
 I

APPROXIMATE PROPER NAME MATCHING

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Computer Science Engineering

By

ANANT VIJAY ANEJA
AKASH PATKI

ROHIT SHIVSAGAR KUMBHALWAR

Department of Computer Science Engineering

National Institute of Technology

Rourkela

2007

 II

APPROXIMATE PROPER NAME MATCHING

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Computer Science Engineering

By

ANANT VIJAY ANEJA
AKASH PATKI

ROHIT SHIVSAGAR KUMBHALWAR

Under the Guidance of

Dr. S. K. Jena
Dr. D P. Mahapatra

Department of Computer Science Engineering

National Institute of Technology

Rourkela

2007

 III

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “APPROXIMATE PROPER NAME

MATCHING” submitted by Mr. Anant Aneja, Mr. Akash Ramesh Patki, Mr. Rohit

Kumbhalwar in partial fulfillment of the requirements of the award of Bachelor of

Technology Degree in Computer Science Engineering at the National Institute of

Technology, Rourkela (Deemed University) is an authentic work carried out by him under

our supervision and guidance.

To the best of our knowledge, the matter embodied in the thesis has not been submitted to

any other university / institute for the award of any Degree or Diploma.

Date:

Dr. S. K. Jena Dr. D. P. Mahapatra
Prof. & Head Asst. Professor
Dept. of Computer Science Engg Dept. of Computer Science Engg
National Institute of Technology, National Institute of Technology,

 Rourkela – 769008 Rourkela - 769008

 IV

A C K N O W L E D G E M E N T

 We wish to express my profound sense of deepest gratitude to our guides and

motivators Dr. S. K. Jena, Prof. & Head, and Dr. D. P. Mahapatra, Asst Professor, Computer

Science Engineering Department, National Institute of Technology, Rourkela for their

valuable guidance, sympathy and co-operation and finally help for providing necessary

facilities and sources during the entire period of this project.

 We wish to convey my sincere gratitude to the faculty of Computer Science

Engineering Department who have enlightened me during my studies. The facilities and co-

operation received from the technical staff of Computer Science Engg. Dept. is thankfully

acknowledged.

 We express our thanks to all those who helped me in one way or other.

 Last, but not least, we would like to thank the authors of various research articles and

book that referred to.

 Anant Aneja Akash Patki Rohit Kumbhalwar
 Roll No: 10306028 Roll No: 10306013 Roll No: 10306026
National Institute of National Institute of National Institute of
 Technology Technology Technology
 Rourkela Rourkela Rourkela

 V

C O N T E N T S

1 INTRODUCTION 1

1.1 INTRODUCTION 2

1.2 DATA STRUCTURE 3

1.3 DESIGN 4

2 DATABASE ORGANIZATION 6

2.1 NO REPETITION AND ORDER IMPORTANT 7

2.2 NO REPETITION AND ORDER NOT IMPORTANT 8

2.3 REPETITION ALLOWED AND ORDER IMPORTANT 9

2.4 REPETITION ALLOWED AND ORDER NOT IMPORTANT 9

2.5 SOUNDEX 10

2.6 Q-GRAMS 12

2.7 SUMMARY 13

3 SEARCHING TECHNIQUES 14

3.1 EDIT DISTANCE 16

3.2 EDITEX 17

3.3 Q-GRAMS 18

3.4 EDIT DISTANCE TAPERED 18

3.5 EDITEX TAPERED 20

3.6 IPADIST 20

3.7 IPADIST TAPERED 20

3.8 HINDEX 20

3.9 GRAM ANALYSIS 21

 VI

 4 METHODS FOR PERFORMANCE ASSESSMENT 23

4.1 RECALL 24

4.2 PRECISION 24

4.3 WEIGHTED RECALL 24

4.4 TIME ANALYSIS 25

5 EXPERIMENTAL RESULTS 26

5.1 WEIGHTED RECALL FOR 20 RESULT SET 27

5.2 WEIGHTED RECALL FOR 50 RESULT SET 29

5.3 TIME ANALYSIS 31

6 CONCLUSION 34

 REFERENCES 36

 VII

A B S T R A C T

 Approximate proper-name matching uses concepts of approximate string matching

and applies them to special case of finding ‘close’ or ‘similar’ names, to an input name, from

a large database of names. Such Proper-Name-Approximate matching finds applications in

situations where a user is unsure of how a person’s name is spelled, such as in a telephone

directory search system or a library search system where a user wishes to search books on an

author’s name.

In this report we examine this problem in two main aspects: How to organize data efficiently,

so as to obtain relevant results quickly, and how to develop suitable search techniques which

would rank results suitably. We suggest four new data organization techniques to replace the

current standard technique, Soundex, and we suggest refinements to the currently available

search techniques.

We then assess the performance of the developed techniques and compare them against the

currently available ones. We also show that the developed techniques provide us with better a

result faster that is they take lesser time per query than the current methods. In the course of

evaluation we also suggest a new assessment technique (weighted recall) which gives a better

measurement of system performance than the standard assessment techniques.

 VIII

LIST OF FIGURES

FIGURE No. TITLE PAGE No.

1.1 System Flowchart: flow of program control 4

2.1 Flow of program to obtain key for sample input 7

2.2 Part of the hash table with key & corresponding values 7

2.3 Flow of program to obtain key for sample input 8

2.4 Part of the hash table with key & corresponding values 8

2.5 Flow of program to obtain key for sample input 9

2.6 Part of the hash table with key & corresponding values 9

2.7 Flow of program to obtain key for sample input 10

2.8 Part of the hash table with key & corresponding values 10

2.9 Soundex codes 11

2.10 Flow of program to obtain key for sample input 11

2.11 Part of the hash table with key & corresponding values 11

2.12 Flow of program to obtain key for sample input 12

2.13 Part of the hash table with key & corresponding values 12

3.1 Recurrence relation for minimal edit distance 16

3.2 Matrix result for the edit distance between “GUMBO”

and “GUMBOL”

16

3.3 Recurrence relation for minimal editex 17

3.4 Editex code groupings 17

5.1 Percentage-weighted-recall values for different search

methods.

28

5.2 Percentage-weighted-recall values for different search

methods.

30

5.3 Execution time against different search methods for a

particular hash organization scheme

32

5.4 Execution time against different hash organization

schemes for a constant search technique

33

 IX

LIST OF TABLES

TABLE No. TITLE PAGE No.

2.1 Comparison of the database organization methods 13

5.1 Weighted recalls for hash scheme-search method

combination. Result set size= 20.

27

5.2 Weighted recall values for a hash scheme-search

method combination. Result set size is 50.

29

5.3 Execution time values for a hash scheme-search

method combination

31

 - 1 -

Chapter 1

INTRODUCTION

 - 2 -

INTRODUCTION

Finding the occurrence of given input string from a very large dataset is a fundamental

problem in computer science. Simple string matching is the process of identifying a string or

substring in a dataset (such as text) which is same as the input. It finds applications in various

fields such as text processing & bioinformatics.

Approximate string matching, however, involves finding strings (and/or substrings) which

may not be exactly same as the input, but be ‘similar’ to the input string. A very frequently

used application of approximate string matching is an automatic spelling suggestion program

where a user is presented with ‘closely similar’ words to the erroneous word. Other such

applications include studying gene mutations, identifying subsequences in data, virus &

intrusion detection, file comparison, optical character recognition, etc.

Approximate matching, when applied to proper nouns (i.e. names), however, generally

involves finding similar sounding names to the given name. This is because, although

spelling errors may exist in a name (either in the input or in the dataset itself), it is more

likely that the name itself is spelled differently (the pronunciation remaining the same) by the

person in question. Such Proper-Name-Approximate matching finds applications in situations

where a user is unsure of how a person’s name is spelled, such as in a telephone directory

search system or a library search system where a user wishes to search books or an author’s

name.

There are two important issues, which are to be considered while developing such system:

Speed of result retrieval and Precision of results.

The question regarding speed is largely one of data organization. If the dataset is suitably

organized it would be easier to eliminate totally irrelevant results and retrieve only those

results which are ‘good’ matches. Of course data organization also influences the ‘recall’ of

the result set. This means that depending upon the selection scheme used to eliminate

irrelevant results, some of the ‘relevant’ results might be lost. Since ‘recall’ is defined as the

ratio of (a) number of relevant results retrieved to (b) the total number of relevant results;

results missed out due to the selection scheme adversely affect ‘recall’. We present here six

different data organization schemes which were explored.

After such a limited set is considered we need to identify among this set, which are the

results, the user would ‘approve’ as a ‘similar sounding match’. The ’precision’ of the system

could then be defined as the ratio between (a) common number of matches obtained between

to sets: the one which the user deems as ‘approved’ and the one produced by the system and

(b) the total number of results retrieved. Thus, we need a system which has a high ‘precision’

 - 3 -

value. We present here seven such search techniques which would provide fairly precise

results.

It is fairly obvious that since approximate name matching is a user-criteria based system, it is

nearly impossible to develop a system which is 100% precise. It is this nature of ‘inexactness’

which makes approximate name matching similar to information retrieval. In fact, the

definition of recall & precision are those taken from this very field.

The information given to us consisted of a text file of names (each name on a new line). The

names were to be arranged into certain groups for reducing the search time. The groups were

to be formed on the basis of certain characteristics-these characteristics are method dependent

i.e. the method used to create the database and is unique to that particular method.

Once the database is formed then either the same method can be applied to search the name

or different method could be applied.

Following are the different methods by which the database could be formed:

1. No Rep and order

2. No rep no order

3. Rep with order

4. Rep no order

5. Soundex

6. Q-grams

The first four methods are somewhat similar-since the all have the same basic concept of

removing the vowels in a given name unless the name starts with a vowel.

The point where they differ is, while forming groups in some methods either repetitions or

the order in which the consonants occur or both are considered.

Once the database is formed one of the following search methods is used to retrieve the set of

possible answers

1. Edit Distance

2. Edit Distance Tapered

3. Editex

4. Editex Tapered

5. Ipadist

6. Ipadist Tapered

7. Q-gram

DATA STRUCTURE

• Hash table organization is used to store the names.

 - 4 -

• Hash table has the following organization

Key1 => Value 1

Key2 => Value 2a,Value 2b, …

• So, for each name in the text file some processing is done and for a key generated the

corresponding name is stored as one of the value.

DESIGN

The following diagram represents the flow of control adopted in the retrieval of the answers

required

Fig 1.1. System Flowchart: flow of program control

Step 1

• Decides the method to create the database.

• The option for selecting the method is taken through the command line as the first

argument.

• Once the method is selected and the database is created-from the names file, the entire

database is stored in a “.txt” file for back up purposes. This is also very important for

creating the database once again by reading through the previously created file-in the

1st run.

• So in all for six methods there will be six “.txt” files.

 - 5 -

Step 2

• Once the DataBase is created any one of the seven search methods is used to search

the input string.

• The input for the search is now taken from the user at the prompt.

• The same method-used for creating the database is applied on the user input to create

the key and further search process is carried depending on the method opted by the

user.

• The search method option is taken from the user at the command-line as the second

argument.

Step 3

• This step of searching through the DataBase is unique to each of the seven methods.

• But the one thing common to each of the methods is the two-level searching adopted.

• At Level One- Only the keys that satisfy a given constraint-1 are selected along with

the corresponding set of values.

• At Level Two-Only those names satisfying constraint-2 are selected and separated

out.

• Finally the separated out results are sorted according to relevance and printed out.

 - 6 -

Chapter 2

DATABASE ORGANISATION

 - 7 -

DATABASE CREATION

The section describes the each of the six DataBase creation methods

• The first four methods have almost similar functioning except when either repetition

or/and ordering is considered.

• Vowels except for the first letter are removed in the first four methods.

2.1. No repetition and order important:

• Step 1: All the vowels are removed except if at occurs at position 1 in the word.

• Step 2: All the double occurrences in the word so formed are removed.

This method takes care of spelling mistakes.

Following flow chart shows how a key is formed for the inputs: “Indrajeet”, Shrivastava” and

“Srivastava”.

Fig 2.1 Flow of program to obtain key for sample input

Fig 2.2 Part of the hash table with key & corresponding values

indrjt: indrajeet, indrajit, indrajiet, …
…
shrvt: shreevastava, shrivastava, shreevastav, shreevastav, …
srvt: sreevastava, srivastava, sreevastav, srivastav….

START
(Input)

Remove all
vowels unless it
is the 1st letter

Rem. all double
occurrence of

consonants

Key
(END)

START
(Input)

START
(Input)

Remove all
vowels unless it
is the 1st letter

Remove all
vowels unless it
is the 1st letter

Rem. all double
occurrence of
consonants

Rem. all double
occurrence of
consonants

Indrajeet

indrjt

indrjt

Key
(END)

Key
(END)

Shrivastava

shrvstv

shrvt

Srivastava

srvstv

srvt

 - 8 -

2.2 No repetition and order not important

• Step 1: All the vowels are removed except if at occurs at position 1 in the word.

• Step 2: All the double occurrences in the word so formed are removed.

• Step 3: The ordering of the intermediate key, formed from step 2 is removed by

arranging the letters in ASCII order

 This method takes care of spelling mistakes and increases the scope of search

Fig 2.3 Flow of program to obtain key for sample input

 Fig 2.4 Part of the hash table with key & corresponding values

…
dijnrt: indrajeet, indrajit, indrajiet, …
…
hrstv: srivathsa, srivasthava, srivathsa, savithri, …
…
…
rstv: sreevastava, srivastava, sreevastav, srivastav, ….

START
(Input)

Remove all
vowels unless it
is the 1st letter

Rem. all double
occurrence of

consonants

Key
(END)

START
(Input)

START
(Input)

Remove all
vowels unless it
is the 1st letter

Remove all
vowels unless it
is the 1st letter

Rem. all double
occurrence of
consonants

Rem. all double
occurrence of
consonants

Indrajeet

indrjt

indrjt

Shrivastava

shrvstv

shrvt

Srivastava

srvstv

srvt

Remove the
ordering of the

letters

Key
(END)

Remove the
ordering of the

letters

Key
(END)

Remove the
ordering of the

letters

dijnrt hrstv rstv

 - 9 -

2.3. Repetition allowed and order important

• Step 1: All the vowels are removed except if at occurs at position 1 in the word

This is the only step required to obtain the key.

This method produces specific results.

Following flow chart shows how a key is formed for the inputs: “Indrajeet”, Shrivastava” and

“Srivastava”

Fig 2.5 Flow of program to obtain key for sample input

Fig 2.6 Part of the hash table with key & corresponding values

2.4 Repetition allowed but order not important

• Step 1: All the vowels are removed except if at occurs at position 1 in the word.

• Step 2: The ordering of the intermediate key so formed from step 1 is removed by

arranging the letters in ASCII order

START
(Input)

Remove all
vowels unless it
is the 1st letter

Key
(END)

START
(Input)

START
(Input)

Remove all
vowels unless it
is the 1st letter

Remove all
vowels unless it
is the 1st letter

Indrajeet

indrjt

Shrivastava

shrvstv

Srivastava

srvstv

Key
(END)

Key
(END)

….
indrjt: indrajeet, indrajit, indrajiet, …
…
…
shrvstv: shreevastava, shrivastava, shreevastav, shreevastav, …
srvstv: sreevastava, srivastava, sreevastav, srivastav….
…

 - 10 -

This method is slightly more scope of search than the previous method since the ordering is

not considered

Following flow chart shows how a key is formed for the inputs: “Indrajeet”, “Shrivastava”

and “Srivastava”.

Fig 2.7 Flow of program to obtain key for sample input

Fig 2.8 Part of the hash table with key & corresponding values

2.5 Soundex

Soundex is a phonetic algorithm for indexing names by their sound

The basic aim is that the names with the same pronunciation to be processed to a same string

so that matching can occur despite minor differences in spelling.

• The method relies on generating a code for each word

START
(Input)

Remove all
vowels unless it
is the 1st letter

Key
(END)

START
(Input)

START
(Input)

Remove all
vowels unless it
is the 1st letter

Remove all
vowels unless it
is the 1st letter

Indrajeet

indrjt

Shrivastava

shrvstv

Srivastava

srvstv

Remove the
ordering of the

letters

Key
(END)

Remove the
ordering of the

letters

Key
(END)

Remove the
ordering of the

letters

dijnrt
hrsstvv rsstvv

….
dijnrt: indrajeet, indrajit, indrajiet, …
…
hrsstvv: shreevastava, shrivastava, shreevastav, srivasthava, …
…
rsstvv: sreevastava, srivastava, sreevastav, srivastav, ….
…

 - 11 -

• The Soundex code for a name consists of a letter followed by numbers: the letter is

the first letter of the name, and the numbers contain information about the remaining

consonants. Similar sounding consonants share the same number

The exact algorithm is as follows:

1. Retain the first letter of the string

2. Remove all occurrences of the following letters, unless it is the first letter: a, e, i, o, y,

w, h, y.

3. Assign numbers to the remaining letters (after the first) as follows:

Soundex Code: 0 1 2 3 4 5 6

Letters: a e i o u h w b p c g j k d t l m n r

f v q s x z

Fig 2.9 Soundex codes

 4. If two or more letters with the same number were adjacent in the original name (before

step 1), or adjacent except for any intervening h and w then omit all but the first.

Fig 2.10 Flow of program to obtain key for sample input

Fig 2.11 Part of the hash table with key & corresponding values

START
(Input)

Apply Soundex
Algorithm

Key
(END)

START
(Input)

START
(Input)

Apply Soundex
Algorithm

Apply Soundex
Algorithm

Indrajeet

I53623

Shrivastava

S61231

Srivastava

S61231

Key
(END)

Key
(END)

….
I53623: indrajeet, indrajit, indrajiet, …
…
S61231: shreevastava, shrivastava, shreevastav, sreevastava, srivastava,
sreevastav, srivastav srivasthava, …
…

 - 12 -

2.6 Q-Grams

• This method aims at creating multiple keys each of length “3” from a given single

name and then placing the name in each of the keys created.

• The method’s underlying principle is that all the letters are important.

• Here, for given name, three consecutive letters are taken at a time (also called

tri-gram) – starting from the first letter till the last letter is a part of a tri-gram.

For example,

 ind

 ndr

 dra

 KEYS raj

 Indrajeet aje

 jee

 eet

Fig 2.12 Flow of program to obtain key for sample input

• This means that the name “Indrajeet ” will be placed in the 7 keys formed above

• So, for the above formed keys the hash table will look some thing like

Fig 2.13 Part of the hash table with key & corresponding values

• The method assumes no spelling mistakes are committed.

START
(Input)

Q-Grams

…
ind: indrajeet, govind, indu, indira, …
ndr: indrajeet, chandra, nagendra, indra, …
dra: indrajeet, chandra, mahendra, nagendra, …
raj: indrajeet, raju, rajdeep, rajesh, …
aje: indrajeet, rajesh, …
jee: indrajeet, mukherjee, sajeev, chatterjee, …
eet: indrajeet, neeti, preeti, sabarjeet, …
…

 - 13 -

2.7 Summary

Following points are to be kept in mind for adopting one of the methods for creating the

database

• It is desirable to have less no. of keys. This implies that on an average there

should be more no. of values per key.

• Having less no. of keys and more values per key reduces the time to search

through the database in Stage-I and it increases the scope of search, as more

values are considered.

• But, reducing the no. of keys means the values associated with each key increases,

this in turn increases the overhead of comparison and sorting in Stage - II of

searching.

• Also, for a large no. of keys, the searching through the hash table becomes a linear

search.

• A perfect balance has to exist between the no. keys and the average no. of values

for each key.

The following table does a comparison of the important attributes for each of the six

database creation methods

Table 2.1 Comparison of the database organization methods

 No rep

and order

imp

No rep

and order

not imp

Rep and

order

important

Rep and

order not

important

Soundex Q-Grams

Total keys 15308 7902 19131 13688 8611 5664

Average key

size

(Char/key)

4.754 5.035 5.291 5.666 5.262 3.000

Average bin

size

(Values/key)

6.159 12.870 4.729 7.007 11.728 93.699

Max key

length

11 11 15 15 12 3

Max bin size 999 1122 965 1083 1145 5517

 - 14 -

 Chapter 3

SEARCHING TECHNIQUES

 - 15 -

SEARCHING METHODS

The next step in system design is implementation of searching methods. Once the database is

created with any of the six data organization methods detailed above, one of the following

search methods is used to search the user input against the database created

1. Edit Distance

2. Edit Distance Tapered

3. Editex

4. Editex Tapered

5. Ipadist

6. Ipadist tapered

7. Q-grams

• Although one of the above methods is applied to search through the hash table, the

method applied for creating the hash is used to obtain the key for input- the user

intends to search through the database.

• This means that a key is created for the name entered by the user by one of the

database creation method.

• The further search operations are carried, on the key generated.

• These search operations are two levels, i.e the comparisons are done twice.

• Initially the comparisons are between the keys of the database and the key

generated for the user input. This comparison is subjected to some constraint, say

constraint no. 1.

This constraint selects only those keys that are close enough to the key generated for the user

input i.e. the values corresponding values get selected for each of the key.

• In the second stage the comparisons are done between the actual user input and

the selected values, again subjected to a constraint, say constraint no. 2. This

second stage of comparisons ensures selection of only those values that are a close

enough match for the user input.

• Once the second stage is completed the names short-listed are sorted according to

the score calculated by the search method.

• The first six methods give the relevance in terms of numbers (integers) - lesser the

number better the match.

The last method Q-Gram calculates the relevance in percentage – greater the percentage

better the match.

 - 16 -

 The following section describes each of the search methods as to how each method

works the algorithm behind each method and the pros and cons.

3.1. Edit Distance

 Edit Distance also known as Levenshtein distance (LD) is a measure of the similarity

between two strings, which we will refer to as the source string (s) and the target string (t).

The distance is the number of deletions, insertions, or substitutions required to transform

source string into target string.

For example,

• If s is "test" and t is "tent", then LD(s,t) = 1, because one substitution (change "s"

to "n") is sufficient to transform s into t.

• If s is "test" and t is "test", then LD(s,t) = 0, because no transformations are

needed. The strings are already identical.

 The greater the Levenshtein distance, the more different the strings are.

THE ALGORITHM

edit (0,0)=0
 edit (i,0)=i
 edit (0,j)=j

edit (i,j)=min[edit(i-1,j) +1, edit(i,j-1) + 1, edit(i-
1,j-1) + r (s i ,t j)]

Fig 3.1 Recurrence relation for minimal edit distance

EXAMPLE

The following matrix shows as to how edit distance is calculated and it represents the

complete matrix for calculating edit distance between “GUMBO” & “GAMBOL”.

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2 3 4

A 2 1 1 2 3 4

M 3 2 2 1 2 3

B 4 3 3 2 1 2

O 5 4 4 3 2 1

L 6 5 5 4 3 2

 Fig 3.2 Matrix calculating the edit distance between “GUMBO” and “GUMBOL”

The bottom right corner represents the edit distance. In this case it is 2.

 - 17 -

3.2. Editex

Editex is a phonetic distance measure that combines the properties of edit distances with the

letter-grouping strategy used by Soundex and Phonix.

• Editex was developed after running experiments with Soundex, Phonix, and edit

distances, and observing the matches found by the phonetic methods and not the

string methods: although Soundex and Phonix are not very effective, they do find

good matches that standard edit distances cannot.

• Soundex and Phonix require letter groups with distinct codes to determine a canonical

representation for strings; it follows that these groups must partition the set of letters.

• Editex also groups letters that can result in similar pronunciations, but doesn't require

that the groups be disjoint and can thus reflect the correspondences between letters

and possible similar pronunciation.

• Editex is defined by the edit distance recurrence relation of Fig 3.3 with a redefined

function r(a, b) and an additional function d(a, b).

edit (0,0)=0
 edit (i,0)=edit(i-1,0) + d (s i-1 ,s i)
 edit (0,j)=edit(0,j-1) + d (t j-1 ,t j)

edit (i,j)=min[edit(i-1,j) + d (s i-1 ,s i), edit(i,j-1) + d
(t j-1 ,t j), edit(i-1,j-1) + r (s i ,t j)]

Fig 3.3 Recurrence relation for minimal editex

• The function r(a, b) returns 0 if a and b are identical, 1 if a and b are both occur n the

same group, and 2 otherwise. The groups are listed below,

Editex Code: 0 1 2 3 4 5 6 7 8 9

Letters: a e i o u b p c k q d t l r m n g j f p v s x z c s z

Fig 3.4 Editex code groupings

• The function d(a, b) is identical to r(a, b)—thus allowing pairs of the same letter to

correspond to single occurrences of that letter--except that if a is h or w (letters that

are often silent) and a = b then d(a, b) is 1.

• There is explicit similarity between the Editex and Phonix letter groupings; but while

Phonix groups the letter h and w with the vowels, Editex handles these as deletions

and Phonix does not group c and s

 - 18 -

3.3. Q-Grams

Q-Gram method for searching is almost similar to the edit distance method except that the

comparisons in q-grams are made in groups rather than one letter at a time as in the case of

edit distance.

• Q-grams are string distance measures based on q-gram counts, where a q-gram of

string s is any sub string of s of some fixed length q.

• A simple such measure is to choose q and count the number of q-grams two strings

have in common.

• However, simply counting q-grams does not allow for length differences; for

example, Fred has exactly as many q- grams in common with itself as it does with

Frederick. So to address the problem, an q-gram distance which for strings without

repeated q-grams (q-gram repeats are rare in names) can be defined as

|Gs| + |Gt| - 2|Gs∩Gt|

 Where,

Gs: Set of q-grams in string s

Gt: Set of q-grams in string t

Gs ∩ Gt: Set of q-grams common to Gs & Gt

Although this formula gives us a q-gram distance it does not tell us a percent match between

two strings.

For example,

According to this formula the distance between rhodes and rod is 5 for q of 2 or 3

• A minor modification of the above formula gives us a fair idea of similarity between

two strings

2|Gs∩Gt|/|Gs|+|Gt|

 Where, the symbols have their usual meanings as detailed above.

3.4. Edit Distance Tapered

Tapering is a refinement to the edit distance technique.

• It is based on the human factors property: “Differences at the start of a

pronunciation can be more significant than differences at the end”.

• A tapered edit distance of particular interest is one in which the maximum penalty

for replacement or deletion at the start of the string just exceeds the minimum

penalty for replacement or deletion at the end of the string.

 - 19 -

• Such an edit distance, in effect, breaks two ties : two errors always attract a higher

penalty than one, regardless of position, but strings with one error are ranked

according to the position at which the error occurs.

Implementation:

• Maximum Penalty (maxp): 2*(length(source)+length(target)), i.e., two times the

sum of the length of the two strings.

• If,

s: source string

t: target string

l1: length of source string

l2: length of target string

maxl = length of the longer string

ED_T[][]=matrix representing the tapered edit distance cost,

Then, the following for loop calculates the tapered edit distance:

for 1 to l1 {

 for 1 to l2 {

 ED_T[i][j] = min3(ED_T[i-1][j] + maxp – i – j,

 ED_T[i][j-1] + maxp – i – j,

 ED_T[i-1][j-1] + ((equal(s[i],t[j]) ? 0 : maxp-i-j)

 //substitution cost + penalty (maximum penalty – positions)

 //if there is no substitution, penalty=0;

 }

 }

Where,

min3 (a,b,c) : finds minimum among a,b,c and returns it

equal(a,b) : returns 0 if a,b are equal

• The tapered edit distance is ED_T[l1][l2]

Consider for example,

Source : srivastava

Target : srivastav

l1=10

l2=9

maxl=10

maxp=38

 - 20 -

The ED_T is as follows:

 s r i v a s t a v a

 0 37 73 108 142 175 207 238 268 297 325

s 37 0 * * * * * * * * *

r 73 * 0 * * * * * * * *

i 108 * * 0 * * * * * * *

v 142 * * * 0 * * * * * *

a 175 * * * * 0 * * * * *

s 207 * * * * * 0 * * * *

t 238 * * * * * * 0 * * *

a 268 * * * * * * * 0 * *

v 297 * * * * * * * * 0 19

Where, * is a value which is greater than 0 & not needed for this example.

• ED_T[9][10] = 19 is the tapered edit distance

3.5. Editex Tapered:

• The same tapering scheme is applied to the Editex method.

• The values obtained are nearly three times those obtained edit distance tapered

algorithm.

3.6. IpaDist:

• IpaDist is a phonometric search method developed by Justin Zobel (RMIT,

Australia) and Philip Dart (University of Melbourne, Australia)

• IPA is the International Phonetic Algorithm. The strings are converted into phonetic

codes as defined by the IPA.

• The codes, called phonemes are then compared by assigning distance values between

different phoneme pairs. An editex like algorithm is used.

3.7. IpaDist Tapered:

• The tapering scheme when applied to IpaDist gives us this modified method.

• This method, however, seems to give us inaccurate results.

3.8. Hindex:

• Transliteration refers to the conversion of a string from one language to another. (E.g.

English to Hindi)

• It is important to capture the pronunciations in the native language of the name.

 - 21 -

• To find the Hindex distance between s1 and s2 we first convert the

consonant/consonant groups of both the strings into their Unicode Hindi

representation based on Harvard-Kyoto transliteration scheme, a standard ‘English to

Hindi Transliteration scheme’.

• The character groupings are as follows:

क ख ग घ ङ

k kh g gh G

च छ ज झ ञ

c ch j jh J

ट ठ ड ढ ण

t Th D Dh N

त थ द ध न

t th d dh n

प फ ब भ म

p ph b bh m

य र ल व

y r l v

श ष स ह

z S s h

• We apply the Editex algorithm by but use the above character groupings rather

than the standard ones.

• We replace the all instances of the ‘d’ function by the ‘r’ function.

• His modification of Editex is termed:Hindex

3.9. Gram analysis:

• The method takes into account the various points at which possible errors occur

during pronunciation to representation.

• Variants of the same name can be identified by suitable analysis to find 2-grams or 3-

grams which could be possibly misspelled or confused for the same pronunciation.

 - 22 -

• e. g

 aa a

 ph f

 sh s

 th t

 ky ki ………..

 ci si

 ava av

 aks ax

 etc,

• This means that the initially occurring n-gram can be replaced safely without

altering the pronunciation, much.

• Any search method is used after the n-gram analysis function is applied when this

particular search method altering technique is chosen.

 - 23 -

Chapter 4

METHODS FOR PERFORMANCE ASSESSMENT

 - 24 -

METHODS FOR PERFORMANCE ASSESSMENT

Grading results with an approximate measure implies human-factors component in judging

them as ‘relevant’ or ‘irrelevant’. In proper-name matching, this translates into grading

results into ‘similar-sounding’ and ‘not-similar-sounding’ categories. Parallels to information

retrieval are therefore not just incidental, in fact, the metrics employed for assessment are

from this very field. A test bed of 28 queries was created. A spelling mistake was purposely

introduced in these queries. For each such test query the entire database was manually

scanned and the results deemed ‘relevant’ for this query were noted. Performance metrics for

each of the 28 queries were obtained, and the average of these for a particular hash

organization-search scheme combination was calculated. The metrics used were:

4.1 Recall:

• It is the ratio of the relevant results retrieved to the total number of relevant results (in

a pre-defined result set).

• It is a measure of ‘false negatives’, i.e. it is also an indicator of which results were

marked as ‘irrelevant’ but were supposed to be marked as ‘relevant’ by the system.

|{relevant documents} ∩ |{retrieved documents}

|{relevant documents}|

4.2 Precision:

• It is the ratio of the ‘relevant results’ (from the retrieved result set) to the total

number. of results retrieved.

• It is a measure of ‘false positives’, i.e. it is also an indicator of which results were

marked as ‘relevant’ but were supposed to be marked as ‘irrelevant’ by the system.

 |{relevant documents} ∩ |{retrieved documents}

|{retrieved documents}|

4.3 Weighted Recall:

Since some results were deemed to be of more importance than others, a weighted recall

scheme was considered:

Recall =

Precision =

 - 25 -

• Each ‘relevant result’ set was divided into subsets. The no. of subsets for each query

was decided individually based on the need to grade some results more extremely

important than other subsets.

• For 4 subsets, the subset weights were, Set 1: 40%, Set 2: 30%, Set 3: 20%, Set 4:

10%

• For 3 subsets, Set 1: 50%, Set 2: 30%, Set 3: 20%

• For 2 subsets, Set 1: 70%, Set 2: 30%

Such a weighted-scheme of assessment was considered more reliable as a performance metric

than simple recall.

4.4 Time analysis:

The time taken to execute a query is of utmost importance to measure the effectiveness of a

data organization scheme. For each combination of ‘data-organization’ and ‘search scheme

used’ the average time to execute a query was calculated by obtaining the run-times of 28

(different length) queries and then averaging the values obtained.

 - 26 -

Chapter 5

EXPERIMENTAL RESULTS

 - 27 -

EXPERIMENTAL RESULTS

Weighted Recall analysis: A program was written which calculated weighted recall values for

every ‘data organization method’-‘search method’ combination. The results were plotted in

two graphs: one with the size of the results set=20 and one with the result set size=50.

Time analysis: Average time to execute a query was calculated for each ‘data organization

method’-‘search method’ combination. This was also plotted in two graphs: one for ‘time

taken vs. hash organization’ and another for ‘time taken vs search method’.

5.1 Weighted recall for 20 results set:

Table 5.1 Weighted recalls for hash scheme-search method combination. Result set size= 20.

Hash scheme Search method Recall

No Rep and order Edit Distance 33.15344774

 Edit Distance Tapered 30.52673418
 Editex 31.65807308

 Editex Tapered 28.46182488

 Ipadist 32.88291074

 Ipadist tapered 30.83468615

 Hindex 25.87022006

Soundex Edit Distance 31.48993764

 Edit Distance Tapered 30.03566275

 Editex 31.36045403

 Editex Tapered 28.50646774

 Ipadist 32.69583591
 Ipadist tapered 30.83468615

 Hindex 28.83249588

No rep no order Edit Distance 31.51364409

 Edit Distance Tapered 30.39280561
 Editex 32.09561173

 Editex Tapered 28.50646774

 Ipadist 32.94204803

 Ipadist tapered 30.79004329

 Hindex 32.03595908

Rep with order Edit Distance 30.34094774

 Edit Distance Tapered 30.16959132

 Editex 31.75547568

 Editex Tapered 28.46182488

 Ipadist 32.98031334
 Ipadist tapered 30.83468615

 Hindex 30.54283911

Rep no order Edit Distance 30.06961194

 Edit Distance Tapered 30.08030561

 Editex 32.09561173
 Editex Tapered 28.50646774

 Ipadist 32.89740517

 Ipadist tapered 30.79004329

 Hindex 31.61929241

 - 28 -

Fig 5.1 Percentage-weighted-recall values for different search methods. Each series of the

graph is a particular data-organization scheme.

W
e

ig
h

te
d

 R
e

c
a

ll
(2

0
)

fo
r

d
if

fe
re

n
t

s
e

a
rc

h

s
c

h
e

m
e

s

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

E
d

it
 D

is
ta

n
c

e
E

d
it

 D
is

ta
n

c
e

T
a

p
e

re
d

E
d

it
e

x
E

d
it

e
x

T
a

p
e

re
d

Ip
a

d
is

t
Ip

a
d

is
t

ta
p

e
re

d
H

in
d

e
x

S
e

a
rc

h
 M

e
th

o
d

s

Percentage Recall

 S
o

u
n

d
e

x

 N
o

 R
e

p
 a

n
d

 o
rd

e
r

 N
o

 r
e

p
 n

o
 o

rd
e

r

 R
e

p
 w

it
h

 o
rd

e
r

 R
e

p
 n

o
 o

rd
e

r

 - 29 -

5.2 Weighted recall for 50 results set:

Table 5.2: Weighted recall values for a hash scheme-search method combination. Result set

size is 50.

Hash scheme Search method Recall

 No Rep and order Edit Distance 37.39861626

 Edit Distance Tapered 34.5180504

 Editex 40.14882241

 Editex Tapered 37.60018553

 Ipadist 38.33936302

 Ipadist tapered 36.89812667

 Hindex 37.77066584

 Soundex Edit Distance 36.86373944

 Edit Distance Tapered 34.5180504
 Editex 40.59525098

 Editex Tapered 38.18054267

 Ipadist 38.74520717

 Ipadist tapered 36.89812667

 Hindex 34.87744795

 No rep no order Edit Distance 38.76334776

 Edit Distance Tapered 34.5180504

 Editex 39.73891981

 Editex Tapered 38.0466141

 Ipadist 38.6599799

 Ipadist tapered 36.89812667

 Hindex 38.22327871

 Rep with order Edit Distance 34.37643012

 Edit Distance Tapered 34.5180504
 Editex 40.28275098

 Editex Tapered 37.60018553

 Ipadist 38.20543445

 Ipadist tapered 36.89812667

 Hindex 36.3371341

 Rep no order Edit Distance 35.33647702

 Edit Distance Tapered 34.2055504

 Editex 39.73891981

 Editex Tapered 37.91268553

 Ipadist 38.30283704

 Ipadist tapered 36.7641981

 Hindex 37.86117553

 - 30 -

Fig 5.2: Percentage-weighted-recall values for different search methods. Each series of the

graph is a particular data-organization scheme.

W
e

ig
h

te
d

 R
e

c
a

ll
(5

0
)

fo
r

d
if

fe
re

n
t

s
e

a
rc

h

s
c

h
e

m
e

s

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

E
d

it
 D

is
ta

n
c

e
E

d
it

 D
is

ta
n

c
e

T
a

p
e

re
d

E
d

it
e

x
E

d
it

e
x

T
a

p
e

re
d

Ip
a

d
is

t
Ip

a
d

is
t

ta
p

e
re

d
H

in
d

e
x

S
e

a
rc

h
 M

e
th

o
d

s

Percentage Recall

 S
o

u
n

d
e

x

 N
o

 R
e

p
 a

n
d

 o
rd

e
r

 N
o

 r
e

p
 n

o
 o

rd
e

r

 R
e

p
 w

it
h

 o
rd

e
r

 R
e

p
 n

o
 o

rd
e

r

 - 31 -

5.3 Time Analysis:

Table 5.3: Execution time values for a hash scheme-search method combination

Hash Scheme Search method Time Taken

 No Rep and order Edit Distance 0.473374239

 Edit Distance Tapered 1.520261066

 Editex 0.740915452

 Editex Tapered 1.159738966
 Ipadist 0.818892172

 Ipadist tapered 1.514890943

 Soundex Edit Distance 0.346088265

 Edit Distance Tapered 1.283133362
 Editex 1.564180255

 Editex Tapered 1.627933392

 Ipadist 1.177978482

 Ipadist tapered 1.528901679

 No rep no order Edit Distance 0.31172439

 Edit Distance Tapered 1.245935559

 Editex 0.642552461

 Editex Tapered 0.980184291

 Ipadist 0.711250041

 Ipadist tapered 1.306379676

 Rep with order Edit Distance 0.568913485

 Edit Distance Tapered 1.301637028

 Editex 0.782405785

 Editex Tapered 1.060655398
 Ipadist 0.848563739

 Ipadist tapered 1.350011451

 Rep no order Edit Distance 0.436129502

 Edit Distance Tapered 1.154374199
 Editex 0.840347895

 Editex Tapered 1.003445549

 Ipadist 0.773821371

 Ipadist tapered 1.233742595

 - 32 -

Fig 5.3: Execution time for different search methods for a particular hash organization

scheme

T
im

e
 A

n
a
ly

s
is

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

1
.8

E
d
it
 D

is
ta

n
c
e

E
d
it
 D

is
ta

n
c
e

T
a

p
e
re

d

E
d
it
e
x

E
d
it
e
x
 T

a
p
e
re

d
Ip

a
d
is

t
Ip

a
d
is

t
ta

p
e
re

d

S
e

a
rc

h
 m

e
th

o
d

s

Avg Time Taken

R
e
p

 n
o

 O
rd

e
r

R
e
p

 w
it
h
 O

rd
e
r

N
o
 R

e
p
 n

o
 O

rd
e
r

S
o
u
n
d

e
x

N
o
 r

e
p

 a
n
d

 O
rd

e
r

 - 33 -

Fig 5.4: Execution time of different hash organization schemes for a constant search

technique

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

1
.8

 N
o

 R
e
p

 a
n
d

 o
rd

e
r

 S
o
u

n
d

e
x

 N
o
 r

e
p
 n

o
 o

rd
e
r

 R
e
p

 w
it
h
 o

rd
e

r
 R

e
p
 n

o
 o

rd
e
r

E
d
it
 D

is
ta

n
c
e

E
d
it
 D

is
ta

n
c
e
 T

a
p
e
re

d

E
d
it
e
x

E
d
it
e
x
 T

a
p

e
re

d

Ip
a

D
is

t

Ip
a

D
is

t
T

a
p
e

re
d

 - 34 -

Chapter 6

CONCLUSION

 - 35 -

6. CONCLUSION

From the calculation of the weighted recall values, it is seen that the data organization

techniques have a large role to play in the ‘quality’ of results obtained. The ‘no-rep-order’

data organization scheme provides the best recall values for all the search schemes. This

implies that the order of the consonants in the names has an important effect on the

pronunciation. Also if the same consonant occurs consecutively, the extra occurrence(s) can

be safely overlooked. This scheme also has an optimal words/bin size, which is better than

Soundex or Phonix, which are the generally used methods for grouping similar sounding

names. Thus we suggest the ‘no-rep-order’ as a newer and better data organization scheme.

The searching techniques, while based on simple approximation-based string matching

methods (edit-distance), still provide the best search results. Changes in these methods

(editex) to account for pronunciation of the names yield only slightly better results.

Better results may be obtained if the stress on pronunciation is more than subtle. IpaDist

which is based on the International Phonetic Algorithm accomplishes this by converting

names into phonetic codes. However, this too fails to provide good results. This is perhaps

due to the fact the phonetic codes that IPA uses do no properly capture the nature of the

sound produced. Transliteration of names from the initial source language to the original

language of the names and then application of the distance-based techniques, should give

better results. Hindex, a modification of editex applicable to Indian names is a step in this

direction. While such a transliteration based algorithm reduces the applicability to only

Indian names, studying such an approach provides us with an insight into the native language

of the name.

Initial testing has shown that this algorithm is giving slightly inferior results to IpaDist but

further refinements (using a modified transliteration scheme, studying Hindi sounds and

accounting for them more accurately) should provide us with improved recall values. This is

the current focus of our research.

A simple way to improve recall for all the search methods is to accommodate for spelling

errors and pronunciation variations before any search method is applied. This was done by

manually performing n-gram analysis on the dataset and observing the possible mistakes in

spelling and similarities in pronunciation. After accounting for these, the system was tested

for a few queries and it was observed that some results had improved ‘match values’, i.e. they

had a better rank than before. Thus better ordering of results was achieved, which also mildly

affected system recall. The hash organization efficiency can be improved by implementing

the reverse indexing scheme. On the search technique side, Editex-Bloom seems promising.

 - 36 -

REFERENCES

1. Justin Zobel and Philip Dart “Phonetic String matching: lessons from Information

Retrieval”, SIGIR'96,Zurich ,pp. 105-110, 1996.

2. Pattern Matching Algorithms, Alberto Apostolico & Zvi Galil, Oxford University

Press, UK, 1997.

3. E. Ukkonen, Algorithms for approximate string matching. Information and Control

64, 100-118. 1985.

4. R. Baeza-Yates and G. Navarro. Fast Approximate String Matching in a Dictionary.

Proc. 1998.

5. V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady 10 (1966)

6. Zobel, J. and Dart, P. [1995]. Finding approximate matches in large lexicons.

Software-Practice and Experience,25(3):331-345.

7. Zobel, J. and Dart, P. [1996]. Fnetik: An integrated system for phonetic matching.

Technical Report 96-6, Department of Computer Science, RMIT.

8. Ukkonen, E. [1992]. Approximate string-matching with q-grams and maximal

matches. Theoretical Computer Science, 92:191-211.

