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ABSTRACT 

 

Networked control systems have gained attention in the recent years due to their widespread 

applications to various real time systems. Controlling these systems poses several challenges 

which are currently still being investigated. A study of these issues is provided along with 

recent proceedings in technology to counter such issues like limited bandwidth, time delays 

and packet drop-outs. This thesis focuses on the problem of time delays in network control 

system which can cause instability of closed loop operation of these systems. A guaranteed 

cost approach is employed to achieve stability along with achieving a certain level of 

performance as defined by the cost function. A state feedback controller is used and along 

with it, a predictive control scheme is implemented to design variable gains of the feedback 

controller depending on the number of packets missed (packet drop-outs) and time delays of 

the received input sample or state of the plant, both of which can be random but bounded for 

a given communication channel. The controllers are connected to the plant via the network. 

They generate the appropriate input for the plant so that delays in the channel will not 

instabilize the system and thus they comprise the network delay compensator. The controller 

gains and the observer gain are determined by formulating a linear matrix inequality (LMI) 

problem and solving this problem by using the Robust Control Toolbox in MATLAB. 

Further, this technique is implemented on a fictitious system by modelling the networked 

system with constant delay in SIMULINK and the observer states as well as the plant output 

are shown to be stable. 
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Introduction 

1.1 NETWORK CONTROL SYSTEMS 

 

A system or a group of spatially distributed systems that exchange information (input data or 

output data or control signal) with (a) controller(s) via a shared communication channel are 

network control systems. In simple terms, in a NCS the communication between the sensor 

and controller and (or) the controller and actuator occurs via a network. A systems biology 

viewpoint would be neurons, muscles, neural pathways, and the cerebral cortex. The 

importance of research on NCS can be estimated by the broad range of area it has found use in 

such as mobile sensor networks, remote surgery with collaboration over the Internet, and 

automated highway systems and unmanned aerial vehicles, multi-agent traffic control, 

military, surgical and emergency medical applications. The greatest commercial impact of 

NCS has been in the industrial sector, however, research suggests that with significant 

technical challenges in new applications such as co-ordinated groups of mobile robot agents 

and UAVs, these systems will have great potential. 

However, its interdisciplinary nature has raised fundamental questions on combined across 

communications, information processing and control- dealing with the relationship between 

network and quality of overall system’s operation. Traditionally, control theory focuses on the 

study of interconnected dynamical systems linked through “ideal channels”, whereas 

communication theory studies the transmission of information over “imperfect channels”. A 

combination of these two frameworks is needed to model NCS. 

A number of design methods have been developed to control these systems such as optimal 
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stochastic control which models time delays as Linear Quadratic Gaussian problem, H∞ 

control problem, generalized predictive control problem and robust control problems. 

 

1.2 BACKGROUND 

Networked control systems research lies primarily at the intersection of three research areas: 

control systems communication networks and information theory, and computer science. 

Networked control systems research can greatly benefit from theoretical developments in 

information theory and computer science. But, the main difficulty in merging results from 

these different fields is that studies have been the differences in emphasis in research so far. In 

information theory, delays in the transmitted information are not of central concern, as it is 

more important to transmit the message accurately- even though this may involve sometimes 

significant delays in transmission. In contrast, in control systems delays are of primary 

concern. Delays are much more important than the accuracy of the transmitted information 

due to the fact that feedback control systems are quite robust to such inaccuracies.  

 

1.2.1 CHALLENGES IN CONTROL OF NETWORKED SYSTEMS 

The basic challenges in networked systems occur due to sharing of a band limited digital 

communication network ( internet,ethernet, wireless networks, fieldbus(’88)), shared by other 

applications. 

Fig 1: conceptual model of NCS    
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  The following outline the key issues in designing a feedback controller through a network 

along with the respective research progress. Other issues being addressed by current research 

are actuator constraints, reliability, fault detection and isolation, graceful degradation under 

failure, reconfigurable control and ways to build increased degrees of autonomy into the 

system. 

 

1.2.1.1 BAND LIMITED CHANNELS 

 

Any communication network can only carry a finite amount of information per unit of time. In 

many applications, this limitation poses significant constraints on the operation of NCSs. In 

most digital networks, data is transmitted in atomic units called packets and sending a single 

bit or several hundred bits consumes the same amount of network resources.  

Fundamental research involving minimum bit rate necessary to stabilize a LTI system have 

been derived. Average bit rate is a measure on how infrequent feedback information is 

needed (in digital networks) to guarantee that the system remains stable.  

Intermittent feedback is another way in which the open loop is closed for certain fixed or 

time-varying periods, leading to opportunistic situations where sensor sends bursts of 

information when network is available. This helps in taxing the network less. 

If quantized feedback is provided (in digital system implementation of NCS), and if the 
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open loop system is unstable, only then can we determine the minimum average bit rate to 

process feedback information. Further research on communication constrained feedback 

channels is establishing a connection between stabilizability and an inequality relating 

feedback channel data to open loop eigen values. 

The data rate theorem is a breakthrough in data rate requirement for a stable system over a 

network. It says that for any LTI plant having open-loop poles a1,,......, ak in the right half-

plane, a quantized feedback law can be designed to produce a bounded response if and only if 

the data-rate R around the closed feedback loop satisfies the data-rate 

                                                          

That is, the larger the magnitude of the unstable poles, the larger the required data rate through 

the feedback loop. 

 

1.2.1.2 SAMPLING AND DELAY  

 

To transmit a continuous-time signal over a network, the signal must be sampled, encoded in 

digital format, transmitted over the network, (see fig. Above) and finally the data must be 

decoded at the receiver side. This process is significantly different from the usual periodic 

sampling in digital control. The overall delay between sampling and eventual decoding at the 

receiver can be highly variable because both the network access delays (i.e., the time it takes 

for a shared network to accept data) and the transmission delays (i.e., the time during which 

data are in transit inside the network) depend on highly variable network conditions such as 

congestion and channel quality.  
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In some NCSs, the data transmitted are time stamped, which means that the receiver may have 

an estimate of the delay’s duration and take appropriate corrective action  

A significant number of results have attempted to characterize a maximum upper-bound on the 

sampling interval for which stability can be guaranteed. These results implicitly attempt to 

minimize the packet rate/ bit rate that is needed to stabilize a system through feedback 

(above). 

1.2.1.3 PACKET DROP-OUT 

 

Another significant difference between NCSs and standard digital control is the possibility 

that data may be lost while in transit through the network. Typically, packet drop-outs from 

transmission errors in physical network links delays sometimes result in packet re-ordering, 

which essentially amounts to a packet dropout if the receiver discards “outdated” arrivals.  

Reliable transmission protocols, such as TCP, guarantee the eventual delivery of packets. 

However, these protocols are not appropriate for NCSs since the re-transmission of old data is 

generally not very useful. 

 

1.2.1.4 NETWORK DELAY EFFECT 

 

The network can introduce unreliable/nondeterministic levels of service in terms of delays, 

jitter, and losses. REAL TIME ISSUE: In time sensitive NCSs, if the delay time exceeds 

the specified tolerable time limit, the plant or the device can either be damaged or have a 
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degraded performance. Time-sensitive applications can be either hard real time or soft real 

time. In hard real-time systems, the task must be completed before the hard deadline. 

The limits to performane in NCSs are caused primarily by delays and dropped packets.  

1.2.2 SYSTEM ARCHITECTURE 

 

The configuration of network control system or the manner in which plant is connected to the 

network can vary. Modelling of a system is very important as it will change the control 

strategies differ with different configurations. The hierarchical form is a hybrid system and 

can be used to study inter-connection of different plants, whereas the direct form is a stand-

alone control application. The later in a simpler forms the single loop feedback NCS, which 

context represents all the basic constraints in a NCS and is used in this thesis. 

 

1.2.2.1 DIRECT FORM 

The NCS in the direct structure is composed of a controller and a remote system containing a 

physical plant, sensors and actuators and linked by a data network to perform closed loop 

operation. 

                                  Fig2: Direct form I 

Or,  
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   Fig 3: Direct form II 

The single loop NCS shown in the figure above is sufficient to study the effect of sampling 

and delays in NCS as it captures the important features. Three different control architectures 

are covered by the single feedback loop depending on the presence and absence of delays and 

packet drop-outs in different channels . 

 

 

Fig4: single loop feedback NCS           

 

1.2.2.2 HIERARCHICAL FORM 

The basic hierarchical structure consists of a main controller and a remote closed loop 

system as depicted in Fig.5. The main controller computes and sends the reference signal in a 

frame or a packet via a network to the remote system and the remote system then processes 
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the reference signal to perform local closed-loop control and returns to the sensor 

measurement to the main controller for networked closed-loop control.  

                  

Fig5: Hierarchical Form 
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CHAPTER 2 

 

STUDY OF DELAYS IN 

NETWORK CONTROL SYSTEMS 

 

2.1 CLASSIFICATION AND TYPES OF DELAY IN NCS 

 

 

The data transfers between the controller and the remote system introduce network delays in 

addition to the time taken by the controller- processing delay. Fig. 6 shows network delays in 

the control loop. 
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Fig 6: Schematic representation of network delays in closed loop NCS. 

Here r is the reference signal, u is the control signal, y is the output signal, k is the time index 

and T is the sampling period. 

Network delays in an NCS are categorized as: 

1)  sensor-to-controller data transfer delay = ᴦsc 

2)  controller-to-actuator data transfer delay = ᴦca 

3)  computation delay = ᴦc 

 The output at instant KT is delayed by ᴦsc by the time it reaches the controller from 

the sensor; the time is KT+ ᴦsc when the controller receives the signal. 

 Now the controller takes processing time ᴦc to calculate the feedback signal.  

 When the feedback signal (in the form of packet or in a frame) is sent to the actuator, 

the time is KT+ ᴦsc + ᴦc  

 On reaching the actuator the global time is KT + ᴦsc + ᴦc + ᴦca 

So the total delay      T’ = ᴦsc + ᴦc + ᴦca 

These delays in input packet and output state of plant due to ᴦca and ᴦsc respectively for a ZOH 

discrete system can be realized as shown in the Fig.7 that follows: 

 

Fig. 7 Time delays in NCS 

Further, the network delays (ᴦsc & ᴦca) are classified into - 
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 Waiting time delay ᴦw -The waiting time delay is the delay, of which a source (the 

main controller or the remote system) has to wait for queuing and network 

availability before actually sending out a frame or a packet  

 Frame time delay ᴦf - The frame time delay is the delay during the moment that the 

source is placing a frame or a packet on the network. 

 Propagation delay ᴦp - The propagation delay is the delay for a frame or a packet 

travelling through a physical media. The propagation delay depends on the speed of 

signal transmission and the distance between the source and destination. 

A timing diagram for a discrete time system with sampling time T, at two instants- kT and 

(k+1)T is shown below. The classification of delays can also be seen in this diagram. It 

shows the network delays for control input signal u(k) and actual plant output signal y(k) in 

Fig 8 below: 
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Fig. 8 Timing Diagram of Network Delay Compensation 

 

 

2.2 EFFECT OF DELAYS ON CLOSED LOOP BEHAVIOUR OF 

NCS 

One of the most important problems of NCS is the delay in data transmission between sensor 

and actuator and controller units leading to data packets spoilt or completely getting lost. So 
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the end result is weak signals. The network induced delay appears mainly from sensor-

controller and controller-actuator. The control systems designed without taking into account 

these delays have low performance and reliability. The delay in the control loop thus 

degrades system performance and destabilization of closed loop networked system 

 

2.3  MODELLING OF TIME DELAYS IN NCS 

 Constant delay is modelled as time buffer . 

 Modelling of Delay with known probability distribution governed by Markov Chain 

Model can be thus modelled. 

 Independent random delays modelling. 

 End to end delay dynamics for internet can be modelled using system identification 

tools. 

 

2.4 DELAY COMPENSATION TECHNIQUES 

The following delay compensation techniques have been implemented with necessary 

assumptions to limit the destabilizing effect of delays on network control systems and 

obtain conditions for stable closed loop operation of NCS. 

1. Optimal stocastic method 

 To control NCS on random delay networks 

 LQG problem is formulated based on network delay statistics and optimal 

control is used to find feedback gain. 

 But, this case requires the past information of output and input {y (0).... y (k), 

u (0)... u (k)} in conjunction with the past information of the delay. 
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2. Queing and buffering 

Network delays become deterministic and hence, It transforms NCS into a time 

invariant system for both linear and non-linear plants 

3. Robust control Method 

 Delays are considered as multiplicative perturbations on the system and the 

perturbation effects are minimized under the assumption of no observation 

noise. 

 Controller is designed in the frequency domain, without prior knowledge of 

probability distribution of delays. 

4. Non-linear and perturbation theory 

 Network delays are modelled as the vanishing perturbation of a continuous-

time system under the assumption that there is no observation noise 

 This methodology can be applied on an NCS on periodic delay networks and 

random delay networks at the sensor-to controller transmission.   

                           

Fig 9: configuration of NCS in perturbation methodology 

 

5. Robust memory-less controller for uncertain NCS to combat effects of both 

network delay and data drop-out. 
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6. Multimode systems 

To stabilize these systems, the proper Lyapunov–Krasovskii functionals are chosen 

and using a descriptor model transformation of the system, derived linear matrix 

inequality (LMI)- based sufficient conditions for stability are determined. 

7. Probabilistic predictor based delay compensation 

 The method utilizes probabilistic information along with the number of 

packets in a queue to improve state prediction. (Similar to queuing and 

buffering) 

 The configuration of the NCS in probabilistic predictor-based delay 

compensation methodology is illustrated in Fig 10. 

Fig. 10: probabilistic predictor based delay compensation 

 

  

8. Sampling time scheduling 

 A sampling time is selected such that network delays do not affect control 

system performance 

 Multiple NCSs are connected on a single delay network and individual 

network delay < sampling interval 
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 The sampling times of all M NCS on the network are calculated from the 

sampling time of the most sensitive NCS based on the general frequency 

domain analysis on its worst-case delay bound. 

9. event based methodology 

 The system motion (reference) has to be a non-decreasing function of time in 

order to guarantee the system stability 

 Because the overall system is not based on time, network delays will not 

destabilize the system. 

       

 Fig 11.  Configuration of NCS in event based methodology 

10. Fuzzy logic modulation 

The fuzzy logic modulator is used to modify the controller output to compensate the 

network delay effects based on fuzzy logic. 

Method used in this thesis is a combination of probabilistic predictor method (7.) as we use a 

generalized predictive control scheme for the state feedback controller and we use the 

Lyapunov functional of the augmented system (containing possible input and plant states) to 

formulate the LMI, hence determining the gain of feedback controller. 
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CHAPTER 3 

 

MODEL PREDICTIVE CONTROL 

 
 

3.1 INTRODUCTION 
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Model predictive control (MPC), also referred to as moving horizon control or receding 

horizon control, is an attractive feedback strategy, especially for linear processes. Linear 

MPC refers to a family of MPC schemes in which linear models are used to predict the 

system dynamics, even though the dynamics of the closed-loop system is nonlinear due to the 

presence of constraints. Linear MPC approaches have found successful applications, 

especially in the process industries. By now, linear MPC theory is quite mature with more 

than 2200 applications in a very wide range from chemicals to aerospace industries are 

summarized. Important issues such as online computation, the interplay between 

modelling/identification and control and system theoretic issues like stability are well 

addressed today. 

 

Many systems are, however, in general inherently nonlinear. This, together with higher 

product quality specifications and increasing productivity demands, tighter environmental 

regulations and demanding economical considerations in the process industry require 

operating systems closer to the boundary of the admissible operating region. In these cases, 

linear models are often inadequate to describe the process dynamics and nonlinear models 

have to be used. This requires the use of nonlinear model predictive control. 

 

 

 

3.2 PRINCIPLE OF MODEL PREDICTIVE CONTROL (MPC) 

In general, the model predictive control problem is formulated as solving on-line a finite 

horizon open-loop optimal control problem subject to system dynamics and constraints 
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involving states and controls. Figure below shows the basic principle of model predictive 

control. Based on measurements obtained at time t, the controller predicts the future dynamic 

behaviour of the system over a prediction horizon Tp and determines (over a control 

horizon Tc ≤ Tp) the input such that a predetermined open-loop performance objective 

functional is optimized. If there were no disturbances and no model-plant mismatch, and if 

the optimization problem could be solved for infinite horizons, then one could apply the input 

function found at time t =0 to the system for all times t ≥ 0. However, this is not possible in 

general. Due to disturbances and model-plant mismatch, the true system behaviour is 

different from the predicted behaviour. In order to incorporate some feedback mechanism, the 

open-loop manipulated input function obtained will be implemented only until the next 

measurement becomes available. The time difference between the recalculation and 

measurements can vary, however often it is assumed to be fixed, that is, the measurement will 

take place every sampling time units. Using the new measurement at time t + , the 

whole procedure – prediction and optimization – is repeated to find a new input function with 

the control and prediction horizons moving forward. In the Figure below the input is depicted 

as arbitrary function of time. For numerical solutions of the open-loop optimal control 

problem it is often necessary to parameterize the input in an appropriate way. This is 

normally done by approximating the input could as piecewise constant over the sampling 

time . The calculation of the applied input based on the predicted system behaviour 

allows the inclusion of constraints on states and inputs as well as the optimization of a given 

cost function. 

 



28 
 

 

Fig.12. Principle of Model Predictive Control 

 

3.3  ALGORITHM & KEY FEATURES OF MPC 

 

Thus, the main idea of MPC is to use a model of the process to be controlled, in order to 

repeatedly solve an optimization problem, based on the measurement provided by the plant. 

Hence, it is an active control strategy. Then, only the first piece of trajectory is implemented 

and the problem is re-solved with the new measurement. At the recalculation times ti € π, x 

(ti) is measured, and the following Optimal Control Problem (OCP) is solved 
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Where, bar denotes the controller internal variables. The solution of the OCP is an optimal 

control signal u €
 
(t ; x(ti)), for t € [ti; ti+Tp], where Tp represents the finite prediction 

horizon. The control input is then implemented for the time-span [ti; ti+  ), i.e. 

 

Where,  interval between two consecutive recalculation times, i.e. 

 

The closed loop system stability under the MPC can be achieved by properly choosing the 

cost functional F(x,u), the terminal cost E(x), the terminal region E € X, and the prediction 

horizon Tp. 

 

The basic NMPC loop is as follows- 

 

 
 

Fig.13.  Basic NMPC loop 

 

 

It is necessary to estimate plant states with the help of an Estimator as shown above. 

 

Summarizing, the basic MPC scheme works as follows: 

 

1. Obtain measurements/estimates of the states of the system 

 

2. Compute an optimal input signal by minimizing a given cost function over a 

certain prediction horizon in the future using a model of the system 

 

3. Implement the first part of the optimal input signal until new 

measurements/estimates of the state are available; then continue with 1. 



30 
 

 

The following are the key features of MPC: 

 

1. In MPC a specified performance criteria is minimized on-line. 

 

2. In MPC the predicted behaviour is in general different from the closed loop 

behaviour. 

 

3. The on-line solution of an open-loop optimal control problem is necessary for the 

application of MPC. 

 

4. To perform the prediction the system states must be measured or estimated. 
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CHAPTER 4 

PROBLEM STATEMENT AND 

GUARANTEED COST CONTROL 
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4.1  PROBLEM STATEMENT 

In this thesis * denotes symmetrical block in a symmetric matrix, I denotes the identity matrix 

and the trace of a matrix is denoted by tr(.) The NCS is shown below (Fig 14) and forward 

and backward channel delays are denoted by ft and kt respectively. 

 

Fig. 14  Predictive control scheme for NCS; CPG- Control Prediction Generator; 

NDC- Network Delay compensator 

 

4.2 STATE SPACE FORMULATION 

4.2.1 SYSTEM MODEL 

The plant is modelled in the following discrete-time space form: 

1t t tx Ax Bu    ; t ty Cx  .........................................................................(1.1) 

Where- ,n
tx R ,m

tu R
p

ty R denote the state vector, control input and controlled output 

respectively. In order to measure the time delay occurring in any packet sent through the 
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network; a time stamp is attached or transmitted together with control predictions or control 

sequence generated via the predictive controller. Although computer communication 

protocols may not have this feature, time triggered protocols like Flexray can support a time 

delay measurement. The guaranteed cost function associated with system (1.1) is: 

0

(( ) ' ( ) ' )t t t t

t

J x Qx u Ru




  ...........................................................................................................(1.2) 

Where Q  and R are positive definite weighted matrices having dimensions nn and mm 

respectively. Associated with the cost function (1.2), the guaranteed cost controller is defined 

as follows- 

4.2.2 CONTROL STRATEGY 

Definition 1: Considering system (1.1) and cost function (1.2), if there exists a control law *
tu

and a positive scalar *J  such that for all admissible uncertainties, the closed loop system is 

asymptotically stable and the value of the cost function satisfies a bound- *J J  then, *J is 

said to be guaranteed cost and *
tu is said to be the guaranteed cost law. 

We assume that- 

1. The upper bounds of the time-varying network delays tk in the forward channel and 

tf  in the feedback channel are not greater than 1N  and 2N respectively, where 1N  

and 2N are positive integers, i.e. 1{0,1....., }tk N  and 2{0,1....., }tf N where 

0,1,2....t  denotes the sampling instant. 

2. The number of consecutive data drop-outs in the forward channel and the feedback 

channel are less than 1L and 2L respectively, both of which are positive integers. So, 

the upper bound of the consecutive data drop-outs and network delay is equal to 

1 2 1 2N N N L L     
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4.2.3 DESIGN OF OBSERVER FOR PREDICTION OF FUTURE CONTROL 

SEQUENCE 

 

The state vector x is not available in our case due to time delay due and as state feedback 

control is to be employed, hence we have to design a state observer from our knowledge 

of the system parameters. It is defined as- 

1 ( )t t t t tx A x Bu L y C x
  

     .................................................................................(1.3) 

Where, tx


nR is the observed state and m
tu R is the input of the observer at time t , 

respectively, L is the observer gain to be designed later. 

For a system without delay, the state feedback controller is given as- 

0t tu K x


 ................................................................................................................(1.4) 

Where 0K  is the m n  control matrix to be determined. But, when there are time varying 

delay and data drop-out in the feedback channel, the predictive controlled from time 

1tt f   to t  is constructed as- 

 

Where, 2 20,1.....,tf N L  . 
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When time varying delay and data drop-out in the forward channel, the predictive 

controlled from time 1t   to tt k is constructed as- 

 

Where, 1 10,1.....,tk N L   

Thus the overall state feedback controller can be given as- 

     t t t t t tt t f k f k t f ku K x 



    ............................................................. (1.5) 

Therefore, the observer can be written as, 

1 ( ) , 0,1,..... .t t t i tx A LC x BK x LC x i N
   

      ........................................(1.6) 

The closed loop system of (1.1) can be now written as- 

1t t i t ix Ax BK x


    ,  0,1,.....i N ...................................................(1.7) 

 

4.2.4  AUGMENTED STATE SPACE SYSTEM REPRESENTATION 

So, the augmented system becomes, 

1t i tX X   ................................................................................................................(1.8) 

Where, 
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tX has order (2 2) 1N n  ; comprising all possible states of plant [total of

( 1)N n entities] and observed state of plant [total of ( 1)N n entities] within the total delay 

and packet drop-out frame. 

i  has order (2 2) (2 2)N n N n   describing the system dynamics. 

( )

( 1) ( 1) ( 1) ( )

0 0 0
; ; ;

0 0 0 0

T

T

T

T

T

T

t

t i

t N

n Nn n in i n N i n
it i

t
Nn Nn n N n in N n n N n N i ni

t i

t N

x

x

x
A BK

X i
x I

x

x






       

  
          









 
 
 
 
 
 
 
                

      
 
 
 
 
 
 
  

 

 
 

The above equations are derived using equations (1.6) and (1.7) only and they represent 

the delayed system dynamics. 

 

4.3 LMI FORMULATION 

4.3.1   INTRODUCTION TO LMIs 

It has been seen in several referenced papers that for optimal control involving the Lyapunov 

functional or the Algebraic Riccatti inequalities or linear and quadratic inequalities, these 
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inequalities are converted to ‘Linear Matrix Inequalities’ or LMIs, the solution of which 

require the use of algorithms and tools which are mathematically complex. Hence a control 

engineer resorts to use of off-the shelf software and in this case LMI solver provided in 

Robust Control Toolbox in MATLAB is used, with the help of which the controller gains (in 

the previous problem) and the observer gain matrix are determined. 

A linear matrix inequality (LMI) is a convex con-straint. Linear inequalities, convex 

quadratic inequalities, matrix norm inequalities, and various constraints from control theory 

such as Lyapunov and Riccati inequalities can all be written as LMIs. Further, multiple LMIs 

can always be written as a single LMI of larger dimension. Thus, LMIs are a useful tool for 

solving a wide variety of optimization and control problems. Most control problems of 

interest that cannot be written in terms of an LMI can be written in terms of a more general 

form known as a bilinear matrix inequality (BMI). Computations over BMI constraints are 

fundamentally more difficult than those over LMI constraints, and there does not exist off-

the-shelf algorithms for solving BMI problems. 

A linear matrix inequality (LMI) has the form: 

 

Where,  and F(x) is a positive definite matrix. 

The above is an example of a strict LMI as it requires F(x) to be positive definite. Requiring 

only that F(x) be positive semi-definite is referred to as a non-strict LMI. The strict LMI is 

feasible if the set  is nonempty (a similar definition applies to non-strict LMIs). 

Any feasible non-strict LMI can be reduced to an equivalent strict LMI that is feasible by 

eliminating implicit equality constraints and then reducing the resulting LMI by removing 
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any constant null-space. Hence the basic requirement of an LMI is its feasibility and if an 

LMI is feasible, it can be solved by available software. 

 

4.3.2 LMI FORMULATION IN GIVEN PROBLEM 

Theorem 1: 

For the augmented system given by (1.8) and the cost function (1.2); if there exists a 

positive definite matrix P > 0 such that  

0T
i iP P Q R      .........................................................................(1.9)where- 

(2 1)

(2 1) (2 2)

0

0

T
i i n N n

N n N n

K RK
R

 

  

 
  
 

 

 

Then, the system (1.8) with controllers (1.5) is asymptotically stable and the cost function 

(1.2) satisfies the specified performance bound; 0 0
TJ X PX  (1.10); where 0X is the 

initial augmented state matrix 

Proof: 

The Lyapunov function defining energy of system at any time t is given by- T
t t tV X PX . 

Where P is appositive definite matrix of the order (2 2) (2 2)N n N n    

For the dynamics to be stable, we have- 

0V   (has to be less than zero) 
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Or, 1 0t tV V    

So, ( ) 0T T
t i iX P P X     Now, as the cost function J = ( ) 0T

t tX Q R X   or, is always 

positive; we can modify our inequality above to include the later term. Hence, we prove 

Theorem 1. 

The inequalities in Theorem 1 are now converted to matrix inequalities using Schur’s 

Complement Lemma as follows- 

Expressing R  as T
T

i iR I K RK I ; where, I  is [ 0.......0]I of order (2 2)n N n  ; 

I is of nth order. We can obtain the following by applying Schur’s complement in 2 steps. 

The matrix inequality is- 

1

1

* 0 0

* *

T T
T

i iP Q I K

P

R





   
 

  
 
  

...............................................................................(1.11) 

 

4.3.3  SIMPLIFICATION OF INEQUALITY 

The LMI conditions for guaranteed cost controller in (1.11) are difficult to solve because iK  

and L  are both present in the T
i term and both are to be determined. So, we further break 

down the T
i term as follows and separate the two unknown gains by defining new matrices 

B1, B2, C , iI , I , 0I , A , 1I  which were previously combined along with iK  and L in T
i term 

are now separated to iA  

Or, 1 2i i i i iA A B K I I LC B K I    ..............................................(1.12) 
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Where, 

 

The inequality (1.11) now becomes, 

1 2

1

1

* 0 0

* *

T
T

i i i i iP Q A B K I I LC B K I I K

P

R





 
     
  
 

 
 

...........................................................(1.13) 

 

4.3.4 LMI ALGORITHM 

The inequality (1.13) is not an LMI due to presence of both P and P
-1

 terms. It can however, 

be solved by a cone complimentary linearization algorithm which converts the non-convex 

optimization problem to a LMI based minimization problem. This algorithm proposes 2 LMIs 

besides 1.13 which frame the minimization problem. 

0
P I
I W

 
 

 
  

(1.14)  and,  

0
0

0

TX
X W


 
 

 
   (1.15) 
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4.4  ALGORITHM  

The steps to be followed are: 

1. Sufficiently large initial value of  is chosen such that a feasible solution exists to 

inequalities (1.13), (1.16) and (1.15). 

2. A feasible solution is determined for P ,W , iK and L .  Set j=0 

3. Using these feasible solutions for the jth round; i.e. Pj and Wj obtained above, the 

following minimization problem is solved- 

Minimize tr(PjW+P Wj) subject to LMIs (1.13), (1.17) and (1.15). 

4. Condition (1.13) is used as a stopping criterion and if it is satisfied,  is decreased to 

some extent and steps 1. to 4. Are repeated. Else the loop is terminated after a specific 

number of iterations. 
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CHAPTER 5 

IMPLEMENTATION OF 

CONTROL STRATEGY 
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5.1  SAMPLE SYSTEM DESCRIPTION 

We take, 

1.01 0.2710 0.4880

0.4820 0.1 0.24

0.0020 0.3681 0.7070

A
 
 

  
 
 

;   

5 5

3 2

5 4

B
 
 

  
 
 

; 

1 2 3

4 3 1
C

 
  
 

 

It is assumed that upper bounds of the network delays in forward channel tk , are not 

greater than 1and that of feedback channel tf are not greater than 2. So, N=n=3 and 

m=p=2.  

 

5.2  SOLUTION OF LMI PROBLEM 

 

Taking  as -0.01 and making maximum iterations to 40, we find a feasible solution to 

the feedback gains of the taken system. The various iK values are obtained as- 

K0= 

   -0.0128    0.0155   -0.0066  

   -0.0039   -0.0183    0.0197 

 

K1= 

   0.0160    0.0158    0.0165 

  -0.0052   -0.0043   -0.0046 

 

K2= 

0.0133    0.0132    0.0132 

-0.0041   -0.0040   -0.0040 

 

K3= 

0.0021    0.0021    0.0021 

-0.0012   -0.0012   -0.0012 



44 
 

The observer gain is obtained as- 

 L = 

   -0.1355    0.1583 

    0.0078    0.0508 

    0.1208   -0.0203 

 

5.3  SIMULATION BY DEVELOPING A NCS MODEL 

The model of network control system cannot be exactly prepared. In practice, network 

laboratories are used for the purpose of simulation of control methods developed. So, in order 

to implement the controller developed in this thesis, a constant delay model is constructed in 

SIMULINK. It is assumed that the network induces a constant delay and/or packet drop-out 

of 1. The state matrices remain the same and the differential equations representing dynamics 

of the plant, observer and controller are implemented in the model as shown below: 

 

Fig 15: constant delay simulation of NCS 

Taking Simulation time = 100; Step size =1;  Solver: Fixed type, discrete (no 

continuous states);  Initial conditions = [0.5 0.5 0.5]’ 
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5.4  RESULTS 

We solve the LMIs for i=1 as the above is a unit delay system and obtain   as 0.8. 

Further, the controller gain K1 and observer gain L are: 

K1=  -0.0139   -0.0058   -0.0028      

          0.0034    0.0030    0.0019 

L=   -0.1470    0.1605 

     -0.0025    0.0480 

     0.1127   -0.0325 

OBSERVER STATES OUTPUT STATES OF PLANT 

  
 

ACTUAL STATES OF PLANT 

 
 



46 
 

5.5 CONCLUSION 

 

It is seen that the eigen values of system with the above state feedback controller is always 

negative, suggesting that the system is stable. It is also supported by the constant delay 

simulation as shown above. The states of observer and plant are stable. A network laboratory 

in which a plant (E.g. a servo motor) is connected to the predictive state feedback guaranteed 

cost controller via a network can be used to simulate the results in real-time and verify the 

effectivity of this method. This control scheme stabilizes the system in lesser time as 

compared to fixed gain state feedback controller. Hence, besides stabilizing a NCS, it also 

satisfies a certain guaranteed performance criteria. 
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APPENDIX-I 
 

 

MATLAB CODE FOR SAMPLE SYSTEM & NCS MODEL IN 
SIMULINK 
 

% define the state matrices 
A = [1.01 0.2710 -.4880; .4820 .1 .24; .0020 .3681 .7070]; 
B = [5 5; 3 -2; 5 4]; 
C = [1 2 3;4 3 1]; 
Q = 0.2 * eye(3); 
R = 0.1 * eye(2); 

  
Y = inv(R); 
pi = [A zeros(3,9); eye(9) zeros(9,3)]; 
Atilde = [pi zeros(12); zeros(12) pi]; 
B1 = [B; zeros(21,2)]; 
B2 = [zeros(12,2); B; zeros(9,2)]; 
Itilde = [zeros(12,3) ; eye(3); zeros(9,3)]; 
Cbar = [C zeros(2,9) -C zeros(2,9)]; 
I0 = [zeros(3,12) eye(3) zeros(3,9)]; 
Ii = [zeros(3,(5)*3) eye(3) zeros(3,(2)*3)]; 
Ibar = [eye(3) zeros(3,21)]; 
Qbar = [ Q zeros(3,21); zeros(21,24)]; 
m = [ ones(4,1);zeros(20,1)]; 

  
%define the LMI variables or unkown matrices 
setlmis([]) 
P = lmivar(1,[24,1]); 
K0 = lmivar(2,[2,3]); %K1=K0=Ki, state feedback gain 
L = lmivar(2,[3,2]);    %observer gain 
W = lmivar(1,[24,1]); 

  

  
%Define the 1st LMI 
lmiterm([1 1 1 P],-1,1); 
lmiterm([1 1 1 0],Qbar); 
lmiterm([1 1 2 0],Atilde'); 
lmiterm([1 1 2 -K0],Ii',B1'); 
lmiterm([1 1 2 -L],Cbar',Itilde'); 
lmiterm([1 1 2 -K0],Ii',B2'); 
lmiterm([1 1 3 -K0],Ibar',1); 
lmiterm([1 2 2 W],-1,1); 
lmiterm([1 3 3 0],-Y); 

  
%Define the 2nd LMI 
lmiterm([-2 1 1 P],1,1); 
lmiterm([-2 1 2 0],eye(24)); 
lmiterm([-2 2 2 W],1,1); 

  
%define the 3rd LMI 
lmiterm([3 1 1 0],-0.8); 
lmiterm([3 1 2 0],m'); 
lmiterm([3 2 2 W],-1,1); 

  
%Find a feasible solution to the set of LMIs 
lmisys = getlmis; 
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[tmin,xfeas] = feasp(lmisys); 
w = dec2mat(lmisys,xfeas,W); 
k = dec2mat(lmisys,xfeas,K0); 
p = dec2mat(lmisys,xfeas, P); 
l = dec2mat(lmisys,xfeas,L); 

  
%Frame the minimization problem 
c = zeros(612,1); 
for j=1:612, 
[Pj,Wj] = defcx(lmisys,j,P,W); 
c(j) = trace(Pj*w + p*Wj); 
end 
[copt,xopt] = mincx(lmisys,c); 

  
%values of all unknown matrices 
Pnew = dec2mat(lmisys,xopt,P); 
Wnew = dec2mat(lmisys,xopt,W); 

  
%print the values of K1 and L obtained 
K0new = dec2mat(lmisys,xopt,K0) 
Lnew = dec2mat(lmisys,xopt,L) 

  
%check if the stopping criterion is satisfied 
if([(-Pnew+ Qbar) (Atilde + B1*K0new*Ii + Itilde*Lnew*Cbar +B2*K0new*Ii)' 

(Ibar'*K0new'); 
            (Atilde + B1*K0new*Ii + Itilde*Lnew*Cbar +B2*K0new*Ii) (-Wnew) 

zeros(24,2); 
            (K0new*Ibar) zeros(2,24) -Y]<0) 
        k=1; 
else 
    k=0; 
end 
k 
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