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Abstract.

To produce products with consistent quality, manufacturing processes need to be closely
monitored for any deviations in the process. Proper analysis of control charts that are used to
determine the state of the process not only requires a thorough knowledge and understanding of
the underlying distribution theories associated with control charts, but also the experience of an
expert in decision making. The present work proposes a modified backpropagation neural
network methodology to identify and interpret various patterns of variations that can occur in a
manufacturing process.

Control charts primarily in the form of X-bar chart are widely used to identify the situations
when control actions will be needed for manufacturing systems. Various types of patterns are
observed in control charts. Identification of these control chart patterns (CCPs) can provide clues
to potential quality problems in the manufacturing process. Each type of control chart pattern has
its own geometric shape and various related features can represent this shape.

This project formulates Shewhart mean (X-bar) and range (R) control charts for diagnosis and
interpretation by artificial neural networks. Neural networks are trained to discriminate between
samples from probability distributions considered within control limits and those which have
shifted in both location and variance. Neural networks are also trained to recognize samples and
predict future points from processes which exhibit long term or cyclical drift. The advantages
and disadvantages of neural control charts compared to traditional statistical process control are
discussed.

In processes, the causes of variations may be categorized as chance (unassignable) causes and
special (assignable) causes. The variations due to chance causes are inevitable, and difficult to
detect and identify. On the other hand, the variations due to special causes prevent the process
being a stable and predictable. Such variations should be determined effectively and eliminated
from the process by taking the necessary corrective actions to maintain the process in control and
improve the quality of the products as well. In this study, a multilayered neural network trained
with a back propagation algorithm was applied to pattern recognition on control charts. The
neural network was experimented on a set of generated data.
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Chapter 1

Overview of Control Charts
and their usage in Process Control



1.1 Introduction

Control charts are commonly used in production environments to analyze process parameters to
determine if a controlled process is within or out of control, i.e. to distinguish between assignable
and common, also called chance, causes. Some manufacturing processes which benefit from
control chart tracking are filtration, extraction, fermentation, distillation, refining, reaction,
pressing, metal cutting, heat treatment, welding, casting, forging, extrusion, injection molding,
spraying, and soldering (Although computationally simple, control charts are sometimes
complex to use correctly because the sample points come from non-specified probabilistic
distributions and usually require interpretation by a skilled user.

1.2 Control Charts

A control chart is a statistical tool used to distinguish between variation in a process resulting
from common causes and variation resulting from special causes. It presents a graphic display of
process stability or instability over time .

Every process has variation. Some variation may be the result of causes which are not normally
present in the process. This could be special cause variation. Some variation is simply the result
of numerous, ever-present differences in the process. This is common cause variation. Control
Charts differentiate between these two types of variation. One goal of using a Control Chart is to
achieve and maintain process stability.

Process stability is defined as a state in which a process has displayed a certain degree of
consistency in the past and is expected to continue to do so in the future.

This consistency is characterized by a stream of data falling within control limits based on plus
or minus 3 standard deviations (3 sigma) of the centerline]. We will discuss methods for
calculating 3 sigma limits .

Control limits represent the limits of variation that should be expected from a process in a state
of statistical control. When a process is in statistical control, any variation is the result of
common causes that effect the entire production in a similar way. Control limits should not be
confused with specification limits, which represent the desired process performance.

Chart’s Usage of Control

A stable process is one that is consistent over time with respect to the center and the spread of
the data. Control Charts help one monitor the behavior of your process to determine whether it is
stable. Like Run Charts, they display data in the time sequence in which they occurred.
However, Control Charts are more efficient that Run Charts in assessing and achieving process
stability.

e Monitor process variation over time.

e Differentiate between special cause and common cause variation.

e Assess the effectiveness of changes to improve a process.
Communicate how a process performed during a specific period



Types of Control Charts

There are two main categories of Control Charts, those that display attribute data, and those that
display variables data.

Attribute Data: This category of Control Chart displays data that result from counting the
number of occurrences or items in a single category of similar items or occurrences. These
“count” data may be expressed as pass/fail, yes/no, or presence/absence of a defect.

Variables Data: This category of Control Chart displays values resulting from the measurement
of a continuous variable. Examples of variables data are elapsed time, temperature, and radiation
dose.

While these two categories encompass a number of different types of Control Charts

There are three types that will work for the majority of the data analysis cases you will
encounter. In this module, we will study the construction and application in these three types of
Control Charts:

X-Bar and R Chart

Individual X and Moving Range Chart for Variables Data

Individual X and Moving Range Chart for Attribute Data

Elements of a Control Chart

Each Control Chart actually consists of two graphs, an upper and a lower, which are described
below under plotting areas. A Control Chart is made up of eight elements.

1. Title. The title briefly describes the information which is displayed.

2. Legend. This is information on how and when the data were collected.

3. Data Collection Section. The counts or measurements are recorded in the data collection
section of the Control Chart prior to being graphed.

4. Plotting Areas. A Control Chart has two areas—an upper graph and a lower graph—where
the data is plotted.

a. The upper graph plots either the individual values, in the case of an Individual X and Moving
Range chart, or the average (mean value) of the sample or subgroup in the case of an X-Bar and
R chart.

b. The lower graph plots the moving range for Individual X and Moving Range charts, or the
range of values found in the subgroups for X-Bar and R charts.

5. Vertical or Y-Axis. This axis reflects the magnitude of the data collected. The Y-axis shows
the scale of the measurement for variables data, or the count (frequency) or percentage of
occurrence of an event for attribute data.

6. Horizontal or X-Axis. This axis displays the chronological order in which the data were
collected.

7. Control Limits. Control limits are set at a distance of 3 sigma above and 3 sigma below the
centerline . They indicate variation from

the centerline and are calculated by using the actual values plotted on the Control Chart graphs.
8. Centerline. This line is drawn at the average or mean value of all the plotted data. The upper
and lower graphs each have a separate centerline.




Steps for calculating and plotting an X-Bar and R Control Chart for
Variables Data:

The X-Bar (arithmetic mean) and R (range) Control Chart is used with variables data when
subgroup or sample size is between 2 and 15. The steps for constructing this type of Control
Chart are:

Step 1 - Determine the data to be collected. Decide what questions about the process you plan
to answer.

Step 2 - Collect and enter the data by subgroup. A subgroup is made up of variables data that
represent a characteristic of a product produced by a process. The sample size relates to how
large the subgroups are. Enter the individual subgroup measurements in time sequence in the
portion of the data collection section of the Control Chart labeled MEASUREMENTS

STEP 3 - Calculate and enter the average for each subgroup. Use the formula below to
calculate the average (mean) for each subgroup and enter it on the line labeled Average in the
data collection section

Where: X = The average of the measurements within each subgroup
X, = The individual measurements within a subgroup

n = The number of measurements within a subgroup

Step 4 - Calculate and enter the range for each subgroup. Use the following formula to
calculate the range (R) for each subgroup. Enter the range for each subgroup on the line labeled
Range in the data collection section .

RANGE = (Largest Value in - (Smallest Value in
each group) each subgroup)

Range Example

Subgroup 1 2 3 4 5 i} 7 g 9
X, 153 144 153 150 153 149 156 140 140
X 149 155 151 148 16.4 153 164 158 15.2-:]
X 15.0 148 153 16.0 17.2 14.9 153 16.4 13.6
Xy 152 156 185 156 15.5 16.5 153 16.4 15.0
X5 16.4 149 149 154 155 151 150 15.3 15.0

Average: 15.36 1504 1582 1536 1598 1534 1552 1558 1456

[Range: 15 12 36 12 19 16 14 24 16 ]




Step 5 - Calculate the grand mean of the subgroup’s average. The grand mean of the
subgroup’s average (X-Bar) becomes the centerline for the upper plot.

= K Xy tXgto X
X =
k
Where: x = The grand mean of all the individual subgroup averages

X = The average for each subgroup
k = The number of subgroups

Step 6 - Calculate the average of the subgroup ranges. The average of all subgroups becomes
the centerline for the lower plotting area.

. R,+R,+R;+..R
k
Where: R, = The individual range for each subgroup

K

R = The average of the ranges for all subgroups
k = The number of subgroups

Step 7 - Calculate the upper control limit (UCL) and lower control limit (LCL) for the
averages of the subgroups. At this point, your chart will look like a Run Chart. Now, however,
the uniqueness of the Control Chart becomes evident as you calculate the control limits. Control
limits define the parameters for determining whether a process is in statistical control. To find
the X-Bar control

limits, use the following formula:

Step 7 - Calculate the upper control limit (UCL) and lower control limit (LCL)

for the averages of the subgroups. At this point, your chart will look like a Run Chart. Now,
however, the uniqueness of the Control Chart becomes evident as you calculate the control
limits. Control limits define the parameters for determining whether a process is in statistical
control. To find the X-Bar control limits, use the following formula:

UCLgy-X +AR
LCLy=X - AR

Step 8 - Calculate the upper control limit for the ranges. When the subgroup or sample size
(n) is less than 7, there is no lower control limit. To find the upper control limit for the ranges,

use the formula:
UCL< =D,
=Dy,

R
LCLm ﬁ

(for subgroups = 7)



Step 9 - Select the scales and plot the control limits, centerline, and data

points, in each plotting area. The scales must be determined before the data points and
centerline can be plotted. Once the upper and lower control limits have been computed, the
easiest way to select the scales is to have the current data take up approximately 60 percent of the
vertical (Y) axis. The scales for both the upper and lower plotting areas should allow for future
high or low out-of control data points.

Plot each subgroup average as an individual data point in the upper plotting area. Plot
individual range data points in the lower plotting area

Step 10 - Provide the appropriate documentation. Each Control Chart should be labeled with
who, what, when, where, why, and how information to describe where the data originated, when
it was collected, who collected it, any identifiable equipment or work groups, sample size, and
all the other things necessary for understanding and interpreting it. It is important that the legend
include all of the information that clarifies what the data describe.

SAMPLE X BAR AND R CHART :

16.5 [0 O IIIIIIIII ||||I|||| lIIII.III |||iI|||| ||||I||||
A
v 16.0
E 155 =m7é¥;74;§. ICRE R R LN
R
A 15.0
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E 14.5 O OO D O D R D K |||||.|||| ) XX
14.0
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1.3 PROCESS CONTROL

Interpretation of Control Charts

Process stability is reflected in the relatively constant variation exhibited in Control Charts.
Basically, the data fall within a band bounded by the control limits. If a process is stable, the
likelihood of a point falling outside this band is so small that such an occurrence is taken as a
signal of a special cause of variation. In other words, something abnormal is occurring within
your process. However, even though all the points fall inside the control limits, special cause
variation may be at work. The presence of unusual patterns can be evidence that your process is
not in statistical control. Such patterns are more likely to occur when one or more special causes
is present. Control Charts are based on control limits which are 3 standard deviations (3 sigma)
away from the centerline. One should resist the urge to narrow these limits in the hope of
identifying special causes earlier. Experience has shown that limits based on less than plus and
minus 3 sigma may lead to false assumptions about special causes operating in a process
[Ref. 6, p. 82]. In other words, using control limits which are less than 3 sigma from the
centerline may trigger a hunt for special causes when the process is already stable. The three
standard deviations are sometimes identified by zones. Each zone’s dividing line is exactly one-
third the distance from the centerline to either the upper control limit or the lower control limit
(Viewgraph 19).

Zone A is defined as the area between 2 and 3 standard deviations from the centerline on both
the plus and minus sides of the centerline.

Zone B is defined as the area between 1 and 2 standard deviations from the centerline on both
sides of the centerline.

Zone C is defined as the area between the centerline and 1 standard deviation from the
centerline, on both sides of the centerline.

There are two basic sets of rules for interpreting Control Charts: Rules for interpreting X-Bar
and R Control Charts.

A similar, but separate, set of rules for interpreting XmR Control Charts. When a special cause is
affecting the data,

Control Chart Zones

UCL | EE R R AN B AR RN EE R EEERE RN}
ZONE A
ZONEB
. ZONE C 1/3 distance
Centerllne-I-I-I-I-I-I-I-I-I-I-I from
ZONE C ; Centerline
to Control
ZONEB Limits
ZONE A

LCL LI I L L I T




Rules for interpreting X-Bar and R Charts :

The nonrandom patterns displayed in a Control Chart will be fairly obvious. The key to these
rules is recognizing that they serve as a signal for when to investigate what occurred in the
process. When you are interpreting X-Bar and R Control Charts, you should apply the

following set of rules:

RULE 1: Whenever a single point falls outside the 3 sigma control limits, a lack of control is
indicated. Since the probability of this happening is rather small, it is very likely not due to
chance.

RULE 2:Whenever at least 2 out of 3 successive values fall on the same side of the centerline
and more than 2 sigma units away from the centerline (in Zone A or beyond), a lack of control is
indicated. Note that the third point can be on either side of the centerline.

Rule 1 - Interpreting X-Bar & R Charts

out of L@

UCL s s s s ssmsmssssjgnssssnnssssnsnns;
ZONE A
/ \ A ZONE B
. ZONE C

Centerlinese « mu\s == o/ mm o b o == 0 == - -

ZONE C
K \/ ZONE B
L ZONE A

LCL = = s s s s s s n s s s @ s % 68 60 0 n " " W 6w wooowE&Hoo

UCL =sseunn- < 005000 000000000

LCL

of 3 S
successivevalues ) ZONE A
in Zone A




RULE 3: Whenever at least 4 out of 5 successive values fall on the same side of the centerline
and more than one sigma unit away from the centerline (in Zones A or B or beyond), a lack of
control is indicated. Note that the fifth point can be on either side of the centerline.

RULE 4: Whenever at least 8 successive values fall on the same side of the centerline, a lack of
control is indicated.

Rule 4 - Interpreting X-Bar & R Charts

ZONE A

ZONE B

ZONE C

ZONE C

j \

%sive ZONEB
values on same

LOL remmannns side of Centerline /... ...... ZONE A

Change the control limits

There are only three situations in which it is appropriate to change the control limits:

When removing out-of-control data points. When a special cause has been identified and
removed while you are working to achieve process stability, you may want to delete the data
points affected by special causes and use the remaining data to compute new control limits.
When replacing trial limits. When a process has just started up, or has changed, you may want
to calculate control limits using only the limited data available. These limits are usually called
trial control limits. You can calculate new limits every time you add new data. Once you have 20
or 30 groups of 4 or 5 measurements without a signal, you can use the limits to monitor future
performance. You don’t need to recalculate the limits again unless fundamental changes are
made to the process.



When there are changes in the process

When there are indications that your process has changed, it is necessary to recompute
the control limits based on data collected since the change occurred. Some examples of such
changes are the application of new or modified procedures, the use of different machines, the
overhaul of existing machines, and the introduction of new suppliers of critical input materials.

Sample observations Sample observations
consistently below the consistently above the
center line center line

figl

Sample observations Sample observations
consistently increasing consistently decreasing fq2




1.4 PROCESS CAPABILITY

Process capability examines

 the variability in process characteristics

o Wwhether the process is capable of producing products which conforms to specifications
Process capability studies distinguish between conformance to control limits and conformance
to specification limits (also called tolerance limits)

« if the process mean is in control, then virtually all points will remain within control limits

« staying within control limits does not necessarily mean that specification limits are

satisfied
« specification limits are usually dictated by customers

- specifications equal the process control limits.
* B-sigma quality
-specifications twice as large as control limits

figd



PROCESS 7§
specifications

fig5

PROCESS CAPABILITY CONCEPTS :

The following distributions show
different process scenarios. Note the
relative positions of the control limits and
specification limits.

VA V-
v

In control and
product meets
specifications.

Control limits
are within
specification
limits



In control but
p some
v products do
; not meet
’ specifications

\ Specification
\ limits are
! within control
h limits

w Data from process with low
capability

wa Data from process with
medium capability




T} wr  Data from process with

/ / high capability

G Process capability: capability index

The capability index is defined as:

Cp = (allowable range)/6s = (USL - LSL)/6s

The capability index show how well a process is able to meet
specifications. The higher the value of the index, the more
capable is the process:

e Cp <1 (process is unsatisfactory)
e 1<Cp<1.6(processisof medium relative capability)
e Cp > 1.6 (process shows high relative capability)

[#l Process capability: process performance index
The capability index
« considers only the spread of the characteristic in relation

to specification limits
e assumes two-sided specification limits

The product can be bad if the mean is not set appropriately. The
process performance index takes account of the mean (m) and
is defined as:

Cpk = min[ (USL - m)/3s, (m - LSL)/3ss ]

The process performance index can also accommodate one
sided specification limits

o for upper specification limit: Cpk = (USL - m)/3s
o for lower specification limit: Cpk = (m - LSL)/3s



sl Process capability: the message

The message from process capability studies is:
 first reduce the variation in the process
« then shift the mean of the process towards the target

This procedure is illustrated in the diagram

TARGET REDUCE
VARBATION




Chapter 2

Artificial Neural Networks



2.1 Introduction

Artificial neural networks trained by supervised techniques have been documented as good
alternatives for pattern classification and prediction. These skills can be put to use for the
interpretation of process control from input of control chart samples. Through learning of
varying input conditions matched with control status, a network can decide on control status
when faced with new inputs. Besides exceeding control boundaries, control chart points can
provide information about the long term condition of the process through symptomatic shapes,
runs and drifts. If these can be correctly identified from a small sample by neural networks, then
the process can be investigated expediently. Neural networks can also forecast future control
chart point(s), thus contributing to the diagnosis of process condition in borderline conditions.

Introduction to Neural Networks

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by
the way biological nervous systems, such as the brain, process information. The key element of
this paradigm is the novel structure of the information processing system. It is composed of a
large number of highly interconnected processing elements (neurons) working in unison to solve
specific problems. ANNs, like people, learn by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning process.
Learning in biological systems involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well.

Historical background

Neural network simulations appear to be a recent development. However, this field was
established before the advent of computers, and has survived at least one major setback and
several eras.

Many important advances have been boosted by the use of inexpensive computer emulations.
Following an initial period of During this period when funding and professional support was
minimal, important advances were made by relatively few researchers. These pioneers were able
to develop convincing technology which surpassed the limitations enthusiasm, the field survived
a period of frustration and disrepute. identified by Minsky and Papert. Minsky and Papert,
published a book (in 1969) in which they summed up a general feeling of frustration (against
neural networks) among researchers, and was thus accepted by most without further analysis.
Currently, the neural network field enjoys a resurgence of interest and a corresponding increase
in funding. The first artificial neuron was produced in 1943 by the neurophysiologist Warren
McCulloch and the logician Walter Pits. But the technology available at that time did not allow
them to do too much.

Usage of Neural Networks

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise
data, can be used to extract patterns and detect trends that are too complex to be noticed by either
humans or other computer techniques. A trained neural network can be thought of as an "expert"
in the category of information it has been given to analyse. This expert can then be used to



provide projections given new situations of interest and answer "what if" questions.
Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training
or initial experience.

2. Self-Organisation: An ANN can create its own organisation or representation of the
information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured which take advantage of this
capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network
leads to the corresponding degradation of performance. However, some network
capabilities may be retained even with major network damage.

Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of conventional
computers. Conventional computers use an algorithmic approach i.e. the computer follows a set
of instructions in order to solve a problem. Unless the specific steps that the computer needs to
follow are known the computer cannot solve the problem. That restricts the problem solving
capability of conventional computers to problems that we already understand and know how to
solve. But computers would be so much more useful if they could do things that we don't exactly
know how to do.

Neural networks process information in a similar way the human brain does. The network is
composed of a large number of highly interconnected processing elements (neurons) working in
parallel to solve a specific problem. Neural networks learn by example. They cannot be
programmed to perform a specific task. The examples must be selected carefully otherwise
useful time is wasted or even worse the network might be functioning incorrectly. The
disadvantage is that because the network finds out how to solve the problem by itself, its
operation can be unpredictable.

On the other hand, conventional computers use a cognitive approach to problem solving; the way
the problem is to solved must be known and stated in small unambiguous instructions. These
instructions are then converted to a high level language program and then into machine code that
the computer can understand. These machines are totally predictable; if anything goes wrong is
due to a software or hardware fault.

Neural networks and conventional algorithmic computers are not in competition but complement
each other. There are tasks are more suited to an algorithmic approach like arithmetic operations
and tasks that are more suited to neural networks. Even more, a large number of tasks, require
systems that use a combination of the two approaches (normally a conventional computer is used
to supervise the neural network) in order to perform at maximum efficiency.



Human and Artificial Neurons - the similarities

The process of human brain learning:

Much is still unknown about how the brain trains itself to process information, so theories
abound. In the human brain, a typical neuron collects signals from others through a host of fine
structures called dendrites. The neuron sends out spikes of electrical activity through a long, thin
stand known as an axon, which splits into thousands of branches. At the end of each branch, a
structure called a synapse converts the activity from the axon into electrical effects that inhibit or
excite activity from the axon into electrical effects that inhibit or excite activity in the connected
neurons. When a neuron receives excitatory input that is sufficiently large compared with its
inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by
changing the effectiveness of the synapses so that the influence of one neuron on another
changes

Components of a neuron :

g

Cell body

Nucleus

Axon

e

Dendrites

fig6

Synapse :

fig 7

A neural network is a massively parallel distributed processor that has a natural propensity for
storing experimental knowledge and making it available for use . It resembles the brain in two
respects.:-1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the knowledge.



Artificial Neurons
We conduct these neural networks by first trying to deduce the essential features of neurons and
their interconnections. We then typically program a computer to simulate these features.

However because our knowledge of neurons is incomplete and our computing power is limited,
our models are necessarily gross idealisations of real networks of neurons.

The Neuron Model :

Cell body

Dandritas

— |
——__‘ l 1 T;resnﬂ;d

fig8

A simple neuron

An artificial neuron is a device with many inputs and one output. The neuron has two modes of
operation; the training mode and the using mode. In the training mode, the neuron can be trained
to fire (or not), for particular input patterns. In the using mode, when a taught input pattern is
detected at the input, its associated output becomes the current output. If the input pattern does
not belong in the taught list of input patterns, the firing rule is used to determine whether to fire
or not.

Complicated neurons

The previous neuron doesn't do anything that conventional conventional computers don't do
already. A more sophisticated neuron (figure 2) is the McCulloch and Pitts model (MCP). The
difference from the previous model is that the inputs are 'weighted', the effect that each input has
at decision making is dependent on the weight of the particular input. The weight of an input is a
number which when multiplied with the input gives the weighted input. These weighted inputs
are then added together and if they exceed a pre-set threshold value, the neuron fires. In any
other case the neuron does not fire.



TEACH /USE

INFUTE OUTPUT

An MCP neuron : TEACHING THEUT fig9

In mathematical terms, the neuron fires if and only if;
XIW1 + X2W2 + X3W3 +...>T

The addition of input weights and of the threshold makes this neuron a very flexible and
powerful one. The MCP neuron has the ability to adapt to a particular situation by changing its
weights and/or threshold. Various algorithms exist that cause the neuron to 'adapt’; the most used
ones are the Delta rule and the back error propagation. The former is used in feed-forward
networks and the latter in feedback networks.

2.2 Architecture of neural networks

Feed-forward networks

Feed-forward ANNs (figure 1) allow signals to travel one way only; from input to output. There
is no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward
ANNs tend to be straight forward networks that associate inputs with outputs. They are
extensively used in pattern recognition. This type of organisation is also referred to as bottom-up
or top-down.

Feedback networks

Feedback networks (figure 1) can have signals traveling in both directions by introducing loops
in the network. Feedback networks are very powerful and can get extremely complicated.
Feedback networks are dynamic; their 'state' is changing continuously until they reach an
equilibrium point. They remain at the equilibrium point until the input changes and a new
equilibrium needs to be found. Feedback architectures are also referred to as interactive or
recurrent, although the latter term is often used to denote feedback connections in single-layer
organisations.



An example of a simple Feed Forward network :
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Network layers
The commonest type of artificial neural network consists of three groups, or layers, of units: a
layer of "input" units is connected to a layer of "hidden" units, which is connected to a layer of
"output” units.

@The activity of the input units represents the raw information that is fed into the network.

@The activity of each hidden unit is determined by the activities of the input units and the
weights on the connections between the input and the hidden units.

@The behaviour of the output units depends on the activity of the hidden units and the weights
between the hidden and output units.



NETWORK LAYERS :
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This simple type of network is interesting because the hidden units are free to construct their own
representations of the input. The weights between the input and hidden units determine when
each hidden unit is active, and so by modifying these weights, a hidden unit can choose what it
represents.

We also distinguish single-layer and multi-layer architectures. The single-layer organisation, in
which all units are connected to one another, constitutes the most general case and is of more
potential computational power than hierarchically structured multi-layer organisations. In multi-
layer networks, units are often numbered by layer, instead of following a global numbering.

Perceptrons: The most influential work on neural nets in the 60's went under the heading of
‘perceptrons’ a term coined by Frank Rosenblatt. The perceptron (figure 4.4) turns out to be an
MCP model ( neuron with weighted inputs ) with some additional, fixed, pre--processing. Units
labelled A1, A2, Aj, Ap are called association units and their task is to extract specific, localised
featured from the input images. Perceptrons mimic the basic idea behind the mammalian visual
system. They were mainly used in pattern recognition even though their capabilities extended a
lot more.

figl3




2.3 The Learning Process

The memorisation of patterns and the subsequent response of the network can be categorised into
two general paradigms:

@associative mapping in which the network learns to produce a particular pattern on the set of
input units whenever another particular pattern is applied on the set of input units. The
associative mapping can generally be broken down into two mechanisms:

@auto-association: an input pattern is associated with itself and the states of input and output
units coincide. This is used to provide pattern completion, ie to produce a pattern whenever a
portion of it or a distorted pattern is presented. In the second case, the network actually stores
pairs of patterns building an association between two sets of patterns.

@ hetero-association: is related to two recall mechanisms:

@ nearest-neighbour recall, where the output pattern produced corresponds to the input pattern
stored, which is closest to the pattern presented, and

@interpolative recall, where the output pattern is a similarity dependent interpolation of the
patterns stored corresponding to the pattern presented. Yet another paradigm, which is a variant
associative mapping is classification, ie when there is a fixed set of categories into which the
input patterns are to be classified.

@regularity detection in which units learn to respond to particular properties of the input
patterns. Whereas in associative mapping the network stores the relationships among patterns, in
regularity detection the response of each unit has a particular 'meaning'. This type of learning
mechanism is essential for feature discovery and knowledge representation.



Every neural network possesses knowledge which is contained in the values of the connections
weights. Modifying the knowledge stored in the network as a function of experience implies a
learning rule for changing the values of the weights.
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Information is stored in the weight matrix W of a neural network. Learning is the determination
of the weights. Following the way learning is performed, we can distinguish two major
categories of neural networks:

@fixed networks in which the weights cannot be changed, ie dW/dt=0. In such networks, the
weights are fixed a priori according to the problem to solve.

@adaptive networks which are able to change their weights, ie dW/dt not= 0.

All learning methods used for adaptive neural networks can be classified into two major
categories:

@Supervised learning which incorporates an external teacher, so that each output unit is told
what its desired response to input signals ought to be. During the learning process global
information may be required. Paradigms of supervised learning include error-correction learning,
reinforcement learning and stochastic learning.
An important issue concerning supervised learning is the problem of error convergence, ie the
minimisation of error between the desired and computed unit values. The aim is to determine a
set of weights which minimises the error. One well-known method, which is common to many
learning paradigms is the least mean square (LMS) convergence.

@Unsupervised learning uses no external teacher and is based upon only local information. It is
also referred to as self-organisation, in the sense that it self-organises data presented to the
network and detects their emergent collective properties. Paradigms of unsupervised learning are
Hebbian lerning and competitive learning.
From Human Neurons to Artificial Neurons the aspect of learning concerns the distinction or not
of a separate phase, during which the network is trained, and a subsequent operation phase. We
say that a neural network learns off-line if the learning phase and the operation phase are distinct.
A neural network learns on-line if it learns and operates at the same time. Usually, supervised
learning is performed off-line, whereas supervised learning is performed on-line.



Transfer Function

The behaviour of an ANN (Artificial Neural Network) depends on both the weights and the
input-output function (transfer function) that is specified for the units. This function typically
falls into one of three categories:

» linear (or ramp)
> threshold
» sigmoid

For linear units, the output activity is proportional to the total weighted output.

For threshold units, the output is set at one of two levels, depending on whether the total input
is greater than or less than some threshold value.

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid
units bear a greater resemblance to real neurons than do linear or threshold units, but all three
must be considered rough approximations.

To make a neural network that performs some specific task, we must choose how the units are
connected to one another (see figure 4.1), and we must set the weights on the connections
appropriately. The connections determine whether it is possible for one unit to influence another.
The weights specify the strength of the influence.

We can teach a three-layer network to perform a particular task by using the following
procedure:

1. We present the network with training examples, which consist of a pattern of activities
for the input units together with the desired pattern of activities for the output units.

2. We determine how closely the actual output of the network matches the desired output.

3. We change the weight of each connection so that the network produces a better
approximation of the desired output.

The Back-Propagation Algorithm

In order to train a neural network to perform some task, we must adjust the weights of each unit
in such a way that the error between the desired output and the actual output is reduced. This
process requires that the neural network compute the error derivative of the weights (EW). In
other words, it must calculate how the error changes as each weight is increased or decreased
slightly. The back propagation algorithm is the most widely used method for determining the
EW.The back-propagation algorithm is easiest to understand if all the units in the network are
linear. The algorithm computes each EW by first computing the EA, the rate at which the error
changes as the activity level of a unit is changed. For output units, the EA is simply the
difference between the actual and the desired output. To compute the EA for a hidden unit in the
layer just before the output layer, we first identify all the weights between that hidden unit and
the output units to which it is connected. We then multiply those weights by the EAs of those



output units and add the products. This sum equals the EA for the chosen hidden unit. After
calculating all the EAs in the hidden layer just before the output layer, we can compute in like
fashion the EAs for other layers, moving from layer to layer in a direction opposite to the way
activities propagate through the network. This is what gives back propagation its name. Once the
EA has been computed for a unit, it is straight forward to compute the EW for each incoming
connection of the unit. The EW is the product of the EA and the activity through the incoming
connection. The back-propagation algorithm includes an extra step. Before back-propagating, the
EA must be converted into the EI, the rate at which the error changes as the total input received
by a unit is changed.

2.4 Applications of neural networks

Neural Networks in Practice

Given the description of neural networks and the way they work, neural networks have broad
applicability to real world business problems. In fact, they have already been successfully
applied in many industries.

Since neural networks are best at identifying patterns or trends in data, they are well suited for
prediction or forecasting needs including:

@sales forecasting

@industrial process control

@customer research and target marketing

@data validation

@risk management

But to give some more specific examples-ANN are also used in the following specific paradigms
recognition of speakers in communications, diagnosis of hepatitis recovery of
telecommunications from faulty software, interpretation of multi-meaning Chinese words

undersea mine detection; texture analysis; three-dimensional object recognition; hand-written
word recognition; and facial recognition.



Chapter 3

Artificial Neural Networks
in Process Control



3.1 INTRODUCTION

Artificial neural networks trained by supervised techniques have been documented as good
alternatives for pattern classification and prediction. These skills can be put to use for the
interpretation of process control from input of control chart samples. Through learning of
varying input conditions matched with control status, a network can decide on control status
when faced with new inputs. Besides exceeding control boundaries, control chart points can
provide information about the long term condition of the process through symptomatic shapes,
runs and drifts. If these can be correctly identified from a small sample by neural networks, then
the process can be investigated expediently. Neural networks can also forecast future control
chart point(s), thus contributing to the diagnosis of process condition in borderline conditions.

The project focuses first on the data representation required to successfully train a back
propagation neural network to recognize control chart patterns from input of control chart
samples. Number of inputs and preprocessing which enhance network performance are
discussed. The ability of networks to discriminate within control from out of control situations
based on small, probabilistic samples is presented. A second focus is the ability of the network to
recognize sequences of noisy data points as belonging to patterns which reflect long term
undesirable drift in the process,

Thus earning of varying input conditions matched with control status, a network can decide on
control status when faced with new inputs. Besides exceeding control boundaries, control chart
points can provide information about the long term condition of the process through
symptomatic shapes, runs and drifts.

Neural networks have been noted as being particularly advantageous for modeling systems
which contain noisy, fuzzy and uncertain elements. They learn models by iterating through a
large number of exemplar vectors. Relationships can be auto-associative (relating an input with
itself), or hetero-associative (relating an input with another output). Learning can take place
through internal grouping (self organizing or competitive learning) or through paired training
sets (supervised learning). For modeling control data, a supervised approach is preferable since
calibrated training data is usually available and it is advantageous to pre-specify the desired
output.

The most well known of supervised techniques is back propagation, which adjusts initially
randomized weights during training according to the steepest gradient along the error surface.
Weights are adjusted in proportion to their contribution to the output by recycling the squared
error signal back through the layers of weights. Typical back propagation neural networks, which
are more properly termed multi-layered perceptrons trained by back propagation, are fully
connected, feed forward only, and use a sigmoidal transfer function at the nodes to evaluate
weighted input sums. An input layer, an output layer and at least one hidden layer are required to
model nonlinear systems however it has been suggested that for analog input, a two hidden layer
network is superior.



3.2 Back-Propagation Algorithm

Back propagation Neural Network with One Hidden Layer

Back propagation was created by generalizing the Widrow-Hoff learning rule to multiple-layer
networks and nonlinear differentiable transfer functions. Input vectors and the corresponding
output vectors are used to train a network until it can approximate a function, associate input
vectors with specific output vectors, or classify input vectors in an appropriate way as defined by
you. Networks with biases, a sigmoid layer, and a linear output layer are capable
ofapproximating any function with a finite number of discontinuities.

The central idea behind this solution is that the errors for the units of the hidden layer are
determined by back-propagating the errors of the units of the output layer. For this reason the
method is often called the back-propagation learning rule. Back-propagation can also be
considered as a generalisation of the delta rule for non-linear activation functionsl and
multilayer networks



Notation

We use the following notation in our formulae.

7 an input unit;
h a hidden unit;
o0 an output unit;

xP the pth input pattern vector;

-]

the jth element of the pth input pattern vector;

o
h=]

the input to a set of neurons when input pattern vector p is clamped (i.e., presented to the
network); often: the input of the network by clamping input pattern vector p;

d? the desired output of the network when input pattern vector p was input to the network;

d? the jth element of the desired output of the network when input pattern vector p was input
to the network;

yP the activation values of the network when input pattern vector p was input to the network;

(/f the activation values of element j of the network when input pattern vector p was input to
the network;

W the matrix of connection weights;

w; the weights of the connections which feed into unit j;
wji the weight of the connection from unit j to unit k;
F; the activation function associated with unit 7;

v¥jk the learning rate associated with weight wjz:

O the biases to the units;

#; the bias input to unit j;

U; the threshold of unit 7 in Fj;

EP the error in the output of the network when input pattern vector p is input;

& the energy of the network.




TERMINOLOGY :

Output vs. activation of a unit. Since there is no need to do otherwise, we consider the output
and the activation value of a unit to be one and the same thing. That is, the output of each neuron
equals its activation value.

Bias, offset, threshold. These terms all refer to a constant (i.e., independent of the network
input but adapted by the learning rule) term which is input to a unit. They may be used
interchangeably, although the latter two terms are often envisaged as a property of the activation
function. Furthermore, this external input is usually implemented (and can be written) as a
weight from a unit with activation value 1.

Number of layers. In a feed-forward network, the inputs perform no computation and their layer
is therefore not counted. Thus a network with one input layer, one hidden layer, and one output
layer is referred to as a network with two layers. This convention is widely though not yet
universally used.

1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only one
layer of hidden units su_ces to approximate any function with _nitely many discontinuities to

Multi-layer feed-forward networks :A feed-forward network has a layered structure. Each layer
consists of units which receive their input from units from a layer directly below and send their
output to units in a layer directly above the unit. There are no connections within a layer. The Ni
inputs are fed into the first layer of Nh;1 hidden units. The input units are merely 'fan-out' units;
no processing takes place in these units. The activation of a hidden unit is a function Fi of the
weighted inputs plus a bias,. The output of the hidden units is distributed over the next layer of
Nh;2 hidden units, until the last layer of hidden units, of which the outputs are fed into a layer of
No output units

Although back-propagation can be applied to networks with any number of layers, just as for
networks with binary units it has been shown that only one layer of hidden units suffices to
approximate any function with finitely many discontinuities to arbitrary precision, provided the
activation functions of the hidden units are non-linear (the universal approximation theorem). In
most applications a feed-forward network with a single layer of hidden units is used with a
sigmoid activation function for the units.



A multi-layer network with | layers of units :
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3.3 The Generalised delta rule

Since we are using units with nonlinear activation functions, we have to generalise the
delta rule for linear functions to the set of non-linear activation functions.

The activation is a differentiable function of the total input, given by

vk = F(sf), (41)

in which
ﬁi’ = z '*-U.;'HJ_‘.:-J + .. (4.2)
J

To get the correct generalisation of the delta rule

set

aEr
¥ Jw i '

Aptwjp = — (4.3)

The error measure EF is defined as the total quadratic error for pattern p at the output units:

N,
EP =15 (dh — o), (4.4)
o=1

where @ is the desired output for unit o when pattern p is clamped. We further set F = Z E?

P
as the summed squared error. We can write
o DT ek
.dD _ (T)EI”' ‘d‘s;\_ . (4.5)
Jw dsh dwjy,
By equation {4.2) we see that the second factor is
o.P
s
! P .
5, = (4.6)
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When we define SEP
(3.5'}‘.

we will get an update rule which is equivalent to the delta rule resulting in a gradient descent on the error surface if we make the
weight changes according to:



Ay =104y (48)

The trick is to figure out what (ﬁ should be for each unit & in the network. The interesting
result, which we now derive, is that there is a simple recursive computation of these 4's which
can be implemented by propagating error signals backward through the network.

To compute 5£ we apply the chain rule to write this partial derivative as the product of two
factors, one factor reflecting the change in error as a function of the output of the unit and one
reflecting the change in the| output as a function of changes in the input. Thus, we have

oLE? OEP 0yt

= — = . 4.9
. rﬂsg 8'yi i‘).sz (4.9)
Let us compute the second factor. By equation (4.1) we see that
O n
- F (sh), (4.10)

9P
L)Sk

which is simply the derivative of the squashing function F for the kth unit, evaluated at the
net input s}, to that unit. To compute the first factor of equation (4.9), we consider two cases.
First, assume that unit & is an output unit & = o of the network. In this case, it follows from
the definition of EP that
JEP
dyo

which is the same result as we obtained with the standard delta rule. Substituting this and

S (111)

equation (4.10) in equation (4.9), we get

85 = (df — y5) Fo'(s5) (4.12)



for any output unit o. Secondly, if & i1s not an output unit but a hidden unit &k = h, we do
not readily know the contribution of the unit to the output error of the network. However,
the error measure can be written as a function of the net inputs from hidden to output layer;
EP = Ep{sf, .sg, cey 5?, ...) and we use the chain rule to write

DEP S8 OBP Ost IEP ) DEP y
oy ;@ayp - Z Ost OyF Z Z—w = Zépwho (4.13)

Substituting this in equation (4.9) yields
5 = F(s Z P who. (4.14)

Equations (4.12) and (4.14) give a recursive procedure for computing the &’s for all units in
the network, which are then used to compute the weight changes according to equation (4.8).
This procedure constitutes the generalised delta rule for a feed-forward network of non-linear
units.

Concept of The Delta Rule : When a learning pattern is clamped, the activation values are
propagated to the output units, and the actual network output is compared with the desired output
values, we usually end up with an error in each of the output units. Let's call this error eo for a
particular output unit 0. We have to bring €0 to zero. The simplest method to do this is the
greedy method: we strive to change the connections in the neural network in such a way that,
next time around, the error eo will be zero for this particular pattern. We know from the delta
rule that, in order to reduce an error,

we have to adapt its incoming weights according to
&rwho - (do T yo)yh' ("115}

That's step one. But it alone is not enough: when we only apply this rule, the weights from input
to hidden units are never changed, and we do not have the full representational power of the
feed-forward network as promised by the universal approximation theorem. In order to adapt the
weights from input to hidden units, we again want to apply the delta rule. In this case, however,
we do not have a value for _ for the hidden units. This is solved by the chain rule which does the
following: distribute the error of an output unit o to all the hidden units that is it connected to,
weighted by this connection. Differently put, a hidden unit h receives a delta from each output
unit o equal to the delta of that output unit weighted with (= multiplied by) the weight of the
connection between those units. In symbols:

Oh = 2.0 00Who



3.4 Working with Back Propagation

The application of the generalised delta rule thus involves two phases: During the first phase
the input x is presented and propagated forward through the network to compute the output
values yP for each output unit. This output is compared with its desired value d,, resulting in
an error signal 07 for each output unit. The| second phase involves a backward pass through
the network during which the error signal is passed to each unit in the network and appropriate
weight changes are calculated.

Weight adjustments with sigmoid activation function. The results from the previous
section can be summarised in three equations:

e The weight of a connection is adjusted by an amount proportional to the product of an
error signal 6, on the unit k receiving the input and the output of the unit j sending this
signal along the connection:

e [f the unit is an output unit, the error signal is given by

88 = (df — yb) F'(s5). (4.17)

Taking the activation function F as the 'sigmoid’ function

1
WP — F(sP) = — 4.18
W= F) = s (1.18)
In this case the derivative is equal to
d 1
Py — - _ -
F(s") OsP 14+ e**
1 _ P
= Grept )
1 e
T e ™)1 +e )
= YP(1—yP). (4.19)

such that the error signal for an output unit can be written as:
05 = (df — o) yo (1 — 45)- (4.20)
e The error signal for a hidden unit is determined recursively in terms of error signals of the

units to which it directly connects and the weights of those connections. For the sigmoid

activation function:

N, N
&P = f(si) Z Fwpe = y‘z(l — yi) Z P whpe. (4.21)
o=1 o=1



Learning rate and momentum. The learning procedure requires that the change in weight
is proportional to 8EP /dhw. True gradient descent requires that infinitesimal steps are taken. The
constant of proportionality is the learning rate . For practical purposes we choose a learning
rate that i1s as large as possible without leading to oscillation. One way to avoid oscillation
at large v, is to make the change in weight dependent of the past weight change by adding a
momentum term:

Awjp(t + 1) = yoyh + alwji(t), (4.22)

where t indexes the presentation number and _ is a constant which determines the effect of the
previous weight change.. When no momentum term is used, it takes a long time before the minimum
has been reached with a low learning rate, whereas for high learning rates the minimum is never

reached because of the oscillations. When adding the momentum term, the minimum will be reached
faster.

The descent in weight space. a) for small learning rate; b) for large learning rate: the
oscillations, and c) with large learning rate and momentum term added

Back Propagation Neural Network Architecture

Input 1* Hidden 2" Hidden  Output
Layer Layer Layer Layer

fig 15



Chapter 4

Application of the Neural Network
Model to the Identification of
Control Chart Patterns(CCP)



4.1 PATTERN ANALYSIS IN CONTROL CHARTS

. In such a case, one can only suspect that the process has gone out of control and if it is not
affordable to continue the process, it has to be halted to diagnose the cause, which may lead to
Control charts do not solve problems, but provide information on the basis of which we can
reasonably (in a statistical sense) presume that process is “in control” or “out of control”. Actual
analysis of the control chart is done manually and this is somewhat difficult. Proper analysis not
only requires thorough knowledge and understanding of the underlying distribution theories
associated with control charts, but the experience that only an expert can provide as well. While
using control charts, the judgement is usually left to the user. Another major limitation of the
control charts is that they only use the information about the process contained in the last
observation to decide about the state of the process. This feature makes the control chart
relatively insensitive to small shifts in the process. Furthermore, a point falling out of control
limits does not necessarily indicate an out-of-control situation unnecessary downtime in case of a
false alarm.

In view of the above observations, it can be deduced that there is a great need for an automatic
and effective identification and interpretation methodology of the control chart patterns, which
will necessarily indicate the state of the manufacturing process. Neural networks, one of the
Artificial Intelligence (Al) paradigms, can be handily used for this purpose, because of their
ability to imitate the skill of experts by capturing the knowledge implicitly contained in the
examples taken from the process. Neural networks store this knowledge which can be used in
understanding the process behaviour. For example a synthetic backpropagation network to
analyse process data. The input nodes correspond to observations in a subgroup and a single
output represents the status of a process mean (shifted or unshifted). The network was trained
with shifted and unshifted data. It was shown that the performance of the neural network is
comparable to that of control charts. There are two limiting features in this approach. First, the
network size is highly dependent on the subgroup size. Second, since the network analyses one
subgroup at a time, the Type | error (concluding that the process is out of control when it is really
in control) will be very high if the training includes small magnitudes of shifts.

Even though many research efforts were directed at the application of neural networks for
control chart pattern identification and interpretation, pertinent issues which are not addressed so
far are the following.

(i) A unique neural network model to detect all possible trends and variations in the process
(i1) Models for detecting small shifts in process states.
(iii) Consideration of a small number of subgroups in analyzing the data.

The present work deals with the identification and interpretation of the control chart patterns
(which necessarily reflects the state of the manufacturing process) through neural network
approach, which models the knowledge and judgement needed in understanding the process
behaviour. The objective is to recognize both small and large deviations and also to identify the
nature of process change to help take proper corrective actions to remedy the problem. The next
section describes the outline of the backpropagation neural network with learning rate
adaptation.



A process is generally defined as a combination of people, machines, and other equipment, raw
materials, methods, and environment that produces products as planned. In any process,
regardless of how well the process is designed and maintained, a certain amount of inherent or
natural variability may occur. In Shewhart control charts, two causes of process variations,
chance (unassignable) causes and special (assignable) causes may be seen . When chance causes,
which are inevitable, difficult to detect or identify, are in affect, a process is considered to be in a
state of statistical control. On the other hand, even if a process is in control, variations due to
machine and operator performances and characteristics of incoming materials or other causes
may occur within a stable and predictable process.

In general, a process is said to be in control, if all data points measured for a selected quality
characteristic of a product are within the control limits established by the inherent variation in a
process. However, fluctuations or unnatural behaviors due to special causes may exist even if all
data points are within the control limits. When data points show unnatural behaviors (also called
special patterns), a process is said to be out of control or beyond the expected nature of variation
because of excessive variation. If unnatural patterns are observed, special causes responsible for
the condition must be found and the necessary corrective actions need to be taken in order to
eliminate these disturbances . Each special pattern, such as trend, sudden shifts, occurs due to
different circumstances. The occurrence of a trend or recurring cycles, for example, may indicate
special causes, such as operator fatigue, tool wear, different incoming materials, voltage
fluctuations, or systematic adjustment of the process. Therefore, the necessary corrective actions
should be taken to eliminate the special causes appeared.

4.2 Neural Network Model used in CCP identification :

1. An Artificial Neural Network (ANN) model having 2 layers is used.

2. The input layer has 4 Nodes for the sample size of 4 inputs

3. The output layer has 3 Nodes for the 3 types of shifts — Mean shift, Sigma shift or No
shifts.

4. The hidden layer was fixed with 4 number of Nodes.

5. The model was trained with 75% of the normally distributed random data i.e., 750 samples of
input data.

6. Testing was performed with the rest 25% data — 250 sample set.

7. Initial Learning Rate was 0.5%

8. Momentum Rate was 0.1%

9. The whole ANN model for CCP identification was realized using Back-Propagation (BPN) algorithm

with the standard Delta rule implemented in it.



4.3 DATA GENERATION AND REPRESENTATION :

Any quantity whose variation depends on random causes is distributed according to the normal
Law

@) = —L_ o (tz=w?12%)

a2

where p and c are the mean and standard deviation, respectively. The neural network should be
trained across a wide spectrum of possible change magnitudes in order to yield satisfactory
performance over the entire range of process changes and the network must be trained with
sufficient examples in order to achieve good generalization. Without loss of generality, the
incontrol data generated is normally distributed with a mean (machine setting) of p and standard

deviation of u (calculated from process capability of the process). The out-of-control data
corresponding to the changes in mean and standard deviation are normally distributed with mean
changed from ,u and standard deviation changed from 0, respectively.

The data used in this study were generated using a computer. The data was generated according
to normal distribution as data from manufacturing is assumed to follow normal distribution.
1000 number of samples each having 4 data points for the 4 input nodes were generated., to be
able to consider different types of special patterns, which might appear on control charts, were
produced and saved into files.

The saved files consisted of a number of samples for mean shifts, sigma shifts and no shifts each
having their inherent patterns.

The samples were presented to the neural network in the form of data points both for training
(75%) and testing (25%) purposes.



4.4 NEURAL NETWORK MODEL ARCHITECTURE :

The neural network used in this study was composed of three layers. Each layer was connected to
the upper layer via randomly generated real values (weights). A sigmoidal function was used to
determine the new activation values of the neurons. The input layer was made up of 4 neurons,
represented patterns. There were three output neurons.

The ANN Model used for the CCP identification has :
1. 4 input nodes
2. 1 hidden layer having 4 nodes
3. 3 output nodes

The model was trained with BPN algorithm with the following parameters :
1. Learning rate =0.5
2. Momentum rate = 0.1

All samples were assumed to conform to rational subgrouping. Training sets of
750 samples were created with the following components:

250 Normally distributed random data with u = 10 and o = 0.1 (No shifts or In Control)
250 Normally distributed random data with p = 11 and ¢ = 0.1 (Mean shift)
250 Normallly distributed random data with u = 10 and ¢ = 0.2 (Variance shift)

After training another random set of 250 normally distributed data samples were used to test the
ANN model for CCP identification.



45 TRAINING & TESTING RESULTS::

Confusion Matrix :

[PATTERN]

ACTUAL Prediction Prediction
Prediction a0 SIEHA SHIF Totals Error¥
MEAN SHIFT a3 1] 1] 83 0.00%
MO SHIFTS 1] a3 il 84 1.19%
SIGMA SHIFT 1] 1] a2 g2 0.00% |
Actual Totals 83 83 a3 249 0.40%

Actual Ermorz IRLAIES 0.00% 1.20% 0.40%

The confusion matrix is a table summarizing the tendency of the recognizer to classify a
recognized pattern into a correct class or into any of the other seven possible (wrong) classes.
Confusion matrices, as given in provide the overall mean percentages for confusions among the
pattern classes

For a large shift in mean or variance, the neural networks performed comparably to a standard
control chart, however when the shift was more subtle, and the extra information of the raw data
itself was provided, the neural networks made slightly more than half the errors of the control
charts

The type of errors of each formulation was also different. In our experiments the manual control
chart made primarily Type Il Errors, that is missed disturbances. The neural network made both
Type | and Type Il Errors. This improvement of the neural networks' Type Il Error rate relative
to the manual control charts'. The networks were trained with the assumption that the penalties
for Type | and Type Il Errors were identical, and therefore made both kinds of errors in
approximately equal proportions. This could easily be remedied to reflect different relative
penalties for Type | and Type Il Errors by shifting the interpretive schedule for an out of control
decision, that is moving the decision boundary further from the class with the lower relative error
penalty. The errors near decision borders could be analyzed more closely by human experts or
with neural prediction of points, to achieve even better precision.

The actual data used for testing of the ANN model for CPP identification is given in the tables :



9.92 9.945 10.065 9.899

MO SHIFTS MO SHIFTS ; : B ; 1
MO SHIFTS MO SHIFTS 9977 9.97E 9.951 10031 2
MO SHIFTS MO SHIFTS 98782 10,139 10.271 10.01 =]
MO SHIFTS MO SHIFTS 9.29 9.974 10,025 10129 4
MO SHIFTS NO SHIFTS 9.987 9.954 100134 9914 5
MO SHIFTS MO SHIFTS 10,014 10,123 10,221 10036 E
MO SHIFTS MO SHIFTS 9.992 10,073 9.974 9.968 T
MO SHIFTS MO SHIFTS 10.005 10,019 9853 9963 ]
MO SHIFTS MO SHIFTS 10,111 1012 10.087 10,092 =]
MO SHIFTS MO SHIFTS 10,131 10.001 1015 10021 10
MO SHIFTS MO SHIFTS 9.996 10.077 10.08 10.051 11
MO SHIFTS NO SHIFTS 9.996 9.906 10,023 9.843 12
MO SHIFTS MO SHIFTS 10.065 9.954 9.85 9.834 13
MO SHIFTS MO SHIFTS 10,279 10.319 9839 10.025 14
MO SHIFTS MO SHIFTS 10.076 9.845 9.7 10.052 15
MO SHIFTS MO SHIFTS 9818 10,027 10,137 9919 16
MO SHIFTS MO SHIFTS 10,194 10.052 9,992 10142 17
MO SHIFTS NO SHIFTS 10.043 10.051 10107 9,993 18
MO SHIFTS MO SHIFTS 10,0458 9.97 9.973 9917 19
MO SHIFTS MO SHIFTS 9.966 10.026 10,013 9817 20
MO SHIFTS MO SHIFTS 10.041 10.052 9.962 10113 21
MO SHIFTS MO SHIFTS 9.945 10,158 9.828 10.039 22
MO SHIFTS MO SHIFTS 9.893 9.866 99682 10043 23
MO SHIFTS NO SHIFTS 9.869 10,167 9.938 9.915 24
MO SHIFTS MO SHIFTS 10,033 10,182 10.004 10103 25
MO SHIFTS MO SHIFTS 10,112 10,028 9.971 9.886 26
MO SHIFTS MO SHIFTS 9.5942 10.031 10.03 10065 27
MO SHIFTS MO SHIFTS 9.915 10.036 9.864 9.985 28
MO SHIFTS MO SHIFTS 10.094 9.92 10.05 10.097 29
ME&M SHIFT [ MEAM SHIFT 10.956 10.951 10,939 11.041 20
ME&M SHIFT | MEAMN SHIFT 10.862 10.914 10,873 11.074 Ell
MEAM SHIFT | MEAMN SHIFT 10.868 10.87 11.077 11.007 =
bt EAM SHIFT | MEAR SHIFT 11.012 10.952 10,395 11.124 33
tEAM SHIFT | MEAR SHIFT 10.979 10.778 11.038 11.034 34
MEAM SHIFT | MEAM SHIFT 10.832 11 10,942 10.906 35
ME&M SHIFT | MEAM SHIFT 11.069 10.986 11.049 10.949 2B
ME&M SHIFT | MEAMN SHIFT 10.386 10.924 11.028 10916 ar
MEAM SHIFT | MEARN SHIFT 11.14 11.015 10,914 11.028 L]
kEARN SHIFT | MMEAR SHIFT 11,012 11.025 10.9 11,279 249
[ o]
ME&M SHIFT | ME&M SHIFT 10.848 10.78 11.006 10.867 40
ME&M SHIFT | MEAM SHIFT 11.29 10.882 10.926 10.971 4
ME&M SHIFT | MEAM SHIFT 10.936 11.026 11.207 11.035 42
MEAM SHIFT | ME&M SHIFT 11.002 11.031 11.16 11.005 43
MEAM SHIFT | ME&M SHIFT 11.0928 10.73 10.934 11.148 44
MEAM SHIFT | ME&M SHIFT 10.265 10.733 10.951 10.935 45
ME&AM SHIFT | MEAM SHIFT 10.91E 11.136 10.92 11.103 46
ME&AM SHIFT | MEAM SHIFT 10.944 11.155 11.032 11.13 47
ME&M SHIFT | ME&M SHIFT 11.009 11.039 10.942 10.9459 48
ME&M SHIFT | ME&M SHIFT 10913 11.048 11.061 10,961 43
ME&M SHIFT | MEAM SHIFT 11.082 11.188 11.036 10.992 50
ME&M SHIFT | MEAM SHIFT 11.13 10.935 11.059 10.934 51
MEAM SHIFT | ME&M SHIFT 11136 10.864 11.083 11 52
MEAM SHIFT | ME&M SHIFT 10.964 10.912 11.06E 11.084 53
MEAM SHIFT | ME&M SHIFT 10.932 10.865 10.806 10.887 54
ME&AM SHIFT | MEAM SHIFT 11.119 10.954 11.011 10.305 55
ME&M SHIFT | ME&M SHIFT 10.92 10.945 11.065 10.895 56
SIGMa SHIFT | SIGMA SHIFT 9.996 9.837 9.973 10128 57
SIGMa SHIFT | SIGMA SHIFT 9.911 9.901 9.879 10.083 58
SIGMa SHIFT | SIGMA SHIFT 9.724 9.829 9.747 10.1458 53
S5IGMA SHIFT | SIGKMA SHIFT 9.735 5.741 10153 10,015 G0
SIGMa SHIFT | SIGMA SHIFT 10.023 5.904 9.797 10.248 E1
SIGMa SHIFT | SIGMA SHIFT 3.953 3.557 10.076 10.068 B2
SIGkA SHIFT | SIGRA SHIFT 9.EE3 10 9.883 9.811 E3
SIGkA SHIFT | SIGRA SHIFT 10137 9.972 10.097 9.898 E4
SIGMa SHIFT | SIGMA SHIFT 9.972 9.848 10.059 9.833 ES
SIGMa SHIFT | SIGMA SHIFT 10.28 10.03 9.828 10.056 EE
SIGMa SHIFT | SIGMA SHIFT 10,023 10.051 9.799 10.557 E7
SIGMa SHIFT | SIGMA SHIFT 9.695 9.56 10.012 9.733 E2
51GMA SHIFT | SIGMA SHIFT 10.58 3.763 3.853 5.542 E3
SIGMA SHIFT | SIGMA SHIFT 9.871 10.052 10.413 10.07 70
SIGMA SHIFT | SIGMA SHIFT 10.005 10.082 10.239 10.01 71
SIGkA SHIFT | SIGRA SHIFT 10.196 9.46 9.868 10.29E6 T2
SIGMMA SHIFT | SIGRMA SHIFT 973N 9.586 9.903 9.93 73
SIGMa SHIFT | SIGMA SHIFT 9.832 10,272 9.839 10,206 74
SIGMa SHIFT | SIGMA SHIFT 9.888 10031 10.064 10.262 75
SIGMa SHIFT | SIGMA SHIFT 10018 10.078 9.884 9.898 7E
SIGMa SHIFT | SIGMA SHIFT 9.826 10.055 10123 9.9 77
SIGkS SHIFT | SIGkA SHIFT 10165 10,275 10,072 2,004 it}




SIGMA SHIFT | SIGMa& SHIFT 10.259 9.87 10,117 EISES
SIGEMA SHIFT | SIGM&S SHIFT 10.273 9.727 10.178
SIGEMA SHIFT | SIGMaS SHIFT 59.929 9.824 10,132 ‘ID.‘IE? 81
SIGMA SHIFT | SIGMaS SHIFT 59.985 9.73 9.E13 9.774 82
SIGMA SHIFT | SIGM& SHIFT 10.238 9.959 10.021 .81 83
MEAMN SHIFT | MEAM SHIFT 10.977 10.976 10.951 11.021 o4
FMEAM SHIFT | MEAM SHIFT 10.872 11.129 11.271 11.01 {=i]
MEAMN SHIFT | MEAM SHIFT 10.89 10.974 11.025 11.129 (=15
FMEAMN SHIFT | MEAM SHIFT 10.987 10.924 11.1324 10.914 a7
MEAMN SHIFT | MEAM SHIFT 11.014 11.123 11.221 11.036 =t
MEAMN SHIFT | MEAM SHIFT 10.932 11.079 10.974 10.968 83
MEAMN SHIFT | MEAM SHIFT 11.005 11.019 10.858 10.963 30
MEAMN SHIFT | MEAM SHIFT 11.111 11.12 11.087 11.092 91
FMEAMN SHIFT | MEAM SHIFT 11.13 11.001 11.15 11.031 92
FMEAMN SHIFT | MEAM SHIFT 10.936 11.077 11.08 11.051 93
MEAMN SHIFT | MEAM SHIFT 10.936 10.906 11.023 10.843 94
FMEAMN SHIFT | MEAM SHIFT 11.065 10.954 10.85 10.834 95
MEAMN SHIFT | MEAM SHIFT 11.279 11.319 10.839 11.025 96
MEAM SHIFT | MEAR SHIFT 11.076 10.846 10.7 11.052 97
MEAM SHIFT | MEAR SHIFT 10.818 11.027 11.137 10.919 93
MEAM SHIFT | MEAR SHIFT 11.194 11.053 10,932 11.142 593
MEAM SHIFT | MEAR SHIFT 11.043 11.051 11.107 10.933 100
MEAM SHIFT | MEAM SHIFT 11.048 10.97 10.979 10917 101
MEASM SHIFT | ME&M SHIFT 10.966 11.026 11.013 10817 10z
MEAM SHIFT | ME&M SHIFT 11.041 11.062 10.962 11.113 103
MEAM SHIFT | ME&M SHIFT 10.94E6 11.1658 10.828 11.039 104
FMEAMN SHIFT | MEAM SHIFT 10.833 10.866 10,968 11.043 105
MEAMN SHIFT | MEAM SHIFT 10.869 11.1E67 10,928 10915 106
FMEAM SHIFT | MEAM SHIFT 11.023 11.182 11.004 11.103 107
MEAMN SHIFT | MEAM SHIFT 11.112 11.028 10.971 10.886 102
FMEAM SHIFT | MEAM SHIFT 10.942 11.031 11.03 11.068 103
MEAMN SHIFT | MEAM SHIFT 10.915 11.036 10.864 10.935 110
FMEAMN SHIFT | MEAM SHIFT 11.034 10.93 11.05 11.097 111
MEAMN SHIFT | MEAM SHIFT 10.947 11.006 10.928 11.037 112
WO SHIFTS NO SHIFTS 59.9938 9.918 9.937 10.064 113
WO SHIFTS NO SHIFTS 9.956 9.951 9.939 10.041 114
WO SHIFTS NO SHIFTS 9.862 59.914 9.873 10.074 115
9.868 9.87 10.077 10.007 116

MO SHIFTS
NS H

MO SHIFTS
N S H

MO SHIFTS MO SHIFTS 9.979 9772 10.032 10,034 118
MO SHIFTS MO SHIFTS 9,832 10 9,942 9,906 119
MO SHIFTS MO SHIFTS 10.069 9,996 10.049 9,949 iz0
MO SHIFTS MO SHIFTS 9,926 9,924 10.029 9916 121
MO SHIFTS MO SHIFTS 1014 10.015 9.914 10.028 122
MO SHIFTS MO SHIFTS 10.012 10.025 4.9 10.273 123
MO SHIFTS MO SHIFTS 9.645 9.78 10.006 9.867 124
MO SHIFTS MO SHIFTS 10.29 9.662 9.926 9.971 125
MO SHIFTS MO SHIFTS 9.936 10.026 10.207 10.035 126
MO SHIFTS MO SHIFTS 10.002 10,031 1015 10.005 127
MO SHIFTS MO SHIFTS 10.092 973 9,934 10,142 128
MO SHIFTS MO SHIFTS 9,865 9,793 9.951 9,995 129
MO SHIFTS MO SHIFTS 9916 10,136 9.92 10102 120
MO SHIFTS MO SHIFTS 9.944 10.155 10.032 10131 L
MO SHIFTS MO SHIFTS 10.009 10.039 9.942 9.949 132
MO SHIFTS MO SHIFTS 9.913 10.048 10.061 9.961 133
MO SHIFTS MO SHIFTS 10.052 10.188 10.036 9.932 134
MO SHIFTS MO SHIFTS 1013 9.935 10.059 9.934 135
MO SHIFTS MO SHIFTS 10136 9 564 10.029 10 136
MO SHIFTS MO SHIFTS 9,964 9912 10.066 10.024 i
MO SHIFTS MO SHIFTS 9,992 9,865 9,806 9,897 138
MO SHIFTS MO SHIFTS 10119 9,994 10011 9,905 139

SIGMA SHIFT | SIGMA SHIFT 9.695 10.012 9.657 10.074 140
SIGMA SHIFT | SIGMA SHIFT 10.333 9.656 9.665 9.597 141
SIGMA SHIFT | SIGMA SHIFT 9.674 10,033 10.054 10,102 142
SIGM2 SHIFT | SIGMA SHIFT 10159 9.956 9.754 10.073 143
SIGMA SHIFT | SIGMA SHIFT 10151 10,196 9.696 10.538 144
SIGMS SHIFT | SIGMA SHIFT 10102 9616 10.042 9,962 145
SIGMA SHIFT | SIGMS SHIFT 9,962 10.024 9,933 992 146
SIGMA SHIFT | SIGMS SHIFT 9973 10152 9,843 9917 147
SIGMA SHIFT | SIGMS SHIFT 9694 9,862 10.452 1017 142
SIGMA SHIFT | SIGMA SHIFT 10.073 10.215 10.033 10.032 149
SIGMA SHIFT | SIGMA SHIFT 10194 9.647 a.642 10.013 150
SIGMA SHIFT | SIGMA SHIFT a.702 9.95 9.663 9.54 151
SIGMA SHIFT | SIGMA SHIFT 10191 9.823 9.993 10.254 152
SIGMA SHIFT | SIGMA SHIFT 10.292 10.02 10.042 9.727 153
SIGMA SHIFT | SIGMA SHIFT 9.86 10,232 10.06 10122 164
SIGMA SHIFT | SIGMS SHIFT 10.276 10,126 9,957 ENEE] 165
SlGhA SHIFT | SlEks SHIFT N i0ie2 1027 =Wl ieE




SIGMA SHIFT | SIGMa& SHIFT 10.077 3.865 3.955 10137 157
SIGMA SHIFT | SIGMM& SHIFT 9.8902 3.758 10121 9.944 158
SIGMA SHIFT | SIGM& SHIFT 9.778 10127 10102 5.96 159
SIGMA SHIFT | SIGMA& SHIFT 9.783 9.567 10,441 5.84 160
SIGMA SHIFT | SIGMaS SHIFT 9.821 10.283 10.238 10.354 1E1
SIGMA SHIFT | SIGMA SHIFT 9.933 3.864 9.935 9.95 162
SIGMA SHIFT | SIGM& SHIFT 10.0732 10.072 10113 10.07E 163
SIGMA SHIFT | SIGM& SHIFT 9.735 10018 10.014 10.029 164
SIGMA SHIFT | SIGM& SHIFT 10,406 10.293 10.072 10128 165
SIGMA SHIFT | SIGM& SHIFT 9.62 9.927¥ 10.323 10157 1EE
SIGMA SHIFT | SIGMa& SHIFT 9.8939 3.891 10129 9.737 167
SIGMA SHIFT | SIGMa& SHIFT 9.953 3.953 3.903 10162 168
SIGMA SHIFT | SIGM& SHIFT 9.757 10.278 10.543 10.02 169
SIGMA SHIFT | SIGM& SHIFT 59.78 3.949 10.051 10.259 170
SIGMA SHIFT | SIGMa SHIFT 9.974 3.968 10.268 9.828 171
SIGMA SHIFT | SIGM& SHIFT 10.028 10.245 10.442 10172 172
SIGMA SHIFT | SIGM& SHIFT 9.983 10158 3.947 9.936 173
SIGMA SHIFT | SIGM& SHIFT 10.009 10.037 3.716 9.926 174
SIGMA SHIFT | SIGM& SHIFT 10221 10.24 10174 10184 175
SIGMA SHIFT | SIGM& SHIFT 10.262 10.001 10.301 10162 17E
SIGMA SHIFT | SIGM& SHIFT 9.932 10155 10159 1010 177
SIGMA SHIFT | SIGMa& SHIFT 9.931 3.811 10.045 9.687 178
SIGMA SHIFT | SIGM& SHIFT 1013 3.908 3.639 9.668 179
SIGMA SHIFT | SIGM& SHIFT 10.558 10.637 3.678 10.049 180
SIGMA SHIFT | SIGM& SHIFT 10151 3.633 9.4 10104 181
SIGMA SHIFT | SIGM& SHIFT 9.637 10.054 10.275 9.838 182
SIGMA SHIFT | SIGMaS SHIFT 10.389 10107 3.964 10.285 183
SIGMA SHIFT | SIGM& SHIFT 10.027 10103 10.215 9.926 194
SIGMA SHIFT | SIGMA SHIFT 10.096 9.94 3.958 9.933 185
SIGMA SHIFT | SIGMA SHIFT 9.932 10.053 10.025 9.634 186
SIGMA SHIFT | SIGM& SHIFT 10.083 10105 3.925 10226 187
SIGMA SHIFT | SIGMA& SHIFT 59.891 10.315 3.656 10.079 188
SIGMA SHIFT | SIGMa& SHIFT 9.785 3.7 3.936 10.036 189
SIGMA SHIFT | SIGM& SHIFT 9.737 10.334 3.876 59.83 190
SIGMA SHIFT | SIGM& SHIFT 10.066 10.364 10.009 10.206 191
SIGMA SHIFT | SIGMA& SHIFT 10.224 10.056 9.942 8.772 192
SIGMA SHIFT | SIGMaS SHIFT 9.8985 10.061 10.06 10137 193

9.8931 10.071 3.728 9.969 194

sIGMA SHIFT

&y

PATTERHN

NO SHIFTS

MEAM SHIFT | ME&M SHIFT 11.166 10.928 10.834 10.738 196
MEAM SHIFT | ME&M SHIFT 10.937 11.02 11.042 11.051 197
MEAMN SHIFT | ME&AM SHIFT 11.079 10.978 10,877 11.04 193
MEAMN SHIFT | ME&AMN SHIFT 11.076 11.093 10.948 11.269 193
MEAMN SHIFT | ME&M SHIFT 11.051 10.8038 11.022 10.934 200
MEAM SHIFT | MEaM SHIFT 10.984 11.017 10.966 10.36 =01
MEAMN SHIFT | ME&aM SHIFT 10.986 11.07E 10.922 10.958 202
MEAMN SHIFT | ME&AM SHIFT 10,847 10.934 11.226 11.085 203
MEAMN SHIFT | MEAMN SHIFT 11.037 11.108 11.017 11.016 204
MEAMN SHIFT | MEa&M SHIFT 11.097 10.823 10.921 11.006 205
MEAMN SHIFT | ME&M SHIFT 10.851 10.99 10.932 10.32 206
MEAM SHIFT | ME&M SHIFT 11.096 10.911 10.957 11.127 207
MEAMN SHIFT | ME&AM SHIFT 11.146 11.0 11.021 10.863 2028
MEAMN SHIFT | MEAM SHIFT 10.93 11.116 11.03 11.062 209
MEAMN SHIFT | ME&M SHIFT 11.138 11.063 10.934 10.897 210
MEAMN SHIFT | ME&M SHIFT 10.833 11.076 11.135 10.868 211
MEAM SHIFT | ME&M SHIFT 11.039 10.932 10.977 11.069 212
MEAMN SHIFT | MEAM SHIFT 10.901 10.873 11.06 10.972 213
MEAMN SHIFT | MEAM SHIFT 10.889 11.063 11.051 10.35 214
MEAMN SHIFT | ME&AMN SHIFT 10.892 10784 11221 10.32 215
MEAMN SHIFT | ME&MN SHIFT 10.911 11.142 11.119 11.177 216
MEAM SHIFT | ME&aM SHIFT 10.957 10.932 10.969 10.975 217
MEAMN SHIFT | ME&aM SHIFT 11.037 11.036 11.057 11.038 218
MEAMN SHIFT | ME&AM SHIFT 10867 11.009 11.007 11.014 219
MEAMN SHIFT | MEAM SHIFT 11.203 11.146 11.036 11.064 220
MEAMN SHIFT | MEa&M SHIFT 10.81 10.963 11.161 11.078 221
MEAM SHIFT | MEaM SHIFT 10.998 10918 10.987 11.064 222
MO SHIFTS MO SHIFTS 9.947 10.006 3.928 10.037 223
MO SHIFTS MO SHIFTS 10166 93.928 9.834 9.733 224
HNO SHIFTS NO SHIFTS 9.937 10.02 10.042 10.051 225
HNO SHIFTS HNO SHIFTS 10.079 3.978 3.877 10.04 226
KO SHIFTS KO SHIFTS 10.076 10.093 3.9458 10.269 227
MO SHIFTS MO SHIFTS 10.051 3.808 10.022 59.934 228
MO SHIFTS MO SHIFTS 9.934 10017 3.966 9.96 229
HNO SHIFTS NO SHIFTS 9.986 10.076 9.922 9.958 230
HNO SHIFTS HNO SHIFTS 9.8947 3.934 10226 10.085 231
KO SHIFTS NO SHIFTS 10.037 101038 10017 10.016 232
KO SHIFTS KO SHIFTS 10.097 3.823 3.921 10.006 233
MO SHIFTS MO SHIFTS 9,851 9.99 9,932 9.92 234




MO SHIFTS MO SHIFTS 10,096 3.91 3997 10127 235
MO SHIFTS MO SHIFTS 10.14E 10.M 10.021 9.863 236
MO SHIFTS MO SHIFTS 9.93 10116 10.03 10.062 237
MO SHIFTS MO SHIFTS 10138 10.063 9.934 9.897 238
MO SHIFTS MO SHIFTS 9.833 10.076 10.135 9.868 239
MO SHIFTS MO SHIFTS 10.039 9.932 3.977 10.063 240
MO SHIFTS NO SHIFTS 3.9Mm 9.873 10.06 3.972 24
MO SHIFTS NO SHIFTS 3.889 10.063 10.051 3.93 242
WO SHIFTS MO SHIFTS 3.832 9.784 10.221 232 243
MO SHIFTS MO SHIFTS 9.911 10.142 10.119 10177 244
MO SHIFTS MO SHIFTS 9.997 9.932 9.9e9 9.975 245
MO SHIFTS MO SHIFTS 10.037 10.036 10.057 10.038 24E
MO SHIFTS MO SHIFTS 9.867 10.003 10.007 10.014 247
MO SHIFTS MO SHIFTS 10.203 10.146 10.036 10.064 248
MO SHIFTS NO SHIFTS 3.8 9.963 10.161 10.078 243

Discussion of results :

Thus after training the ANN model with 750 samples of normal random sets of data the model

has become quite good at pattern recognition with only 1 mistaken prediction which amounts to
0.4% overall actual error .

Although the training process takes considerable computer time, the recall process is very fast.

In order to improve applicability of this approach, more patterns should be included in training.

Also, even though it is a tedious process, some research should be done to determine the optimal

values of the parameters, such as learning rate, momentum term, number of hidden layers and

neurons, which affect the performance of the neural network. The data used in this study may be
applied to different neural networks and pattern recognition techniques and results obtained from
them should be compared with each other to determine a reliable way of recognizing and

interpreting patterns, if applicable.




Chapter 5

CONCLUSIONS



Identification and interpretation of manufacturing process patterns is an important aspect of
diagnosis in a quality improvement environment. Given the occurrence of a particular event, the
diagnostic search can be reduced in length of time if one has knowledge of whether the process
change is in the mean (such as shift, trend, cycles, etc.) or in variability (such as shift in process
variability). This identification and interpretation combined with the corresponding knowledge .

of the process factors that affect mean and variability of the output, can help in correcting the
manufacturing process very early in its erratic behavior and save lot of time, wastage and effort
for the organisation. The neural network methodology presented in this work is used to solve this
statistical classification problem by identifying the shift in the process mean or variance and also
the various patterns such as trends, whenever they are present. It is seen that, the network is quite
effective in detecting small process changes when compared with control charts. Also these
changes are correctly identified from a small sample, which helps in investigating the process
expediently.

The simulated examples discussed in this paper show that the neural network developed in the
present work is a generalised pattern classification program to suit manufacturing needs and is a
good control procedure for detecting small changes in the process mean as well. Early
identification of the patterns, such as trends and shifts, can provide valuable information for real-
time process control. In a computer integrated manufacturing environment, the proposed
methodology could be used to send signals when unwanted patterns are identified which signal
an out-of-control condition, to facilitate the prevention of nonconforming products from being
produced, and also to take corrective action immediately.

Abnormal control chart patterns can provide clues to reveal potential quality problems at an early
stage, so as to eliminate the defects before they are produced. Owing to the interference, it is not
efficient to recognize control chart patterns, especially mixed patterns, by traditional techniques,
such as simple heuristics or control limits.

This paper has demonstrated that neural networks can be comparable to Shewhart control charts
for large shifts in mean or variance, and can out perform them for small shifts. Neural networks
work best when they have benefit of both raw sample data and sample statistics, although the
statistics themselves are adequate to detect large shifts. A significant benefit of the neural
approach is that a single network can model multiple control strategies simultaneously.

For shape interpretation and prediction, networks performed best with minimal noise and
maximum number of inputs. All neural networks proved capable of good quality decisions
regarding pattern identification even in light of sparse and noisy data. The predictive networks
could simultaneously predict out to five sample increments without much lost of accuracy.



Since the network training can be implemented off-line, this feature facilities the use of the
proposed model in an on-line real time mode. There are several directions for future research:

1. Many factors, e.g. learning rate and momentum factor, etc., may affect the results of neural
networks training. In the literature, the best combination of these factors was generally obtained
by experiments. It is possible to use experimental design approach to analyze the relationships of
these factors.

2. BPN, although it has good performance in pattern recognition of control charts, has a weak
point by nature. That is, it has no ‘'memory" ability. Once a new pattern set appears, it has to be
trained again by both the old training sets and the new ones. Hence, one may consider other
neural networks which possess memory, e.g. adaptive resonance theory network, to improve the
model adaptation ability in the changing environment.

3. It is possible to combine the proposed model with other neural networks or expert systems
which are to inference the relevant causes of the variations and then facilitate the automatic
quality control.

4. In this research, the proposed model has only been tested by the independent samples which
already contain the full abnormal patterns. In practice, one may consider a neural network model
with moving range sampling. For such a sampling practice, several issues, e.g. the initial state
and ARL (average run length to identify an abnormal pattern), are to be studied further.

Given the widespread use of control charts in both manufacturing and service industries, and the
current difficulties with proper interpretation of plotted results, the promising results of a neural
computing approach bear further research. Since neural networks are commonly available in
software form running on PC and workstation platforms, and will soon be practical in VLSI
format, they are viable options for statistical control in production environments.
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SUMMARY OF THE PROJECT WORK DONE ON -
IDENTIFICATION OF CONTROL CHART PATTERNS USING
NEURAL NETWORKS

ABSTRACT

Acrtificial neural networks trained by supervised techniques have been documented as good
alternatives for pattern classification and prediction. These skills can be put to use for the
interpretation of process control from input of control chart samples. Through learning of
varying input conditions matched with control status, a network can decide on control status
when faced with new inputs. Besides exceeding control boundaries, control chart points can
provide information about the long term condition of the process through symptomatic shapes,
runs and drifts. If these can be correctly identified from a small sample by neural networks, then
the process can be investigated expediently. Neural networks can also forecast future control
chart point(s), thus contributing to the diagnosis of process condition in borderline conditions.

INTRODUCTION

An Atrtificial Neural Network (ANN) is an information processing paradigm that is inspired by
the way biological nervous systems, such as the brain, process information. The key element of
this paradigm is the novel structure of the information processing system. It is composed of a
large number of highly interconnected processing elements (neurons) working in unison to solve
specific problems. ANNs, like people, learn by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning process.
Learning in biological systems involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNSs as well.

Neural networks, with their remarkable ability to derive meaning from complicated
or imprecise data, can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques. A trained neural network can be thought
of as an "expert" in the category of information it has been given to analyse.

ANN MODEL USED

An Artificial Neural Network (ANN) model having 3 layers is used. The input layer has 4 Nodes
for the sample size of 4 inputs. The output layer has 3 Nodes for the 3 types of shifts — Mean
shift, Sigma shift or No shifts. The hidden layer was fixed with 4 number of Nodes. The model
was trained with 75% of the normally distributed random data i.e., 750 samples of input data.
Testing was performed with the rest 25% data — 250 sample set. Initial Learning Rate was
0.5%.Momentum Rate was 0.1%.The whole ANN model for CCP identification was realized
using Back-Propagation (BPN) algorithm with the standard Delta rule implemented in it. Each
layer was connected to the upper layer via randomly generated real values (weights). A
sigmoidal function was used to determine the new activation values of the neurons.

RESULT

Thus after training the ANN model with 750 samples of normal random sets of data the model
has become quite good at pattern recognition with only 1 mistaken prediction which amounts to
0.4% overall actual error .Although the training process takes considerable computer time, the
recall process is very fast



EFFECTIVENESS OF USING NEURAL NETWORKS IN PROCESS CONTROL

In general control charts do not solve problems, but provide information on the basis of which
we can reasonably (in a statistical sense) presume that process is “in control” or “out of control”.
Actual analysis of the control chart is done manually and this is somewhat difficult. Proper
analysis not only requires thorough knowledge and understanding of the underlying distribution
theories associated with control charts, but the experience that only an expert can provide as
well. While using control charts, the judgement is usually left to the user. Another major
limitation of the control charts is that they only use the information about the process contained
in the last observation to decide about the state of the process. This feature makes the control
chart relatively insensitive to small shifts in the process. Furthermore, a point falling out of
control limits does not necessarily indicate an out-of-control situation unnecessary downtime in
case of a false alarm.

Neural networks process information in a similar way the human brain does.
The network is composed of a large number of highly interconnected processing elements
(neurons) working in parallel to solve a specific problem. Neural networks learn by example.
They cannot be programmed to perform a specific task. The examples must be selected carefully
otherwise useful time is wasted or even worse the network might be functioning incorrectly. The
disadvantage is that because the network finds out how to solve the problem by itself, its
operation can be unpredictable.

CONCLUSION

Identification and interpretation of manufacturing process patterns is an important aspect of
diagnosis in a quality improvement environment. Given the occurrence of a particular event, the
diagnostic search can be reduced in length of time if one has knowledge of whether the process
change is in the mean (such as shift, trend, cycles, etc.) or in variability (such as shift in process
variability). This identification and interpretation combined with the corresponding knowledge
of the process factors that affect mean and variability of the output, can help in correcting the
manufacturing process very early in its erratic behavior and save lot of time, wastage and effort
for the organisation. The neural network methodology presented in this work is used to solve this
statistical classification problem by identifying the shift in the process mean or variance and also
the various patterns such as trends, whenever they are present. It is seen that, the network is quite
effective in detecting small process changes when compared with control charts. Also these
changes are correctly identified from a small sample, which helps in investigating the process
expediently.

Given the description of neural networks and the way they work, neural networks have broad
applicability to real world business problems. In fact, they have already been successfully
applied in many industries.
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