
LOSSLESS DATA COMPRESSION AND

DECOMPRESSION ALGORITHM AND ITS

HARDWARE ARCHITECTURE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

 OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI Design and Embedded System

By

V.V.V. SAGAR

Roll No: 20607003

 Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LOSSLESS DATA COMPRESSION AND

DECOMPRESSION ALGORITHM AND ITS

HARDWARE ARCHITECTURE

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

VLSI Design and Embedded System

By

V.V.V. SAGAR

Roll No: 20607003

Under the Guidance of

Prof. G. Panda

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela

2008

National Institute of Technology

Rourkela

 CERTIFICATE

This is to certify that the thesis entitled. “Lossless Data Compression And

Decompression Algorithm And Its Hardware Architecture” submitted by Sri

V.V.V. SAGAR in partial fulfillment of the requirements for the award of Master of

Technology Degree in Electronics and Communication Engineering with specialization in

“VLSI Design and Embedded System” at the National Institute of Technology, Rourkela

(Deemed University) is an authentic work carried out by his under my supervision and

guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University/Institute for the award of any Degree or Diploma.

Date: Prof.G.Panda (FNAE, FNASc)

 Dept. of Electronics and Communication Engg.

 National Institute of Technology

 Rourkela-769008

 ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it would be impossible

without people who supported me and believed in me.

 I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Prof. G. Panda, Head, Department of Electronics and Communication Engineering.

He is not only a great lecturer with deep vision but also and most importantly a kind person. I

sincerely thank for his exemplary guidance and encouragement. His trust and support inspired

me in the most important moments of making right decisions and I am glad to work with him.

 I want to thank all my teachers Prof. G.S. Rath, Prof. K. K. Mahapatra, Prof. S.K.

Patra and Prof. S.K. Meher for providing a solid background for my studies and research

thereafter. They have been great sources of inspiration to me and I thank them from the bottom

of my heart.

 I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious. I‟ve

enjoyed their companionship so much during my stay at NIT, Rourkela.

 I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

 Last but not least I would like to thank my parents, who taught me the value of hard

work by their own example. They rendered me enormous support during the whole tenure of my

stay in NIT Rourkela.

 V.V.V. SAGAR

CONTENTS

Abstract...i

List of Figures..ii

List of Tables..iii

Abbreviations Used ..iv

CHAPTER 1. INTRODUCTION..1

 1.1Motivation…………………………………………………………..…....….2

 1.2 Thesis Outline………………………………………………………..……..3
.

CHAPTER 2. LZW ALGORITHM……………………………………............4

 2.1 LZW Compression………………………………………………...…..……5

 2.1.1 LZW Compression Algorithm…………………………………..……7

 2.2 LZW Decompression…………………………………………….…..……10

 2.2.1 LZW Decompression Algorithm…………………………………..…11

CHAPTER 3 ADAPTIVE HUFFMAN ALGORITHM……………..……...…12

 3.1 Introduction…………………………………………………………………13

 3.2 Huffman‟s Algorithm and FGK Algorithm…………………………………15

 3.3 Optimum Dynamic Huffman Codes……………………………………...…23

 3.3.1 Implicit Numbering……………………………………………...……23

 3.3.2 Data Structure…………………………………………………….……24

CHAPTER 4 PARALLEL DICTIONARY LZW ALGORITHM……………26

 4.1 Introduction…………………………………………………………………27

 4.2 Dictionary Design Considerations…………………………………….….…28

 4.3 Compression Processor Architecture………………………….……………28

 4.4 PDLZW Algorithm…………………………………………………………30

 4.4.1 PDLZW Compression Algorithm…………………………………….30

 4.4.2 PDLZW Decompression Algorithm……………………………….…33

4.5 Trade off Between Dictionary Size And Performance…………………….…35

 4.5.1 Performance of PDLZW………………………………………….……35

 4.5.2 Dictionary Size Selection………………………………………….…...37

CHAPTER 5 TWO STAGE ARCHITECTURE………………………..……..39

 5.1 Introduction……………………………………………………….…….….40

 5.2 Approximated AH Algorithm…………………………………….……..…40

 5.3 Canonical Huffman Code………………………………………….………46

 5.4 Performance of PDLZW + AHDB…………………………………..….…48

 5.5 Proposed Two Stage Data Compression Architecture……………….….…49

 5.5.1 PDLZW Processor……………………………………………..…….49

 5.5.2 AHDB Processor…………………………………………….………50

 5.6 Performance……………………………………………………………..…52

 5.7 Results……………………………………………………………...…...….52

CHAPTER 6 SIMULATION RESULTS………………………………..….…54

CHAPTER 7 CONCLUSION…………………………………………..……...60

REFERENCES……………………………………………………………...…...62

i

Abstract

LZW (Lempel Ziv Welch) and AH (Adaptive Huffman) algorithms were most widely used for

lossless data compression. But both of these algorithms take more memory for hardware

implementation. The thesis basically discuss about the design of the two-stage hardware

architecture with Parallel dictionary LZW algorithm first and Adaptive Huffman algorithm in the

next stage. In this architecture, an ordered list instead of the tree based structure is used in the

AH algorithm for speeding up the compression data rate. The resulting architecture shows that it

not only outperforms the AH algorithm at the cost of only one-fourth the hardware resource but

it is also competitive to the performance of LZW algorithm (compress). In addition, both

compression and decompression rates of the proposed architecture are greater than those of the

AH algorithm even in the case realized by software.

 Three different schemes of adaptive Huffman algorithm are designed called AHAT, AHFB and

AHDB algorithm. Compression ratios are calculated and results are compared with Adaptive

Huffman algorithm which is implemented in C language. AHDB algorithm gives good

performance compared to AHAT and AHFB algorithms.

The performance of the PDLZW algorithm is enhanced by incorporating it with the AH

algorithm. The two stage algorithm is discussed to increase compression ratio with PDLZW

algorithm in first stage and AHDB in second stage. Results are compared with LZW (compress)

and AH algorithm. The percentage of data compression increases more than 5% by cascading

with adaptive algorithm, which implies that one can use a smaller dictionary size in the PDLZW

algorithm if the memory size is limited and then use the AH algorithm as the second stage to

compensate the loss of the percentage of data reduction. The Proposed two–stage

compression/decompression processors have been coded using Verilog HDL language,

simulated in Xilinx ISE 9.1 and synthesized by Synopsys using design vision.

ii

List of Figures

Figure No Figure Title Page No.

Fig 2.1 Example of code table compression……………………………………………….…6

Fig 3.1. Node numbering for the sibling property using the Algorithm FGK…………………19

Fig 3.2 Algorithm FGK operating on the message “abcd ….. “……………………………..20.

Fig 4.1 PDLZW Architecture……………………………………………………………...….29

Fig 4.2 Example to illustrate the operation of PDLZW compression algorithm……………...33

Fig 4.3 Percentage of data reduction of various compression schemes……………………....36

Fig 4.4 Number of bytes required in various compression schemes……………………….…37

Fig 5.1 Illustrating Example of AHDB algorithm…………………………………………….42

Fig 5.2 Example of the Huffman tree and its three possible encodings……………………….46

Fig 5.3 Two Stage Architecture for compression……………………………………..………53

Fig 6.1 PDLZW output………………………………………………………………..…..….55

Fig 6.2 Write operation in Four dictionaries……………………………………………….…55

Fig 6.3 Dic-1 contents………………………………………………………………………...56

Fig 6.4 Dic-2 Contents………………………………………………………………………..56

Fig 6.5 Dic-3, 4 Contents……………………………………………………………………...57

Fig 6.6 AHDB processor Output……………………………………………………………...57

Fig 6.7 Order list of AHDB…………………………………………………………………...58

Fig 6.8 PDLZW+AHDB algorithm…………………………………………………………...58

Fig 6.9 AHDB decoder Schematic……………………………………………………………59

iii

List of Tables

Table No. Table Title Page No.

Table 2.1 Step-by-step details for an LZW example …………………………………………..9

Table 4.1 Ten Possible Partitions of the 368-Address Dictionary Set…………………………38

Table 5.1 Performance Comparisons between AH Algorithm and It‟s……………………….44

 Various Approximated Versions In The Case Of Text Files

Table 5.2 Performance Comparisons Between AH Algorithm and It‟s …………………........44

 Various Approximated Versions In The Case Of Executable Files

Table 5.3 Overall Performance Comparisons Between the AH Algorithm………………….…45

 And It‟s Various Approximated Versions.

Table 5.4 Canonical Huffman Code Used In the AHDB Processor………………………......47

Table 5.5 Performance Comparison of Data Reduction between ………………………….…51

 COMPRESS, PDLZW + AH, PDLZW + AHAT, PDLZW + AHFB,

 AND PDLZW + AHDB for Text files

Table 5.6 Performance Comparison of Data Reduction between ……………………….....…51

 COMPRESS, PDLZW + AH, PDLZW + AHAT, PDLZW + AHFB,

 AND PDLZW + AHDB for Executable files

iv

 Abbreviations Used

LZW Algorithm Lempel Ziv Welch algorithm

AH Algorithm Adaptive Huffman Algorithm

PDLZW algorithm Parellel Dictionary LZW Algorithm

FGK algorithm Failer, Gallager, and Knuth Algorithm

AHAT Adaptive Huffman algorithm with transposition

AHFB Adaptive Huffman algorithm with fixed-block exchange

AHDB Adaptive Huffman algorithm with dynamic-block exchange

 Chapter 1

 INTRODUCTION

 INTRODUCTION

2

DATA compression is a method of encoding rules that allows substantial reduction in the total

number of bits to store or transmit a file. Currently, two basic classes of data compression are

applied in different areas. One of these is lossy data compression, which is widely used to

compress image data files for communication or archives purposes. The other is lossless data

compression that is commonly used to transmit or archive text or binary files required to keep

their information intact at any time.

1.1 Motivation

Data transmission and storage cost money. The more information being dealt with, the more it

costs. In spite of this, most digital data are not stored in the most compact form. Rather, they are

stored in whatever way makes them easiest to use, such as: ASCII text from word processors,

binary code that can be executed on a computer, individual samples from a data acquisition

system, etc. Typically, these easy-to-use encoding methods require data files about twice as large

as actually needed to represent the information. Data compression is the general term for the

various algorithms and programs developed to address this problem. A compression program is

used to convert data from an easy-to-use format to one optimized for compactness. Likewise, an

uncompression program returns the information to its original form.

 A new two-stage hardware architecture is proposed that combines the features of both parallel

dictionary LZW (PDLZW) and an approximated adaptive Huffman (AH) algorithms. In the

proposed architecture, an ordered list instead of the tree based structure is used in the AH

algorithm for speeding up the compression data rate. The resulting architecture shows that it

outperforms the AH algorithm at the cost of only one-fourth the hardware resource, is only about

7% inferior to UNIX compress on the average cases, and outperforms the compress utility in

some cases. The compress utility is an implementation of LZW algorithm.

 INTRODUCTION

3

1.2 THESIS OUTLINE:

Following the introduction, the remaining part of the thesis is organized as under

 Chapter 2 discusses LZW algorithm for compression and decompression.

 Chapter 3 discusses the Adaptive Huffman algorithm by FGK and modified algorithm

 By JEFFREY SCOTT VITTER.

 Chapter 4 discusses the Parallel dictionary LZW algorithm and its architecture.

 Chapter 5 discusses The Two Stage proposed Architecture and its Implementation

 Chapter 6 discusses the simulation results

 Chapter 7 gives the conclusion.

 Chapter 2

 LZW ALGORITHM

 LZW Algorithm

5

LZW compression is named after its developers, A. Lempel and J. Ziv, with later modifications

by Terry A. Welch. It is the foremost technique for general purpose data compression due to its

simplicity and versatility. Typically, we can expect LZW to compress text, executable code, and

similar data files to about one-half their original size. LZW also performs well when presented

with extremely redundant data files, such as tabulated numbers, computer source code, and

acquired signals.

2.1 LZW Compression

LZW compression uses a code table, as illustrated in Fig. 2.1. A common choice is to provide

4096 entries in the table. In this case, the LZW encoded data consists entirely of 12 bit codes,

each referring to one of the entries in the code table. Decompression is achieved by taking each

code from the compressed file, and translating it through the code table to find what character or

characters it represents. Codes 0-255 in the code table are always assigned to represent single

bytes from the input file. For example, if only these first 256 codes were used, each byte in the

original file would be converted into 12 bits in the LZW encoded file, resulting in a 50% larger

file size. During uncompression, each 12 bit code would be translated via the code table back

into the single bytes. But, this wouldn't be a useful situation.

 code number translation
 0000 0

 0001 1

 : :

 : :

 0254 254

 0255 255

 0256 145 201 4

 0257 243 245

 : :

 4095 xxx xxx xxx

Id
en

ti
ca

l
co

d
e

U
n

iq
u

e
co

d
e

 LZW Algorithm

6

FIGURE 2.1 Example of code table compression. This is the basis of the popular LZW

compression method. Encoding occurs by identifying sequences of bytes in the original file that

exist in the code table. The 12 bit code representing the sequence is placed in the compressed file

instead of the sequence. The first 256 entries in the table correspond to the single byte values, 0

to 255, while the remaining entries correspond to sequences of bytes. The LZW algorithm is an

efficient way of generating the code table based on the particular data being compressed. (The

code table in this figure is a simplified example, not one actually generated by the LZW

algorithm).

original data stream: 123 145 201 4 119 89 243 245 59 11 206 145 201 4 243 245

code table encoded: 123 256 119 89 257 59 11 206 256 257

The LZW method achieves compression by using codes 256 through 4095 to represent

sequences of bytes. For example, code 523 may represent the sequence of three bytes: 231 124

234. Each time the compression algorithm encounters this sequence in the input file, code 523 is

placed in the encoded file. During decompression, code 523 is translated via the code table to

recreate the true 3 byte sequence. The longer the sequence assigned to a single code, and the

more often the sequence is repeated, the higher the compression achieved.

Although this is a simple approach, there are two major obstacles that need to be overcome:

 (1) How to determine what sequences should be in the code table, and

 (2) How to provide the decompression program the same code table used by the compression

program. The LZW algorithm exquisitely solves both these problems.

 LZW Algorithm

7

When the LZW program starts to encode a file, the code table contains only the first 256 entries,

with the remainder of the table being blank. This means that the first codes going into the

compressed file are simply the single bytes from the input file being converted to 12 bits. As the

encoding continues, the LZW algorithm identifies repeated sequences in the data, and adds them

to the code table. Compression starts the second time a sequence is encountered. The key point is

that a sequence from the input file is not added to the code table until it has already been placed

in the compressed file as individual characters (codes 0 to 255). This is important because it

allows the decompression program to reconstruct the code table directly from the compressed

data, without having to transmit the code table separately.

2.1.1 LZW compression algorithm

 1 Initialize table with single character strings

 2 String = first input character

 3 WHILE not end of input stream

 4 Char = next input character

 5 IF String + Char is in the string table

 6 String = String + Char

 7 ELSE

 8 output the code for String

 9 add String + Char to the string table

 10 String = Char

 11 END WHILE

 12 output code for String

The variable, CHAR, is a single byte. The variable, STRING, is a variable length sequence of

bytes. Data are read from the input file (Step 2 & 4) as single bytes, and written to the

compressed file (Step 8) as 12 bit codes. Table 2.1 shows an example of this algorithm.

 LZW Algorithm

8

 CHAR STRING

+ CHAR

In Table ? Output Add to

Table

New

STRING

Comments

1 t t t First character-no action

2 h th No t 256=th h

3 e he No h 257=he e

4 / e/ No e 258=e/ /

5 r /r No / 259=/r r

6 a ra No r 260=ra a

7 i ai No a 261=ai i

8 n in No i 262=in n

9 / n/ No n 263=n/ /

10 i /i No / 264=/i i

11 n in yes(262) in First match found

12 / in/ No 262 265=in/ /

13 S /S No / 266=/S S

14 p Sp No S 267=Sp p

15 a pa No p 268=pa a

16 i ai Yes(261) ai Matches ai , ain not in table yet

17 n ain No 261 269=ain n ain added to table

18 / n/ Yes(263) n/

19 f n/f No 263 270=n/f f

20 a fa No f 271=fa a

21 l al No a 272=al l

22 l ll No l 273=ll l

23 s ls No l 274=ls s

24 / s/ No s 275=s/ /

25 m /m No / 276=/m m

26 a ma No m 277=ma a

27 i ai Yes(261) ai Matches ai

28 n ain Yes(269) ain Matches longer string , ain

29 l ainl No 269 278=ainl l

30 y ly No l 279=ly y

31 / y/ No y 280=y/ /

 LZW Algorithm

9

32 o /o No / 281=/o o

33 n on No o 282=on n

34 / n/ Yes(263) n/

35 t n/t No 263 283=n/t t

36 h th Yes(256) th Matches th , the not in the table

yet

37 e the No 256 284=the e the added to table

38 / e/ yes e/

39 p e/p No 258 285=e/p p

40 l pl No p 286=pl l

41 a la No l 287=la a

42 i ai Yes(261) ai Matches ai

43 n ain Yes(269) ain Matches longer string ain

44 / ain/ No 269 288=ain/ /

45 EOF / / End of file , output STRING

Table 2.1 provides the step-by-step details for an example input file consisting of 45 bytes, the

ASCII text string: the/rain/in/Spain/falls/mainly/on/the/plain. When we say that the LZW

algorithm reads the character "a" from the input file, we mean it reads the value: 01100001 (97

expressed in 8 bits), where 97 is "a" in ASCII. When we say it writes the character "a" to the

encoded file, we mean it writes: 000001100001 (97 expressed in 12 bits).

The compression algorithm uses two variables: CHAR and STRING. The variable, CHAR, holds

a single character, i.e., a single byte value between 0 and 255. The variable, STRING, is a

variable length string, i.e., a group of one or more characters, with each character being a single

byte. In box 1 of Fig. 2.1, the program starts by taking the first byte from the input file, and

placing it in the variable, STRING. Table 2.1 shows this action in line 1. This is followed by the

algorithm looping for each additional byte in the input file, controlled in the flow diagram by

Step 3. Each time a byte is read from the input file (Step 4), it is stored in the variable, CHAR.

The data table is then searched to determine if the concatenation of the two variables,

STRING+CHAR, has already been assigned a code (Step 5).

 LZW Algorithm

10

If a match in the code table is not found, three actions are taken, as shown in Step 8, 9 & 10. In

Step 8, the 12 bit code corresponding to the contents of the variable, STRING, is written to the

compressed file. In Step 9, a new code is created in the table for the concatenation of

STRING+CHAR. In Step 10, the variable, STRING, takes the value of the variable, CHAR. An

example of these actions is shown in lines 2 through 10 in Table 2.1, for the first 10 bytes of the

example file.

When a match in the code table is found (Step 5), the concatenation of STRING+CHAR is stored

in the variable, STRING, without any other action taking place (Step 6). That is, if a matching

sequence is found in the table, no action should be taken before determining if there is a longer

matching sequence also in the table. An example of this is shown in line 11, where the sequence:

STRING+CHAR = in, is identified as already having a code in the table. In line 12, the next

character from the input file, /, is added to the sequence, and the code table is searched for: in/.

Since this longer sequence is not in the table, the program adds it to the table, outputs the code

for the shorter sequence that is in the table (code 262), and starts over searching for sequences

beginning with the character, „/‟. This flow of events is continued until there are no more

characters in the input file. The program is wrapped up with the code corresponding to the

current value of STRING being written to the compressed file (as illustrated in Step 8 of Fig.

Table 2.1 and line 45 of Table 2.1).

2.2 LZW Decompression

The LZW decompression algorithm is given below. Each code is read from the compressed file

and compared to the code table to provide the translation. As each code is processed in this

manner, the code table is updated so that it continually matches the one used during the

compression. However, there is a small complication in the decompression routine. There are

certain combinations of data that result in the decompression algorithm receiving a code that

does not yet exist in its code table. This contingency is handled in boxes 6, 7 & 8.

 LZW Algorithm

11

2.2.1 LZW Decompression algorithm

1 Initialize table with single character strings

2 OLD = first input code

3 output translation of OLD

4 WHILE not end of input stream

5 NEW = next input code

6 IF NEW is not in the string table

7 S = translation of OLD

8 S = S + C

9 ELSE

10 S = translation of NEW

11 output S

12 C = first character of S

13 OLD + C to the string table

14 OLD = NEW

15 END WHILE

Only a few dozen lines of code are required for the most elementary LZW programs. The real

difficulty lies in the efficient management of the code table. The brute force approach results in

large memory requirements and a slow program execution. Several tricks are used in commercial

LZW programs to improve their performance. For instance, the memory problem arises because

it is not know beforehand how long each of the character strings for each code will be. Most

LZW programs can be handled by taking advantage of the redundant nature of the code table.

For example, look at line 29 in Table 2.2, where code 278 is defined to be ainl. Rather than

storing these four bytes, code 278 could be stored as: code 269 + l, where code 269 was

previously defined as ain in line 17. Likewise, code 269 would be stored as: code 261 + n, where

code 261 was previously defined as ai in line 7. This pattern always holds: every code can be

expressed as a previous code plus one new character. This Algorithm is Coded in C language.

 Chapter 3

 Adaptive Huffman

 Algorithm

 Adaptive Huffman Algorithm

13

3.1. Introduction

A new one-pass algorithm for constructing dynamic Huffman codes is introduced and analyzed.

We also analyze the one-pass algorithm due to Failer, Gallager, and Knuth. In each algorithm,

both the sender and the receiver maintain equivalent dynamically varying Huffman trees, and the

coding is done in real time. We show that the number of bits used by the new algorithm to

encode a message containing l letters is < l bits more than that used by the conventional two-pass

Huffman scheme, independent of the alphabet size. The new algorithm is well suited for online

encoding/decoding in data networks and for file compression.

Variable-length source codes, such as those constructed by the well-known two pass algorithm

due to D.A.Huffman [5], are becoming increasingly important for several reasons.

Communication costs in distributed systems are beginning to dominate the costs for internal

computation and storage. Variable-length codes often use fewer bits per source letter than do

fixed-length codes such as ASCII and EBCDIC, which require │log n│ bits per letter, where n,

is the alphabet size. This can yield tremendous savings in packet-based communication systems.

Moreover, the buffering needed to support variable-length coding is becoming an inherent part of

many systems.

The binary tree produced by Huffman‟s algorithm minimizes the weighted external path length

∑ j wj lj among all binary trees, where wj is the weight of the j th leaf, and l j is its depth in the

tree. Let us suppose there are k distinct letters a1, a2. . . ak in a message to be encoded, and let us

consider a Huffman tree with k leaves in which wj for 1 ≤ j ≤ k , is the number of occurrences of

aj in the message. One way to encode the message is to assign a static code to each of the k

distinct letters, and to replace each letter in the message by its corresponding code. Huffman‟s

algorithm uses an optimum static code, in which each occurrence of aj for 1 ≤ j ≤ k, is encoded

by the lj bits specifying the path in the Huffman tree from the root to the jth leaf, where “0”

means “to the left” and “1” means “to the right”.

One disadvantage of Huffman‟s method is that it makes two passes over the data: one pass to

collect frequency counts of the letters in the message, followed by the construction of a Huffman

tree and transmission of the tree to the receiver; and a second pass to encode and transmit the

 Adaptive Huffman Algorithm

14

letters themselves, based on the static tree structure. This causes delay when used for network

communication, and in file compression applications the extra disk accesses can slow down the

algorithm.

Faller and Gallager independently proposed a one-pass scheme, later improved substantially by

Knuth, for constructing dynamic Huffman codes. The binary tree that the sender uses to encode

the (t + 1) st letter in the message (and that the receiver uses to reconstruct the (t + 1)st letter is a

Huffman tree for the first t letters of the message. Both sender and receiver start with the same

initial tree and thereafter stay synchronized; they use the same algorithm to modify the tree after

each letter is processed. Thus there is never need for the sender to transmit the tree to the

receiver, unlike the case of the two-pass method. The processing time required to encode and

decode a letter is proportional to the length of the letter‟s encoding, so the processing can be

done in real time.

Of course, one-pass methods are not very interesting if the number of bits transmitted is

significantly greater than with Huffman‟s two-pass method. This paper gives the first analytical

study of the efficiency of dynamic Huffman codes. We derive a precise and clean

characterization of the difference in length between the encoded message produced by a dynamic

Huffman code and the encoding of the same message produced by a static Huffman code. The

length (in bits) of the encoding produced by the algorithm of Faller, Gallager, and Knuth

(Algorithm FGK) is shown to be at most ≈ 2 S + t, where S is the length of the encoding by a

static Huffman code, and t is the number of letters in the original message. More important, the

insights we gain from the analysis lead us to develop a new one pass scheme, which we call

Algorithm A, that produces encodings of < S + t bits. That is, compared with the two-pass

method, Algorithm A uses less than one extra bit per letter. We prove this is optimum in the

worst case among all one-pass Huffman schemes.

It is impossible to show that a given dynamic code is optimum among all dynamic codes,

because one can easily imagine non-Huffman-like codes that are optimized for specific

messages. Thus there can be no global optimum. For that reason we restrict our model of one-

pass schemes to the important class of one pass Huffman schemes, in which the next letter of the

message is encoded on the basis of a Huffman tree for the previous letters. We also do not

 Adaptive Huffman Algorithm

15

consider the worst case encoding length, among all possible messages of the same length,

because for any one-pass scheme and any alphabet size n we can construct a message that is

encoded with an average of ≥ │ log2 n│ bits per letter. The harder and more important

measure, which we address in this paper, is the worst-case difference in length between the

dynamic and static encodings of the same message.

One intuition why the dynamic code produced by Algorithm A is optimum in our model is that

the tree it uses to process the (t + 1) st letter is not only a Huffman tree with respect to the first t

letters (that is, ∑j wj lj is minimized), but it also minimizes the external path length ∑j lj and the

height maxj {lj} among all Huffman trees. This helps guard against a lengthy encoding for the

(t + 1) st letter. Our implementation is based on an efficient data structure we call a floating tree.

Algorithm A is well suited for practical use and has several applications. Algorithm FGK is

already used for tile compression in the compact command available under the 4.2BSD UNIX‟

operating system. Most Huffman-like algorithms use roughly the same number of bits to encode

a message when the message is long; the main distinguishing feature is the coding efficiency for

short messages, where overhead is more apparent. Empirical tests show that Algorithm Λ uses

fewer bits for short messages than do Huffman‟s algorithm and Algorithm FGK. Algorithm Λ

can thus be used as a general-purpose coding scheme for network communication and as an

efficient subroutine in word-based compaction algorithms.

In the next section we review the basic concepts of Huffman‟s two-pass algorithm and the one-

pass Algorithm FGK. In Section 3 we develop the main techniques for our analysis and apply

them to Algorithm FGK. In Section 4 we introduce Algorithm Λ and prove that it runs in real

time and gives optimal encodings, in terms of our model defined above. In Section 5 we describe

several experiments comparing dynamic and static codes. Our conclusions are listed in Section 6.

3.2. Huffman’s Algorithm and FGK Algorithm

In this section we discuss Huffman‟s original algorithm and the one-pass Algorithm FGK. First

let us define the notation we use

 Adaptive Huffman Algorithm

16

Definition 2.1. We define

n = alphabet size;

aj = jth letter in the alphabet;

t = number of letters in the message processed so far;

at = ai1,, ai2,, . . . , ait, the first t letters of the message;

k = number of distinct letters processed so far;

wj = number of occurrences of aj processed so, far;

lj = distance from the root of the Huffman tree to aj‟s leaf.

The constraints are 1 ≤ j, k ≤ n, and 0 ≤ wj ≤ t.

In many applications, the final value oft is much greater than n. For example, a book written in

English on a conventional typewriter might correspond to t ≈ 10
6
 and n = 87. The ASCII

alphabet size is n = 128.

Huffman‟s two-pass algorithm operates by first computing the letter frequencies wj in the entire

message. A leaf node is created for each letter aj that occurs in the message; the weight of aj‟s

leaf is its frequency wj. The meat of the algorithm is the following procedure for processing the

leaves and constructing a binary tree of minimum weighted external path length ∑j wj lj

Store the k leaves in a list L;

While L contains at least two nodes do

begin

Remove from L two nodes x and y of smallest weight;

Create a new node p, and make p the parent of x and y;

p‟s weight := x‟s weight + y‟s weight;

Insert p into L

end;

The node remaining in L at the end of the algorithm is the root of the desired binary tree. We call

a tree that can be constructed in this way a “Huffman tree.” It is easy to show by contradiction

 Adaptive Huffman Algorithm

17

that its weighted external path length is minimum among all possible binary trees for the given

leaves. In each iteration of the while loop, there may be a choice of which two nodes of

minimum weight to remove from L. Different choices may produce structurally different

Huffman trees, but all possible Huffman trees will have the same weighted external path length.

In the second pass of Huffman‟s algorithm, the message is encoded using the Huffman tree

constructed in pass 1. The first thing the sender transmits to the receiver is the shape of the

Huffman tree and the correspondence between the leaves and the letters of the alphabet. This is

followed by the encodings of the individual letters in the message. Each occurrence of aj is

encoded by the sequence of 0‟s and 1‟s that specifies the path from the root of the tree to aj‟s

leaf, using the convention that “0” means “to the left” and “1” means “to the right.”

To retrieve the original message, the receiver first reconstructs the Huffman tree on the basis of

the shape and leaf information. Then the receiver navigates through the tree by starting at the

root and following the path specified by the 0 and 1 bits until a leaf is reached. The letter

corresponding to that leaf is output, and the navigation begins again at the root.

Codes like this, which correspond in a natural way to a binary tree, are called prefix codes, since

the code for one letter cannot be a proper prefix of the code for another letter. The number of bits

transmitted is equal to the weighted external path length ∑j wj lj plus the number of bits needed

to encode the shape of the tree and the labeling of the leaves. Huffman‟s algorithm produces a

prefix code of minimum length, since ∑j wj lj is minimized.

The two main disadvantages of Huffman‟s algorithm are its two-pass nature and the overhead

required to transmit the shape of the tree. In section we explore alternative one-pass methods, in

which letters are encoded “on the fly.” We do not use a static code based on a single binary tree,

since we are not allowed an initial pass to determine the letter frequencies necessary for

computing an optimal tree. Instead the coding is based on a dynamically varying Huffman tree.

That is, the tree used to process the (t + 1)st letter is a Huffman tree with respect to µt . The

sender encodes the (t + 1)st letter ait, in the message by the sequence of 0‟s and 1‟s that specifies

the path from the root to ait„s leaf. The receiver then recovers the original letter by the

corresponding traversal of its copy of the tree. Both sender and receiver then modify their copies

of the tree before the next letter is processed so that it becomes a Huffman tree for µ t+ 1. A key

 Adaptive Huffman Algorithm

18

point is that neither the tree nor its modification needs to be transmitted, because the sender and

receiver use the same modification algorithm and thus always have equivalent copies of the tree.

(a)

 (b)

32

21 11

5 10

2 3 5 5

6 11

11

1 2 3 4

5
7

6 8

9 10

a b c d

e f

3

2

2

1

1

0

1

1

5

1

1

5 5 6

2 3

a b

d e c

7
8

f

3

1 2

5 6

1

0
9

1

1

4

 Adaptive Huffman Algorithm

19

 (c)

FIG. 3.1. This example from for t = 32 illustrates the basic ideas of the Algorithm FGK. The

node numbering for the sibling property is displayed next to each node. The next letter to be

processed in the message is “ai t+1 = b” (a) The current status of the dynamic Huffman tree,

which is a Huffman tree for µt , the first t letters in the message. The encoding for “b” is “1011”,

given by the path from the root to the leaf for “b”. (b) The tree resulting from the interchange

process. It is a Huffman tree for µt and has the property that the weights of the traversed nodes

can be incremented by I without violating the sibling property. (c) The final tree, which is the

tree in (b) with the incrementing done, is a Huffman tree for µt+1.

Another key concept behind dynamic Huffman codes is the following elegant so-called

characterization of Huffman trees:

Sibling Property: A binary tree with p leaves of nonnegative weight is a Huffman tree if and only

if

(1) the p leaves have nonnegative weights w1, . . . , wp, and the weight of each internal node is the

sum of the weights of its children; and

33

12 21

6 6

2 4

10 1

1

5 5 1 2 3 4

5 6 7
8

9 1

0

1

1

a b c d

e f

 Adaptive Huffman Algorithm

20

(2) the nodes can be numbered in nondecreasing order by weight, so that nodes 2j - 1 and 2j are

siblings, for 1≤ j ≤ p - 1, and their common parent node is higher in the numbering.

The node numbering corresponds to the order in which the nodes are combined by Huffman‟s

algorithm: Nodes 1 and 2 are combined first, nodes 3 and 4 are combined second, nodes 5 and 6

are combined next, and so on.

Suppose that, µt = ai,, ai2, . . . , ait, has already been processed .The next letter ait+1, is encoded

and decoded using a Huffman tree for µt. The main difficulty is how to modify this tree quickly

in order to get a Huffman tree for µt+1 . Let us consider the example in Figure 1, for the case

t = 32, ait+1 = “b”. It is not good enough to simply increment by 1 the weights of ait+1,„s leaf and

its ancestors, because the resulting tree will not be a Huffman tree, as it will violate the sibling

property.

(a) (b)

FIG.3.2. Algorithm FGK operating on the message “abcd ….. “. (a) The Huffman tree

immediately before the fourth letter “d” is processed. The encoding for “d” is specified by the

path to the 0-node, namely, “100”. (b) After Update is called.

The nodes will no longer be numbered in non decreasing order by weight; node 4 will have

weight 6, but node 5 will still have weight 5. Such a tree could therefore not be constructed via

Huffman‟s two-pass algorithm.

3

1

1 0

1 1

3 4

5 6

7 8

9

1

2 2

4

0 1

1 1 1

2

1 2

3 4 5 6

7 8

9

a

b a b c

 Adaptive Huffman Algorithm

21

 The solution can most easily be described as a two-phase process (although for implementation

purposes both phases can be combined easily into one). In the first phase, we transform the tree

into another Huffman tree for µt, to which the simple incrementing process described above can

be applied successfully in phase 2 to get a Huffman tree for µt+1. The first phase begins with the

leaf of ait+1 as the current node. We repeatedly interchange the contents of the current node,

including the sub tree rooted there, with that of the highest numbered node of the same weight,

and make the parent of the latter node the new current node. The current node in Figure la is

initially node 2. No interchange is possible, so its parent (node 4) becomes the new current node.

The contents of nodes 4 and 5 are then interchanged, and node 8 becomes the new current node.

Finally, the contents of nodes 8 and 9 are interchanged, and node 11 becomes the new current

node. The first phase halts when the root is reached. The resulting tree is pictured in Figure lb. It

is easy to verify that it is a Huffman tree for µt (i.e., it satisfies the sibling property), since each

interchange operates on nodes of the same weight. In the second phase, we turn this tree into the

desired Huffman tree for µt+1 by incrementing the weights of ait+1’s leaf and its ancestors by 1.

Figure 3.1(c) depicts the final tree, in which the incrementing is done.

The reason why the final tree is a Huffman tree for µt+1 can be explained in terms of the sibling

property: The numbering of the nodes is the same after the incrementing as before. Condition 1

and the second part of condition 2 of the sibling property are trivially preserved by the

incrementing. We can thus restrict our attention to the nodes that are incremented. Before each

such node is incremented, it is the largest numbered node of its weight. Hence, its weight can be

increased by 1 without becoming larger than that of the next node in the numbering, thus

preserving the sibling property.

When k < n, we use a single 0-node to represent the n - k unused letters in the alphabet. When

the (t + 1) st letter in the message is processed, if it does not appear in µt the 0-node is split to

create a leaf node for it, as illustrated in Figure 2. The (t + 1) st letter is encoded by the path in

the tree from the root to the 0-node, followed by some extra bits that specify which of the n - k

unused letters it is, using a simple prefix code.

 Adaptive Huffman Algorithm

22

Phases 1 and 2 can be combined in a single traversal from the leaf of ait+1, to the root, as shown

below. Each iteration of the while loop runs in constant time, with the appropriate data structure,

so that the processing time is proportional to the encoding length.

Procedure Update;

begin

q:= leaf node corresponding to ait+1 ;

if (q is the 0-node) and (k < n - 1) then

begin

Replace q by a parent 0-node with two leaf 0-node children, numbered in the order left

child, right child, parent;

q:= right child just created

end;

if q is the sibling of a 0-node then

begin

Interchange q with the highest numbered leaf of the same weight;

Increment q‟s weight by 1;

q := parent of q

end ;

while q is not the root of the Huffman tree do

begin { Main loop }

Interchange q with the highest numbered node of the same weight:

{ q is now the highest numbered node of its weight }

Increment q‟s weight by 1;

q := parent of q

end

end;

We denote an interchange in which q moves up one level by ↑ and an interchange between q and

another node on the same level by →.For example, in Figure 1, the\ interchange of nodes 8 and 9

is of type ↑,whereas that of nodes 4 and 5 is of type →. Oddly enough, it is also possible for q to

 Adaptive Huffman Algorithm

23

move down a level during an interchange, as illustrated in Figure 3; we denote such an

interchange by ↓.

No two nodes with the same weight can be more than one level apart in the tree, except if one is

the sibling of the 0-node. This follows by contradiction, since otherwise it will be possible to

interchange nodes and get a binary tree having smaller external weighted path length. Figure 4

shows the result of what would happen if the letter “c” (rather than “d”) were the next letter

processed using the tree in Figure 2a. The first interchange involves nodes two levels apart; the

node moving up is the sibling of the 0-node. We shall designate this type of two-level

interchange by ↑↑. There can be at most one ↑↑ for each call to Update.

3.3. Optimum Dynamic Huffman Codes

This section describe Algorithm Λ and show that it runs in real time and is optimum in our

model of one-pass Huffman algorithms. There were two motivating factors in its design:

(1) The number of ↑‟s should be bounded by some small number (in our case, 1) during each call

to Update.

(2) The dynamic Huffman tree should be constructed to minimize not only ∑jWjlj, but also & 4

and maxi(h), which intuitively has the effect of preventing a lengthy encoding of the next letter

in the message

3.3.1 IMPLICIT NUMBERING

One of the key ideas of Algorithm A is the use of a numbering scheme for the nodes that is

different from the one used by Algorithm FGK. We use an implicit numbering, in which the

node numbering corresponds to the visual representation of the tree. That is, the nodes of the tree

are numbered in increasing order by level; nodes on one level are numbered lower than the nodes

on the next higher level. Nodes on the same level are numbered in increasing order from left to

right.

 Adaptive Huffman Algorithm

24

3.3.2 DATA STRUCTURE

 In this section we summarize the main features of our data structure for Algorithm Λ. The

details and implementation appears in [9]. The main operations that the data structure must

support are as follows:

-It must represent a binary Huffman tree with nonnegative weights that maintains invariant (*).

-It must store a contiguous list of internal tree nodes in non decreasing order by weight; internal

nodes of the same weight are ordered with respect to the implicit numbering. A similar list is

stored for the leaves.

-It must find the leader of a node‟s block, for any given node, on the basis of the implicit

numbering.

-It must interchange the contents of two leaves of the same weight.

-It must increment the weight of the leader of a block by 1, which can cause the node‟s implicit

numbering to “slide” past the numberings of the nodes in the next block, causing their

numberings to each decrease by 1.

-It must represent the correspondence between the k letters of the alphabet that have appeared in

the message and the positive-weight leaves in the tree.

-It must represent the n-k letters in the alphabet that have not yet appeared in the message by a

single leaf 0-node in the Huffman tree.

The data structure makes use of an explicit numbering, which corresponds to the physical storage

locations used to store information about the nodes. This is not to be confused with the implicit

numbering defined in the last section. Leaf nodes are explicitly numbered n, n - 1, n - 2, . . . in

contiguous locations, and internal nodes are explicitly numbered 2n - 1, 2n - 2, 2n - 3 . . .

contiguously; node q is a leaf if q ≤ n.

There is a close relationship between the explicit and implicit numberings, as specified in the

second operation listed above: For two internal nodes p and q, we have p < q in the explicit

numbering if p < q in the implicit numbering; the same holds for two leaves p and q.

The tree data structure is called a floating tree because the parent and child pointers for the nodes

are not maintained explicitly. Instead, each block has a parent pointer and a right-child pointer

 Adaptive Huffman Algorithm

25

that point to the parent and right child of the leader of the block. Because of the contiguous

storage of leaves and of internal nodes, the locations of the parents and children of the other

nodes in the block can be computed in constant time via an offset calculation from the block‟s

parent and right-child pointer. This allows a node to slide over an entire block without having to

update more than a constant number of pointers. Each execution of Slide- and Increment thus

takes constant time, so the encoding and decoding in Algorithm Λ can be done in real time.

The total amount of storage needed for the data structure is roughly 16n log n + 15n + 2n log t

bits, which is about 4n log n bits more than used by the implementation of Algorithm FGK . The

storage can be reduced slightly by extra programming. If storage is dynamically allocated, as

opposed to preallocated via arrays, it will typically be much less. The running time is comparable

to that of Algorithm FGK.

One nice feature of a floating tree, due to the use of implicit numbering, is that the parent of

nodes 2j - 1 and 2j is less than the parent of nodes 2j + 1 and 2j + 2 in both the implicit and

explicit numberings.

 Chapter 4

 PDLZW Algorithm

 Two Stage Architecture
PDLZW Algorithm

27

4.1 Introduction

The major feature of conventional implementations of the LZW data compression algorithms is

that they usually use only one fixed-word-width dictionary. Hence, a quite lot of compression

time is wasted in searching the large-address-space dictionary instead of using a unique fixed-

word-width dictionary a hierarchical variable-word-width dictionary set containing several small

address space dictionaries with increasing word widths is used for the compression algorithm.

The results show that the new architecture not only can be easily implemented in VLSI

technology due to its high regularity but also has faster compression rate since it no longer needs

to search the dictionary recursively as the conventional implementations do.

Lossless data compression algorithms include mainly LZ codes [5, 6]. A most popular version of

LZ algorithm is called LZW algorithm [4]. However, it requires quite a lot of time to adjust the

dictionary. To improve this, two alternative versions of LZW were proposed. These are DLZW

(dynamic LZW) and WDLZW (word-based DLZW) [5]. Both improve LZW algorithm in the

following ways. First, it initializes the dictionary with different combinations of characters

instead of single character of the underlying character set. Second, it uses a hierarchy of

dictionaries with successively increasing word widths. Third, each entry associates a frequency

counter. That is, it implements LRU policy. It was shown that both algorithms outperform LZW

[4]. However, it also complicates the hardware control logic.

In order to reduce the hardware cost, a simplified DLZW architecture suited for VLSI realization

called PDLZW (parallel dictionary LZW) architecture. This architecture improves and modifies

the features of both LZW and DLZW algorithms in the following ways. First, instead of

initializing the dictionary with single character or different combinations of characters a virtual

dictionary with the initial │∑│ address space is reserved. This dictionary only takes up a part of

address space but costs no hardware. Second, a hierarchical parallel dictionary set with

successively increasing word widths is used. Third, the simplest dictionary update policy called

FIFO (first-in first-out) is used to simplify the hardware implementation. The resulting

 Two Stage Architecture
PDLZW Algorithm

28

architecture shows that it outperforms Huffman algorithm in all cases and about only 5% below

UNIX compress on the average case but in some cases outperforms the compress utility.

4.2. Dictionary Design Considerations

The dictionary used in PDLZW compression algorithm is one that consists of m small variable-

word width dictionaries, numbered from 0 to m - 1, with each of which increases its word width

by one byte. That is to say, dictionary 0 has one byte word width, dictionary 1 two bytes, and so

on. These dictionaries: constitute a dictionary set. In general, different address space

distributions of the dictionary set will present significantly distinct performance of the PDLZW

compression algorithm. However, the optimal distribution is strongly dependent on the actual

input data files. Different data, profiles have their own optimal address space distributions.

Therefore, in order to find a more general distribution, several different kinds of data samples

are: run with various partitions of a given address space. Each partition corresponds to a

dictionary set. For instance, the 1K address space is partitioned into ten different combinations

and hence ten dictionary sets.

An important consideration for hardware implementation is the required dictionary address space

that dominates the chip cost for achieving an acceptable compression ratio.

4.3. Compression processor architecture

In the conventional dictionary implementations of LZW algorithm, they use a unique and large

address space dictionary so that the search time of the dictionary is quite long even with CAM

(content addressable memory). In our design the unique dictionary is replaced with a dictionary

set consisting of several smaller dictionaries with different address spaces and word widths. As

doing so the dictionary set not only has small lookup time but also can operate in parallel.

The architecture of PDLZW compression processor is depicted in Figure 4.1. It consists of

CAMs, an 5- byte shift register, a shift and update control, and a codeword output circuit. The

word widths of CAMs increase gradually from 2 bytes up to 5 bytes with 5 different address

spaces: 256, 64, 32, 8 and 8 words. The input string is shifted into the 5-byte shift register. The

shift operation can be implemented by barrel shifter for achieving a faster speed. Thus there are 5

bytes can be searched from all CAMs simultaneously. In general, it is possible that there are

 Two Stage Architecture
PDLZW Algorithm

29

several dictionaries in the dictionary set matched with the incoming string at the same time with

different string lengths. The matched address within a dictionary along with the dictionary

number of the dictionary that has largest number of bytes matched is outputted as the output

codeword, which is detected and combined by the priority encoder. The maximum length string

matched along with the next character is then written into the next entry pointed by the update

pointer (UP) of the next dictionary (CAM) enabled by the shift and dictionary update control

circuit. Each dictionary has its own UP that always points to the word to be inserted next. Each

update pointer counts from 0 up to its maximum value and then back to 0. Hence, the FIFO

update policy is realized. The update operation is inhibited if the next dictionary number is

greater than or equal to the maximum dictionary number.

 Fig 4.1 PDLZW Architecture for compression

…..

P
ri

o
ri

ty
 e

n
co

d
er

up

up

up

up

0

1

2

3

4

= 8 bytes bytes

256 bytes virtual dictionary

Parallel dictionary set

PDLZW

Shift register

 Two Stage Architecture
PDLZW Algorithm

30

The data rate for the PDLZW compression processor is at least one byte per memory cycle. The

memory cycle is mainly determined by the cycle time of CAMs but it is quite small since the

maximum capacity of CAMs is only 256 words. Therefore, a very high data rate can be

expected.

4.4 PDLZW Algorithms

Like the LZW algorithm proposed in [17], the PDLZW algorithm proposed in [9] also

encounters the special case in the decompression end. In this paper, we remove the special case

by deferring the update operation of the matched dictionary one step in the compression end so

that the dictionaries in both compression and decompression ends can operate synchronously.

The detailed operations of the PDLZW algorithm can be referred to in [9]. In the following, we

consider only the new version of the PDLZW algorithm.

4.4.1 PDLZW Compression Algorithm:

As described in [9] and [12], the PDLZW compression algorithm is based on a parallel

dictionary set that consists of m small variable-word-width dictionaries, numbered from 0 to m-1

, each of which increases its word width by one byte. More precisely, dictionary 0 has one byte

word width, dictionary 1 two bytes, and so on. The actual size of the dictionary set used in a

given application can be determined by the information correlation property of the application.

To facilitate a general PDLZW architecture for a variety of applications, it is necessary to do a

lot of simulations for exploring information correlation property of these applications so that an

optimal dictionary set can be determined. The detailed operation of the proposed PDLZW

compression algorithm is described as follows. In the algorithm, two variables and one constant

are used. The constant max_dict_no denotes the maximum number of dictionaries, excluding the

first single-character dictionary (i.e., dictionary 0), in the dictionary set. The variable

max_matched_dict_no is the largest dictionary number of all matched dictionaries and the

variable matched_addr identifies the matched address within the max_matched_dict_no

dictionary. Each compressed codeword is a concatenation of max_matched_dict_no and

matched_addr.

 Two Stage Architecture
PDLZW Algorithm

31

Algorithm: PDLZW Compression

Input: The string to be compressed.

Output: The compressed codewords with each having log2K bits. Each codeword consists of

two components: max_matched_dic_no and matched_addr, where K is the

total number of entries of the dictionary set.

Begin

1: Initialization.

1.1: string-1 null.

1.2: max_matched_dic_no max_dict_no.

1.3: update_dict_no max_matched_dict_no;

 update_string Ø {empty}.

2: while (the input buffer is not empty) do

2.1: Prepare next max_dict_no +1characters for

 searching.

 2.1.1: string-2 read next.

 (max_matched_dict_no +1) characters from the input buffer.

 2.1.2: string string-1 || string -2.

 {Where || is the concatenation operator}

2.2 Search string in all dictionaries in parallel and set the

 max_matched_dict_no and matched_addr.

2.3: Output the compressed codeword containing

 max_matched_dict_no || matched_addr.

2.4: if (max_matched_dict_no < max_dict_no and update_string ≠ Ø)

 then

 Two Stage Architecture
PDLZW Algorithm

32

 add the update_string to the entry pointed by

 UP [update_dict_no] of dictionary [update_dict_no].

 {UP [update_dict_no] is the update pointer associated with the dictionary}

2.5 Update the update pointer of the dictionary [max_matched_dict_no + 1].

 2.5.1 UP [max_matched_dict_no + 1] = UP [max_matched_dict_no + 1] + 1

 2.5.2 if UP[max_matched_dict_no + 1] reaches its upper bound then reset it to 0.

 {FIFO update rule.}

2.6: update_string extract out the first (max_matched_dict_no + 2)

 Bytes from string;

 update_string_no max_matched_dict_no + 1 .

2.7: string -1 shift string out the first (max_matched_dict_no + 1) bytes.

 End {End of PDLZW Compression Algorithm.}

An example to illustrate the operation of the PDLZW compression algorithm is shown in Fig.

4.2. Here, we assume that the alphabet set is {a,b,c,d}and the input string is

ababbcabbabbabc . The address space of the dictionary set is 16. The dictionary set initially

contains only all single characters: a, b, c and d. Fig. 4.2 illustrates the operation of PDLZW

compression algorithm. The input string is grouped together by characters. After the algorithm

exhausts the input string, the contents of the dictionary set and the compressed output

codewords will be:{a,b,c,d,ab,ba,bc,ca,abb,,,,abba,,,} , and {0,1,4,1,2,8,8,4,2} , respectively.

 Two Stage Architecture
PDLZW Algorithm

33

 The corresponding dictionaries and their entries for ababbcabbabbabc

Fig.4.2 Example to illustrate the operation of PDLZW compression algorithm.

4.4.2. PDLZW Decompression Algorithm:

To recover the original string from the compressed one, we reverse the operation of the PDLZW

compression algorithm. This operation is called the PDLZW decompression algorithm. By

decompressing the original substrings from the input compressed codewords, each input

compressed codeword is used to read out the original substring from the dictionary set. To do

this without loss of any information, it is necessary to keep the dictionary sets used in both

algorithms, the same contents. Hence, the substring concatenated of the last output substring with

its first character is used as the current output substring and is the next entry to be inserted into

the dictionary set. The detailed operation of the PDLZW decompression algorithm is described

a

b

c

d

a b

b a

b c

c a

a b b

a b b a

0

1

2

3

4

5

6

13

14

15

7

8

9

10

11

12

Dictionary 0

00 00

00 01

00 10

00 11

01

01

01

01

10

10

10

10

00

01

10

11

00

01

10

11

0

1

0

1

110

110

111

111

Dictionary 1

Dictionary 2

Dictionary 3

Dictionary 4

max_matched_dict_no

matched_addr

 Two Stage Architecture
PDLZW Algorithm

34

as follows. In the algorithm, three variables and one constant are used. As in the PDLZW

compression algorithm, the constant max_dict_no denotes the maximum number of dictionaries

in the dictionary set. The variable last_dict_no memorizes the dictionary address part of the

previous codeword. The variable last_output keeps the decompressed substring of the previous

codeword, while the variable current_output records the current decompressed substring. The

output substring always takes from the last_output that is updated by current_output in turn.

Algorithm: PDLZW Decompression

Input: The compressed codewords with each containing log 2 K bits, where is the total number of

entries of the dictionary set.

Output: The original string.

Begin

1: Initialization.

1.1: if (input buffer is not empty) then

 current_output empty; last_output empty;

 addr read next log2 k codeword from input buffer.

{where codeword = dict_no || dict_addr and || is the concatenation operator.}

1.2 if (dictionary[addr] is defined) then

 current_output dictionary[addr];

 last_output current_output;

 output last_output;

 update_dict_no dict_no[addr] + 1

2: while (the input buffer is not empty) do

 2.1: addr read next log2k bit codeword from input buffer.

 2.2{output decompressed string and update the associated dictionary.}

 2.2.1: current_output dictionary[addr];

 Two Stage Architecture
PDLZW Algorithm

35

 2.2.2: if(max_dict_no update_dict_no) then

 add (last_output || the first character of current_output) to the entry pointed by

 UP[update_dict_no] of dicitionary [update_dict_no];

 2.2.3: UP[update_dict_no] U P[update_dict_no] + 1 .

 2.2.4: if UP[update_dict_no] reaches its upper bound then reset it to 0.

 2.2.5: last_output current_output;

 output last_output;

 update_dict_no dict_no[addr] + 1

End {End of PDLZW Decompression Algorithm. }

The operation of the PDLZW decompression algorithm can be illustrated by the following

example. Assume that the alphabet set ∑ is {a,b,c,d} and input compressed codewords are

{0,1,4,1,2,8,8,4,2}. Initially, the dictionaries numbered from 1 to 3 shown in Fig. 4. are empty.

By applying the entire input compressed codewords to the algorithm, it will generate the same

content as is shown in Fig. 4.1 and output the decompressed substring {a,b,ab,b,c,abb,abb,ab,c}.

4.5. TRADEOFF BETWEEN DICTIONARY SIZE AND PERFORMANCE

In this section, we will describe the partition approach of the dictionary set and show how to

tradeoff the performance with the dictionary-set size, namely, the number of bytes of the

dictionary set.

4.5.1 Performance of PDLZW

The efficiency of a compression algorithm is often measured by the compression ratio, which is

defined as the percentage of the amount of data reduction with respect to the original data. This

definition of the compression ratio is often called the percentage of data reduction to avoid

ambiguity. It is shown in that the percentage of data reduction is improved as the address space

of the dictionary set is increased. Thus, the algorithm with 4 k (k= 1024) address space has the

 Two Stage Architecture
PDLZW Algorithm

36

best average compression ratio in all cases.The percentage of data reduction versus address space

from 272 to 4096 of the dictionary used in the PDLZW algorithm is depicted in Fig.4.3. From

the figure, the percentage of data reduction increases asymptotically with the address space but

some anomaly phenomenon arises, i.e., the percentage of data reduction decreases as the address

space increases. For example, the percentage of data reduction is 35.63% at an address space of

512 but decreases to 30.28% at an address space of 576 because the latter needs more bits to

code the address of the dictionary set. Some other examples also appear. As a consequence, the

percentage of data reduction is not only determined by the correlation property of underlying

data files being compressed but also depends on an appropriate partition as well as address space.

Fig. 5 shows the dictionary size in bytes of the PDLZW algorithm at various address spaces from

272 to 4096.

 Fig. 4.3 Percentage of data reduction of various compression schemes.

 Two Stage Architecture
PDLZW Algorithm

37

 Fig.4.4. Number of bytes required in various compression schemes.

An important consideration for hardware implementation is the required dictionary address space

that dominates the chip cost for achieving an acceptable percentage of data reduction. From this

view point and Fig. 4.4, one cost-effective choice is to use 1024 address space which only needs

a 2,528-B memory and achieves 39.95% of data reduction on the average. The cost (in bytes) of

memory versus address space from 272 to 4096 of the dictionary used in the PDLZW algorithm

is depicted in Fig. 4.4.

4.5.2. Dictionary Size Selection

In general, different address-space partitions of the dictionary set will present significantly

distinct performance of the PDLZW compression algorithm. However, the optimal partition is

strongly dependent on the actual input data files. Different data profiles have their own optimal

address-space partitions. Therefore, in order to find a more general partition, several different

kinds of data samples are run with various partitions of a given address space. As mentioned

before, each partition corresponds to a dictionary set.

 Two Stage Architecture
PDLZW Algorithm

38

To confine the dictionary-set size and simplify the address decoder of each dictionary, the

partition rules are described as follows.

1) The first dictionary address space of all partitions is always 256, because we assume that each

symbol of the source alphabet set is a byte, and it does not really need hardware.

 2) Each dictionary in the dictionary set must have address space of 2k words, where is a positive

integer.

For instance, one possible partition for the 368-address space is: {256, 64, 32, 8, and 8} As

described in rule 1, the first dictionary (DIC-1) is not presented in the table. Note that for each

given address space, there are many possible partitions and may have different dictionary-set

sizes. Ten possible partitions of the 368 address dictionary set are shown in Table 4.1, the sizes

of the resulting dictionary sets are from 288 to 648 B.

Partition DIC-2 DIC-3 DIC-4 DIC-5 DIC-6 DIC-7 DIC-8 Memory (bytes)

 368-1

368-2

368-3

368-4

368-5

368-6

368-7

368-8

368-9

368-a

64 32 16

64 32 8 8

64 16 16 16

32 32 32 16

32 32 16 16 16

32 32 16 16 8 8

32 16 16 16 16 16

32 16 16 16 16 8 8

16 16 16 16 16 16 16

 8 8 16 16 16 16 32

288

296

320

368

400

408

464

504

560

648

 Table 4.1 Ten Possible Partitions of the 368-Address Dictionary Set

In rest of the thesis we will be using 368-2 dictionary set since it has less memory cost and gives

almost same compression ratio compared to other 368 dictionary divisions.

 Chapter 5

 TWO STAGE ARCHITECTURE

 Two Stage Architecture

40

5.1 Introduction
The output code words from the PDLZW algorithm are not uniformly distributed but each

codeword has its own occurrence frequency, depending on the input data statistics. Hence, it is

reasonable to use another algorithm to encode statistically the fixed-length code output from the

PDLZW algorithm into a variable-length one. As seen in figure 4.3 because of using only

PDLZW algorithm for different dictionary size sometimes the compression ratio may decrease as

dictionary size increase for particular address space. This irregularity can also be removed by

using AH in the second stage. Up to now, one of the most commonly used algorithms for

converting a fixed-length code into its corresponding variable-length one is the AH algorithm.

However, it is not easily realized in VLSI technology since the frequency count associated with

each symbol requires a lot of hardware and needs much time to maintain. Consequently, in what

follows, we will discuss some approximated schemes and detail their features.

5.2 Approximated AH Algorithm

The Huffman algorithm requires both the encoder and the decoder to know the frequency table

of symbols related to the data being encoding. To avoid building the frequency table in advance,

an alternative method called the AH algorithm, allows the encoder and the decoder to build the

frequency table dynamically according to the data statistics up to the point of encoding and

decoding. The essence of implementing the AH algorithm in the hardware is centered around

how to build the frequency table dynamically. Several approaches have been proposed. These

approaches are usually based on tree structures on which the LRU policy is applied. However,

the hardware cost and the time required to maintain the frequency table dynamically is not easy

to be realized in VLSI technology.

To alleviate this, the following schemes are used to approximate the operation of the frequency

table. In these schemes, an ordered list instead of the tree structure is used to maintain the

frequency table required in the AH algorithm. An index corresponding to an input symbol stored

in the list, say of the ordered list is searched and output by the AH algorithm when the input

symbol is received. The item associated with the index n is then swapped with some other item

in the ordered list according to the following various schemes based on the concept that the

higher occurrence frequency symbol will “bubble up” in the ordered list. Hence, we can code the

 Two Stage Architecture
Two Stage Architecture

41

indices of these symbols with a variable-length code so as to take their occurrence frequency into

account and reduce the information redundancy in the following.

 • Adaptive Huffman algorithm with transposition (AHAT): it is proposed in [17] and used

in [11]. In this scheme, the swapping operation is carried out only between two adjacent items

with indices i and i + 1. where i is the index of the matched input symbol.

• Adaptive Huffman algorithm with fixed-block exchange (AHFB): In this scheme, the

ordered list is partitioned into k fixed-size blocks bK-1,….,b1,b0 with that the size of each block is

determined in advance and a pointer is associated with each block. Each pointer associated with

its block is followed in the FIFO discipline. The swapping operation is carried out only between

two adjacent blocks except the first block. More precisely, the matched item in block bi is

swapped with an item in block
1ib pointed by the pointer associated with the block bi+1 for all k-

2 ≥ i ≥0. The matched item in block bi-1 is swapped with the item pointed by the pointer in the

same block.

• Adaptive Huffman algorithm with dynamic-block exchange (AHDB): This scheme is

similar to AHFB except that the ordered list is dynamically partitioned into several variable-size

blocks, that is, each block can be shrunk or expanded in accordance with the occurrence

frequency of the input characters. Of course, the ordered list has a predefined size in practical

realization. Also a pointer is associated with each block. Initially, all pointers are pointed to the

first item of the ordered list. Along with the progress of the algorithm, each pointer pi maintains

the following invariant: the symbols with indices between above pi and pointer pi+1 i.e., in the

interval (pi,pi+1] for all k ≥ i ≥1 , just appeared i times in the input sequence, where p0 and pk+1

are virtual pointers, indicate the lowest and highest bounds, respectively. Based on this, the

swapping operation is carried out between two adjacent blocks except the first block, which is

carried out in itself. An example illustrating the operations of the AHDB algorithm is depicted in

 Fig. 5.2.

 Two Stage Architecture
Two Stage Architecture

42

 Fig 5.1. Illustrating Example of AHDB algorithm

index

1

2

3

4

5

6

7

8 8

7

6

5

4

3

2

1 3

2

1

4

5

6

7

8 8

7

6

5

4

3

2

1 3

5

1

4

2

6

7

8 8

7

6

5

4

3

2

1 3

5

7

4

2

6

1

8 8

7

6

5

4

3

2

1

Symbol p1,

p2, p3
p2, p3

p1

p2, p3

p1

p1

p2, p3

5

2

7

3

1

6

4

8 8

7

6

5

4

3

2

1 5

2

7

3

4

6

1

8 8

7

6

5

4

3

2

1 5

3

7

2

4

6

1

8 8

7

6

5

4

3

2

1 3

5

7

2

4

6

1

8 8

7

6

5

4

3

2

1

p1

p2, p3

p1

p1

p1

p3

p2

p3

p2

p3

p2

5

2

1

3

7

6

4

8 8

7

6

5

4

3

2

1 1

2

5

3

7

6

4

8 8

7

6

5

4

3

2

1

p1 p1

p2

p3

p3

 Two Stage Architecture
Two Stage Architecture

43

 The symbol with indices above p3 appear 3 times

 The symbols with indices between p3 and above p2 appear 2 times

 The symbols with indices between p2 and above p1 appear 1 time

 The symbols with indices below p1 never appear

In summary, by using a simple ordered list to memorize the occurrence frequency of symbols,

both of the search and update times are significantly reduced from O(log2 n) , which is required

in the general tree structures except the one using the parallel search, to O(1) , where n is the

total number of input symbols. Please note that a parallel search tree is generally not easy to be

realized in VLSI technology. Tables 5.1 and 5.2 compare the performance of various

approximated AH algorithms designed in verilog is compared with that of the AH algorithm

designed in C language.

Table 5.1 shows the simulation results in the case of the text files while Table 5.2 in the case of

executable files. The overall performance and cost are compared in Table 5.3. From the table, the

AHDB algorithm is superior to both AHAT and AHFB algorithms and its performance is worse

than the AH algorithm only by at most an amount of 2%, but at much less memory cost. The

memory cost of the AH algorithm is estimated from the software implementation in [10]..

Therefore, in the rest of the paper, we will use this scheme as the second stage of the proposed

two-stage compression processor. The detailed AHDB algorithm is described as follows.

 Two Stage Architecture
Two Stage Architecture

44

Test file

AH

Approximated AH Comment

AHAT AHFB AHDB

1.alice28.txt(152,089)
2.Asyoulik.txt(125,179)
3.book1(768,771)
4.book2(610,856)
5.cp.htm(24,603)
6.fields.c(11,150)
7.paper1(53,161)
8.paper2(82,199)
9.paper3(46,526)
10.paper4(13,286)
11.paper5(11,954)
12.paper6(38,105)

42.33
39.38
43.00
40.02
33.70
35.70
35.96
37.29
42.03
41.14
40.07
36.86

38.01
34.63
39.10
36.80
21.66
20.22
31.28
35.80
32.94
23.18
19.48
30.39

33.24
29.90
34.10
33.11
23.66
30.28
30.71
33.49
32.72
32.64
30.96
32.34

39.31
36.19
39.32
37.38
29.55
35.69
35.56
38.37
37.44
37.24
35.40
36.56

Canterbury corpus
Canterbury corpus
Calgary corpus
Calgary corpus
Canterbury corpus
Canterbury corpus
Calgary corpus
Calgary corpus
Calgary corpus
Calgary corpus
Calgary corpus
Calgary corpus

Average 38.95 30.29 31.42 36.50

Table 5.1 Performance Comparison Between the AH Algorithm and Its Various Approximated

Versions In The Case of Text Files

Table 5.2 Performance Comparison Between the AH Algorithm and Its Various Approximated

Versions In The Case of Executable Files

Test file

AH

Approximated AH Comment

AHAT AHFB AHDB

1.acrord32.exe(2,318,848)
2.cutftp32.exe(813,568)
3. fdisk.exe(64,124)
4.tc.exe(292,248)
5.waterfal.exe(186,880)
6.winamp.exe(892,928)
7.winzip32.exe(983,040)
8.xmplayer.exe(398,848)

21.77
27.74
11.10
14.72
28.58
34.21
31.26
26.70

17.99
23.75

2.8
8.23

22.78
33.44
26.86
21.99

16.53
23.32
9.37

10.77
23.71
35.34
26.82
21.53

20.12
27.52
11.45
12.65
28.12
40.39
31.47
25.39

Acrobat reader
Cuteftp
Format disk
Turbo C compiler

Winzip
XMplayer

Average 24.51 19.73 20.93 24.43

 Two Stage Architecture
Two Stage Architecture

45

Table 5.3 Overall Performance Comparison Between the AH Algorithm And Its Various

Approximated Versions

Algorithm: AHDB

Input: The compressed codewords from PDLZW algorithm.

Output: The compressed codewords.

Begin

1: Input pdlzw_output;

2: while (pdlzw_output!= null)

 2.1: matched_index search_ordered_list(pdlzw_output);

 2.2: swapped_block determine_which_block_to_be_swapped(matched_index);

 2.3: if (swapped_block!=k) then

 2.3.1:swap(ordered_list[matched_index],ordered_list[pointer_of_swapped_block]);

 2.3.2: pointer_of_swapped_block= pointer_of_swapped_block + 1;

 2.3.3: reset_check(pointer_of_swapped_block);

 {Divide the pointer_of_swapped_block by two (or reset) when it reaches a

 threshold.}

 else

 2.3.4: if(matched_index!=0) then

 Swap(list[matched_index],list[matched_index - 1]) ;

 2.4: Input pdlzw_output;

AH

Approximated AH

AHAT AHFB AHDB

Text file
Executable file

38.95
24.51

30.29
19.73

31.42
20.93

36.50
24.43

Average 31.73 25.01 26.17 30.46

Memory(bytes) ≈4.5K 256 256 256

 Two Stage Architecture
Two Stage Architecture

46

End {End of AHDB Algorithm. }

5.3. Canonical Huffman Code:

 The Huffman tree corresponding to the output from the PDLZW algorithm can be built by using

the offline AH algorithm. An example of the Huffman tree for an input symbol set {A, B, C, D,

E, F} is shown in Fig. 3(a). Although the Huffman tree for a given symbol set is unique, such as

Fig. 3(b), the code assigned to the symbol set is not unique. For example, three of all possible

codes for the Huffman tree are shown in Fig. 3(a). In fact, there are 32 possible codes for the

symbol set {A,B,C,D, E, F} since we can arbitrarily assign 0 or 1 to each edge of the tree.

 (a)

100

53 47

26 27 24 23

13 14 11 12

A B

E

D C

F

 Two Stage Architecture
Two Stage Architecture

47

Symbol

Frequency

Encoding type

One Two Three

A
B
C
D
E
F

11
12
13
14
24
26

000
001
100
101
01
11

111
110
011
010
10
00

000
001
010
011
10
11

 (b)

Fig 5.2.Example of the Huffman tree and its three possible encodings. (a) Illustration example.

(b) Huffman tree associated with (a).

For the purpose of easy decoding, it is convenient to choose the encoding type three depicted in Fig.

5.1(a) as our resulting code in which symbols with consecutively increasing occurrence frequency are

encoded as a consecutively increasing sequence of code words. This encoding rule and its corresponding

code will be called as canonical Huffman coding and canonical Huffman code, respectively, for the rest of

the paper.

Codeword length First_codeword Num_codewords_l[] Codeword_offset

4

5
6

7

8

9
10

11

12

15(1111)

22(10110)
35(100011)

57(0111001)

44(00101100)

35(000100011)
53(0000110101)

91(00001011011)

00(000000000000)

1

8
9

13

70

53
17

15

182

0

1
9

18

31

101
154

171

186

TABLE 5.4 Canonical Huffman Code Used In The AHDB Processor

 Two Stage Architecture
Two Stage Architecture

48

The general approach for encoding a Huffman tree into its canonical Huffman code is carried out as

follows . First, the AH algorithm is used to compute the corresponding codeword length for each input

symbol. Then it counts the number of codewords of the same length and saves the result into array

num_codewords_l[].Finally, the starting value (or called codeword_offset) for each codeword group of

the same codeword length is calculated from array num_codewords_l[].Based on this procedure, the

codeword length, first_codeword (of each group with the same length), the number of codewords (in

column num_codewords_l[])), and code_offset for the input symbols, consisting of the output codewords

from the

5.4. Performance of PDLZW + AHDB

As described previously, the performance of the PDLZW algorithm can be enhanced by incorporating it

with the AH algorithm, as verified from Fig. 4.3. The percentage of data reduction increases more than

5% in all address spaces from 272 to 4096. This implies that one can use a smaller dictionary size in the

PDLZW algorithm if the memory size is limited and then use the AH algorithm as the second stage to

compensate the loss of the percentage of data reduction.

From both Figs. 4.3 and 4.4 , we can conclude that incorporating the AH algorithm as the second stage

not only increases the performance of the PDLZW algorithm but also compensates the percentage of data

reduction loss due to the anomaly phenomenon occurred in the PDLZW algorithm. In addition, the

proposed scheme is actually a parameterized compression algorithm because its performance varies with

different dictionary- set sizes but the architecture remains the same.

Furthermore, our design has an attractive feature: although simple and, hence, fast but still very efficient,

which makes this architecture very suitable for VLSI technology. The performance in percentage of data

reduction of various partitions using the 368- address dictionary of the PDLZW algorithm followed by the

AHDB algorithm is shown in Tables VI and VII. The percentage of data reduction and memory cost of

various partitions using a 368-address dictionary PDLZW algorithm followed by the AHDB algorithm is

depicted in Table VIII. To illustrate our design, in what follows, we will use the PDLZW compression

algorithm with the 368-address dictionary set as the first stage and the AHDB as the second stage to

constitute the two-stage compression processor. The decompression processor is conceptually the reverse

 Two Stage Architecture
Two Stage Architecture

49

of the compression. counterpart and uses the same data path. As a consequence, we will not address its

operation in detail in the rest of the paper.

5.5. PROPOSED DATA COMPRESSION ARCHITECTURE

In this section, we will show an example to illustrate the hardware architecture of the proposed two-stage

compression scheme. The proposed two-stage architecture consists of two major components: a PDLZW

processor and an AHDB processor, as shown in Fig. 6. The former is composed of a dictionary set with

partition {256, 64, 32, 8, and 8}. Thus, the total memory required in the processor is 296 B (= 64×2 +

32×3 + 8×4 + 8×5) only. The latter is centered around an ordered list and requires a content addressable

memory (CAM) of 414 B (=368 × 9B).Therefore, the total memory used is a 710-B CAM.

5.5.1 PDLZW Processor

The major components of the PDLZW processor are CAMs, a 5-B shift register, and a priority

encoder. The word widths of CAMs increase gradually from 2 to 5 B with four different address

spaces: 64, 32, 8, and 8 words, as portrayed in Fig. 6. The input string is shifted into the 5-B shift

register. Once in the shift register the search operation can be carried out in parallel on the

dictionary set. The address along with a matched signal within a dictionary containing the prefix

substring of the incoming string is output to the priority encoder for encoding the output

codeword pdlzw_output, , which is the compressed codeword output from the PDLZW

processor.

This codeword is then encoded into canonical Huffman code by the AHDB processor. In general,

it is not impossible that many (up to five) dictionaries in the dictionary set containing prefix

substrings of different lengths of the incoming string simultaneously. In this case, the prefix

substring of maximum length is picked out and the matched address within its dictionary along

with the matched signal of the dictionary is encoded and output to the AHDB processor.

In order to realize the update operation of the dictionary set, each dictionary in the dictionary set

except the dictionary 0 has its own update pointer (UP) that always points to the word to be

inserted next. The update operation of the dictionary set is carried out as follows. The maximum-

 Two Stage Architecture
Two Stage Architecture

50

length prefix substring matched in the dictionary set is written to the next entry pointed by UP

the of the next dictionary along with the next character in the shift register. The update operation

is inhibited if the next dictionary number is greater than or equal to the maximum dictionary

number.

5.5.2. AHDB Processor

The AHDB processor encodes the output codewords from the PDLZW processor. As described

previously, its purpose is to recode the fixed-length codewords into variable-length ones for

taking the advantage of statistical property of the codewords from the PDLZW processor and,

thus, to remove the information redundancy contained in the codewords. The encoding process is

carried out as follows. The pdlzw_output, which is the output from the PDLZW processor and is

the “symbol” for the AHDB algorithm, is input into swap unit for searching and deciding the

matched index, , from the ordered list.

Then the swap unit exchanges the item located in n with the item pointed by the pointer of the

swapped block. That is, the more frequently used symbol bubbles up to the top of the ordered

list. The index ahdb_addr of the “symbol” pdlzw_output of the ordered list is then encoded into

a variable-length codeword (i.e., canonical Huffman codeword) and output as the compressed

data for the entire processor.

The operation of canonical Huffman encoder is as follows.

The ahdb_addr is compared with all codeword_offset : 1, 9, 18, 31, 101, 154, 171, and 186

simultaneously, as shown in Table IV and Fig. 6, for deciding the length of the codeword to be

encoded. Once the length is determined, the output codeword can be encoded as ahdb_addr-

code_offset + first_codeword. For example, if ahdb_addr=38 from Table IV, the length is 8 b

since 38 is greater than 31 and smaller than 101. The output codeword is: 38-31+44=001100112

As described above, the compression rate is between 1–5 B per memory cycle.

 Two Stage Architecture
Two Stage Architecture

51

Test File

Text Files

 Compress

 AH

PDLZW +

AHAT

AHFB

AHDB

1.alice28.txt(152,089)
2.Asyoulik.txt(125,179)

3.book1(768,771)

4.book2(610,856)

5.cp.htm(24,603)
6.fields.c(11,150)

7.paper1(53,161)

8.paper2(82,199)
9.paper3(46,526)

10.paper4(13,286)

11.paper5(11,954)
12.paper6(38,105)

59.52
56.07

56.81

58.95

54.00
55.48

52.83

56.01
52.36

47.64

44.96
50.94

42.33
39.38

43.00

40.02

33.70
35.96

37.29

42.03
41.14

40.07

36.86
36.97

35.70
32.53

39.93

40.18

30.67
31.94

30.65

32.26
30.04

26.73

25.93
30.75

39.59
37.12

37.78

38.88

36.14
43.71

37.47

38.64
37.45

37.60

37.13
38.73

42.64
40.07

40.98

41.85

39.42
46.27

40.40

41.83
40.63

40.77

40.25
41.56

Avg 53.80 39.06 32.27 38.35 41.38

Table 5.5 Performance Comparison in Percentage of Data Reduction for Text file between

Compress, PDLZW + AH, PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB

Table 5.6 Performance Comparison in Percentage of Data Reduction for Executable file between

Compress, PDLZW + AH, PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB

Test File

Executable Files

Compress

AH

PDLZW +

AHAT

AHFB

AHDB

1.acrord32.exe(2,318,848)

2.cutftp32.exe(813,568)

3. fdisk.exe(64,124)
4.tc.exe(292,248)

5.waterfal.exe(186,880)

6.winamp.exe(892,928)

7.winzip32.exe(983,040)
8.xmplayer.exe(398,848)

34.10

40.72

23.75
25.45

35.28

52.25

41.35
36.28

21.77

27.74

11.10
14.72

28.58

28.59

21.26
26.70

29.93

34.74

19.23
23.09

32.85

48.14

36.47
31.00

30.15

37.47

25.01
25.79

37.96

51.80

39.95
34.87

31.41

38.41

26.05
26.90

38.77

52.39

40.52
35.65

Avg 36.14 24.51 31.93 35.37 36.26

 Two Stage Architecture
Two Stage Architecture

52

5.6. Performance

Table 5.5 and 5.6 shows the compression ratio of the LZW (compress), the AH algorithm,

PDLZW+AHAT, PDLZW+AHFB , and PDLZW+AHDB. The dictionary set used in PDLZW is

only 368 addresses (words) and partitioned as {256,64,32,8,8}.From the table, the compression

ratio of PDLZW + AHDB is competitive to that of the LZW (i.e., compress) algorithm in the

case of executable files but is superior to that of the AH algorithm in both cases of text and

executable files.

Because the cost of memory is a major part of any dictionary- based data compression processor

discussed in the paper, we will use this as the basis for comparing the hardware cost of different

architectures. According to the usual implementation of the AH algorithm, the memory

requirement of an N- symbol alphabet set is (N + 1) + 4 (2N -1) integer variables [18], which

is equivalent to 2 × {(N +1) + 4(2N-1)} = 4.5kB where N=256. The memory required in the

AHDB algorithm is only a 256-B CAM, which corresponds to the 384-B static random-access

memory (SRAM). Here, we assume the complexity of one CAM cell is 1.5 times that of a

SRAM cell [21]. However, as seen from Tables I and II, the average performance of the AHDB

algorithm is only 1.65%= ((39.50-36.86) + (26.89-26.23)/2)% worse than that of the AH

algorithm.

After cascading with the PDLZW algorithm, the total memory cost is increased to 710-B CAM

equivalently, which corresponds to 1065 B of RAM and is only one-fourth of that of the AH

algorithm. However, the performance is improved by 8.11%=(39.66%-31.55%) where numbers

39.66% and 31.55% are from Tables VIII and III, respectively.

5.7 Results

The proposed two-stage compression/decompression processor given in Fig 5.3 has been

synthesized and simulated using Verilog HDL. The resulting chip has a die area of 4.3× 4.3mm

and a core area of 3.3 ×3.3 mm . The simulated power dissipation is between 632 and 700 mW at

the operating frequency of 100 MHz. The compression rate is between 16.7 and 125 MB/s; the

decompression rate is between 25 and 83 MB/s. Since we use D-type flip-flops associated with

 Two Stage Architecture
Two Stage Architecture

53

needed gates as the basic memory cells of CAMs (the dictionary set in the PDLZW processor)

and of ordered list (in the AHDB processor), these two parts occupy most of the chip area. The

remainder only consumes about 20% of the chip area. To reduce the chip area and increase

performance, the full-custom approach can be used. A flip-flop may take between 10 to 20 times

the area of a six-transistor static RAM cell , a basic CAM cell may take up to 1.5 times the area

(nine transistors) of a static RAM cell. Thus, the area of the chip will be reduced dramatically

when full-custom technology is used. However, our HDL-based approach can be easily adapted

to any technology, such as FPGA, CPLD, or cell library

Fig 5.3 Two Stage Architecture

 Fig 5.3 Two-stage Architecture for compression

Swap

Ordered

list

…..

a

b

a

b

a

b

a

b

P
ri

o
ri

ty
 e

n
co

d
er

a ≥ b

a ≥ b

a ≥ b

a ≥ b

a ≥ b

171

186

18

9

1 9

En
co

d
er

up

up

up

up

0

1

2

3

4

= 8 bytes

bytes

256 bytes virtual

dictionary

Parallel dictionary set

Comparator

Canonical Huffman

encoder

P
d

lz
w

_
o

u
tp

u
t

C
o

m
p

re
ss

e
d

 d
at

a
(c

an
o

n
ic

al
 H

u
ff

m
an

 c
o

d
e)

AHDB PDLZW

Shift register

9

9

9

9

9

9

Ahdb_addr

9
a

b

 Chapter 6

 Simulation Results

 Simulation Results

55

Fig 6.1 PDLZW output

Fig 6.2 Write operation in four dictionaries

 Simulation Results

56

Fig 6.3 Dic-1 contents

Fig 6.4 Dic-2 Contents

 Simulation Results

57

Fig 6.5 Dic-3, 4 Contents

Fig 6.6 AHDB processor Output

 Simulation Results

58

Fig 6.7 Order list of AHDB

Fig 6.8 PDLZW+AHDB algorithm

 Simulation Results

59

Fig 6.9 AHDB decoder Schematic

 Chapter 7

 CONCLUSION

 Conclusion

61

In this thesis, a new two-stage architecture for lossless data compression applications, which uses

only a small-size dictionary, is proposed. This VLSI data compression architecture combines the

PDLZW compression algorithm and the AH algorithm with dynamic-block exchange. The

PDLZW processor is based on a hierarchical parallel dictionary set that has successively

increasing word widths from 1 to 5 B with the capability of parallel search. The total memory

used is only a 296-B CAM. The second processor is built around an ordered list constructed with

a CAM of 414B (= 368 × 9B) and a canonical Huffman encoder. The resulting architecture

shows that it is not only to reduce the hardware cost significantly but also easy to be realized in

VLSI technology since the entire architecture is around the parallel dictionary set and an ordered

list such that the control logic is essentially trivial. In addition, in the case of executable files, the

performance of the proposed architecture is competitive with that of the LZW algorithm

(compress). The data rate for the compression processor is at least 1 and up to 5 B per memory

cycle. The memory cycle is mainly determined by the cycle time of CAMs but it is quite small

since the maximum capacity of CAMs is only 64 × 2 B for the PDLZW processor and 414 B for

the AHDB processor. Therefore, a very high data rate can be achieved.

 References

REFERENCES

[1] Ming-Bo Lin, Jang-Feng Lee and Gene Eu Jan "Lossless data compression and

decompression algorithm and its hardware architecture," IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol.14, no.9, pp.925-936, Sep. 2006.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd

ed. New York: McGraw-Hill, 2001.

[3] R. C. Gonzalez and R. E.Woods, Digital Image Processing. Reading, MA: Addison-Welsley,

1992.

[4] S. Henriques and N. Ranganathan, “A parallel architecture for data compression,” in Proc.

2nd IEEE Symp. Parall. Distrib. Process., 1990, pp. 260–266.

[5] S.-A. Hwang and C.-W. Wu, “Unified VLSI systolic array design for LZ data compression,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 4, pp. 489–499, Aug. 2001.

[6] J. Jiang and S. Jones, “Word-based dynamic algorithms for data compression,”

Proc. Inst. Elect. Eng.-I, vol. 139, no. 6, pp. 582–586, Dec. 1992.

[7] B. Jung and W. P. Burleson, “Efficient VLSI for Lempel-Ziv compression in wireless data

communication networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 3, pp.

475–483, Sep. 1998.

[8] D. E. Knuth, “Dynamic Huffman coding,” J. Algorithms, vol. 6, pp. 163–180, 1985.

[9] M.-B. Lin, “A parallel VLSI architecture for the LZW data compression algorithm,” in Proc.

Int. Symp. VLSI Technol., Syst., Appl., 1997, pp. 98–101.

[10] J. L. Núñez and S. Jones, “Gbit/s lossless data compression hardware,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 11, no. 3, pp. 499–510, Jun. 2003.

[11] H. Park and V. K. Prasanna, “Area efficient VLSI architectures for Huffman coding,” IEEE

Trans. Circuits Syst. II, Analog Digit. Signal

Process., vol. 40, no. 9, pp. 568–575, Sep. 1993.

[12] N. Ranganathan and S. Henriques, “High-speed vlsi designs for lempel-ziv-based data

compression,” IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process., vol. 40, no. 2, pp.

96–106, Feb. 1993.

[13] S. Khalid, Introduction to Data Compression, 2nd ed. San Mateo, CA: Morgan Kaufmann,

2000.

 References

63

[14] B. W. Y.Wei, J. L. Chang, and V. D. Leongk, “Single-chip lossless data compressor,” in

Proc. Int. Symp. VLSI Technol., Syst., Appl., 1995, pp. 211–213.

[15] T. A. Welch, “A technique for high-performance data compression,” IEEE Comput., vol.

17, no. 6, pp. 8–19, Jun. 1984.

[16] I. H. Witten, Alistair, and T. C. Bell, Managing Compressing and Indexing Documents and

Images, 2nd ed. New York: Academic, 1999, pp. 36–51.

[17] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE

Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, Mar. 1977.

[18] I. H. Witten, Alistair, and T. C. Bell, Managing Compressing and Indexing Documents and

Images, 2nd ed. New York: Academic, 1999, pp. 36–51.

