3.3.2 MODE 2 :

As explained earlier, Mode 2 operations are special cases of Mode 1. The Working

for both categories remains the same for Mode 2, except that the third operand is set to

zero. So, it is not explained any further.

3.4 DESIGN AND IMPLEMENTATION OF THE ICALU :

The ICALU is designed by first designing all the individual blocks.

Implementation of each block is done by writing a VHDL program for that block. These

individual blocks are finally assembled together, to work as one piece. This is also done

by a VHDL program. An important thing to be noted is, the blocks in turn can have sub-

blocks which are also assembled to form the blocks. Such a design methodology is called

as ‘hierarchical modeling’. This is similar to object oriented programming in high level

languages such as ADA and C++. The next chapters will describe the design of each

block and how to implement them using VHDL.

DESIGN OF VARIOUS MODULES

3.4.1 EXPRESSIONS FOR CLA INPUT STAGE

This chapter deals with the design of the Input Stage of CLA. Methods are discussed

to obtain all the inputs for INPUT 2 of CLA from the carry output of CSA instead of

obtaining them separately.

3.4.3DESIGN :

 From the working of the ICALU model in previous chapter, the inputs to the CLA

for both groups are summarized in tables below .

Category

OPERATION

CLA Input
1

CLA INPUT 2

1

C ± (A ± B)

A ٧ B ٧ C

(A .B ٨ B .C ٨ A .C)

2

C ± (A LOP B)

A LOP B

C

3

C LOP (A ± B)

A ٧ B

A . B

4

C LOP (A LOP B)

A LOP B

0

 TABLE 3.1A : INPUTS TO THE CLA FOR MODE 1 OPERATIONS.

‘٧’ – represents logical XOR operation.

‘.’ - represents logical AND operation.

‘٨’ - represents logical OR operation.

CATEGORY

OPERATION

CLA INPUT 1

CLA INPUT 2

1

A ± B

A B

A . B

2

A LOP B

A LOP B

0

 TABLE 3.1B : INPUTS TO THE CLA FOR MODE 2 OPERATIO NS.

3.4.5 EXPRESSIONS FOR INPUT 1 :

 From Table 3.1a, a 3-1 add operation is required for category 1. The CSA

provides the input for this operation (Si).

 For categories 2, 3 and 4, the Pre-CLA Logic Block provides the input (Li).

Though category 3 is an arithmetic operation, Pre-CLA Logic Block provides the input,

because sum of two operands, A and B, is given by A ٧ B which is a logical operation.

 The selection between Si and Li can be achieved by a single control signal K7

instead of a 2-1 Multiplexer M1. The equation for INPUT 1 is shown below :

 INPUT 1 = K7 Si + Li (3.1)

‘+’ – represents Logical OR operation.

For category 1, K7 = 1, thus,

 INPUT 1 = 1, Si + 0 = Si,

For categories 2 to 4, K7 = 0, hence,

 INPUT 1 = 0, Si + Li = Li

The control values for INPUT 1 are summarized in Table 3.2.

CATEGORY

K7

INPUT 1

1

1

Si

2

0

L i

3

0

L i

4

0

L i

 Table 3.2 : CONTROL VALUES FOR INPUT 1

3.4.6 EXPRESSIONS FOR INPUT 2 :

 For INPUT 2 a method is discussed which eliminates the need for generating

separate inputs, by obtaining all the inputs from the carry output of the CSA. Also the 4-

1 Multiplexer for INPUT 2 can be eliminated by imbedding the selection in CSA.

The new expression for λi+1 which is assigned to INPUT 2 can be written as :

INPUT 2 = λi+1 = K2 Ai Bi + K1 Bi Ci + K1 Ai Ci + K3 Ci+1. for (1 ≤ i ≤ 31)

 (3.2)

K1, K2 and K3 are the three control signals given to the CSA to obtain the required

combination of λi+1 for the four different categories. These signals are produced in the

decode cycle. The values of control signals to obtain the required input are shown below.

For category 1, K1 = K2 = 1, K3 = 0, thus,

INPUT 2 = λi+1 = Ai Bi + Bi Ci + Ci Ai.

For category 2, K1 = K2 = 0, K3 = 1, thus,

INPUT 2 = λi+1 = Ci

For category 3, K1 = 0, K2 = 1, K3 = 0, thus,

INPUT 2 = λi+1 = Ai Bi

For category 4, K1 = K2 = K3 = 0, thus,

INPUT 2 = λi+1 = 0

The control values for INPUT 2 are summarized in Table 3.3

 Table 3.3 : Control values for INPUT 2

3.5 PRE – CLA LOGIC BLOCK

K1

K2

K3

INPUT 2

1

1

0

(Ai Bi + Bi Ci + Ai

Ci)

0

0

1

Ci

0

1

0

A i Bi

0

0

0

0

 This chapter deals with the design and reduction of the Pre-CLA Logic Block.

The Pre-CLA Logic Block has to perform AND, OR, XOR & their inverts NAND, NOR,

XNOR respectively. It also provides inputs to INPUT 1 of CLA for categories 2 to 4.

3.5.1 DESIGN :

To understand the logic stage lets assume the following control signals to the Pre-CLA

Logic Block .

Control Signal

Description

KAND

AND Inputs A & B

KOR

OR Inputs A & B

KXOR

XOR Inputs A & B

K INV

Inverts above operations.

 TABLE 3.4 : CONTROL SIGNALS TO PRE-CLA LOGIC BLOCK.

With these signals the expression for the output of the Pre-CLA Logic Block ‘L’ is
expressed as :

 ____ __ ____

L i = Ai Bi KAND K INV + (Ai + Bi) KOR KINV + (Ai ٧ Bi) KXOR KINV

 _______ _______ ______

 + (Ai + Bi) KOR KINV + (Ai ٧ Ci) KXOR KINV + (Ai Bi) KAND KINV

 where, (0 ≤ i ≤ 31) (3.3)

It can further reduced to :

 ____ ____ ____ __ ____

L i = Ai Bi KAND K INV + Ai KOR KINV + Bi KOR KINV + Ai Bi KXOR KINV

 __ ____ __ __

 + Ai Bi KXOR KINV + Ai KAND KINV + Bi KAND2 KINV2

 __ __ __ __

 + Ai Bi KOR K INV + Ai Bi KXOR KINV + Ai Bi KXOR KINV

 where, (0 ≤ i ≤ 31) (3.4)

The above expression is impractical to implement and it causes delay. However, if the

operands are supplied to the ICALU as specified in the Table 3.5, the expression for Li

can be reduced to meet our requirement. Such a requirement does not add to the critical

path because inversion of operands is required to execute subtraction and multiplexing

operation for single operand functions.

FUNCTION

ACTIVE

CONTROLS

AI

BI

AND

KAND KINV

T

I

OR

KOR K INV

T

T

XOR

KOR K INV

T

T

AND-INV

KAND K INV

I

I

OR-INV

KOR K INV

T

I

XOR-INV

KXOR K INV

T

I

 TABLE 3.5 : INPUT SPECIFICATION OF ALU FOR LOGI CAL

OPERATIONS.

These input specifications (3.4) can be expressed as :

 ____ ____ ____ ____

L i = Lli (KOR KINV + KAND KINV) + Lri (KOR KINV + KAND KINV)

 __ ____ ____

 + Lli Lri (KAND KINV + KXOR KINV + KXOR KINV)

 __ ____

 + Lli Lri (KOR KINV + KXOR KINV + KXOR KINV), (3.5)

L li, Lri – The new left & right inputs respectively to the Pre-CLA Logic Block at bit

position i

Further reduction is possible by defining three new controls that area combination of

discrete controls as :

 ____ ____

K4 = KOR KINV + KAND KINV (3.6)

 ____ ____

K5 = KAND KINV + KXOR KINV + KXOR KINV (3.7)

K6 = KOR KINV + KXOR KINV + KXOR KINV (3.8)

These controls can be directly produced from the decode of the instruction. Thus

they can potentially be produced either in the decode cycle, in parallel with the register

access, or they could be determined during the setup of the device (required for

subtraction, sign extension, choosing between operations etc.). In either case these

control signals do not contribute to the critical path of the ICALU. Substituting them into

the expression for Li produces:

 __ __

L i = Lli K4 + Lri K4 + Lli Lri K5 + Lli Lri K6 (3.9)
Expressing the logical function block in this fashion reduces the delay. The input

specifications that yield the required functions are tabulated in Table 3.6.

FUNCTION
ACTIVE

CONTROLS

L li

L ri

KAND

KOR

KXOR

K INV

K4

K5

K6

L i

AND

 KAND K INV

A i

__
Bi

1

0

0

0

0

1

0

A iBi

OR

KOR K INV

A i

Bi

0

1

0

0

1

0

0

A i + Bi

XOR

KXOR K INV

A i

Bi

0

0

1

0

0

1

1

 __ __
A i Bi + Ai Bi

AND-INV

KAND K INV

__
A i

__
Bi

1

0

0

1

1

0

0

 __ __
A i + Bi

OR-INV

KOR K INV

A i

__
Bi

0

1

0

1

0

0

1

 __ __
A i Bi

XOR-INV

KXOR K INV

A i

__
Bi

0

0

1

1

0

1

1

 __ __
A i Bi + Ai Bi

 Table 3.6 : Output from reduced logic function block.

3.6 BINARY ADDERS AND ARITHMETIC

The arithmetic unit of the ICALU is implemented by binary adders. An
introduction to binary adders is necessary. Binary subtraction and two’s complement
numbers are also explained in this chapter.

3.6.1 BINARY ADDERS:

1) FULL ADDER :

 A full adder is the basic building block for all the adders. It adds three input bits.

Two of the significant bits and the third bit is the carry bit from the previous stage. Thus

it is called a full adder. Half adders are those that are those that add only 2 bits. The truth

table and block diagram are presented below:

A

B

CIN

S

COU

T

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 Table 3.7 : Truth table of a Full Adder

The expressions for full adder are :

 S = a ٧ b ٧ c (3.10)

 Cout = a b + b Cin + a Cin (3.11)

 Fig 3.8 : A Full Adder

2) RIPPLE CARRY ADDER:

One of the most basic adders is the ripple carry adders. The addition is similar to

that of paper and pencil addition. A block diagram to add two 4-bit binary numbers is

shown in Fig2.2. The carry is allowed to ripple from one stage to another. However the

ripple carry is the slowest, because the carry has to propagate from the least significant

bit(LSB) to the most significant bit(MSB). Hence it is not used for larger adders.

 Fig 3.9: A 4-Bit Ripple Carry Adder.

3)CARRY LOOK AHEAD ADDER (CLA):

 The CLA is faster than the ripple carry adder. The carry input to each stage is

generated directly, instead of allowing the carry to ripple from one stage to another. Fig

5.3 shows the block diagram of a CLA. The Boolean expression for each carry block can

be defined by using the carryout expression of a full adder. It is given as:

 Ci+1 = xi yi + Ci (xi + yi) (5.2)

Where, i=0,…….,N, and, N= number of bits in each number.

For example,the output of first carry block:

 C1 = x0 y0 + C0 (x0 + y0)

 FIG 3.10 : A 4-BIT CARRY LOOK AHEAD ADDER.

4)CARRY SAVE ADDER (CSA):

 The CSA is used when more than two numbers are to be added.

For example, Consider addition on three numbers (X,Y,Z).

 0101 X

 0011 Y

+ 0100 Z

0010 Partial sum

1010 Saved Carry

In the next step, the sum and saved carry are added with each other.

 0010 Partial Sum

+ 1010 Saved carry

1010 Final sum

In the last step the CLA is used to add the partial sum with saved carry.

Fig 3.4 shows the block diagram of the addition process. The first stage is the CSA. The

carry consists of a chain of full adders. A full adder is present for each significant bit

position. Unlike the ripple adders, in carry look ahead adders carry is saved for the next

stage.

 y3 x3 z3 y2 x2 z2 y1 x1 z1 y0 x0 z0

 FIG 3.11 : A 4-BIT CARRY SAVE ADDER

3.6.2 BINARY SUBTRACTION AND TWO’S COMPLEMENT:

 Binary subtraction is achieved by representing negative binary numbers in some

form. There are many schemes for representing negative binary numbers like the sign

magnitude, one’s complement, two’s complement etc. The most popular scheme is the

two’s complement representation as it is the most convenient method.

1) TWO’S COMPLEMENT REPRESENTATION :

A binary number can be represented in two’s complement as:

Two’s complement = 2N – B, B ≠ 0

 0, B = 0 (3.12)

The above equation is rearranged as :

Two’s complement = (2N – 1) – B + 1, B ≠ 0

 0, B = 0 (3.12a)

Noting that two’s complement of an N-bit binary number B can be found by

subtracting each bit of a binary integer B from 1 and then adding 1 to the total

N-bit resulting difference. Moreover, since 1 – 0 = 1 and 1 – 1 = 0, subtracting each bit

form 1 is equivalent to simply flipping or inverting each bit. For example two’s

complement of –5 can be obtained as :

 5 = 0101

1010 Inverted bits

 + 1 Add 1

 -5 = 1011 Two’s complement of –5

Two’s complement numbers can be easily generated by cascading an inverter

stage with an adder stage.

The decimal range for an N-bit binary number is given as :

 (-2N-1 to 2N-1 – 1)

For N=32, the decimal range is given by :

 (-231 to 231 - 1) = (-2147483648 to 2147483747).

2) TWO’S COMPLEMENT SUBTRACTION AND ADDITION :

 Two’s complement addition and subtraction are very similar to standard binary

addition. It is illustrated by the following examples :

A) ADDITION :

4 0100

 + 5 0011

 _____ ______

7 0111

0111 is the correct two’s complement representation of 7.

B) SUBTRACTION :

3 0011

 - 7 1011

 _____ ______

 - 4 1100

1100 is the correct two’s complement representation of –4.

However, there are two situations the two’s complement addition differs from standard

binary addition.

I) CARRY OUT FROM MSB :

 In this exception, any carry outs from MSB are ignored.

EXAMPLE :

 (-3) 1101

 + (-4) 1100

 ______ ______

 (-7) 1 1001

1001 is the correct two’s complement representation for –7. Note that the carry has been

eliminated.

II) OVERFLOW / UNDERFLOW :

 Overflow is said to occur when an arithmetic operation yields a result that is

greater than the range’s positive limit of (2N-1 – 1).

3.7 DESIGN OF CSA STAGE

 In the previous chapters various adders were discussed. The CSA was also

explained. The CSA stage for the ICALU not only has to generate the sum and carry for

the next stage, but also the inputs for INPUT 2 of CLA. This is designed and

implemented in this chapter.

3.7.1 DESIGN:

 In the last chapter we saw the block diagram for three 4-bit inputs using a CSA . It

can be extended to 32 bits. The equation for sum and carry are:

 SUM = Si = Ai ٧ Bi ٧ Ci for (0≤ i ≤ 31) (3.13a)

CARRY = λi+1 = A i Bi + Bi Ci + Ai Ci, for (1 ≤ i ≤ 31) (3.13b)

A i, Bi, Ci are the i th bits of operands A, B & C respectively.

As explained in chapter 3 the carry out of CSA is designed to provide all inputs for

INPUT 2 of CLA. It is given as:

λi+1 = K2 A i Bi + K1 Bi Ci + K1 A i Ci + K3 Ci+1, for(1<= i <= 31) (3.14)

3.7.2 INTEGER RANGE OF ARITHMETIC OPERATION:

The maximum range that can be handled by the 32-bit arithmetic unit, with two’s

complement representation:

 = (-2
31 to 231-1) = (-2147483648 to 2147483647).

3.7.3 IMPLEMENTATION:

 The (3.13a) and (3.14) are bit-wise expressions. They are the basic building blocks of

the CSA. First, they are implemented as individual components (blocks). Later, they are

instantiated the required number times to obtain the CSA.

1) IMPLEMENTATION OF SUM (S I):

The VHDL code for SUM3_1 is given in Appendix A.6.2. It creates the

component SUM_1.

2) IMPLEMENTATION OF CARRY(ΛI+1):

The VHDL code for CSA_CARRY is given in Appendix A.6.3. It creates the

component CSA_CARY.

3) IMPLEMENTATION OF CSA :

 The entities SUM3_1 and CSA-CARY are the basic building blocks of the CSA.

The sum is generated for bit positions 0 to 31 where as the carry is from 0 to 30. Since,

the additions considered are in 2’s complement the final carry (i.e., bit-position 31) is

discarded. Thus, carry spans one bit positions lesser when compared to sum. The

component SUM3_1 is instantiated 16 times for each bit position to obtain sum. The ‘for

generate’ statement is used to repeat the instantiations for the desired number of times.

The program is shown in the Appendix A.6.1.

3.8) DESIGN OFCLA STAGE

The basic of a CLA was explained in chapter 5. using the same principle, it is

extended to 32 bits in this chapter.

3.8.1)Carry expressions for CLA:

Consider again, equation 3.11, which is the Boolean expressions for a CLA carry

block:

 Ci+1 = xi yi + Ci (xi + yi) (3.15)

 To simplify equation 3.15, notation g and p are defined as;

 gi = xi yi,

 pi = xi + yi

On substitution, expression 3.15 reduces to:

 Ci+1 = gi + Ci pi (3.16)

The notation g stands for generating a carry.

Since output carry (Ci+1) is 1 whenever gi is 1.

The notation p stands for propagating input carry to the output carry.

Since Ci+1 is 1 whenever Pi is 1.

Using these notations, we get

C1 = go + p0 C0

C2 = g1 + p1 g0 + p1 p0 C0

C3 = g2 + p2 g1 + p2 p1 g0 + p2 p1 p0 C0

C4 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 + p3 p2 p1 p0 C0

 Consider the last carry block C4. The number of OR terms are five and the last

product term in C4 also has five inputs.

In general, for n inputs:

The number of OR terms are n+1. Thus, to implement this we need an OR gate

that has a fan in of at least n+1. Similarly, the fan in of AND gate should be at least n+1.

Thus if the fan in of a particular technology is n, then it may not be possible to implement

a given block directly.

 In addition, we can clearly see each carry block expression is different from the

other. Thus, a modular design is not possible for a large n. A modular design requires a

structure in which similar parts can be used.

 Thus to solve the preceding problems, we limit fan-in and fan-out to a given

number depending on the technology. The result is an adder with a large n, broken into

many smaller adders cascaded together. For example, an 8-bit CLA with fan in limited to

say, four, can be implemented by cascading two 4-bit CLA’s (Fig 3.3) together.

This can be done by defining two new terms, denoted as, G0 – Group propagate

and P0 – group generate, where,

 G0 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0

 P0 = p3 p2 p1 p0 C0

Thus we can express C4 as :

 C4 = G0 + P0 C0

In this group C8, is computed similarly to C4 :

 C8 = G1 + P1 G0 + P1 P0 C0

where,

 G1 = g7 + p7 g6 + p7 p6 g5 + p7 p6 p5 g4 and,

 P1 = p7 p6 p5 p4

1) The 32 – Bit CLA :

 The maximum fan-in of the gates in the ICALU design is assumed to be 8.

Assuming a modular design, a 32-bit CLA can be implemented as four 8-bit CLA’s.

The additional carries for an 8-bit CLA, using the above notations are :

C5 = g4 + p4 g3 + p4 p3 g2 + p4 p3 p2 g1 + p4 p3 p2 p1 g0 + p4 p3 p2 p1 p0 C0

C6 = g4 + p5 g4 + p5 p4 g3 + p5 p4 p3 g2 + p5 p4 p3 p2 g1 + p5 p4 p3 p2 p1 g0

+ p5 p4 p3 p2 p1 p0 C0

C7 = g5 + p6 g5 + p6 p5 g4 + p6 p5 p4 g3 + p6 p5 p4 p3 g2 + p6 p5 p4 p3 p2 g1

+ p6 p5 p4 p3 p2 p1 p0 C0

C8 = g7 + p7 g6 + p7 p6 g5 + p7 p6 p5 g4 + p7 p6 p5 p4 g3 + p7 p6 p5 p4 g3

+ p7 p6 p5 p4 p3 g2 + p7 p6 p5 p4 p3 p2 g1 + p7 p6 p5 p4 p3 p2 p1 g0

 + p7 p6 p5 p4 p3 p2 p1 p0 C0

Now, C8 can be represented in terms of group generate and propagate terms, G and P as:

G0 = g7 + p7 g6 + p7 p6 g5 + p7 p6 p5 g4 + p7 p6 p5 p4 g3 + p7 p6 p5 p4 p3 g2

+ p7 p6 p5 p4 p3 p2 g1 + p7 p6 p5 p4 p3 p2 p1 g0

P0 = p7 p6 p5 p4 p3 p2 p1 p0

G0, P0 are the outputs of CLA. They are externally combined with C0 to obtain C8. So, C8

can be expressed as,

C8 = G0 + P0C0.

 Similarly,

C16 = G1 + P1 C8 = G1 + P1 G0 + P1 P0 C0 and,

C24 = G2 + P2 C16 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

(G0,P0), (G1,P1), (G2,P2) are the outputs of CLA1, CLA2 and CLA3, respectively.

G3 and P3 are the discarded because the final carry out, that is C32 in two’s complement is

discarded.

3.8.2) Implementation:

 The 32-bit CLA can be implemented by creating an 8-bit CLA first. Later, the 8-bit

CLA’ are connected together to obtain the 32-bit CLA.

1) Implementation of 8-bit CLA:

 The 8-bit CLA is obtained using the preceding expressions. The sum block for the

CLA are obtained by instantiating the component SUM3_1. It has already been discussed

in chapter 6. There are eight sum and carry blocks for each of the 8-bit positions. Two

CLA’s have been implemented here, CLA_1 and, CLA_2.Though, both are 8-bit, CLA_1

is slightly different from the other CLA’s, since it does not have an input carry. It has

been created as a separate component. The program for the 8-bit CLA is shown in

Appendix A.5.

2 IMPLEMENTATION OF 32-BIT CLA:

 The 32-bit CLA is obtained by installing the four 8-bit CLA’s and generating the

intermediate carries C16 and C24, appropriately. The final carry C32 is discarded, since all

operations are in two’s complement. The program for 32-bit CLA is shown in A.4.

3.9 DESIGN OF POST – CLA LOGIC BLOCK

 This chapter deals with the design of the Post-CLA Logic Block of the ICALU.

The Post-CLA Block performs logic operations between the third operand and the result

of the operation on the first two operands. The Post-CLA Logic Block is not similar to

the Pre-Block because the inverting inputs are not readily available.

3.9.1 DESIGN :

 The control signal format remains the same as that for the Pre-CLA Logic Block.

But the control unit generates a separate set of signals for the Post-CLA Logic Block.

 Control Signal

Description

FAND2

AND Inputs Ri & Ci

FOR2

OR Inputs Ri & Ci

FXOR2

XOR Inputs Ri & Ci

FINV2

Inverts above operations.

 Table 3.12 : Control signals to Post-CLA Logic Block.

Ri – Result from the CLA stage.

Ci – The third operand to ICALU.

The expression for the Post-CLA Logic Block is similar to (3.4), it is :

 ____ ____ ___ __ ____

L i = Ri Ci KAND2 K INV + Ri KOR KINV2 + Ci KOR2 KINV2 + Ri Ci KXOR2 KINV2

 __ ____ __ __

 + Ri Ci KXOR2 KINV2 + Ri KAND2 KINV2 + Ci KAND2 KINV2

 __ __ __ __

 + Ri Ci KOR2 KINV2 + Ri Ci KXOR2 KINV2 + Ri Ci KXOR2 KINV2

 where, (0 ≤ i ≤ 31) (3.17)

‘+’ – Logical OR operatin.

To eliminate the multiplexer M3, in Fig 2.2, we can add a new control signal FADD to the

above expression as follows :

 ____ ____ _____ __ _____

L i = Ri Ci KAND2 K INV + Ri KOR KINV2 + Ci KOR2 KINV2 + Ri Ci KXOR2 KINV2

 __ _____ __ __

 + Ri Ci KXOR2 KINV2 + Ri KAND2 KINV2 + Ci KAND2 KINV2

 __ __ __ __

 + Ri Ci KOR2 KINV2 + Ri Ci KXOR2 KINV2 + Ri Ci KXOR2 KINV2

 + Ri FADD2. (3.17a)

Now, Li represents the output of the ICALU. The Table 3.9 summarizes the output of the

Post-CLA Logic Block for different control values.

FADD

FAND

FOR

FXOR

FINV

OUTPUT (L I)

1

0

0

0

0

Ri

0

1

0

0

0

Ri Ci

0

0

1

0

0

Ri + Ci

0

0

0

1

0

Ri ٧ Ci

0

1

0

0

1

Ri Ci

0

0

1

0

1

Ri + Ci

0

0

0

1

1

Ri ٧ Ci

 TABLE 3.13: OUTPUT TABLE OF POST-CLA LOGIC BLOCK.

Now, the control signals in (3.17a) are grouped to enable pre-calculation:

 ____ ____ __ ____

L i = Ri (Ci KAND2 K INV2 + KOR KINV2 + Ci KXOR2 KINV2 + FADD2)

 __ __ _____ __

 + Ri (KAND2 KINV2 + Ci KOR2 KINV2 + Ci KXOR2 KINV2 + Ci KXOR2 KINV2)

 ____ __

 + (Ci KOR2 K INV2 + Ci KAND2 KINV2). (3.18)

 The delay of the Post-CLA Logic Block can be reduced by pre-calculating the

following signals, since they rely only on the ICALU inputs :

 ____ _____ __ ____

PCLA1i = Ci KAND2 K INV2 + KOR KINV2 + Ci KXOR2 KINV2 + FADD2 (3.19a)

 __ ____ __

PCLA2i = KAND2 KINV2 + Ci KOR2 KINV2 + Ci KXOR2 KINV2 + Ci KXOR2 KINV2 (3.19b)

 ____ __

PCLA3i = Ci KOR2 K INV2 + Ci KAND2 KINV2 (3.19c)

Substituting the above equations in (3.18), we get __

L i = Ri PCLA1i + Ri PCLA2i + PCLA3i (3.20)

(3.20) is the output of the Post-CLA Logic Block. It is also represents the final output of

the ICALU.

3.9.2 IMPLEMENTATION :

The implementation of Post-CLA Logic Block is also similar to earlier

implementations, that is, CSA, Pre-CLA Logic Block, etc. First, the bit-wise component

is implemented and later instantiated to obtain the Logic Block.

1) IMPLEMENTATION OF BIT-WISE LOGIC COMPONENT :

 The bit-wise logic component, P_CLA_BCMP, is the implementation of (3.20).

The program is shown in A.8.2.

2) IMPLEMENTATION OF POST-CLA LOGIC BLOCK :

 The logic block is implemented by instantiating P_CLA_BCMP for bit

positions 0 to 31. The program is shown in A.8.1. The program creates entity

P_CLA_LOGBLK.

 Chapter 4

 ICALU DATAFW
MODELLO

THE INTERLOCK COLLAPSING ALU UNIT:

 In this chapter all the designed components are put together to implement the

ICALU. Also, ALU1 is created using the designed components. Finally, the Interlock

collapsing ALU unit is implemented which consists of both ALU1 and ICALU. The

chapter also estimates the relative delay.

4.1 REDUCED ICALU MODEL :

 Resulting from the design of the various stages in the preceding chapters a

reduced ICALU is obtained. The result was the elimination of the multiplexers M2 and

M3 and also better implementations of the Pre and Post-CLA Logic Blocks. The block

diagram is shown in Fig 4.1. The program for ICALU is in the Appendix A.2.

 FIG. 4.2 : REDUCED DATAFLOW MODEL OF ICALU

4.2 ALU1 MODEL :

 Fig 4.3

(Dataflow Model of ALU1)

The control signals for multiplexer are K12 and K13 and are set as follows :

I) CATEGORY 1 (ARITHMETIC) :

 K12 = 1 and, K13 = 0 ;

Output of ALU1 = O = A ± B.

II) CATEGORY 2 (LOGICAL) :

 K12 = 0 and, K13 = 1 ;

Output of ALU1 = O = A LOP B.

The values of control signals are summarized in Table 4.1 :

CATEGORY

K12

K13

O

1

1

0

A ± B

2

0

1

A LOP B

 Table 4.1 : Output table for ALU1

4.2.2 IMPLEMENTATION :

 The ALU1 is implemented using the block diagram above. The components CLA

and PREBLK are the adder and the logic block respectively, for ALU1. The program for

entity ALU1 is shown in A.3.

4.3 INTERLOCK COLLAPSING ALU UNIT :
 The Interlock collapsing ALU unit consists of ALU1 and the ICALU operating

in parallel. The block diagram of the Interlock collapsing unit was shown in Chapter 1,

Fig 1.7. The program for entity ICUNIT is shown in A.2.

4.4 ESTIMATION OF RELATIVE DELAY BETWEEN ALU1 AND I CALU :

 In this section the relative delay between the ALU1 in Fig 4.2 and the ICALU in

Fig 4.1 is estimated. The relative delay is the difference between the delay of ALU1 and

the ICALU. The delay is required to find out the instruction cycle length. The delay of a

device can be estimated by taking a logic gate count from the input to the output. Only

the delay between both ALU’s considered because all other stages in their respective

paths are identical, hence they also have identical delays.

Now, compare Fig 4.1 (ICALU) and Fig 4.2 (ALU1).

By elimination, it is deduced that the ICALU has two additional stages when compared to

the ALU1 which are :

i) The CSA and,

ii) The Post-CLA Logic Block.

The procedure is :

1) The CLA and multiplexers are common to both the ALU’s. Hence they

can be eliminated.

2) The extra stages in the ICALU path are the CSA and the Post-CLA Logic

Stage.

3) The Pre-CLA Logic stages are not considered because in case of ALU1 it

is parallel with the CLA stage and has lesser stages than the same. Where

as, in case of the ICALU it is in parallel and has the same delay as the CSA.

The logic delay of both stages are :

I) CSA :

 To estimate this consider (3.13a) and (3.14) which represent the input-output

transformations of the CSA sum and carry respectively. Both are in parallel.

SUM = Si = Ai V Bi V Ci, (3.13a)

λi+1 = K2 Ai Bi + K1 Bi Ci + K1 Ai Ci + K3 Ci+1. (3.14)

(3.13a) and (3.14) can each be implemented in one gate delay using custom-built CMOS

libraries. A ± 3 X 4 AO gate can serve this purpose (‘+’ represents AND-OR and ‘-‘

represents AND-OR-INVERT). The delay of this gate is assumed to be 1 gate stage as

that of any other gate in the assumed libraries.

II) LOGIC DELAY OF POST-CLA LOGIC BLOCK :

Similarly, (3.9) (shown below) can be implemented in one gate delay by the AO gate.

 __ __

L i = Lli KPRE1 + Lri KPRE1 + Lli Lri KPRE2 + Lli Lri KPRE3 (3.9)Thus the

total relative gate delay of the ICALU over the ALU1 =

 Logic delay due to CSA stage + Logic delay due to Post-CLA Logic Stage =1+1

= 2.

4.5 DETERMINATION OF INSTRUCTION CYCLE LENGTHS OF A MACHINE
WITH AND WITHOUT ICALU :

 The average instruction length is calculated to find out the speed of the machine.

The instruction cycle length varies for each instruction. Hence an average instruction

length has to be calculated. It is sufficient to take the average of only frequently executed

instructions. The following discussion shows how the instruction lengths can be

calculated for a given instruction. But first, Fig 2.4 is redrawn again.

 Fig 4.5

 (Phases of Instruction execution process)

Fig 4.3 represents the instruction path of serial machine. The time to execute an

instructions given as I0, or the basic instruction cycle time. The individual stage have

been discussed in Chapter 1.

4.4.1 Without ICALU :
 For a parallel machine there are two such paths in parallel. Fig 4.4 shows

instruction execution (considering non-interlocked case) in a parallel machine with

respect to time.

 IF1 ID1 EX1 MW1

 T=I0

 IF2 ID2 EX2 MW2

 xxxxxx xxxxx

 T = 0 T=I0 +1 MW

IP = I0 +1 MW

 Fig 4.6

 (Instruction cycle of a parallel machine without ICALU)

Fig 4.4 shows the instruction cycle of a parallel machine for a two-operand instruction

pair shown below. The upper cycle in the figure represents execution of instruction 1.

The instruction time is the same as the basic instruction cycle time, I0. Execution of

Instruction 2 is shown in the lower half. It starts a memory write cycle after the first

instruction, because memory cannot be accessed simultaneously. It shifts to the right by

1MW. The x’s in figure represents an idle cycle.

 ADD R1, R2 / Executed by ALU1 /

 ADD R3, R4 / Executed by ALU2 /

 The ID2 is smaller than ID1 by one memory access because we already have R2,

fetched by Instruction 1. This compensates for the delay in start of execution of

Instruction 2 and thus the execution cycles of both the instructions start at the same time.

After the EX cycle is complete, Instruction 2 has to wait for 1MW for Instruction 1 to

complete its memory access.

 Instruction 2 takes a further 1MW to complete its cycle. Thus from the figure it

can clearly be seen that the instruction time of a parallel machine is lengthened by 1MW.

4.4.1 With ICALU :

 The instruction cycle for a machine with ICALU is shown in Fig 4.5.

 IF1 ID1 EX1

 ^
 T = I

 IF2 ID2 EX2 MW2

 xxxxx
 2D

 T = 0 T = I0 + 2D

I IC = I0 + 2D

 Fig 4.7

 (Instruction cycle of Parallel Machine with ICALU)

The instruction cycle in figure is for the pair given below :

 ADD R1, R2

 ADD R1, R3

The operation is almost similar to that of an ordinary parallel machine except that

there is no memory access for ALU1. Hence the memory access starts once the ICALU

completes it’s execution which is two additional logic or gate delays more than the 2-1

ALU. Hence its instruction cycle time increases to I0 + 2 D (D – Unit gate delay or

the delay of one gate).

 MW can be treated as three gate delays for CMOS memories. Substituting this

value average instruction length can be calculated.

 Chapter 5

 PERFORMANCE
ANALYSIS

PERFORMANCE ANLAYSIS

 In this chapter the performance of a Non-ICALU and that of a parallel machine

with the ICALU is compared. Table 5.1 shows the average instruction lengths of a

machine with ICALU and a Non-ICALU parallel machine for the interlocked and Non-

interlocked categories. The average instruction lengths were calculated by taking the

average of instructions lengths obtained for all possible interlocked and non-interlocked

pairs (See Appendix B). The average instruction length is the time taken to execute an

instruction pair, that is two consecutive instructions.

 CATEGORY

AVERAGE INSTRUCTION

 LENGTH

 (NON – ICALU)

AVERAGE INSTRUCTION

LENGTH

(WITH ICALU)

Non–interlocked

IPAVE1 = I0 + 3.5

IICAVE1 = I0 + 4.17

Interlocked

IPAVE1 = 2I0

IICAVE2 = I0 + 2.63

Table 5.1 : Average Instruction Lengths for machines with and without ICALU

 Using the values in the table, the total execution time for each machine can be

calculated, for a given number of instructions.

1) COMPARISON OF TOTAL EXECUTION TIME :

The total execution time of a parallel machine is given as :

 TNI NNI + TI NI (5.1)

Where,

TNI = Time taken to execute a Non-Interlocked pair.

NNI = Number of Non-Interlocked pairs.

TI = Time taken to execute an Interlocked pair.

NI = Number of Interlocked pairs.

Further,

N = 2 (NNI + NI)

NNI = ((100 – X) / 100) N / 2, and

NI = (X / 100) N / 2.

Where,

N = Total number of instructions to be executed.

X = Percentage of interlocked pairs.

Now, (5.1) can be rewritten as :

TNI [((100 – X) / 100) N / 2] + TI [(X / 100) N / 2] (5.1a)

Now, consider the following for a program :

a) N = 100,

b) X = 50 %

c) I0 = 25 Logic Delays, typically

The execution times for the machines are :

I) NON-ICALU MACHINE :

From Table 5.1 :

TNI = IPAVE1 = I0 + 3.5.

TI = IPAVE2 = 2I0.

Substituting in (5.1a), we get,

T1 = (I0 + 3.5) 25 + (2I0) 25

 = 1962.5 Logic Delays.

II) MACHINE WITH ICALU :

Again from Table 5.1 :

TNI = IICAVE1 = I0 + 4.17.

TI = IICAVE2 = I0 + 2.63.

Substituting in (5.1a), we get,

Total execution time for 50 pairs of instructions,

T2 = (I0 + 4.17) 25 + (I0 + 2.63) 25

 = 1419.78 Logic Delays.

The machine with ICALU takes fewer logic delays than the Non-ICALU machine.

Chart 5.1 is a plot of (5.1a) with N constant (100) and varying X between 0 and

100 percent. It can be seen that the performance of the Non-ICALU machine degrades,

where as the performance of the machine with ICALU is almost constant as X increases.

This is because the Non-ICALU has to execute more and more instructions in serial. In

the next section Percentage Speed Ratio is calculated.

Fig 5.1 Percentage Interlocks Vs Total Execution Time

2) PERCENTAGE SPEED RATIO :

Percentage Speed Ratio of Machine 2 over Machine 1 is defined as :

 [(T1 - T2) / T1] x 100 (5.2)

Percentage Speed Ratio reflects the time saved by one machine over the other.

Using (5.1a) in (5.2), we get,

[(TNI1 – TNI2) (100 – X) + (TI1 – TI2) X] / [TNI1 (100 – X) + TI1 X]

 (5.2a)

Hence,

Percentage Speed Ratio of machine with ICALU over the Non-ICALU machine for the

previous case (that is X = 50%) ≈ 28

Similarly, for (say) X = 75% :

Percentage Speed Ratio ≈ 37.

Thus the Percentage Speed Ratio increases as X increases.

 Chart 5.2 shows variation of Percentage Speed Ratio with interlock percentage

(X). It can be seen clearly how Percentage Speed Ratio increases as interlock percentage

(X) increases.

 From chart we can see that at X ≈ 3%, the gain of the machine with ICALU is

zero. Below this point the gain is negative, that is the machine with ICALU is slower

than the machine Non-ICALU machine. This point can also be obtained by setting

Percentage Speed Ratio to zero in (10.2a).

 Fig : 5.2

 (Percentage Interlock Vs. Percentage Speed Ratio.)

 Chapter 6

 TESTING
PROCEDURES

 TOTAL LOGIC AT A GLANCE:
INPUTS OF CSA

K1→ 1 → 0 → 0 → 0

K2→ 1 Category 1 → 0 Category 2 → 1 Category 3 → 0 Category 3
 (A ± B ± C) (A LOP B)± C (A ± B) LOP C (A LOP B)LOP C
K3 → 0 → 1 → 0 → 0

INPUTS OF PRE-CLA LOGIC BLOCK

K4 → 0 → 1 → 1 → 0 → 0

K5→ 1 AND → 0 NAND → 1 OR → 0 NOR → 1 XOR-XNOR

K6→ 0 → 0 → 0 → 1 → 1

INPUTS OF CLA

K 7→ 1 M1 Selects the → Si (output of CSA) K7→ 0 , M1 selects → Li (O/P of Pre-CLA
 Logic block)
ALU OUTPUT

K 8→ 1 Arithmatic output 0 → Logic (Mux 3)

INPUT OF POST CLA LOGIC BLOCK:

K 9→ 0 → 1 → 0 → 0
 Arithmatic AND, OR, XOR
K 10→ 0 operation → 0 NAND → 1 NOR → 0 XNOR
 of ICLUA
K 11→ 0 → 0 → 0 → 1

ALU -1 O/P

K 12→ 1 O/P of Arithmatic → 0 Logic Operation
K 13→ 0 ALU operation → 1

O/P OF ICALU

K 14→ 0 Non Inverted logical operation & Arithmatic operation(AND,OR,XOR)
 → 1 Inverted logical operation (NAND , NOR, XNOR)

TESTING

The ICUNIT has two outputs, result of ALU1 and that of ALU2. The testing of

the ICUNIT was done by categories. They are as follows :

1) CATEGORY 1 (ARITHMETIC FOLLOWED BY ARITHMETIC) :

Since there are three operands, the four sub categories are :

i) All positive numbers.

ii) Two positive numbers.

iii) One positive number.

iv) None positive.

2) CATEGORY 2 (LOGICAL FOLLOWED BY ARITHMETIC) :

The sub categories are :

i) Logical AND followed by Arithmetic.

ii) Logical OR followed by Arithmetic.

iii) Logical XOR followed by Arithmetic.

iv) Logical NAND followed by Arithmetic.

v) Logical NOR followed by Arithmetic.

vi) Logical XNOR followed by Arithmetic.

3) CATEGORY 3 (ARITHMETIC FOLLOWED BY LOGICAL) :

The sub categories are :

i) Arithmetic followed by Logical AND.

ii) Arithmetic followed by Logical OR.

iii) Arithmetic followed by Logical XOR.

iv) Arithmetic followed by Logical NAND.

v) Arithmetic followed by Logical NOR.

vi) Arithmetic followed by Logical XNOR.

4) Category 4 (Logical followed by Logical) :

Category 2 and 3 cover all possible categories here. Hence only one subcategory

is considered (say) :

Logical AND followed by Logical AND.

 Chapter 7

 SIMULATION
RESULTS

SIMULATION RESULTS:

 The simulation is conducted by assigning values to the variables in the design

entities. The simulation is done through Modelsim XE II/starter 5.6e-Custom Xilinx

Version. In Active-HDL a test run (simulation cycle) lasts for 100ns. The waveforms

(resulting from the simulation) are displayed in waveform editor. The following pages

show the simulation cycle as displayed by waveform editor.

 The figures shown in the following pages depict the results of various categories

of interlocked instructions explained in Chapter 6. A, B and C represents the three inputs

to the ICUNIT. K1, K2, K3,…, K14 represents the different control signals. The figures

show consecutive simulation cycles. Their values are shown in hexadecimal in each

cycle.

 OALU, OICALU are the outputs of ALU1 and ICALU respectively. In this

OALU performs operation on A and B, whereas OICALU performs operation on the
three operands.

ARITHMETIC FOLLOWED BY ARITHMETIC OPERATIONS

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

A

B

C

OALU1

OICALU

ns50 100 150 200

00000004 FFFFFFFC 00000004

00000003 FFFFFFFD 00000003 FFFFFFFD 00000003

00000001 FFFFFFFF

00000007 00000001 FFFFFFFF 00000007 00000001 FFFFFFFF

00000008 00000002 00000000 00000006 00000000 FFFFFFFE

FFFFFFFC

 1 2 3 4 5 6

 Fig 7.1
1. A + B + C

2. A – B + C

3. –A + B + C

4. A + B – C

5. A – B – C

6. –A + B – C

ARITHMETIC FOLLOWED BY LOGICAL OPERATIONS

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

A

B

C

OALU1

OICALU

ns50 100 150 200

00000001 FFFFFFFE 00000007 FFFFFFF8 00000006

00000004

00000003

00000001

00000007

FFFFFFF9

 1 2 3 4 5 6

 Fig 7.2

1. A + B and C

2. A + B nand C

3. A + B or C

4. A + B nor C

5. A + B xor C

6. A + B xnor C

LOGICAL FOLLOWED BY ARITHMETIC OPERATIONS

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

A

B

C

OALU1

OICALU

ns50 100 150 200

00000004 FFFFFFFB

FFFFFFFC 00000003

00000000 00000007 FFFFFFFF

00000001 00000008 00000000

00000004

FFFFFFFC

00000001

FFFFFFF8

FFFFFFF9

 1 2 3 4 5 6

 Fig 7.3
1. A and B + C

2. A or B + C

3. A xor B + C

4. A nand B + C

5. A nor B + C

6. A xnor B + C

LOGICAL FOLLOWED BY LOGICAL OPERATIONS

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

A

B

C

OALU1

OICALU

ns50 100 150 200

00000004 FFFFFFFB

FFFFFFFC 00000003 FFFFFFFC

00000000 00000007 FFFFFFFF FFFFFFF8

00000000 00000001 00000000

00000004

00000001

 1 2 3 4 5 6

 Fig 7.4
1. A and B and C

2. A or B and C

3. A xor B and C

4. A nand B and C

5. A nor B and C

6. A xnor B and C

 Chapter 8

 CONCLUSION

CONCLUSION

 The objective of the thesis, execution of interlocked instructions in one instruction

cycle. This was achieved by ICALU successfully designed and implemented using

VHDL. Its functionality was verified through simulation.

 The ICALU can be implemented in just 2 logic delays more than that of a

conventional 2-1 ALU. The performance of an ordinary (Non-ICALU) parallel machine

and the machine with the ICALU incorporated in it, was compared.

The following is concluded from the performance analysis :

• The Percentage Speed Ratio of the machine with the ICALU over the Non-

ICALU machine depends only on the amount of interlocked instructions in the

code and not on the total number of instructions.

• The Percentage Speed Ratio increases as the number of interlocked instructions

increase. This is due to the degradation in performance of Non-ICALU machines.

• Assuming an average of (50-75)% interlocks in a given code, the Percentage

Speed Ratio obtained is between (23-37)%, which implies that the ICALU, when

incorporated in a parallel machine saves up to a third of the total execution time

of the Non-ICALU machine.

 Chapter 9

 REFERENCE

REFERENCE:

1) J. Phillips, S. Vassiliadis, "High-Performance 3-1 Interlock Collapsing ALU's," IEEE

Transactions on Computers, vol. 43, no. 3, pp. 257-268, Mar., 1994

2) D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley, and B. W. Sutter, "The

multilayer perceptron as an approximation to a Bayes optimal discriminant

function,"IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296-298, Dec. 1990.

3) S. Vassiliadis, J. Phillips, and B. Blaner, "Interlock collapsing ALU's,"IEEE Trans.

Comput., vol. 42, no. 7, pp. 825-839, July 1992.

4) H. Ling, "High speed binary adder,"IBM J. Res. Develop., vol. 25, no. 3, pp. 156-166,

May 1981.

5) M. J. Flynn and S. Waser,Introduction to Arithmetic for Digital Systems Designers.

CBS College Publishing, 1982, pp. 215-222.

6) R. M. Keller, “Lookahead Processors,” Computing Surveys,Vol. 7, No. 4, pp. 514-

537, December 1973.

7) R. M. Tomasulo, "An efficient algorithm for exploiting multiple arithmetic units,"

<i>IBM J. Res. Develop.</i>, pp. 25-33, Jan. 1967.

8) R D Acosta , J Kjelstrup , H C Torng, An instruction issuing approach to enhancing

performance in multiple functinal unit processors, IEEE Transactions on Computers, v.35

n.9, p.815-828, Sept. 1986

9) JAIN R.P . Digital Electronics , Printice hall

10) The Low Carb VHDL Tutorial ,Bryan Mealy 2004

SOURCE CODE

A.1 PROGRAM for ICUNIT

entity ICUNIT is
 port (A, B, C : in BIT_VECTOR (31 downto 0) ;
 K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K12, K13, K14 : in BIT ;
 OALU1 : out BIT_VECTOR (31 downto 0) ;
 OICALU : out BIT_VECTOR (31 downto 0)) ;
end ICUNIT ;

architecture B_ICUNIT of ICUNIT is

component ALU1
 port (OP1, OP2 : in BIT_VECTOR (31 downto 0) ;
 CNT1, CNT2, CNT3, CNT4, CNT5 : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end component ;

component ICALU
 port (A, B, C : in BIT_VECTOR (31 downto 0) ;
 K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K14 : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end component ;

begin

 -- INSTATIATING ALU1

 CMP1 : ALU1 port map (OP1(31 downto 0) => A (31 downto 0),
 OP2 (31 downto 0) => B (31 downto 0),
 CNT1 => K4, CNT2 => K5, CNT3 => K6, CNT4 => K12, CNT5 => K13,
 O (31 downto 0) => OALU1 (31 downto 0)) ;

 -- INSTATIATING ICALU

 CMP2 : ICALU port map (A(31 downto 0) => A (31 downto 0),
 B (31 downto 0) => B (31 downto 0),
 C (31 downto 0) => C (31 downto 0),
 K1 => K1, K2 => K2, K3 => K3, K4 => K4, K5 => K5, K6 => K6,

K7 => K7, K8 => K8, K9 => K9, K10 => K10, K11 => K11, K14 => K14,
 O (31 downto 0) => OICALU (31 downto 0)) ;

end B_ICUNIT ;

A.2 PROGRAM for ICALU

entity ICALU is
 port (A, B, C : in BIT_VECTOR (31 downto 0) ;
 K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11,K14 : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end ICALU ;

architecture B_ICALU of ICALU is

component CSA3_2
 port (A, B, Z : in BIT_VECTOR (31 downto 0) ;
 K1, K2, K3 : in BIT ;
 Z_0_OUT : out BIT ;
 S : out BIT_VECTOR (31 downto 0) ;
 LAMBDA : out BIT_VECTOR (31 downto 1)) ;
end component ;

component PREBLK
 port (LL, LR : in BIT_VECTOR (31 downto 0) ;
 CON1, CON2, CON3 : in BIT ;
 L : out BIT_VECTOR (31 downto 0)) ;
end component ;

component MUX_2_32
 port (INP1, INP2 : in BIT_VECTOR (31 downto 0) ;
 CNTRL : in BIT ;
 Y : out BIT_VECTOR (31 downto 0)) ;
end component ;

component CLA
 port (OP1, OP2 : in BIT_VECTOR (31 downto 0) ;
 S : out BIT_VECTOR (31 downto 0)) ;

end component ;

component P_CLA_LOGBLK
 port (S, B : in BIT_VECTOR (31 downto 0) ;
 FADD, FAND, FORR, FXOR, FINV : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end component ;

signal S, L, INP1, INP2, SF : BIT_VECTOR (31 downto 0) ;
begin

 -- INSTANTIATING CSA
 CMP1 : CSA3_2 port map (A(31 downto 0) => A(31 downto 0),
 B(31 downto 0) => B(31 downto 0),
 Z(31 downto 0) => C(31 downto 0),
 K1 => K1, K2 => K2, K3 => K3,
 S(31 downto 0) => S(31 downto 0),
 LAMBDA(31 downto 1) => INP2(31 downto 1),
 Z_0_OUT => INP2(0)) ;

 -- INSTANTIATING PRE-CLA LOGIC BLOCK
 CMP2 : PREBLK port map (LL(31 downto 0) => A(31 downto 0),
 LR(31 downto 0) => B(31 downto 0),
 CON1 => K4, CON2 => K5, CON3 => K6,
 L(31 downto 0) => L(31 downto 0)) ;

 -- INSTATIATING MULTIPLEXER M1

CMP3 : MUX_2_32 port map (INP1(31 downto 0)
=> S(31 downto 0),

 INP2(31 downto 0) => L(31 downto 0),
 CNTRL => K7,
 Y(31 downto 0) => INP1(31 downto 0));

 -- INSTANTIATING CLASTAGE
 CMP4 : CLA port map (OP1(31 downto 0) => INP1 (31 downto 0),
 OP2(31 downto 0) => INP2(31 downto 0),
 S(31 downto 0) => SF(31 downto 0)) ;

 -- INSTANTIATING POST CLA LOGIC BLOCK
 CMP5 : P_CLA_LOGBLK port map (S(31 downto 0)

=> SF(31 downto 0),B(31 downto 0) => C(31 downto 0),

 FADD => K8, FAND => K9, FORR => K10, FXOR => K11,
 FINV => K14 , O(31 downto 0) => O(31 downto 0)) ;

 end B_ICALU ;

A.3 PROGRAM for ALU1

entity ALU1 is
 port (OP1, OP2 : in BIT_VECTOR (31 downto 0) ;
 CNT1, CNT2, CNT3, CNT4, CNT5 : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end ALU1 ;

architecture B_ALU1 of ALU1 is

component CLA
 port (OP1, OP2 : in BIT_VECTOR (31 downto 0) ;
 S : out BIT_VECTOR (31 downto 0)) ;
end component ;

component PREBLK
 port (LL, LR : in BIT_VECTOR (31 downto 0) ;
 CON1, CON2, CON3 : in BIT ;
 L : out BIT_VECTOR (31 downto 0)) ;
end component ;

component MUX_22_32
 port (INP1, INP2 : in BIT_VECTOR (31 downto 0) ;
 CNTRL1, CNTRL2 : in BIT ;
 Y : out BIT_VECTOR (31 downto 0)) ;
end component ;

signal SUM, LOG : BIT_VECTOR (31 downto 0) ;

begin

 -- INSTATIATING CLA
 CMP1 : CLA port map (OP1(31 downto 0) => OP1(31 downto 0),
 OP2(31 downto 0) => OP2(31 downto 0),
 S(31 downto 0) => SUM(31 downto 0)) ;

 -- INSTANTIATING LOGIC BLOCK
 CMP2 : PREBLK port map (LL(31 downto 0)

 => OP1(31 downto 0),
 LR(31 downto 0) => OP2(31 downto 0),
 CON1 => CNT1, CON2 => CNT2, CON3 => CNT3,
 L(31 downto 0) => LOG(31 downto 0)) ;
 -- INSTATIATING MULTIPLEXER M1
 CMP3 : MUX_22_32 port map (INP1(31 downto 0)

=> SUM(31 downto 0),
 INP2(31 downto 0) => LOG(31 downto 0),
 CNTRL1 => CNT4,
 CNTRL2 => CNT5,
 Y(31 downto 0) => O(31 downto 0)) ;

end B_ALU1 ;

A.4 PROGRAM for 32-BIT CLA

entity CLA is
 port (OP1, OP2 : in BIT_VECTOR (31 downto 0) ;
 S : out BIT_VECTOR (31 downto 0)) ;
end CLA ;

architecture B_CLA of CLA is

component CLA_1
 port (X, Y : in BIT_VECTOR (7 downto 0) ;
 S : out BIT_VECTOR (7 downto 0) ;
 CIN : in BIT ;
 GRPGEN : out BIT) ;
end component ;

component CLA_2
 port (X, Y : in BIT_VECTOR (7 downto 0) ;
 CIN : in BIT ;
 S : out BIT_VECTOR (7 downto 0) ;
 GRPGEN, GRPPRP : out BIT) ;
end component ;

signal C8, C16, C24 : BIT ;
signal INT1, INT2, INT3, INT4, INT5, INT6, INT7 : BIT ;

begin

 -- INSTANTIATING CLA_1
 C1 : CLA_1 port map (X(7 downto 0) => OP1 (7 downto 0),
 Y (7 downto 0) => OP2 (7 downto 0), CIN => '0',
 S (7 downto 0) => S (7 downto 0),
 GRPGEN => C8) ;

-- INSTANTIATING CLA_2
 C2 : CLA_2 port map (X (7 downto 0) => OP1 (15 downto 8),
 Y (7 downto 0) => OP2 (15 downto 8),
 CIN => C8,
 S (7 downto 0) => S (15 downto 8),
 GRPGEN => INT2,
 GRPPRP => INT1) ;

 INT3 <= INT1 and C8 ;
 C16 <= INT2 or INT3 ;

 -- INSTANTIATING CLA_2
 C3 : CLA_2 port map (X (7 downto 0) => OP1 (23 downto 16),
 Y (7 downto 0) => OP2 (23 downto 16),
 CIN => C16,
 S (7 downto 0) => S (23 downto 16),
 GRPGEN => INT5,
 GRPPRP => INT4) ;

 INT6 <= INT4 and INT2 ;
 INT7 <= INT4 and INT1 and C8 ;
 C24 <= INT5 or INT6 or INT7 ;

 -- INSTANTIATING CLA_2
 C4 : CLA_2 port map (X (7 downto 0) => OP1 (31 downto 24),
 Y (7 downto 0) => OP2 (31 downto 24),
 CIN => C24, S (7 downto 0) => S (31 downto 24),
 GRPGEN => OPEN, GRPPRP => OPEN) ;

end B_CLA ;

A.5 PROGRAM for 8 bit CLU

entity CLA_2 is
 port (X, Y : in BIT_VECTOR (7 downto 0) ;

 CIN : in BIT ;
 S : out BIT_VECTOR (7 downto 0) ;
 GRPGEN, GRPPRP : out BIT) ;
end CLA_2 ;
architecture B_CLA_2 of CLA_2 is

component SUM3_1
 port (OP1, OP2 : in BIT ;
 OP3 : in BIT ;
 Y : out BIT) ;
end component ;

signal G0, P0, G1, P1, G2, P2, G3, P3, G4, P4, G5, P5, G6, P6, G7, P7 : BIT ;
signal C1, C2, C3, C4, C5, C6, C7 : BIT ;

begin

 -- GENERATION OF GENERATE AND PROPAGATE SIGNALS

 G0 <= X(0) and Y(0) ; P0 <= X(0) or Y(0) ;
 G1 <= X(1) and Y(1) ; P1 <= X(1) or Y(1) ;
 G2 <= X(2) and Y(2) ; P2 <= X(2) or Y(2) ;
 G3 <= X(3) and Y(3) ; P3 <= X(3) or Y(3) ;
 G4 <= X(4) and Y(4) ; P4 <= X(4) or Y(4) ;
 G5 <= X(5) and Y(5) ; P5 <= X(5) or Y(5) ;
 G6 <= X(6) and Y(6) ; P6 <= X(6) or Y(6) ;
 G7 <= X(7) and Y(7) ; P7 <= X(7) or Y(7) ;

 -- CARRY BLOCK 1
 SC1 : SUM3_1 port map (X(0), Y(0), CIN, S(0)) ;
 C1 <= G0 or (P0 and CIN) ;

 -- CARRY BLOCK 2
 SC2 : SUM3_1 port map (X(1), Y(1), C1, S(1)) ;
 C2 <= G1 or (P1 and G0) or (P1 and P0 and CIN) ;
 -- CARRY BLOCK 3
 SC3 : SUM3_1 port map (X(2), Y(2), C2, S(2)) ;

C3 <= G2 or (P2 and G1) or (P2 and P1 and G0) or (P2 and P1 and
P0 and CIN) ;

 -- CARRY BLOCK 4
 SC4 : SUM3_1 port map (X(3), Y(3), C3, S(3)) ;

C4 <= G3 or (P3 and G2) or (P3 and P2 and G1) or

(P3 and P2 and P1 and G0) or (P3 and P2 and P1 and P0 and CIN) ;

-- CARRY BLOCK 5
 SC5 : SUM3_1 port map (X(4), Y(4), C4, S(4)) ;

C5 <= G4 or (P4 and G3) or (P4 and P3 and G2) or
(P4 and P3 and P2 and G1) or (P4 and P3 and P2 and P1 and G0) or
(P4 and P3 and P2 and P1 and P0 adn CIN) ;

 -- CARRY BLOCK 6
 SC6 : SUM3_1 port map (X(5), Y(5), C5, S(5)) ;

C6 <= G5 or (P5 and G4) or (P5 and P4 and G3) or

(P5 and P4 and P3 and G2) or (P5 and P4 and P3 and P2 and G1) or

(P5 and P4 and P3 and P2 and P1 and G0)

 or (P5 and P4 and P3 and P2 and P1 and P0 and CIN) ;

 -- CARRY BLOCK 7
 SC7 : SUM3_1 port map (X(6), Y(6), C6, S(6)) ;

C7 <= G6 or (P6 and G5) or (P6 and P5 and G4) or
(P6 and P5 and P4 and G3) or (P6 and P5 and P4 and P3 and G2) or
(P6 and P5 and P4 and P3 and P2 and G1)
or (P6 and P5 and P4 and P3 and P2 and P1 and G0) or (P6 and P5
and P4 and P3 and P2 and P1 and P0 and CIN) ;

 -- CARRY BLOCK 8
 SC8 : SUM3_1 port map (X(7), Y(7), C7, S(7)) ;

GRPGEN <= G7 or (P7 and G6) or (P7 and P6 and G5) or (P7 and P6
and P5 and G4) or (P7 and P6 and P5 and P4 and G3) or (P7 and P6
and P5 and P4 and P3 and G2) or (P7 and P6 and P5 and P4 and P3
and P2 and G1) or (P7 and P6 and P5 and P4 and P3 and P2 and P1
and G0) ;

 GRPPRP <= P7 and P6 and P5 and P4 and P3 and P2 and P1 and P0 ;

end B_CLA_2 ;

-- PROGRAM for CLA_1

For CLA_1 there will be no input carry and there will be no carry generation. Except
from this the program remains the same as “ CLA_2 “.

A.6 PROGRAM for CARRY SAVE ADDER

A.6.1

 entity CSA3_2 is
 port (A, B, Z : in BIT_VECTOR (31 downto 0) ;
 K1, K2, K3 : in BIT ;
 Z_0_OUT : out BIT ;
 S : out BIT_VECTOR (31 downto 0) ;
 LAMBDA : out BIT_VECTOR (31 downto 1)) ;
end CSA3_2 ;

architecture B_CSA3_2 of CSA3_2 is

component SUM3_1
 PROT (OP1, OP2, OP3 : in BIT ;
 Y : out BIT) ;
end component ;

component CSA_CARY
 PROT (OP1, OP2, OP3, OP3_NXT, K1, K2, K3 : in BIT ;
 Y : out BIT) ;
end component ;

begin
 Z_0_OUT <= Z(0) and K3 ;
 SUM :
 for I IN 31 downto 0 generate
 SX : SUM3_1 port map (A(I), B(I), Z(I), S(I)) ;
 end generate SUM ;
 CARRY :
 for I IN 30 downto 0 generate

CX : CSA_CARY port map (A(I), B(I), Z(I), Z(I+1), K1, K2, K3,
LAMBDA(I+1)) ;

end generate CARRY ;

 end B_CSA3_2 ;

A.6.2

entity SUM3_1 is
 port (OP1, OP2, OP3 : in BIT ;
 Y : out BIT) ;
end SUM3_1 ;

architecture B_SUM3_1 of SUM3_1 is

begin
 Y <= (OP1 and not OP2 and not OP3) or
 (not OP1 and OP2 and not OP3) or
 (not OP1 and not OP2 and OP3) or
 (OP1 and OP2 and OP3) ;
end B_SUM3_1 ;

A.6.3

entity CSA_CARY is
 port (OP1, OP2, OP3, OP3_NXT, K1, K2, K3 : in BIT ;
 Y : out BIT) ;
end CSA_CARY ;

architecture B_CSA_CARY of CSA_CARY is
begin
 Y <= (K2 and OP1 and OP2) or
 (K1 and OP2 and OP3) or
 (K1 and OP1 and OP3) or
 (K3 and OP3_NXT) ;
end B_CSA_CARY ;

A.7 PROGRAM for PRE-CLA LOGIC BLOCK

A.7.1

entity PREBLK is
 port (LL, LR : in BIT_VECTOR (31 downto 0) ;

 CON1, CON2, CON3 : in BIT ;
 L : out BIT_VECTOR (31 downto 0)) ;
end PREBLK ;

architecture B_PREBLK of PREBLK is

component PRELOG
 port (OP1, OP2, P1, P2, P3 : in BIT ;
 Y : out BIT) ;
end component ;

begin

 ITERATE :
 for I IN 31 downto 0 generate
 PX : PRELOG port map (LL(I), LR(I), CON1, CON2, CON3, L(I)) ;
 end generate ;
end B_PREBLK ;

A.7.2

entity PRELOG is
 port (OP1, OP2, P1, P2, P3 : in BIT ;
 Y : out BIT) ;
end PRELOG ;

architecture B_PRELOG of PRELOG is

begin
 Y <= (OP1 and P1) or (OP2 and P1) or
 (OP1 and NOT OP2 and P2) or (not OP1 and OP2 and P3) ;
end B_PRELOG ;

A.8 PROGRAM for POST-CLA LOGIC BLOCK

A.8.1

entity P_CLA_LOGBLK is
 port (S, B : in BIT_VECTOR (31 downto 0) ;

 FADD, FAND, FORR, FXOR, FINV : in BIT ;
 O : out BIT_VECTOR (31 downto 0)) ;
end P_CLA_LOGBLK ;

architecture B_P_CLA_LOGBLK of P_CLA_LOGBLK is

component P_CLA_BCMP
 port (X, B, FADD, FAND, FORR, FXOR, FINV : in BIT ;
 Y : out BIT) ;
end component ;

begin

 OUTPUT_STAGE :
 for I IN 31 downto 0 generate

PX : P_CLA_BCMP port map (S(I), B(I), FADD, FAND, FORR,
FXOR, FINV, O(I)) ;

 end generate ;
end B_P_CLA_LOGBLK ;

A.8.2

entity P_CLA_BCMP is
 port (X, B, FADD, FAND, FORR, FXOR, FINV : in BIT ;
 Y : out BIT) ;
end P_CLA_BCMP ;

architecture B_P_CLA_BCMP of P_CLA_BCMP is

signal INT1, INT2, INT3 : BIT ;

begin

 INT1 <= FADD or (B and FAND and not FINV) or
 (FORR and not FINV) or (not B and FXOR and not FINV) or
 (B and FXOR and FINV) ;

 INT2 <= (B and FXOR and not FINV) or (FAND and FINV) or

 (not B and FORR and FINV) or (not B and FXOR and FINV) ;

 INT3 <= (B and FORR and not FINV) or (not B and FAND and FINV) ;

 Y <= (X and INT1) or (not X and INT2) or INT3 ;

end B_P_CLA_BCMP ;

A.9

entity MUX_2_32 is
 port (INP1, INP2 : in BIT_VECTOR (31 downto 0) ;
 CNTRL : in BIT ;
 Y : out BIT_VECTOR (31 downto 0)) ;
end MUX_2_32 ;

architecture B_MUX_2_32 of MUX_2_32 is

component MUX2
 port (OP1, OP2, P1 : in BIT ;
 Y : out BIT) ;
end component ;

begin

 ITERATE :
 for I IN 31 downto 0 generate
 PX : MUX2 port map (INP1(I), INP2(I), CNTRL, Y(I)) ;
 end generate ITERATE ;
end B_MUX_2_32 ;

entity MUX1 is
 port (OP1, OP2, P1, P2 : in BIT ;
 Y : out BIT) ;
end MUX1 ;

architecture B_MUX1 of MUX1 is

begin
 Y <= (OP1 and P1) or (OP2 and P2) ;
end B_MUX1 ;

DETERMINATIN OF INSTRUCTION LENGTHS FOR FREQUENTLY EXECUTED

INSTRUCTIONS

 Since the instructions to a machine are of two types, Interlocked and Non-

interlocked, Average instruction lengths are calculated separately for both categories for

each machine.

1) Interlocked Instructions :

 For this category the Non-ICALU parallel machine always executes in serial.

Hence,

Average Instruction Length of Non-ICALU machine for interlocked category =

 TPAVE2 = 2 I0 L.D. (L.D. = Logic or gate Delay)

For the machine with ICALU, instructions can be further classified as having :

i) Same Destination registers :

 Here both the registers have same destination registers. The possibilities are :

a) RD1, RS1

 RD1, RS2

 Time required = (I0 + 2) L.D.

b) RD1, RS1

 RD1, RS1

 Time required = (I0 + 2) L.D.

c) RD1, RD1

 RD1, RD1

 Time required = (I0 + 2) L.D.

d) RD1, RD1

 RD1, RS2

 Time required = (I0 + 3) L.D.

ii) Different destination registers :

e) RD1, RS1

 RD2, RD1

 Time required = (I0 + 3) L.D.

f) RD1, RS1

 RD2, RD1

 Time required = (I0 + 3) L.D.

g) RD1, RS1

 RS1, RD1

 Time required = (I0 + 3) L.D.

h) RD1, RD1

 RS2, RD1

 Time required = (I0 + 3) L.D.

The Average instruction length of the machine with ICALU for the interlocked category

is :

TICAVE2 = [3(I0 + 2) + 5(I0 + 2)] / 8 = (I0 + 2.63) L.D.

2) Non-Interlocked Instructions :

 In the non-interlocked category RD1 can never be present in the second

instruction. Hence the sub-classification for Interlocked category does not apply here.

Two classifications are possible here, which are :

i) One common register between two instructions :

a) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 3) L.D.

 Time required for machine with ICALU = (I0 + 3) L.D.

b) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 3) L.D.

 Time required for machine with ICALU = (I0 + 3) L.D.

ii) No common registers between two instructions :

c) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 3) L.D.

 Time required for machine with ICALU = (I0 + 5) L.D.

d) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 6) L.D.

 Time required for machine with ICALU = (I0 + 8) L.D.

e) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 3) L.D.

 Time required for machine with ICALU = (I0 + 3) L.D.

f) RD1, RD1

 RS2, RD1

 Time required for Non-ICALU machine = (I0 + 3) L.D.

 Time required for machine with ICALU = (I0 + 3) L.D.

Average instruction length for Non-ICALU machine with non-interlocked instructions =

 TPAVE1 = [5(I0 + 3) + (I0 + 6)] / 6 = (I0 + 3.5) L.D.

Average instruction length for ICALU machine with non-interlocked instructions =

 TICAVE1 = (I0 + 4.17) L.D.

