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ABSTRACT 
    
Frequency recognition is an important task in many engineering fields, such as audio signal 

processing and telecommunications engineering. There are numerous applications where 

frequency recognition is absolutely necessary like in Dual-Tone Multi-Frequency (DTMF) 

detection or the recognition of the carrier frequency of a Global Positioning System (GPS) 

signal. Furthermore, frequency recognition has entered many other engineering disciplines 

such as sonar and radar technology, spectral analysis of astronomic data, seismography, 

acoustics and consumer electronics. 

     Listening to electronic music and playing electronic musical instruments is becoming more 

and more popular, not only among young musicians. This dissertation details background 

information and a preliminary analysis of a musical system, the Generic Musical Instrument 

System (GMIS), which allows composers to experiment with electronic instruments without 

actually, learning how to play them. 

     This dissertation gives background information about frequency recognition algorithms 

implemented in real time. It analyses state-of-the-art techniques, such as Dual- Tone Multiple-

Frequency (DTMF) implementations and MIDI-based musical systems, in order to work out 

their similarities. The key idea is to adapt well-proven frequency recognition algorithms of 

DTMF systems, which are successfully and widely used in telephony. The investigations will 

show to what extent these principles and algorithms can be applied to a musical system like 

the GMIS. 

     This dissertation presents results of investigations into frequency recognition algorithms 

implemented on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) 

core, in order to estimate the frequency of an audio signal in real time. The algorithms are 

evaluated using selected criteria in terms of speed and accuracy with accomplishing over 9600 

single measurements. The evaluations are made with simple sinusoids and musical notes 

played by instruments as input signals which allows a solid decision, which of these 

frequency recognition algorithms is appropriate for audio signal processing and for the 

constraints of the GMIS in real time. 
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1. INTRODUCTION 

 

Frequency recognition is an important task, not only in many scientific disciplines such 

as astronomy, physics or engineering but also in everyday life like in telephony, medical 

applications or consumer electronics. Frequency recognition is used in many 

applications, 

for example spectrum analyzers and seismographs to analyze earth quakes 

which make life both more convenient and secure. 

In consumer electronics, musical systems have found a broad distribution and 

have a remarkable market potential. Playing and listening to electronic music is 

becoming more and more important as a leisure activity, for young and old alike. 

Therefore, the design of a Generic Musical Instrument System (GMIS), allows 

musicians the chance to experiment with other musical instrument sounds 

without actually having to learn them. 

One very widely spread application of frequency recognition is used in telephony 

and is called Dual-Tone Multiple-Frequency (DTMF). Its advantageous, well-

proven algorithms could be adapted to musical systems which show similarities 

to DTMF systems. These comparable properties of DTMF systems have to be 

analyzed and their usability has to be evaluated with respect to musical systems 

such as the GMIS. 

Therefore, four different Fourier transform-based frequency recognition 

algorithms are subject to an analysis: the Discrete Fourier Transform (DFT) taken 

as a baseline to evaluate all algorithms, the Fast Fourier Transform (FFT) which 

is the workhorse in many engineering applications, the Goertzel algorithm and 

the Non-Uniform Discrete Fourier Transform (NDFT) which are both successfully 

used in DTMF systems. 

These frequency recognition algorithms are implemented on a Texas Instruments 

(TI) TMS320C6713 digital signal processor (DSP) core in order to estimate the 

frequency of the audio signal in real time. These frequency recognition 

algorithms are evaluated by selected criteria in terms of speed and accuracy by 

using both simple sinusoids and musical notes played by instruments as input 
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signals. This analysis allows a solid conclusion to be drawn regarding the 

application of the frequency recognition algorithms in musical systems such as 

the GMIS. 

 

 

1.1 Background 
 
1.1.1 Dual-Tone Multi-Frequency (DTMF) Systems: 
 

Dual-Tone Multi-Frequency (DTMF) is used for remote mono-directional user- to 

machine communication in telephony, service selection in Intelligent Networks 

and serinteractive phone services such as telephone banking to obtain a desired 

service. The addressed machine is controlled by a unique mixture of two 

standardized sinusoids. 

 

              

                                      Figure 1: DTMF frequencies according to ITU-T Q.24 
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For each column and row, one sinusoid of a standardized frequency is allocated. 

When a button is pressed, the mixture of two of these frequencies is sent to the 

exchange. Therefore, in order for the exchange to determine the key being 

pressed, accurate frequency recognition is required to separate the two tones. 

The accuracy of this recognition is very high in order to comply with the ITU-T 

specifications. 

DTMF systems are well-proven and have several advantages which make them 

convenient for signal processing and frequency recognition. For instance, DTMF 

systems operate on a low sampling frequency of 8000sf Hz= . Consequently, 

compared to other systems with higher sampling rates, the number of sampling 

points per second of a signal is smaller than sampled. 

Another feature that DTMF systems have that can be used to simplify the 

processing is the use of simple pure sinusoidal signals only, because these 

signals are meant to control machines and so these signals have to be unique. 

The frequency recognition algorithms used to determine these signals, simply 

have to perform a simple peak detection after having estimated the spectrum and 

do not have to take the shape of the spectrum into account. 

One very important and requirement for the design of frequency recognition 

algorithms in DTMF systems is the fact that the tolerance of the frequency 

recognition is only 1.5%. This might not sound much, but actually regarding the 

lowest frequency of 697Hz, the absolute tolerance is 10.46Hz. This is, 

anticipatory, a relatively big tolerance, compared to other systems like musical 

systems as described in the following system. 

 
Summing up, DTMF systems benefits from the following characteristics: 
* Low sampling rate of 8sf KHz= . 

* 8 standardized simple sinusoidal signals, known in advance. 

* Limited bandwidth: 697Hz - 1633Hz 

* Minimum absolute tolerance: 10.46Hz (1.5%). 
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These advantages are taken into account for DTMF detectors and are used to 

reduce computational requirements and increase accuracy when developing 

frequency recognition algorithms for the purpose of DTMF detection. 
 

 
 
 
 
 

 
 

 

 

1.1.2 Musical Instrument Digital Interface (MIDI) in Musical Systems: 

 

The Musical Instrument Digital Interface (MIDI) version 1.0 was defined by a 

consortium of musical instrument manufacturers, The International MIDI 

Association in 1983. The main purpose was to set up a standard interface in 

order to make electronic musical instruments of different manufacturers 

compatible among each other. The communication of these musical devices 

increased the sales quantities but what is more, this standard also caused a 

boom in the composition, development and recording of electronic music among 

musicians who cannot afford a professional recording studio. 

               MIDI notes and their corresponding frequencies are the basis for the 

following investigations. An electronic keyboard has 88 keys, starting with MIDI 

note #21 until MIDI note #108, and has its origin in the theory of the equal 

tempered piano. Based on note A4 (440Hz), each neighbored note is one 12th 

part of an octave distant. This distance is also called tempered semitone. 

Between two octaves, the notes’ frequencies double. Taking these principles into 

account, the corresponding frequency of each MIDI note is     

                         

                        

69
12( ) 440.2

MIDIn

MIDIf n Hz
−

=                21 108MIDIfor n≤ ≤   (1) 



 5

 

Where MIDIn  is the MIDI note number. 

In terms of digital signal processing, the advantages of the Musical Instrument 

Digital Interface (MIDI) used in musical systems (in particular of a keyboard), are 

worked out in this section. 

One major important issue is the limited bandwidth with a minimum frequency of 

27.5Hz and a maximum frequency of 4186.01Hz. Frequency recognition 

algorithms have to be designed with respect to this bandwidth which limitation 

reduces their complexity immensely. Also, since all 88 frequencies of interest are 

standardized, the algorithms can be developed by referring to these expected 

frequencies. 

There are some considerable disadvantages of musical systems, however, which 

have to be faced when developing frequency recognition algorithms. Mostly, 

musical systems use a high sampling frequency of 44100sf Hz=  to meet the 

Nyquist-Shannon theorem. The Nyquist- Shannon states that the sampling rate 

sf  have to be greater than the twice highest frequency in the signal, in order to 

be able reconstruct this signal correctly. If this condition is not fulfilled, all the 

frequencies above the half the sampling rate, i.e. the Nyquist frequency, will 

appear as lower frequencies in the reconstructed signal which is 

called “aliasing”. Since the audible range of human is within 0Hz and 20000Hz 

and is therefore below the Nyquist frequency of / 2 22050sf Hz= , the Nyquist-

Shannon sampling theorem is fulfilled using a sampling rate 44100sf Hz= . 

Recapitulating, the properties of musical systems as analyzed above are listed 
as follows: 
 
*  Sampling rate of 44.1sf kHz=  

* 88 standardized MIDI frequencies 

* Limited bandwidth: 27.5Hz - 4189.01Hz 

* Minimum absolute tolerance: 0.82Hz (2.81%). 
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1.2 The Generic Musical Instrument System (GMIS) 
 
Among young musicians, playing electronic instruments has become more and 

more popular. At the same time, the attraction towards learning classical 

instruments (for example flute, saxophone, etc) has decreased despite their 

importance in music composition. The design of a Generic Musical Instrument 

System (GMIS), therefore, allows musicians the opportunity to experiment with 

other musical instrument sounds without actually having to learn how to play 

them. 

The GMIS is a system which can make any instrument sound like any other 

instrument. In order to attain maximum benefits, the system should operate in 

real time. The advantage of real time behavior is the musician’s chance to listen 

to the result immediately and actually compose by ear. 
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Figure 2: The Generic Musical Instrument System (GMIS) 

 
 
 
 
The GMIS consists of a common Digital Signal Processor (DSP) system which is 

used to recognize the frequencies of the incoming audio data’s input in real time, 

as shown in the figure2. The time and amplitude continuous audio data passes 

an anti-aliasing band-limiting low pass filter, before a sample and hold unit 

samples the signals in time. There is still continuous amplitude whose infinite 

values have to be quantized by the analogue to digital converter (ADC). The time 

and value discretized data can now be processed by the digital signal processor 

(DSP). After the processing the digital to analogue converter (DAC) converts the 

digital data into an analogue form. Before the audio data is output, another low 

pass filter smoothes the signal by removing the high frequency components 

which are an undesired by-product of the converting process. 

The GMIS consists of a common Digital Signal Processor (DSP) system which is 

used to recognize the frequencies of the incoming audio data’s input in real time. 
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The time and amplitude continuous audio data passes an anti-aliasing band-

limiting low pass filter, before a sample and hold unit samples the signals in time. 

There is still continuous amplitude whose infinite values have to be quantized by 

the analogue to digital converter (ADC). The time and value discretised data can 

now be processed by the digital signal processor (DSP). After the processing the 

digital to analogue converter (DAC) converts the digital data into an analogue 

form. Before the audio data is output, another low pass filter smoothes the signal 

by removing the high frequency components which are an undesired by-product 

of the converting process. 

This dissertation analyses the frequency recognition part only and does not carry 

out   

further investigations on the frequency to MIDI conversion. 

 

 

 

 

 

 

 

 

2. Fourier transform-based Frequency Recognition Algorithms 
 
In 1807, Jean Baptiste Joseph Fourier (1798 - 1830) developed the theory about 

the Fourier series but was rejected by his supervisors Lagrange, Laplace and 

Legrendre. Finally, in 1822, he published his work in his book “Théorie analytique 

de la chaleur”. More or less as a side product of this work, he derived the so-

called Fourier Series, where he proved that any periodic signal consists of an 

infinite number of sinusoids and a constant. His theories have revolutionized 

science and are indispensable in many technical applications. 

In this section, after a brief definition of the Fourier Series and the Fourier 

Transform, four Fourier transform-based algorithms are going to be introduced. 

These algorithms are the Discrete Fourier Transform (DFT) and its faster 
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implementation Fast Fourier Transform (FFT), the Goertzel algorithm, and the 

Non-Uniform Discrete Fourier Transform (NDFT). 

2.1 The Fourier Series: 
 
With the Fourier Series, it is possible to create any periodic signal, ( )x t , in the 

time domain from the sum of an infinite number of sinusoids, i.e. sine and cosine 

functions, which are integer multiples of the fundamental frequency, 0f . The 

Fourier Series is defined as: 

0
0 0

1

( ) ( .cos( . . ) .sin( . . ))
2 n n

n

ax t a n w t b n w t
∞

=

= + +∑     0,1,.......n = ∞  (2) 

Where 0a  is the amplitude of the direct current component, n is the current 

number of the sinusoidal component, na and nb  the amplitude of the thn  sine and 

nth cosine function respectively, t the representative of the time domain, 0w  the 

angular frequency, with , 0 02. .w fπ=  where 0f   is the fundamental frequency. 

                   

0

0

2

0
0

2

2 ( ) . c o s ( . . ) .

T

n
T

a x t n w t d t
T

+

−

= ∫    (3) 

 

                   

0

0

2

0
0

2

2 ( ) . s i n ( . . ) .

T

n
T

b x t n w t d t
T

+

−

= ∫    (4) 

Where 0T  is the period of fundamental frequency, 0f , of the signal, with 

0 02. .w fπ=  . 
 
2.2 The Fourier Transform: 
 
The Fourier Series is a special case of the Fourier integral and is valid for 

periodic signals only. For any non-periodic signal, the Fourier Series cannot be 

applied anymore and the Fourier Transform has to be taken into account and is 

defined as: 
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0. .( ) ( ) . j w tX f x t e d t

+ ∞
−

− ∞

= ∫      (5) 

where t and f stand for the time and frequency domain respectively; x(t) 

represents the continuous time signal and X(f) its spectrum in the frequency 

domain. The indicator for the imaginary part 1j = − and 0w  is the angular 

frequency and is defined for the Fourier Transform as: 

                    0 2 . .w fπ=         (6) 
 
The Fourier Transform can finally be written as: 
 

.2. . .( ) ( ). j f tX f x t e dtπ
+∞

−

−∞

= ∫        (7) 

Since the Fourier Transform is valid for infinite continuous signals only and a 

numerical implementation is just possible with finite discrete signals, due to 

limited memory and computation time, the Discrete Fourier Transform (DFT) can 

be derived. 

 
2.3 The Discrete Fourier Transform (DFT): 
 
The easiest and most direct way to obtain the discrete spectrum of a signal is the 

Discrete Fourier Transform (DFT). It is also the basis for the four Fourier 

transform-based frequency recognition algorithms described in section 5.4.2.2. 

Because the DFT is the slowest algorithm, it is also taken as a baseline to 

evaluate all the other investigated algorithms. 

                                .t nT→                0,1,......, 1n N= −     (8) 

                              . sff k
N

→             0,1,.... 1k N= −     (9) 

Where n represents the sample index for discrete time domain signal values and 

k the discrete spectral index. The sampling frequency sf  and the accordant 

period sT  are linked via the relation 

                             1
s

s

T
f

=         (10) 
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The DFT is finally formulated more convenient as 
 

                       

21 . . .

0

[ ] [ ].
N j k n

N

n

X k x n e
π− −

=

= ∑             0,1,.... 1k N= −   (11)        

Equation (11) is the definition of the Discrete Fourier Transform (DFT), with x[n] 

as the 

sampled time signal and X[k] as the representative of the discrete frequency 

spectrum. 

 
2.4 The Fast Fourier Transform (FFT): 
 
The Fast Fourier Transform (FFT) is not an independent time to frequency 

domain transform but an effective recursive algorithm to calculate the DFT and 

was developed by Cooley and Tukey in 1965. It has revolutionized digital signal 

processing and is the basis for many real time applications whenever a transform 

of signals from time to frequency domain is required. 
 
2.4.1 Decimation of the DFT in Time (DIT): 
 
The FFT takes advantage of reducing redundant calculation of DFT coefficients, 

also called twiddle factors. A prerequisite, therefore, is that the number of 

samples or the buffer size, N, is a power of two. If this condition is not given, 

zero-padding (in other words, adding zeros at the end of the input buffer) has to 

be applied. Then, according to the principle of divide and conquer, the input 

samples have to be re-ordered N times until N/2 2-point DFTs can be calculated. 

This process is also known as bit reversal. Starting with the calculation of the 2-

point DFTs, this procedure follows 2log ( )N  times with / 4N  4-point DFTs, then 

with / 8N  8-point DFTs until the (N/N) N-point DFT is reached. This 

computational part is also known as butterfly computation. 

The whole algorithm as described above and is summed up in table 1. 
 

Table 1: The FFT algorithm (Decimation in Time) 
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Following the principle of divide and conquer, the DFT can be split up into two half size 

N-point DFT, the even and the odd part as shown in equation (12) and (13) respectively.  

                             

                       [ ] [ ] [ ]even oddX k X k X k= +                        0,1,........, 1k N= −  (12) 
 

/2 1 /2 1
. .
/ 2 /2

0 0

[ ] [2. ]. . [2. 1].
N N

n k k n k
N N N

n n

X k x n W W x n W
− −

= =

= + +∑ ∑            0,1,........, 1k N= −  (13) 

  
Finally, it can be concluded that 
 
      11 12[ ] [ ] [ ]k

NX k X k W X k= +                                      0,1,........, 1k N= −  (14) 
 
This divide and conquer process continues until a basis of / 2N  2-point DFTs is 

reached. The principle remains always the same: Two DFTs of equal length have 

to be calculated at the same time, whereas the DFT with the odd indices needs 

to be multiplied with
2. .j kk N

NW e
π

−
= . The advantage of having twiddle factors is that 

they have to be calculated times 2log ( )N only, instead of 2N   as it is with a 

common DFT. 

2.4.2 Bit Reversal: 
 

This stage requires N steps 

This stage requires 
 steps. 

Action Comment 

Apply butterfly computations  
recursively 

0 Zeros padding (add zeros to  
the buffer), if the number of samples N is 
not to the power of two.  

Steps# 

Bit-reverse input samples until  
N/2 input sample pairs for N/2  
2-point DFT are reached. 

The FFT requires  
(with m as an integer number) 
Input samples. 

2mN =

2log ( )N

1 

2 
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As figured out in the previous section, the key to the success of the FFT is the use of the 

butterfly network, which takes 2log ( )N  stages. A preliminary for using the butterfly 

network is the re-ordering of the input data in the time domain. This preparation of the 

data can be achieved by a bit reversal of the samples’ physical addresses as shown in 

figure 3. This step of the algorithm takes N stages. 

 

2.4.3 The Butterfly Network: 
 
The bit reversal is a preparation of the input data for the butterfly network which 

is a recursive application of N DFTs. Starting with / 2N  2-point DFTs, which are 

the basis for / 4N  4-point DFTs, the recursive computation will be applied until 

the ( /N N ) N-point DFT is reached. The whole process of applying the butterfly 

network takes 2log ( )N  stages.  

In figure 3, a basic butterfly for a 2-point DFT is shown. Taking the bit reversed 

input data as a basis, the twiddle factors are multiplied with the input sample with 

the odd index, whereas the odd indexed spectral component is additionally 

multiplied by -1. 

 
 

                            
   

Figure 3: A basic butterfly for a 2-point DFT 
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Figure 4: Bit reversal of the input data 
 

 

 

2.5 The Non-Uniform Discrete Fourier Transform (NDFT): 
 
The disadvantage of the DFT and FFT is the use of an evenly spaced frequency 

range which leads into a transform of the whole frequency spectrum for the 

sampling rate sf   as a constraint. With the Non-Uniform Fourier Transform 

(NDFT) it is possible, to analyze arbitrary frequency ranges with irregular 

intervals. Therefore, an increase of accuracy is possible by the application of a 

well-conditioned frequency vector. 
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Considering equation (11) of the DFT and taking the equidistant sampled 

frequency domain in equation (9) into account with 

                            
k

s

f k
f N

=                                           0,1,........, 1k N= −    (14) 

Where sf  is the sampling frequency, N the number of samples and 

0 1 1( ) [ , ,...., ]k Nf k f f f f −= =  the arbitrary chosen frequency at k, the DFT can be 

rewritten as a NDFT: 

                

21 . .

0

[ ] [ ].
k

s

N j f n
f

n

X k x n e
π− −

=

= ∑                        0,1,........, 1k N= −  (15) 

 

The NDFT has still a complexity of 2N  but due to the vector of arbitrarily chosen 

frequencies, it is more accurate within the desired range. Everything outside that 

range will be of a lesser accuracy but as this range is not required and can be 

ignored. The vector itself holds the relevant frequencies of interest with well-

conditioned arbitrarily chosen frequencies in between these frequency points. 

The interpretation of the NDFT’s results is raised by assigning the discrete non 

equidistant spectral index value k directly to the arbitrarily chosen frequency 

vector kf  (16) after having estimated the spectrum. 

 

                         0 1 1( ) [ , ,...., ]k Nf k f f f f −= =                  0,1,........, 1k N= −  (16) 

 

 
2.6 The Goertzel Algorithm: 
 
Another effective derivative of the DFT is the Goertzel algorithm which found its 

earliest formulation in 1958. It is a widely-used algorithm used for DTMF 

applications. Different from DFT and FFT, the Goertzel algorithm does not regard 

the whole frequency spectrum. These advantages can be used in the adaptation 

of the Goertzel algorithm for musical systems, since the frequency range is also 

known from 27.5Hz to 4186.01Hz as well as the number of expected frequencies 
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of interest which is 88. Therefore, it is only necessary to perform an analysis over 

this range hence fewer points are required for the computation. 

The Goertzel algorithm is a filter bench consisting of recursive second order 

Infinite Impulse Response (IIR) filters. An example of these filters is depicted in 

figure 6. Its system function can be deduced from its structure and is stated in 

equation (17). 

 

                                   
0 1

0 1
1 2

1 2

. .( )
1 . .

b z b zH z
a z a z

− −

− −

+
=

+ +
     (17) 

 

 

            

Figure 5: Filter structure of the Goertzel algorithm 

 
 

Table 2: Filter coefficients for the Goertzel algorithm 
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Inserting these coefficients into the system function and putting the value 

of .k

s

fk N
f

= , the system function can be rewritten as: 

 

     
. 1

1 2

1 .( , )
1 2.cos( ).

kj w

k

e zH k z
w z z

− −

− −

−
=

− +                                     0,1,.....88k =  (18) 

 
The recursively calculated output signal finally is: 
 

.[ ] . [ 1] [ 2] [ ] . [ 1]kj w
k k k k ky k a q n q n x n e q n−= − − − + − −    0,1,.....88k =  (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
22.cos( . )a k
N
π

=

2 1a =
2. .

1

j k
Nb e
π

−
= −

0 1b =

Feed forward section Recursive section 
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3. Implementation 
 
3.1 The Digital Signal Processor (TI TMS320C6713 DSP): 
 
The Texas Instruments (TI) TMS320C6713 digital signal processor (DSP) is a 32 

Bit floating point DSP of the C6000 series and runs at a frequency of 225MHz 

and is optimized for audio applications. The DSP core contains two exclusively 

fixed point Arithmetic-Logic Units (ALU), four both fixed and floating point ALU 

and two both fixed and floating point multipliers. It can perform both in single and 

double precision. 

       As in many commercially used processors, the TMS320C6713 has an 8KB 

first level and a second level cache of 256KB as internal memory. The reason for 

this unbalanced distribution of internal memory is that level 1 cache is on the 

other hand fast and therefore contains both program and data cache, but is more 

expensive compared to the level 2 cache on the other hand. Additionally, the 

TMS320C6713 also has access to peripheral 16MB external Synchronous 

Dynamic Random Access Memory (SDRAM) which can directly be accessed.  

 



 19

              
 

Figure 6: Memory Map for the TMS320C6713 DSP Starter KIT 
The user of the processor can choose between the two orders little and big 

endian. That means, for the little endian mode (the default mode), the least 

significant byte is stored at the lowest address, literally, little end first. In contrast 

to this, in the big endian mode, the most significant byte is stored at the lowest 

address, meaning, big end first. 

The TMS320C6713 also makes use of an Enhanced Direct Memory Access 

(EDMA) Controller. This technique enables the acquisition of audio data directly 

from the stereo audio codec (AIC 23). The EDMA can also be combined with the 

two Multichannel Bidirectional Serial Ports (McBSP) 

Finally, the TMS320C6713 is provided with an optimized C/ C++ compiler for the 

processor’s architecture. Especially the Multiply-Accumulate (MAC) command is 

supported and the uses of this multiply and add combination (also known as sum 

of products) is recommended. 

 

3.2 The TI TMS320C6713 DSP Board 
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The target hardware used for the analysis of frequency recognition algorithms is 

the TMS320C6713 DSP Starter Kit, developed by Spectrum Digital and Texas 

Instrument respectively, is referred as DSP board in the following. The reason 

why not a Personal Computer (PC) (which nowadays has enough computational 

power to compete with a DSP core), was not chosen for the analysis on 

frequency recognition algorithms is because the aim was to target an embedded 

solution. The Signal Processing Laboratory was provided with two of these DSP 

boards by Texas Instruments. Due to financial restrictions, one further 

requirement of the project was that the implementation of the frequency 

recognition algorithms should be done on this board. 
 

3.2.1 Chip Support Library (CSL): 
 
To handle interrupts, scheduling tasks and their priorities and to manage 

memory, Texas Instruments has developed a DSP/BIOS real time operating 

system. It operates independently from the application. All the settings for the 

issues can be set up by a graphical configuration manager. When compiling, the 

settings are then applied by the Chip Support Library (CSL).The software 

interrupt (processBufferSwi) is defined or the software interrupt service routine 

(ISR) which contains the frequency recognition algorithm. 

 
3.2.2 The Code Composer Studio (CCS): 
 
The Code Composer Studio Code (CCS) is the front end of the TMS320C6713 

DSP starter KIT and has a lot of advantageous properties. 

The most obvious feature is the data visualization. The CCS offers the chance to 

observe the data which are currently present in the internal buffers. In the 

animation mode, even the change over time is recognizable,. i.e. a change in 

frequency would change the diagrams, too. 

Another, very important issue is the simple data import to and export capabilities 

from these internal buffers. The latter scenario is very useful for debugging 

purposes, i.e. for verifying results and frequency recognition algorithms either in 

a simulation environment like MatLab or with an alternative ANSI C compiler. 
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This approach has been used in the course of the project and has been proved 

to be the most effective way. 

Furthermore, the CCS has the convenient feature of a simplified file I/O which 

enables to trace results by using injections. Injections are soft breakpoint which 

halt the CPU far a short moment to perform a file I/O. Like break and animation 

points, they can just be used in a debug/release environment. 

 

3.3 Usage of the Timer: 

 

In order to use the 32-bit timer, two steps must be completed. At first, the timer 

has to be configured and second a calibration has to be done which measures 

the starting and the stopping of the timer itself. 

    There are three timer registers to be initialized: the control, the period and the 

counter register. The timer control register is used to determine the timer’s mode. 

The timer period register stores the maximum value the timer counts to. Once 

this value is reached, a timer overflow occurs and the time measurements 

become corrupt. The maximum value, a timer can maximal count is 

0xFFFFFFFF. To circumvent a timer overflow, either the overflows have to be 

counted or the number is downscaled through a division by constant, e.g. 1000. 

This constant has to be bared in mind for the correction of the exported data. The 

timer counter register stores the current value of the timer. To init the timer, the 

constant 0x00000000 is to be taken.  

The second step, the calibration of the timer in conjunction with the time 

measurement is illustrated by 
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After having opened and having configured the timer as described above, the 

timer needs to be calibrated because the measuring the time itself takes some 

time, too. This calibration is the difference between two successive timer events, 

i.e. the starting and the stopping of the timer. Then, the difference of both is 

estimated, measured in cycles.  

The actual measurement of the time works as follows. The timer is started, and 

then the algorithm is performed. After having finished the calculation, the timer 

stops again   and the elapsed cycles are calculated out of difference of the start 

time, the stop time and he calibration. 

 

 

 

 

 

4. Implementation of the Frequency Recognition Algorithms 
 
4.1 Methodology: 
 

Open timer; 
Configure timer; 
Set timer to zero; 
Calibrate timer; 
Start timer; 
Stop timer; 
Calibration cycles = Stop – Start; 
Start timer; 
Perform algorithm; 
Stop timer; 
Elapsed cycles = Stop – Start – Calibration cycles; 
Close timer; 
 

Figure 7: Pseudo code for applying time measurements 



 23

For the implementation of the algorithms, the real time characteristic is of less 

importance in the first place. The main purpose is to get them working properly 

and to verify their results in terms of correctness. In order to achieve this, several 

tools are very useful. 

As a first approach, MatLab and Simulink are consulted for a first implementation 

of the algorithms. Their ease of use and their undisputable ability to monitor 

results graphically very quickly are of assistance to get proof of the correctness 

of the algorithms. The second step is a direct implementation of the algorithms in 

ANSI C using Microsoft Visual Studio C++ 6.0. Since ANSI C is the programming 

language which is used for developing applications for the Texas Instruments (TI) 

TMS320C6713 Digital Signal Processor (DSP) core in the Code Composer 

Studio (CCS), a fast implementation close to the final application is possible. This 

step also ensures simultaneous debugging by taking a working algorithm as a 

reference. This is a very effective way to verify intermediate steps. Since the 

Code Compose Studio offers the opportunity to export complete buffer content’s 

into text files, MatLab is used for verifying and displaying the results. 

As input sources, several options can be considered. Cleary defined unique 

sinusoids generated by WaveLab and played by the soundcard are valid input 

signals. Signals from a signal generator are preferable though because they are 

more reliable signal sources. At a later stage instrument samples playing musical 

notes are taken as input source too 

To summarize, for the implementation of the algorithms onto the target hardware, 

MatLab and both developer studios (Microsoft Visual Studio C++ 6.0 and Code 

Composer Studio go hand in hand) and complement each other. This methology 

accelerates the developing process crucially and, what is also very important, it 

helps to verify the results to make sure that they are correct. 
 
 
 
 

4.2 Principle of the Frequency Recognition Algorithms 
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The process which all frequency recognition algorithms undergo can be 

described as follows. At first, the sampled and quantized input signal ( )x n  is 

transformed into the frequency range, in order to obtain real { ( )}X nℜ  and 

imaginary part {X(n)}ℑ  of its spectrum. The calculation of magnitude ( ( ))Mag X n is 

initial for a peak detection mechanism, which finds the spectral component of the 

signal with the maximum power. The index maxk of this spectral component is 

finally evaluated with respect to the number of samples N and the sampling 

rate sf . Since the frequency is now given as a numerical value, it is ideal for a 

post processing MIDI conversion. 

 

4.2.1 The Discrete Fourier Transform (DFT): 
 
4.2.1.1 Simulation in Matlab: 
 
The Discrete Fourier Transform is defined as: 
 

                

21 . . .

0

[ ] [ ].
N j k n

N

n

X k x n e
π− −

=

= ∑                              0,1,.... 1k N= −  (20) 

and directly implemented in MatLab (appendix D). The result is shown in figure 8 

depicting the original input signal, its spectrum together with the spectrum’s real 

and imaginary part of a 1 kHz sinusoidal input at a sampling rate of 44100sf Hz= . 

The signal is deliberately maximal non-coherent sampled as with a leakage 

factor of 0.5 as explained in section, in order to obtain a maximum leakage effect. 

It is noticeable that even under this worse case condition the peak detection 

mechanism will succeed in terms of finding the maximum energetic spectral 

component which underlines the decision not to apply extra windowing. 
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                                          Figure 8: Frequency recognition in principle 
 

 

4.2.1.2 Implementation of the DFT in C: 
 
A direct implementation of the DFT in C as in the case of the MatLab simulation 

in the previous section is possible, however with slight differences. As MatLab 

supports the scientific notation of complex numbers but since this convenient 

implementation in C is not available, the twiddle factors have to be rewritten by 

using the Euler equation: 

                   
2. . 2 2cos( . ) sin( . )

j kk N
NW e k j k

N N

π π π−
= = −     (21) 

This preliminary study is very important for the implementation of the DFT on the 

TMS320C671 because the real and the imaginary part of the spectrum can be 

regarded separately. Then the MAC (Multiply-ACumulate) command can be 

applied as explained. Since the architecture and the compilers of the C6000 

series are specialized for this product summing up command, an implementation 
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of the DFT in the way as described above is promising in terms of a fast 

calculation speed. 

What is more, as a consequence of the Nyquist-Shannon Theorem, only half the 

calculated spectrum is relevant for an evaluation, more precisely, the frequencies 

range of 0Hz until half the sampling rate / 2sf . Therefore, only a scan of half the 

spectrum is necessary, a fact that results in an economization of computation 

time. 

 

4.2.2 The Fast Fourier Transform (FFT): 
 

4.2.2.1 Simulation in MatLab: 
 
Since the Fast Fourier Transform (FFT) is a very efficient algorithm to apply the 

Discrete Fourier Transform (DFT) by exploiting the redundancy of calculating the 

twiddle factors, the approach to implement this algorithm implies previous 

knowledge and understanding of the DFT. 

For the simulation of the FFT, it reads wave files which contain signals to be 

analyzed and outputs both its spectrum graphically and stores the input signal 

numerically in a user defined output file. The intention is to take this numerical 

data as a known reference for the implementation on the TI TMS320C6713. 

Another derivative of this simulation has been used, but instead of referring to 

wave files as input, actual buffer contents of the TI TMSC6713 were taken as the 

input for the MatLab file. This method ensures a direct comparison of the 

obtained spectra estimated both in MatLab and with the TI TMS320C6713 and is 

very helpful for the development of the algorithm. 
 
4.2.2.2 Implementation of the FFT in C: 
 
 
Since the implementation of the FFTW was not successfully applied, the 

assembly coded library has to be taken for implementing the FFT. For this, 

previous knowledge of the FFT as such is pre-requisite. 
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For a buffer size of N ≥ 32, where N has to be of the power of two, a N-point FFT 

can be achieved. The API function DSPF_sp_cfftr2_dit() expects a pointer to an 

input buffer, a pointer to an array holding the pre compiled twiddle factors and the 

number of elements N as an integer as input parameters. 

Since the input data has to be complex, i.e. consisting of interleaved real and 

imaginary parts, the buffer containing this data has to have the length of 2 · N. 

After the execution of this function, this buffer holds the complex result. The 

number of twiddle factors is N/2 as a result of having taken advantage from their 

redundant calculation. Per definition of the API, the twiddle factors have to be 

reordered by bit reversal. Finally, after the calculation of the FFT, the output data 

has to be reordered by bit reversal. Both twiddle factor pre calculation and bit 

reversal can be found in the TI FFT support files. 

Since there was no need to implement the FFT explicitly in another development 

environment rather than the Code Composer Studio (CCS), the DFT has been 

taken as a reference for the development of the FFT. The approach is, to export 

the input buffer of the algorithm in the CSS and to re-import them into the 

alternative development environment. Then, a debugging close to real conditions 

is possible. 

 

4.2.3 The Non-Uniform Discrete Fourier Transform (NDFT): 
 
The structure of the Non-Uniform Discrete Fourier is similar to the DFT and its 

complexity is 2N , as well. The only difference is the fact that the NDFT does not 

refer to an equidistant sampled frequency range indexed with k but to an 

arbitrarily frequency vector kf  as described. It is expected that the assessing to 

this vector stored in an array causes an additional delay that makes the NDFT a 

bit slower than the DFT. 

The main issue of the NDFT and the key for its advantage in comparison to the 

DFT is the arbitrarily chosen frequency vector whose accuracy is increased, if it 

is ellconditioned. For frequencies in the lower range (i.e. 27.5Hz, 29.14Hz, … ), a 

finer fragmentation of the frequency vector is required, because the spacing 
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between two neighboured notes is smaller than for adjoining frequencies in the 

higher range (i.e. … 3951.07Hz, 4186.01Hz).  

The main problem is the fact that there are 88 MIDI notes, a number which differs 

from the buffer size N in every case. If the buffer size N was equal to 88, each 

MIDI note would correspond to a buffer index, but this is, as mentioned before, 

not possible. For a buffer size N less than 88, the accuracy would not be 

sufficient enough due to the fact that some of the MIDI notes are simply not 

assigned to one buffer index. The most interesting case is, if the buffer size is 

greater than the number of MIDI notes.  

The spacings between each frequency point between two MIDI notes are 

equidistant though, however dissimilar between each MIDI note pair due to the 

fact that the MIDI notes themselves are not equidistant arranged to each other. 

Taking equation (1) with as a
69

12( ) 440.2
M ID In

M ID If n H z
−

=  basis, the spacings 

are calculated in dependence on two neighbored MIDI notes and the buffer size 

N. 

                  

                
( 1) ( )( )

88
MIDI

MIDI MIDI
n

f n f nN N
+ −

Δ =       21 108MIDIfor n≤ ≤  (22) 

 
 

 
Figure 9: Arbitrarily chosen frequencies for the NDFT 
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The final structure of the vector holding the arbitrarily chosen frequencies and the 

corresponding MIDI notes is shown in figure 9 in principle. Since this vector is 

dependent on the buffer size N, it has to be recalculated for each buffer size N.  
 

 
 
 
 
 
 
4.2.4 The Goertzel Algorithm: 
 
Before coding the Goertzel algorithm up, it is quite useful to have a closer look at 

the Goertzel IIR filter coefficients as they are listed in table 3 . Since the filter 

coefficients b0 = 1 and a2 = -1 remain constant throughout the whole calculation 

and hence do not have to be determined at each stage, the filter coefficients b1 

and a1 have to be calculated only for each Goertzel filter. It is useful to separate 

the complex denotation of filter coefficient b1 into a real and an imaginary part 

using the Euler equation as shown in equations (41) and (42). 

              
2 .2 .. .

1

k

s

fjj k fNb e e
π π−−

= − = −                           0,1,.....88k =   (23) 
 

1 1 1cos(2 . ) .sin(2 . ) ( ) . ( )k k

s s

f fb j b j b
f f

π π= − + = ℜ + ℑ        0,1,.....88k =  (24) 

 

 
For the sake of completeness, filter coefficient a1 of the recursive section is given 
as 

               1
22cos( . )a k
N
π

=         (25) 

This consideration results in a set of 3 · 88 = 264 pre-calculated filter coefficients 

to be set up in a look-up table as shown in principle in table 3. 

 
                       Table 3: Frequencies and filter coefficients for 88 MIDI notes 
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For the buffer size N, the signal is filtered with respect to the pre-calculated filter 

coefficients. Since only the real and imaginary part and their magnitude are of 

interest only, a calculation of these intermediate values takes place after having 

filtered the data. Different from DTMF systems using 8 frequencies of interest, 

the maximum number of the frequencies to be regarded is 88. For reason of 

saving computation time, the pre- calculated filter coefficients are read from a two 

dimensional array goertzel_coeff for each loop pass. It has been shown that the 

speedup of the method of pre calculation the IIR filter coefficients results in a 

considerable factor of 210  . 

The actual Goertzel value is obtained with the application of the Goertzel IIR filter 

by taking the filter coefficients into account. Again, as considered in section 3.4, 

the estimation of the maximum power happens promptly without and is 

continuously updated if the maximum is excelled instead of a down streaming 

scanning of a whole temporary buffer containing all successively calculated 

Goertzel values.  

 
4.3 Comparison of schedulable Buffer Sizes: 
 
A noteworthy fact is the actual memory requirement for a buffer size N for each 

of the algorithms. This also demonstrates the reason why a maximum buffer size 

of just 8192 can be applied. 

     To obtain N data elements, the ping and the pong buffer have to be set up, 

each of a size of 2.N . Due to the codec only applying a stereo input, twice the 

number of samples as to be scheduled. In total, for the DFT and the Goertzel 

algorithm, the actual buffer equirements are 4 · N. 
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     In particular in the case of the FFT, for the generation of the input buffer for 

the API function, another additional buffer is needed. This buffer has the size 

of 2.N , because the input data has to be complex with interleaved real and 

imaginary part. The twiddle factors need an extra buffer of the size / 2N . In total, 

5.5 times more data elements have to be provided than originally scheduled for a 

problem size N. 

     The NDFT has, due to its complexity, similar basic memory requirements of 

(4. )N as the DFT. Additionally, there is a need of N data elements for the pre-

calculated arbitrarily chosen frequency vector. 

    Table 11 lists the actual buffer size requirements for a problem size N and 

states which factor has to be taken into consideration for an implementation of a 

problem size N for each algorithm. 
 

 
5. Measurements 
 
In order to obtain distinct signals consisting of single sinusoids only, a common 

signal generator is used. For monitoring reasons its signals are simultaneously 

displayed with an oscilloscope. Once the signal has been led into the line input of 

the Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) board 

it is subject to sampling and quantization before it can be analyzed by one of the 

to be investigated by one of the to be investigated frequency recognition 

algorithms. The development software, naming the Texas Instruments’ Code 

Composer Studio is installed on the PC and is used for both coding the 

algorithms and for storing the measurement results in a file. 
 
5.1 Analysis of Input Signals: 
 
Measurements without any preceding estimation or even without a basic analysis 

are useless. In other words, starting a measurement without any kind of 

expectancy is neither engineer-like nor scientific. Therefore, this section analyses 

the input signals’ spectra versus time, i.e. the spectral behavior during the 

duration of the samples. It does not take into account the spectral resolution. It 
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makes assumptions of the algorithms’ frequency recognition capability 

exclusively based on an analysis of the input signals’ spectra and is therefore a 

hypothesis. By doing this, a necessary preliminary evaluation of the frequency 

recognition algorithms is possible. 

It is presumed that the first category of signals, which consists of a simple 

sinusoid, are stable over their whole duration, meaning, a simple maximum 

power search over the spectrum will yield the fundamental frequency. That is 

why, for this type of signal, frequency recognition is expected to be without 

complications. 

For the second category, signals containing complex waveforms, samples of 

notes played by musical instruments are used as an input for the frequency 

recognition algorithms. The expectation is that not every sample holds the 

maximum power on the fundamental frequency because the signal can no longer 

be considered to be a simple sinusoid. Moreover, for some of the notes some of 

the harmonics actually carry more power. Additionally, this behaviour changes 

over time for some of the regarded notes, which might make frequency 

recognition more difficult rather than with simple sinusoids. These assumptions 

have to be confirmed both by the following spectral examination and verified by 

the measurements itself. 
 

5.1.1 Sinusoidal Inputs: 
 
The bases for the evaluation of the frequency recognition algorithms are the 

metrics latency, speedup and accuracy as discussed earlier. Latency and 

speedup can be deduced from the number of cycles an algorithm needs to 

estimate a frequency and the accuracy depends directly on the algorithmic 

estimation capability from which the absolute deviation can be calculated. 

To find out the best frequency recognition algorithm, at least 10 test series for 

each buffer size for 32 ≤ N ≤ 8192 have been applied to each algorithm. The 

reasons for these boundaries are as follows. The lower bound 32 ≤ N is a 

limitation of the implementation of the FFT API routine (DSDF_sp_cfftr2_dit) from 

Texas Instruments (TI), whereas the upper bound is due to internal memory 
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constraints. Furthermore, for a buffer size of N > 8192, there would be 

unreasonably high computational costs for the calculation of direct frequency 

recognition algorithms such as the DFT and the NDFT, whose costs are N2. 

Concluding, the common boundaries for the buffer size, 32 ≤ N ≤ 8192, have 

been chosen for all the measurements to be able to compare all the algorithms 

and should be sufficient to fulfill the task. 

For each algorithm test series, three cases were investigated: the note A4 with 

440Hz (being the note in the centre of the MIDI scale), and two extreme cases: 

the highest frequency with 4186.01Hz (note C8) and the lowest one of 27.5Hz 

(note A0) of the target frequency range. The reason for these choices is to 

determine the ability to analyze the algorithms’ capability to handle the highest 

frequency, 4186.01Hz and the highest spectral resolution demand at 27.5Hz,  

However, there are a number of harmonics along with the fundamental frequency 

which should not occur. When we are considering the input from the function 

generator. The reason for this is the fact that the signal generator does not 

produce a pure sinusoid exclusively but has a small amount of harmonic 

distortion and should be ignored in this case. Additionally, there are reflections 

due to a mismatched connection from the signal generator to the audio jackinput 

of the DSP board. But here we are not considering the function generator but 

taking the signal directly from the system. Since the maximum power can be 

found at 440Hz, 4186.01Hz and 27.5Hz respectively, these undesired, less 

powerful frequencies do not carry weight in terms of frequency recognition. This 

is a good prerequisite for a solid frequency recognition capability regardless of 

the spectral resolution in terms of accuracy and a reasonable buffer size N. 
 

5.1.2 Inputs of Musical Instruments: 
 
For signals containing simple sinusoids generated by a signal generator, it is 

anticipated that the frequency recognition algorithms should work perfectly if 

maximum power detection is used. Whether they can be applied to signals 

containing complex waveforms is subject to a discussion in this section. 
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To test the frequency detection capabilities of each algorithm, four different 

instruments (piano, violin, trumpet and flute) playing three different notes have 

been taken as an input. Because not every note of the frequency range of 

interest can be subject to an analysis and a subsequent measurement, because 

of the range of each instrument, a representative selection has to be made. 

Thus, all the selected notes are played by each instrument to ascertain 

comparability. 

When applying instrumental inputs, the frequency recognition capability is initially 

of interest only. The buffer size N is dependent on the demand for the accuracy 

for the notes C6, C5 and C4 respectively. Equation (44) denotes the coherence 

between the sampling rate sf and the demanded accuracy depending on the 

MIDI note. 

 

                              ( )
s

MIDI

fN
accuracy n

=       (26) 

 

Table 13 lists summarizing the constraints of the notes which are subject to 

further measurements. They are valid each for piano, violin, trumpet and flute. 
 

 

 

 

Table 4: Frequencies and filter coefficients for 88 MIDI notes 
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5.2 Prediction of the Algorithms’ Frequency Recognition Capability: 
 
Taking simple sinusoids (440Hz, 4186.01Hz and 27.5Hz) all frequency 

recognition algorithms have an unambiguous input because the spectral 

distribution of the signal’s power remains constant throughout the whole time 

window and spectrum’s maximum peak can be found at the fundamental 

frequency. That is the reason why the chances of failure are very low using only 

a simple power detection technique. Measurements on the algorithms with these 

sinusoidal inputs and the subsequent analysis with the evaluation criteria will give 

certainty whether this prediction is right. 

For instruments playing musical notes, it is important to find out whether the 

maximum power can actually be found on the fundamental frequency or on one 

of its harmonics. In the latter case, investigations have shown that the lower the 

frequency is the more harmonics exist. For all analyzed musical notes 

(1046.5Hz, 523.23Hz and 261.63Hz), string-based instruments (piano and violin), 

the spectral behavior over time is constant and therefore ideal for frequency 

recognition. It can also be seen, that the relative power distribution of the 

spectrum of these string based instruments remains stable over time, i.e. the 

maximum power can always be found on the fundamental frequency of the note 

being played. However, the spectrum over time of woodwind and brass 

instruments like the flute and the trumpet respectively is not well behaved for 

each of the analyzed notes. The trumpet does not have the maximum power on 

the fundamental frequency for MIDI note C5. Furthermore, for MIDI note C4, both 

the trumpet and the flute will fail according to the preliminary spectral analysis 

because the maximum power is not held by the fundamental frequency each. 

Table 5 lists the probable frequency recognition capabilities of the investigated 

algorithms with respect to the analyzed instrumental notes. 

           
             Table 5: Probable frequency recognition capability of instruments 
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5.3 Evaluation Criteria 
 
In order to find the optimum frequency recognition algorithm, there is a need for a 

precedent definition of fixed quantities and performance metrics. The purpose is 

a reduction of the number of variables to a reasonable minimum which is then 

subject to a further analysis. Finally, this preliminary investigation leads to the 

conclusion that the evaluation criteria, in particular the performance metrics, are 

dependent on the buffer size N only. 
 

5.3.1 Sampling Rate: 
 
The sampling rate is fixed to 44100sf Hz= in order to take into account high 

frequency harmonics, since the analysis of frequency recognition algorithms is 

subject to a further extension to the whole audible range of 0Hz – 22000Hz. 

Therefore the sampling rate has to be greater than twice the maximum frequency 

that can appear in the expected signal in order to avoid aliasing according to the 

Nyquist-Shannon theorem as explained in section 5.4.1.1. Consequently, this 

major constraint of having a sampling rate of 44100sf Hz=  is mandatory for the 

Generic Musical Instrument System (GMIS), despite of having a large buffer size 

N and thus having an increase of complexity, because the higher the sampling 

rate, the more sampling points are acquired.  
 

5.3.2 Spectral Resolution: 
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A fine spectral resolution R is prerequisite for a solid accuracy and is given by the 

ratio of the sampling rate sf  and the actual buffer size N with 

                                                     ( , ) s
s

fR f N
N

=      (27) 

In general, one can say, the higher the buffer size N the better is the spectral 

resolution R at a given sampling rate sf  . Due to the fact that an increase of the 

buffer size N simultaneously causes an increase of computational costs and 

memory requirements, a trade-off has to be found between the spectral 

resolution, R, and the buffer size, N.   

When analyzing musical notes, the maximum spectral resolution which has to be 

provided, is max 0.82R Hz= in order to be able to recognize all frequencies of the 

whole target frequency range. The reason for this high resolution is the smallest 

half of the MIDI channels, i.e. between MIDI note #21 and #22 with 27.5Hz and 

29.14Hz respectively. 
 

5.3.4 Time to settle: 
 
The system’s time to settle settlet  is the time which is needed to make sure that the 

buffer completely holds the signal’s samples. This quantity is relevant and 

subject to further investigations for unbuffered systems only, but because internal 

buffers are applied, settlet is constant the time required for filling up a buffer of the 

size N. Let the sampling frequency be 44100sf Hz= and assuming there is a 

buffer of the size N = 44100, it takes one second to acquire all 441000 samples. 

Therefore, the time to settle settlet  is defined as  

                                                 settle
s

Nt
f

=       (28) 

As the sampling rate sf  is fixed to 44100Hz and the buffer size N does not 

change during the operating mode, the time to settle settlet  is constant for each 

buffer size N, too. 
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5.3.5 Computational Costs of Investigated Algorithms: 
 
The complexities of the to be investigated algorithms are listed for the buffer size 
N 
 

Table 6: Fourier transform-based algorithmic complexity 
 
 

            
 

The comparison of the complexities of the Goertzel algorithm and the FFT 

shows, that at a buffer size of N > 288, the FFT’s algorithmic complexity will be 

greater than the one of the Goertzel algorithm, but the buffer size required for this 

problem is unreasonable high and furthermore not feasible without massive 

accessing external memory. This, however, would mean additional latencies and 

would be a different kind of problem which cannot be taken into consideration at 

this stage. 

Theoretically, the number of cycles corresponds directly to the algorithmic 

complexity, but there is an additional amount of cycles for pre and post 

processing of audio data to be regarded, for instance the generation of 

interleaved complex data, the calculation of magnitude, the spectrum’s peak 

detection and the final evaluation of the most powerful spectral frequency 

component given as an index. Thus, the overall number of cycles has to be 

measured and taken into account when analyzing the metrics. 

 

Discrete Fourier Transform (DFT) 

Fast Fourier Transform (DFT) 

Non-Uniform Discrete Fourier Transform 
(DFT)

Goertzel algorithm  

Algorithm Complexity 

88.N

2log ( )N N

2N

2N
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5.4 Performance Metrics 
 
For the evaluation of a system’s real time characteristics, it is necessary to take 

the algorithmic properties into account, i.e. their latency, their speedup and the 

algorithms’ accuracy. These metrics are subject to be discussed in this section. 

     It is expected that according to the fixed computational costs of each 

algorithm the number of cycles needed for the calculation of each algorithm, will 

follow the same law. Consequently, the tendencies of speedup and latency will 

remain equal with each measurement and independent from the input, but due to 

the fact that the number of cycles are deduced from the computational cost and 

are therefore theoretical, they have to be experimentally proven. Therefore and 

with respect to the fact that pre and post processing of the data is not included to 

the theoretical considerations, there is an extra need for measuring these 

metrics. 

 
5.4.1 Latency: 
 
The latency is the time a signal needs to get from its source to its destination 

after processing. In the case of frequency recognition as applied in this project, 

latency is the difference in time between playing the note and detecting its 

frequency or in other words how long an algorithm needs to output the numerical 

value of the estimated frequency. Therefore, for the number of cycles an 

algorithm takes, the latency is defined as  

                                                
CPU

cycleslt
f

=       (29) 

with a given central processing unit (CPU) frequency of the TI TMS320C6713 of  

225CPUf MHz= . The average in latency averagelt is the average temporal resolution 

of a human ear, i.e. the time that can pass by before the listener realizes a delay 

in playing a note and hearing the actual sound. It has been shown that on 

average the latency of the human ear is 50averagelt ms= . Consequently, in order to 

be taken seriously into consideration for frequency recognition in real time, the 



 40

algorithms have to terminate their calculations within this time limit, preferably 

less than that because frequency recognition will probably not be the only task 

for the GMIS. 
 
5.4.2 Speedup: 
 
An important metric for the evaluation of is the speedup according to Amdahl’s 

Law. The speedup is the ratio of the number of cycles of an algorithm before and 

after its improvement and is described as 

                                                   DFTcyclessp
cycles

=      (30) 

The speedup has to be greater than 1 if the algorithm is to be considered 

superior to any of the other investigated algorithms. Due to the fact that the 

Discrete Fourier Transform (DFT) is the slowest Fourier transform-based 

algorithm, it is taken as a baseline for the speedup for all the other algorithms. 

 
5.4.3 Accuracy: 
 
A measure for the accuracy is the absolute deviation. The absolute deviation of a 

value in a set of values is the absolute difference between this value and a 

nominal. This nominal can either be a mean of the set of these values or a 

threshold value, in this case the expected frequency epf . The value from which 

the absolute difference is taken is the estimated frequency esf . Being a measure 

for accuracy, absolute deviation is defined as  

                                                       ep esad f f= −      (31) 

   Due to the fact that the tolerance is the half the difference between two MIDI 

channels, in the worse case between MIDI note #21 and #22, the minimum 

acceptable error equals the maximum spectral resolution required for accurate 

frequency recognition, min max. . .82i e ad R Hz= = . 
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6. Results 
 
The first category, input signals consisting of a simple sinusoid, is used to 

measure latency and speedup in the first step in order to prove the theoretical 

complexity discussed earlier and second to show the functionality of the 

investigated frequency recognition algorithms, i.e. to prove their frequency 

recognition capability and to investigate on their accuracy as derived earlier. 

The second category, instrumental inputs playing musical notes, is taken to judge 

on the algorithms’ frequency recognition capability for input signals containing 

complex waveforms such as in the case of musical notes. By doing this, it will be 

demonstrated that a simple frequency recognition algorithm with simple peak 

power detection as performed in the first set of measurements, will not suffice for 

a musical system as proposed with the GMIS. 
 

6.1 Frequency Recognition Algorithms analyzing simple Sinusoids 
 

6.1.1 Latency: 
 
The behavior of the algorithmic latency depends on their individual complexity as 

described earlier. For the regarded frequencies 27.5Hz, 440Hz and 4189Hz, the 

latency is equal as it can be seen in figures 10 - 12 which underlines the 

preliminary considerations earlier. Therefore, just an analysis of the results 

concerning the latency’s tendencies for each algorithm is made, not for each 

frequency in particular.  

Figures 10 - 12 show the four algorithms’ latency versus the buffer size N for 

different inputs containing simple sinusoids of 440Hz, 4186.01Hz and 27.5Hz 

respectively. The algorithms with the maximum latency for the whole range of N, 

with 32 ≤ N ≤ 8192, are the DFT and the NDFT with a narrow difference to the 

advantage of the DFT as expected. This slight difference is due to the fact that 
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the NDFT has to read the vector with the arbitrarily chosen frequencies whereas 

the DFT simply uses the equidistant spectral index k for the computation of the 

spectrum. According to their equal structure, the tendency of their latencies is 

equal, too. The Goertzel algorithm has a smaller latency than the DFT and NDFT 

but is, as expected, still slower than the FFT. 

 

       
                       Figure 10: Latency vs. Buffer size for a 27.5Hz input 
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                     Figure 11: Latency vs. Buffer size for a 440Hz input 
 

                   
                                    Figure 12: Latency vs. Buffer size for a 440Hz input 
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6.1.2 Speedup: 
 
Figures 13- 15 show the speedup with respect to the buffer size N for 440Hz, 

4186.01Hz and 27.5Hz. Again as expected, since the speedup is also directly 

linked with the number of cycles, the three graphs are fairly equal for each input 

frequency.  

Taking the DFT as a baseline, just the NDFT is slightly slower which is due to 

implemental reasons, i.e. the reading of the vector of the arbitrary chosen 

frequencies takes more time than just simply referring to a loop index. 

The Goertzel algorithm with a complexity of 88·N is dramatically faster than the 

DFT and the NDFT which computational costs are 2N , but is still more slowly 

than the FFT with a complexity of 2log ( )N N , again as expected. 

 

 

 

 

 

         

                     Figure 13: Speedup vs. Buffer size for a 27.5Hz input 
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                     Figure 14: Speedup vs. Buffer size for a 440Hz input 
 

 

 

                   
                                 Figure 15: Speedup vs. Buffer size for a 4186.01Hz input 
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6.1.3 Accuracy: 
 
Why can the fastest algorithm, the FFT, not simply be taken for frequency 

recognition? The answer is that, the less time an algorithm needs to fulfill its 

purpose the better it is, but it still has to be accurate enough to meet the 

requirements. Thus, the accuracy of each algorithm’s frequency recognition 

capability has to be analyzed, too, because a fast but inaccurate algorithm is of 

no use. As defined, a measure for accuracy is the absolute deviation of the 

estimated frequency from the expected frequency, i.e. the absolute difference 

between these both frequencies.  
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           Figure 16: Estimated frequency vs. Buffer size for a 27.5Hz input 
 

     
           Figure 17: Absolute deviation vs. Buffer size for a 27.5Hz input 
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            Figure 18: Estimated frequency vs. Buffer size for a 440Hz input 
 

        
             Figure 19: Absolute deviation vs. Buffer size for a 440Hz input 
 

       
          Figure 20: Estimated frequency vs. Buffer size for a 4186.01Hz input 
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    Figure 21: Absolute deviation vs. Buffer size for a 4186.01Hz input 
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FFT, the DFT and the Goertzel algorithm fail in terms of accuracy. For these two 

algorithms, a buffer size of N > 8192 is necessary to meet the constraints. The 

NDFT, however, is accurate enough for the demanded spectral resolution of 

0.82Hz but is far too slow and beyond the maximum allowed latency of 50ms. 
 

6.2 Frequency Recognition Algorithms analyzing Musical Notes 
 
The question is whether the frequency recognition algorithms are able to cope 

with instrumental inputs. As analyzed, it has been analytically shown that the 

spectrum for a single note over time can join the maximum power on one of their 

harmonics rather than on the fundamental frequency, depending on the 

instrument’s character. 

6.2.1 Note C6 (1046.5Hz) for Piano, Violin, Flute and Trumpet: 
 
Figure 22 - 23 depict the estimated frequencies over time for an 1046.5Hz input 

played by the two string based instruments piano and violin respectively. Since 

the estimated frequency is within the boundaries throughout the whole sample’s 

duration, all investigated frequency recognition algorithms meet the restrictions 

for all applied instrumental inputs. 
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         Figure 22: Estimated frequency vs. time for a 1046.5Hz input (piano) 
 

       

 

        Figure 23: Estimated frequency vs. time for a 1046.5Hz input (violin) 
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                Figure 24: Estimated frequency vs. time for a 1046.5Hz input (trumpet) 
 

                 

 
                Figure 25: Estimated frequency vs. time for a 1046.5Hz input (flute) 
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Both the DFT and the NDFT show a similar behaviour like for the string. Both 

algorithms are accurate enough for meeting the restrictions but they are 

fluctuating throughout the whole sample’s duration, whereas the DFT appears 

more stable than the NDFT. Again, the FFT supplies accurate frequency 

estimation within the limits, but is subject to variation for a violin. The only 

algorithm, which is unreliable in terms of frequency recognition for woodwind and 

brass instruments, is the Goertzel algorithm. 

 

6.2.2 Note C5 (523.25Hz) for Piano, Violin, Flute and Trumpet: 
 
For a string based instrumental input of 523.25Hz all algorithms succeed in 

estimating the played note, as shown is figures 26 and 27. Again, the Goertzel 

algorithm is the most accurate and hits exactly the expected frequency of 

523.25Hz. The FFT is similar to the previous section the next close frequency 

recognition algorithm and estimates constantly 517.0Hz over the whole samples’ 

duration and hence meets the given constraints. As expected, the DFT and the 

NDFT fluctuate but are is still in between the upper and lower bounds of 

508.57Hz and 537.93Hz respectively. 
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                    Figure 26: Estimated frequency vs. time for a 523.25Hz input (piano) 
 
 

                            
 

  Figure 27: Estimated frequency vs. time for a 523.25Hz input (violin) 
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           Figure 28: Estimated frequency vs. time for a 523.25Hz input (flute) 
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      Figure 29: Estimated frequency vs. time for a 523.25Hz input (trumpet) 
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                 Figure 30: Estimated frequency vs. time for a 261.63Hz input (violin) 
 

                    
                   Figure 31: Estimated frequency vs. time for a 261.63Hz input (piano) 
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All the algorithms estimate these both overtones at 1046.5Hz and 1569.98Hz 

respectively because of the reasons stated above. Hence and to anticipate at this 

stage, a simple application of the frequency recognition algorithms is not 

sufficient when playing note C6 with a trumpet. 

                     
                 Figure 32: Estimated frequency vs. time for a 261.63Hz input (flute) 
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                Figure 33: Estimated frequency vs. time for a 261.63Hz input (trumpet) 
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the correct expected frequency because the maximum power is present at both 

the fourth and sixth harmonic of 1046.5Hz and 1569.98Hz respectively. 

The exception is the Goertzel algorithm. It identifies the correct frequency of the 

piano and violin for the notes C6 and C5 on the one hand, but does not confirm 

the expected results of estimating flute and trumpet playing note C6, the flute 

producing C5 and the piano and the violin playing note C4 on the other hand. 

Regarding the algorithms’ frequency recognition capability only, it has been 

uniquely shown in section 6.1, that frequency recognition algorithms estimate 

frequencies of signals containing a simple sinusoid in most of the measured 

cases without complications, whereas the frequency recognition capability of 

each algorithm varies due to each individual nature. However, when analyzing 

instruments playing musical notes, it has to be taken into account that the lower 

the frequency is, the higher is the number of harmonics. As long as the maximum 

power is at the fundamental frequency, the peak detection algorithm estimates 

the correct frequency as it is the case with the string based instruments piano 

and violin. If the maximum spectral power is on one of the harmonics as been 

shown for note C5 played by the trumpet and for note C4 produced by trumpet 

and flute, a valid frequency estimation as implemented with the four algorithms, 

is not  possible. Consequently, it can be clearly stated that an exclusive 

application of frequency recognition algorithms is insufficient for definite 

frequency recognition of musical notes. 
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7. Conclusions and Future Work 
 
This dissertation details the theory behind a novel Generic Musical Instrument 

System (GMIS) and provides an analysis of the possibilities to adapt the 

advantageous techniques of Dual-Tone Multi-Frequency (DTMF) systems to 

musical systems such as the GMIS. Four different Fourier transform-based 

frequency recognition algorithms have been analyzed: the Discrete Fourier 

Transform (DFT) as a baseline for the evaluation of all algorithms, the Fast 

Fourier Transform (FFT) which is used in most of the engineering applications, 

the Goertzel algorithm and the Non-Uniform Discrete Fourier Transform (NDFT) 

which are both successfully applied to DTMF systems.  

For input signals containing simple sinusoids, the DFT and the NDFT are far too 

slow due to their complexity of 2N . In contrast to them, the FFT is, as expected, 

clearly the fastest Fourier transform-based algorithm, followed by the Goertzel 

algorithm. Both algorithms are fast enough to undercut the average latency of a 

human ear of 50ms.  

In specific, the DFT, the FFT and the NDFT estimate the correct frequencies for 

all instruments playing note C6 and C5 except for a trumpet playing note C5. For 

note C4, only the sting-based instruments succeed. This behaviour is due to the 

fact that the maximum spectral power is held by the fundamental frequency. It 

has been worked out, that the Goertzel algorithm estimates the correct frequency 

of note C6 played by the piano and the violin, but it fails for all other analyzed 

musical notes and does not estimate the frequencies as predicted. That is why, 

this algorithm cannot be considered as a candidate for frequency recognition of 

complex waveforms as it is required for musical systems such as the GMIS. 

It has been shown that the frequency recognition capability of the investigated 

Fourier transform-based algorithms is not satisfactorily enough according to the 

constraints of the GMIS. Thus, frequency recognition algorithms using spectral 

power estimation could be subject to continuative research. Two representatives 

of this algorithm category are the Normalized Direct Frequency Estimation 
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Technique (NDFET) based on the Least Mean square (LMS) algorithm and the 

Multiple Signal Classification (MUSIC) algorithm is a power spectral estimation 

method. 
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