View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ethesis@nitr

VHDL IMPLEMENTATION OF 32-BIT
INTERLOCK COLLAPSING ALU

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
In

Electrical Engineering

By
HIMANSHU SHEKHAR ACHARYA

BIBHUTI PRASAD SAHOO
NEM KUMAR NEERAJ

L

ROURKELA

Department of Electrical Engineering
National Institute of Technology
Rourkela

2007

https://core.ac.uk/display/53188824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VHDL IMPLEMENTATION OF 32-BIT
INTERLOCK COLLAPSING ALU

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
Bachelor of Technology
in
Electrical Engineering
By
HIMANSHU SHEKHAR ACHARYA
BIBHUTI PRASAD SAHOO
NEM KUMAR NEERAJ

Under the Guidance of

Prof. S. Das

L

ROURKELA

Department of Electrical Engineering
National Institute of Technology
Rourkela

2007

CERTIFICATE

This is to certify that the thesis enttl&/HDL
implementation of 32 bit Interlock Collapsing ALUSubmitted by Sri Himanshu
Shekhar Acharya, Nem kumar Neeraj, Bibhuti PraSathoo in partial fulfillment of the
requirements for the award of Bachelor of Techngplbggree in Electrical Engineering
at the National Institute of Technology, Rourkelzeémed University) is an authentic

work carried out by him under my supervision andigoce.

To the best of my kieage, the matter embodied in the thesis has not

been submitted to any other University/Institutetfee award of any Degree or Diploma.

Date : Prof. S. Das

Place: Dept. of EledctiE&ngg.
National Institute of technology
Rourkela-769008

ACKNOWLEDGEMENT

| would like to articulate my deep gratitude to my project
guide Prof. S Das ; Department of Electrical Engg , NIT Rourkela who has always
been my motivation for carrying out the project.

| wish to extend my sincere thanks to Prof. P. K. Nanda, Head of our Department, for
approving the request for the financial aid to develop the model.

It is my pleasure to refer Xilinx Project Navigator for simulating & Microsoft Word
exclusive of which the compilation of this report would have been impossible.

An assemblage of this nature could never have been attempted with our reference to
and inspiration from the works of others whose details are mentioned in references
section. | acknowledge my indebtedness to all of them. Last but not the least, my
sincere thanks to Prof D.Patra , Mr Chandu (M-tech senior) and all of my friends
who have patiently extended all sorts of help for accomplishing this undertaking.

HIMANSHU SHEKHAR ACHARYA(10302007)
BIBHUTI PRASAD SAHOO(10402068D)
NEM KUMAR NEERAJ(10302053)

TABLE OF CONTENTS

Page
ABSTRACT
v
CHAPTER 1 INTRODUCTION------ - e
1
CHAPTER 2 THEORY
3
2.1 INtrodUCtiON=----= === 4
2.2 Preliminary Design issues of ICALU-------——---------- 19
2.3 Working of the ICALU model----------=-=====-—=-e-eomem--- 24
2.4 Design and Implementation of the ICALU---———------ 25

CHAPTER 3 PRELIMINARY DESIGN ISSUES OF ICALU --- 19

4.1 Design of CLA input stage--------------=--—=—-=----------- 26
4.2 Design of PRE-CLA logic block---—------------------- 29
4.3 Binary adders and arithmetic ---------------------------- 33
4.4 Design of CSA stage---------------=-=--=-m-m-mms—mmmmo 40
4.5 Design of CLA stage-------------——=--=-==-=m-mmmmmmmeo 42
4.6 Design of POST-CLA logic block-------------=-=---------- 46
CHAPTER 4 ICALU DATAFLOW MODEL --- 48
5..1 Reduced ICALU model------=-=====mmmmmmmm e 50
5..2 ALUL-----mmmmmmmm oo 52
5.3 Interlock collapsing unit-----------=--=---——-mmmme oo 53

5.4 Estimation of relative delay between ALU1 aGALU-- 53

5.5 Determination of instruction cycle lengthsaahachine

with and without ICALU---------=--=-----— oo 55

CHAPTER 5 PERFORMANCE ANALYSIS -----nxnneemmmeennea 58
CHAPTER 6 TESTING PROCEDURES -----rn-smsmermemememenmemenca 63
CHAPTER 7 SIMULATION RESULTS ---- - 67
CHAPTER8 CONCLUSIONS -----rnmmrmmmmsrmmmnrmmmmemcemcnene 73

CHAPTER 9 REFERENCE ---ncrnemrmemmmememmememeeamamemem e memeecccs 75

VHDL SOURCE CODE -----rnnnrrnmmremmmrenmmeena- 77

DETERMINATION OF INSTRUCTION LENGTHS
FOR FREQUENTLY EXECUTED INFRUCTIONS

ABSTRACT

An important area rtomputer architecture is parallel
processing. Machines employing parallel processirgy called parallel machines. A
parallel machine executes multiple instructionsrie cycle. However, parallel machines
have a limitation, they cannot execute interlockestructions. They are executed in
serial like any serial machine. It takes more tlare cycle to execute multiple
instructions causing performance degradation. Inditech there is hardware

underutilization as a result of serial executiopanallel machine.

The sotutirequires a special kind of device called “Irdek
collapsing ALU”. The Interlock Collapsing ALU, uké conventional 2-1 ALU’s is a 3-
1 ALU. The proposed device executes the interldékstructions in a single instruction
cycle, unlike other parallel machines, resulting high performance. The resulting
implementation demonstrates that the proposed drlbck Collapsing ALU can be
designed to outperform existing schemes for ICAbY,a factor of at least two. The

ICALU is implemented in VHDL. Its functionality igerified through simulation.

Chapter 1

INTRODUCTION

INTRODUCTION:

BACKGROUND:

Parallel machines cannot execute interlocked instm concurrently.Interlocked
instructions or instruction with dependencies canbe executed concurrently in a
parallel machine, thus degrading the performandbee@fmachine. The thesis investigates
a solution, called, “interlock collapsing”, to exsge these interlocks concurrently. The
solution requires a special kind of a device callegl Interlock collapsing ALU. The

Interlock collapsing ALU, unlike conventional 2-1. 4’s, is a 3-1 ALU.

The proposed ALU, in addition to cpling these interlocks also should be
implemented in identical stages as the conventidhal’s. A functional model of the
ICALU is assumed initially. The functional moded bptimized by optimizing the
model’s individual blocks. The design and optini@a of each block is discussed in

separate chapters.

Finally, two parallel machinesttwand without the ICALU are compared
with regard to their execution times. The effefcvariation of percentage interlocks in a
given code on the execution times and the percergpged ratio of the parallel machines

is studied.

The ICALU is implemented in VHDL. Its fumenality is verified through

simulation.

Chapter 2

THEORY

Preliminary design issues of
ICALU

Basic computer architecture

Instruction formats

Parallel machines

Interlocked instructions

ICALU

Why VHDL

2.1INTRODUCTION

Computers have markedly changedbr othe last decade. Features,
performance, and memory sizes representing a canpbgat filled a room with
equipment and cost millions of dollars a decade ag@ sit on top of a desk. High
performance computers are increasingly in demarnberareas of industrial automation,
medical diagnosis, aerodynamics simulation, mifidefense, signal processing, artificial
intelligence, expert systems and socioeconomic, ngmmany other scientific and
engineering applications. This revolution has beermought about by major
improvements in computer architecture and procgssathniques and the enabling
technology of Very Large Scale Integration (VLSI).

This thesis involved developing a novel technigoespeed up instruction
execution in parallel computers. Before moving duasther, an overview of basic

computer components and its many related termedsssary.

2.1.1 COMPUTER ARCHITECTURE ::

WHAT IS COMPUTER ARCHITECTURE ?

Computer architecture involves the design of waiaspects of computer design
such as memory design, bus structure, internalr@eRtocessing Unit, instruction set
and the hardware implementation of the machine.

The aim of a computer architect is to design amaer that meets the functional

requirements as well as price and performance goals

2.1.2 BASIC COMPUTER COMPONENTS ::

Computer architecture has changed incredibly dveryears. One element has remained
constant throughout the years, and that is the Nesnmann concept of computer design.

Von Neumann architecture is composed of threerdistomponents(or subsystems) : a
central processing unit (CPU), memory and inpupout(l/O) interfaces. Fig 2.1

represents one of the several possible ways ofemtimy these components together.

Control Unit Registers MMemory /0 Interfaces
v CPU
Control Bus
Data Bus
? Address Bus

Fig 2.1

(Basic computer components)

1) THE CPU ::

The heart of any computing unit is the Centralcpssing unit. It is responsible

for executing instructions in the computer. Fig 8hows the block diagram of a simple

CPU. Usually CPU’s are available on single chipd are called microprocessors. The

major components of a CPU are

I) CONTROL UNIT ::

The Control Unit determines the order in which rastions should be executed.
It interprets the machine instructions. The execubf each instruction is determined by
a sequence of control signals produced by the @bahit. In other words, the control
unit governs the flow of information through thesem by issuing control signals to
different components. For example, to perform adliteon operation, it sets the

appropriate signals to appropriate componentsataati addition operation results.

1) ALU ::

The Arithmetic and Logic Unit (ALU) is arguably tmeost important part of the
CPU. The ALU performs the decision making operaidlogical) and arithmetic
operations. Arithmetic operations involve funcsosuch as addition, subtraction,
multiplication and division. It also performs thasic logic functions such as AND, OR,
XOR, and so on. There are a variety of techniqaegesign these functions. It is most
complex with regard to design, amongst all the comepmts of the computer, and it also
contributes to most of the delay. Thus, the desigtne ALU is critical to the speed of

the computer.

lll) REGISTER ARRAY ::

The Register Array consistsaofiumber of temporary storage locations or

registers. Because the registers are often osaime chip and directly connected to the

control unit, they have faster access than memdilye ALU and the register array are

together called as the ‘dataflow’ of the computer.

F 3
 DATA
REGISTER
CONTROL Y| ARRAY
UNIT “ > i

“ —_aw /

ADDEESS

Fig 2.2
(The CPU)

V) PC ::

An instruction is fetched from the memory by plarihe address of the location
in the program counter (PC). It keeps the addréfise next instruction to be executed.

V) MAR AND MDR ::

The CPU communicates with the memory modules thHrotige Memory.
Whenever data or instruction is fetched from memadrys first placed in the MDR.
Address is sent out of the CPU through the MAR.

2) MEMORY ::

The computer’'s memory is used to store programuogons and data. Two of
the commonly used type of memories are, RAM (ram@acess memory) and ROM (
read-only memory). RAM stores the data and géimengpose programs that the
machine executes and is temporary. Its contemisbeachanged any time or can be
erased when power to the computer is turned o®MRs permanent and is used to store

the initial boot-up instructions of the machine.

3) INPUT/OUTPUT INTERFACES ::

The 1/O interfaces allow the computer to commuigcto the user and to

secondary storage devices like the disk and tapesdr

2.1.3 INSTRUCTION FORMAT ::

An instruction is a group of binary bits that thle computer what has to be done.

Any computer instruction has two parts ::

i) Opcode :: Opcode (stands for operation code) field deiteemthe function
of the instruction, i.e. it contains the operattbat is to be performed by the
CPU.

i) Operand :: Operand is the data on which the intended operadiperformed.

Opcode Operand | Operand

Fig 2.3a

(Instruction format)

ADD Ry, Rs

Fig 2.3b

(An instruction)
Fig 2.3a shows the format of an instruction. Figb2s an example where the opcode is
ADD. The operand are the data within the registeyand R.
Ry — Destination Register.
Rs — Source Register.
The above instruction does the following operation
Ri € R+ Rs

1) ATYPICAL COMPUTER PROGRAM::

The following assembly language program adds tlwertwmbers ::
MOVI R1, FF -- Load register R1 with number 1.
MOVI R2, OF -- Load register R2 with number 2.

ADD R1, R2 -- Add contents of R1 with that of RPore
ResnlR1.
SUBI R1, 10 - Subtract a number from R1, stesalt in
1R

2) STEPS IN INSTRUCTION EXECUTION::

Instruction » Tnstruction p. Instruction - Operand
Fetch Decode Execute Write
Fig 2.4

(Phases of instruction exgmn process.)

Fig 2.4 outlines the steps in instruction execufiod]. Typically, it consists of four machine ¢gs. A ‘machine cycle’ is the
time taken to complete one phase of an operagoninstruction fetch or instruction decode, e instruction does not
necessarily have all the machine cycles. The vanihases are explained :

) INSTRUCTION FETCH (IF) ::

During this phase the Program Counter loads the MR the address of the
instruction to be executed. The address is sanodine memory over the address lines.
The instruction is fetched from the memory locatamd placed in the MDR. This is a

‘memory-read’ operation.

I1) INSTRUCTION DECODE (ID) ::

The Control Unit reads the instruction from the MBRJ decodes it. The control
unit examines the opcode of the instruction andidésc whether data needs to be
retrieved from the memory. Once the data is in @R, the control unit sets the

appropriate signals to perform the required openatii.e., arithmetic, logic etc.

[11) INSTRUCTION EXECUTE (EX) ::

During the instruction execute phase the ALU islkzhwith the operands, and it

performs the necessary operations as set by theotanit.

IV) OPERAND WRITE OR MEMORY WRITE (MW) ::

The result of the ALU is placed in the MDR. TRE writes the address of the
memory location where the data has to be writtémtimee MAR. A memory write
operation is performed by the CPU to transfer thetents of MDR into memory.

An ‘instruction cycle’ is the time taken by the cputer to complete the execution

of one instruction, i.e., the sum of all machineley.

2.1.4 PARALLEL MACHINES ::

An important area in computer architecture is pargbrocessing. Machines
(computers) employing parallel processing are dalparallel machines. A

parallel machine executes multiple instructionpamnallel, in one cycle, compared
to a serial machine (discussed so far) that caoutgenly one instruction. Thus a
parallel machine is faster than a serial machine.

In a parallel machine, a number of execution uf®EU’s) are connected in

parallel, so that each unit is able to handle atruction. But for practical reasons
the number is limited to two. For example, if twach units are present in the
processor, two instructions can be handled conetlyreresulting in faster

execution. Fig 2.5 shows a simple block diagrara pérallel machine unit.

Address Bus

l i Data Bus
y¥y h 4 ¥ ¥y
Execution Execution Execution Execution

Unit 1 Unit 2 Unit 3 P Unit I

¥ ¥ ¥ ¥
Data Bus
Fig 2.5
(A patall unit)

However, parallel machines have a limitation, thegnnot execute interlocked
instructions (instructions with dependencies) imapal [5, 6]. They are executed in
serial like any serial machine. It takes more tlare cycle to execute multiple
instructions causing performance degradation in rifechine. In addition, there is
hardware underutilization as a result of serialcetien in the parallel machine.

To improve performance it would be necessary talbe to execute these interlocked
instructions in one cycle. Thus, interlock collsgsexecution units in the form of multi-

operand ALU’s have to be employed.

2.1.5 OBJECTIVE ::

The thesis proposes design and simulation of ait32-b Interlock Collapsing ALU
(ICALU), to allow the execution of two interlockeasstructions in a single instruction
cycle. This will improve the performance whensitdegraded by data hazards. The
device will be studied to find out if it meets itibjective which is to execute two
interlocked instruction in one instruction cycl&he collapsing of interlocks will be
confined to arithmetic and logical operations, axed point two’s complement

numbers.

2.1.6 INTERLOCKING IN PARALLEL COMPUTERS ::

WHAT ARE INTERLOCKED INSTRUCTIONS?

Instructions are said to be interlocked if an instion depends on a previous
instruction for its data so that they cannot becaied simultaneously. Consider

the instruction pair of Fig. 2.6a.

) ADDR2, R1; [R2] € [R2] + [R1]
i) ADDR3,R2; [R3] € [R3] + [R2]

Fig 2.6a
(An interlocked instruction pair)

Instruction 2 required the result of instructiorfstored in R2). Instruction 2 can
be executed only after instruction 1 has been d@gdcuThus, instruction 2 is said
to be dependent on instruction 1. The dependemeyepts the simultaneous

execution of the instructions.

) ADDRL,R2; [R1] < [R1] + [R2]
i) ADD R4, R3; [R4] € [R4] + [R3]
Fig 2.6b
(A non-interlocked instruction
pair)

Fig 2.6b is an example of a non-interlocked ingtaincpair. Instruction 2 does not
require that instruction 1 be executed beforenst(uction 2) is executed. Thus

they can be executed simultaneously. Before mowmgo the ICALU, consider

the data flow of a parallel machine, which can exectwo instructions

concurrently
REGISTER ARRAY
11] 12 1] 12
k 4
] am]
Fl Ri
Fig 2.7

(Simplified view of the ALU unifor an ordinary parallel machine)

Fig 2.7 shows the ALU unit for a parallel machinkielh consists of two 2-1 ALU'’s.

The notation ‘2-1’" stands for two input operands ansingle output (result). A 2-1
ALU has one 2-1 CLA (Carry Look Adder) to perfoarithmetic operations and one
logic stage to perform logical operations. Théof@ing explains the operation of the

unit for both types of instructions.

I) NON-INTERLOCKED ::

ALU1 executes the first instruction and ALU2 exexutthe second simultaneously.

Thus, the total execution time is one cycle

I1) INTERLOCKED ::

Since, an interlocked instruction cannot be exetuenultaneously, ALU1

executes both the instructions one after the o#gpriring two cycles.

To resolve these interlocks a solution had beepgsed previously. This can be
shown in Fig 2.8 in which the proposed dataflovadmplementation for relieving fixed
point data dependency interlocks is shown.

'

REGISTER. ARRAY

13 1] 12

o1

ALT2

FIG 2.8
(WM’'S APPROACHO COLLAPSING INTERLOCKS)

Two ALU'’s are concatenated as shown. It can rasutie execution of a multi-
operation instruction, however, it requires twite texecution time of a single ALU
operation. An attempt to execute the interlock ycle could result in an increase in the
cycle time of the machine and unnecessarily peaalikinstruction executions, resulting
in practically no performance gain.

2.1.7 THE ICALU ::

In order for an implementation to eliminate inteke between instructions and to
execute such instructions in parallel (in additib;m execution of non-interlocking

instructions in parallel), it is required to colipthe interlocks with the incorporation of

* Multiple execution units, and

* Multi-operand execution units.

Multiple execution units are required because rtioae one instruction is being executed at a tifftee number of instructions
that can be executed is assumed to be two herbam the number of execution units (ALU’s) is two.
Multi-operand execution units are required, sinberé¢ are two interlocked
sequential instructions. The first instructioreigecute by a traditional ALU. Since the
second instruction may be dependent on the fingt,second ALU must be capable of

performing the collapsed instruction of both thstiactions, in parallel to the first ALU.

The second ALU has three input operands, one iitiaddo that of first ALU.

1) DESCRIPTION AND WORKING ::

The ICALU is basically a 3-1 ALU. It has 3-1 C3&arry Save Adder) in
addition to the 2-1 CLA to achieve the desired &ifhmetic operation. The ICALU also
has an extra logic when compared to the 2-1 ALWe TCALU is implemented in the
parallel machine by replacing ALU2 with the ICALUThe operation of the parallel

machine employing the ICALU is explained as ::

i) NON-INTERLOCKED ::

The operation is the same as that for the pamadethine when the sequence is

non-interlocked.

i) INTERLOCKED ::

Consider the interlocked sequence of Fig2.6a. Akekdcutes the first instruction
as usual. The ICALU collapses the two instructions a single 3-operand instruction as

shown in Fig 2.9 :

ADD R3,R2,R1; [R3] € [R3] + [R2] + [R1]

Fig 2.9

(The Collapsed Instruction)

Thus, the above instruction is executed in a singtde by the ICALU. In short,
the ICALU operates on both the instructions whegrdhis interlock and on the second
when there is no interlock.

The design of ICALU is described and simulated HDL. VHDL is a language
to describe or model hardware systems. The netioseof this chapter gives a brief

explanation on the same.
i) LIMITATIONS:
At percentage of interlodkastructions(X)x 3%, the gain of the machine

with ICALU is zero. Below this point the gain i®gative, that is the machine with

ICALU is slower than the machine Non-ICALU machine.

2.1.8 VHDL :

VHDL is an acronym for VHSIC Hardware Descriptioariguage. The acronym
VHSIC, in turn, stands for Very High Speed InteghCircuit program. VHDL is a high
level programming language, used for describingtaligystems, just like any other
conventional programming languages, such as C asdaP are used for computing
mathematical functions or manipulating data. Exeouof a VHDL program results in a

simulation of the digital system.

WHY USE VHDL ?

With VHDL, we can quickly describe and synthesizecuits of five, ten, or
twenty thousand gates. Equivalent designs witlersetiics or Boolean equations at the
register transfer level can require several mowthe/ork by one person. In addition
VHDL provides the capabilities described below ::

1) VHDL CAPABILITIES ::

i) POWER AND FLEXIBILITY ::

VHDL has powerful language constructs with which woite succinct code
descriptions of complex control logic. It also hasltiple levels of design descriptions
for controlling design implementations. It supgortiesign libraries and reusable
components.

i) TECHNOLOGY-INDEPENDENT DESIGN ::

VHDL permits us to create designs without havindinst choose the technology.

With one design description many technologies @atalgeted.

iii) PORTABILITY ::

Because VHDL design description is a standard, ysign descriptions can be
taken from one simulator to another, one synthegkto another and one platform to
another. As a result VHDL design descriptions lsamused in multiple projects.

iv) MODELING STYLES ::
Supports both modeling styles, behavioral and &irat

v) DESIGN METHODOLOGIES ::
It supports various design methodologies such gsltovn, bottom-up and mixed
designs.

2) LIMITATIONS ::

i) Too wordy.
if) Debugging is difficult.
iii) Logic implementations created by synthesissanay not always be efficient.

iv) Synthesis varies from tool to tool.

3) AN OVERVIEW OF VHDL MODELING STYLES ::

As mentioned earlier VHDL supports all the threedeling styles :
. Behavioral
. Structural

. Data flow

i) BEHAVIORAL :

A behavioral description explicitly defines the infoutput function by specifying
some sort of mathematical transfer function. Faor,econsider the Boolean equation
which needs to be implemented.

F=A.B+C.D

A behavioral statement to implement the above eguatould be :
F<= (Aand B) or (C and D
It is clear from the above statement that the sirecof implementation is not
known, until after synthesis is done. A behaviatescription defines what the system
does, but it does not necessarily indicate thegdasito be implemented.

i) STRUCTURAL :

In contrast, a structural representation or modedtyle describes a digital system
by specifying the interconnection of componentst thamprise the module. To

implement the same equation as above, the strlickesaription would be :

Al : AND2_IP portmap (A, B, INT
A2 : AND2_IP portmap (A, B,INT2);
O1 : OR2_IP portmap (INTL,INT2,2);

The statements clearly imply structure of the moakich has an AND stage

followed by an OR stage.

Chapter 3

PRELIMINARY DESIGN ISSUESOF ICALU

Functional requirements
nstruction category
oviing of icalu

3.1) PRELIMINARY DESIGN ISSUES OF ICALU :

As discussed earlier, the ICALU performs a 3-1 apen in case of an
interlocked sequence and a normal 2-1 operati@ase of non-interlocked sequence. To

design the ICALU we start with its functional recgments.

3.1.1) FUNCTIONAL REQUIREMENTS OF THE ICALU :

The functional requirements of the ICALU is dividietlo 2 modes :
1) Interlocked mode.

2) Non-interlocked mode.

1) MODE 1 (INTERLOCKED MODE) :

In Mode 1, the ICALU is in the Interlock mode, whet performs a three operand
operation. Now, consider again an interlocked.pair

) ADD A,B; [A] <« [Al + [B]
iy ADD A, C; Al € [A] + [C]

Fig. 3.1a

(An interlocked instruction pair)

In Fig 2.10a an arithmetic operation follows arthamietic operation. Similarly,
there are other ways by which instruction can combi The possible ways are
categorized as follows:

i) Arithmetic followed by Arithmetic.

i) Logical followed by Arithmetic.

i) Arithmetic followed by Logical.

iv) Logical followed by Logical.

l) CATEGORY 1 : (ARITHMETIC FOLLOWED BY ARITHMETIC)

This category is represented by :
(A B £ C)
‘+’ addition or subtraction operation.
A — Operand 1
B — Operand 2
C — Operand 3
e.g, ADD AB
SUB AC
) CATEGORY 2 : (LOGICAL FOLLOWED BY ARITHMETIC)

This category is represented by :
(A LOP B) = C
(‘LOP’ — Logical Operation)
e.g, AND A/B
ADD A,C

lI) CATEGORY 3 : (ARITHMETIC FOLLOWED BY LOGICAL)

This category is represented by :
(AxB)LOPC

e.g, ADD A/B
AND A, C

IV) CATEGORY 4 : (LOGICAL FOLLOWED BY LOGICAL)
This category is represented by :
(ALOP B) LOP C
e.g., AND A/B
XOR A, C

2) MODE 2 (NON-INTERLOCK MODE) :

In Mode 2 the ICALU is in the ‘Non-Interlocked’ med It performs a two

operand operation. Consider a Non-Interlocked pair

) ADD A, B A] € [A] + [B]
iy ADD D,C [D] < [D] + [C]
Fig 3.1b

(An non-interlocked instruction pir)

Since no interlock exists between the two instandj no collapsing is required.
Thus ICALU executes only instruction 2. The catégmin this mode are

i) Arithmetic.

i) Logical
I) CATEGORY 1 (ARITHMETIC) :

This category is represented by :

A + B

This category can be executed as a Mode 1 — Catdguorstruction if the third

operand is forced to zero. It can be illustrated a

(A £tB +C)=(A + B), whed=0.
e.g., ADD A,B /ExecutedbyALU1/
SUB C,D

Il) CATEGORY 2 (LOGICAL) :
This category is represented by
A LOP B
Similarly this category can be executed as ModeQategory 2 instruction, by
forcing the third operand, C, to zero, as illusdabelow :

(A LOP B)+xC=(A LOP B); wheC =0
e.g., ADD A,B /ExecutedbyALU1/
AND C,D
From the above discussion it follow that :

e Category 1 is a 3-1 arithmetic operation, whichurezs a 3-1 adder. This can be
achieved by cascading a 3-1 CSA followed by a 2-A.C

» Category 2 & 4 require a logic stage before theeadtage. This is the Pre-CLA
Logic Block.

» Categories 3 & 4 require a logic stage after adi@ge. This is the Post-CLA
Logic Block.

* The Mode 2, Non-interlocked operations is just bsst of Mode 1, Interlocked
operations. They are executed as Mode 1 operadbpisetting the third operand
to zero and hence do not require any additionauity within the ICALU.

Taking into consideration, #ile above requirements, a logical dataflow

model of the ICALU is developed. It is shown igR.11.

cl aJ N l
v v v
CSA Pre-CLA
Logic Block
o L
c AR 0O
LI A
i
INF1 INF2
CLA
R
by
Post-CLA
Logic Block
P
I3
0
Fig 3.2

(Data flowrfa of ICALU)

3.3 WORKING OF THE ICALU MODEL :

3.3.1 MODE 1:

) CATEGORY 1: (A + B = C)

The first category is executed by passing the apkrahrough the CSA. The
output S, which is the partial sum of the addifpocess, is selected by multiplexer M1
as the first input to the CLAL, which is the carry generated as a result of amdih the
CSA, is selected by M2 to be the second input oAClThe output of CLA, R, is the
required sum. Since there is no post logical dpmrathe sum is bypassed to the output
of the ALU, O. The 3-1 addition process is expdainn detail in later chapters.

) CATEGORY 2: (A LOP B) % C

The logical operation A LOP B is executed by the-BLA Logic block. Signals
L and operand C are the two inputs for CLA. Rypdssed to output as in Category 1.

) CATEGORY3:(A+ B) LOP C

A £ B is 2-1 addition. The CSA is not required éefThis operation is executed
by selecting the output of Pre-CLA Logic Block IA(XOR B) as INPUT 1 and (A
AND B) as INPTU 2 to the CLA. R is the requiraghs Since there is a post logical
operation, C LOP R, R cannot be bypassed to theututinstead it is combined with C
in the Post CLA Logic Block, to obtain the necegdagical operation. ‘P’ is now the
output of ICALU.

IV) CATEGORY 4: (A LOP B) LOP C
First and second inputs to CLA are L and zero retbpdy. The output of CLA is

L again, since addition with zero gives the sanmaler. The next step C LOP R is same
as that in Category 3.

3.3.2MODE 2:

As explained earlier, Mode 2 operations are speeis¢s of Mode 1. The Working
for both categories remains the same for Mode 2eixthat the third operand is set to
zero. So, it is not explained any further.

3.4 DESIGN AND IMPLEMENTATION OF THE ICALU :

The ICALU is designed by first designing all thediwidual blocks.
Implementation of each block is done by writing DL program for that block. These
individual blocks are finally assembled togetherwrk as one piece. This is also done
by a VHDL program. An important thing to be notsdthe blocks in turn can have sub-
blocks which are also assembled to form the blo&sch a design methodology is called
as ‘hierarchical modeling’. This is similar to ebf oriented programming in high level
languages such as ADA and C++. The next chaptdrsi@scribe the design of each

block and how to implement them using VHDL.

DESIGN OF VARIOUS MODULES

3.4.1 EXPRESSIONS FOR CLA INPUT STAGE

This chapter deals with the design of the Inpug&taf CLA. Methods are discussed
to obtain all the inputs for INPUT 2 of CLA fromehcarry output of CSA instead of
obtaining them separately.

3.4.3DESIGN :

From the working of the ICALU model in previousagiter, the inputs to the CLA
for both groups are summarized in tables below .

Category OPERATION CLA INPUT 2
CLA Input
1
1 C+(A+ B) AYBYC |(ABAB.CAA.C)
2 C+t(ALOPB) |ALOPB
3 CLOP (A+B) |AVYB .B
4 C LOP (A LOP B)|A LOP B

TABLE 3.1A: INPUTS TO THE CLA FOR MODE 1 OPERATIONS.

‘v’ — represents logical XOR operation.

- represents logical AND operation.

‘A’ - represents logical OR operation.

CATEGORY OPERATION CLAINPUT 1 CLA INPUT 2
1 A+B A B A.B
2 A LOP B A LOP B 0

TABLE 3.1B : INPUTS TO THE CLA FOR MODE 2 OPERATIO NS.

3.4.5 EXPRESSIONS FOR INPUT 1 :
From Table 3.1a, a 3-1 add opemaiforequired for category 1. The CSA

provides the input for this operation)S

For categories 2, 3 and 4, the Pre-CLA Logic Blgrhkvides the input ().
Though category 3 is an arithmetic operation, Pté-Cogic Block provides the input,
because sum of two operands, A and B, is given MyBAwhich is a logical operation.

The selection between 8nd L can be achieved by a single control signal K
instead of a 2-1 Multiplexer M1. The equation fi§PUT 1 is shown below :

INPUT 1 =KS + L (3.1)
‘+’ — represents Logical OR operation.
For category 1, K= 1, thus,
INPUT 1= 1, §+0=§,
For categories 2 to 4,4 0, hence,
INPUT1=0, S+L = L

The control values for INPUT 1 are summarized ibl&a.2.

CATEGORY K7 INPUT 1
1 1 S
2 0 L

Table 3.2 : CONTROL VALUES FOR INPUT 1

3.4.6 EXPRESSIONS FOR INPUT 2:

For INPUT 2 a method is discussed which elimindtes need for generating
separate inputs, by obtaining all the inputs frown ¢arry output of the CSA. Also the 4-
1 Multiplexer for INPUT 2 can be eliminated by ingloing the selection in CSA.

The new expression f@g.; which is assigned to INPUT 2 can be written as :

INPUT 2 =%is1 = KKAIBi+K B G+ K A G+ Ks3Ciyp. for(1<i<3l)

(3.2)
K1, Kz and Kz are the three control signals given to the CSAolbtain the required
combination ofAis; for the four different categories. These sigraaks produced in the

decode cycle. The values of control signals tainkthe required input are shown below.

For category 1, K=K, =1, K3 = 0, thus,
INPUT 2 =Ai:1=ABi+B C + G A;

For category 2, K= K, =0, K3 = 1, thus,
INPUT 2 =Ais1= G

For category 3, K=0, K; = 1, K3 = 0, thus,
INPUT 2 =Aiz1= A B

For category 4, K= K, = K3 = 0, thus,
INPUT 2 :Xi+1: 0

The control values for INPUT 2 are summarized iblé&.3

Ki| Kz | Kz | INPUT 2

1 1 0 (AiBi+BiCi+Ai
Gi)

0 |1 0 Ai B

Table 3.€ontrol values for INPUT 2

3.5 PRE — CLA LOGIC BLOCK

This chapter deals with the design and reductiothe Pre-CLA Logic Block.
The Pre-CLA Logic Block has to perform AND, OR, X@Rtheir inverts NAND, NOR,
XNOR respectively. It also provides inputs to INPW of CLA for categories 2 to 4.

3.5.1 DESIGN :

To understand the logic stage lets assume thewfmitp control signals to the Pre-CLA

Logic Block .
Control Signal
Description
KanD AND Inputs A & B
Kor OR Inputs A & B
Kxor XOR Inputs A& B
Kinv Inverts above operations.

TABLE 3.4 : CONTROL SIGNALS TO PRE-CLA LOGIC BLOCK.

With these signals the expression for the outpahefPre-CLA Logic Block ‘L’ is
expressed as :

Li = A B KanoKinv + (A +B) KorKinv + (AiY Bi) Kxor Kiny

+ (A +B) KorKinv + (AY G) Kxor Kinv + (A Bi) Kano Kinv

where, (i1<31) (3.3)

It can further reduced to :

Li = A BiKanoKinv + Ai KorKiny + B Kor Kinv + A Bi Kxor Kiny

+ A Bi Kxor Kinv + A Kanp Kinv + B Kanpz Kinvz

+ A Bi KorKinv + A BiKxor Kinv + A Bi Kxor Kinv

where, (<i<31)

(3.4)

The above expression is impractical to implement iarcauses delay. However, if the

operands are supplied to the ICALU as specifiethenTable 3.5, the expression far L

can be reduced to meet our requirement. Suchuwureagent does not add to the critical

path because inversion of operands is requireckésute subtraction and multiplexing

operation for single operand functions.

FUNCTION | ACTIVE A B,
CONTROLS

AND Kanp K|T T '

OR Kor KV T T

XOR Kor KF T T

AND-INV Kanp Kinv

OR-INV KorKiny T

XOR-INV Kxor Kinv T

TABLE 3.5 : INPUT SPECIFICATION OF ALU FOR LOGI CAL
OPERATIONS.

These input specifications (3.4) can be expressed a

Li = Li (Kor Kinv + Kano Kiny) + Li (Kor Kinv + Kano Kiny)

+ Lji Li (Kano Kinv + Kxor Kiny + Kxor Kiny)

+ Lji Lii (Kor Kinv + Kxor Kinv + Kxor Kiny), (3.5)

Li Li — The new left & right inputs respectively to tRee-CLA Logic Block at bit
position i
Further reduction is possible by defining three newtrols that area combination of

discrete controls as :

K4 = Kor Kinvy + Kano Kinv (3.6)
Ks = Kanp Kinv + Kxor Kinvy + Kxor Kiny (3.7)
Ks = Kor Kinvy + Kxor Kinv + Kxor Kiny (3.8)

These controls can be directly produced from ttede of the instruction. Thus
they can potentially be produced either in the decoycle, in parallel with the register
access, or they could be determined during thepsefuthe device (required for
subtraction, sign extension, choosing between d¢pes etc.). In either case these
control signals do not contribute to the criticatpof the ICALU. Substituting them into

the expression forilproduces:

Li=LiK4+ LiK4+ L Li Ks + L Lii Ke
Expressing the logical function block in this famihreduces the delay. The input
specifications that yield the required functions &bulated in Table 3.6.

(3.9)

ACTIVE
FUNCTION | CONTROLS | L | Ly | Kano | Kor | Kxor | Kiwv | Ka | Ks | Kg Li
AND KaoKnv | A | B | 1 0 0 0 |o|1]o0 AB;
OR KorKnv | Al | B 0 1 0 0o [1]0]0 A+ B
XOR KxorKiv | A | B 0 0 1 0 |0o| 1| 1]|AB+AB
AND-INV | KaoKn | A | B | 1 0 0 1 |1]0]0| A+B
OR-INV Kor Kiny A | B | o0 1 0 1 /o|0]1 AB;
XOR-INV | KxorKmv | Al | Bi| © 0 1 1 o] 1]1|AB+AB]

numbers are also explained in this chapter.

Table 3.6 : Output from reduced Iag function block.

3.6 BINARY ADDERS AND ARITHMETIC

The arithmetic unit of the ICALU is implemented HWynary adders. An
introduction to binary adders is necessary. Binsuptraction and two’s complement

3.6.1 BINARY ADDERS:

1) FULL ADDER :
A full adder is the basic buildingbk for all the adders. It adds three input bits.

Two of the significant bits and the third bit isetbarry bit from the previous stage. Thus
it is called a full adder. Half adders are thos# #ire those that add only 2 bits. The truth

table and block diagram are presented below:

Cin

Cou

| | | R O O o o
Rl | O O | | Ol O
| O] r|l O] r O] | O
| O O | O | |l O
Rl | | O | O o ©

Table 3.7 : Truth table of a Full Adder

The expressions for full adder are :

S=zavbVvec (3.10)
Couut=ab+bG+ag, (3.11)
‘. Full Adder < .
Cout (FA) Cin

:

Fig 3.8 : A Full Adder
2) RIPPLE CARRY ADDER:
One of the most basic adders is the ripple cardeesd The addition is similar to

that of paper and pencil addition. A block diagreomadd two 4-bit binary numbers is

shown in Fig2.2. The carry is allowed to ripplenr@ne stage to another. However the

ripple carry is the slowest, because the carrytbggopagate from the least significant

bit(LSB) to the most significant bit(MSB). Hencastnot used for larger adders.

IO B O

- - - -
ot |] 2 FA 1 on
a3 a2 a3l 30

Fig 3.9: A 4-Bit Ripple Carry Adder.

3)CARRY LOOK AHEAD ADDER (CLA):

The CLA is faster than the ripple carry adder. Thay input to each stage is
generated directly, instead of allowing the caoyipple from one stage to another. Fig
5.3 shows the block diagram of a CLA. The Boolegpression for each carry block can
be defined by using the carryout expression oflafider. It is given as:

Ca=XYi+G(X+¥W) (5.2)

Where, i=0,....... ,N, and, N= number of bits in eacimber.

For example,the output of first carry block:

Ci=X% Yo+ G (X +Yo)

I ‘ ' ‘
¥y Yy Yy ¥y
B CR CRB CEB
¥ ¥ h i ¥ ¥ ¥ h 4 ¥
-— FA g FA |4 FA - FA <
4 C3 2 Cl1
53 52 51 50

FIG 3.10 : A 4-BIT CARRY LOOKAHEAD ADDER.

4)CARRY SAVE ADDER (CSA):

The CSA is used when more than two numbersoabe tidded.

For example, Consider addition on three number¥,&,

0101 X
0011 Y
+ 0100 Z
0010 Partial sum
1010 Saved Carry

In the next step, the sum and saved carry are addledach other.
0010 Partial Sum
+ 1010 Saved carry

1010 Final sum
In the last step the CLA is used to add the pastiah with saved carry.
Fig 3.4 shows the block diagram of the additioncpes. The first stage is the CSA. The
carry consists of a chain of full adders. A fullded is present for each significant bit
position. Unlike the ripple adders, in carry lodkead adders carry is saved for the next

stage.

Z Yo X 2 Y1 X1 4 Yo X D

jijl JllJllJ

FA FA FA FA
v /] / | /
CLA
l i i i w
Cout 33 a2 =3 =]

FIG 3.11 : A 4-BIT CARRY SAVEADDER
3.6.2 BINARY SUBTRACTION AND TWO’S COMPLEMENT:

Binary subtraction is achieved by representingatieg binary numbers in some
form. There are many schemes for representing weghinary numbers like the sign
magnitude, one’s complement, two’s complement e most popular scheme is the
two’s complement representation as it is the mostenient method.

1) TWO’'S COMPLEMENT REPRESENTATION :
A binary number can be represented in two’s complemas:
Two'’s complement = »—B,B£0

0, B=0 (3.12)

The above equation is rearranged as :

Two’'s complement= ("?—1)-B+1, B0
0, B=0 (3.12a)

Noting that two’s complement of an N-bit binary nuen B can be found by
subtracting each bit of a binary integer B fromntl ghen adding 1 to the total
N-bit resulting difference. Moreover, since 1 =@ and 1 — 1 = 0, subtracting each bit
form 1 is equivalent to simply flipping or invergneach bit. For example two’s

complement of -5 can be obtained as :

5= 0101
1010 Inverted bits
+ 1 Add 1
-5= 1011 Two’s complement of -5

Two’s complement numbers can be easily generatedalsgading an inverter
stage with an adder stage.

The decimal range for an N-bit binary number isgias :

(-2 to 21 -1)
For N=32, the decimal range is given by :
(-22' to 2'-1) = (-2147483648 to 2147483747).

2) TWO'S COMPLEMENT SUBTRACTION AND ADDITION :

Two’s complement addition and subtraction are \&@nmyilar to standard binary
addition. It is illustrated by the following exatap :
A) ADDITION :

4 0100

+ 5 E— 0011

7 0111

0111 is the correct two’s complement representaifoh

B) SUBTRACTION :

3 0011
- 7 — 1011
- 4 1100

1100 is the correct two’s complement representaiford.

However, there are two situations the two’s comgetraddition differs from standard

binary addition.

I) CARRY OUT FROM MSB :

In this exception, any carry outs from MSB areoigrd.

EXAMPLE :
(-3) 1101
+ (-4) 1100
(-7) A 1001

1001 is the correct two’s complement representdtor-7. Note that the carry has been

eliminated.

I) OVERFLOW / UNDERFLOW :

Overflow is said to occur when an arithmetic ofierayields a result that is

greater than the range’s positive limit of\('2- 1).

3.7 DESIGN OF CSA STAGE

In the previous chapters various adders were sis&i The CSA was also
explained. The CSA stage for the ICALU not only bagenerate the sum and carry for
the next stage, but also the inputs for INPUT 2 GifA. This is designed and
implemented in this chapter.

3.7.1 DESIGN:

In the last chapter we saw the block diagram fozeld-bit inputs using a CSA . It
can be extended to 32 bits. The equation for swhcarry are:

SUM=S=A YB YG for (0<i< 31) (3.13a
CARRY =M\i+1 =Aj Bi+ Bi Ci L Ai C; for (1<i<31) (3.13b)

Ai B C are the f" bits of operands A, B & C respectively.

As explained in chapter 3 the carry out of CSA ésigned to provide all inputs for
INPUT 2 of CLA. Itis given as:

Ahis1 = K2AiBi +K1BiCi+ K1 Ai G +K3Ciyq, fOr(1<: i <= 31) (3.14)

3.7.2 INTEGER RANGE OF ARITHMETIC OPERATION:

The maximum range that can be handled by the 3aribitmetic unit, with two’s

complement representation:

= (-2 to 2%1) =(-2147483648 to 2147483647).

3.7.3 IMPLEMENTATION:
The (3.13a) and (3.14) are bit-wise expressidhey are the basic building blocks of

the CSA. First, they are implemented as individz@hponents (blocks). Later, they are

instantiated the required number times to obtagnGBA.

1) IMPLEMENTATION OF SUM (S)):

The VHDL code for SUM3 1 is given in Appendix A.6.2It creates the
component SUM_1.

2) IMPLEMENTATION OF CARRY(Aj1):

The VHDL code for CSA_CARRY is given in Appendix6A3. It creates the
component CSA_CARY.

3) IMPLEMENTATION OF CSA:

The entities SUM3_1 and CSA-CARY are the basiddmg blocks of the CSA.
The sum is generated for bit positions 0 to 31 whaer the carry is from 0 to 30. Since,
the additions considered are in 2’s complementfitred carry (i.e., bit-position 31) is

discarded. Thus, carry spans one bit positionsetesgien compared to sum. The

component SUM3_1 is instantiated 16 times for datposition to obtain sum. The ‘for
generate’ statement is used to repeat the instamigafor the desired number of times.

The program is shown in the Appendix A.6.1.

3.8) DESIGN OFCLA STAGE

The basic of a CLA was explained in chapter 5. gighre same principle, it is

extended to 32 bits in this chapter.

3.8.1)Carry expressions for CLA

Consider again, equation 3.11, which is the Bookegiressions for a CLA carry
block:

Ci=xYyi+G(x+¥) (3.15)

To simplify equation 3.15, notation g and p aeérted as;

g = XY
Pi = XtV

On substitution, expression 3.15 reduces to:

Ca=g+Gp (3.16)
The notation g stands for generating a carry.
Since output carry (&is 1 whenever;gs 1.
The notation pstands for propagating input carry to the out@uityc

Since G4 is 1 whenever is 1.

Using these notations, we get

Ci=0o+m G

Co=0g1+ pPido+ P1PoCo

C3=02+ P21+ P2P1 o+ P2 P1Po Co

Ca=03+ P3Gt P3P201+ P3P2P1 o+ P3P2P1Po Co

Consider the last carry block,Crhe number of OR terms are five and the last
product term in ¢also has five inputs.

In general, for n inputs:

The number of OR terms are n+1. Thus, to implenteistwe need an OR gate
that has a fan in of at least n+1. Similarly, tae in of AND gate should be at least n+1.
Thus if the fan in of a particular technology ighmen it may not be possible to implement
a given block directly.

In addition, we can clearly see eachychtock expression is different from the
other. Thus, a modular design is not possible ftarge n. A modular design requires a
structure in which similar parts can be used.

Thus to solve the preceding problems, we limit-ifa and fan-out to a given
number depending on the technology. The resulhiadder with a large n, broken into
many smaller adders cascaded together. For exammpkbit CLA with fan in limited to

say, four, can be implemented by cascading twd &bA'’s (Fig 3.3) together.

This can be done by defining two new terms, denatked® — Group propagate

and R — group generate, where,
GCo=G+PBR+PBPRo+ PP

Po=p3p2 pr po Co

Thus we can express, @s :
CG=G+R G

In this group G, is computed similarly to £
C=G+P G +P PG

where,
G1=07+Pr G+ PrPs G+ Pr Ps Ps O @nd,
P1 = p7 Ps Ps Pa

1) The 32 — Bit CLA :

The maximum fan-in of the gates in the ICALU desig assumed to be 8.
Assuming a modular design, a 32-bit CLA can be en@nted as four 8-bit CLA’s.

The additional carries for an 8-bit CLA, using #i®ove notations are :
Co=h+PaG+ PP+ PaPsP2Ort uPsP2PrOot PaPsP2PrpoCo
Ce=01+tPs O+ PsPaQztPsPaPaCet PsPaPaP20+ PsPaPaP2PrGo
+PsPa Pz P2 PLPo Go
Cr=C+PsOs+PePsh+PoPsPadstPsPsPaPst PsPsPaPaP O

+ PsPs P4 P3 P2 Pr Po Co
Ce=0r + Prds+ PrPeUs + P7PsPs Ja + P7 Ps Ps P2 g3+ P7Ps Ps P4 O3
+ P7PsPsP4P3T2+ PrPsPsPaP3 P21+ P7PsPs P4 P3P2P1 0o

+ P7 Ps Ps P4 P3 P2 P1Po Co

Now, C8 can be represented in terms of group gemaral propagate terms, G and P as:

Go=07 + PrUs+ PrPs 05+ P7 Ps Ps G4+ P7 P Ps P2 93 + Pr Ps Ps Pa P3 G2
+ P7Ps Ps P4 P3 P2 91 + P7 Pe Ps P4 P3 P2 P1 9o
Po = p7 Ps Ps P4 P3 P2 P1 Po

Go, Pyare the outputs of CLA. They are externally combingth G, to obtain G. So, G
can be expressed as,
Cs =G+ RCo

Similarly,

Ci6=G1+PICs =G+ PG+ PP, Cy and,
Cu=G+P,Ci=G+ PG+ PP Go+ PP Py Co

(GoPo), (GLP2), (G, P) are the outputs of CLAL, CLA2 and CLAS, respeeiyv
Gz and R are the discarded because the final carry outjgh&; in two’s complement is

discarded.

3.8.2) Implementation:

The 32-bit CLA can be implemented by cregtn 8-bit CLA first. Later, the 8-bit
CLA’ are connected together to obtain the 32-biACL

1) Implementation of 8-bit CLA:

The 8-bit CLA is obtained using the preogdexpressions. The sum block for the
CLA are obtained by instantiating the component UM It has already been discussed
in chapter 6. There are eight sum and carry bldokeach of the 8-bit positions. Two
CLA’s have been implemented here, CLA 1 and, CLAhBugh, both are 8-bit, CLA_1
is slightly different from the other CLA’s, sincedoes not have an input carry. It has

been created as a separate component. The progwathef 8-bit CLA is shown in
Appendix A.5.

2 IMPLEMENTATION OF 32-BIT CLA:

The 32-bit CLA is obtained by installing the fa8ubit CLA’s and generating the
intermediate carriesjgand G4 appropriately. The final carry£is discarded, since all
operations are in two’'s complement. The progranB#bit CLA is shown in A.4.

3.9 DESIGN OF POST — CLA LOGIC BLOCK

This chapter deals with the design of the Post-Clogic Block of the ICALU.
The Post-CLA Block performs logic operations betwége third operand and the result
of the operation on the first two operands. Thetf& A Logic Block is not similar to

the Pre-Block because the inverting inputs araeadily available.

3.9.1 DESIGN :
The control signal format remains the same asftdrghe Pre-CLA Logic Block.

But the control unit generates a separate segoais for the Post-CLA Logic Block.

Control Signal
Description

Fanp2 AND Inputs R & C;

For2 OR Inputs R& C;

Fxorz2 XOR Inputs R& C;

[

Finv2 Inverts above operations.

Table 3.12 : Control signals to Post-CLA Logic Blok.

Ri — Result from the CLA stage.
Ci — The third operand to ICALU.

The expression for the Post-CLA Logic Block is $anto (3.4), itis :

Li = RG Kanp2Kiny + R KorKinvz + G Kor2Kinvz + R G Kxorz Kinvz

+ R G Kxor2 Kinv2e + R Kanoz Kinvz + G Kanpz Kinvz

+ R G Kor2Kinvz + R G Kxor2 Kinve + R G Kxorz Kinv2
where, (&i1<31) (3.17)

‘+’ — Logical OR operatin.

To eliminate the multiplexer M3, in Fig 2.2, we caaid a new control signahfp to the

above expression as follows :

Li = RG Kanp2Kiny + R KorKinvz + G Kor2Kinvz + R G Kxorz Kinvz

+ R G Kxor2 Kinv2e + R Kanpz Kinveg + G Kanpz Kinvz

+ R G KoreKinvz + R G Kxorz Kinvz + R G Kxorz Kinvz
+ R Fapp2. (3.17a)
Now, L; represents the output of the ICALU. The Tablesti®imarizes the output of the

Post-CLA Logic Block for different control values.

Faop | Fano | For | Fxor | Finv | OUTPUT (L))

1 0 0 0 0 Ri

0 0 1 0 0 Ri+C

0 1 0 0 1 Ri G

0 0 1 0 1 R+ G

0 0 0 1 1 R v Ci

TABLE 3.13: OUTPUT TABLE OF POST-CLA LOGIC BLOCK.

Now, the control signals in (3.17a) are groupedrtable pre-calculation:

Li = R (G KanbzKinvze + KorKinvze + G Kxorz Kinve + Fapp2)

+ R (Kanpz Kinve + G Kor2Kinve + G Kxor2 Kinve + G Kxorz Kinvz)

+ (GKorz2Kinvz + G Kanpz Kinvz). (3.18)
The delay of the Post-CLA Logilmé&k can be reduced by pre-calculating the
following signals, since they rely only on the ICAlinputs :

PCLAL = G Kano2Kinvz + KorKinvz + G Kxorz2 Kinvz + Fabp2 (3.19a)

PCLAZ = Kanoz Kinve + G Kor2oKinvg + G Kxorz Kinve + G Kxorz Kinvz (3.19b)

PCLA3 = GKorz2Kinvz + G Kanpz Kinvz (3.19¢)
Substituting the above equations in (3.18), we get
L; = RPCLAL + RPCLA2 + PCLA3 (3.20)
(3.20) is the output of the Post-CLA Logic Block.is also represents the final output of
the ICALU.
3.9.2 IMPLEMENTATION :

The implementation of Post-CLA Logic Block is alsamilar to earlier
implementations, that is, CSA, Pre-CLA Logic Bloek¢. First, the bit-wise component

is implemented and later instantiated to obtainLibgic Block.

1) IMPLEMENTATION OF BIT-WISE LOGIC COMPONENT :
The bit-wise logic component, P_CLA BCMP, is th@plementation of (3.20).

The program is shown in A.8.2.

2) IMPLEMENTATION OF POST-CLA LOGIC BLOCK :

The logic block is implementég instantiating P_CLA BCMP for bit
positions 0 to 31. The program is shown in A.8The program creates entity
P_CLA LOGBLK.

Chapter 4

ICALU DATAFW
MODELLO

THE INTERLOCK COLLAPSING ALU UNIT:

In this chapter all the designed components atetqgether to implement the
ICALU. Also, ALU1 is created using the designednamnents. Finally, the Interlock
collapsing ALU unit is implemented which consistsbmth ALU1 and ICALU. The
chapter also estimates the relative delay.

4.1 REDUCED ICALU MODEL :

Resulting from the design of the various stageshi preceding chapters a
reduced ICALU is obtained. The result was the elation of the multiplexers M2 and
M3 and also better implementations of the Pre ap&t-ELA Logic Blocks. The block
diagram is shown in Fig 4.1. The program for ICAIsUn the Appendix A.2.

C A | =
- + r ‘* b
O Fre-CLA
Logic BElock
= L
v+ N
Il
- w
INFP1 IMFPZ
CLA
LR
Post-CTL.A

| Logic Block
Oi

FIG. 4.2 : REDUCED DATAFLOW MODH. OF ICALU

4.2ALU1 MODEL :

& ‘ E
v 5 '
Pre-CLA
CLA Logic Block
a L

L1

Fig 4.3
(Dataflow Model of ALU1)

The control signals for multiplexer argXand K3 and are set as follows :
) CATEGORY 1 (ARITHMETIC) :

Ki, =1 and, Kz = 0;
+

Output of ALUL1 = O = A £ B.

Il) CATEGORY 2 (LOGICAL) :
Ki, = 0 and, Kz = 1;

Output of ALUL = O = A LOP B.

The values of control signals are summarized inddu :

CATEGORY | K12 Kis (0]

2 0 1 A LOP B

Table 4.1 : Output table for ALU1

4.2.2 IMPLEMENTATION :

The ALU1L is implemented using the block diagraroveda The components CLA
and PREBLK are the adder and the logic block respdyg, for ALUL. The program for
entity ALU1 is shown in A.3.

4.3 INTERLOCK COLLAPSING ALU UNIT :
The Interlock collapsing ALU umibnsists of ALU1 and the ICALU operating

in parallel. The block diagram of the InterlocKlapsing unit was shown in Chapter 1,
Fig 1.7. The program for entity ICUNIT is shownAiR2.

4.4 ESTIMATION OF RELATIVE DELAY BETWEEN ALU1 AND | CALU:

In this section the relative delay between the Alib Fig 4.2 and the ICALU in
Fig 4.1 is estimated. The relative delay is tHéedence between the delay of ALU1 and
the ICALU. The delay is required to find out tmstruction cycle length. The delay of a
device can be estimated by taking a logic gate ctvam the input to the output. Only
the delay between both ALU’s considered becausethir stages in their respective

paths are identical, hence they also have iderdialys.

Now, compare Fig 4.1 (ICALU) and Fig 4.2 (ALU1).
By elimination, it is deduced that the ICALU hastadditional stages when compared to
the ALU1 which are :

i) The CSA and,

i) The Post-CLA Logic Block.

The procedure is :

1) The CLA and multiplexers are common to both the AA.UHence they
can be eliminated.

2) The extra stages in the ICALU path are the CSAtaedPost-CLA Logic
Stage.

3) The Pre-CLA Logic stages are not considered becausase of ALU1L it
is parallel with the CLA stage and has lesser stdlgen the same. Where

as, in case of the ICALU it is in parallel and lias same delay as the CSA.

The logic delay of both stages are :

) CSA :

To estimate this consider (3.13a) and (3.14) whigbresent the input-output

transformations of the CSA sum and carry respelgtivBoth are in parallel.
SUM=S=A VB VG (3.13a)

Ais1= Kz A Bi + Ky B; G + K1 A G + Kz Gia1. (3.14)

(3.13a) and (3.14) can each be implemented in atedglay using custom-built CMOS
libraries. A =3 X 4 AO gate can serve this mpsg (‘+’ represents AND-OR and ‘-

represents AND-OR-INVERT). The delay of this gete@ssumed to be 1 gate stage as
that of any other gate in the assumed libraries.

II) LOGIC DELAY OF POST-CLA LOGIC BLOCK :
Similarly, (3.9) (shown below) can be implemente@ne gate delay by the AO gate.

Li = Li Kerer + Li Kprex + Li Lii Kpre2 + Li Lii Kpres (3.9)Thus the
total relative gate delay of the ICALU over the ALE

Logic delay due to CSA stage + Logétag due to Post-CLA Logic Stage =1+1
=2.

4.5 DETERMINATION OF INSTRUCTION CYCLE LENGTHS OF A MACHINE
WITH AND WITHOUT ICALU :

The average instruction length is calculated naol fout the speed of the machine.
The instruction cycle length varies for each instian. Hence an average instruction
length has to be calculated. It is sufficientaket the average of only frequently executed
instructions. The following discussion shows hole tinstruction lengths can be

calculated for a given instruction. But first, gl is redrawn again.

Instruction > Instruction » Instruction > Cperand
Fetch Decode Execute Write
Io
Fig 4.5

(Phases of Insttion execution process)

Fig 4.3 represents the instruction path of seriacinme. The time to execute an
instructions given asy,l or the basic instruction cycle time. The indiwad stage have
been discussed in Chapter 1.

4.4.1 Without ICALU :
For a parallel machine there are sueh paths in parallel. Fig 4.4 shows

instruction execution (considering non-interlockedse) in a parallel machine with

respect to time.

IF1 | ID1 | EX1 | MW1 |
| | | |
T:|0
IF2 ID2 EX2 MW2
| | | | | |
XXXXXX | | | | XXXXX | |
T=0 T=h+1 MW

< |p = |0 +1 MW ;I

Fig 4.6
(Instruction cycle of a paralletnachine without ICALU)
Fig 4.4 shows the instruction cycle of a parallectine for a two-operand instruction
pair shown below. The upper cycle in the figurpresents execution of instruction 1.
The instruction time is the same as the basicuns8tm cycle time, d Execution of
Instruction 2 is shown in the lower half. It ssag memory write cycle after the first
instruction, because memory cannot be accessedtaimaausly. It shifts to the right by

1IMW. The x’s in figure represents an idle cycle.

ADD R1,R2 / Executed by ALU1 /
ADD R3,R4 / Executed by ALU2 /

The ID2 is smaller than ID1 by one memory accessabse we already have R2,
fetched by Instruction 1. This compensates for detay in start of execution of
Instruction 2 and thus the execution cycles of libéhinstructions start at the same time.
After the EX cycle is complete, Instruction 2 haswait for LMW for Instruction 1 to
complete its memory access.

Instruction 2 takes a further 1MW to completecysle. Thus from the figure it
can clearly be seen that the instruction time pdillel machine is lengthened by 1IMW.

4.4.1 With ICALU :

The instruction cycle for a maehwith ICALU is shown in Fig 4.5.

IF1 | ID1 | EX1 |
| | .
T=1I
IF2 ID2 EX2 5 MW?2
| | | : | |
XXXXX ' ' I '
2D
T=0 T=}p+2D
< lic = lo+2D :I
Fig 4.7

(Instruction cyclef Parallel Machine with ICALU)

The instruction cycle in figure is for the pair givbelow :

ADD R1,R2

ADD R1,R3

The operation is almost similar to that of an catlynparallel machine except that
there is no memory access for ALUL. Hence the nmgraccess starts once the ICALU
completes it's execution which is two additionagioor gate delays more than the 2-1
ALU. Hence its instruction cycle time increasedg¢te 2 D (D — Unit gate delay or
the delay of one gate).

MW can be treated as three gate delays for CMO®aries. Substituting this
value average instruction length can be calculated.

Chapter 5

PERFORMANCE
ANALYSIS

PERFORMANCE ANLAYSIS

In this chapter the performance of a Non-ICALU dhdt of a parallel machine
with the ICALU is compared. Table 5.1 shows therage instruction lengths of a
machine with ICALU and a Non-ICALU parallel machif@ the interlocked and Non-
interlocked categories. The average instructiomgtles were calculated by taking the
average of instructions lengths obtained for alguiole interlocked and non-interlocked

pairs (See Appendix B). The average instruckemgth is the time taken to execute an

instruction pair, that is two consecutive instrans.

AVERAGE INSTRUCTION | AVERAGE INSTRUCTION

CATEGORY LENGTH LENGTH
(NON — ICALU) (WITH ICALU)
Non—interlocked lpaver = lo + 3.5 licaver = b+ 4.17
Interlocked lpaver = 2b licave2 = lg+ 2.63

Table 5.1 : Average Instruction Lengths for machine with and without 1CALU

Using the values in the table, the total executiore for each machine can be
calculated, for a given number of instructions.

1) COMPARISON OF TOTAL EXECUTION TIME :

The total execution time of a parallel machineiigeg as :

TniNne + TN

Where,

Tni = Time taken to execute a Non-Interlocked pair.
Nni = Number of Non-Interlocked pairs.

T, = Time taken to execute an Interlocked pair.

N; = Number of Interlocked pairs.

Further,

N =2(Ng+N)

Nni = ((200-X)/100)N /2, and
N, =(X/100)N/2.

Where,
N = Total number of instructions to be executed.
X = Percentage of interlocked pairs.

Now, (5.1) can be rewritten as :
Tai[((100-X)/100)N/2] + T(X/100)N/2]
Now, consider the following for a program :

a) N =100,

b) X =50 %

c) lo= 25 Logic Delays, typically

The execution times for the machines are :

1) NON-ICALU MACHINE :

From Table 5.1 :

Tni = lpaver= lo + 3.5.

(5.1)

(5.1a)

Ti = lpave2 = 2l.

Substituting in (5.1a), we get,

Ti=(lb+35)25 + (2l)25
= 1962.5 Logic Delays.

1) MACHINE WITH ICALU :

Again from Table 5.1 :
Tni = lcaver = b+ 4.17.
T = licave2 = b+ 2.63.
Substituting in (5.1a), we get,
Total execution time for 50 pairs of instructions,
To=(lb+4.17)25 + (J+2.63) 25
=1419.78 Logic Delays.

The machine with ICALU takes fewer logic delaysrthiae Non-ICALU machine.

Chart 5.1 is a plot of (5.1a) with N constant (1@@y varying X between 0 and
100 percent. It can be seen that the performahtdeedNon-ICALU machine degrades,
where as the performance of the machine with ICA&EIlmost constant as X increases.
This is because the Non-ICALU has to execute materaore instructions in serial. In

the next section Percentage Speed Ratio is cadclilat

3000

120

G 2500
E Without ICATLU
- —
= am
v(:: /
o
=
= 1500
o
a Hmin=3%
ot With ICATT
m 1000
L |
s
—
L
H 500
0 | | T T l |
a 20 40 a0 20 100

Percentage Interlocks

Fig 5.1 Percentage Interlocks Vs Total Execution Tine

2) PERCENTAGE SPEED RATIO:

Percentage Speed Ratio of Machine 2 over Machisaléfined as :

[(T1 - T2) / T1]x 100 (5.2)

Percentage Speed Ratio reflects the time savedadynachine over the other.

Using (5.1a) in (5.2), we get,

[(TN|1—T|\||2)(100—X)+(-E_—T|2)X]/ [TN|1(100—X)+T1X]
(5.2a)
Hence,

Percentage Speed Ratio of machine with ICALU otaer Nlon-ICALU machine for the
previous case (that is X = 50% P8

Similarly, for (say) X = 75% :
Percentage Speed Rati®7.

Thus the Percentage Speed Ratio increases aseqasas.

Chart 5.2 shows variation of Percentage Speed Réth interlock percentage
(X). It can be seen clearly how Percentage Spexit Ricreases as interlock percentage
(X) increases.

From chart we can see that atX3%, the gain of the machine with ICALU is
zero. Below this point the gain is negative, tisathe machine with ICALU is slower
than the machine Non-ICALU machine. This point Gdso be obtained by setting

Percentage Speed Ratio to zero in (10.2a).

Percentage Speed Ratio

0

30

20

10

| | [| I
/ern=3% 20 40 &l &l 100

Percentage Interlocks

Fig.2
(Percentage Interlock VBercentage Speed Ratio.)

120

Chapter 6

TESTING
PROCEDURES

TOTAL LOGIC AT AGLANCE:
INPUTS OF CSA

Ki—1 — 0 — 0 —0

Ko— 1 MCategoryl— O Category2 —1 Category3 — 0 Category 3
(A+B+C) (A LOPB)xC A8)LOPC A LOP B)LOP C

K;— 0 —1 —0 —0

INPUTS OF PRE-CLA LOGIC BLOCK

Ks— 0 -1 -1 — 0 — 0

Ke— 1 AND — O NAND —1 OR — 0 OR—1 XOR-XNOR

Ke— O —0 —0 —1 —1

INPUTS OF CLA

K— 1 M; Selects the» S (output of CSA)K;— 0, M;selects— L; (O/P of Pre-CLA

Logic block)
ALU OUTPUT
Ke— 1 Arithmatic output 6> Logic (Mux 3)
INPUT OF POST CLA LOGIC BLOCK:
Kg— O — 1 — 0 — 0
Arithmatic AND, OR, XOR
Kig— 0 [operation— 0O NAND— 1 NOR— 0 ~ XNOR
of ICLUA
Kii— O — 0 — 0 — 1
ALU -1 O/P
Kipo— 1 O/P of Arithmatic> O Logic Operation
Kiz— O ALU— operation — 1
O/P OF ICALU

Kis— 0=> Non Inverted logical operation & Aritlatic operation(AND,OR,XOR)
— 1 — Inverted logical operation (NAND , ROXNOR)

TESTING

The ICUNIT has two outputs, result of ALU1 and tloatALU2. The testing of
the ICUNIT was done by categories. They are devid :

1) CATEGORY 1 (ARITHMETIC FOLLOWED BY ARITHMETIC))

Since there are three operands, the four sub aadsgue :
) All positive numbers.
i) Two positive numbers.
iii) One positive number.

iv) None positive.

2) CATEGORY 2 (LOGICAL FOLLOWED BY ARITHMETIC) :
The sub categories are :

i) Logical AND followed by Arithmetic.
i) Logical OR followed by Arithmetic.

i) Logical XOR followed by Arithmetic.
iv) Logical NAND followed by Arithmetic.
V) Logical NOR followed by Arithmetic.
Vi) Logical XNOR followed by Arithmetic.

3) CATEGORY 3 (ARITHMETIC FOLLOWED BY LOGICAL) :
The sub categories are :

i) Arithmetic followed by Logical AND.
i) Arithmetic followed by Logical OR.

i) Arithmetic followed by Logical XOR.
iv) Arithmetic followed by Logical NAND.
V) Arithmetic followed by Logical NOR.
Vi) Arithmetic followed by Logical XNOR.

4) Category 4 (Logical followed by Logical)
Category 2 and 3 cover all possible categories. helence only one subcategory

is considered (say) :
Logical AND followed by Logical AND.

Chapter [

SIMULATION
RESULTS

SIMULATION RESULTS:

The simulation is conducted by assigning valuesh® variables in the design
entities. The simulation is done through Modelsfi® Il/starter 5.6e-Custom Xilinx
Version. In Active-HDL a test run (simulation ¢gq lasts for 100ns. The waveforms
(resulting from the simulation) are displayeduvaveform editor. The following pages
show the simulation cycle as displayed by wavefeditor.

The figures shown in the followingges depict the results of various categories
of interlocked instructions explained in ChapteA6B and C represents the three inputs
to the ICUNIT. K1, K2, K3,..., K14 represents théfelient control signals. The figures
show consecutive simulation cycles. Their values shown in hexadecimal in each

cycle.

OALU, OICALU are the outpdsALU1 and ICALU respectively. In this
OALU performs operation on A and B, whereas OICAh&iforms operation on the
three operands.

ARITHMETIC FOLLOWED BY ARITHMETIC OPERATIONS

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
A 00000004 XFFFFFFFC X00000004 XFFFFFFF
B 00000003 XFFFFFFFD 00000003 XFFFFFFFD X00000003
C 00000001 XFFFFFFFF
OALU1 00000007)'(00000001)I(FFFFFFFF 00000007)'(00000001 XFFFFFFF\
OICALU 00000008)'(00000002)'(oooooooo)'(oooooooe)'(oooooooo XFFFFFFF\
1 2 3 4 5 6
Fig 7.1
1. A+B+C
2. A-B+C
3. -A+B+C
4, A+B-C
5. A-B-C

6. -A+B-C

ARITHMETIC FOLLOWED BY LOGICAL OPERATIONS

, .5 , , , 100, , ., 150 , , . 200 , hs

K1

K2

K3

K4

K5

K6

K7

K8

K9 |

K10 | |

K11 |

K12

K13

K14

A 00000004

B 00000003

C 00000001

OALU1 00000007

OICALU 00000001 XFFFFFFFE Xooooooo7 XFFFFFFFB Xoooooooe XFFFFFFF'

1 2 3 4 5

Fig 7.2

A+BandC
A+BnandC
A+BorC

A+B norC
A+BxorC
A+ Bxnor C

o a0k 0w NP

LOGICAL FOLLOWED BY ARITHMETIC OPERATIONS

K1

K3

K4 B e S

© B N e

© [

K7

K8

K9

K10

K11

K12

K13

K14

A 00000004 XFFFFFFFB Xooooooo4

B FFFFFFFC X00000003 XFFFFFFFC

C 00000001

OALU1 00000000 00000007 XFFFFFFFF XFFFFFFFS

U U U
OICALU 00000001 Xooooooos Xoooooooo XFFFFFFF9

Fig 7.3
AandB+C

AorB+C

AxorB+C
AnandB + C
AnorB+C
AxnorB+C

o a0k 0w N PE

LOGICAL FOLLOWED BY LOGICAL OPERATIONS

\ 50 0, , ., 150, , ., 200 , NS
K1
K2
K3
2 R —
% T T
T L
K7
K8
K9
K10
K11
K12
K13
K14
A 00000004 XFFFFFFFB Xooooooo4
B FFFFFFFC §00000003 \FrrFFFFC
c 00000001
OALU1 00000000 X00000007 XH—I—I—H—I—I— XI—I—I—I—H—I—B
OICALU 00000000 X00000001 Xoooooooo
1 2 4 5
Fig 7.4

1. Aand BandC

2. AorBandC

3. A xorBandC

4. AnandBandC

5. AnorBand C

6.

A xnor BandC

Chapter 8

CONCLUSION

CONCLUSION

The objective of the thesis, execution of inteklet instructions in one instruction
cycle. This was achieved by ICALU successfully dasd and implemented using

VHDL. lIts functionality was verified through simatlon.

The ICALU can be implemented in just 2 logic dalayore than that of a
conventional 2-1 ALU. The performance of an ordyn@on-ICALU) parallel machine

and the machine with the ICALU incorporated inigs compared.

The following is concluded from the performancelgsia :

* The Percentage Speed Ratio of the machine withi@Ad.U over the Non-
ICALU machine depends only on the amount of intekéal instructions in the
code and not on the total number of instructions.

» The Percentage Speed Ratio increases as the nawhbeerlocked instructions
increase. This is due to the degradation in perémce of Non-ICALU machines.

* Assuming an average of (50-75)% interlocks in aegicode, the Percentage
Speed Ratio obtained is between (23-37)%, whicHigaghat the ICALU, when
incorporated in a parallel machine saves up tard tof the total execution time
of the Non-ICALU machine.

Chapter9

REFERENCE

REFERENCE:

1) J. Phillips, S. Vassiliadis, "High-Performancéd Iterlock Collapsing ALU's,TEEE
Transactions on Computers, vol. 43, no. 3, pp. 257-268, Mar., 1994

2) D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxlegnd B. W. Sutter, "The
multilayer perceptron as an approximation to a Bayeptimal discriminant
function,"IEEE Trans. Neural Networks, vol. 1, dppp. 296-298, Dec. 1990.

3) S. Vassiliadis, J. Phillips, and B. Blaner, "Intet collapsing ALU's,"IEEE Trans.
Comput., vol. 42, no. 7, pp. 825-839, July 1992.

4) H. Ling, "High speed binary adder,"IBM J. Regv@lop., vol. 25, no. 3, pp. 156-166,
May 1981.

5) M. J. Flynn and S. Waser,Introduction to Arithméiic Digital Systems Designers.
CBS College Publishing, 1982, pp. 215-222.

6) R. M. Keller, “Lookahead Processor&§bmputing Surveys,Vol. 7, No. 4, pp. 514-
537, December 1973.

7) R. M. Tomasulo, "An efficient algorithm for exjiing multiple arithmetic units,"
<i>IBM J. Res. Develop.</i>, pp. 25-33, Jan. 1967.

8) R D Acosta , J Kjelstrup , H C Torng, An instructissuing approach to enhancing
performance in multiple functinal unit processdEEE Transactions on Computers, v.35
n.9, p.815-828, Sept. 1986

9) JAIN R.P . Digital Electronics , Printice hall

10) The Low Carb VHDL Tutorial ,Bryan Mealy 2004

SOURCE CODE

A.1 PROGRAM for ICUNIT

entity ICUNIT is
port (A, B, C:in BIT_VECTOR (31downto0) ;
K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K1X13, K14 :in BIT ;
OALUL : out BIT_VECTOR (31downto 0) ;
OICALU : out BIT_VECTOR (31downto0)) ;
end ICUNIT ;

architecture B_ICUNIT of ICUNIT is

componentALU1
port (OP1, OP2in BIT_VECTOR (31downto0) ;
CNT1, CNT2, CNT3, CNT4, CNT5in BIT ;
O :out BIT_VECTOR (31downto0)) ;

end component;

componentICALU
port (A, B, C:in BIT_VECTOR (31downto Q) ;
K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K14in BIT ;
O :out BIT_VECTOR (31downto0)) ;

end component;

begin
-- INSTATIATING ALU1
CMP1 : ALUL port map (OP1(31downto 0) => A (31downto 0),
OP2 (31downto 0) => B (31downto 0),
CNT1 => K4, CNT2 => K5, CNT3 => K6, CNT4 => K12NJ5 => K13,
O (31downto 0) => OALU1 (31downto0)) ;

-- INSTATIATING ICALU

CMP2 : ICALU port map (A(31downto 0) => A (31downto 0),

B (31ldownto0) =>B (31downto 0),

C (31downto0) => C (31downto 0),

K1 => K1, K2 => K2, K3 => K3, K4 => K4, K5 => KXK6 => K86,

K7 => K7, K8 => K8, K9 => K9, K10 => K10, K11 => K1 K14 => K14,
O (31downto 0) => OICALU (31downto0)) ;

endB_ICUNIT ;

A.2 PROGRAM for ICALU

entity ICALU is
port (A, B, C:in BIT_VECTOR (31downto0) ;
K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11,K14in BIT ;
O :out BIT_VECTOR (31downto0)) ;

end ICALU ;

architecture B_ICALU of ICALU is

componentCSA3_2
port (A, B, Z:in BIT_VECTOR (31downto0) ;
K1, K2, K3 :in BIT ;
Z 0 _OUT :out BIT;
S :out BIT_VECTOR (31downto Q) ;
LAMBDA : out BIT_VECTOR (31downto 1)) ;
end component;

componentPREBLK
port (LL, LR :in BIT_VECTOR (31downto0) ;
CON1, CON2, CON3in BIT ;
L :out BIT_VECTOR (31downto0));

end component;

componentMUX_2_ 32
port (INP1, INP2 in BIT_VECTOR (31downto 0) ;
CNTRL :in BIT ;
Y :out BIT_VECTOR (31downto0));

end component;

componentCLA
port (OP1, OP2in BIT_VECTOR (31downto0) ;
S :out BIT_VECTOR (31downto0)) ;

end component;

componentP_CLA LOGBLK
port (S, B :in BIT_VECTOR (31downto0) ;
FADD, FAND, FORR, FXOR, FINV in BIT ;
O :out BIT_VECTOR (31downto0)) ;

end component;

signal S, L, INP1, INP2, SF : BIT_VECTOR (3lownto0) ;
begin

-- INSTANTIATING CSA

CMP1 : CSA3_2port map (A(31downto 0) => A(31downto 0),
B(31downto 0) => B(31downto 0),

Z(31downto 0) => C(31downto 0),

K1 => K1, K2 => K2, K3 => K3,

S(31downto 0) => S(31downto 0),

LAMBDA(31 downto 1) => INP2(31downto 1),

Z 0_OUT =>INP2(0));

-- INSTANTIATING PRE-CLA LOGIC BLOCK

CMP2 : PREBLK port map (LL(31downto 0) => A(31downto 0),
LR(31downto 0) => B(31downto 0),

CONL1 => K4, CON2 => K5, CON3 => K6,

L(31downto 0) => L(31downto0)) ;

-- INSTATIATING MULTIPLEXER M1

CMP3 : MUX_2_32port map (INP1(31downto 0)
=> S(31downto 0),

INP2(31downto 0) => L(31downto 0),

CNTRL => K7,

Y(31ldownto0) => INP1(31downto 0));

-- INSTANTIATING CLASTAGE

CMP4 : CLA port map (OP1(31downto 0) => INP1 (3ldownto 0),
OP2(31downto 0) => INP2(31downto 0),

S(31downto 0) => SF(3downto0)) ;

-- INSTANTIATING POST CLA LOGIC BLOCK
CMP5 : P_CLA_LOGBLKport map (S(31downto 0)
=> SF(31downto 0),B(31downto 0) => C(31downto 0),

FADD => K8, FAND => K9, FORR => K10, FXOR => K11,
FINV => K14 , O(31downto 0) => O(31downto 0)) ;
endB_ICALU ;

A.3 PROGRAM for ALU1

entity ALUL is
port (OP1, OP2in BIT_VECTOR (31downto0) ;
CNT1, CNT2, CNT3, CNT4, CNT5in BIT ;
O :out BIT_VECTOR (31downto0)) ;

end ALUL ;

architecture B_ALU1 of ALUL is

componentCLA
port (OP1, OP2in BIT_VECTOR (31downto0) ;
S :out BIT_VECTOR (31downto0));

end component;

componentPREBLK
port (LL, LR :in BIT_VECTOR (31downto0) ;
CON1, CON2, CON3in BIT ;
L :out BIT_VECTOR (31downto0));

end component;

componentMUX_22 32
port (INP1, INP2 in BIT_VECTOR (31downto 0) ;
CNTRL1, CNTRL2 :in BIT ;
Y :out BIT_VECTOR (31downto0));

end component;

signal SUM, LOG : BIT_VECTOR (3Hownto0) ;
begin
-- INSTATIATING CLA
CMP1 : CLA port map (OP1(31downto 0) => OP1(3Hownto 0),

OP2(31downto 0) => OP2(3Mdownto 0),
S(31downto 0) => SUM(31downto 0)) ;

-- INSTANTIATING LOGIC BLOCK
CMP2 : PREBLKport map (LL(31downto 0)

=> OP1(31downto 0),
LR(31downto 0) => OP2(3downto 0),
CON1 => CNT1, CON2 => CNT2, CON3 => CNT3,
L(31downto 0) => LOG(31downto 0)) ;
-- INSTATIATING MULTIPLEXER M1
CMP3 : MUX_22_32port map (INP1(31ldownto0)
=> SUM(31downto 0),
INP2(31downto 0) => LOG(31downto 0),
CNTRL1 => CNT4,
CNTRL2 => CNTS5,
Y(31downto 0) => O(31downto 0)) ;

endB_ALU1;

A.4 PROGRAM for 32-BIT CLA

entity CLA is
port (OP1, OP2in BIT_VECTOR (31downto0) ;
S :out BIT_VECTOR (31downto0)) ;

endCLA ;

architecture B_CLA of CLA is

componentCLA_1
port (X, Y :in BIT_VECTOR (7downto0) ;
S :out BIT_VECTOR (7downto0) ;
CIN :in BIT ;
GRPGEN out BIT) ;
end component;

componentCLA 2
port (X, Y :in BIT_VECTOR (7downto 0) ;
CIN :in BIT ;
S :out BIT_VECTOR (7downto0) ;
GRPGEN, GRPPRPout BIT)) ;

end component;

signal C8, C16, C24 : BIT ;
signal INT1, INT2, INT3, INT4, INT5, INT6, INT7 : BIT ;

begin

-- INSTANTIATING CLA_1
C1l:CLA_1port map (X(7downto0) => OP1 (©lownto 0),
Y (7downto 0) => OP2 (flownto 0), CIN =>"'0',
S (7downto0) =>S (7downto 0),
GRPGEN =>C8) ;

-- INSTANTIATING CLA_2
C2 : CLA 2port map (X (7downto 0) => OP1 (1slownto 8),
Y (7downto 0) => OP2 (1%lownto 8),
CIN => C8,
S (7downto0) => S (15downto 8),
GRPGEN => INT2,
GRPPRP =>INT1) ;

INT3 <=INT1land C8;
C16 <=INTZ20r INT3;

-- INSTANTIATING CLA_2

C3:CLA 2portmap (X (7downto 0) => OP1 (23lownto 16),
Y (7downto 0) => OP2 (23lownto 16),

CIN => C16,

S (7downto 0) => S (23lownto 16),

GRPGEN => INT5,

GRPPRP =>INT4) ;

INT6 <= INT4and INT2 ;
INT7 <= INT4and INT1 and C8 ;
C24 <= INT5or INT6 or INT7 ;

-- INSTANTIATING CLA 2

C4 . CLA 2portmap (X (7downto 0) => OP1 (3Hownto 24),
Y (7downto 0) => OP2 (3Hownto 24),

CIN =>C24, S (downto 0) => S (3ldownto 24),

GRPGEN => OPEN, GRPPRP => OPEN) ;

endB_CLA;

A.5 PROGRAM for 8 bit CLU

entity CLA_2is
port (X, Y :in BIT_VECTOR (7downto0) ;

CIN :in BIT ;
S :out BIT_VECTOR (7downto0) ;
GRPGEN, GRPPRPout BIT)) ;
endCLA_2;
architecture B_CLA 2of CLA 2is

componentSUM3_1
port (OP1, OP2in BIT ;
OP3:in BIT ;
Y :outBIT);

end component;

signal GO, PO, G1, P1, G2, P2, G3, P3, G4, P4, G5, P5P66G7, P7 : BIT ;
signalC1, C2, C3, C4, C5,C6, C7 : BIT ;

begin
-- GENERATION OF GENERATE AND PROPAGATE SIGNALS

GO0 <= X(0)and Y(0) ; PO <= X(0)or Y(0) ;
Gl <= X(1)and Y(1) ; P1<=X(or Y(1);
G2 <=X(2)and Y(2) ; P2 <= X(2)or Y(2) ;
G3 <= X(3)and Y(3) ; P3 <= X(3)r Y(3) ;
G4 <=X(@4)and Y(4) ; P4 <= X(4)r Y(4) ;
G5 <= X(5)and Y(5) ; P5 <= X(5)or Y(5) ;
G6 <= X(6)and Y(6) ; P6 <= X(6)or Y(6) ;
G7 <= X(7)and Y(7) ; P7 <= X(7)or Y(7) ;

-- CARRY BLOCK 1
SC1 :SUM3_1port map (X(0), Y(0), CIN, S(0)) ;
C1 <= GOor (POand CIN) ;

-- CARRY BLOCK 2

SC2 :SUM3_1port map (X(1), Y(1), C1, S(2)) ;

C2 <= Glor (Pland GO)or (P1and POand CIN) ;

-- CARRY BLOCK 3

SC3 :SUM3_1port map (X(2), Y(2), C2, S(2)) ;

C3 <= G2or (P2and G1)or (P2and P1and GO)or (P2and P1and
POand CIN) ;

-- CARRY BLOCK 4
SC4 :SUM3 _1port map (X(3), Y(3), C3,S(3));

C4 <= G3or (P3and G2)or (P3and P2and G1)or
(P3and P2 and P1land GO)or (P3and P2and P1and POand CIN) ;

-- CARRY BLOCK 5

SC5:SUM3 _1port map (X(4), Y(4),C4,S4)) ;

C5 <= G4or (P4and G3)or (P4and P3and G2)or

(P4and P3and P2and G1)or (P4and P3and P2and P1and GO)or
(P4and P3and P2and Pland PO adn CIN) ;

-- CARRY BLOCK 6
SC6 :SUM3_1port map (X(5), Y(5), C5, S(5)) ;
C6 <= Gb5or (P5and G4)or (P5and P4and G3)or

(P5and P4and P3and G2)or (P5and P4and P3and P2and G1)or
(P5and P4and P3and P2and P1and GO)
or (P5and P4and P3and P2and P1land POand CIN) ;

-- CARRY BLOCK 7

SC7: SUM3_1port map (X(6), Y(6), C6, S(6)) ;

C7 <= G6or (P6and G5)or (P6and P5and G4)or

(P6and P5and P4and G3)or (P6and P5and P4and P3and G2)or
(P6and P5and P4and P3and P2and G1)

or (P6and P5and P4and P3and P2and Pland GO)or (P6and P5
and P4and P3and P2and P1and POand CIN) ;

-- CARRY BLOCK 8

SC8: SUM3_1port map (X(7), Y(7), C7, S(7)) ;

GRPGEN <= G%r (P7and G6)or (P7and P6and G5)or (P7and P6
and P5and G4)or (P7and P6and P5and P4and G3)or (P7and P6
and P5and P4and P3and G2)or (P7and P6and P5and P4and P3
and P2and G1)or (P7and P6and P5and P4and P3and P2and P1
and GO) ;

GRPPRP <= P@nd P6and P5and P4and P3and P2and Pl1and PO ;
endB_CLA 2;
-- PROGRAM for CLA 1

For CLA_1 there will be no input carry and therd| \we no carry generation. Except
from this the program remains the same as “ CLA_2 “

A.6 PROGRAM for CARRY SAVE ADDER

A.6.1

entity CSA3_2is

port (A, B, Z:in BIT_VECTOR (31downto0) ;

K1, K2, K3:in BIT ;

Z_0_OUT :outBIT;

S :out BIT_VECTOR (31downto0) ;

LAMBDA : out BIT_VECTOR (31downto 1)) ;
end CSA3 2;

architecture B_ CSA3 2of CSA3_2is

componentSUM3_1
PROT (OP1, OP2, OP3n BIT ;
Y :outBIT);

end component;

componentCSA_CARY
PROT (OP1, OP2, OP3, OP3_NXT, K1, K2, KA BIT ;
Y :outBIT);

endcomponent ;

begin
Z 0 _OUT <= Z(0and K3 ;
SUM :
for | IN 31 downto O generate
SX : SUM3_1port map (A(l), B(I), (1), S(1)) ;
endgenerateSUM ;
CARRY :
for | IN 30 downto O generate

CX : CSA_CARYport map (A(l), B(I), Z(), Z(I+1), K1, K2, K3,
LAMBDA(I+1)) ;
end generateCARRY ;

endB_CSA3 2;
A.6.2

entity SUM3_1lis
port (OP1, OP2, OP3in BIT ;
Y :outBIT);

endSUM3 1 ;

architecture B_SUM3_1of SUM3_1lis

begin
Y <= (OPland not OP2and not OP3)or
(not OPland OP2and not OP3 Yr
(not OPland not OP2and OP3)or
(OPl1and OP2and OP3) ;
endB_SUM3 1;

A.6.3

entity CSA_CARYis
port (OP1, OP2, OP3, OP3_NXT, K1, K2, K§:BIT ;
Y :outBIT);

end CSA CARY ;

architecture B_CSA CARYof CSA CARYis
begin

Y <= (K2and OPland OP2)or

(K1 and OP2and OP3)or

(K1 and OPland OPS3)or

(K3 and OP3_NXT) ;
endB_CSA CARY ;

A.7 PROGRAM for PRE-CLA LOGIC BLOCK

A.7.1

entity PREBLKIs
port (LL, LR :in BIT_VECTOR (31downto0) ;

CON1, CON2, CON3in BIT ;
L :out BIT_VECTOR (31downto0));
end PREBLK ;

architecture B_PREBLKof PREBLK s

componentPRELOG
port (OP1, OP2, P1, P2, P:BIT ;
Y :outBIT);

end component;

begin

ITERATE :
for I IN 31 downto O generate
PX : PRELOGort map (LL(I), LR(l), CON1, CON2, CON3, L(I)) ;
end generate;
endB_PREBLK ;

A.7.2

entity PRELOGIs

port (OP1, OP2, P1, P2, P&:BIT ;

Y :outBIT);
end PRELOG ;
architecture B_ PRELOGof PRELOGIs
begin

Y <= (OPland P1)or (OP2and P1)or

(OP1and NOT OP2and P2)or (not OPland OP2and P3) ;
endB_PRELOG ;

A.8 PROGRAM for POST-CLA LOGIC BLOCK

A.8.1

entity P_CLA_LOGBLKis
port (S, B:in BIT_VECTOR (31downto0) ;

FADD, FAND, FORR, FXOR, FINV in BIT ;
O :out BIT_VECTOR (31downto0)) ;
endP_CLA LOGBLK;

architecture B_P_CLA_LOGBLKof P_CLA_LOGBLKis

componentP_CLA_BCMP
port (X, B, FADD, FAND, FORR, FXOR, FINVin BIT ;
Y :outBIT);

end component;

begin

OUTPUT_STAGE :
for I IN 31 downto O generate
PX: P_CLA_BCMPport map (S(I), B(l), FADD, FAND, FORR,
FXOR, FINV, O(l)) ;
end generate;
endB_P_CLA LOGBLK;

A.8.2

entity P_CLA_BCMPis
port (X, B, FADD, FAND, FORR, FXOR, FINVin BIT ;
Y :outBIT);
end P_CLA BCMP;
architecture B_P_CLA_BCMPof P_CLA_BCMPis
signal INT1, INT2, INT3 : BIT ;
begin
INT1 <= FADDor (Band FAND and not FINV)or
(FORRand not FINV)or (not B and FXORand not FINV)or
(Band FXORand FINV) ;

INT2 <= (Band FXORand not FINV)or (FAND and FINV) or

(not Band FORRand FINV) or (not Band FXORand FINV) ;
INT3 <= (Band FORRand not FINV)or (not Band FAND and FINV) ;
Y <=(XandINT1)or (not Xand INT2)or INT3;
endB_P_CLA BCMP ;
A.9

entity MUX_2_32is
port (INP1, INP2 in BIT_VECTOR (31downto 0) ;
CNTRL :in BIT ;
Y :out BIT_VECTOR (31downto0));
endMUX_2_32;

architecture B_ MUX 2 32of MUX_ 2 32is

componentMUX2
port (OP1, OP2, Plin BIT ;
Y :outBIT);

end component;

begin

ITERATE :
for | IN 31 downto O generate
PX : MUX2port map (INPL(l), INP2(l), CNTRL, Y(I)) ;
endgeneratel TERATE ;
endB_MUX 2 32;

entity MUX1 is
port (OP1, OP2, P1, P2n BIT ;
Y :outBIT);

end MUX1 ;

architecture B_ MUX1 of MUX1 is
begin

Y <= (OPland P1)or (OP2and P2) ;
endB_MUX1 ;

DETERMINATIN OF INSTRUCTION LENGTHS FOR FREQUENTLEXECUTED
INSTRUCTIONS

Since the instructions to a machine are of two gypeterlocked and Non-
interlocked, Average instruction lengths are calted separately for both categories for
each machine.

1) Interlocked Instructions :

For this category the Non-ICALU parallel machingvays executes in serial.
Hence,

Average Instruction Length of Non-ICALU machine foterlocked category =

Teave2=2 b L.D. (L.D. = Logic or gate Delay)

For the machine with ICALU, instructions can betlier classified as having :

i) Same Destination registers :

Here both the registers have same destinatiostezgi The possibilities are :

a) Rb1, Rs1
Rp1, Rs2

b)

d)

Time required = (d+ 2) L.D.
Ro1, Rs1
Ro1, Rs1
Time required = (d+ 2) L.D.

Ro1, Ro1

Ro1, Ro1
Time required = (d+ 2) L.D.

Ro1, Rox
Rp1, Rs2
Time required = (ol+ 3) L.D.

i) Different destination registers :

e)

f)

9)

h)

Row Rs1
Rp2, Ro1
Time required = (o+ 3) L.D.

Rp1, Rs1

Rp2, Ro1
Time required = (d+ 3) L.D.

Ro1, Rs1
Rs1, Roz
Time required = (o+ 3) L.D.

Ro1, Ro1

Rs2 Rp1
Time required = (ol+ 3) L.D.

The Average instruction length of the machine W@WLU for the interlocked category

is :

Ticave2 =[3(b+2)+5(b+2)]/8 = ($+2.63)L.D.

2) Non-Interlocked Instructions :

In the non-interlocked categorypR can never be present in the second
instruction. Hence the sub-classification for tldeked category does not apply here.

Two classifications are possible here, which are :

i) One common register between two instructions :

a) Ro1, Rp1

Rs2 Ro1
Time required for Non-ICALU machine ={+ 3) L.D.

Time required for machine with ICALU =¢+ 3) L.D.

b) Ro1, Ro1
Rs2 Ro1
Time required for Non-ICALU machine ={+ 3) L.D.

Time required for machine with ICALU =¢+ 3) L.D.

i) No common registers between two instructions :

C) Ro1, Ro1

Rs2 Ro1
Time required for Non-ICALU machine ={+ 3) L.D.

Time required for machine with ICALU =¢+ 5) L.D.
d) Rp1, Ro1
Rs2 Rox

Time required for Non-ICALU machine ={+ 6) L.D.
Time required for machine with ICALU =¢+ 8) L.D.

e) Ro1, Rox
Rs2 Rp1
Time required for Non-ICALU machine ={+ 3) L.D.

Time required for machine with ICALU =§+ 3) L.D.

f) Ro1, Ro1
Rs2, Rp1

Time required for Non-ICALU machine ={+ 3) L.D.
Time required for machine with ICALU =§+ 3) L.D.

Average instruction length for Non-ICALU machinetlivhon-interlocked instructions =
Teaver =[5(o+3)+ (b+6)]/6=(h+3.5)L.D.

Average instruction length for ICALU machine witbminterlocked instructions =

Ticaver = (b +4.17) L.D.

