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Abstract 

 

The leader follower type formation of Unmanned Aerial Vehicles usually demands 

decentralized yet co-operative control among the vehicles. The decentralized control 

approach is superior to centralized control in view of lesser involvement of delay, minimal 

information sharing requirement, reduced computational effort for controller design etc. The 

dynamic model of leader follower formation with an information structure constraint, in 

which each vehicle except the leader have the information of all the states of vehicle in front 

of it. The formation is treated as an interconnected system with overlapping control gains in 

the sense an UAV share information only with its neighbouring ones. 

In this thesis, two approaches are used: (i) Inclusion principle (ii) Graph theory based 

approach for designing control gains. In the inclusion principle approach, control gain is 

designed separately for each disjoint subsystem in the expanded space. The static state 

feedback control law and linear matrix inequalities tool boxes are used for designing the 

controllers for each subsystem. Finally decentralized controllers are contracted back so as to 

be applied to the original system. In the graph theory approach, an overlapping information 

flow structure is constructed that determines the outputs of the system available in 

constructing any input signal of the system. The Graph theory is used to transform the 

overlapping interconnected system to decentralized one. The static state feedback type 

controller is used and a DK iterative algorithm is used to find out control gain. Then, a 

comparison between these two decentralized approaches is reported in the thesis so as to 

obtain the relative merits and demerits. There is delay in information flow form leader to 

follower in the formation so frequency domain stability analysis is done for time delay 

system. Frequency sweeping test is conducted for getting maximum tolerable communication 

delay between any two UAVs. 
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Notations and Abbreviations 

 

UAV                               :  Unmanned Aerial vehicle 
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, ,n n nR R R ×                        : Set of real numbers, n components real vector, n by n real matrix 

.                                    : Vector matrix norm 

0, 0A A ≥f                      : Matrix A is positive definite and positive semi-definite 

respectively 

( )i Aλ                                : thi  eigen value of matrix A 
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Chapter-1 

 

Introduction  

 

1.1  Introduction 

Formation of Unmanned Aerial Vehicle (UAV) is used in both military and civilian works 

such as: target selection, vertical damage assessment, surveillance and exploration work, 

vegetation growth analysis, rapid assessment of topographical changes such as flooding or 

earthquakes. The formation can be of different shapes such as triangular shape, rectangular 

and circular. The Formation is better than single UAV due to its better sensitivity and the 

ability of rapid reconfiguration in case of single point failure [1]. To control the formation 

centralized or decentralized approaches may be used. For decentralized control, large scale 

systems or control problems are divided into no of  manageable sub-problems which are 

weakly related with each other and can be solved independently [2-4] . 

 

1.1.1 The Formation Control  

 

Formation  is defined as maintaining optimal geometric of the agents relative  to each other or 

subject to form a fixed well defined control/sensing and communication architecture for a 

particular mission. In order to maintain the shape of a formation, it is required to maintain the 

distance between all pairs of agents being constant. Control of a formation requires the 

mixing of several tasks. One is the whole formation task of moving from one point to another 

point (or moving the centre of mass of the formation and adopting a certain orientation). 

Another is to maintain the relative positions of the agents during formation motion so that the 

shape is preserved. A third is to avoid obstacles, a fourth may be to handle maximum 

tolerable delay between the agents in formation etc. Five vehicles are in leader follower type 

formation in a triangular shape [1] shown below. 
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                                     Figure 1.1: Formation of five Unmanned Aerial Vehicles 

 

 

As an example consider a formation problem presented in Fig.1.1 five vehicles form a 

triangular formation where dotted lines shows information structure constraint and the arrow 

line shows the information flow from leader to follower .Formation of unmanned aerial 

vehicle used mostly in surveillance or exploration work. The whole  formation is able to 

synthesize antenna size which is more than individual agent that results improves sensitivity , 

the different agents carry different sensors which enhances the multiple functionality of 

whole formation and also it increases robustness and efficiency. It also decreases system cost. 
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1.1.2 Decentralized  Control for  System with Overlapping Structure 

 

A large scale system or a control problem is portioned into number of independently 

manageable sub problems so that the plant is no longer controlled by a single controller but 

by several independent controller which all together known as a decentralized controller 

[4,6]. The formation of UAV is a system of interconnected   overlapping  subsystems. 

Interconnected overlapping system is that who shares a common state between them. 

Decomposition is a prerequisite for decentralized control. Generally we represent a large-

scale system as a collection of weakly interconnected subsystems of lower dimension. 

Decomposition of systems with the overlapping structure is important to solve problems in 

many fields such as, economic systems, automated highway systems, electric power systems, 

and formation of UAVs. There are different type of approaches for formation like 

behavioural formation, virtual leader type formation and leader follower type formation. 

Leader follower type formation is presented here with information structure constraint where 

each vehicle except leader has state information about the vehicles in front of it [1].Two types 

of control strategy generally used  in formation 1. Centralized control 2. Decentralized 

control. 

 

With the help of  inclusion principle, we can expand the state space [2] (input and output 

spaces), so that the overlapping subsystems appear as disjoint .Applying standard methods for 

decentralized control fully decentralized control laws can be designed in this expanded space, 

and contracted back to the original state space of formation for implementation. The inclusion 

principles is used to ensure that this expansion/contraction procedure is correctly carried 

over, that is that solutions of the original system are included in the solutions of the expanded 

system. Satisfaction of the inclusion conditions is important for transferring properties of the 

expanded system to the original one 

 

In Graph theory approach [10-11] it is assumed that an overlapping information flow 

structure is given by a matrix which determines which outputs of the system are available for 

constructing any input signal of the system. Graph theory is used to transform the 

overlapping interconnected system to decentralized one by dividing main graphs to bipartite 

sub graphs having separate edges. 
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1.1.3 Advantages of Decentralized Formation Control  

 

Decentralized formation control posses many advantages than centralized control 

• Minimal information structure constraint. 

• Reduced computational time due to parallel processing. 

• Delay free due to local information sharing. 

• Reliable for structure reconfiguration. 

 

1.2 Review of some existing Works 

This section is devoted in reviewing decentralization techniques used in this formation 

control problem and stability analysis of time delay system. The review will start with the 

definition of decentralized control, approaches of decentralization and application of 

decentralization to different control problems like formation control of UAVs and vehicle 

platooning problem. Then to find a maximum tolerable delay in the formation using 

frequency sweeping test. 

1.2.1 Review of Decentralized Controller Approaches 

A large control problem can be partitioned into manageable sub-problems for analysis and 

synthesis so that the overall plant is controlled by several in depended controllers instead of a 

single controller together called decentralized controller [4]. The subsystems under 

consideration for decentralization   divided into two types (1) Strongly coupled subsystem 

and (2) weakly coupled subsystem [4]. In strongly coupled subsystem at least one 

approximation model of all other sub system is considered where as in weakly coupled 

subsystem coupling is neglected during the design of individual controller. Overlapping 

decomposition means to expand the original system with strongly coupled subsystem with 

weakly coupled subsystem [1]. The Solution of larger dimensional system must include the 

solution of lower dimension original system.  In this thesis two decentralization approaches is 

considered  

(1) Inclusion principle [1,2,13] is one of the method for expanding state space, input & output 

spaces so that the overlapping sub systems appears  as disjoint. Satisfaction of inclusion 

principle the properties of original system can be transferred to expanded one. In this method 

both system as well as controller is expanded and generally static state feedback used. 

Controller structure is designed by knowledge of information structure constraint. Finally the 

designed controllers contracted back  [1-2] to form original control . 
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(2) Graph theory based approach [8,11] is one of the well known method for decentralization. 

The control constraint can be represented by binary information flow matrix. Output 

feedback controller is used for construction of controller gain matrix. The structurally 

constrained controller can be determined by which output is available to construct any 

specific input of the system. Some procedures are followed to divide the bipartite graph into 

no of sub graphs [8]. From the sub graphs the block diagonal expanded controller gain matrix 

is derived. 

 

The decentralized overlapping control designed approach using inclusion principle is 

presented in IVHS [9]. In control of platoon of vehicles the original system is decomposed by 

input/ output expansion. The subsystems are defined in such a way that the state vectors 

include measurements available from each vehicle. Local control laws for the extracted 

subsystems are obtained by optimizing local quadratic performance indices. The dynamics of 

vehicle is considered for problem formulation [9]. Graph theory approach based generally is 

used when there is a limitation of available of states [10]. Decentralization using graph theory 

is applicable for overlapping interconnected pants where graph theory approach is adopted to 

find constrained control gain. The problem of optimal LTI structurally constraint control with 

respect to quadratic performance is presented in some papers [8] 

 

1.2.2 Review of Delay Tolerability in  Time Delay System 

 

Delay has significant impact on the stability and performance of the system. Uncertain 

transmission delay is considered in communication links among different subsystems as 

referred in [12,15]. The controller gain is decomposed into diagonal and off diagonal 

components. Graph theory based approach is used to transform the controller gain matrix into 

diagonal form. LMI based design algorithm is implemented for solving the disturbance 

attenuation [12] & to achieve stability. Many authors discussed about stability properties of 

LTI time delay systems. In paper [15,16] stability properties of linear time invariant delay  

systems in state space form is presented. The sufficient and necessary condition for stability 

independent of delay is discussed with the help of frequency sweeping test [16]. Delay 

margin i.e. maximal tolerable delay over which the system under consideration maintains 

stability is calculated. The necessary and sufficient condition for stability independent of 

delay can be checked by computing the spectral radii of certain frequency dependant matrix. 
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1.3  Motivation 

The motivation behind the thesis is that the formation control problem is a mixture of  graph 

theory, nonlinear system theory and linear algebra. Leader follower type formation is a wide 

research area. The control issues associated with formation is very challenging using 

decentralized approach. The decentralization is very useful when the subsystem has 

contradictory goal and subsystems are handled by different authorities. Here different 

decentralization approaches have been discussed and comparison has been made. The 

decentralization using graph theory has some advantages over inclusion principle approach 

such as expanded system has inherently uncontrollable, contraction of the designed controller 

is very difficult task and static state feedback controller is not used for practical use.   

1.4 The Scope of the Present Work 

The salient objective of this thesis is 

1. To realize the decentralized control strategy of formation of UAV in a planner motion. 

2.  To study the static feedback problems. 

3.  To make a comparison study of two approaches of decentralization. 

I. Inclusion principle approach. 

II. Graph theory approach. 

4.  To find a maximum tolerable time delay in communication channel in the formation. 

1.5 Organisation of this Thesis 

The work done in this thesis is organised as follows 

 

• Chapter-1 provides a brief background of formation control, decentralization 

approach, motivation and objective. 

• In Chapter-2 the kinematics model and dynamics of formation of 3 UAV is presented. 

• Chapter-3  Decentralized overlapping controller is designed using inclusion principle 

method , robust state feedback  control law used to find the control gains and 

simulation results are presented 

• In Chapter-4 Procedure for designing decentralization using Graph theory based 

approaches is presented. The problem is formulated as a convex optimization problem 
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in terms of linear matrix inequalities .DK iteration procedure is used to find the 

control gains using output feedback. 

• Chapter-5 provides the brief idea about time delay systems and frequency domain 

analysis. Frequency sweeping test is carried out   to known about delay independent 

stability and to get delay margin for stability of system 

• Chapter-6 provides conclusion and scope of present work 
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Chapter-2 

 

 

Model Description 

 

2.1   Kinematics of a single UAV  

 

Kinematics describes the motion of points or objects without considering the forces that 

cause it. Unmanned Aerial Vehicle has 6 degree of freedom that shown below in fig. 2.1. For 

formation of flight the UAVs move in planner motion along XY plane at that time we only 

consider two degrees of freedom i.e. yaw and surg. 

 

 

 
Figure 2.1: A single UAV with six Degrees of Freedom 

Courtesy: unmanned.co.uk  
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Y-axis 

 

 

                                                                            V  

 

                                                                 

                                                             ψ  

       

Figure 2.2: Representation of a single UAV in XY-plane 

The planar kinematics model for a single UAV as shown in above figure is 

                                                                   

 

cos

sin

X V

Y V

ψ

ψ

ψ ω

=

=

=

&

&

&

 (2.1) 

where  X  and Y  are rectangular coordinates of the UAV , 

ψ   is the heading angle in the plane, 

The  speed V  and angular turn rate ω  are reference input. As vector relative degree of of the 

above model is singular then to solve this type of problem we have to add some states and 

input variables. So considered V   as a new state variable, and acceleration a  as a new input 

variable. 

 The state and input variables  for nonlinear model is declared as 

                                          

 

1

2 1

3 2

4

,

X

Y a

V

ξ

ξ η
η

ξ ψ η ω

ξ

   
   

      = = =         
   

  

 (2.2)                                         

The nonlinear kinematic model can be written as  

                                                            ( ) ( )f gξ ξ ξ η= +&
      

X-axis 
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where                

4 3

4 3

cos cos 0 0

sin sin 0 0
( ) , ( )

0 0 10

0 1 00

V

V
f g

ξ ξ ψ

ξ ξ ψ
ξ ξ

     
     
     = = =
     
     

    

                             (2.3) 

 

4 3

4 3

cos cos

sin sin

X V

VY

aaV

ξ ξ ψ

ξ ξ ψ
ξ

ωωψ

     
     
     = = =
     
     
     

&

&
&

&

&

  (2.4) 

 

Applying    input to state feedback linearization and mapping the change of state variables                     

 

11

22

4 33

4 34

( ) ,
cos cos

sinsin

Z X

Z Y
Z T

Z V

VZ

ξ

ξ
ξ

ξ ξ ψ

ψξ ξ

    
    
    = = =
    
    

    

 (2.5)

                                    

The input variable is defined as    ( )M uη ξ=    where  u    is new input variable      

        with 
3 3

3 4 3 4

cos sin
( )

sin( ) / cos( ) /
M

ξ ξ
ξ

ξ ξ ξ ξ

 
=  − 

 (2.6) 

 The linearization of the nonlinear model 

( )Z T ξ=               ⇒
T

Z ξ
ξ

∂
=

∂
&&  

The kinematics of single UAV can be written in linear form as 

   

 

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Z Z u

   
   
   = +
   
   
   

&  (2.7) 

                                                    Z EZ Fu⇒ = +&                                                                   

we can rewrite equation- as                 Z EZ Fu= +&
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 22 2

2 2 2

00

0 0

I
Z Z u

I

  
= +   

   

&  (2.8) 

with 4Z R∈   and 2u R∈  are the state and input to the system, respectively. 20  denotes the 2 

× 2 zero matrix and 2I denotes the 2×2 identity matrix. In order to simplify the notation these 

two matrices will be simply denoted as 0  and I  . 

2.2   The UAV Formation Problem under consideration  

 

 

 

 

 

 

 

 

Figure 2.3:   Vehicles having interconnected overlapping structure 

Here in the Fig.2.3 we have taken into account one platoon where 3 UAVs are present. The 

dotted line shows information structure constraint and the arrow is showing the  information 

flow from leader to follower. As the whole formation is symmetric so one platoon is 

considered for calculation. 

For thi vehicle out of q vehicles of a formation 

1

2 4

3

4

i

l
i i

i ll
i i

i

Z

Z Z
Z R

Z Z

Z

 
   
 = = ∈ 
     
 

 

.     with    

 
1 32 2

2 4

cos
,

sin

i i i i ip v
i i

i i i i i

Z X Z V
Z R Z R

Z Y Z V

ψ

ψ

       
= = ∈ = = ∈       
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 (2.9) 

Platoon #1 
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The vector iZ
 is spitted into two sub vectors, where the first sub vector p

iZ  includes position 

coordinates and the second sub vector v
iZ  includes speed coordinates of the thi vehicle [1]. 

This type of decomposition is chosen due to different treatment of the state variables. The 

goal is to control the vehicles in a formation by controlling variables that represent distances 

between vehicles (i.e., not positions of the vehicles), and variables that represent speed 

coordinates for each independent vehicle. The control input for the thi vehicle as defined in 

(2.6) will be denoted as iu  , where 2
iu R∈ .By imposing the information structure constraint 

that each vehicle, except the leading one, has state information about the vehicle in front of it, 

it is natural to decompose the formation into two platoons that share the leading vehicle. In 

Fig.1.1, the number of vehicles in the formation is equal to five and each platoon has three 

vehicles.  

For simplicity and without loss of generality, let us consider a platoon of  ‘r’ vehicles and 

introduce change of variables 

 

1 1 1

1 1

v v
d

p p p
i i i i

v v
i i di

e Z v

e Z Z d

e Z v

− −

= −

= − −

= −

 (2.10) 

where  1
ve  is the velocity error for the leader, p

ie  is the position error for the  thi  vehicle and  

v
ie is the velocity error for thi  the vehicle  and (2,3,.... )i r∈ . 2

1id R− ∈ is a constant desired 

Euclidean distance between the ( 1)i st− and thi vehicles, (2,3,.... )i r∈  and 2
div R∈ , 

represents the desired speed for the thi vehicle (2,3,.... )i r∈ . Let’s take a assumption that 

di dv v=   for all the vehicles as Euclidian distance between vehicles are assumed to be 

constant.    

The error dynamics can be formulated as   

 

1 1

1

v

p v v
i i i

v
i i

e u

e e e

e u

−

=

= −

=

&

&

&

 (2.11) 

                                                                                                                                                    

where  
1
ve  is error dynamics for leader  and  (2,3,.... )i r∈                                 
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The  goal is for the whole platoon i.e. formation to fly at constant desired speed dv  with 

desired spacing between vehicles, uniquely determined by desired Euclidean distances  

between successive vehicles equal to id ,  Let us take 3 vehicle as shown in Fig 2.2  or take 

platoon-1. The position of the leading vehicle is not needed because the leader is not 

following some desired path. 

The error dynamics for interconnected system is written as

                                         

 

1 1

2 2 1

2 2 2

33 3

3 3

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

v v

p p

v v

p p

v v

e e I

e e uI I

e e uI

I I ue e

Ie e

e Ae Bu

      
      −                = +        

    −     
               

⇒ = +

&

&

&

&

&

&

 (2.12) 

The system described by (2.11) can be considered as an interconnected system with 

subsystems having state variables that are defined as   1 1
ve e= ,

p
i

i v
i

e
e

e

 
=  

  
  for all (2,3,.... )i r∈          
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Chapter-3 

 

Inclusion Principle Based Decentralized 

Overlapping Controller Design 

 

3.1 Introduction 

Decomposition is a pre-requirement of decentralized control. A large scale system can be 

breakdown to number of lower dimension subsystem. There are different decomposition 

methods such as epsilon decomposition, BBD decomposition and overlapping 

decomposition. Within the mathematical frame work of inclusion principle the overlapping 

system is expanded into disjoint subsystems. Satisfaction of the inclusion principle is 

necessary  for transferring all the properties of original system to expanded system. Consider 

a continues LTI system     

 :i i ii i ii i i ii iS x A x B u and y C x= + =&  (3.1) 

where         , ,i im lni
i i ix R u R y R∈ ∈ ∈  are the state, input and output vectors respectively.  

while         

11 12 1

21 22 2

1 2

. .

. .

. . . . .

. . . . .

. .

n

n

n n nv

A A A

A A A

A

A A A

 
 
 
 =
 
 
  

  and    

    11 22[ .... ]NNB blockdiag B B B=  

    11 22[ ...... ]NNC blockdiag C C C=  
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In which  ,ij ii iiA B and C   are      sub matrices    of order ( ) , ( ) ( )i j i i i in n n m and l n× × ×
 where   

1, 2,...... 1,2,3......i N and j N= =  

Pair wise subsystem can be defined as 

 

0
: '

0

0

0

i ii ij i ii i

ij
j ji jj j jj j

i ii i

j jj j

x A A x B u
S

x A A x B u

y C x

y C x

         
= +         

         

     
=     

     

&

&
 (3.2) 

In this case, each subsystem 
iS   ( 1,2,... )i N=  is shared with N−1 different “pair-wise” 

subsystems , 1, 2,3....ijS j N=  and j i≠   so that it represents their over lapping part. Out of 

three structures viz : longitudinal ,radial and loop we considered  here longitudinal structure 

where each subsystem iS  is shared by only adjacent  subsystems 1, , 1i i i iS and S− +  

Let’s consider a state matrix A having interconnected overlapping elements represents 

below 

11 12

21 22 23

32 33

0 . 0

. 0

0 . 0

. . . . 0

0 0 0 0 NN

A A

A A A

A A A

A

 
 
 
 =
 
 
  

 

After applying inclusion principle  [2] the matrix  A  converted to expanded form A%   and the 

interconnected blocks are now decoupled into disjoint diagonal blocks. 

11 12

21 22

21 22

1, 1 1,

1, 1 1,

, 1

0 . . 0 0

0 . 0 0 0

0 . 0 0 .

. . . . . . .

. . . . 0

0 0 0 . .

0 0 0 . .

N N N N

N N N N

N N NN

A A

A A

A A

A

A A

A A

A A

− − −

− − −

−

 
 
 
 
 

=  
 
 
 
 
 

%
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                               Overlapping Controller Design 

 

                                    

 

 

 

S%  

 

         

                                                                                                                                                    

 

 

 

 

 

 

 

             

 

Figure3.1: Overlapping controller design 

(a) Overlapping subsystems; (b) expanded system (c) decentralized controller design  

  (d) Contracted closed-loop system                  

1S%  

X1 X2 X3 

X1 X2 X3 

X2 

X2 

1C%

 

2S%

 

2C%

 

S
 

S
 

C%
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In the Fig.3.1 overlapping controller design is presented. X1 and X3 is overlapping 

interconnected system where X2 is overlapping part. First apply some transformation so that 

the overlapping part is converted to disjoint subsystems 1S%  & 2S% .Then for each subsystem 

controller 1 2C and C% %  is designed independently and again applying some transformation 

the controllers are contracted back . 

3.2   Decentralization using Inclusion Principle 

Our objective here is to expand the interconnected system represented (2.12) into a space in 

which the subsystems will be decoupled. In order to do this we have to use the inclusion 

principle [1-2] for linear systems. 

Consider the system 

 0 0: , ( )S x Ax Bu x t x= + =&  (3.3) 

  nx R∈  is the state  and  mu R∈  is the control input 

The expanded system 

 0 0: , ( )S x Ax Bu x t x= + =% & % %% % % % %  (3.4) 

  
nx R∈ %%  is the state , mu R∈ %%  is the control input  with n n>% and m m>%   

Trajectories of system  S  and S%  is denoted as 0,( ; )x t x u  and 0,( ; )x t x u% % %  respectively. 

The system S and  S%  are related to each other by a transformation  

,

,

,

x Vx x Ux

u Ru u Qu

y Ty y Sy

= =

= =

= =

% %

% %

% %

  

The state expansion and contraction matrices are given below              

 , ,n n n n n nV R U R UV I R× × ×∈ ∈ = ∈% %
 (3.5) 

Similarly input  expansion and contraction matrices are                                 

 , ,m m m m m mR R Q R QR I R× × ×∈ ∈ = ∈% %  (3.6) 
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3.2.1 Inclusion Principle  

Definition 1[1,2] : 

System S%  includes system S  if for any initial state 0x  and any input ( )u t , If the following is 

 valid:                                  0,( ; )x t x u =U 0,( ; )x t Vx Ru% % %
 

Theorems presented here are referred in [1, 2]  

Theorem 1:  

System S%  includes system S  if and only if ,i i i iA UAV A B UA BR= =% % %   for {0,1,... 1}i n∈ −% .In 

other words, the inclusion principle formulates conditions under which the trajectories of the 

original system S  are included in the set of trajectories of the expanded system S% . 

Theorem -2: 

S  is a restriction of S%  if one of the following is true 

(a) AV VA=%  and BR VB=%  (restriction type(a)) 

(b) AV VA=%  and B VBQ=% ( restriction type(b)) 

If static feedback control laws for both systems are assumed to be in the form 

 
,

,

m n

m n

u Kx K R

u Kx K R

×

×

= ∈

= ∈ % %% %% %
 (3.7)                                                                                                          

The closed loop system in the original space 

 : ( )S x A BK x= +&  (3.8)                                                                                                            

is included in the closed loop system in the expanded space    

 : ( )S x A BK x= +% & % % %% %  (3.9) 

 if it satisfies Theorem-3 
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Theorem 3:  

S  is a restriction of  S%  if one of the following is true: 

(a) AV VA=% , BR VB=% , and KV RK=%  (restriction type (a)). 

(b) AV VA=% , B VBQ=% , and K QKV= %  (restriction type (b)). 

The interconnected system with subsystems that overlap can be expanded simply repeating 

overlapping parts such that in the expanded space subsystems appear disjoint.  

 By applying the inclusion principle to the error dynamics that is expanding both the states 

and inputs    by repeating the second vehicles state and input it can be written as         

            1 1 1 1,e e u u= =% %  

         

1
ll

i

l
i i

ll
i

e

e e

e

−
 
 

=  
 
 

%    and 1i

i

i

u
u

u

− 
=  

 
   , {2,3}i ∈      

The error dynamics for one platoon is interconnected overlapping subsystems & can be 

written as where dotted lines denote interconnected systems.

                                         

 

1 1

2 2 1

2 2 2

33 3

3 3

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

v v

p p

v v

p p

v v

e e I

e e uI I

e e uI

I I ue e

Ie e

e Ae Bu

      
      −                = +        

    −     
               

⇒ = +

&

&

&

&

&

&

 (3.10) 

The expansion and contraction matrices [2] for the state given as 

               

 

0 0 0 0 1 1
0 0 0 0 0

0 0 0 0 2 2

0 0 0 0 0 0 0 0 0 0

,0 0 0 0 1 1
0 0 0 0 0

2 20 0 0 0
0 0 0 0 0 00 0 0 0
0 0 0 0 0 00 0 0 0

I
I I

I

I I

V UI
I I

I
II

II

   
   
   
   
   = =   
   
   
   
    

 (3.11) 
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and similarly the input expansion and contraction matrices are 

                  

 

1 10 0 0 0 0
2 20 0

1 1
, 0 0 00 0

2 2
0 0

0 0 0 0
0 0

I I I
I

R Q I II

I
I

I

  
  
  
  = =
  
  
      

 (3.12) 

Using (3.10) and (3.7 -3.12) it is verified  that DA V VA=  and DB R VB= . Then, from 

Theorem-2 it follows that this expansion/contraction procedure satisfies the conditions 

definition 2(a) restriction type (a)).

               

 

1 1

1 1

2 2

2 2

2 2

3 3

3 3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

v v

v v

p p

v v

v v

p p

v v

e e I
e e I

e eI I

e e I

Ie e

I Ie e

e e

   
    
    
    
 −   
    = +    
    
    −    
     

   

&

&

&

&

&

&

&

1

1

2

2

30 0

0 0 0 0

D D

u

u

u

u

u

I

e A e B u

 
                        
 
 

⇒ = +& % %% % %

 (3.13) 

Static state feedback control law for expanded system is                                                       

 Du K e= %% %  (3.14) 

 

1 11 1

1 22 1

2 32 1 33 2 34 2

2 45 2

3 55 2 56 3 57 3

1

2

3

v

v

v p v

v

v p v

u K e Subsystem

u K e

u K e K e K e Subsystem

u K e

u K e K e K e Subsystem

= −

=

= + + −

=

= + + −

%

%

% % %

%

% % %

 (3.15) 

It is clear from the information structure constraint that the control action for each vehicle 

except leader depends on previous vehicles velocity, its own velocity and the distance 

between them.  
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Thus the controller in the expanded space is designed in the following way 

                     

 

11

22

32 33 34

45

55 56 57

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

D

K

K

K K K K

K

K K K

 
 
 
 =
 
 
 
 

%

%

% % % %

%

% % %

 (3.16) 

In order to satisfy the Theorem-3 the matrix and for proper contraction  DK%  is modified as 

 

11 22

11 22

34 45
32 33

34 45
32 33

55 56 57

( )
0 0 0 0 0 0

2

( )
0 0 0 0 0 0

2

( )
0 0 0 0

2

( )
0 0 0 0

2

0 0 0 0

DM

K K

K K

K K K
K K

K K
K K

K K K

 +
 
 
 +
 
 

= + 
 
 

+ 
 
 
 

% %

% %

% % %
% %

% %
% %

% % %

 (3.17) 

Here all subsystems are equal and so if 11 22 1K K K= =% % % , and 34 45 57 1K K K K= = =% % % % , from 

(3.16) and (3.17), it follows that the stability of the expanded closed-loop system will be 

preserved after modification. Let’s take 32 55 2K K K= =% % %  and 33 56 3K K K= =  for simplicity and 

DMK  is computed in the overlapping form as 

                                         

 

1

1

2 3 1

2 3 1

2 3 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

DM

K

K

K K K K

K K K

K K K

 
 
 
 =
 
 
 
 

%

%

% % % %

% % %

% % %

 (3.18) 

 

Then the controller gain in original system is contracted to 

                                                                                           

 

1

2 3 1

2 3 1

0 0 0 0

0 0

0 0
M

K

K K K K

K K K

 
 

=  
 
 

%

% % %

% % %
 (3.19) 

 So that the relation DM MK V RK=  is valid. 
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3.3   Robust Feedback Control law 

It is a new approach for robust stabilization of nonlinear system within LMI. The main goal is 

to formulate linear constant feedback laws that stabilize the system and maximize the bounds 

on the nonlinearity that the system can tolerate without going unstable. Here a method is 

discussed to compute a gain matrix in (3.18) that will robustly stabilize the expanded system, 

so that its contraction will stabilize the original system as well.  

Let the perturbed   kinematics model is                                                         

 ( ) ( )f g wξ ξ ξ= + +&  (3.20) 

where 4
1 2 3 4[ , , , ]Tw w w w w R= ∈  is a perturbation in the system which represents wind gust 

disturbances or uncertainties in the model description. Here only sector bounded 

perturbations will be considered i.e. perturbations that reside in some conical sector. 

( ) ( )
T T T T

Z f g u wξ ξ ξ
ξ ξ ξ ξ

∂ ∂ ∂ ∂
= = + +

∂ ∂ ∂ ∂
&&  

Z EZ Fu w⇒ = + +&  

   where                  
T

w w
ξ

∂
=

∂
 

                

                                     

 

11

22

4 3 3 4 33

4 3 3 3 3

0 0 0

0 0 0

0 0 sin cos

0 0 cos sin 0

wwI

wI w
w

Z ww

Z w

ξ ξ ξ

ξ ξ ξ

   
   
   = =
   − −
   

     

 (3.21) 

 It can be decomposed in another form  

where    

 
14 2

3

2

4
, ,

3

p

p v

v

ww Z
w R w w w R

w Zw

  −   
= ∈ = = ∈     

   
 (3.22) 
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After introducing perturbations, the coupled (2.12) become 

 

1 1 1

1 1

v

p v v p p
i i i i i

v v
i i i

e u w

e e e w w

e u w

− −

= +

= − + −

= +

&

& & &

&

 (3.23)

                                                   

where                                                (2,3,.... )i r∈  

The perturbation for the leading vehicle 1 1
ˆ vw w=  

for leading vehicle                                                                                                   

1
ˆ

ˆ , (2,3,.... )
ˆ

p p p
i i i

i v v
i i

w w w
w i r

w w

−
   −

= = ∈   
                       

   
In the case of three vehicles in the platoon, in the expanded space we got 

               

1 1

1

1

1 2

2

2

3

3

ˆ ,

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆˆ

ˆ

ˆ

v

v p
i

p v
i i

vv
i

p

v

w w

w

w

w w

w w w

ww

w

w

−

=

 
 
 
  
  
 = = 
  
  
 
 
  

%

%
         Where  1 1

ˆ vw w=                                           

By introducing perturbation into the kinematic model in (3.13) becomes                                              

 D De A e B u w⇒ = + +& % %% % % %  (3.24) 

In order to compute stabilizing feedback gains in the expanded space that only the thi  

subsystem from (3.24) is considered, because all the subsystems are identical and the 

subsystems are completely decoupled. 

                

 

0 0 0 0

0 0 0

0 0 0 0
i i i i

I

e I I e u w

I

   
   = − + +
   
      

&% % % %  (3.25) 
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 where      6
ie R∈%

                             i i i ie Ae Bu w= + +& % %% % % %

               

 41

2 3 1

0 0
i i

K
u e R

K K K

 
= ∈ 

 

%
% %

% % %
  (3.26) 

  and    6
iw R∈%

                                                             

             i iu Ke= %% %  

With  iw%  residing in the sector, that is                                        

 
2T T T

i i i iw w e W Weα≤% % % %  (3.27) 

where α  is a positive number to be maximized and 6PW R ×∈  (P  being an arbitrary positive 

integer) is a constant matrix (usually set to be identity). The matrix W  is chosen according to 

a predetermined knowledge about the perturbations, and if no particular knowledge about the 

perturbations is available it is set to be an identity matrix, meaning that the norm of 

perturbations is bounded by the scaled norm of the state variables 

As the subsystems are identical, the subsystems’ parameters , , ,A B K α% % % and W  are 

independent of i . 

To stabilize each subsystem, a quadratic Lyapunov function is taken 

                                                               ( ) T
i i iV e e Pe=% % %   ,  

where 6 6P R ×∈ is a positive definite matrix  is considered.  

  S-Procedure 

Let F and G be symmetric matrices of dimension n n× .  

Then    0Ty Fy p    holds whenever  0Ty Gy ≤  

If there exists a number 0τ >   such that  0F Gτ− p  

Schur Complement 

Schur complement is used to convert nonlinear inequalities to LMI. 
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                                Let 
( ) ( )

0
( ) ( )T

Q x S x

S x R x

 
> 

 
 

Where ( ) ( )TQ x Q x=  and ( ) ( ) , ( )TR x R x S x=  depends affinely on x  is equivalent to 

1( ) 0, ( ) ( ) ( ) ( ) 0TR x Q x S x R x S x−−f f  

From   Lyapunov function we can write 

0
0

T T
i iK K

i i

e eA P PA P

w wP

    +
    

    

% %
p    where KA A BK= +% % %  

From (3.27) we can write inequality form as 

2 0
0

0

T T
i i

i i

e eW W

w wI

α    −
≤    

    

% %
 

By putting S-procedure and Schur complement method finally we got LMI as 

                                            Minimize  γ  

                                            Subjected to 0Y f

                            

 0 0

0

T T T TAY YA BL L B I YW

I I

WY Iγ

 + + +
 

− 
 − 

% % % %

p  (3.28) 

which is an LMI optimization problem  in the scalar variable  2
1γ

α
= and the matrix 

variables L and Y (Y  is a scaled inverse of   P )where 1K LY −=%  and 1Y Pτ −=  .the matrix K%  

is same structure as L  with an imposed structure as follows:

                       

 

1

1

2

2 3 1

1

0 0
0 0

, 0 0

0 0

Y
L

L Y Y
L L L

Y

 
   = =   
    

 (3.29) 

Contraction of the feedback gains is carried over to the original space according to the 

inclusion principle.  
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3.4   Simulation results  

The formation of UAVs is designed by taking the nonlinear model of plant. The linear plant 

model is used to design control gains of error dynamics. As input to linear model and error 

model is same we use the K value the control gain in nonlinear plant. The control gain value 

K is calculated by the help of YALMIP toolbox [17] and sedumi solver.  From K value the 

K1, K2 and K3 value for 3 vehicles are extracted. Then by taking help of ODE-45 solver the 

nonlinear plant dynamics was solved for 3 vehicles. Different plots are drawn for different 

initial values of 3 vehicles taking some fixed desired velocity [ ]300 0 / sdV ft= or          

300 / sdV ft=  [1] and desired distance between [ ]400 400
T

d ft= [1]. The parameter α  

which determines the size of the sector is maximized at value 0.93. The matrix W  describing 

the shape of the sector was set to be identity matrix. 

Results of Formation of five vehicles using Inclusion principle 

 

 

Figure 3.2: Snapshots of the formation for one set of initial condition using inclusion principle 

( [300 0] / , [400 400] )T
dV ft s d ft= =  
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Figure 3.3: Snapshots of the formation for second set of initial condition using inclusion principle 

( [300 0] / , [400 400] )T
dV ft s d ft= =  

 

Figure 3.4 Snapshots of the formation for the piecewise defined trajectory using inclusion principle 

( 300 / ; [400 400] )T
dV ft s d ft= =  
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In Fig.3.2 and Fig.3.3 superimposed snapshots of formations for different sets of initial 

condition is presented taking time interval between 0 to 8 sec. In Fig.3.4  the snapshots of the 

formation with a desired trajectory which is piecewise continues is presented. The nominal 

speed dV  is [300 cos( / 3),300sin( / 3)],[300,0], [300cos( / 3),300sin( / 3)] / sftπ π π π−  where    

300 /dV ft s= . 

Horizontal distance between vehicle-1 and vehicle-2 and vehicle-2 and vehicle-3 is presented 

in Fig.3.5 and Fig.3.6 for one set of initial condition. 

 

Figure 3.5:  Horizontal distance between V1 and V2; ( [300 0] / , [400 400] )T
dV ft s d ft= =  

 

 

 

 

 

 

 

Figure 3.6:   Horizontal distance between V2 and V3; ( [300 0] / , [400 400] )T
dV ft s d ft= =
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3.5   Chapter Summary  

In this chapter the interconnected overlapping system is decoupled  into disjoint sub system 

by inclusion principle method. In section-3.2 inclusion principle is stated and explained .In 

section-3.3  robust static state feedback laws are designed and the stability of system is 

checked by  Lyapunov stability criterion. S-procedure  & Schur complement is explained. 

Finally the simulation results for the formation is presented taking different initial condition  

and the horizontal distance between vehicles are plotted. 
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Chapter-4 

 

Graph Theory Based Approach for 

Decentralized Overlapping Controller 

Design 

4.1   Introduction 

Graph Theory based approach for decentralization is used when there is a limitation on the 

availability of states i.e. only few numbers of outputs is available for constructing the control 

output. The control constraint is represented by binary information flow matrix [8]. When the 

matrix is block diagonal having block elements one, then the control structure is 

decentralized. In this approach only controller is decentralized into diagonal form.  

4.2   Decentralization using Graph Theory Approach 

Consider a LTI interconnected system S  consisting of   v  subsystems. Assume that the state-

space model for the thi  subsystem is described by 

 1( ) ( ) ( ) ( )
v

ji ii i ij j i i
j i

x t A x t A x t B u t=
≠

= + +∑&  (4.1)                                                                

                                               where : {1, 2,3,.... }i v v∈ =  

Where i in m

i ix R and u R∈ ∈  is the state and input for the thi subsystem, respectively. In (4.1) 

the term ,ij jA x j v∈  represents the effect of the thj subsystem on the dynamics of subsystem 

i . The system matrices , , ,i i ijA B and A i j v∈ are constant and have appropriate dimensions. 

The overall dynamics of the interconnected system S can be expressed as 
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1 2

1 2

1 2

( ) ( ) ( ) ( )

( ) [ ( ) ( ) .......... ( ) ]

( ) [ ( ) ( ) .......... ( ) ]

( ) [ ( ) ( ) .......... ( ) ]

T T T T
v

T T T T
v

T T T T
v

x t Ax t Bu t Ew t

where

x t x t x t x t

u t u t u t u t

w t w t w t w t

= + +

=

=

=

&

 

The local measurement output signal for thi local controller is represented by  

                       ( ) ( )i i iy t C x t=  

ir

i iwhere y R and C∈  is given a constant matrix of appropriate dimension 

                                       and       1

v

ii
m m

=
= ∑ ,        

1

v

ii
r r

=
= ∑                                                     

 

It is necessary to stabilize the system S by using a structurally constrained controller. These 

constraints determine which outputs ( )iy i v∈  are available to construct any specific input 

( )ju j v∈  of the system. In order to simplify the formulation of the control constraint, a block  

matrix K  with binary entries is defined, where its ( , )i j block entry, ,i j v∈  is a i jm r× matrix 

with all entries equal to 1 if the output of the thj subsystem can contribute to the construction 

of the input of the thi subsystem, and is a i jm r× zero matrix otherwise. The matrix K   

represents the control constraint, and will be denoted to as the information flow matrix. To 

control the system S  a local static output feedback controller be considered for thi sub system 

( ) ( )i i iu t K y t=  

 Overall we can say that    

 ( ) ( ) ( )u t Ky t KCx t= =  (4.2) 

Construct the matrix ( ) m rK s R ×∈  from K as follows.  

Replace the ( , )i j block entry of K , i,  j ν∈ , with ( ) i jm r

ijK s R
×

∈ if it is not a zero matrix, 

where ( )ijK s  is the rational transfer function matrix of a controller whose input and output 

are the output of the thj  subsystem and the input of the thi  subsystem, respectively. It is to be                            
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noted that ( ) m rK s R ×∈  represents the transfer function matrix of any structurally constrained 

controller.  

4.2.1   Graph Theory Procedures for Decentralization 

Consider the system S given by (4.1) Some procedures [8] are followed to construct a 

bipartite graph G for any given information flow matrix K , associated with S . 

Procedure-1[8] 

Construct the graph G  as follows 

1.  Define two sets of v  vertices. Label the sets as set 1 and set 2, and the vertices in each set 

as vertex 1 to vertexv . 

2. For any ,i j v∈ , connect the thi  vertex of the first set to the thj  vertex of the second set with 

an edge, if the ( , )i j  block entry of K  is not a zero matrix, i.e., if the output of the thj  

subsystem can contribute to the construction of the input of the thi  subsystem. Denote the 

gain of this edge with ( )ijK s . 

Procedure-2 (construction of bipartite graph G  with a decentralized 

structure from the graph G. 

Partition the graph G into a set of complete bipartite sub-graphs such that each edge of the 

graph G  appears in only one of the sub-graphs. It may happen  that this partition may require 

some of the vertices of the graph G to appear in multiple sub-graphs. Denote the resultant 

graph with G . 

It is not necessarily result in a unique decentralized graph  G  for a given graph G  

Procedure-3(Construction of matrix function ( )K s  correspond to graph G )  

Form a m r×  block diagonal matrix ( )K s , where m  and r  are the number of vertices in sets 

1 and 2of G , respectively, and the number of blocks on its main diagonal is equal to the 

number of partitioned sub-graphs in G . Label the complete bipartite sub graphs of G  as sub 

graphs 1 to v . Furthermore, label the vertices of sub graph l , l  =1, 2, ..., v  , as vertex l , ..., 
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η in subset 1 (corresponding to set 1) and vertex 1, ..., lη  in subset 2 (corresponding to set 2). 

The ( , )l l block entry of ( )K s , l  =1, ..., v , is a matrix whose ( , )i j block entry is equal to the 

gain of the edge connecting vertex i  of subset 1 to vertex j of subset 2 in sub graph l of G , 

for any i  ∈{1, ..., lη  }, j  ∈{1, ..., lη  }. Denote the ( , )l l  block entry of ( )K s with

( ) l lm r

lK s R ×∈ , for l  =1, 2, ..., v . 

Suppose that  ( )K s  is derived from  ( )K s  using procedures 1, 2 and 3.There exit constant 

matrices 1φ  and 2φ  which satisfy                                                    

 1 2( ) ( )K s K sφ φ=  (4.3) 

1φ   and  2φ  are  denoted as transformation matrix and can be calculated as follows 

Consider a matrix ( )K s with v v×  block structure. Choose at least one nonzero block entry 

from each block column and each block row of ( )K s and let them be denoted by 

1 2 2
, ......

i p pi j i j i jK K K Suppose that ( )
l li jK s l  =1, 2, ..., p, is the ( , )l li j′ ′  block entry of the matrix 

( )K s For any 1 ≤ g ≤ ν, 1 ≤ l  ≤ p, lg i≠ , the (g, li ′ ) block entry of the matrix 1φ  is 0
g il

m m×  

and also, for any 1 ≤ g ≤ ν, 1 ≤ l ≤ p, lg j≠ , the ( lj ′ ,g) block entry of the matrix 2φ  is 0
jr g

r r×

Furthermore, for any 1 ≤ l ≤ p, the ( ,( ) ( , )l l l li i and j j′ ′ block entries of the matrices  

and 2φ  are
il

mI  and
jl

rI , respectively. 

The system S  is an interconnected system an be represented as                                                               

 
( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +

=

&
 (4.4) 

                                       
1 2,where B B C Cφ φ= =

 

Where the set of closed-loop modes of the system S  under the controller ( )K s is equivalent 

to the set of closed loop modes of the system S under the controller ( )K s . Since the system 

S for the controller ( )K s behaves identically to the system under S  the corresponding 
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controller ( )K s  the problem of structurally constrained control design K(s) for the system S

can be redesigned as a decentralized controller ( )K s for the system S .  

Let  the system S  is stabilizable by a  information flow matrix K . It is necessary to find a 

structurally constrained LTI controller with the zero initial state and the transfer function 

( )K s corresponding to K , such that it minimizes the following LQR performance index: 

                          

 
0

(( ( ) ( ) ( ) ( ))T TJ x t Qx t u t Ru t dt
∞

= +∫  (4.5) 

 

where m nR R ×∈   and n nQ R ×∈  are  positive definite and positive semi-definite matrices. 

The  ( )K s can be calculated through Procedures 1, 2 and 3 so that 1φ
 obtained is equal to mI  

So finally we got       1 mIφ =  , 2 1 2( ) ( ) , 0K s K s and B B C C for tφ φ φ= = = ∀ ≥  . 

If the controller ( )K s is the optimal controller for the system S then the corresponding 

decentralized controller ( )K s  obtained by using Procedures 1, 2 and 3 is the optimal 

decentralized controller for the system S with respect to the performance index J  

 

4.3     Controller Gain restructuring using Graph Theory 

According to information structure constraint each vehicle except leader has information 

about the states of the vehicle in front of it and its own state .We can say that the output from 

vehicle-1 is fed to its own and vehicle-2 and similarly for vehicle-2 its information is 

available for vehicle-2 and vehicle-3.If we use output feedback approach then the control 

gain matrix for system S  

   

    

11 2 2 2 4 2 4

21 2 2 22 2 4 2 4

2 2 32 2 4 33 2 4 6 10

1 2 3

1 ( ) 0 0

( ) 2 ( ) ( ) 0

3 0 ( ) ( )

K

K s K K

K K

× × ×

× × ×

× × × ×

 
 =  
  

                                                          (4.6) 
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If we will draw the graph for controller gain matrix it looks like 

 

                                     Figure 4.1: Graph G  corresponding to gain matrix ( )K s  

 Then applying procedure 1, 2 and 3 and we got optimal LTI controller gain ( )K s  .the arrow 

marks shows the flow of information from one vertex to other [10]. 

 

 

Figure 4.2: Decentralized graph G  obtained from G  

From the Fig.4.2    the decentralized gain matrix is formulated as 

 
11 2 2 2 2 2 4 2 4 2 4

2 2 21 2 2 22 2 4 2 4 2 4

2 2 2 2 2 4 32 2 4 33 2 4 6 16

1 1 2 2 3

1 ( ) 0 0 0 0

( ) 2 0 ( ) ( ) 0 0

3 0 0 0 ( ) ( )

K

K s K K

K K

× × × × ×

× × × × ×

× × × × × ×

 
 =  
  

 (4.7) 
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We got            1 6Iφ =            and            

2 2 2 4 2 4

2 2 2 4 2 4

2 4 2 4 4 4 4

4 2 4 4 4 4

4 2 4 4 4 4 16 10

0 0

0 0

0 0

0 0

0 0

I

I

I

I

I

φ

× × ×

× × ×

× × ×

× × ×

× × × ×

 
 
 
 =
 
 
    

The transformed C matrix is               2C Cφ=  

So closed loop dynamics of decentralized system S  is 

                                          ( ) ( ) ( )x t A BKC x t where B B= + =&
 

4.4 A D-K type iteration algorithm   

Consider   a linear time invariant continuous time system  

x Ax Bu

y cx

= +

=

&

 

The static output feedback control law is      u Ky Kcx= =  

The closed loop system is defined as ( )x A BKC x= +&  

Algorithm 

1. Initialize gain  0 , 0 ( )K i any positive value= >  

2. Solve for P using the following optimization problem: 

 

                                       Minimize    α  

' ' ' ' 0

0

PA A P PBKC C K B P I

P

α+ + + + p

f
 

 

3. Consider a small perturbation in P as ˆP P Iε= + ,where Î is an appropriate 

dimensional matrix with all its elements equal to 1.This is to avoid convergence of P

to a block-diagonal matrix, which is important considering co-operative nature of the 

decentralized control problem. In present case, we have used 0.1ε = . 

 

4. With the above value of P , obtain K from the following: 

Minimize    α  
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0

0

0

0.1 0

100 0

T T T T

T

PA A P PBKC C K B P I

P

k K

K I

k

k

α+ + + + <

>

 
> 

 

− >

− <

 

5. If α is negative then stop and the obtained value of K is the desired solution. Else go 

to Step 2 with the updated K . 

 

4.5   Simulation results  

The formation of UAVs is designed by taking the nonlinear model of plant. The linear plant 

model is used to design control gains of error dynamics. As input to linear model and error 

model is same we use the K value the control gain in nonlinear plant. The control gain value 

K is calculated by the help of LMI toolbox. From K value the K11, K21, K22, K32, K33 

value for 3 vehicles are extracted. Then by taking help of ODE-45 the nonlinear plant 

dynamics was solved for 3 vehicles. Different plots are drawn for different initial values of 3 

vehicles taking some fixed desired velocity [ ]300 0 / sdV ft= or 300 / sdV ft=  and 

desired distance between [ ]400 400
T

d ft= [1]. The formation is symmetric triangular 

structure so after getting the result for one platoon the second platoon is solved. It is a closed 

loop system so by putting only initial condition i.e. by giving only initial position and 

velocity of vehicles we will get result and from the result it is observed that how the 

followers are following the leader. 
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Figure 4.3: Snapshots of the formation for the piecewise defined trajectory using Graph  Theory approach   

( [300 0] / , [400 400] )T
dV ft s d ft= =

 

     

 

Figure 4.4: Snapshots of the formation for the piecewise defined trajectory using Graph Theory approach 

( [300 0] / , [400 400] )T
dV ft s d ft= =  
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Figure 4.5: Snapshots of the formation for the piecewise defined trajectory using Graph Theory approach

( 300 / , [400 400] )T
dV ft s d ft= =

 

In Fig.4.3 and Fig.4.4 superimposed snapshots of formations for different sets of initial 

condition is presented taking time interval between 0 to 8 sec. In Fig.4.5 the snapshots of the 

formation with a desired trajectory which is piecewise continues is presented . The nominal 

speed dV  is [300 cos( / 3),300sin( / 3)],[300,0], [300cos( / 3),300sin( / 3)] / sftπ π π π−  where 

300 /dV ft s= . Horizontal distance between vehicle-1 and vehicle-2 and vehicle-2 and 

vehicle-3 is presented in Fig.4.6 and Fig.4.8 for one set of initial condition  

 

Figure 4.6: Horizontal distance between V1 and V2 ; ( [300 0] / , [400 400] )T
dV ft s d ft= =  
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Figure 4.7: Horizontal distance between V2 and V3; ( [300 0] / , [400 400] )T
dV ft s d ft= =  

Discussion  

From the above simulation results it is clear that all the vehicles formation tracks its desired 

velocity and desired spacing more quickly in the inclusion principle method than the graph 

theory approach. Generally   it is taking 5 sec more than the inclusion principle to converge to 

its steady state. In inclusion method the expanded system which is produced is uncontrollable 

one. The contraction of the designed controller is very difficult task when there is multiple 

overlapping. In graph theory based approach only controller structure is expanded to 

decentralized structure instead of decentralization of whole plant structure. So graph theory 

approach based decentralization is more efficient and computationally less complex. 

4.6     Chapter Summary 

In this chapter graph theory based approach is used for decentralization of control gain. Here 

the original graph corresponding to gain matrix K  is transformed to number of bipartite sub 

graphs from which decentralized gain matrix K  is obtained. Then the transformation of all 

other matrices are obtained by transformation matrix .Finally D-K iteration is used to get the 

control gain values and simulation results are presented for formation of 5 UAVs. 
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Chapter 5 

 

Delay Tolerability in Overlapping 

Control 

 

5.1   Introduction 

In a distributed or decentralized control system time delays exists in information exchange 

between different control agents. Time delays in system dynamics have significant impact on 

performance and stability of the system. So this problem is generally taken into account at the 

time of controller design. Basically there are two kinds of delay in multi agents systems like 

the formation control problem (1) Communication Delay (2) input delay. Delay which occurs 

in between the communication from one agent to another is called communication delay and 

another delay is related to processing and connecting time for the packets arriving at each 

agent. It can also occur between actuator and controllers when they are connected by 

networks. Here communication delay is considered in our problem. Although decentralized 

control is used where delay is minimal but our goal is to determine the maximum delay, the 

formation can tolerate. Delay margin is defined as maximum time delay, the system can 

tolerate before going to unstable. 

5.2   Closed loop Dynamics  

The overlapping control gain K  which shows the information flow between agents  is 

decomposed into diagonal and off-diagonal blocks. From chapter-4  it is clear that the thi

local output feedback  gain  is denoted iK . 
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The diagonal matrix    of control gain K  is known as decentralized gain matrix K   and  the

( , )i i  block entry of K    is equal to iiK . The   off diagonal matrix is known as overlapping 

gain matrix and denoted by K% . Its   ( , )i j  block entry i j≠  is ijK . 

 So finally we can write as the control input as     

 
1,

( ) ( ) ( )
v

i ii i i ij j jj j i
u t K C x t K C x t h

= ≠
= + −∑  (5.1) 

and generalized expression      ( ) ( ) ( )u t KCx t KCx t h= + −%  

where ‘ h ’ is the  communication delay   

the closed loop system dynamics is written as  

 ( ) ( ) ( ) ( )x t A BKC x t BKCx t h= + + −%&  (5.2) 

Here some assumptions have taken for nontrivial solution. It is assumed that at least one of 

the local controllers can access at least one of the other subsystem’s measurement signals 

through a communication link. Let the vehicle 2 can access the local measurement of other 

vehicles and while vehicle -1 and vehicle-3 can access the measurements of vehicle-2. 

The control gain matrix K  is written as  

11 2 2 12 2 4 2 4

21 2 2 22 2 4 23 2 4

2 2 32 2 4 33 2 4 6 10

( ) ( ) 0

( ) ( ) ( )

0 ( ) ( )

K K

K K K K

K K

× × ×

× × ×

× × × ×

 
 =
 
    

The corresponding bipartite graph is 

 

Figure 5.1 Graph G for time delay system 
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The above Fig.5.1 shows that time delay exists when information is transmitted from one 

vertex to another vertex (different number of vertex). There is no time delay for the same 

vehicle or vertex. 

From this the diagonal and off-diagonal blocks are extracted as  

2 2 12 2 4 2 4

21 2 2 2 4 23 2 4

2 2 32 2 4 2 4 6 10

0 ( ) 0

( ) 0 ( )

0 ( ) 0

K

K K K

K

× × ×

× × ×

× × × ×

 
 =
 
  

%  

11 2 2 2 4 2 4

2 2 22 2 4 2 4

2 2 2 4 33 2 4 6 10

( ) 0 0

0 ( ) 0

0 0 ( )

K

K K

K

× × ×

× × ×

× × × ×

 
 =
 
  

 

and we got transformation matrix is  

2 2 2 4 2 4

4 2 4 4 4 4

2 2 2 4 2 4

4 2 4 4 4 4

4 2 4 4 4 4

4 2 4 4 4 4

4 2 4 4 4 4 24 10

0 0

0 0

0 0

0 0

0 0

0 0

0 0

I

I

I

T I

I

I

I

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × × ×

 
 
 
 
 

=  
 
 
 
 
 

 

Frequency domain analysis is widely used for testing the stability criterion both for linear and 

nonlinear systems with tools such as describing function, Popov criterion, circle criteria and 

some frequency sweeping tests. Frequency sweeping test are generally more favoured 

because of its simplicity and computational ease and can be checked graphically. 

There are two stability notions  

• Delay independent stability 

• Delay dependent stability 

Consider a LTI delay system described by state space equation 

 0 1
( ) ( ) ( ) , 0,

m

k k kk
x t A x t A x t r r

=
= + − ≥∑&  (5.3) 

 where 0 , n n
kA A R ×∈ are system matrices and kr  are delay times. 
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The above system is stable independent of delay if the stability persists with respect to all 

possible nonnegative delays and if the stability persists only for a subset of nonnegative 

delays then it is known as delay dependent stability. 

5.2.1   Frequency Sweeping Test 

It is one of the frequency  domain stability analysis method of time delay system.  

Let’s take a time delay system with a single delay  

 0 1( ) ( ) ( ), 0x t A x t A x t τ τ= + − ≥&  (5.4) 

The quasipolynomial for the system is given by 

 0 1( , ) det( )s sa s e sI A e Aτ τ− −= − −  (5.5) 

The necessary and sufficient condition for stability independent of delay 

Theorem -1[12]  

The system is stable independent of delay if and only if 

1.  0A is stable 

2. 0 1A A+ is stable   and 

       3. 
1

0 1(( ) ) 1, 0j I A Aρ ω ω−− ∀p f  (5.6) 

Theorem-2[12] 

Let the system in eqn-5.4 is stable at 0τ =   

                                                     Let 1( )rank A q=
 

Define  

0 1
1

0 1

min ( , ) (0, ), [0,2 ]
:

( , ) 1, (0, )

i
k

i
ji i ik

i k k kik n
ki

if j I A A e for some

j I A A

θθ
λ ω ω θ π

ωτ

ρ ω ω

−

≤ ≤


− = ∈ ∞ ∈

= 
 ∞ − ∀ ∈ ∞ f

        (5.7) 

                                     Then 
1
min i

i q
τ τ

≤ ≤
=  
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The system is stable for all [0, )τ τ∈  but becomes unstable at τ τ=  

     where τ  is known as delay margin (maximum tolerable delay) 

5.2.2   Computation of Delay Margin 

1. Compute the generalized eigen values 0 1( , )i
i kj I A Aλ ω −  by gridding the frequency axis. At 

each gridding point calculate the generalized Eigen value 

2.  If 0 1( , ) 1, 0j I A Aρ ω ω− ∀f f  then we conclude that the system is stable for all

[0, )τ ∈ ∞  

3. Otherwise find the  critical values  ( , )i i
k kω θ  which yields delay margin when 

0 1det( ) 0i
kj I A Aω − − ≠  

 

From DK iteration and the graph theory based approach discussed in chapter-4  the controller 

gain values obtained as  follows 

11

12

21

22

18.0874 0.0005
,

0.0005 18.0874

17.2478 0.0013 1.9965 0.0013
,

0.0013 17.2478 0.0013 1.9965

6.0567 0.0053
,

0.0053 6.0567

2.0180 0.0015 17.0089 0.0005

0.0015 2.0180 0.0005 17.008

k

k

k

k

− 
=  − 

− − − 
=  − − − 

− 
=  − 

− −
=

− −

23

32

33

,
9

7.6645 0.0002 0.5902 0.0006
,

0.0002 7.6645 0.0006 0.5902

5.7726 0.0002 2.6051 0.0036
,

0.0002 5.7726 0.0036 2.6051

10.5003 0.0008 17.0949 0.0012

0.0008 0.5003 0.0012 17.0949

k

k

k

 
 
 

− − − 
=  − − − 

− − 
=  − − 

− 
=  −   
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The error model of the formation in the relative co-ordinates is obtained from chapter-2,   

(2.12) 

 

1 1

2 2 1

2 2 2

33 3

3 3

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

ll ll

l l

ll ll

l l

ll ll

e e I

e e uI I

e e uI

I I ue e

Ie e

e Ae Bu

      
      −        

       = +        
    −     

               

⇒ = +

&

&

&

&

&

&

 (5.8) 

By taking closed loop system model and assuming that the matrix C as identity matrix the 

time delay equation is obtained. From frequency sweeping test delay margin is obtained as

h τ= =  0.19 sec 

The state variables of error dynamics of single UAV are plotted below for delay margin   0.17 

sec. 

The  error states are broadly discussed in chapter-2 now it can be represented by new variable 

like        1 [ 13 14]ll Te Z Z= , [ ]2

2

21 22 23 24
l

T

ll

e
Z Z Z Z

e

 
= 

  
, [ ]3

3

31 32 33 34
l

T

ll

e
Z Z Z Z

e

 
= 

  
 

 

Figure 5.2:State response of  vehicle-1 for h=0.17 sec. 
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Figure 5.3: State response of vehicle-2 for h=0.17sec 

 

Figure 5.4: state response of vehicle-3 for h=0.17 sec 

In the above figures we plotted the states of error equation for 3 UAVS taking  delay margin 

into  account. From the graphs it is found that the error goes to zero after 3.5 sec.  
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5.3   Chapter Summary 

In this chapter, different time delays of a large scale system have been discussed .The delay 

tolerability and the system stability  of   system is calculated by frequency sweeping test in 

section  5.1.1 and 5.2.2 .Some simulation results are presented  for error dynamics  by taking 

communication delay into account. 
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Chapter 6  

 

Conclusion and Scope for Future Work 

6.1   Conclusion  

In this thesis leader follower type formation for UAVs has been designed with information 

structure constraint that the follower has only the information about leader in front of it hence 

reducing the communication overhead. Two decentralization techniques, i.e. inclusion 

principle and graph theory approach have been studied and applied to triangular formation of 

five UAVs. In the inclusion principle, the original interconnected system is expanded to 

disjoint subsystems and controller has been designed separately, where as in the graph theory 

approach only the controller is expanded to disjoint ones. The Static state feedback control 

laws are designed in the expanded space using inclusion principle and the graph theory 

approaches. D-K iteration, S-procedure techniques and LMI and YALMIP toolboxes are used 

to obtain the control gains of the formation. Then expanded subsystems are contracted back 

to original space for implementation. From the simulation result it is clear that inclusion 

principle approach takes less time for formation but the expanded system is uncontrollable 

and contraction of the designed controller is very difficult task. The graph theory approach 

gives better stability to system. Delay tolerability is calculated by adding communication 

delay in information exchange between two UAVs. The system is converted to time delay 

system and then frequency sweeping test is carried out to check the stability analysis and to 

get the maximum tolerable delay i.e. delay margin. 

6.2   Scope for future work 

In future work the discrete time domain can be used for design of formation control problem. 

Instead of constant time delay, uncertain time delay information flow may be considered. 

Performance criterion like pole placement, disturbance rejection will be considered in future. 

Different shape of formation which increases the no of overlapping can be taken into account 

and the dynamics of UAV may be taken. 
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