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A B S T R A C T 
 

                Inspired by biological neural networks, Artificial neural networks are massively 

parallel computing systems consisting of a large number of simple processors with many 

interconnections. They have input connections which are summed together to determine the 

strength of their output, which is the result of the sum being fed into an activation function. 

Based on architecture ANNs can be feed forward network or feedback networks. Most 

common family of feed-forward networks, called multilayer perceptron, neurons are 

organized into layers that have unidirectional connections between them. These connections 

are directed (from the input to the output layer) and have weights assigned to them. 

 

             The principle of ANN is applied for approximating a function where they learn a 

function by looking at examples of this function. Here the internal weights in the ANN are 

slowly adjusted so as to produce the same output as in the examples. Performance is 

improved over time by iteratively updating the weights in the network. The hope is that when 

the ANN is shown a new set of input variables, it will give a correct output.  

 

           To train a neural network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. 

This process requires that the neural network compute the error derivative of the weights 

(EW). In other words, it must calculate how the error changes as each weight is increased or 

decreased slightly. The back-propagation algorithm is the most widely used method for 

determining EW. 

 

            We have started our program for a fixed structure network. It’s a 4 layer network with 

1 input, 2 hidden and 1 output layers. No of nodes in input layer is 9 and output layer is 1. 

Hidden layer nodes are fixed at 4 and 3. The learning rate is taken as 0.07. We have written 

the program in MAT LAB and got the output of the network. The graph is plotted taking no 

of iteration and mean square error as parameter. The converging rate of error is very good. 

 

           Then we moved to a network with all its parameter varying. We have written the 

program in VISUAL C++ with no. of hidden layer, no of nodes in each hidden layer, learning 

rate all varying. The converging plots for different structure by varying the variables are 

taken. 
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INTRODUCTION 

ADAPTIVE SYSTEMS 

 In the recent years engineers are motivated to design adaptive systems which give a 

better performance amidst changing environment and system requirements. The adaptive 

systems (Fig 1.1) provide an optimal and robust solution when the system is subjected to a 

process called learning. The main advantage of the adaptive systems over the non-adaptive 

schemes lies in their self adjusting and time varying capabilities. Thus we find the application 

of adaptive systems in a range of applications like prediction, function approximation, system 

identification (modelling), adaptive equalization of digital channels and interference 

cancellation. In most cases the system is modelled using a linear FIR filter (tapped delay line 

referred to as TDL) or a nonlinear filter (say, neural networks, fuzzy logics or a combination 

of both). 

 
 

In each case the parameters of the adaptive filter are initialized to small random 

values and updated iteratively using an adaptive algorithm. The learning may be supervised 

(training data is known) or unsupervised (training data is not present). The learning process 

involves the minimization of a cost function with respect to the parameters of the adaptive 

filter. The cost function Ε  is chosen to be the mean squared difference between the target 

value (desired output) )(nd  and the adaptive filter output )(ny . The learning may be 

facilitated by choosing an appropriate adaptive algorithm. Various adaptive algorithms like 

the least mean square (LMS) algorithm, recursive least squares (RLS) or the Kalman filter 
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algorithm may be applied for learning. For instance the LMS algorithm provides robust 

performance by iteratively minimizing the mean square error in the direction opposite to the 

gradient of the cost function with respect to the parameters )(nwi of a TDL filter (see 

Fig.1.2).  This can be expressed as 

  

∑
=

=
P

n
neE

1

2 )(         (1.1) 

where the error over P ensembles of a training data set is given by 
 )()()( nyndne −=        (1.2) 
If the output of the adaptive filter is given as 
 ∑ −=

i
i inxnwny )(*)()(       (1.3) 

then the parameters )(nwi  are updated using a learning rate η  as 
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LINEAR& NON-LINEAR MODELS 

The models may be classified as linear or nonlinear depending on the architecture. 

Linear systems are modelled on the tapped delay line filter. They are the simplest structures 

that can be realized. They require least computational complexity and training period. But 

such systems can never approach the optimal performance since they can at the best provide a 

linear classification of the received data. This may be compensated by increasing the filter 

length and employing a nonlinear cost function as the criterion. In most cases it has been 

observed that an increase in the filter length (or order) enhances the additive white Gaussian 

noise. 

  

This leads to the definition of an optimal performance since nonlinear process 

involving the construction of a nonlinear decision boundary between the received data points 

(channel states) belonging to the various classes of data symbols used in transmission. Thus 

an optimal model operates with the least number of misclassifications. Due to the above said 

drawbacks of the linear models we used here the nonlinear models (ARTIFICIAL NEURAL 

NETWORKS, ANN) for our function approximation problem. 
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INTRODUCTION 

ARTIFICIAL NEURAL NETWORKS 

Numerous advances have been made in developing intelligent systems, some inspired 

by biological neural networks. Researchers from many scientific disciplines are designing 

artificial neural networks (ANN) to solve a variety of problems in pattern recognition,   

function approximation, prediction, optimization, associative memory, and control. 
 

Conventional approaches have been proposed for solving these problems. Although 

successful applications can be found in certain well-constrained environments, none is 

flexible enough to perform well outside its domain. ANNs provide exciting alternatives, and 

many applications could benefit from using them. 

 

We discuss the motivations behind the development of ANNs , describe the basic biological 

neuron and the artificial computational model, outline network architectures and learning 

processes, and present some of the most commonly used ANN models. We conclude with 

function approximation a successful ANN application. 

 
WHY ARTIFICIAL NEURAL NETWORKS? 

The long course of evolution has given the human brain many desirable characteristics that 

are not present in Von Neumann system or in modern parallel computers. These include 

 

 massive parallelism, 

 distributed representation and computation, 

 learning ability, 

 generalization ability, 

 adaptivity, 

 inherent contextual information processing, 

 fault tolerance, and 

 low energy consumption. 

 

It is hoped that devices based on biological neural networks will possess some of these 

desirable characteristics.  
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Modern digital computers outperform humans in the domain of numeric computation 

and related symbol manipulation. However, humans can effortlessly solve complex 

perceptual problems (like recognizing a man in a crowd from a mere glimpse of his face) at 

such a high speed and extent as to dwarf the world’s fastest computer. Why is there such a 

remarkable difference in their performance? The biological neural system architecture is 

completely different from the von Neumann architecture. This difference significantly affects 

the type of functions each computational model can best perform. 

 

Numerous efforts to develop “intelligent” programs based on von Neumann’s 

centralized architecture have not resulted in general-purpose intelligent programs. Inspired by 

biological neural networks, ANNs are massively parallel computing systems consisting of an 

extremely large number of simple processors with many interconnections. ANN models 

attempt to use some “organizational” principles believed to be used in the human brain.  

 

Modelling a biological nervous system using ANNs can also increase our 

understanding of biological functions. State-of-the-art computer hardware technology (such 

as VLSI and optical) has made this modelling feasible.  

 

A thorough study of ANNs requires knowledge of neurophysiology, cognitive 

science/psychology, physics (statistical mechanics), control theory, computer science, 

artificial intelligence, statistics/mathematics, pattern recognition, computer vision, parallel 

processing, and hardware (digital/analog/VLSI/optical). New developments in these 

disciplines continuously nourish the field. On the other hand, ANNs also provide an impetus 

to these disciplines in the form of new tools and representations. This symbiosis is necessary 

for the vitality of neural network research. Communications among these disciplines ought to 

be encouraged. 
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HISTORICAL OVERVIEW 

ANN research has experienced three periods of extensive activity. The first peak in 

the 1940s was due to McCulloch and Pitts' pioneering work. The second occurred in the 

1960s with Rosenblatt's perceptron convergence theorem and Minsky and Papert's work 

showing the limitations of a simple perceptron. Minsky and Papert's results dampened the 

enthusiasm of most researchers, especially those in the computer science community. The 

resulting lull in neural network research lasted almost 20 years. Since the early 1980s, ANNs 

have received considerable renewed interest. The major developments behind this resurgence 

include Hopfield's energy approach in 1982 and the back-propagation learning algorithm for 

multilayer perceptrons (multilayer feed forward networks) first proposed by Werbos, 

reinvented several times, and then popularized by Rumelhart et aL in 1986. Anderson and 

Rosenfeld provide a detailed historical account of ANN developments. 

 

BIOLOGICAL NUERAL NETWORKS 

 A neuron (or nerve cell) is a special biological cell that processes information. It is 

composed of a cell body, and two types of out-reaching tree-like branches: the axon and the 

dendrites. The cell body has a nucleus that contains information about hereditary traits and 

plasma that holds the molecular equipment for producing material needed by the neuron. A 

neuron receives signals (impulses) from other neurons through its dendrites (receivers) and 

transmits signals generated by its cell body along the axon (transmitter), which eventually 

branches into strands and sub strands. At the terminals of these strands are the synapses. A 

synapse is an elementary structure and functional unit between two neurons (an axon strand 

of one neuron and a dendrite of another), When the impulse reaches the synapse's terminal, 

certain chemicals called neurotransmitters are released. The neurotransmitters diffuse across 

the synaptic gap, to enhance or inhibit, depending on the type of the synapse, the receptor 

neuron's own tendency to emit electrical impulses. The synapse's effectiveness can be 

adjusted by the signals passing through it so that the synapses can learn from the activities in 

which they participate. This dependence on history acts as a memory, which is possibly 

responsible for human memory.  
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              Fig 2.1: A SKETCH OF BIOLOGICAL NEURON 

 

The cerebral cortex in humans is a large flat sheet of neurons about 2 to 3 millimeters 

thick with a surface area of about 2,200 cm2, about twice the area of a standard computer 

keyboard. The cerebral cortex contains about 1011 neurons, which is approximately the 

number of stars in the Milky Way. Neurons are massively connected, much more complex 

and dense than telephone networks. Each neuron is connected to 103 to 104 other neurons. In 

total, the human brain contains approximately 1014 to 1015 interconnections. 

 

Neurons communicate through a very short train of pulses, typically milliseconds in 

duration. The message is modulated on the pulse-transmission frequency. This frequency can 

vary from a few to several hundred hertz, which is a million times slower than the fastest 

switching speed in electronic circuits. However, complex perceptual decisions such as face 

recognition are typically made by humans within a few hundred milliseconds. These 

decisions are made by a network of neurons whose operational speed is only a few 

milliseconds. This implies that the computations cannot take more than about 100 serial 

stages. In other words, the brain runs parallel programs that are about 100 steps long for such 

perceptual tasks. This is known as the hundred step rule. The same timing considerations 

show that the amount of information sent from one neuron to another must be very small (a 

few bits). This implies that critical information is not transmitted directly, but captured and 

distributed in the interconnections-hence the name, connectionist model, used to describe 

ANNs. 
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ARTIFICIAL NEURAL NETWORKS 

Artificial neurons are similar to their biological counterparts. They have input 

connections which are summed together to determine the strength of their output, which is 

the result of the sum being fed into an activation function. Though many activation functions 

exist, the most common is the sigmoid activation function, which outputs a number between 

0 (for low input values) and 1 (for high input values). The resultant of this function is then 

passed as the input to other neurons through more connections, each of which are weighted. 

These weights determine the behaviour of the network. 

 

In the human brain the neurons are connected in a seemingly random order and send 

impulses asynchronously. If we wanted to model a brain this might be the way to organize an 

ANN, but since we primarily want to create a function approximator, ANNs are usually not 

organized like this.  

 

When we create ANNs, the neurons are usually ordered in layers with connections 

going between the layers. The first layer contains the input neurons and the last layer contains 

the output neurons. These input and output neurons represent the input and output variables 

of the function that we want to approximate. Between the input and the output layer a number 

of hidden layers exist and the connections (and weights) to and from these hidden layers 

determine how well the ANN performs. When an ANN is learning to approximate a function, 

it is shown examples of how the function works and the internal weights in the ANN are 

slowly adjusted so as to produce the same output as in the examples. The hope is that when 

the ANN is shown a new set of input variables, it will give a correct output. Therefore, if an 

ANN is expected to learn to spot tumours in an X-ray image, it will be shown many X-ray 

images containing tumours, and many X-ray images containing healthy tissues. After a period 

of training with these images, the weights in the ANN should hopefully contain information 

which will allow it to positively identify tumours in X-ray images that it has not seen during 

the training. 
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NETWORK ARCHITECTURE 

Based on the connection pattern (architecture), ANNs can be grouped into two categories: 

 

1.  feed-forward networks, in which graphs have no loops, and 

 

2. Recurrent (or feedback) networks, in which loops occur because of feedback connections. 

 

In the most common family of feed-forward networks, called multilayer perceptron, 

neurons are organized into layers that have unidirectional connections between them.  

 

Different connectivities yield different network behaviours. Generally speaking, feed-

forward networks are static, that is, they produce only one set of output values rather than a 

sequence of values from a given input. Feed forward networks are memory-less in the sense 

that their response to an input is independent of the previous network state. Recurrent, or 

feedback, networks, on the other hand, are dynamic systems. When a new input pattern is 

presented, the neuron outputs are computed. Because of the feedback paths, the inputs to each 

neuron are then modified, which leads the network to enter a new state.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1: A taxonomy of feed-forward and feedback network architectures 
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MULTILAYER PERCEPTRONS 

MLPs consist of a number of neurons (or perceptrons) that have inputs and generate 

an output using nonlinearity. Neurons in a MLP can be categorized into input neurons, output 

neurons and neurons that are neither of the two – so called hidden neurons. An MLP network 

is grouped in layers of neurons, i.e. input layer, output layer and hidden layers of neurons that 

can be seen as groups of parallel processing units. Each neuron of a layer is connected with 

all neurons of the following layer. These connections are directed (from the input to the 

output layer) and have weights assigned to. The operation of a MLP can be divided into two 

phases: 

 

1. The training phase: Here the MLP is trained for its specific purpose using learning 

algorithms (e.g. Back propagation training). 

 

2. The retrieve phase: The previously trained MLPs are used to generate outputs. 

 

 
 
 
 
                                          Fig 3.2: A structure of MLP 
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STRUCTURE OF A NEURON 

A neuron n has a number of inputs and one output, the so called activation state of the 

neuron. The activation states of the R neurons p(1)...p(R) from the previous layer that are 

connected to n are multiplied with their respective weights w(1),...,w(R) and then summed up 

by the neuron in order to generate the neural input. 

 

 

 (3.1) 

 

 

To the neural input a bias value b is added. The output of the neuron is determined using the 

transfer function T. This transfer function is usually sigmoid. Typical transfer functions are 

tangents, hyperboles and the logistic function: 

  

 (3.2) 

  

 (3.3) 

 

The output no of the neuron is defined as 

 

                                                                                                                                 (3.4) 

 

 

The values w (1)... w(R) of the connection weights and the bias b are determined 

during the training phase and used in the retrieve phase. For a supervised learning approach 

for control purposes, building the respective learning algorithm into hardware is not 

necessary. The training data is generated by numerically or analytically solving the control 

task. For this study we will be focusing on networks that are trained by software simulation. 
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LEARNING 

The ability to learn is a fundamental trait of intelligence. Although a precise definition 

of learning is difficult to formulate, a learning process in the ANN context can be viewed as 

the problem of updating network architecture and connection weights so that a network can 

efficiently perform a specific task. The network usually must learn the connection weights 

from available training patterns. Performance is improved over time by iteratively updating 

the weights in the network. ANNs' ability to automatically learn from examples makes them 

attractive and exciting. Instead of following a set of rules specified by human experts, ANNs 

appear to learn underlying rules (like input-output relationships) from the given collection of 

representative examples. This is one of the major advantages of neural networks over 

traditional expert systems. 

  

To understand or design a learning process, you must first have a model of the 

environment in which a neural network operates, that is, you must know what information is 

available to the network. We refer to this model as a learning paradigm. Second, you must 

understand how network weights are updated, that is, which learning rules govern the 

updating process.  

 

A learning algorithm refers to a procedure in which learning rules are used for 

adjusting the weights. There are three main learning paradigms: supervised, unsupervised, 

and hybrid. In supervised learning, or learning with a “teacher,” the network is provided with 

a correct answer (output) for every input pattern. Weights are determined to allow the 

network to produce answers as close as possible to the known correct answers. 

Reinforcement learning is a variant of supervised learning in which the network is provided 

with only a critique on the correctness of network outputs, not the correct answers 

themselves. In contrast, unsupervised learning, or learning without a teacher, does not require 

a correct answer associated with each input pattern in the training data set. It explores the 

underlying structure in the data, or correlations between patterns in the data, and organizes 

patterns into categories from these correlations. Hybrid learning combines supervised and 

unsupervised learning.  
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THE BACK PROPAGATION ALGORITHM 

To train a neural network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. 

This process requires that the neural network compute the error derivative of the weights 

(EW). In other words, it must calculate how the error changes as each weight is increased or 

decreased slightly. The back-propagation algorithm is the most widely used method for 

determining EW. 

 
Algorithm: 
 
1. Initialize the weights to small random values 

2. Randomly choose an input pattern x(u). 

3. Propagate the signal forward through the network. 

4. Compute δi
l in the output layer (oi = yi

l). 

 

                                                       (4.1) 

 

where hi
l represents the net input to the ith unit in the Ith 

layer, and g’ is the derivative of the activation function g. 

5. Compute the deltas for the preceding layers by propagating the errors backwards; 

 

                                 (4.2) 

 

6. Update weights using 

 

                                       (4.3) 

 

 

7. Go to step 2 and repeat for the next pattern until the error in the output layer is below a 

prespecified threshold or a maximum number of iterations is reached. 
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FLOW CHART: 
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DATA FLOW DESIGN 

Many data flow designs for neural networks have been developed for various 

purposes with varied successes, such as that for the committee machine. We report our design 

in this paper and omit a full review of them. For distributed computation, the network 

training procedure has to be deconstructed such that each neuron can be trained separately. A 

back-propagation algorithm trains network layer by layer doing forward and backward 

computations. According to the algorithm the updation formulas are 

 

Forward computation 

 

 
Backward computation 
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In the above equations w denotes the weight between two neurons. d is the desired 

response. x is the input. y denotes the neuron’s output. σ is the active function. η is a tunable 

learning rate. l denotes the number of layer, where 1 denotes the first hidden layer and L is 

the output layer. i or j denote the number of neuron in each layer. So, yl
j is the output of the 

j’th neuron in the l’th hidden layer, wl
ji is the weight between the j’th neuron in the l’th layer 

and the I’th neuron in the (l − 1)’th layer. Bl
j is the j’th neuron’s bias. dl

j is the desired 

response of the j’th neuron in the l’th layer. δl
j is the j’th neuron’s delta value for weight 

correction. m0 is the number of neurons in input layer, ml−1 is the number of neurons in the (l 

− 1)’th layer . All neurons use these equations to improve their weights. Each neuron uses the 

outputs of all neurons in the next precedent layer as inputs. We will isolate each neuron with 

all its weights, inputs, desired response, and output. This allows us to implement the BP 

algorithm on distribute parallel machine. 
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CHALLENGING PROBLEMS 

INTRODUCTION 

 Let us consider the following problems of interest to computer scientists and 

engineers. 

 

PATTERN CLASSIFICATION 

The task of pattern classification is to assign an input pattern (like a speech waveform 

or handwritten symbol) represented by a feature vector to one of many prespecified classes. 

Well-known applications include character recognition, speech recognition, EEG waveform 

classification, blood cell classification, and printed circuit board inspection. 

 

CLUSTERING& CATEGORIZATION 

In clustering, also known as unsupervised pattern classification, there are no training 

data with known class labels. A clustering algorithm explores the similarity between the 

patterns and places similar patterns in a cluster. Well-known clustering applications include 

data mining, data compression, and exploratory data analysis. 

 

PREDICTION& FORECASTING 

Given a set of n samples {y(t1), y(t2) y(t,,)} in a time sequence, t, t2, t,,, the task is to 

predict the sample y(t1) at some future time Prediction/forecasting has a significant impact on 

decision-making in business, science, and engineering. Stock market prediction and weather 

forecasting are typical applications of prediction/forecasting techniques. 

 

OPTIMIZATION 

A wide variety of problems in mathematics, statistics, engineering, science, medicine, 

and economics can be posed as optimization problems. The goal of an optimization algorithm 

is to find a solution satisfying a set of constraints such that an objective function is 

maximized or minimized. The Travelling Salesman Problem (TSP), an NP- complete 

problem, is a classic example. 
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CONTENT ADDRESSABLE MEMORY 

In the von Neumann model of computation, an entry in memory is accessed only 

through its address, which is independent of the content in the memory. Moreover, if a small 

error is made in calculating the address, a completely different item can be retrieved. 

Associative memory or content-addressable memory, as the name implies, can be accessed by 

their content. The content in the memory can be recalled even by a partial input or distorted 

content. Associative memory is extremely desirable in building multimedia information 

databases. 

 

FUNCTION APPROXIMATION 

Suppose a set of n labelled training patterns (input-output pairs),{(x1,y1),(x2,y2),..., 

(x,y,,)}, have been generated from an unknown function i(x) (subject to noise). The task of 

function approximation is to find an estimate, say u^, of the unknown function u. Various 

engineering and scientific modelling problems require function approximation. Since our 

project is corresponding to the function approximation problem, let us look into this problem 

thoroughly by the application of the non-linear model of ADAPTIVE SYSTEM namely 

ARTIFICIAL NEURAL NETWORKS. 

 

ANNs apply the principle of function approximation by example, meaning that they 

learn a function by looking at examples of this function. One of the simplest examples is an 

ANN learning the XOR function, but it could just as easily be learning to determine the 

language of a text, or whether there is a tumour visible in an X-ray image.  

 

If an ANN is to be able to learn a problem, it must be defined as a function with a set 

of input and output variables supported by examples of how this function should work. A 

problem like the XOR function is already defined as a function with two binary input 

variables and a binary output variable, and with the examples which are defined by the results 

of four different input patterns. However, there are more complicated problems which can be 

more difficult to define as functions. The input variables to the problem of finding a tumour 

in an X-ray image could be the pixel values of the image, but they could also be some values 

extracted from the image. The output could then either be a binary value or a floating point 

value representing the probability of a tumour in the image. In ANNs this     floating-point 

value would normally be between 0 and 1, inclusive. 
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INTRODUCTION 

           First we will understand the reasons that distort the pulses that we transmit over a 

communication channel. Then we go to different equalizer structures that were developed 

over the decades. The primary being linear transversal equalizer. Then we will observe the 

drawbacks in the linear equalizers and why we go for nonlinear structures. Then we 

concentrate on the need for decision feedback in an equalizer. 

 
NEED FOR EQUALIZATION 

INTERSYMBOL INTERFERENCE (ISI) 

              Ideally, the impulse response of a linear transmission medium is defined by 

  )()( τδ −= tAth       (6.1) 

                        where t denotes continuous time,   

                                  )(th designates the impulse response, 

                                 A  is an amplitude scaling factor,  

                                 )(tδ  is the Dirac delta function  

                                 τ  denotes the propagation delay incurred in the                               

                               course of transmitting the signal over the channel.  

 

         Equivalently, in frequency domain the above equation can be written as  

                                 

)exp()( ωτω jAjH −=    (6.2) 

 

                      Where )( ωjH is the frequency response of the transmission media. In practice, 

it is impossible for any physical channel to satisfy the stringent requirements embodied in 

equations (1) and (2). The best we can do is to approximate equation (2) over a band of 

frequencies representing the essential spectral content of the transmitted signal, which makes 

the channel ‘dispersive’ [1]. This channel impairment gives rise to ‘Inter-symbol 

Interference’. - A smearing of the successive pulses into one another with the result that they 

are no longer distinguishable. 
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NOISE 
 
           Some form of noise is always present at the output of every communication channel. 

The noise can be internal to the system, as in case of thermal noise generated by the amplifier 

at the front end of the receiver or external to the system, due to interfering signal originated 

from other sources. 

 

                 The net result of the two impairments is that the signal received at the channel 

output is a noisy and distorted version of the signal that is transmitted. The function of the 

receiver is to operate on the received signal and deliver a reliable estimate of the original 

message signal to a user at the output of the system. 

 

                Hence there is a need for adaptive equalization. By equalization we mean the 

process of correcting channel induced distortion. This process is said to be adaptive when it 

adjusts itself continuously during data transmission by operating  

 

 
Fig 6.1: Schematic of Digital communication system 
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CLASSIFICATION OF ADAPTIVE EQUALIZERS 

              In general adaptive equalizers are either supervised or unsupervised. The equalizers 

with unsupervised training are called blind equalizers. The classification of the equalizers is 

shown in the figure. 

 
 

NEURAL NETWORK EQUALIZERS 

 
Fig 6.2: Neural network equalizer 

 

Supervised training Unsupervised or blind training 

Sequence estimation 
(MLSE) 

Adaptive equalizers 

Symbol estimation 

Nonlinear equalizers
(ANN) 

(Fuzzy systems) 

Linear equalizers 
Transversal, Lattice 

(LMS, RLS...) 
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             Back-propagation algorithm is used to train the neural network. The algorithm may 

be stated as follows. 

 

        Firstly, the correction )()( nynw ijji ∗∗=Δ δη .  

                  Where η is the learning rate parameter 

                             )(njδ  is the local gradient   

                             )(nyi  is the input signal of neuron j. 

 

        Second, the local gradient )(njδ depends on whether neuron j is an input node or a 

hidden node: 

If neuron j is an output node, )(njδ equals the product of the derivative ))(( nv jjϕ′  

and the error signal )(ne j , both of which are associated with neuron j. 

If neuron j is a hidden node, )(njδ equals the product of the associated derivative 

))(( nv jjϕ′  and the weighted sum of the δ s computed for the neurons in the next hidden or 

output layer that are connected to neuron j. 

               The main disadvantage of using neural networks is that their convergence is slower 

compared to linear filters. 

 

                  The performance of the equalizer is always better than those of linear equalizer. 

But there are some channels for which the negative centers and positive centers are very near 

and overlap in many cases due to the presence of additive noise. Such channels are called 

overlapping channels. One of the examples of such a channel is             

 

21
6 4084.08164.04084.0)( −− ++= zzzH .                       (6.6) 

 

                  Hence we need a decision feedback equalizer to classify these overlapping 

patterns. The advantage of the decision feedback equalizer is that ISI is eliminated without 

enhancement of noise by using past decisions to subtract out a portion of ISI in addition to 

the normal feed forward filter. 
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FIXED STRUCTURE ANN 

  First we start the project by assuming a fixed structure for the ANN for our 

convenience. The structure is given by: 

   

This ANN has 4 layers in total they include the input layer having 9 nodes, the output 

layer having 1 node, and the two hidden layers each having 4,3 nodes respectively. This 

means our structure can be defined in short as 9,4,3,1 structure. The main advantage of 

assuming a structure is to reduce considerably the number of variable parameters of the 

ANN.  

 

The various variable parameters of an ANN include: 

 No. of layers 

 No. of neurons in each layer 

 Activation function 

 Learning factor 

 Use of batch & sequential mode 

 

So by choosing a fixed structure the other variable parameters get fixed except activation 

function which can be varied according to our convenience. 

 

The reason for choosing 9,4,3,1 as the structure is that this structure is universally 

regarded as one of the best structure for convergence. 

  

The results for the above structure for various functions and for various activation 

function are given in the pages to follow. 
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Fig. 7.1 
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Fig. 7.2 
 



 33

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

Fig. 7.3 
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Fig. 7.4 



 35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Fig. 7.5 
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STRUCTURE 

 As said in the chapter above the various variable parameters in the ANN 

include: 

  

The various variable parameters of an ANN include: 

 No. of layers 

 No. of neurons in each layer 

 Activation function 

 Learning factor 

 Use of batch & sequential mode 

 

The function that we have approximated is a simple square function. The results of 

convergence plots for various structures of ANN i.e. for various no. of layers, for various no. 

of neurons in each layer, various values of learning rate are obtained and the conclusion for 

the optimum no. of layers, for the structure of the no. of neurons in each layer and for the 

optimum value of learning rate are deduced. 

 

Here the comparisons are given in terms of groups of three having the same number 

of hidden layers and the same number of neurons in each layer for three different values of 

the learning factor. The first three graphs correspond to the results of the structure having one 

hidden layer, which in turn is having two neurons at three different learning rates. These 

learning rates are 0.075, 0.1, 0 .5  

   

The results for the generalized model are shown in the pages to follow. 
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RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1 
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Fig. 8.2 
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Fig. 8.3 
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Fig. 8.4 
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Fig. 8.5 
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Fig. 8.6 
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Fig. 8.7 
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Fig. 8.8 
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Fig. 8.9 
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Fig. 8.10 
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Fig. 8.11 
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Fig. 8.12 
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Fig. 8.13 
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Fig. 8.14 
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Fig. 8.15 
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Fig. 8.16 
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Fig. 8.17 
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Fig. 8.18 
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Fig. 8.19 
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Fig. 8.20 
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Fig. 8.21 
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CONCLUSION 

From the above graphs we came to the conclusions regarding the parameters for obtaining the 

optimum structure for ANN. 

 The optimum number of layers including the hidden layers. 

 Structure for the number of neurons in each hidden layer. 

 Optimum value for the learning rate. 

 The difference between the batch& sequential mode. 

 

The graphs are drawn between the number of iterations as the independent variable 

and the mean squared error as the dependent variable. From Fig 8.1 it can be seen that the 

mean square error starts at 1.6 and gradually reduces to 0.07 at the end of 500 epochs. Thus 

we can say that the weights of the ANN model has got trained, and will give the output of the 

function approximated for any input with an error up to 0.25  

 

From Fig 8.1- Fig 8.12 it can be seen that the mean square error starts from around a 

reasonable value to a minimum of about 0.07 hence these are good examples of training. But 

our quest for a best trained ANN structure is not over. 

 

From Fig 8.13- 8.15 show that for a structure like five hidden layers with 8, 6,4,3,1 

neurons in each hidden layer have a poor quality of convergence. Here the term convergence 

means that the graph between the number of epochs versus the mean square error value must 

be smooth. But in the above said graphs the graph is not smooth, even the mean squared error 

value just before the 500th epoch is equal to the mean squared error value at the starting of 

the program. Therefore we conclude that the structures having a large number of hidden 

layers and having the neuron number in each hidden layer in descending order have a poor 

quality of convergence. This may be due to over fitting. 

 

 

Contrary to the above said phenomenon the Figures 8.16- 8.21 show that for the 

structures like 4 hidden layers with 9,6,4,6 neurons in respective layers have a very good 

quality of convergence. The mean squared error starts at a very high value and at the end of 

500th epoch reaches a very low value (as low as 0.07). Hence we can say that the structures 

having a medium number of hidden layers with a specific kind of neurons have good quality 
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convergence. Here good convergence is because of the smoothness of the graphs which could 

not be observed in case of Figures 8.13- 8.15  

 

The specific kind of structure of ANN, as we have mentioned above is that the 

minimum number of neurons are present in the middle hidden layer and it increases on both 

sides of this layer. For example if there are four hidden layers, the minimum number of 

neurons are present in either of the second or the third hidden layer (9, 6, 4, 6). 

 

Thus we have found out the optimum structure for the ANN model for function 

approximation leaving the learning factor parameter untouched. The comparison for getting 

the optimal value of the learning rate is given by the graphs in each group. From the graphs it 

can be seen that there is no much difference between them as the learning rats is increased. 

Hence we choose an optimal value for the learning rate as 0.1.  

 

Hence it can be seen that the Fig 8.17 represents the best structure for function 

approximation at the above said learning rate.   
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