
 1

IMPLEMENTATION OF A MSP430-BASED

ULTRASONIC DISTANCE MEASUREMENT MODULE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

in

Electrical Engineering

By

N.SIVA PRASAD & SURESH KUMAR

Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

IMPLEMENTATION OF A MSP430-BASED

ULTRASONIC DISTANCE MEASUREMENT MODULE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53188804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
in

Electrical Engineering

By
N.SIVA PRASAD & SURESH KUMAR

Under the guidance of

Prof. J.K.SATAPATHY

Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

 3

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled “Implementation of a MSP430-based Ultrasonic

Distance Measurement Module ’’ submitted by N.Siva Prasad, Roll No: 10302058 and

Suresh Kumar , Roll No: 10302065 in the partial fulfillment of the requirement for the degree

of Bachelor of Technology in Electrical Engineering, National Institute of Technology,

Rourkela , is an authentic work carried out by them under my supervision.

To the best of my knowledge the matter embodied in the thesis has not been submitted to any

other university/institute for the award of any degree or diploma.

 Professor J.K.Satapathy

 Date Department of Electrical Engineering

National Institute of Technology

Rourkela-769008

 4

ACKNOWLEDGMENT

We avail this opportunity to extend our hearty indebtedness to our guide Professor J. K.

Satapathy, Electrical Engineering Department, for his valuable guidance, constant

encouragement and kind help at different stages for the execution of this dissertation work.

We also express our sincere gratitude to Dr. P. K. Nanda, Head of the Department, Electrical

Engineering, for providing valuable departmental facilities.

Submitted by:

Suresh Kumar

 Roll No: 10302065

National Institute of

Technology

Rourkela

N.Siva Prasad

Roll No: 10302058

National Institute of

Technology

Rourkela

 5

CONTENTS

1. CERTIFICATE…………………………………………………………..…..........3
2. ACKNOWLEDGEMENT………………...……………………….……………...4
3. ABSTRACT…………………………………………………………….…………6
4. LIST OF FIGURES AND TABLES………………………………….…..........….7
5. CHAPTER 1

INTRODUCTION…..8
1.1 INTRODUCTION……………………………………………………………….......9
1.2 BACKGROUND………………………………………………………………..…...9
1.3 OBJECTIVE…………………………………………………………………….….10

6. CHAPTER 2
OVERVIEW OF MSP430E337 MICROCONTROLLERS……………………...11
2.1 SALIENT FEATURES……………………………………………………….……..12
2.2 PIN DIAGRAM & TERMINAL FUCNTIONS…………………………………….13
2.3 DESCRIPTION……………………………………………………………………...15

 7. CHAPTER 3
 HARDWARE INTERFACE –I……………………………………………...…..27
 3.1 MSP-EVK430S330 SCHEMATIC……………………………………………..….28
 3.2 MSP-EVK430S330 PART PLACEMENT……………………………………..….29
 3.3 DEVELOPEMENT FLOW……………………………………………………..….30
 3.4 PROJECT SETTINGS……………………………………………………….…..…31
 3.5 OTHER INFORMATIONS………………………………………………………...32

 8. CHAPTER 4
 HARDWARE INTERFACE-II…………………………………………..….…..35
 4.1 LCD CONNECTIONS………………………………………..……………..…….36
 4.2 LCD CONTROLLER/DRIVER FEATURES………………………………….…37
 4.3 LOOK-UP TABLE…………………………………………………………….…..40

 9. CHAPTER 5.
 IMPLEMENTATION OF ULTRASONIC DISTANCE MEASUREMENT

MODULE ……………………………………………………………………….....42
 5.1 THEORY OF OPERATION…………………………………………….…….....43
 5.2 HARDWARE IMPLEMENTATION……….………………….…………....……43
 5.3 ULTRASONIC SOFTWARE DESCRIPTION……………..……………….……47

 5.4 ASSEMBLY LANGUAGE PROGRAM………………………………...………..50

 10. RESULT………………………………………………………….…………..…..58
 11. CONCLUSION………………………………………………………….….…....59
 12. REFERENCES……………………………………………………………..……59

 6

ABSTRACT

This application report describes a distance-measuring system based on ultrasonic sound

utilizing the MSP430F413 ultralow-power microcontroller. The system transmits a burst of

ultrasonic sound waves towards the subject and then receives the corresponding echo. The

MSP430 integrated analog comparator Comparator_A is used to detect the arrival of the echo to

the system. The time taken for the ultrasonic burst to travel the distance from the system to the

subject and back to the system is accurately measured by the MSP430.

Assuming the speed of sound in air at room temperature to be 1100 ft/s, the MSP430 computes

the distance between the system and the subject and displays it using a two-digit static LCD

driven by its integrated LCD driver. The distance is displayed in inches with an accuracy of ±1

inch. The minimum distance that this system can measure is eight inches and is limited by the

transmitter’s transducer settling-time. The maximum distance that can be measured is ninety-

nine inches. The amplitude of the echo depends on the reflecting material, shape, and size.

Sound-absorbing targets such as carpets and reflecting surfaces less than two square feet in area

reflect poorly. The maximum measurable range is lower for such subjects. If the amplitude of

the echo received by the system is so low that it is not detectable by the Comparator_A, the

system goes out of range. This is indicated by displaying the error message E.

 7

LIST OF FIGURES

1.1 Architecture of MSP430E337A…………………………………………………….………10

2.1 Pin-diagram………………………………………………………………………….………13

2.2 Registers………………………………………………………………………………..……16

2.3 Status register………………………………………………………………………………..17

2.4 Memory Map …………………………………………………………………………….….18

2.5 Variation of voltage with system frequency ………………………………………….……..25

3.1 MSPEVK430S330 schematic………………………………………………………………..28

3.2 MSPEVK430S330 part placement…………………………………………………………..29

4.1 LCD connections…………………………………………………………………………….36

4.2 LCD control register…………………………………………………………………………38

4.3 LCD memory map…………………………………………………………………………...39

5.1 Hardware implementation……………………………………………………………………46

5.2 LCD display………………………………………………………………………………….58

LIST OF TABLES

2.1 Terminal functions……………………………………………………………………...……14

2.2 Electrical characteristics……………………………………………………….……….……24

2.3 Instruction Set……………………………………………………………………………….25

2.4 Address modes………………………………………………………………………………26

4.1 LCD connections…………………………………………………………………………….36

4.2 LCDM2, LCDM3, LCDM4 functions ……………………………………..……………….38

 8

Chapter 1

 INTRODUCTION

 1.1 INTRODUCTION

 1.2 BACKGROUND

 1.3 OBJECTIVE

 9

1.1 INTRODUCTION

This application report describes a distance-measuring system based on ultrasonic sound

utilizing the MSP430F413 ultralow-power microcontroller. The system transmits a burst of

ultrasonic sound waves towards the subject and then receives the corresponding echo. The

MSP430 integrated analog comparator Comparator_A is used to detect the arrival of the echo to

the system. The time taken for the ultrasonic burst to travel the distance from the system to the

subject and back to the system is accurately measured by the MSP430. Unused module pins can

be used as independent outputs.

The project was done on the evaluation kit ‘EVK-MSP430S330’ supplied by Texas

Instruments which is meant to act as a development kit using the microcontroller

‘PMS430E337AHFD’- an EPROM version of the family ‘ MSP430337A’. The corresponding

programs were developed in assembly language using ‘IAR –KICKSTART WORKBENCH’

supplied with the kit.

1.2 BACKGROUND

The MSP430 is a 16-bit RISC-based microcontroller that uses advanced timing and design

features, as well as a highly orthogonal structure, to deliver a processing core that is both

powerful and very flexible. These features allow the MSP430 to consume only 400 mA in

active mode in a typical 3-V system. TheMSP430, typically using only 2 mA in standby mode,

can wake up to fully synchronized active mode in a maximum of 6 ms. The MSP430

subfamilies incorporate various mixes of peripheral modules which result in highly integrated

systems. Figure 1.1 shows a block diagram of the MSP430x32x.

 10

Architecture of MSP430E337A

Fig 1.1

1.3 OBJECTIVE

To devise a method to incorporate ultra low power consumption in ultra sonic distance

measurement modules using MSP430 microcontroller and ultrasonic transducers (transmitter

and receiver) with the help of hex inverter and opamp (amplifier). The report describes a

program to optimize power consumption by forcing the microcontroller to several sleep states

during the operation.

 11

Chapter 2

OVERVIEW OF “MSP430E337A” MICROCONTROLLERS

 2.1 SALIENT FEATURES

2.2 PIN DIAGRAM & TERMINAL FUNCTIONS

 2.3 DESCRIPTION

 12

2.1 SALIENT FEATURES

• Low Supply Voltage Range 2.5 V – 5.5 V

• Low Operation Current, 400 µA at 1 MHz,3 V

• Ultra low-Power Consumption:

 – Standby Mode: 2 mA

 – RAM Retention Off Mode: 0.1 mA

• Five Power-Saving Modes

• Wake-Up From Standby Mode in 6 ms

• 16-Bit RISC Architecture, 300 ns Instruction Cycle Time

• Single Common 32 kHz Crystal, Internal System Clock up to 3.8 MHz

• Integrated LCD Driver for up to 120 Segments

• Integrated Hardware Multiplier Performs Signed, Unsigned on Multiply, and MAC

 Operations for Operands up to 16 × 16 Bits

• Serial Communication Interface (USART),

• Select Asynchronous UART or Synchronous SPI by Software

• Slope A/D Converter Using External Components

• 16-Bit Timer With Five Capture/Compare Registers

• Serial Onboard Programming

• Programmable Code Protection by Security Fuse

• Family Members Include:

 – MSP430C336 – 24 KB ROM, 1 KB RAM

 – MSP430C337 – 32 KB ROM, 1 KB RAM

 – MSP430P337A – 32 KB OTP, 1 KB RAM

• EPROM Version Available for Prototyping:

 – PMS430E337A

• Available in the Following Packages:

 – 100 Pin Quad Flat-Pack (QFP)

 – 100 Pin Ceramic Quad Flat-Pack (CFP)

 (EPROM Version)

 13

2.2 PIN DIAGRAM OF MSP430E337AHFD

Fig 2.1

 14

TERMINAL FUNCTIONS

 15

Table 2.1

2.3 DESCRIPTION

2.3.1 Processing unit:

The processing unit is based on a consistent and orthogonal designed CPU and instruction set.

This design structure results in a RISC-like architecture, highly transparent to the application

development, which is distinguished by ease of programming. All operations other than

program-flow instructions consequently are performed as register operations in conjunction

with seven addressing modes for source and four modes for destination operand.

2.3.2 CPU registers:

The CPU has sixteen registers that provide reduced instruction execution time. This reduces the

register-to-register operation execution time to one cycle of the processor frequency. Four of the

registers are reserved for special use as a program counter, a stack pointer, a status register, and

a constant generator. The remaining registers are available as general-purpose registers.

Peripherals are connected to the CPU using a data address and control bus and can be handled

easily with all instructions for memory manipulation.

 16

 Fig 2.2

2.3.3 Operation modes and interrupts

The MSP430 operating modes support various advanced requirements for ultra low-power and

ultra low-energy consumption. This is achieved by the intelligent management of the operations

during the different module operation modes and CPU states. The requirements are fully

supported during interrupt event handling. An interrupt event awakens the system from each of

the various operating modes and returns with the RETI instruction to the mode that was selected

before the interrupt event. The clocks used are ACLK and MCLK.ACLK is the crystal

frequency and MCLK, a multiple of ACLK, is used as the system clock.

The following five operating modes are supported:

� Active mode (AM). The CPU is enabled with different combinations of active peripheral

modules.

� Low-power mode 0 (LPM0). The CPU is disabled, peripheral operation continues, ACLK

and MCLK signals are active, and loop control for MCLK is active.

� Low-power mode 1 (LPM1). The CPU is disabled, peripheral operation continues, ACLK

and MCLK signals are active, and loop control for MCLK is inactive.

 17

� Low-power mode 2 (LPM2). The CPU is disabled, peripheral operation continues, ACLK

signal is active, and MCLK and loop control for MCLK are inactive.

� Low-power mode 3 (LPM3). The CPU is disabled, peripheral operation continues, ACLK

signal is active, MCLK and loop control for MCLK are inactive, and the dc generator for the

digital controlled oscillator (DCO)(�MCLK generator) is switched off.

� Low-power mode 4 (LPM4). The CPU is disabled, peripheral operation continues, ACLK

signal is inactive (crystal oscillator stopped), MCLK and loop control for MCLK are inactive,

and the dc generator for the DCO is switched off.

The special function registers (SFR) include module-enable bits that stop or enable the

operation of the specific peripheral module. All registers of the peripherals may be accessed if

the operational function is stopped or enabled; however, some peripheral current-saving

functions are accessed through the state of local register bits. An example is the enable/disable

of the analog voltage generator in the LCD peripheral, which is turned on or off using one

register bit. The most general bits that influence current consumption and support fast turn on

from low power operating modes are located in the status register (SR). Four of these bits

control the CPU and the system clock generator: SCG1, SCG0, OscOff, and CPUOff.

Status Register

Fig 2.3

2.3.4 Interrupt:

Software determines the activation of interrupts through the monitoring of hardware set

interrupt flag status bits, the control of specific interrupt enable bits in SRs, the establishment of

interrupt vectors, and the programming of interrupt handlers. The interrupt vectors and the

power-up starting address are located in ROM address locations 0FFFFh through 0FFE0h. Each

vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

 18

2.3.5 ROM memory organization:

Fig 2.4

2.3.6 Peripherals:

Peripherals that are connected to the CPU through a data, address, and controls bus can be

handled easily with instructions for memory manipulation.

2.3.6 Oscillator and system clock:

Two clocks are used in the system: the system (master) clock (MCLK) and the auxiliary clock

(ACLK). The MCLK is a multiple of the ACLK. The ACLK runs with the crystal oscillator

frequency. The special design of the oscillator supports the feature of low current consumption

and the use of a 32 768 Hz crystal. The crystal is connected across two terminals without any

other external components required.

The oscillator starts after applying VCC, due to a reset of the control bit (OscOff) in the status

register (SR). It can be stopped by setting the OscOff bit to a 1. The enabled clock signals

ACLK, ACLK/2, ACLK/4, or MCLK are accessible for use by external devices at output

terminal XBUF.

The controller system clocks have to deal with different requirements according to the

application and system condition. Requirements include:

� High frequency in order to react quickly to system hardware requests or events

� Low frequency in order to minimize current consumption, EMI, etc.

 19

� Stable frequency for timer applications e.g., real-time clock (RTC)

� Enable start-stop operation with minimum delay to operation function

These requirements cannot all be met with fast frequency high-Q crystals or with RC-type low-

Q oscillators. This Compromise and selected for the MSP430, uses a low-crystal frequency,

which is multiplied to achieve the desired nominal operating range:

f(system) = (N+1)f(crystal)

The crystal frequency multiplication is achieved with a frequency locked loop (FLL) technique.

The factor N is set to 31 after a power-up clear condition. The FLL technique, in combination

with a digital controlled oscillator (DCO), provides immediate start-up capability together with

long term crystal stability. The frequency variation of the DCO with the FLL inactive is

typically 330 ppm , which means that with a cycle time of 1 µs the maximum possible variation

is 0.33 ns. For more precise timing, the FLL can be used, which forces longer cycle times if the

previous cycle time was shorter than the selected one. This switching of cycle times makes it

possible to meet the chosen system frequency over a long period of time. The start-up operation

of the system clock depends on the previous machine state. During a PUC, the DCO is reset to

its lowest possible frequency. The control logic starts operation immediately after recognition of

PUC.

2.3.7 Multiplication:

The multiplication operation is supported by a dedicated peripheral module. The module

performs 16x16, 16x8,8x16, and 8x8 bit operations. The module is capable of supporting signed

and unsigned multiplication as well as signed and unsigned multiply and accumulates

operations. The result of an operation can be accessed immediately after the operands have been

loaded into the peripheral registers. No additional clock cycles are required.

2.3.8 Digital I/O:

Five eight-bit I/O ports (P0 thru P4) are implemented. Port P0 has six control registers, P1 and

P2 have seven control registers, and P3 and P4 modules have four control registers to give

maximum flexibility of digital input/output to the application:

� Individual I/O bits are independently programmable.

� Any combination of input, output, and interrupt conditions is possible.

� Interrupt processing of external events is fully implemented for all eight bits of the P0, P1,

and P2 ports.

� Read/write access is available to all registers by all instructions.

 20

The seven registers are:

� Input register contains information at the pins

� Output register contains output information

� Direction register controls direction

� Interrupt edge select contains input signal change necessary for interrupt

� Interrupt flags indicate if interrupt(s) are pending

� Interrupt enable contains interrupt enable pins

� Function select determines if pin(s) used by module or port

These registers contain eight bits each with the exception of the interrupt flag register and the

interrupt enable register which are 6 bits each. The two least significant bit (LSBs) of the

interrupt flag and enable registers are located in the special function register (SFR). Five

interrupt vectors are implemented, one for Port P0.0, one for Port P0.1, one commonly used for

any interrupt event on Port P0.2 to Port P0.7, one commonly used for any interrupt event on

Port P1.0 to Port P1.7, and one commonly used for any interrupt event on Port P2.0 to PortP2.7.

2.3.9 LCD drive:

The liquid crystal displays (LCDs) for static, 2-, 3-, and 4-MUX operation can be driven

directly. The operation of the controller LCD logic is defined by software through memory-bit

manipulation. The LCD memory is part of the LCD module, not part of data memory. Eight

mode and control bits define the operation and current consumption of the LCD drive. The

information for the individual digits can be easily obtained using table programming techniques

combined with the proper addressing mode. The segment information is stored into LCD

memory using instructions for memory manipulation.

The drive capability is defined by the external resistor divider that supports analog levels for 2-,

3-, and 4-MUX operation. Groups of the LCD segment lines can be selected for digital output

signals. The MSP430x33x configuration has four common lines, 30 segment lines, and four

terminals for adjusting the analog levels.

 21

2.3.10 Basic Timer1:

The Basic Timer1 (BT1) divides the frequency of MCLK or ACLK, as selected with the SSEL

bit, to provide low-frequency control signals. This is done within the system by one central

divider, the Basic Timer1, to support low current applications. The BTCTL control register

contains the flags which control or select the different operational functions. When the supply

voltage is applied or when a reset of the device (RST/NMI pin), a watchdog overflow, or a

watchdog security key violation occurs, all bits in the register hold undefined or unchanged

status. The user software usually configures the operational conditions on the BT during

initialization.

The Basic Timer1 has two eight bit timers which can be cascaded to a sixteen bit timer. Both

timers can be read and written by software. Two bits in the SFR address range handle the

system control interaction according to the function implemented in the Basic Timer1. These

two bits are the Basic Timer1 interrupt flag (BTIFG) and the Basic Timer1 interrupt enable

(BTIE) bit.

2.3.11 Watchdog Timer:

The primary function of the Watchdog Timer (WDT) module is to perform a controlled system

restart after software upset has occurred. If the selected time interval expires, a system reset is

generated. If this watchdog function is not needed in an application, the module can work as an

interval timer, which generates an interrupt after the selected time interval.

The Watchdog Timer counter (WDTCNT) is a 15/16-bit up counter which is not directly

accessible by software. The WDTCNT is controlled using the Watchdog Timer control register

(WDTCTL), which is an 8-bit read/write register. Writing to WDTCTL, in both operating

modes (watchdog or timer) is only possible by using the correct password in the high-byte. The

low-byte stores data written to the WDTCTL. The high-byte password is 05Ah.If any value

other than 05Ah is written to the high-byte of the WDTCTL, a system reset PUC is generated.

When the password is read its value is 069h. This minimizes accidental write operations to the

WDTCTL register. In addition to the Watchdog Timer control bits, there are two bits included

in the WDTCTL that configure the NMI pin.

 22

2.3.12 USART:

The universal synchronous/asynchronous interface is a dedicated peripheral module which

provides serial communications. The USART supports synchronous SPI (3 or 4 pin) and

asynchronous UART communications protocols, using double buffered transmit and receive

channels. Data streams of 7 or 8 bits in length can be transferred at a rate determined by the

program, or by a rate defined by an external clock. Low-power applications are optimized by

UART mode options which allow for the receipt of only the first byte of a complete frame. The

applications software then decides if the succeeding data is to be processed. This option reduces

power consumption.

Two dedicated interrupt vectors are assigned to the USART module, one for the receive and one

for the transmit channel.

2.3.13 Timer/Port:

The Timer/Port module has two 8-Bit Timer/Counters, an input that triggers one counter and six

digital outputs with 3-state capability. Both counters have an independent clock selector for

selecting an external signal or one of the internal clocks (ACLK or MCLK). One of the counters

has an extended control capability to halt, count continuously, or gate the counter by selecting

one of two external signals. This gate signal sets the interrupt flag if an external signal is

selected and the gate stops the counter. Both timers can be read to and written from by software.

The two 8-Bit Timer/Counters can be cascaded to form a 16-bit counter. A common interrupt

vector is implemented. The interrupt flag can be set by three events in the 8-Bit Timer/Counter

mode (gate signal or overflow from the counters) or by two events in the 16-bit counter mode

(gate signal or overflow from the MSB of the cascaded counter).

2.3.14 slope A/D conversion:

Slope A/D conversion is accomplished with the Timer/Port module using external resistor(s) for

reference (Rref), using external resistor(s) to the measured (Rmeas), and an external capacitor.

The external components are driven by software in such a way that the internal counter

measures the time that is needed to charge or discharge the capacitor. The reference resistor’s

(Rref) charge or discharge time is represented by Nref counts. The unknown resistors (Rmeas)

charge or discharge time is represented by Nmeas counts. The unknown resistor’s value Rmeas is

the value of Rref multiplied by the relative number of counts (Nmeas/Nref). This value determines

resistive sensor values that correspond to the physical data, for example temperature, when an

NTC or PTC resistor is used.

 23

2.3.15 Timer A

The Timer A module (see Figure1) offers one sixteen bit counter and five capture/compare

registers. The timer clock source can be selected to come from an external source TACLK

(SSEL=0), the ACLK (SSEL=1), or MCLK (SSEL=2 or SSEL=3). The clock source can be

divided by one, two, four, or eight. The timer can be fully controlled (in word mode) since it can

be halted, read, and written. It can be stopped or run continuously. It can count up or count

up/down using one compare block to determine the period. The five capture/compare blocks are

configured by the application software to run in either capture or compare mode. The capture

mode is primarily used to measure external or internal events with any combination of positive,

negative, or both edges of the clock. The clock can also be stopped in capture mode by

software. One external event (CCISx=0) per capture block can be selected. If CCISx=1, the

ACLK is the capture signal; and if CCISx=2 or CCISx=3, software capture is chosen. The

compare mode is primarily used to generate timing for the software or application hardware or

to generate pulse-width modulated output signals for various purposes like D/A conversion

functions or motor control. An individual output module, which can run independently of the

compare function or is triggered in several ways, is assigned to each of the five capture/compare

registers. Two interrupt vectors are used by the Timer_A module. One individual vector is

assigned to capture/compare block CCR0 and one common interrupt vector is assigned to the

timer and the other four capture/compare blocks. The five interrupt events using the common

vector are identified by an individual interrupt vector word. The interrupt vector word is used to

add an offset to the program counter to continue the interrupt handler software at the correct

location. This simplifies the interrupt handler and gives each interrupt event the same interrupt

handler overhead of 5 cycles.

2.3.16 8-Bit Timer/Counter

The 8-bit interval timer supports three major functions for applications:

� Serial communication or data exchange

� Plus counting or plus accumulation

� Timer

The 8-Bit Timer/Counter peripheral includes the following major blocks: an 8-bit up-counter

with preload register, an 8-bit control register, an input clock selector, an edge detection (e.g.

start bit detection for asynchronous protocols), and an input and output data latch, triggered by

the carry-out-signal from the 8-Bit Timer/Counter. The 8-Bit Timer/Counter counts up with an

input clock, which is selected by two control bits from the control register. The four possible

 24

clock sources are MCLK, ACLK, the external signal from terminal P0.1, and the signal from

the logical AND of MCLK and terminal P0.1. Two counter inputs (load, enable) control the

counter operation. The load input controls load operations. A write-access to the counter results

in loading the content of the preload register into the counter. The software writes or reads the

preload register with all instructions. The preload register acts as a buffer and can be written

immediately after the load of the counter is completed. The enable input enables the count

operation. When the enable signal is set to high, the counter will count-up each time a positive

clock edge is applied to the clock input of the counter.

Electrical characteristics over recommended operating free-air temperature

range (unless otherwise noted)

Table 2.2

 25

Variation of system frequency with supply voltage

Fig 2.5

2.3.17 Instruction Set:

The instruction set for this register-register architecture provides a powerful and easy-to-use

assembly language. The instruction set consists of 51 instructions with three formats and seven

addressing modes. Table 2.3 provides a summation and example of the three types of instruction

formats; the address modes are listed in Table 2.4.

Table 2.3

Instructions that can operate on both word and byte data are differentiated by the suffix .B when

a byte operation is required.

Examples: Instructions for word operation: Instructions for byte operation:

MOV EDE,TONI MOV.B EDE,TONI

ADD #235h,&MEM ADD.B #35h,&MEM

PUSH R5 PUSH.B R5

SWPB R5

 26

Table 2.4

Computed branches (BR) and subroutine calls (CALL) instructions use the same address modes

as the other instructions. These addressing modes provide indirect addressing, ideally suited for

computed branches and calls. The full use of this programming capability permits a program

structure different from conventional 8- and 16-bit controllers. For example, numerous routines

can easily be designed to deal with pointers and stacks instead of using flag type programs for

flow control.

 27

Chapter 3

HARDWARE INTERFACE-I

 3.1 MSP- EVK4430S330 SCEMATIC

 3.2 MSP-EVK430S330 PART PLACEMENT

 3.3 DEVELOPMENT FLOW

 3.4 PROJECT SETTINGS

 3.5 OTHER INFORMATIONS

 28

3.1 MSP-EVK430S330 SCHEMATIC:

Fig 3.1

 29

3.2 MSP-EVK430S330 PART PLACEMENT:

Fig 3.2

 30

3.3 DEVELOPEMENT FLOW

Applications are developed in assembler and/or C using the Workbench, and they are debugged

using CSPY.C-SPY can be configured to operate with the EVK, or with a software simulation

of the MSP430device. When targeting the EVK, applications are best downloaded into the

device RAM memory where they can be run and debugged (using breakpoints and single step).

Also, applications can be downloaded into RAM very quickly. Using the Serial Programming

Adapter, it is possible to program applications into the device EPROM. Breakpoints and single

step cannot be used in EPROM, and changes to the EPROM may require that the EPROM be

erased (which requires many minutes of exposure to UV light). It is greatly easier to develop an

application in RAM than in EPROM. However, unlike EPROM, RAM memory is volatile (i.e.,

its contents is lost when device power is removed).

C-SPY operates in conjunction with the ROM-Monitor. The ROM-Monitor is an application

what executes in the MSP430 on the target EVK. Note: A ROM-Monitor must be present in the

EVK MSP430 if it is to be controlled by C-SPY. Basic C-SPY commands (read memory, read

registers, single step, etc.) are sent to the ROM-Monitor where they are executed. The results of

the command execution are returned to C-SPY where they are displayed. C-SPY and the ROM-

Monitor communicate using a 4800 baud serial interface.

Using Kickstart

The Kickstart development environment is limited. The following restrictions are in place:

1. The C compiler has no support for floating-point arithmetic, and it will not generate assembly

code output.

2. The linker will link a maximum of 2K bytes code originating from C source (but an unlimited

amount of code originating from assembler source).

3. C-SPY does not support code profiling.

4. The IAR Simulator will input a maximum of 400 C source lines (but an unlimited number of

assembler source lines). The TI Simulator has no such limitations. A “full” (i.e., unrestricted)

version of the software tools can be purchased from IAR. A “mid-featured” tool

set – called Baseline, with an 8K byte C code size limitation and no floating-point arithmetic –

is also available.

 31

3.4 PROJECT SETTINGS

1. Choose the “–v0, 310/320 series (no hardware multiplier)” when developing with MSP430

devices without a hardware multiplier. Choose the “–v1, 330 series (hardware multiplier

present)” when developing with MSP430 devices with a hardware multiplier. (GENERAL,

TARGET)

2. Enable Debug Information in the compiler. (ICC430, DEBUG)

3. Enable Generate Debug Information in the assembler. (A430, CODE GENERATION)

4. Enable Debug Info in the linker Format section. (XLINK, OUTPUT)

5. Override the XCL File Name. Refer to System Files below. (XLINK, INCLUDE)

6. Override and select the correct Chip Description for C-SPY. Refer to System Files below.

(CSPY, SETUP)

7. Configure the ROM-monitor: Suppress download of ROM-Monitor, and Remap interrupt

vectors of the Application. Refer to the IAR ROM-Monitor Supplement for an explanation of

these settings.

8. Select the C-SPY driver: Select Simulator to debug on the simulator. Select ROM-Monitor to

debug on the EVK. (CSPY, SETUP). Select the active serial port in SERIAL PORT and

configure the settings in the ROM-monitor tab: 4800-Even-8-2-None (addition information

about the settings can be found in the ROM-Monitor Supplement).

9. The ROM-Monitor makes use of R4. When using the C-compiler, select Exclude R4

(ICC430, CODEGENERATION)

10. Avoid the use of absolute pathnames when referencing files. Instead, use the relative

pathname keywords $TOOLKIT_DIR$ and $PROJ_DIR$. Refer to the IAR documentation for

a description of these keywords. The use of relative pathnames will permit projects to be moved

easily, and projects will not require modification when IAR systems are upgraded (say, from

Kickstart, or Baseline, to full).

System Files:

The following configuration and special files are provided to facilitate development of MSP430

applications under Kickstart/MSP-EVK430S3x0:

1. Linker control file for point 5. above that supports assembler development in the '32x

device:$TOOLKIT_DIR$\icc430\Lnk430KSrom_320A.xcl

Linker control file for point 5. above that supports assembler development in the '33x device.:

 32

$TOOLKIT_DIR$\icc430\Lnk430KSrom_330A.xcl

2. Linker control file for point 5. above that supports C development in the '32x device:

 $TOOLKIT_DIR$\icc430\Lnk430KSrom_320.xcl

 Linker control file for point 5. above that supports C development in the '33x device:

 $TOOLKIT_DIR$\icc430\Lnk430KSrom_330.xcl

3. Chip Description file for point 6. above that supports debugging the ‘32x device:

$TOOLKIT_DIR$\cw430\msp430E325.ddf

4. Chip Description file for point 6. above that supports debugging the ‘33x device:

$TOOLKIT_DIR$\cw430\msp430E337.ddf

5. Device definition “#include” files:

$TOOLKIT_DIR$\inc\msp430x32x.h

$TOOLKIT_DIR$\inc\msp430x33x.h

6. C library files:

$TOOLKIT_DIR$\lib\cl430ks.r43 // For ‘3xx devices without hardware multiplier.

$TOOLKIT_DIR$\lib\cl430ksm.r43 // For ‘3xx devices with hardware multiplier.

// For ‘3xx devices without hardware multiplier, Position Independent Code.

$TOOLKIT_DIR$\lib\cl430ks_pic.r43

// For ‘3xx devices with hardware multiplier, Position Independent Code.

$TOOLKIT_DIR$\lib\cl430ksm_pic.r43

3.5 OTHER INFORMATIONS

1. The state of the machine (registers, memory, etc.) is undefined following a reset. The only

exception to the above statement is that the PC is loaded with the word at 0xfffe (i.e., the reset

vector).

2. A common MSP430 “mistake” is to fail to disable the Watchdog mechanism; the Watchdog

is enabled by default, and it will reset the device if not disabled or properly handled by your

application. Refer to Known Problems 15.

3. C-SPY is capable of downloading data into RAM memory (without using a PRGS). A PRGS

is required to download/program EPROM memory.

4. C-SPY is capable of debugging applications that utilize interrupts and low power modes. It is

not possible to single step beyond an instruction that enables a low power mode as the

instruction effectively turns off the device. Refer to Known Problems 20.

 33

5. C-SPY is incapable of accessing the device registers and memory while the device is running.

The user must stop the device in order to access device registers and memory.

6. When adding source files to a project, do not add files that are #included by source files that

have already been added to the project (say, an .h file within a .c or .s43 file). These files will be

added to the project file hierarchy automatically.

7. In assembler, enclosing a string in double-quotes (“string”) automatically prepends a zero

byte to thestring. Enclosing a string in single-quotes (‘string’) does not.

8. When using the compiler or the assembler, if the last character of a source line is backslash

(\), thes ubsequent carriage return/line feed is ignored (i.e., it is as if the current line and the next

line are a single line). When used in this way, the backslash character is a “Line Continuation”

character.

9. C-SPY implements breakpoints and single step by temporarily replacing user instructions

with trap (a.k.a. breakpoint) instructions. For this reason, breakpoints and single step can only

occur while the CPU is executing from RAM memory. It is not possible to set a breakpoint or

single step through EPROM.

The MSP-EVK430S320 has 352 bytes of RAM available for the user program.

The MSP-EVK430S330 has 864 bytes of RAM available for the user program.

It is possible to develop a total system with the EVK by using a modular approach to work with

the limited resources. Program fragments can be developed and tested within the available

RAM, and then programmed into EPROM once they are complete. The linker (XLINK) is then

used to manage references to the completed program fragments.

C-SPY does provide a non-real time data breakpoint mechanism; it is possible to associate with

an address breakpoint an expression that C-SPY evaluates when the breakpoint is hit. If the

expression is FALSE, program execution resumes. And, if the expression is TRUE, C-SPY

halts the program execution and displays the machine state. The breakpoint expression can be

arbitrarily complex. Refer to the C-SPY documentation for a description of this data breakpoint

mechanism.

10. The TI Simulator for Kickstart fully simulates the MSP430, including all peripheral

modules and interrupts.

11. The linker output format must be “Debug info” or “Debug info with terminal I/O” (.d43)

for use with C-SPY. If the linker output format is .txt, the .d43 file is not updated and

subsequent C-SPY sessions will utilize the existing .d43 file when present. Thus, you can loose

synchronization between the source and the code being debugged. Do not launch C-SPY when

you have “Other” output file formats elected for the XLINK options.

 34

12. Position Independent versions of the C libraries are provided. The libraries are named

cl430ks_pic.r43 (no support for hardware multiply) and cl430ksm_pic.r43 (support for

hardware multiply).

13. Within the C libraries that support devices with a hardware multiplier (cl430ksm.r43,

cl430ksm_pic.r43), interrupts are disabled during critical sections of the floating-point

functions.

14. Within C-SPY, (most) state information (breakpoint settings, etc.) can be preserved by

selecting OPTIONS->SETTINGS->WINDOW SETTINGS->GENERAL->RESTORE

STATES). It is noted the feature does not take effect until the next C-SPY session (i.e., C-SPY

must be stopped and restarted to enable this feature).

15. It is possible to mix assembler and C programs within the Workbench. TI is developing an

application note describing how this is achieved.

 35

Chapter 4

HARDWARE INTERFACE –II

 4.1 LCD CONNECTIONS

 4.2 LCD CONTROLLER/DRIVER FEATURES

 4.3 LOOK UP TABLE

 36

4.1 LCD CONNECTIONS

Fig 4.1

LCD is connected to EVK as follows:

Table 4.1

 37

4.2 LCD CONTROLLER/DRIVER FEATURES

The LCD controller/driver features are:

_ Display memory

_ Automatic signal generation

_ Support for 4 types of LCDs:

_ Static

_ 2 MUX, 1/2 bias

_ 3 MUX, 1/3 bias

_ 4 MUX, 1/3 bias

_ Multiple frame frequencies

_ Unused segment outputs may be used as general-purpose outputs.

_ Unused display memory may be used as normal memory

_ Operates using the basic timer with the auxiliary clock (ACLK).

4.2.1 LCD TIMING GENERATION

LCD Timing Generation

The LCD controller uses the fLCD signal from the Basic Timer1 to generate the timing for

common and segment lines. The frequency fLCD of signal is generated from ACLK. Using a

32,768-Hz crystal ,the fLCD frequency can be 1024 Hz, 512 Hz, 256 Hz, or 128 Hz. Bits

FRFQ1and FRFQ0 allow the correct selection of frame frequency. The proper frequency fLCD

depends on the LCD’s requirement for framing frequency and LCD multiplex rate, and is

calculated by:

fLCD = 2 × MUX rate × fFraming

A 3 MUX example follows:

LCD data sheet: fFraming = 100 Hz 30 Hz

FRFQ: fLCD = 6 × fFraming

 38

fLCD = 6 × 100 Hz = 600 Hz ... 6 × 30 Hz = 180 Hz

Select fLCD: 1024 Hz, 512 Hz, 256 Hz, or 128 Hz

fLCD = 32,768/128 = 256 Hz FRFQ1 = 1; FRFQ0 = 0

4.2.2 LCD CONTROL REGISTER

The LCD control register contents define the mode and operating conditions.The LCD module

is byte structured and should be accessed using byte instructions (suffix .B). All LCD control

register bits are reset with a PUC signal.

Fig 4.2

Table 4.2

The primary function of the LCDM2 bit is to support flashing or blinking the LCD. The

LCDM2 bit is logically ANDed with each segment’s display memory value to turn each LCD

segment on or off. WhenLCDM2=1, each LCD segment is on or off according to the LCD

display memory. When LCDM2=0, each LCD segment is off, therefore blanking the LCD.

 39

4.2.3 LCD MEMORY

The LCD memory map is shown in Figure 4.3. Each individual memory bit corresponds to one

LCD segment. To turn on an LCD segment the memory bit is simply set. To turn off an LCD

segment, the memory is reset. The mapping of each LCD segment in an application depends on

the connections between the MSP430 and the LCD and on the LCD pinout. Examples for each

of the four modes follow including an LCD with pin out, the’430-to-LCD connections, and the

resulting data mapping.

Fig 4.3

 40

4.3 LOOK UP TABLE

a equ 01h

b equ 02h

c equ 10h

d equ 04h

e equ 80h

f equ 20h

g equ 08h

h equ 40h

Character Definitions

LCD_Tab

 DB a+b+c+d+e+f ; displays "0"

 DB b+c ; displays "1"

 DB a+b+d+e+g ; displays "2"

 DB a+b+c+d+g ; displays "3"

 DB b+c+f+g ; displays "4"

 DB a+c+d+f+g ; displays "5"

 DB a+c+d+e+f+g ; displays "6"

 DB a+b+c ; displays "7"

 DB a+b+c+d+e+f+g ; displays "8"

 DB a+b+c+d+f+g ; displays "9"

 DB 0 ; displays ":" blank

 DB g ; displays ";" -

 DB a+d+e+f ; displays "<" [

 DB d+g ; displays "="

 DB a+b+c+d ; displays ">"]

 DB a+b+e+g ; displays "?"

 DB a+b+d+e+f+g ; displays "@"

 DB a+b+c+e+f+g ; displays "A"

 DB c+d+e+f+g ; displays "B" b

 DB a+d+e+f ; displays "C"

 DB b+c+d+e+g ; displays "D" d

 41

 DB a+d+e+f+g ; displays "E"

 DB a+e+f+g ; displays "F"

 DB a+c+d+e+f+g ; displays "G"

 DB b+c+e+f+g ; displays "H"

 DB b+c ; displays "I"

 DB b+c+d+e ; displays "J"

 DB 0 ; displays "K"

 DB d+e+f ; displays "L"

 DB a+b+c+e+f ; displays "M"

 DB c+e+g ; displays "N" n

 DB c+d+e+g ; displays "O"

 DB a+b+e+f+g ; displays "P"

 DB 0 ; displays "Q"

 DB e+g ; displays "R"

 DB a+c+d+f+g ; displays "S"

 DB d+e+f+g ; displays "T" t

 DB c+d+e ; displays "U" u

 DB 0 ; displays "V"

 DB 0 ; displays "W"

 DB 0 ; displays "X"

 DB b+c+d+f+g ; displays "Y"

 DB a+b+d+e+g ; displays "Z" 2

 42

CHAPTER 5

IMPLEMENTATION OF ULTRASONIC DISTANCE

MEASUREMENT MODULE

 5.1 THEORY OF OPERATION

 5.2 HARDWARE IMPLEMENTATION

 5.3 ULTRASONIC SOFTWARE DESCRIPTION

 5.4 ASSEMBLYLANGUAGE PROGRAM

 43

5.1 THEORY OF OPERATION

This application is based upon the reflection of sound waves. Sound waves are defined as

longitudinal pressure waves in the medium in which they are traveling. Subjects whose

dimensions are larger than the wavelength of the impinging sound waves reflect them. The

reflected waves are called the echo. If the speed of sound in the medium is known and the time

taken for the sound waves to travel the distance from the source to the subject and back to the

source is measured, the distance from the source to the subject can be computed accurately. This

is the measurement principle of this application. Here the medium for the sound waves is air,

and the sound waves used are ultrasonic, since it is inaudible to humans.

Assuming that the speed of sound in air is 1100 feet/second at room temperature and that the

measured time taken for the sound waves to travel the distance from the source to the subject

and back to the source is t seconds, the distance d is computed by the formula d=1100 X 12 X t

inches. Since the sound waves travel twice the distance between the source and the subject, the

actual distance between the source and the subject will be d/2.

5.2 HARDWARE IMPLEMENTATION

The devices used to transmit and receive the ultrasonic sound waves in this application are 40-

kHz ceramic ultrasonic transducers. The MSP430 drives the transmitter transducer with a 12-

cycle burst of 40-kHz square-wave signal derived from the crystal oscillator, and the receiver

transducer receives the echo. The Timer_A in the MSP430 is configured to count the 40-kHz

crystal frequency such that the time measurement resolution is 25 µs, which is more than

adequate for this application. The measurement time base is very stable as it is derived from a

Quartz-crystal oscillator. The echo received by the receiver transducer is amplified by an

operational amplifier and the amplified output is fed to the Comparator_A input. The

Comparator_A senses the presence of the echo signal at its input and triggers a capture of

Timer_A count value to capture compare register CCR1. The capture is done exactly at the

instant the echo arrives at the system. The captured count is the measure of the time taken for

the ultrasonic burst to travel the distance from the system to the subject and back to the system.

The distance in inches from the system to the subject is computed by the MSP430 using this

measured time and displayed on a two-digit static LCD. Immediately after updating the display,

the MSP430 goes to LPM3 sleep mode to save power.

 44

The Basic Timer1 is programmed to interrupt the MSP430 every 205 milliseconds. The

interrupt signal from the Basic Timer1 wakes up the MSP430 to repeat the measurement cycle

and update the display.

Figure 5.3 shows the circuit schematic diagram of this application. The MSP430F413 (U1) is

the core of this system. LCD1 is a two-digit low-voltage static LCD driven by the integrated

LCD driver. R03 is connected to VSS, and R13 and R23 are left open for static-LCD-drive

mode operation of the LCD peripheral. A 40-kHz crystal X1 is conveniently chosen for the low-

frequency crystal oscillator to match the resonant frequency of the ultrasonic transducers used in

this application. R12 serves as the pullup resistor for the reset line, and the integrated brownout-

protection circuit takes care of brownout conditions. C9 provides power-supply decoupling to

the MSP430 and is located close to the power supply lines of the device. A 14-pin box header

(J1) allows JTAG interface to the MSP430 to provide in-circuit debugging and programming

using the MSP430 flash emulation tool. LED1 is provided to indicate measurement cycles. Port

pin P1.5 is configured to output the buffered 40-kHz square-wave ACLK required by the

ultrasonic transmitter.

The output drive circuit for the transducer is powered directly from the 9-V battery and provides

18 VPP drive to the ultrasonic transmitter. The 18 VPP is achieved by a bridge configuration

with hex inverter gates U4-CD4049. One inverter gate is used to provide a 180-degrees phase-

shifted signal to one arm of the driver. The other arm is driven by the in-phase signal. This

configuration doubles the voltage swing at the output and provides the required 18 VPP to the

transmitter transducer. Two gates are connected in parallel so that each arm can provide

adequate current drive to the transducer. Capacitors C6 and C7 block the dc to the transducer.

Since the CD4049 operates on 9-V and the MSP430 operates on a VCC of 3.6 V, there is a

logic level mismatch between the MSP430 and the output driver circuit.

 45

Bipolar transistor Q1 acts as a logic-level shifter between these two logic levels. Operational

amplifier U3 is the five-pin high-slew-rate TI operational amplifier TLV2771. This amplifier

has a high-gain bandwidth and provides sufficiently high gain at 40 kHz. The operational

amplifier is connected in an inverting amplifier configuration. R7 and R5 set the gain to 55 and

C5 provides high-frequency roll off. R3 and R4 bias the non inverting input to a virtual mid rail

for single-supply operation of the operational amplifier. The amplified ultrasonic signal swings

above and below this virtual mid rail. The high Q of transducer RX1 provides selectivity and

rejection of unwanted frequencies other than 40 kHz. The output of the operational amplifier is

connected to the Comparator_A CA0 input of the MSP430 via port pin P1.6. The

Comparator_A reference is internally selected to be 0.5VCC. When no ultrasonic echo is

received, the voltage level at CA0 is slightly lower than the reference at CA1. When an echo is

received, the voltage level increases above the reference and toggles the Comparator_A output

CAOUT. R3 can be fine-tuned for the required sensitivity and the measurable range can be

optimized.

The MSP430 and the ultrasonic signal amplifier circuit are powered by a regulated 3.6-V supply

derived from the 9-V battery via TI LDO TPS77001. Resistors R1 and R2 program the regulator

output voltage to 3.6 V. C1 and C2 are the recommended supply capacitors for correct

functioning of the regulator. The transmitter driver is powered directly from the 9-V battery.

Switch S1 functions as the power on switch for this application.

 46

CIRCUIT SCHEMATIC

Fig 5.1

 47

5.3 ULTRASONIC SOFTWARE DESCRIPTION

5.3.1 INITIALIZE DEVICE

This subroutine initializes and configures the peripherals used. The Watchdog Timer is disabled

first. A software delay is provided to allow the low-frequency oscillator to stabilize. The FLL+

multiplier is set to 64 to produce an MCLK frequency of 2.56 MHz. P1.0 is configured as an

output for the LED. The unused port pins are configured as outputs and port pin P1.5 is

configured to output the 40-kHz buffered ACLK frequency. The Basic Timer1 is enabled and

configured to provide a 150-Hz LCD frequency and to interrupt the CPU every 205

milliseconds to initiate a measurement cycle. The Comparator_A is configured with 0.5VCC

internal reference and the CAPD bits are set to disable the input buffers for the comparator-

input pins. The LCD module is turned on and configured for static-mode operation to drive the

two-digit static LCD in the application. The LCD memory locations are cleared so that the

initial LCD display is 00. The Basic Timer1 interrupt and the global interrupt enable are then

enabled to allow the Basic Timer1 to periodically interrupt the CPU.

5.3.2 MAIN LOOP

Main loop updates the LCD with the value stored in the DIGITS buffer and then puts the

MSP430 to LPM3 sleep mode. The MSP430 remains in sleep mode until a Basic Timer1

interrupt occurs and BT_ISR returns it to active mode. Now a measurement cycle is initiated.

Timer_A is configured to 16-bit up mode and ACLK is selected as the clock source for

Timer_A. CCR1 is set to the compare mode with a value of 12 so as to output a burst of 12

cycles of 40 kHz on P1.5. A 36-ACLK cycles delay follows to allow the output transducer to

settle. This is realized by setting CCR1 to the compare mode with a value of 36. The MSP430

stays in LPM0 during these CCR1-compare wait states.

Now the system is set to receive the echo via the receiver transducer. The Comparator_A is

configured to wait for the echo and it provides a capture interrupt at the instant the echo arrives.

The Timer_A count is captured in capture-compare register CCR1. This value is the measure of

the time it took the ultrasonic burst to travel the distance from the transmitter transducer to the

subject and back to the receiver transducer. The count value is adjusted by adding 48 to

compensate for the time lost in the 12-cycle burst and the 36-cycle transducer settling time

delay. The adjusted value in CCR1 represents the exact time interval from the instant of the start

 48

of the burst to the instant of the start of the echo at the system. Next, the math subroutine is

called to compute the actual distance in inches and return the result. If the system is out of

range, the echo signal is not received and the Comparator_A does not provide a capture

interrupt. The MSP430 stays in LPM0 until the next Basic Timer1 interrupt wakes it up. The

CAIFG bit in the CCTL1 control register is then tested to make sure that the echo was never

received. To indicate this condition, a value of 0xBE is stored in DIGITS to display an E on the

LCD. The program finally loops back to Main loop to update the LCD and go back to LPM3

sleep mode. The next Basic Timer1 interrupt returns the MSP430 to active mode to repeat the

program execution sequence.

5.3.3 MATHEMATICAL CALCULATIONS

The Math_Calc subroutine takes care of the mathematical calculations required by this

application. The adjusted 16-bit value from CCR1 is stored in the variable Result. This value is

the representation of the time it takes the ultrasonic burst to travel the distance from the system

to the subject and back to the system. Since Timer_A counts in 25 µs steps, the equivalent value

in time will be Result X 25 µS. Assuming the speed of sound as 1100 ft/s at room temperature,

the Result from the Timer_A count works out to be six counts per inch of distance. Therefore,

dividing the Result by six produces the required value of the distance in inches. To achieve the

required precision with the available integer math of the MSP430, the 16-bit Result is first

multiplied by 100 before dividing it by 6. This 16X16-bit multiplication is done by the

subroutine Mul100. The 32-bit result is stored in the variables htX100_msw and htX100_lsw.

This 32-bit result is then divided by 6 and the result is stored in the variable DIGITS. The value

in DIGITS is in hexadecimal format. The hex2bcd subroutine converts this hexadecimal value

to binary coded decimal (BCD) value, and the last two digits of the BCD number are discarded

to compensate for the multiplication by 100 done earlier. The resulting two-digit value is

returned to the variable DIGITS.

5.3.4 BT_ISR

The Basic Timer1 interrupt subroutine BT_ISR manipulates the bits in the status register SR

residing in the stack such that the MSP430 returns to active mode on return from this ISR. This

allows the MSP430 to continue to execute the code following the LPM3 instruction in Main

loop.

 49

5.3.5 DISPLAY

This subroutine updates the two-digit static LCD with the value in the variable DIGITS. The

segment data for the static display is stored in look-up table LCD_Tab. The LCD memory is

loaded with the required segment data by correlating the numbers in DIGITS and indexing to

the required location in the LCD_Tab look-up table.

5.3.6 DELAY

This subroutine adds a 16-bit software delay. No registers are affected as the variable to be

counted down by software is assigned to the top of stack (TOS). After the delay is timed out, the

stack pointer (SP) is incremented back to the original value before returning from this

subroutine.

 50

5.4 ASSEMBLY LANGUAGE PROGRAM

#include “msp430x41x.h” ; Standard Equations

;**

; MSP430F413 Ultrasonic Distance Measurement Demonstration Program

;**

; Register definitions

;**

#define DIGITS R11

#define Result R10

#define IRBT R9

#define IROP1 R4

#define IROP2L R5

#define IROP2M R6

#define IRACL R7

#define IRACM R8

;**

; Variables definition

;**

RSEG UDATA0

htX100_msw: DS 2 ; word variable stored in RAM 200h & 201h

htX100_lsw: DS 2 ; 202h & 203h

;**

RSEG CSTACK ; Directive to begin stack segment

DS 0

RSEG CODE ; Directive to begin code segment

RESET mov.w #SFE(CSTACK),SP ; Define stack pointer

call #Init_Device ; Initialize device

mov.w #0,DIGITS ; Initialize DIGITS to ’0’

Mainloop

bic.b #CAON,&CACTL1 ; Comparator_A OFF

call #Display ; Display Data on LCD

bis.w #LPM3,SR ; Wait in LPM3

 51

;**

; Start Ultrasonic Bursts and Take Measurements

;**

clr.w &CCTL1 ; Disable CCTL1

clr.w &TACTL ; Disable timer_A

bis.b #BIT0,&P1OUT ; LED ON

SetupTimerA mov.w #TASSEL0+TACLR+MC1,&TACTL; TACLK = ACLK, 16 bit up mode

bis.b #BIT5,&P1SEL ; ACLK o/p on P1.5

mov.w #12,&CCR1 ; 12 cycle 40KHz burst

mov.w #CCIE,&CCTL1 ; Compare mode,interrupt

bis.w #LPM0,SR ; Wait for CCR1 interrupt

bic.b #BIT5,&P1SEL ; ACLK o/p on P1.5 OFF

TimerCLR bis.w #TACLR,&TACTL

mov.w #36,&CCR1 ; Delay for transducer to settle

mov.w #CCIE,&CCTL1 ; Compare mode,interrupt

bis.w #LPM0,SR ; Wait for CCR1 interrupt

bis.b #CAON,&CACTL1 ; Comparator_A ON

bic.b #CAIFG,&CACTL1 ; Enable Comparator_A interrupt flag

mov.w #CM0+CCIS0+SCS+CAP+CCIE,&CCTL1; Pos edge, CCIB,Cap,interrupt

push &TAR ; TOS = TAR at Start of measurement

bis.w #LPM0,SR ; Wait for CCR1 interrupt (Echo)

clr.w &CCTL1 ; Disable CCTL1

bic.b #BIT0,&P1OUT ; LED OFF

bit.b #CAIFG,&CACTL1 ; Check for Echo not received

jz Next ; “out of range” condition

mov.w &CCR1,Result ; Result = TAR (CCR1) at EOC

sub.w @SP+,Result ; Result = time taken

add.w #48,Result ; compensate 12Clks for the burst transmission time + 36Clks delay

;**

; Measurement Done

;**

call #Math_calc ; Call Math subroutine

swpb DIGITS ; Shift left by two digits for /100

jmp Mainloop ; Next measurement cycle

 52

Next mov.w #0beh,DIGITS ; No echo received display ’E’ error

jmp Mainloop

;**

Init_Device ; Initialize MSP430x41x

;**

mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

bis.b #030h,&FLL_CTL0 ; Turn on internal load capacitors for the XTAL to start oscillation

call #Delay ; Delay for oscillator to stabilize

mov.b #03fh,&SCFQCTL ; MCLK = 40KhzX64 = 2.56Mhz

call #Delay ; Delay for FLL to stabilize

SetupP1 mov.b #000h,&P1OUT ; Clear P1 output register

bis.b #0bfh,&P1DIR ; Unused pins as o/p’s

bis.b #040h,&P1SEL ; Comp_A + i/p function

SetupP2 mov.b #000h,&P2OUT ; Clear P2 output register

bis.b #0ffh,&P2DIR ; Unused pins as o/p’s

SetupP6 mov.b #000h,&P6OUT ; Clear P6 output register

bis.b #0ffh,&P6DIR ; Unused pins as o/p’s

SetupBT mov.b #BTFRFQ0+BTFRFQ1+BTIP2+BTDIV,&BTCTL

; Enable BT with 150Hz LCD freq.

; and 205 millisecond interrupt

SetupCA mov.b #CAPD6,&CAPD ; o/p buffer disable for comp i/p

mov.b #P2CA0,&CACTL2 ; P1.6 to Comp + input

mov.b #CARSEL+CAREF1+CAON,&CACTL1 ; Comp_A ON, 0.5Vcc int. reference

SetupLCD bis.b #LCDON+LCDSON+LCDSG0_7,LCDCTL

; LCD module ON and in static mode

ClearLCD mov #15,R15 ; 15 LCD mem locations to clear

mov.b #LCDMEM,R14

Clear1 mov.b #0,0(R14) ; Write zeros in LCD RAM locations

inc.b R14

dec R15 ; All LCD mem clear?

jnz Clear1 ; More LCD mem to clear go

bis.b #BTIE,&IE2 ; Enable Basic Timer interrupt

eint ; Enable interrupts

ret

 53

;**

BT_ISR ; Basic Timer ISR, CPU returns to active mode on RETI

 ;**

bic #LPM3,0(SP) ; Clear LPM3 bits on TOS

reti ; On return from interrupt

;**

TAX_ISR; Common ISR for CCR1–4 and overflow

;**

add.w &TAIV,PC ; Add TA interrupt offset to PC

reti ; CCR0 – no source

jmp CCR1_ISR ; CCR1

reti ; CCR2

reti ; CCR3

reti ; CCR4

TA_over reti ; Timer_A overflow

CCR1_ISR bic.w #CCIFG,&CCTL1

bic.w #LPM0,0(SP) ; Exit LPM0 on reti

reti ;

;**

Display ; Subroutine to Display values DIGIT1 & DIGIT2

 ; CPU Registers used R15, R14, R13 and R12, not saved

;**

mov.w #LCDM1,R15 ; R15 points to first LCD location

mov.b DIGITS,R14 ; LSD value moved to R14

OutLCD mov.b R14,R13 ; Copy value in R14 to R13

rra.b R13 ; Right Shift

rra.b R13 ; four times to

rra.b R13 ; swap

rra.b R13 ; nibbles

and.b #0Fh,R14 ; low nibble now in R14

and.b #0Fh,R13 ; high nibble now in R13

mov.b LCD_Tab(R14),R12 ; Low nibble to LCD digit 1

mov.b R12,0(R15) ; Low nibble segments a & b to LCD

rra.w R12

 54

inc.b R15

mov.b R12,0(R15) ; Low nibble segments c & d to LCD

rra.w R12

inc.b R15

mov.b R12,0(R15) ; Low nibble segments e & f to LCD

rra.w R12

inc.b R15

mov.b R12,0(R15) ; Low nibble segments g & h to LCD

rra.w R12

inc.b R15

mov.b LCD_Tab(R13),R12 ; High nibble to LCD digit 2

mov.b R12,0(R15) ; High nibble segments a & b to LCD

rra.w R12

inc.b R15

mov.b R12,0(R15) ; High nibble segments c & d to LCD

rra.w R12

inc.b R15

mov.b R12,0(R15) ; High nibble segments e & f to LCD

rra.w R12

inc.b R15

mov.b R12,0(R15) ; High nibble segments g & h to LCD

rra.w R12

ret

;**

; LCD Type Definition

;**

;Segments definition

a equ 001h

b equ 010h

c equ 002h

d equ 020h

e equ 004h

f equ 040h

g equ 008h

 55

h equ 080h

Blank equ 000h

LCD_Tab

db a+b+c+d+e+f ; Displays ”0”

db b+c ; Displays ”1”

db a+b+d+e+g ; Displays ”2”

db a+b+c+d+g ; Displays ”3”

db b+c+f+g ; Displays ”4”

db a+c+d+f+g ; Displays ”5”

db a+c+d+e+f+g ; Displays ”6”

db a+b+c ; Displays ”7”

db a+b+c+d+e+f+g ; Displays ”8”

db a+b+c+d+f+g ; Displays ”9”

db a+b+c+e+f+g ; Displays ”A”

db Blank ; Displays Blank

db a+d+e+f ; Displays ”C”

db b+c+d+e+g ; Displays ”D”

db a+d+e+f+g ; Displays ”E”

db a+e+f+g ; Displays ”F”

;**

Delay; Software delay

;**

push #0FFFFh ; Delay to TOS

DL1 dec.w 0(SP) ; Decrement TOS

jnz DL1 ; Delay over?

incd SP ; Clean TOS

ret ; Return from subroutine

;**

Math_calc; Calculation Subroutine

;**

mov.w #0h, DIGITS ; Initialize DIGIT to 0

cmp.w #0h, Result ; Check if Result count = 0

jeq calc_over ; Exit if 0

call #Mul100 ; Multiply Result count by 100

 56

call #Divide ; Divide the result with #06d

call #Hex2bcd ; Convert 16bit binary to BCD number Result xx.xx

calc_over ret ; Return from subroutine

;**

Mul100 ; subroutine for multiplying Result with 100d

 ; inputs Result 16bit and constant 64h (100d) 16bit

 ; output 32bit htX100_msw & htX100_lsw

;**

mov.w #100,IROP1 ; Load IROP1 with 100 (multiplier)

mpyu clr.w htX100_lsw ; Clear buffer for least Significant word

clr.w htX100_msw ; Clear buffer for most Significant word

macu clr.w IROP2M ; Clear multiplier high word

L$002 bit.w #1,IROP1 ; Test actual bit

jz L$01 ; If 0: do nothing

add.w Result,htX100_lsw ; If 1: Add multiplier to Result

addc.w IROP2M,htX100_msw ;

L$01 rla.w Result ; Multiplier X 2

rlc.w IROP2M ;

rrc.w IROP1 ; Next bit to test

jnz L$002 ; If bit in carry : finished

ret

;**

Divide ; Subroutine for 32/16 bits division

; inputs 32bit htX100_msw & htX100_lsw and #06 16bit, output DIGIT 16bit

;**

clr.w DIGITS ; Clear buffer to hold new Result

mov.w #17,IRBT ; Initialize loop counter

div1 cmp.w #06,htX100_msw ; Compare divisor with dividend high word

jlo div2 ; If less : jump to div2

sub.w #06,htX100_msw ; Subtract 6 from high word

div2 rlc.w DIGITS ; Rotate result left through carry 1 bit

jc div4 ; If carry set: finished

dec.w IRBT ; Decrement bit counter

jz div3 ; If counter = 0 : finished

 57

rla.w htX100_lsw ; Dividend X 2

rlc.w htX100_msw ;

jnc div1 ; If carry not set jump to step div1

sub.w #06,htX100_msw ; Subtract 6 from high word

setc ; Set carry

jmp div2 ; Jump to repeat

div3 clrc ; Clear carry

div4 ret ; Return from subroutine

;**

Hex2bcd ; Subroutine for converting 16bit hexadecimal value to BCD value

 ; input in DIGITS 16bit hexadecimal, output in DIGITS 16bit BCD

;**

mov #16,r9 ; R9 no of bits

clr r8 ; Clear R8

clr r7 ; Clear R7

L$1 rla DIGITS ; Rotate left arithmetic DIGITS

dadd r7,r7 ; Add source and carry decimally

dadd r8,r8 ; to destination

dec r9 ; Decrement bit counter

jnz L$1 ; Is 16 bits over ?

mov r7,DIGITS ; Result in DIGITS

ret ; Return from subroutine

;**

COMMON INTVEC ; MSP430x41x Interrupt vectors

;**

ORG BASICTIMER_VECTOR

BT_VEC DW BT_ISR ; Basic Timer Vector

ORG TIMERA1_VECTOR ; Timer_AX Vector

TIMA_VEC DW TAX_ISR ;

ORG RESET_VECTOR

RESET_VEC DW RESET ; POR, ext. Reset, Watchdog

;**

END

;**

 58

RESULT

The program was successfully compiled and linked in ‘IAR –KICKSTART WORKBENCH’.

But at the time of downloading the program into the MSP430 device the C-SPY was not

showing the Source Code and we were not sure whether the program downloaded into the RAM

memory or not. Also, due to non-availability of ultra sonic transducers (transmitter and

receiver) we could not simulate the module completely.

Some Problems Faced:

1. The MEMORY utility of C-SPY can be used to view the RAM and the EPROM memory.

The MEMORY utility of C-SPY can be used to modify the RAM; the EPROM cannot be

modified using the MEMORY utility. The EPROM memory can only be programmed using the

PRGS (after the EPROM is erased).

 2. Direct assembler programs will not function correctly on the actual device because the

Watchdog mechanism is active. The programs need to be modified to disable the Watchdog

mechanism. The Watchdog mechanism is disabled with the C statement: “WDTCTL =

0x5a80;”, or “mov #5a80h, &WDTCTL” in assembler.

3. GO OUT is not available while debugging assembler files. GO OUT operates like GO while

debugging assembler files.

4. The following cryptic error message is output by the linker when a C.xcl file is incorrectly

used in an assembler project:

Error[e46]: Undefined external “main” referred in CSTARTUP

Warning[w52]: More than one definition for the byte at address 0xfffe in common segment

INTVEC. It is defined in module “CSTARTUP” as well as in module “…”

The solution to this problem is to use the correct A.xcl file (for assembler).

5. The IAR tutorial assumes full version of workbench, while it is not.

 59

CONCLUSION

The integrated analog Comparator_A, the 16-bit Timer_A with hardware capture/compare

registers, the Basic Timer1, and the LCD driver peripherals simplify this ultrasonic distance

measurement application design and provides a system-in-a-chip solution. The average current

consumed by the application is 1.3 mA during a 15-inch distance measurement. This includes

the quiescent current of LDO U2, operational amplifier U3, and CMOS hex inverter U4. The

operational amplifier alone has a quiescent current of 1 mA and the remainder of the circuit

current consumption is 300 µA. The LED draws 5 mA while it is on. The MSP430 draws an

average current of 2.1 µA with the LCD continuously active. This is made possible by taking

advantage of the ultralow-current features of the MSP430. The MSP430 sleeps in LPM3 most

of the time and the CPU resources used by this application are only 5.6%.

Since the speed of sound is temperature dependent, the measured reading will be less accurate at

temperatures other than room temperature. A simple thermistor-based temperature measurement

and distance compensation could be employed in this application to allow the system to

measure accurately over a wide range of temperatures. The measured distance and temperature

data could also be stored in the flash memory if required. Adding additional receiver gain stages

and using a multiplexed LCD to read out as many digits as required could increase the range.

REFERENCES

1. MSP430x41x Mixed Signal Microcontroller data sheet SLAS340

2. MSP430x4xx Family User’s Guide, SLAU056

3. MSP430 Family Mixed-Signal Microcontrollers, application report SLAA024

4. TPS770xx Ultra Low-Power LDO Linear Regulators, data sheet SLVS210

5. TLV277x Family of High-Slew-Rate Operational Amplifiers, data sheet SLOS209

6. CD4049UB, CMOS Hex Inverting Buffer/Converter, data sheet SCHS046A

