
 i

AN ANALYSIS OF FREQUENCY RECOGNITION
ALGORITHMS AND IMPLEMENTATION IN REALTIME

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Technology

In
Telematics and Signal Processing

By

CHINTHA.VAMSHI

Roll no: 20607005

Department of Electronics and Communication Engineering
National Institute of Technology

Rourkela
2007-2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

AN ANALYSIS OF FREQUENCY RECOGNITION
ALGORITHMS AND IMPLEMENTATION IN REALTIME

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
In

Telematics and Signal Processing

By

CHINTHA.VAMSHI

Roll no: 20607005

Under the Guidance of

Prof. G.S. RATH

Department of Electronics and Communication Engineering
National Institute of Technology

Rourkela
2007-2008

 iii

National Institute Of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “An Analysis of Frequency Recognition

Algorithms and Implementation in Real-Time” submitted by Ch.Vamshi in partial

fulfillment of the requirements for the award of Master of Technology Degree in Electronics

& communication Engineering with specialization in “Telematics and Signal Processing”

at the National Institute of Technology, Rourkela (Deemed University) is an authentic work

carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University / Institute for the award of any Degree or Diploma.

 Prof. G.S. Rath
 Dept. of Electronics & Communication Engg.
 National Institute of Technology
Date: -05-2008. Rourkela-769008

 iv

ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it would be

impossible without people who supported me and believed in me.

I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Prof. K.K.Mahapatra, Department of Electronics and Communication

Engineering. He is not only a great lecturer with deep vision but also and most importantly a

kind person. I sincerely thank for his exemplary guidance and encouragement. His trust and

support inspired me in the most important moments of making right decisions and I am glad

to work with him.

I want to thank all my teachers Prof. G.S. Rath, Prof. G.Panda, Prof. S.Mehar,

Prof. S.K. Patra and for providing a solid background for my studies and research thereafter.

They have been great sources of inspiration to me and I thank them from the bottom of my

heart.

I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious.

I’ve enjoyed their companionship so much during my stay at NIT, Rourkela.

I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

Last but not least I would like to thank my parents, who taught me the value of hard

work by their own example. They rendered me enormous support during the whole tenure of

my stay in NIT Rourkela.

 CHINTHA VAMSHI

 v

CONTENTS:

Abstract vii

List of Figures viii

List of Tables x

1. INTRODUCTION 1

1.1 Background 2

 1.1.1 Dual-Tone Multi-Frequency (DTMF) Systems 2

 1.1.2 Musical Instrument Digital Interface (MIDI) in Musical Systems 4

1.2 The Generic Musical Instrument System (GMIS) 6

2. Fourier transform-based Frequency Recognition Algorithms 8

2.1 The Fourier Series 8

2.2 The Fourier Transform 9

2.3 The Discrete Fourier Transform (DFT) 9

 2.4 The Fast Fourier Transform (FFT) 10

 2.4.1 Decimation of the DFT in Time (DIT) 10
 2.4.2 Bit Reversal 11
 2.4.3 The Butterfly Network 12

2.5 The Non-Uniform Discrete Fourier Transform (NDFT) 13

 2.6 The Goertzel Algorithm 14

3. Implementation 17

3.1 The Digital Signal Processor (TI TMS320C6713 DSP) 17

 3.2 The TI TMS320C6713 DSP Board 18

 3.2.1 Chip Support Library (CSL) 18
 3.2.2 The Code Composer Studio (CCS) 19

 3.3 Usage of the Timer 19

4. Implementation of the Frequency Recognition Algorithms 21

 4.1 Methodology 21

 4.2 Principle of the Frequency Recognition Algorithms 22

 vi

 4.2.1 The Discrete Fourier Transform (DFT) 22

 4.2.1.1 Simulation in Matlab 22
 4.2.1.2 Implementation of the DFT in C 23

 4.2.2 The Fast Fourier Transform (FFT) 24

 4.2.2.1 Simulation in MatLab 24
 4.2.2.2 Implementation of the FFT in C 24

 4.2.3 The Non-Uniform Discrete Fourier Transform (NDFT) 25

 4.2.4 The Goertzel Algorithm 27

4.3 Comparison of schedulable Buffer Sizes 28

5. Measurements 29

 5.1 Analysis of Input Signals 29

 5.1.1 Sinusoidal Inputs 30
 5.1.2 Inputs of Musical Instruments 31

 5.2 Prediction of the Algorithms’ Frequency Recognition Capability 32

 5.3 Evaluation Criteria 33

 5.3.1 Sampling Rate 33
 5.3.2 Spectral Resolution 34
 5.3.4 Time to settle 34
 5.3.5 Computational Costs of Investigated Algorithms 35

5.4 Performance Metrics 36

 5.4.1 Latency 36
 5.4.2 Speedup 37
 5.4.3 Accuracy 37

6. Results 38

6.1 Frequency Recognition Algorithms analyzing simple Sinusoids 38

 6.1.1 Latency 38
 6.1.2 Speedup 40
 6.1.3 Accuracy 42
 6.1.4 Comparison of the Investigated Metrics 46

6.2 Frequency Recognition Algorithms analyzing Musical Notes 46

 vii

 6.2.1 Note C6 (1046.5Hz) for Piano, Violin, Flute and Trumpet 46
 6.2.2 Note C5 (523.25Hz) for Piano, Violin, Flute and Trumpet 49
 6.2.3 Note C4 (261.63Hz) for Piano, Violin, Flute and Trumpet 52
 6.2.4 Comparison of Frequency Recognition Capability for Musical Notes 54

7. Conclusions and Future Work 56

REFERENCES 57

 viii

ABSTRACT

Frequency recognition is an important task in many engineering fields, such as audio signal

processing and telecommunications engineering. There are numerous applications where

frequency recognition is absolutely necessary like in Dual-Tone Multi-Frequency (DTMF)

detection or the recognition of the carrier frequency of a Global Positioning System (GPS)

signal. Furthermore, frequency recognition has entered many other engineering disciplines

such as sonar and radar technology, spectral analysis of astronomic data, seismography,

acoustics and consumer electronics.

 Listening to electronic music and playing electronic musical instruments is becoming more

and more popular, not only among young musicians. This dissertation details background

information and a preliminary analysis of a musical system, the Generic Musical Instrument

System (GMIS), which allows composers to experiment with electronic instruments without

actually, learning how to play them.

 This dissertation gives background information about frequency recognition algorithms

implemented in real time. It analyses state-of-the-art techniques, such as Dual- Tone Multiple-

Frequency (DTMF) implementations and MIDI-based musical systems, in order to work out

their similarities. The key idea is to adapt well-proven frequency recognition algorithms of

DTMF systems, which are successfully and widely used in telephony. The investigations will

show to what extent these principles and algorithms can be applied to a musical system like

the GMIS.

 This dissertation presents results of investigations into frequency recognition algorithms

implemented on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP)

core, in order to estimate the frequency of an audio signal in real time. The algorithms are

evaluated using selected criteria in terms of speed and accuracy with accomplishing over 9600

single measurements. The evaluations are made with simple sinusoids and musical notes

played by instruments as input signals which allows a solid decision, which of these

frequency recognition algorithms is appropriate for audio signal processing and for the

constraints of the GMIS in real time.

 ix

List of Figures:

Figure 1: DTMF frequencies according to ITU-T Q.24 (2)

Figure 2: The Generic Musical Instrument System (GMIS) (6)

Figure 3: A basic butterfly for a 2-point DFT (12)

Figure 4: Bit reversal of the input data (13)

Figure 5: Filter structure of the Goertzel algorithm (15)

Figure 6: Memory Map for the TMS320C6713 DSP Starter KIT (17)

Figure 7: Pseudo code for applying time measurements (20)

Figure 8: Frequency recognition in principle (23)

Figure 9: Arbitrarily chosen frequencies for the NDFT (26)

Figure 10: Latency vs. Buffer size for a 27.5Hz input (39)

Figure 11: Latency vs. Buffer size for a 440Hz input (39)

Figure 12: Latency vs. Buffer size for a 440Hz input (40)

Figure 13: Speedup vs. Buffer size for a 27.5Hz input (41)

Figure 14: Speedup vs. Buffer size for a 440Hz input (41)

Figure 15: Speedup vs. Buffer size for a 4186.01Hz input (42)

Figure 16: Estimated frequency vs. Buffer size for a 27.5Hz input (43)

Figure 17: Absolute deviation vs. Buffer size for a 27.5Hz input (43)

Figure 18: Estimated frequency vs. Buffer size for a 440Hz input (44)

Figure 19: Absolute deviation vs. Buffer size for a 440Hz input (44)

Figure 20: Estimated frequency vs. Buffer size for a 4186.01Hz input (45)

Figure 21: Absolute deviation vs. Buffer size for a 4186.01Hz input (45)

Figure 22: Estimated frequency vs. time for a 1046.5Hz input (piano) (47)

Figure 23: Estimated frequency vs. time for a 1046.5Hz input (violin) (47)

Figure 24: Estimated frequency vs. time for a 1046.5Hz input (trumpet) (48)

 x

Figure 25: Estimated frequency vs. time for a 1046.5Hz input (flute) (48)

Figure 26: Estimated frequency vs. time for a 523.25Hz input (piano) (49)

Figure 27: Estimated frequency vs. time for a 523.25Hz input (violin) (50)

Figure 28: Estimated frequency vs. time for a 523.25Hz input (flute) (51)

Figure 29: Estimated frequency vs. time for a 523.25Hz input (trumpet) (51)

Figure 30: Estimated frequency vs. time for a 261.63Hz input (violin) (52)

Figure 31: Estimated frequency vs. time for a 261.63Hz input (piano) (53)

Figure 32: Estimated frequency vs. time for a 261.63Hz input (flute) (53)

Figure 33: Estimated frequency vs. time for a 261.63Hz input (trumpet) (54)

 xi

List of Tables:

Table 1: The FFT algorithm (Decimation in Time) (11)

Table 2: Filter coefficients for the Goertzel algorithm (15)

Table 3: Frequencies and filter coefficients for 88 MIDI notes (27)

Table 4: Frequencies and filter coefficients for 88 MIDI notes (32)

Table 5: Probable frequency recognition capability of instruments (33)

Table 6: Fourier transform-based algorithmic complexity (35)

 1

1. INTRODUCTION

Frequency recognition is an important task, not only in many scientific disciplines such

as astronomy, physics or engineering but also in everyday life like in telephony, medical

applications or consumer electronics. Frequency recognition is used in many

applications,

for example spectrum analyzers and seismographs to analyze earth quakes

which make life both more convenient and secure.

In consumer electronics, musical systems have found a broad distribution and

have a remarkable market potential. Playing and listening to electronic music is

becoming more and more important as a leisure activity, for young and old alike.

Therefore, the design of a Generic Musical Instrument System (GMIS), allows

musicians the chance to experiment with other musical instrument sounds

without actually having to learn them.

One very widely spread application of frequency recognition is used in telephony

and is called Dual-Tone Multiple-Frequency (DTMF). Its advantageous, well-

proven algorithms could be adapted to musical systems which show similarities

to DTMF systems. These comparable properties of DTMF systems have to be

analyzed and their usability has to be evaluated with respect to musical systems

such as the GMIS.

Therefore, four different Fourier transform-based frequency recognition

algorithms are subject to an analysis: the Discrete Fourier Transform (DFT) taken

as a baseline to evaluate all algorithms, the Fast Fourier Transform (FFT) which

is the workhorse in many engineering applications, the Goertzel algorithm and

the Non-Uniform Discrete Fourier Transform (NDFT) which are both successfully

used in DTMF systems.

These frequency recognition algorithms are implemented on a Texas Instruments

(TI) TMS320C6713 digital signal processor (DSP) core in order to estimate the

frequency of the audio signal in real time. These frequency recognition

algorithms are evaluated by selected criteria in terms of speed and accuracy by

using both simple sinusoids and musical notes played by instruments as input

 2

signals. This analysis allows a solid conclusion to be drawn regarding the

application of the frequency recognition algorithms in musical systems such as

the GMIS.

1.1 Background

1.1.1 Dual-Tone Multi-Frequency (DTMF) Systems:

Dual-Tone Multi-Frequency (DTMF) is used for remote mono-directional user- to

machine communication in telephony, service selection in Intelligent Networks

and serinteractive phone services such as telephone banking to obtain a desired

service. The addressed machine is controlled by a unique mixture of two

standardized sinusoids.

 Figure 1: DTMF frequencies according to ITU-T Q.24

9
wxyz

*

6
mno

697

0 #

A

1336

770

3
def

852

1477

B

C

D

1633 1209

941

F in Hz

1

High group

L
ow

 group

2
abc

8
tuv

4
ghi

7
pqrs

5
jkl

 3

For each column and row, one sinusoid of a standardized frequency is allocated.

When a button is pressed, the mixture of two of these frequencies is sent to the

exchange. Therefore, in order for the exchange to determine the key being

pressed, accurate frequency recognition is required to separate the two tones.

The accuracy of this recognition is very high in order to comply with the ITU-T

specifications.

DTMF systems are well-proven and have several advantages which make them

convenient for signal processing and frequency recognition. For instance, DTMF

systems operate on a low sampling frequency of 8000sf Hz= . Consequently,

compared to other systems with higher sampling rates, the number of sampling

points per second of a signal is smaller than sampled.

Another feature that DTMF systems have that can be used to simplify the

processing is the use of simple pure sinusoidal signals only, because these

signals are meant to control machines and so these signals have to be unique.

The frequency recognition algorithms used to determine these signals, simply

have to perform a simple peak detection after having estimated the spectrum and

do not have to take the shape of the spectrum into account.

One very important and requirement for the design of frequency recognition

algorithms in DTMF systems is the fact that the tolerance of the frequency

recognition is only 1.5%. This might not sound much, but actually regarding the

lowest frequency of 697Hz, the absolute tolerance is 10.46Hz. This is,

anticipatory, a relatively big tolerance, compared to other systems like musical

systems as described in the following system.

Summing up, DTMF systems benefits from the following characteristics:
* Low sampling rate of 8sf KHz= .

* 8 standardized simple sinusoidal signals, known in advance.

* Limited bandwidth: 697Hz - 1633Hz

* Minimum absolute tolerance: 10.46Hz (1.5%).

 4

These advantages are taken into account for DTMF detectors and are used to

reduce computational requirements and increase accuracy when developing

frequency recognition algorithms for the purpose of DTMF detection.

1.1.2 Musical Instrument Digital Interface (MIDI) in Musical Systems:

The Musical Instrument Digital Interface (MIDI) version 1.0 was defined by a

consortium of musical instrument manufacturers, The International MIDI

Association in 1983. The main purpose was to set up a standard interface in

order to make electronic musical instruments of different manufacturers

compatible among each other. The communication of these musical devices

increased the sales quantities but what is more, this standard also caused a

boom in the composition, development and recording of electronic music among

musicians who cannot afford a professional recording studio.

 MIDI notes and their corresponding frequencies are the basis for the

following investigations. An electronic keyboard has 88 keys, starting with MIDI

note #21 until MIDI note #108, and has its origin in the theory of the equal

tempered piano. Based on note A4 (440Hz), each neighbored note is one 12th

part of an octave distant. This distance is also called tempered semitone.

Between two octaves, the notes’ frequencies double. Taking these principles into

account, the corresponding frequency of each MIDI note is

69
12() 440.2

MIDIn

MIDIf n Hz
−

= 21 108MIDIfor n≤ ≤ (1)

 5

Where MIDIn is the MIDI note number.

In terms of digital signal processing, the advantages of the Musical Instrument

Digital Interface (MIDI) used in musical systems (in particular of a keyboard), are

worked out in this section.

One major important issue is the limited bandwidth with a minimum frequency of

27.5Hz and a maximum frequency of 4186.01Hz. Frequency recognition

algorithms have to be designed with respect to this bandwidth which limitation

reduces their complexity immensely. Also, since all 88 frequencies of interest are

standardized, the algorithms can be developed by referring to these expected

frequencies.

There are some considerable disadvantages of musical systems, however, which

have to be faced when developing frequency recognition algorithms. Mostly,

musical systems use a high sampling frequency of 44100sf Hz= to meet the

Nyquist-Shannon theorem. The Nyquist- Shannon states that the sampling rate

sf have to be greater than the twice highest frequency in the signal, in order to

be able reconstruct this signal correctly. If this condition is not fulfilled, all the

frequencies above the half the sampling rate, i.e. the Nyquist frequency, will

appear as lower frequencies in the reconstructed signal which is

called “aliasing”. Since the audible range of human is within 0Hz and 20000Hz

and is therefore below the Nyquist frequency of / 2 22050sf Hz= , the Nyquist-

Shannon sampling theorem is fulfilled using a sampling rate 44100sf Hz= .

Recapitulating, the properties of musical systems as analyzed above are listed
as follows:

* Sampling rate of 44.1sf kHz=

* 88 standardized MIDI frequencies

* Limited bandwidth: 27.5Hz - 4189.01Hz

* Minimum absolute tolerance: 0.82Hz (2.81%).

 6

1.2 The Generic Musical Instrument System (GMIS)

Among young musicians, playing electronic instruments has become more and

more popular. At the same time, the attraction towards learning classical

instruments (for example flute, saxophone, etc) has decreased despite their

importance in music composition. The design of a Generic Musical Instrument

System (GMIS), therefore, allows musicians the opportunity to experiment with

other musical instrument sounds without actually having to learn how to play

them.

The GMIS is a system which can make any instrument sound like any other

instrument. In order to attain maximum benefits, the system should operate in

real time. The advantage of real time behavior is the musician’s chance to listen

to the result immediately and actually compose by ear.

 7

Figure 2: The Generic Musical Instrument System (GMIS)

The GMIS consists of a common Digital Signal Processor (DSP) system which is

used to recognize the frequencies of the incoming audio data’s input in real time,

as shown in the figure2. The time and amplitude continuous audio data passes

an anti-aliasing band-limiting low pass filter, before a sample and hold unit

samples the signals in time. There is still continuous amplitude whose infinite

values have to be quantized by the analogue to digital converter (ADC). The time

and value discretized data can now be processed by the digital signal processor

(DSP). After the processing the digital to analogue converter (DAC) converts the

digital data into an analogue form. Before the audio data is output, another low

pass filter smoothes the signal by removing the high frequency components

which are an undesired by-product of the converting process.

The GMIS consists of a common Digital Signal Processor (DSP) system which is

used to recognize the frequencies of the incoming audio data’s input in real time.

T he G eneric M usical In strum en tal S ystem ()G M IS

Low Pass
Filter

Sampling
(Sample &

Hold)

ADC Digital Signal
Processing

DAC Low Pass
 Filter ()x t ()x n ()y n ()y t

Frequency to
MIDI

Converter

()X n

(())MIDI f X n−

 8

The time and amplitude continuous audio data passes an anti-aliasing band-

limiting low pass filter, before a sample and hold unit samples the signals in time.

There is still continuous amplitude whose infinite values have to be quantized by

the analogue to digital converter (ADC). The time and value discretised data can

now be processed by the digital signal processor (DSP). After the processing the

digital to analogue converter (DAC) converts the digital data into an analogue

form. Before the audio data is output, another low pass filter smoothes the signal

by removing the high frequency components which are an undesired by-product

of the converting process.

This dissertation analyses the frequency recognition part only and does not carry

out

further investigations on the frequency to MIDI conversion.

2. Fourier transform-based Frequency Recognition Algorithms

In 1807, Jean Baptiste Joseph Fourier (1798 - 1830) developed the theory about

the Fourier series but was rejected by his supervisors Lagrange, Laplace and

Legrendre. Finally, in 1822, he published his work in his book “Théorie analytique

de la chaleur”. More or less as a side product of this work, he derived the so-

called Fourier Series, where he proved that any periodic signal consists of an

infinite number of sinusoids and a constant. His theories have revolutionized

science and are indispensable in many technical applications.

In this section, after a brief definition of the Fourier Series and the Fourier

Transform, four Fourier transform-based algorithms are going to be introduced.

These algorithms are the Discrete Fourier Transform (DFT) and its faster

 9

implementation Fast Fourier Transform (FFT), the Goertzel algorithm, and the

Non-Uniform Discrete Fourier Transform (NDFT).

2.1 The Fourier Series:

With the Fourier Series, it is possible to create any periodic signal, ()x t , in the

time domain from the sum of an infinite number of sinusoids, i.e. sine and cosine

functions, which are integer multiples of the fundamental frequency, 0f . The

Fourier Series is defined as:

0
0 0

1

() (.cos(. .) .sin(. .))
2 n n

n

ax t a n w t b n w t
∞

=

= + +∑ 0,1,.......n = ∞ (2)

Where 0a is the amplitude of the direct current component, n is the current

number of the sinusoidal component, na and nb the amplitude of the thn sine and

nth cosine function respectively, t the representative of the time domain, 0w the

angular frequency, with , 0 02. .w fπ= where 0f is the fundamental frequency.

0

0

2

0
0

2

2 () . c o s (. .) .

T

n
T

a x t n w t d t
T

+

−

= ∫ (3)

0

0

2

0
0

2

2 () . s i n (. .) .

T

n
T

b x t n w t d t
T

+

−

= ∫ (4)

Where 0T is the period of fundamental frequency, 0f , of the signal, with

0 02. .w fπ= .

2.2 The Fourier Transform:

The Fourier Series is a special case of the Fourier integral and is valid for

periodic signals only. For any non-periodic signal, the Fourier Series cannot be

applied anymore and the Fourier Transform has to be taken into account and is

defined as:

 10

0. .() () . j w tX f x t e d t

+ ∞
−

− ∞

= ∫ (5)

where t and f stand for the time and frequency domain respectively; x(t)

represents the continuous time signal and X(f) its spectrum in the frequency

domain. The indicator for the imaginary part 1j = − and 0w is the angular

frequency and is defined for the Fourier Transform as:

 0 2 . .w fπ= (6)

The Fourier Transform can finally be written as:

.2. . .() (). j f tX f x t e dtπ
+∞

−

−∞

= ∫ (7)

Since the Fourier Transform is valid for infinite continuous signals only and a

numerical implementation is just possible with finite discrete signals, due to

limited memory and computation time, the Discrete Fourier Transform (DFT) can

be derived.

2.3 The Discrete Fourier Transform (DFT):

The easiest and most direct way to obtain the discrete spectrum of a signal is the

Discrete Fourier Transform (DFT). It is also the basis for the four Fourier

transform-based frequency recognition algorithms described in section 5.4.2.2.

Because the DFT is the slowest algorithm, it is also taken as a baseline to

evaluate all the other investigated algorithms.

 .t nT→ 0,1,......, 1n N= − (8)

 . sff k
N

→ 0,1,.... 1k N= − (9)

Where n represents the sample index for discrete time domain signal values and

k the discrete spectral index. The sampling frequency sf and the accordant

period sT are linked via the relation

 1
s

s

T
f

= (10)

 11

The DFT is finally formulated more convenient as

21 . . .

0

[] [].
N j k n

N

n

X k x n e
π− −

=

= ∑ 0,1,.... 1k N= − (11)

Equation (11) is the definition of the Discrete Fourier Transform (DFT), with x[n]

as the

sampled time signal and X[k] as the representative of the discrete frequency

spectrum.

2.4 The Fast Fourier Transform (FFT):

The Fast Fourier Transform (FFT) is not an independent time to frequency

domain transform but an effective recursive algorithm to calculate the DFT and

was developed by Cooley and Tukey in 1965. It has revolutionized digital signal

processing and is the basis for many real time applications whenever a transform

of signals from time to frequency domain is required.

2.4.1 Decimation of the DFT in Time (DIT):

The FFT takes advantage of reducing redundant calculation of DFT coefficients,

also called twiddle factors. A prerequisite, therefore, is that the number of

samples or the buffer size, N, is a power of two. If this condition is not given,

zero-padding (in other words, adding zeros at the end of the input buffer) has to

be applied. Then, according to the principle of divide and conquer, the input

samples have to be re-ordered N times until N/2 2-point DFTs can be calculated.

This process is also known as bit reversal. Starting with the calculation of the 2-

point DFTs, this procedure follows 2log ()N times with / 4N 4-point DFTs, then

with / 8N 8-point DFTs until the (N/N) N-point DFT is reached. This

computational part is also known as butterfly computation.

The whole algorithm as described above and is summed up in table 1.

Table 1: The FFT algorithm (Decimation in Time)

 12

Following the principle of divide and conquer, the DFT can be split up into two half size

N-point DFT, the even and the odd part as shown in equation (12) and (13) respectively.

 [] [] []even oddX k X k X k= + 0,1,........, 1k N= − (12)

/2 1 /2 1
. .
/ 2 /2

0 0

[] [2.]. . [2. 1].
N N

n k k n k
N N N

n n

X k x n W W x n W
− −

= =

= + +∑ ∑ 0,1,........, 1k N= − (13)

Finally, it can be concluded that

 11 12[] [] []k

NX k X k W X k= + 0,1,........, 1k N= − (14)

This divide and conquer process continues until a basis of / 2N 2-point DFTs is

reached. The principle remains always the same: Two DFTs of equal length have

to be calculated at the same time, whereas the DFT with the odd indices needs

to be multiplied with
2. .j kk N

NW e
π

−
= . The advantage of having twiddle factors is that

they have to be calculated times 2log ()N only, instead of 2N as it is with a

common DFT.

2.4.2 Bit Reversal:

This stage requires N steps

This stage requires
 steps.

Action Comment

Apply butterfly computations
recursively

0 Zeros padding (add zeros to
the buffer), if the number of samples N is
not to the power of two.

Steps#

Bit-reverse input samples until
N/2 input sample pairs for N/2
2-point DFT are reached.

The FFT requires
(with m as an integer number)
Input samples.

2mN =

2log ()N

1

2

 13

As figured out in the previous section, the key to the success of the FFT is the use of the

butterfly network, which takes 2log ()N stages. A preliminary for using the butterfly

network is the re-ordering of the input data in the time domain. This preparation of the

data can be achieved by a bit reversal of the samples’ physical addresses as shown in

figure 3. This step of the algorithm takes N stages.

2.4.3 The Butterfly Network:

The bit reversal is a preparation of the input data for the butterfly network which

is a recursive application of N DFTs. Starting with / 2N 2-point DFTs, which are

the basis for / 4N 4-point DFTs, the recursive computation will be applied until

the (/N N) N-point DFT is reached. The whole process of applying the butterfly

network takes 2log ()N stages.

In figure 3, a basic butterfly for a 2-point DFT is shown. Taking the bit reversed

input data as a basis, the twiddle factors are multiplied with the input sample with

the odd index, whereas the odd indexed spectral component is additionally

multiplied by -1.

Figure 3: A basic butterfly for a 2-point DFT

x[0]

x[1]

X[0]

X[1]

2
kW 1−

Bit-reversed
input
buffer

Spectral output
buffer

 14

Figure 4: Bit reversal of the input data

2.5 The Non-Uniform Discrete Fourier Transform (NDFT):

The disadvantage of the DFT and FFT is the use of an evenly spaced frequency

range which leads into a transform of the whole frequency spectrum for the

sampling rate sf as a constraint. With the Non-Uniform Fourier Transform

(NDFT) it is possible, to analyze arbitrary frequency ranges with irregular

intervals. Therefore, an increase of accuracy is possible by the application of a

well-conditioned frequency vector.

000 x[0]

x[4]

x[2]

x[6]

x[7]

x[0]

x[1]

x[4]

x[5]

x[2]

x[3]

x[7]

x[6]

x[5]

x[3]

x[1]

000

001

010 010

011

001

011

100

100

111 111

101 101

110

110

Original input
buffer

Bit-reversed
input
buffer

Bit-reversed
address

of buffer elements

Original
address of

buffer elements

 15

Considering equation (11) of the DFT and taking the equidistant sampled

frequency domain in equation (9) into account with

k

s

f k
f N

= 0,1,........, 1k N= − (14)

Where sf is the sampling frequency, N the number of samples and

0 1 1() [, ,....,]k Nf k f f f f −= = the arbitrary chosen frequency at k, the DFT can be

rewritten as a NDFT:

21 . .

0

[] [].
k

s

N j f n
f

n

X k x n e
π− −

=

= ∑ 0,1,........, 1k N= − (15)

The NDFT has still a complexity of 2N but due to the vector of arbitrarily chosen

frequencies, it is more accurate within the desired range. Everything outside that

range will be of a lesser accuracy but as this range is not required and can be

ignored. The vector itself holds the relevant frequencies of interest with well-

conditioned arbitrarily chosen frequencies in between these frequency points.

The interpretation of the NDFT’s results is raised by assigning the discrete non

equidistant spectral index value k directly to the arbitrarily chosen frequency

vector kf (16) after having estimated the spectrum.

 0 1 1() [, ,....,]k Nf k f f f f −= = 0,1,........, 1k N= − (16)

2.6 The Goertzel Algorithm:

Another effective derivative of the DFT is the Goertzel algorithm which found its

earliest formulation in 1958. It is a widely-used algorithm used for DTMF

applications. Different from DFT and FFT, the Goertzel algorithm does not regard

the whole frequency spectrum. These advantages can be used in the adaptation

of the Goertzel algorithm for musical systems, since the frequency range is also

known from 27.5Hz to 4186.01Hz as well as the number of expected frequencies

 16

of interest which is 88. Therefore, it is only necessary to perform an analysis over

this range hence fewer points are required for the computation.

The Goertzel algorithm is a filter bench consisting of recursive second order

Infinite Impulse Response (IIR) filters. An example of these filters is depicted in

figure 6. Its system function can be deduced from its structure and is stated in

equation (17).

0 1

0 1
1 2

1 2

. .()
1 . .

b z b zH z
a z a z

− −

− −

+
=

+ +
 (17)

Figure 5: Filter structure of the Goertzel algorithm

Table 2: Filter coefficients for the Goertzel algorithm

1z−

1z−

+

+

+

2a

0b

1b1a

[]kq n
[]ky n[]x n

 17

Inserting these coefficients into the system function and putting the value

of .k

s

fk N
f

= , the system function can be rewritten as:

. 1

1 2

1 .(,)
1 2.cos().

kj w

k

e zH k z
w z z

− −

− −

−
=

− + 0,1,.....88k = (18)

The recursively calculated output signal finally is:

.[] . [1] [2] [] . [1]kj w
k k k k ky k a q n q n x n e q n−= − − − + − − 0,1,.....88k = (19)

1
22.cos(.)a k
N
π

=

2 1a =
2. .

1

j k
Nb e
π

−
= −

0 1b =

Feed forward section Recursive section

 18

3. Implementation

3.1 The Digital Signal Processor (TI TMS320C6713 DSP):

The Texas Instruments (TI) TMS320C6713 digital signal processor (DSP) is a 32

Bit floating point DSP of the C6000 series and runs at a frequency of 225MHz

and is optimized for audio applications. The DSP core contains two exclusively

fixed point Arithmetic-Logic Units (ALU), four both fixed and floating point ALU

and two both fixed and floating point multipliers. It can perform both in single and

double precision.

 As in many commercially used processors, the TMS320C6713 has an 8KB

first level and a second level cache of 256KB as internal memory. The reason for

this unbalanced distribution of internal memory is that level 1 cache is on the

other hand fast and therefore contains both program and data cache, but is more

expensive compared to the level 2 cache on the other hand. Additionally, the

TMS320C6713 also has access to peripheral 16MB external Synchronous

Dynamic Random Access Memory (SDRAM) which can directly be accessed.

 19

Figure 6: Memory Map for the TMS320C6713 DSP Starter KIT
The user of the processor can choose between the two orders little and big

endian. That means, for the little endian mode (the default mode), the least

significant byte is stored at the lowest address, literally, little end first. In contrast

to this, in the big endian mode, the most significant byte is stored at the lowest

address, meaning, big end first.

The TMS320C6713 also makes use of an Enhanced Direct Memory Access

(EDMA) Controller. This technique enables the acquisition of audio data directly

from the stereo audio codec (AIC 23). The EDMA can also be combined with the

two Multichannel Bidirectional Serial Ports (McBSP)

Finally, the TMS320C6713 is provided with an optimized C/ C++ compiler for the

processor’s architecture. Especially the Multiply-Accumulate (MAC) command is

supported and the uses of this multiply and add combination (also known as sum

of products) is recommended.

3.2 The TI TMS320C6713 DSP Board

Internal
 Memory

Reserved
Or

Peripheral

CPLD

SDRAM

Daughter
card

0 90080000X

6713 DSK

Internal Memory

Reserved space
Or

Peripheral Regs

EMIF CE0

EMIF CE1

EMIF CE2

EMIF CE3

C67X Family
Memory Type

0 80000000X

0 90000000X

0 0000000XA

0 0000000XB

0 00030000X

0 00000000X

Address

Flash

 20

The target hardware used for the analysis of frequency recognition algorithms is

the TMS320C6713 DSP Starter Kit, developed by Spectrum Digital and Texas

Instrument respectively, is referred as DSP board in the following. The reason

why not a Personal Computer (PC) (which nowadays has enough computational

power to compete with a DSP core), was not chosen for the analysis on

frequency recognition algorithms is because the aim was to target an embedded

solution. The Signal Processing Laboratory was provided with two of these DSP

boards by Texas Instruments. Due to financial restrictions, one further

requirement of the project was that the implementation of the frequency

recognition algorithms should be done on this board.

3.2.1 Chip Support Library (CSL):

To handle interrupts, scheduling tasks and their priorities and to manage

memory, Texas Instruments has developed a DSP/BIOS real time operating

system. It operates independently from the application. All the settings for the

issues can be set up by a graphical configuration manager. When compiling, the

settings are then applied by the Chip Support Library (CSL).The software

interrupt (processBufferSwi) is defined or the software interrupt service routine

(ISR) which contains the frequency recognition algorithm.

3.2.2 The Code Composer Studio (CCS):

The Code Composer Studio Code (CCS) is the front end of the TMS320C6713

DSP starter KIT and has a lot of advantageous properties.

The most obvious feature is the data visualization. The CCS offers the chance to

observe the data which are currently present in the internal buffers. In the

animation mode, even the change over time is recognizable,. i.e. a change in

frequency would change the diagrams, too.

Another, very important issue is the simple data import to and export capabilities

from these internal buffers. The latter scenario is very useful for debugging

purposes, i.e. for verifying results and frequency recognition algorithms either in

a simulation environment like MatLab or with an alternative ANSI C compiler.

 21

This approach has been used in the course of the project and has been proved

to be the most effective way.

Furthermore, the CCS has the convenient feature of a simplified file I/O which

enables to trace results by using injections. Injections are soft breakpoint which

halt the CPU far a short moment to perform a file I/O. Like break and animation

points, they can just be used in a debug/release environment.

3.3 Usage of the Timer:

In order to use the 32-bit timer, two steps must be completed. At first, the timer

has to be configured and second a calibration has to be done which measures

the starting and the stopping of the timer itself.

 There are three timer registers to be initialized: the control, the period and the

counter register. The timer control register is used to determine the timer’s mode.

The timer period register stores the maximum value the timer counts to. Once

this value is reached, a timer overflow occurs and the time measurements

become corrupt. The maximum value, a timer can maximal count is

0xFFFFFFFF. To circumvent a timer overflow, either the overflows have to be

counted or the number is downscaled through a division by constant, e.g. 1000.

This constant has to be bared in mind for the correction of the exported data. The

timer counter register stores the current value of the timer. To init the timer, the

constant 0x00000000 is to be taken.

The second step, the calibration of the timer in conjunction with the time

measurement is illustrated by

 22

After having opened and having configured the timer as described above, the

timer needs to be calibrated because the measuring the time itself takes some

time, too. This calibration is the difference between two successive timer events,

i.e. the starting and the stopping of the timer. Then, the difference of both is

estimated, measured in cycles.

The actual measurement of the time works as follows. The timer is started, and

then the algorithm is performed. After having finished the calculation, the timer

stops again and the elapsed cycles are calculated out of difference of the start

time, the stop time and he calibration.

4. Implementation of the Frequency Recognition Algorithms

4.1 Methodology:

Open timer;
Configure timer;
Set timer to zero;
Calibrate timer;
Start timer;
Stop timer;
Calibration cycles = Stop – Start;
Start timer;
Perform algorithm;
Stop timer;
Elapsed cycles = Stop – Start – Calibration cycles;
Close timer;

Figure 7: Pseudo code for applying time measurements

 23

For the implementation of the algorithms, the real time characteristic is of less

importance in the first place. The main purpose is to get them working properly

and to verify their results in terms of correctness. In order to achieve this, several

tools are very useful.

As a first approach, MatLab and Simulink are consulted for a first implementation

of the algorithms. Their ease of use and their undisputable ability to monitor

results graphically very quickly are of assistance to get proof of the correctness

of the algorithms. The second step is a direct implementation of the algorithms in

ANSI C using Microsoft Visual Studio C++ 6.0. Since ANSI C is the programming

language which is used for developing applications for the Texas Instruments (TI)

TMS320C6713 Digital Signal Processor (DSP) core in the Code Composer

Studio (CCS), a fast implementation close to the final application is possible. This

step also ensures simultaneous debugging by taking a working algorithm as a

reference. This is a very effective way to verify intermediate steps. Since the

Code Compose Studio offers the opportunity to export complete buffer content’s

into text files, MatLab is used for verifying and displaying the results.

As input sources, several options can be considered. Cleary defined unique

sinusoids generated by WaveLab and played by the soundcard are valid input

signals. Signals from a signal generator are preferable though because they are

more reliable signal sources. At a later stage instrument samples playing musical

notes are taken as input source too

To summarize, for the implementation of the algorithms onto the target hardware,

MatLab and both developer studios (Microsoft Visual Studio C++ 6.0 and Code

Composer Studio go hand in hand) and complement each other. This methology

accelerates the developing process crucially and, what is also very important, it

helps to verify the results to make sure that they are correct.

4.2 Principle of the Frequency Recognition Algorithms

 24

The process which all frequency recognition algorithms undergo can be

described as follows. At first, the sampled and quantized input signal ()x n is

transformed into the frequency range, in order to obtain real { ()}X nℜ and

imaginary part {X(n)}ℑ of its spectrum. The calculation of magnitude (())Mag X n is

initial for a peak detection mechanism, which finds the spectral component of the

signal with the maximum power. The index maxk of this spectral component is

finally evaluated with respect to the number of samples N and the sampling

rate sf . Since the frequency is now given as a numerical value, it is ideal for a

post processing MIDI conversion.

4.2.1 The Discrete Fourier Transform (DFT):

4.2.1.1 Simulation in Matlab:

The Discrete Fourier Transform is defined as:

21 . . .

0

[] [].
N j k n

N

n

X k x n e
π− −

=

= ∑ 0,1,.... 1k N= − (20)

and directly implemented in MatLab (appendix D). The result is shown in figure 8

depicting the original input signal, its spectrum together with the spectrum’s real

and imaginary part of a 1 kHz sinusoidal input at a sampling rate of 44100sf Hz= .

The signal is deliberately maximal non-coherent sampled as with a leakage

factor of 0.5 as explained in section, in order to obtain a maximum leakage effect.

It is noticeable that even under this worse case condition the peak detection

mechanism will succeed in terms of finding the maximum energetic spectral

component which underlines the decision not to apply extra windowing.

 25

0 0.005 0.01 0.015

-0.5

0

0.5

 t in s →

 x
(t)

 in
 V

 →

0 0.5 1 1.5 2

x 104

100

102

 f in Hz →

 |M
ag

| i
n

dB
 →

0 0.5 1 1.5 2

x 104

-300

-200

-100

0

100

200

 f in Hz →

 Im
{X

(f)
} i

n
dB

 →

0 0.5 1 1.5 2

x 104

-400

-200

0

200

 f in Hz →

 Im
{X

(f)
} i

n
dB

 →

 Figure 8: Frequency recognition in principle

4.2.1.2 Implementation of the DFT in C:

A direct implementation of the DFT in C as in the case of the MatLab simulation

in the previous section is possible, however with slight differences. As MatLab

supports the scientific notation of complex numbers but since this convenient

implementation in C is not available, the twiddle factors have to be rewritten by

using the Euler equation:

2. . 2 2cos(.) sin(.)

j kk N
NW e k j k

N N

π π π−
= = − (21)

This preliminary study is very important for the implementation of the DFT on the

TMS320C671 because the real and the imaginary part of the spectrum can be

regarded separately. Then the MAC (Multiply-ACumulate) command can be

applied as explained. Since the architecture and the compilers of the C6000

series are specialized for this product summing up command, an implementation

 26

of the DFT in the way as described above is promising in terms of a fast

calculation speed.

What is more, as a consequence of the Nyquist-Shannon Theorem, only half the

calculated spectrum is relevant for an evaluation, more precisely, the frequencies

range of 0Hz until half the sampling rate / 2sf . Therefore, only a scan of half the

spectrum is necessary, a fact that results in an economization of computation

time.

4.2.2 The Fast Fourier Transform (FFT):

4.2.2.1 Simulation in MatLab:

Since the Fast Fourier Transform (FFT) is a very efficient algorithm to apply the

Discrete Fourier Transform (DFT) by exploiting the redundancy of calculating the

twiddle factors, the approach to implement this algorithm implies previous

knowledge and understanding of the DFT.

For the simulation of the FFT, it reads wave files which contain signals to be

analyzed and outputs both its spectrum graphically and stores the input signal

numerically in a user defined output file. The intention is to take this numerical

data as a known reference for the implementation on the TI TMS320C6713.

Another derivative of this simulation has been used, but instead of referring to

wave files as input, actual buffer contents of the TI TMSC6713 were taken as the

input for the MatLab file. This method ensures a direct comparison of the

obtained spectra estimated both in MatLab and with the TI TMS320C6713 and is

very helpful for the development of the algorithm.

4.2.2.2 Implementation of the FFT in C:

Since the implementation of the FFTW was not successfully applied, the

assembly coded library has to be taken for implementing the FFT. For this,

previous knowledge of the FFT as such is pre-requisite.

 27

For a buffer size of N ≥ 32, where N has to be of the power of two, a N-point FFT

can be achieved. The API function DSPF_sp_cfftr2_dit() expects a pointer to an

input buffer, a pointer to an array holding the pre compiled twiddle factors and the

number of elements N as an integer as input parameters.

Since the input data has to be complex, i.e. consisting of interleaved real and

imaginary parts, the buffer containing this data has to have the length of 2 · N.

After the execution of this function, this buffer holds the complex result. The

number of twiddle factors is N/2 as a result of having taken advantage from their

redundant calculation. Per definition of the API, the twiddle factors have to be

reordered by bit reversal. Finally, after the calculation of the FFT, the output data

has to be reordered by bit reversal. Both twiddle factor pre calculation and bit

reversal can be found in the TI FFT support files.

Since there was no need to implement the FFT explicitly in another development

environment rather than the Code Composer Studio (CCS), the DFT has been

taken as a reference for the development of the FFT. The approach is, to export

the input buffer of the algorithm in the CSS and to re-import them into the

alternative development environment. Then, a debugging close to real conditions

is possible.

4.2.3 The Non-Uniform Discrete Fourier Transform (NDFT):

The structure of the Non-Uniform Discrete Fourier is similar to the DFT and its

complexity is 2N , as well. The only difference is the fact that the NDFT does not

refer to an equidistant sampled frequency range indexed with k but to an

arbitrarily frequency vector kf as described. It is expected that the assessing to

this vector stored in an array causes an additional delay that makes the NDFT a

bit slower than the DFT.

The main issue of the NDFT and the key for its advantage in comparison to the

DFT is the arbitrarily chosen frequency vector whose accuracy is increased, if it

is ellconditioned. For frequencies in the lower range (i.e. 27.5Hz, 29.14Hz, …), a

finer fragmentation of the frequency vector is required, because the spacing

 28

between two neighboured notes is smaller than for adjoining frequencies in the

higher range (i.e. … 3951.07Hz, 4186.01Hz).

The main problem is the fact that there are 88 MIDI notes, a number which differs

from the buffer size N in every case. If the buffer size N was equal to 88, each

MIDI note would correspond to a buffer index, but this is, as mentioned before,

not possible. For a buffer size N less than 88, the accuracy would not be

sufficient enough due to the fact that some of the MIDI notes are simply not

assigned to one buffer index. The most interesting case is, if the buffer size is

greater than the number of MIDI notes.

The spacings between each frequency point between two MIDI notes are

equidistant though, however dissimilar between each MIDI note pair due to the

fact that the MIDI notes themselves are not equidistant arranged to each other.

Taking equation (1) with as a
69

12() 440.2
M ID In

M ID If n H z
−

= basis, the spacings

are calculated in dependence on two neighbored MIDI notes and the buffer size

N.

(1) ()()

88
MIDI

MIDI MIDI
n

f n f nN N
+ −

Δ = 21 108MIDIfor n≤ ≤ (22)

Figure 9: Arbitrarily chosen frequencies for the NDFT

 29

The final structure of the vector holding the arbitrarily chosen frequencies and the

corresponding MIDI notes is shown in figure 9 in principle. Since this vector is

dependent on the buffer size N, it has to be recalculated for each buffer size N.

4.2.4 The Goertzel Algorithm:

Before coding the Goertzel algorithm up, it is quite useful to have a closer look at

the Goertzel IIR filter coefficients as they are listed in table 3 . Since the filter

coefficients b0 = 1 and a2 = -1 remain constant throughout the whole calculation

and hence do not have to be determined at each stage, the filter coefficients b1

and a1 have to be calculated only for each Goertzel filter. It is useful to separate

the complex denotation of filter coefficient b1 into a real and an imaginary part

using the Euler equation as shown in equations (41) and (42).

2 .2 .. .

1

k

s

fjj k fNb e e
π π−−

= − = − 0,1,.....88k = (23)

1 1 1cos(2 .) .sin(2 .) () . ()k k

s s

f fb j b j b
f f

π π= − + = ℜ + ℑ 0,1,.....88k = (24)

For the sake of completeness, filter coefficient a1 of the recursive section is given
as

 1
22cos(.)a k
N
π

= (25)

This consideration results in a set of 3 · 88 = 264 pre-calculated filter coefficients

to be set up in a look-up table as shown in principle in table 3.

 Table 3: Frequencies and filter coefficients for 88 MIDI notes

 30

For the buffer size N, the signal is filtered with respect to the pre-calculated filter

coefficients. Since only the real and imaginary part and their magnitude are of

interest only, a calculation of these intermediate values takes place after having

filtered the data. Different from DTMF systems using 8 frequencies of interest,

the maximum number of the frequencies to be regarded is 88. For reason of

saving computation time, the pre- calculated filter coefficients are read from a two

dimensional array goertzel_coeff for each loop pass. It has been shown that the

speedup of the method of pre calculation the IIR filter coefficients results in a

considerable factor of 210 .

The actual Goertzel value is obtained with the application of the Goertzel IIR filter

by taking the filter coefficients into account. Again, as considered in section 3.4,

the estimation of the maximum power happens promptly without and is

continuously updated if the maximum is excelled instead of a down streaming

scanning of a whole temporary buffer containing all successively calculated

Goertzel values.

4.3 Comparison of schedulable Buffer Sizes:

A noteworthy fact is the actual memory requirement for a buffer size N for each

of the algorithms. This also demonstrates the reason why a maximum buffer size

of just 8192 can be applied.

 To obtain N data elements, the ping and the pong buffer have to be set up,

each of a size of 2.N . Due to the codec only applying a stereo input, twice the

number of samples as to be scheduled. In total, for the DFT and the Goertzel

algorithm, the actual buffer equirements are 4 · N.

 31

 In particular in the case of the FFT, for the generation of the input buffer for

the API function, another additional buffer is needed. This buffer has the size

of 2.N , because the input data has to be complex with interleaved real and

imaginary part. The twiddle factors need an extra buffer of the size / 2N . In total,

5.5 times more data elements have to be provided than originally scheduled for a

problem size N.

 The NDFT has, due to its complexity, similar basic memory requirements of

(4.)N as the DFT. Additionally, there is a need of N data elements for the pre-

calculated arbitrarily chosen frequency vector.

 Table 11 lists the actual buffer size requirements for a problem size N and

states which factor has to be taken into consideration for an implementation of a

problem size N for each algorithm.

5. Measurements

In order to obtain distinct signals consisting of single sinusoids only, a common

signal generator is used. For monitoring reasons its signals are simultaneously

displayed with an oscilloscope. Once the signal has been led into the line input of

the Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) board

it is subject to sampling and quantization before it can be analyzed by one of the

to be investigated by one of the to be investigated frequency recognition

algorithms. The development software, naming the Texas Instruments’ Code

Composer Studio is installed on the PC and is used for both coding the

algorithms and for storing the measurement results in a file.

5.1 Analysis of Input Signals:

Measurements without any preceding estimation or even without a basic analysis

are useless. In other words, starting a measurement without any kind of

expectancy is neither engineer-like nor scientific. Therefore, this section analyses

the input signals’ spectra versus time, i.e. the spectral behavior during the

duration of the samples. It does not take into account the spectral resolution. It

 32

makes assumptions of the algorithms’ frequency recognition capability

exclusively based on an analysis of the input signals’ spectra and is therefore a

hypothesis. By doing this, a necessary preliminary evaluation of the frequency

recognition algorithms is possible.

It is presumed that the first category of signals, which consists of a simple

sinusoid, are stable over their whole duration, meaning, a simple maximum

power search over the spectrum will yield the fundamental frequency. That is

why, for this type of signal, frequency recognition is expected to be without

complications.

For the second category, signals containing complex waveforms, samples of

notes played by musical instruments are used as an input for the frequency

recognition algorithms. The expectation is that not every sample holds the

maximum power on the fundamental frequency because the signal can no longer

be considered to be a simple sinusoid. Moreover, for some of the notes some of

the harmonics actually carry more power. Additionally, this behaviour changes

over time for some of the regarded notes, which might make frequency

recognition more difficult rather than with simple sinusoids. These assumptions

have to be confirmed both by the following spectral examination and verified by

the measurements itself.

5.1.1 Sinusoidal Inputs:

The bases for the evaluation of the frequency recognition algorithms are the

metrics latency, speedup and accuracy as discussed earlier. Latency and

speedup can be deduced from the number of cycles an algorithm needs to

estimate a frequency and the accuracy depends directly on the algorithmic

estimation capability from which the absolute deviation can be calculated.

To find out the best frequency recognition algorithm, at least 10 test series for

each buffer size for 32 ≤ N ≤ 8192 have been applied to each algorithm. The

reasons for these boundaries are as follows. The lower bound 32 ≤ N is a

limitation of the implementation of the FFT API routine (DSDF_sp_cfftr2_dit) from

Texas Instruments (TI), whereas the upper bound is due to internal memory

 33

constraints. Furthermore, for a buffer size of N > 8192, there would be

unreasonably high computational costs for the calculation of direct frequency

recognition algorithms such as the DFT and the NDFT, whose costs are N2.

Concluding, the common boundaries for the buffer size, 32 ≤ N ≤ 8192, have

been chosen for all the measurements to be able to compare all the algorithms

and should be sufficient to fulfill the task.

For each algorithm test series, three cases were investigated: the note A4 with

440Hz (being the note in the centre of the MIDI scale), and two extreme cases:

the highest frequency with 4186.01Hz (note C8) and the lowest one of 27.5Hz

(note A0) of the target frequency range. The reason for these choices is to

determine the ability to analyze the algorithms’ capability to handle the highest

frequency, 4186.01Hz and the highest spectral resolution demand at 27.5Hz,

However, there are a number of harmonics along with the fundamental frequency

which should not occur. When we are considering the input from the function

generator. The reason for this is the fact that the signal generator does not

produce a pure sinusoid exclusively but has a small amount of harmonic

distortion and should be ignored in this case. Additionally, there are reflections

due to a mismatched connection from the signal generator to the audio jackinput

of the DSP board. But here we are not considering the function generator but

taking the signal directly from the system. Since the maximum power can be

found at 440Hz, 4186.01Hz and 27.5Hz respectively, these undesired, less

powerful frequencies do not carry weight in terms of frequency recognition. This

is a good prerequisite for a solid frequency recognition capability regardless of

the spectral resolution in terms of accuracy and a reasonable buffer size N.

5.1.2 Inputs of Musical Instruments:

For signals containing simple sinusoids generated by a signal generator, it is

anticipated that the frequency recognition algorithms should work perfectly if

maximum power detection is used. Whether they can be applied to signals

containing complex waveforms is subject to a discussion in this section.

 34

To test the frequency detection capabilities of each algorithm, four different

instruments (piano, violin, trumpet and flute) playing three different notes have

been taken as an input. Because not every note of the frequency range of

interest can be subject to an analysis and a subsequent measurement, because

of the range of each instrument, a representative selection has to be made.

Thus, all the selected notes are played by each instrument to ascertain

comparability.

When applying instrumental inputs, the frequency recognition capability is initially

of interest only. The buffer size N is dependent on the demand for the accuracy

for the notes C6, C5 and C4 respectively. Equation (44) denotes the coherence

between the sampling rate sf and the demanded accuracy depending on the

MIDI note.

 ()
s

MIDI

fN
accuracy n

= (26)

Table 13 lists summarizing the constraints of the notes which are subject to

further measurements. They are valid each for piano, violin, trumpet and flute.

Table 4: Frequencies and filter coefficients for 88 MIDI notes

 35

5.2 Prediction of the Algorithms’ Frequency Recognition Capability:

Taking simple sinusoids (440Hz, 4186.01Hz and 27.5Hz) all frequency

recognition algorithms have an unambiguous input because the spectral

distribution of the signal’s power remains constant throughout the whole time

window and spectrum’s maximum peak can be found at the fundamental

frequency. That is the reason why the chances of failure are very low using only

a simple power detection technique. Measurements on the algorithms with these

sinusoidal inputs and the subsequent analysis with the evaluation criteria will give

certainty whether this prediction is right.

For instruments playing musical notes, it is important to find out whether the

maximum power can actually be found on the fundamental frequency or on one

of its harmonics. In the latter case, investigations have shown that the lower the

frequency is the more harmonics exist. For all analyzed musical notes

(1046.5Hz, 523.23Hz and 261.63Hz), string-based instruments (piano and violin),

the spectral behavior over time is constant and therefore ideal for frequency

recognition. It can also be seen, that the relative power distribution of the

spectrum of these string based instruments remains stable over time, i.e. the

maximum power can always be found on the fundamental frequency of the note

being played. However, the spectrum over time of woodwind and brass

instruments like the flute and the trumpet respectively is not well behaved for

each of the analyzed notes. The trumpet does not have the maximum power on

the fundamental frequency for MIDI note C5. Furthermore, for MIDI note C4, both

the trumpet and the flute will fail according to the preliminary spectral analysis

because the maximum power is not held by the fundamental frequency each.

Table 5 lists the probable frequency recognition capabilities of the investigated

algorithms with respect to the analyzed instrumental notes.

 Table 5: Probable frequency recognition capability of instruments

 36

5.3 Evaluation Criteria

In order to find the optimum frequency recognition algorithm, there is a need for a

precedent definition of fixed quantities and performance metrics. The purpose is

a reduction of the number of variables to a reasonable minimum which is then

subject to a further analysis. Finally, this preliminary investigation leads to the

conclusion that the evaluation criteria, in particular the performance metrics, are

dependent on the buffer size N only.

5.3.1 Sampling Rate:

The sampling rate is fixed to 44100sf Hz= in order to take into account high

frequency harmonics, since the analysis of frequency recognition algorithms is

subject to a further extension to the whole audible range of 0Hz – 22000Hz.

Therefore the sampling rate has to be greater than twice the maximum frequency

that can appear in the expected signal in order to avoid aliasing according to the

Nyquist-Shannon theorem as explained in section 5.4.1.1. Consequently, this

major constraint of having a sampling rate of 44100sf Hz= is mandatory for the

Generic Musical Instrument System (GMIS), despite of having a large buffer size

N and thus having an increase of complexity, because the higher the sampling

rate, the more sampling points are acquired.

5.3.2 Spectral Resolution:

 37

A fine spectral resolution R is prerequisite for a solid accuracy and is given by the

ratio of the sampling rate sf and the actual buffer size N with

 (,) s
s

fR f N
N

= (27)

In general, one can say, the higher the buffer size N the better is the spectral

resolution R at a given sampling rate sf . Due to the fact that an increase of the

buffer size N simultaneously causes an increase of computational costs and

memory requirements, a trade-off has to be found between the spectral

resolution, R, and the buffer size, N.

When analyzing musical notes, the maximum spectral resolution which has to be

provided, is max 0.82R Hz= in order to be able to recognize all frequencies of the

whole target frequency range. The reason for this high resolution is the smallest

half of the MIDI channels, i.e. between MIDI note #21 and #22 with 27.5Hz and

29.14Hz respectively.

5.3.4 Time to settle:

The system’s time to settle settlet is the time which is needed to make sure that the

buffer completely holds the signal’s samples. This quantity is relevant and

subject to further investigations for unbuffered systems only, but because internal

buffers are applied, settlet is constant the time required for filling up a buffer of the

size N. Let the sampling frequency be 44100sf Hz= and assuming there is a

buffer of the size N = 44100, it takes one second to acquire all 441000 samples.

Therefore, the time to settle settlet is defined as

 settle
s

Nt
f

= (28)

As the sampling rate sf is fixed to 44100Hz and the buffer size N does not

change during the operating mode, the time to settle settlet is constant for each

buffer size N, too.

 38

5.3.5 Computational Costs of Investigated Algorithms:

The complexities of the to be investigated algorithms are listed for the buffer size
N

Table 6: Fourier transform-based algorithmic complexity

The comparison of the complexities of the Goertzel algorithm and the FFT

shows, that at a buffer size of N > 288, the FFT’s algorithmic complexity will be

greater than the one of the Goertzel algorithm, but the buffer size required for this

problem is unreasonable high and furthermore not feasible without massive

accessing external memory. This, however, would mean additional latencies and

would be a different kind of problem which cannot be taken into consideration at

this stage.

Theoretically, the number of cycles corresponds directly to the algorithmic

complexity, but there is an additional amount of cycles for pre and post

processing of audio data to be regarded, for instance the generation of

interleaved complex data, the calculation of magnitude, the spectrum’s peak

detection and the final evaluation of the most powerful spectral frequency

component given as an index. Thus, the overall number of cycles has to be

measured and taken into account when analyzing the metrics.

Discrete Fourier Transform (DFT)

Fast Fourier Transform (DFT)

Non-Uniform Discrete Fourier Transform
(DFT)

Goertzel algorithm

Algorithm Complexity

88.N

2log ()N N

2N

2N

 39

5.4 Performance Metrics

For the evaluation of a system’s real time characteristics, it is necessary to take

the algorithmic properties into account, i.e. their latency, their speedup and the

algorithms’ accuracy. These metrics are subject to be discussed in this section.

 It is expected that according to the fixed computational costs of each

algorithm the number of cycles needed for the calculation of each algorithm, will

follow the same law. Consequently, the tendencies of speedup and latency will

remain equal with each measurement and independent from the input, but due to

the fact that the number of cycles are deduced from the computational cost and

are therefore theoretical, they have to be experimentally proven. Therefore and

with respect to the fact that pre and post processing of the data is not included to

the theoretical considerations, there is an extra need for measuring these

metrics.

5.4.1 Latency:

The latency is the time a signal needs to get from its source to its destination

after processing. In the case of frequency recognition as applied in this project,

latency is the difference in time between playing the note and detecting its

frequency or in other words how long an algorithm needs to output the numerical

value of the estimated frequency. Therefore, for the number of cycles an

algorithm takes, the latency is defined as

CPU

cycleslt
f

= (29)

with a given central processing unit (CPU) frequency of the TI TMS320C6713 of

225CPUf MHz= . The average in latency averagelt is the average temporal resolution

of a human ear, i.e. the time that can pass by before the listener realizes a delay

in playing a note and hearing the actual sound. It has been shown that on

average the latency of the human ear is 50averagelt ms= . Consequently, in order to

be taken seriously into consideration for frequency recognition in real time, the

 40

algorithms have to terminate their calculations within this time limit, preferably

less than that because frequency recognition will probably not be the only task

for the GMIS.

5.4.2 Speedup:

An important metric for the evaluation of is the speedup according to Amdahl’s

Law. The speedup is the ratio of the number of cycles of an algorithm before and

after its improvement and is described as

 DFTcyclessp
cycles

= (30)

The speedup has to be greater than 1 if the algorithm is to be considered

superior to any of the other investigated algorithms. Due to the fact that the

Discrete Fourier Transform (DFT) is the slowest Fourier transform-based

algorithm, it is taken as a baseline for the speedup for all the other algorithms.

5.4.3 Accuracy:

A measure for the accuracy is the absolute deviation. The absolute deviation of a

value in a set of values is the absolute difference between this value and a

nominal. This nominal can either be a mean of the set of these values or a

threshold value, in this case the expected frequency epf . The value from which

the absolute difference is taken is the estimated frequency esf . Being a measure

for accuracy, absolute deviation is defined as

 ep esad f f= − (31)

 Due to the fact that the tolerance is the half the difference between two MIDI

channels, in the worse case between MIDI note #21 and #22, the minimum

acceptable error equals the maximum spectral resolution required for accurate

frequency recognition, min max. . .82i e ad R Hz= = .

 41

6. Results

The first category, input signals consisting of a simple sinusoid, is used to

measure latency and speedup in the first step in order to prove the theoretical

complexity discussed earlier and second to show the functionality of the

investigated frequency recognition algorithms, i.e. to prove their frequency

recognition capability and to investigate on their accuracy as derived earlier.

The second category, instrumental inputs playing musical notes, is taken to judge

on the algorithms’ frequency recognition capability for input signals containing

complex waveforms such as in the case of musical notes. By doing this, it will be

demonstrated that a simple frequency recognition algorithm with simple peak

power detection as performed in the first set of measurements, will not suffice for

a musical system as proposed with the GMIS.

6.1 Frequency Recognition Algorithms analyzing simple Sinusoids

6.1.1 Latency:

The behavior of the algorithmic latency depends on their individual complexity as

described earlier. For the regarded frequencies 27.5Hz, 440Hz and 4189Hz, the

latency is equal as it can be seen in figures 10 - 12 which underlines the

preliminary considerations earlier. Therefore, just an analysis of the results

concerning the latency’s tendencies for each algorithm is made, not for each

frequency in particular.

Figures 10 - 12 show the four algorithms’ latency versus the buffer size N for

different inputs containing simple sinusoids of 440Hz, 4186.01Hz and 27.5Hz

respectively. The algorithms with the maximum latency for the whole range of N,

with 32 ≤ N ≤ 8192, are the DFT and the NDFT with a narrow difference to the

advantage of the DFT as expected. This slight difference is due to the fact that

 42

the NDFT has to read the vector with the arbitrarily chosen frequencies whereas

the DFT simply uses the equidistant spectral index k for the computation of the

spectrum. According to their equal structure, the tendency of their latencies is

equal, too. The Goertzel algorithm has a smaller latency than the DFT and NDFT

but is, as expected, still slower than the FFT.

 Figure 10: Latency vs. Buffer size for a 27.5Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-5

10-4

10-3

10-2

10-1

100

101

102

buffersize(N)

la
te

nc
y

latency vs buffersize for inoput of 27.5HZ

 43

 Figure 11: Latency vs. Buffer size for a 440Hz input

 Figure 12: Latency vs. Buffer size for a 440Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-5

10-4

10-3

10-2

10-1

100

101

102

buffersize(N)

la
te

nc
y

latency vs buffersize for inoput of 4186.01hZ

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-5

10-4

10-3

10-2

10-1

100

101

102

buffersize(N)

la
te

nc
y

latency vs buffersize for inoput of 440

FFT
DFT

ND FT

* Goertzel

 44

6.1.2 Speedup:

Figures 13- 15 show the speedup with respect to the buffer size N for 440Hz,

4186.01Hz and 27.5Hz. Again as expected, since the speedup is also directly

linked with the number of cycles, the three graphs are fairly equal for each input

frequency.

Taking the DFT as a baseline, just the NDFT is slightly slower which is due to

implemental reasons, i.e. the reading of the vector of the arbitrary chosen

frequencies takes more time than just simply referring to a loop index.

The Goertzel algorithm with a complexity of 88·N is dramatically faster than the

DFT and the NDFT which computational costs are 2N , but is still more slowly

than the FFT with a complexity of 2log ()N N , again as expected.

 Figure 13: Speedup vs. Buffer size for a 27.5Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-1

100

101

102

103

104

buffersize(N)

sp
ee

d

speed vs buffersize for 27.5Hz

 45

 Figure 14: Speedup vs. Buffer size for a 440Hz input

 Figure 15: Speedup vs. Buffer size for a 4186.01Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-1

100

101

102

103

104

buffersize(N)

sp
ee

d

speed vs buffersize for 4186.01Hz

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-1

10
0

10
1

10
2

10
3

10
4

buffersize(N)

sp
ee

d

speed vs buffersize for 440Hz

FFT
DFT

ND FT

* Goertzel

 46

6.1.3 Accuracy:

Why can the fastest algorithm, the FFT, not simply be taken for frequency

recognition? The answer is that, the less time an algorithm needs to fulfill its

purpose the better it is, but it still has to be accurate enough to meet the

requirements. Thus, the accuracy of each algorithm’s frequency recognition

capability has to be analyzed, too, because a fast but inaccurate algorithm is of

no use. As defined, a measure for accuracy is the absolute deviation of the

estimated frequency from the expected frequency, i.e. the absolute difference

between these both frequencies.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
101

102

103

es
tim

at
ed

 fr
eq

ue
nc

y(
H

z)

buffersize(N)

estimated frequency vs buffersize for input of 27.5Hz

 47

 Figure 16: Estimated frequency vs. Buffer size for a 27.5Hz input

 Figure 17: Absolute deviation vs. Buffer size for a 27.5Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

102.2

102.3

102.4

102.5

102.6

102.7

102.8

10
2.9

buffersize(N)

es
tim

at
ed

 fr
eq

ue
nc

y(
H

z)

estimated frquency vs buffersize for input of 440Hz

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10-1

100

101

102

103

buffersize(N)

ab
so

lu
te

 d
ev

ia
tio

n(
H

z)
absolute deviation vs buffer size for input of 27.5Hz

FFT
DFT

ND FT

* Goertzel

 48

 Figure 18: Estimated frequency vs. Buffer size for a 440Hz input

 Figure 19: Absolute deviation vs. Buffer size for a 440Hz input

 Figure 20: Estimated frequency vs. Buffer size for a 4186.01Hz input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
103.54

10
3.56

10
3.58

103.6

103.62

buffersize(N)

es
tim

at
ed

 fr
eq

ue
nc

y(
H

z)

estimated frequency vs buffer size for input of 4186.01Hz

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

101

102

103

ab
so

lu
te

 d
ev

ia
tio

n(
H

z)

buffersize(N)

absolute deviation vs buffersize for input 440Hz

FFT
DFT

ND FT

* Goertzel

 49

 Figure 21: Absolute deviation vs. Buffer size for a 4186.01Hz input

6.1.4 Comparison of the Investigated Metrics:

From the results presented, it can be seen that the DFT and the NDFT yield the

highest latency due to their equal structure. The NDFT is slightly slower, the

speedup with respect to the DFT is 0.933 on average which is due to the

additional reading of the vector with the arbitrarily chosen frequencies. The

Goertzel algorithm is considerably faster than the DFT and NDFT but definitively

slower than the FFT. Its tendency of latency and speedup is due to its algorithmic

complexity of 88·N. The fastest frequency recognition algorithm is clearly the FFT

with a complexity of 2log ()N N .

The DFT is far too slow and inaccurate and is therefore as expected not to be

taken into account for frequency recognition at all. The NDFT has an adequate

accuracy at a buffer size of N = 4096, but is too slow for the average latency of

the human ear. The most interesting case is the frequency input of 27.5Hz,

where an accuracy of 0.82Hz is demanded. It has been clearly shown that the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

10
1

102

103

buffersize(N)

ab
sl

ou
te

 d
ev

ia
tio

n(
H

z)
absolute deviation vs buffersize for 4186.01Hz

FFT
DFT

ND FT

* Goertzel

 50

FFT, the DFT and the Goertzel algorithm fail in terms of accuracy. For these two

algorithms, a buffer size of N > 8192 is necessary to meet the constraints. The

NDFT, however, is accurate enough for the demanded spectral resolution of

0.82Hz but is far too slow and beyond the maximum allowed latency of 50ms.

6.2 Frequency Recognition Algorithms analyzing Musical Notes

The question is whether the frequency recognition algorithms are able to cope

with instrumental inputs. As analyzed, it has been analytically shown that the

spectrum for a single note over time can join the maximum power on one of their

harmonics rather than on the fundamental frequency, depending on the

instrument’s character.

6.2.1 Note C6 (1046.5Hz) for Piano, Violin, Flute and Trumpet:

Figure 22 - 23 depict the estimated frequencies over time for an 1046.5Hz input

played by the two string based instruments piano and violin respectively. Since

the estimated frequency is within the boundaries throughout the whole sample’s

duration, all investigated frequency recognition algorithms meet the restrictions

for all applied instrumental inputs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

103.015

103.017

103.019

103.021

103.023

103.025

103.027

Estimated frequency(Hz) vs time for input of 1046.25Hz(panio)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

t(s)

 51

 Figure 22: Estimated frequency vs. time for a 1046.5Hz input (piano)

 Figure 23: Estimated frequency vs. time for a 1046.5Hz input (violin)

The Goertzel algorithm is the most accurate algorithm and estimates 1046.5Hz

constantly during the whole sample’s duration. The FFT is the frequency

recognition algorithm with the nearest close accuracy with an estimated

frequency of 1033.99Hz for every moment. The DFT and the NDFT meet the

constraints in terms of accuracy, too.

0 0.5 1 1.5 2 2.5 3 3.5
103.01

103.02

t(s)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

Estimated frequency(Hz) vs time for input of1046.5Hz(violin)

*** FFT
DFT

NDFT

 52

 Figure 24: Estimated frequency vs. time for a 1046.5Hz input (trumpet)

 Figure 25: Estimated frequency vs. time for a 1046.5Hz input (flute)

*** FFT
DFT

NDFT

0 1 2 3 4 5 6 7

103.02

103.03

103.04

Estimated frequency(Hz) vs time for input of 1046.5Hz(trumpet)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

t(s)

0 0.5 1 1.5 2 2.5 3 3.5
103.01

103.02

t(s)

es
tim

at
ed

 fr
eq

ue
nc

y(
H

z)

estimated frequency vs time for input of 1046.5Hz(flute)

 53

Both the DFT and the NDFT show a similar behaviour like for the string. Both

algorithms are accurate enough for meeting the restrictions but they are

fluctuating throughout the whole sample’s duration, whereas the DFT appears

more stable than the NDFT. Again, the FFT supplies accurate frequency

estimation within the limits, but is subject to variation for a violin. The only

algorithm, which is unreliable in terms of frequency recognition for woodwind and

brass instruments, is the Goertzel algorithm.

6.2.2 Note C5 (523.25Hz) for Piano, Violin, Flute and Trumpet:

For a string based instrumental input of 523.25Hz all algorithms succeed in

estimating the played note, as shown is figures 26 and 27. Again, the Goertzel

algorithm is the most accurate and hits exactly the expected frequency of

523.25Hz. The FFT is similar to the previous section the next close frequency

recognition algorithm and estimates constantly 517.0Hz over the whole samples’

duration and hence meets the given constraints. As expected, the DFT and the

NDFT fluctuate but are is still in between the upper and lower bounds of

508.57Hz and 537.93Hz respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

102.714

10
2.716

102.718

10
2.72

102.722

10
2.724

102.726

Estimated frequency(Hz) vs time for input of 523.25Hz(piano)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

 54

 Figure 26: Estimated frequency vs. time for a 523.25Hz input (piano)

 Figure 27: Estimated frequency vs. time for a 523.25Hz input (violin)

Regarding the measurement results for the flute and the trumpet, a more specific

evaluation is required. Figure 28 shows the estimation capabilities of the four

algorithms for a flute playing MIDI note C5. The DFT, the FFT and the NDFT are

vacillating but are within the desired absolute tolerance of 14.68Hz, meaning that

the estimated frequency does not cross the upper and lower limits of 508.57Hz

and 537.93Hz respectively at any time. In specific, the FFT is the least fluctuating

algorithm. In contrast to these three algorithms, the Goertzel algorithm fails in

terms of accuracy.

For all algorithms, the estimated frequency wobbles between these two

harmonics. Consequently, for a trumpet playing MIDI note C5 it is impossible to

estimate the expected frequency of 523.25Hz regardless what algorithm is being

applied.

0 0.5 1 1.5 2 2.5 3

102.711

102.714

102.717

102.72

102.723

102.726

Estimated frequency(Hz) vs time for input of 523.25Hz(violin)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

*** FFT
DFT

NDFT

 55

 Figure 28: Estimated frequency vs. time for a 523.25Hz input (flute)

0 0.5 1 1.5 2 2.5 3 3.5

102.7

102.71

102.72

102.73

102.74

Estimated frequency(Hz) vs time for input of 523.25Hz(flute)
E

st
im

at
ed

 fr
eq

ue
nc

y(
H

z)

t(s)

 56

 Figure 29: Estimated frequency vs. time for a 523.25Hz input (trumpet)

6.2.3 Note C4 (261.63Hz) for Piano, Violin, Flute and Trumpet:

For a string based input of a piano and a violin playing note C4 (261.63Hz) the

DFT, the FFT and the NDFT meet the limits given by the absolute tolerance of

7.34Hz. The DFT varies within the compulsory boundaries of 254.29Hz and

268.97Hz respectively, and so does the NDFT but more modest than the DFT.

The FFT is not fluctuating at all and stays constant at an estimated frequency of

258.5Hz. However, the Goertzel algorithm does not fulfill the required constraints

at each moment and is therefore not reliable for recognizing the input’s frequency

for these two instruments.

2 3 4 5 6 7 8 9

103.02

103.05

103.08

103.11

103.14

103.17

Estimated frequency(Hz) vs time for input of 523.25Hz(trumpet)
E

st
im

at
ed

 fr
eq

ue
nc

y(
H

z)

*** FFT
DFT

NDFT

 57

 Figure 30: Estimated frequency vs. time for a 261.63Hz input (violin)

 Figure 31: Estimated frequency vs. time for a 261.63Hz input (piano)

0 0.5 1 1.5 2 2.5 3 3.5

102.41

10
2.42

10
2.43

102.44

Estimated frequency(Hz) vs time for input of 261.63Hz(violin)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

0 0.5 1 1.5 2 2.5 3

10
2.41

10
2.42

10
2.43

10
2.44

Estimated frequency(Hz) vs time for input of 261.63Hz(piano)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

*** FFT
DFT

NDFT

 58

All the algorithms estimate these both overtones at 1046.5Hz and 1569.98Hz

respectively because of the reasons stated above. Hence and to anticipate at this

stage, a simple application of the frequency recognition algorithms is not

sufficient when playing note C6 with a trumpet.

 Figure 32: Estimated frequency vs. time for a 261.63Hz input (flute)

0 0.5 1 1.5 2 2.5 3 3.5

10
2.714

10
2.716

10
2.718

10
2.72

10
2.722

Estimated frequency(Hz) vs time for input of 261.63Hz(flute)
E

st
im

at
ed

 fr
eq

ue
nc

y(
H

z)

 59

 Figure 33: Estimated frequency vs. time for a 261.63Hz input (trumpet)

6.2.4 Comparison of Frequency Recognition Capability for Musical Notes:

The DFT, the FFT and the NDFT are able to estimate the expected frequency

within the given constraints for note C6 for each instrument; for note C5 for all

instruments except the trumpet and for C4 for string based instruments only, i.e.

the piano and the violin.

Also, as expected, all algorithms fail in terms of estimating the fundamental

frequency for the trumpet playing note C5 and even for both flute and trumpet

producing note C4 due to the fact that the maximum power for the notes played

by these instruments is joined at their harmonics as shown. In particular, note C5

(523.25Hz) played by a trumpet, holds its maximum power on its second

harmonic 1046.5Hz as analytical shown and experimental verified. In specific, for

note C4 (261.63Hz) played by a flute, the maximum power can be found at the

second harmonic at 523.25Hz, the reason why the peak detection mechanism of

all algorithms estimates this frequency. For a trumpet playing note C4, it has

been theoretically and experimentally shown that it is even more difficult to find

0 1 2 3 4 5 6 7 8
103.02

103.05

103.08

103.11

103.14

103.17

Estimated frequency(Hz) vs time for input of 261.63Hz(trumpet)

E
st

im
at

ed
 fr

eq
ue

nc
y(

H
z)

*** FFT
DFT

NDFT

 60

the correct expected frequency because the maximum power is present at both

the fourth and sixth harmonic of 1046.5Hz and 1569.98Hz respectively.

The exception is the Goertzel algorithm. It identifies the correct frequency of the

piano and violin for the notes C6 and C5 on the one hand, but does not confirm

the expected results of estimating flute and trumpet playing note C6, the flute

producing C5 and the piano and the violin playing note C4 on the other hand.

Regarding the algorithms’ frequency recognition capability only, it has been

uniquely shown in section 6.1, that frequency recognition algorithms estimate

frequencies of signals containing a simple sinusoid in most of the measured

cases without complications, whereas the frequency recognition capability of

each algorithm varies due to each individual nature. However, when analyzing

instruments playing musical notes, it has to be taken into account that the lower

the frequency is, the higher is the number of harmonics. As long as the maximum

power is at the fundamental frequency, the peak detection algorithm estimates

the correct frequency as it is the case with the string based instruments piano

and violin. If the maximum spectral power is on one of the harmonics as been

shown for note C5 played by the trumpet and for note C4 produced by trumpet

and flute, a valid frequency estimation as implemented with the four algorithms,

is not possible. Consequently, it can be clearly stated that an exclusive

application of frequency recognition algorithms is insufficient for definite

frequency recognition of musical notes.

 61

7. Conclusions and Future Work

This dissertation details the theory behind a novel Generic Musical Instrument

System (GMIS) and provides an analysis of the possibilities to adapt the

advantageous techniques of Dual-Tone Multi-Frequency (DTMF) systems to

musical systems such as the GMIS. Four different Fourier transform-based

frequency recognition algorithms have been analyzed: the Discrete Fourier

Transform (DFT) as a baseline for the evaluation of all algorithms, the Fast

Fourier Transform (FFT) which is used in most of the engineering applications,

the Goertzel algorithm and the Non-Uniform Discrete Fourier Transform (NDFT)

which are both successfully applied to DTMF systems.

For input signals containing simple sinusoids, the DFT and the NDFT are far too

slow due to their complexity of 2N . In contrast to them, the FFT is, as expected,

clearly the fastest Fourier transform-based algorithm, followed by the Goertzel

algorithm. Both algorithms are fast enough to undercut the average latency of a

human ear of 50ms.

In specific, the DFT, the FFT and the NDFT estimate the correct frequencies for

all instruments playing note C6 and C5 except for a trumpet playing note C5. For

note C4, only the sting-based instruments succeed. This behaviour is due to the

fact that the maximum spectral power is held by the fundamental frequency. It

has been worked out, that the Goertzel algorithm estimates the correct frequency

of note C6 played by the piano and the violin, but it fails for all other analyzed

musical notes and does not estimate the frequencies as predicted. That is why,

this algorithm cannot be considered as a candidate for frequency recognition of

complex waveforms as it is required for musical systems such as the GMIS.

It has been shown that the frequency recognition capability of the investigated

Fourier transform-based algorithms is not satisfactorily enough according to the

constraints of the GMIS. Thus, frequency recognition algorithms using spectral

power estimation could be subject to continuative research. Two representatives

of this algorithm category are the Normalized Direct Frequency Estimation

 62

Technique (NDFET) based on the Least Mean square (LMS) algorithm and the

Multiple Signal Classification (MUSIC) algorithm is a power spectral estimation

method.

REFERENCES:

[1].MIDI detailed specification, The International MIDI Association,

http://www.midi.org

[2]. Sonali Bachi, Member, IEEE, and sanjit K.Mitra, Fellow, IEEE, “The Non-uniform

Discrete Fourier Transform and Its Applications in Filter Design”, IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL

SIGNAL PROCESSING, VOL. 43, NO. 6, JUNE 1996.

[3]. M.Bartels and S.Linfoot,”An Analysis of Real time Implementation Of Fourier

Transform-based Frequency Recognition Algorithms”, Academic Paper, Published at the

8th IEEE ISCE, September 2004.

[4]. B. Widrow, S. D. Stearns, "Adaptive Signal Processing", Prentice-Hall, 1985.

[5]. International Standards Organization (ISO), “Acoustics - Standard tuning frequency

(Standard musical pitch)”, ISO 16:1975, 1975.

[6]. Philip McLeod, Geoff Wyvill Department of Computer Science University of Otago,

New Zealand, “Visualization of Musical Pitch”, Proceedings of the Computer Graphics

International (CGI’03) , 2003 IEEE.

[7]. H. Nyquist, "Certain topics in telegraph transmission theory", Trans. AIEE,

vol. 47, pp. 617-644, Apr. 1928.

[8]. E. O. Brigham, “The Fast Fourier Transform and its applications”, Prentice

Hall, 1988

[9]. Texas Instruments, "Datasheet, TMS320C6713, TMS320C6713B Floating-

Point DSPs" (tms320c6713),

http://focus.ti.com/docs/prod/folders/print/tms320c6713.html

[10]. C. Roads, “The Computer Music Tutorial”, 2nd ed., Massachusetts Institute

of Technology, 1996

[11]. http://www.ti.com/sc/docs/psheets/man_dsp.htm

 63

[12]. http://www.cs.hmc.edu/~kperdue/MusicalDSP.html
[13]. http://www.ee.columbia.edu/~dpwe/sounds/instruments/

