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Abstract

An Application Specific Instruction Set Processor (ASIP) is widely used as a

System on a Chip(SoC) Component. ASIPs possess an instruction set which is tai-

lored to benefit a specific application. Such specialization allows ASIPs to serve as

an intermediate between two dominant processor design styles- ASICs which has high

processing abilities at the cost of limited programmability and Programmable solu-

tions such as FPGAs that provide programming flexibility at the cost of less energy

efficiency. In this dissertation the goal is to design ASIP, keeping in mind a temper-

ature sensor system. The platform used for processor design is LISA 2.0 description

language and processor designing environment from CoWare. Coware processor de-

signer allows processor architecture to be defined at an abstract level and automatic

generation of chain of software tools like assembler, linker and simulator for functional

verification followed by RTL level description. RTL level description is used to gen-

erate synthesized report of the design using RTL compiler and finally the layout is

created using Cadence encounter.

Keywords: 32-bit embedded processor, Language for Instruction Set Architecture(LISA),

Coware, Register Transfer Level(RTL), XILINX, Cadence RTL compiler, Cadence En-

counter,
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1.1 Motivation Introduction

1.1 Motivation

Sensor network is one of the most interesting research area with a profound effect

on technological developments. With the development of micromechanics, microelec-

tronics and integrated circuits, it is possible to integrate sensors, processing units

(microcontrollers), memories, wireless communication modules and power supply sys-

tems (e.g. batteries) in a single node , these sensor nodes are spread widely in a

big area and it is very difficult (or sometimes impossible) to recharge their batteries.

Therefore, battery life and power consumption are extremely important for single

sensor nodes and whole networks.

A wireless sensor network is a collection of nodes organized into a cooperative

network. Each node consists of processing capability (one or more microcontrollers,

CPUs or DSP chips), may contain multiple types of memory (program, data and flash

memories), have a RF transceiver (usually with a single omni-directional antenna),

have a power source (e.g., batteries and solar cells), and accommodate various sensors

and actuators. The nodes communicate wirelessly and often self-organize after being

deployed in an ad hoc fashion. Systems of 1000s or even 10,000 nodes are anticipated.

Such systems can revolutionize the way we live and work. Currently, wireless sensor

networks are beginning to be deployed at an accelerated pace. It is not unreasonable

to expect that in 10-15 years that the world will be covered with wireless sensor

networks with access to them via the Internet. This can be considered as the Internet

becoming a physical network. This new technology is exciting with unlimited potential

for numerous application areas.

Generally in a sensor node the processor which is used there is like a general

purpose processor its area and power is not optimizes according to the application of

that sensor node where as an Application Specific Instruction Set Processor (ASIP)

has an instruction set optimized for a single application or a class of applications. On

one hand, a DSP ASIP is a programmable machine with a certain level of flexibility,

which allows it to run different software programs. On the other hand, its instruction

set is designed based on specific application requirements making the processor very

suitable for these applications. Low power consumption, high performance, and low

2



1.2 Sensor network Introduction

Figure 1.1: Block Diagram of a sensor node

cost by manufacturing in high volume can be achieved. The specialization of an

ASIP provides a tradeoff between the flexibility of a general purpose CPU and the

performance of an ASIC. The flexibility of these processors can be achieved by many

Architecture Description Language (ADLs) like LISA, EXPRESSION etc..

1.2 Sensor network

Sensor networks consist of very small nodes that are deployed in some geographical

area. These sensors are small, with limited processing and computing resources.

These sensor nodes can sense, measure, and gather information from the environment

and, based on some local decision process, they can transmit the data to the user.

A typical sensor node consists of 4 main parts. Power supply, sensor and analog to

digital converter (ADC), processor and storage memory, finally, transceiver to send

and receive data. Fig.1 shows the block diagram of a sensor node.

The sensor of the node senses the changes in the environment and gathers the

signal then the analog to digital converter converts the analog signal to digital data.

Those data are send to the CPU, in the CPU the processor process the incoming data

then send those data to the transceiver and also store those data in the memory. The

transceiver transmit those data to the user end as well receive data from the user.

For all these process a battery power supply is always there. battery life and power

3



1.3 Types of processors Introduction

consumption are extremely important for single sensor nodes and whole networks.

Minimizing the power consumption of a sensor network is a holistic problem and

needs cares from the whole design hierocracy, including low-power design efforts in

sensors, wireless transmission modules and communication protocols. In the paper, we

mainly focus on the techniques to minimize the power consumption of processing units

(sensor network processors). The power consumption of a sensor network processor

comes from two sides:

The standby power consumed when the processor is in idle states;

The active power consumed when the processor is executing codes processing

samples from sensors, executing communication protocols, etc.

For conventional processors, standby power may be negligible. However, for a sensor

network processor spending most (may be 99 percentage) of its time in idle states,

standby power is very important. For example, a microprocessor with a 200 A standby

current will have a maximum lifetime of 1 year when powered by an AA-size battery

even if it never leaves the standby state. In contrast, the lifetime of a microprocessor

that burns only few A of leakage current will be completely dominated by battery

self-discharging and the active work to be done.

1.3 Types of processors

Processors mainly refer to the architecture of the computation mechanism employed

to obtain the desired functionality of a system. The processors may be programmable

or non-programmable, depending upon the application. They can be specialized and

implement only a single function, or be general purpose and implement a wide range of

functions. The main feature which governs the use of different types of processors for

different applications are the design metrics. Some of the most commonly considered

design metrics are NRE cost, flexibility, performance, power consumption, size, time-

to-prototype and so on.

4



1.3 Types of processors Introduction

Figure 1.2: (a)General Purpose Processor,(b)Application Specific Instruction-set Pro-

cessor,(c)Single Purpose Processor

1.3.1 General Purpose Processors

A General Purpose Processor (GPP) or microprocessor as it is generally called is a

programmable device that has the aim of implementing a large number of applications

such that the number of devices sold is maximized. The main features of this processor

are that, the program memory is not built-in to the circuit, since it has to run different

programs at different times and it has a general data path, with a large register file

and one or more general purpose Arithmetic and Logical Units (ALUs).

It has good time-to-market and NRE costs since only the program has to be

changed for the different applications without any change in hardware. Flexibility

is also high due to the same reason. However, the performance is poor for certain

applications and the size and power consumed are also high, because of the large

hardware size.

5



1.4 Literature Review Introduction

1.3.2 Single Purpose Processors

A Single Purpose Processor (SPP) is a processor or a digital circuit which is designed

to execute only a single program. For example, the circuit used for image processing in

a digital camera is a SPP which has the single function of processing the input image

and storing it for subsequent retrievation. It has almost the opposite features of a

GPP, since it has a small register file, a dedicated data path with an ALU performing

only a limited number of operations and no provision of altering the program memory.

It has several design benefits, since the performance may be fast, power consump-

tion less and also small size. However, it has the disadvantages of having very high

NRE costs, low flexibility and longer design time.

1.3.3 Application Specific Instruction-set Processor

An Application Specific Instruction-set Processor (ASIP) serves as a compromise be-

tween a GPP and a SPP. It is a programmable processor which has an optimized data

path for implementing only a particular class of operations. Several special function-

alities may be added while unnecessary ones eliminated. Microcontrollers and Digital

Signal Processors (DSPs) are some of the most common types of ASIPs in use. They

have a program memory that can be changed for different applications and limited

register-memory file depending upon the type of application and memory use.

It has the advantages of having flexibility, at the same time achieving good perfor-

mance, low power consumption and optimum size. The drawback is that it requires

large NRE cost to manufacture, especially to design the compiler. Certain design en-

vironments such as CoWare offer the benefit of automatically generating the compiler

which has greatly reduced the cost and time of manufacturing the device.

1.4 Literature Review

Wireless sensor networks (WSN) consist of a large number of wireless sensor nodes

deployed randomly in the area. The nodes collect the environmental data and send

them through the network towards the sink node. The nodes are constructed to be

6



1.4 Literature Review Introduction

operational for a long time without replacing the batteries. Therefore, one of the

primary goals when designing sensor nodes is to reduce the power consumption. To

minimize the power of a sensor node, researchers tend to combine novel architec-

ture solutions with advanced power saving techniques. In [1], authors proposed an

application specific architecture that integrates an event processor that assists main

microcontroller executing required system tasks. The presented approach promises

good power optimization, but no real world implementation results have been pre-

sented. The approach in [2] utilizes hardware acceleration and optimized radio in a

highly integrated single-chip solution. It applies an 8- bit data, 16-bit instruction

CPU with reported size of 0.381 mm2 in a 0.25um process. The reduction of power

in sensor node radio is also investigated. One novel approach to low power radio is

presented in Pico Radio project [3]. Some researchers propose use of wake-up radio

in order to reduce the radio power. Wakeup radio serves as a low-power switch to

the node transceiver [4]. The implementation of advanced power-saving techniques

such as dynamic voltage scaling [5] and power gating [6] promises to deliver additional

reduction of node power consumption. The energy harvesting is also considered as a

feasible solution to extend the battery life [7]. Using an asynchronous processor in

the design of a sensor node is proposed in [8]. Another solution is an asynchronous

architecture of a sensor node presented in [9]. The later solution includes additionally

an energy harvesting circuit. However, no implementation results for those solutions

have been presented. Fully asynchronous architecture is difficult to implement and it

requires all peripherals to have a dedicated asynchronous interface.

The concept of instruction set oriented ASIPs is well known in the technical liter-

ature. In a concise overview of ASIP design issues [10] is given. The reviewed ASIP

design flows are targeted at performance constraints and do not take into account the

energy consumption of the implementation. Furthermore, the described design flows

frequently separate ASIP architectural design space exploration from ASIP instruc-

tion set synthesis. In the currentwork, these design steps are combined, because the

instruction set is viewed as an interface to the architecture with mutual dependencies.

As a consequence, architecture and instruction set are jointly optimized in order to

7



1.4 Literature Review Introduction

obtain optimum results. There are various ASIP design tools for the complete ASIP

design flow from application to implementation. In the PEAS [11] design environment

is described which generates an instruction set simulation model and a synthesizable

model from an architectural processor description. The MetaCore DSP development

system [12] is an ASIP design tool which supports design space exploration and de-

sign generation. In the design flow, the development tools like C compiler, assembler,

and ISA simulator as well as the HDL description of the processor are generated. In

[13] the ISDL machine description language is used to generate a bit true instruction

level simulator and a synthesizable Verilog processor description.There are also some

design tools presented in the literature focusing on a subset of the ASIP design flow.

A framework for Compiler-ASIP codesign with feedback from an optimizing compiler

to the ASIP design is described in [14]. In [15] the RECORD compiler is presented

which uses a structural RTL model of a DSP as a starting point of the compiler gen-

eration. In [16] authors present a highly efficient processor design methodology based

on the LISA 2.0 language. Typically the architecture design phase is dominated by

an iterative processor model refinement based on the results of hardware and software

simulation and profiling.
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2.1 Implementation of Application Specific Instruction Set Processor (ASIP)ASIP Design Methogology

2.1 Implementation of Application Specific Instruc-

tion Set Processor (ASIP)

An ASIP has an instruction set optimized for a single application or a class of appli-

cations. On one hand, an ASIP is a programmable machine with a certain level of

flexibility, which allows it to run different software programs. On the other hand, its

instruction set is designed based on specific application requirements making the pro-

cessor very suitable for these applications. Low power consumption, high performance,

and low cost by manufacturing in high volume can be achieved. The specialization

of an ASIP provides a tradeoff between the flexibility of a general purpose CPU and

the performance of an ASIC. The flexibility of these processors can be achieved by

many ADLs like LISA, EXPRESSION, MIMOLA etc. An ASIP DSP has a dedicated

instruction set and dedicated data types. When designing an ASIP DSP, functions

are mapped to subroutines consisting of assembly instructions. When designing an

ASIC, the algorithms are directly mapped to circuits. However, most DSP applica-

tions are so complicated that mapping functions to circuits is becoming increasingly

difficult. On the other hand, mapping DSP functions to an instruction set is becom-

ing more popular because the challenge of complexity is handled in both software

and hardware, and conquered separately.A simplified block diagram of DSP processor

architecture is shown in figure 2.1.

A DSP processor contains five key components:

• Program memory (PM) is used to store programs (in binary machine code). PM

is part of the control path.

• Programmable FSM block consists of a program counter (PC) and an instruc-

tion decoder (ID). It supplies addresses to the program memory for fetching

instructions. Meanwhile, it also performs instruction decoding and supplies

control signals to the data processing unit and data addressing unit.

• Data memory (DM) stores information to be processed. Three types of data are

stored in Data Memory. Those are input/output data, intermediate data in a

10



2.1 Implementation of Application Specific Instruction Set Processor (ASIP)ASIP Design Methogology

Figure 2.1: DSP Processor Architecture

computing buffer (a part of the data memory), and parameters or coefficients.

The data memory addressing unit is controlled by programmable FSM and

supplies addresses to data memories.

• The data processing unit, or datapath, performs arithmetic and logic computing.

A DU includes at least a register file (RF), a multiplication and accumulation

unit (MAC), and an arithmetic logic unit (ALU). A data processing unit may

also include some special or accelerated functions.

• I/O serves as an interface for functional units connected to the outside world.

I/O also handles the synchronization of external signals. Memory buses and

peripherals are also included.

11



2.2 ASIP Design Flow ASIP Design Methogology

2.2 ASIP Design Flow

Processor design is a complicated process. Without an advanced design flow, a pro-

cessor cannot be designed in time and the quality of the design will not be high. The

design flow is therefore essential for complicated systems such as ASIP. The ASIP de-

sign flow is introduced briefly here. The ASIP design flow is divided into three parts:

architecture design, design of programming tools, and firmware design, as depicted in

Figure 2.2.The first and most important step in the design of a processor is the in-

struction set design. This design step is complicated, and no one can really claim that

a certain instruction set is the best. The instruction set design is a trade-off among a

multitude of parameters including performance, functional coverage, flexibility, power

consumption, silicon cost, and design time. In Figure 2.2, a simplified design flow is

described including the basic flow for the design of an instruction set architecture.

The starting point of the design of anASIP is the application analysis.Application

coverage should be specified first and then translated to functional (algorithm) cover-

age. Application coverage is the process of reading and understanding specifications

and standards of the relevant applications. Functional coverage of an ASIP is decided

based on both the current standard specifications and carefully collected knowledge

features for future usage. Performance and cost should also be specified as design

constraints.

After the functional coverage is determined, the partitioning of hardware and

software should be decided through profiling of the source code. Hardware/software

partitioning for an ASIP is to meet the performance constraint by defining what

functions should be accelerated by application-specific instructions and what functions

should be implemented as software routines using conventional instructions. This is

an important design step of an instruction set, which is called the 10 percent to 90

percent code locality. The locality rule means that 10 percent of the instructions run

90 percent of the time and 90 percent of the instructions appear only 10 percent of

the time during execution. In other words, ASIP design is to find the best instruction

set architecture optimized for the 10 percent most frequently used instructions and

to select those among the 90 percent of the not often used instructions in order to
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Figure 2.2: The ASIP Design flow

guarantee the functional coverage.

During the process of hardware and software partitioning, the instruction set of

the ASIP is gradually specified.The next design step is to implement the instruction

set, which includes instruction coding, design of the instruction set simulator, and

benchmarking.The coding of the instruction set includes the design of the assembly

syntax and the design of the binary machine codes. The instruction set simulator must

13
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be implemented after the instruction set has been coded. Finally, the instruction set

must be evaluated by benchmarking. The performance of the instruction set and the

usage of each instruction will be exposed as inputs for further optimization.

The ASIP architecture can be specified when the assembly instruction set is re-

leased. The microarchitecture design is a refinement of the architecture design in-

cluding fine-grained function allocation and hardware pipeline scheduling, specifying

hardware modules,and interconnections between modules.

TheASIP design flow starts from the requirement specification and finishes after

the microarchitecture design.The design of an ASIP is based mostly on experience,

and it is essential to minimize the cost of design iteration.

2.3 Architecture Exploration

Architecture exploration phase is used to effectively map an application onto a dedi-

cated processor architecture. Until a hardware implementation is found this process

iteratively evaluates the alternatives. Hardware/soft-ware partitioning is also included

here. Decisions are made to divide different parts of the application which will be ex-

ecuted either on dedicated hardware circuits or will be implemented in software. This

phase has the central component which is the processor model. This is either specified

in a low abstraction level that is in hardware description language or in the processor

simulator which is in higher abstraction level. The complete micro architecture of the

model is described in HDL where as the simulator tells only the architecture aspects of

the processor resources, instruction coding, and the temporal behavior of operations.

2.3.1 Architecture Implementation

RTL processor model is created in this phase. Register Transfer Level is a Hardware

Description Language (HDL) coding style that describes the processor in the form of

registers and interconnected logic. The LISA compiler should derive all the necessary

information from the given LISA description since the generated HDL model does not

have any predefined components. Then the generated HDL model can be compared
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Figure 2.3: Comparision of HDL And LISA model

to the LISA model components as shown in the figure 2.4.

• LISA memory model derives the memory configuration which summarizes the

registers and the memory sets

• Resource models gives the idea about the structure of the architecture such as

pipeline stages and pipeline registers.

• Functional units are either generated as empty frames or with fully functionality

depending on the HDL language used.

• Coding information in the instruction set model and the timing model results

the decoders.

• Pipeline controller is also generated from the above.

The designer will have full control over the generated HDL model with all its

components. The generated HDL model can be analyzed with respect to power,
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area and time constraints and the optimized HDL model can be replaced with the

handwritten HDL code written by the experienced designers.

A synthesis tool can be used to generate a gate level netlist automatically which

specifies all logic gates and interconnects that are part of the processor model. In an

automatic place and route step the location of the gates and the conducting paths

are determined. The result of this step is a geometric description of the processor

hardware. In this phase no further addition is allowed in the architecture of the

programmer’s model. Only the architecture can be optimized wrt. Instructions and

addressing modes etc. Verification is the major focus here.

2.3.2 Software Application Design

In this phase the software development tools like assembler, linker and debugger

are developed those are used to create the application’s binary code. Ultimately it is

clear that after the architecture exploration phase C compiler is created. Furthermore

support libraries (e.g. standard library, floating point emulation) need to be created.

Additionally the operation system (e.g. Windows/Unix) needs to be considered. The

complete toolchain is usually driven by a graphical user interface - an integrated

design environment (IDE), that needs to be developed, too.

2.3.3 System Integration and Verification

A processor simulator without the simulation environment of the entire SOC is not

very useful. Through this approach we can interact with other processors, co proces-

sors, ASICs, busses and other peripherals.

2.4 Field of Application

A consistent design flow for system level, processor architecture and software ar-

chitecture is needed which can be done at LISA processor design platform (LPDP)

environment. CoWare Inc. has the commercial version of the above platform. LISA

describes the behavior, structure and the input/output interfaces of a processor ar-
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chitecture in a hierarchical manner. Different types of processors are supported by

this environment including ARM7, C62, C54x and ASIPs.

Out of the above said four phases mainly two phases are taken into consideration

in this project for architecture design. However for implementation purpose hardware

description languages are used to model the underlying hardware as shown in the

figure 2.5.

Figure 2.4: Exploration and Implementation

It is very advantageous to combine both of the development process and the HDL

description. Here the LISA compiler can generate both of these. After design explo-

ration and application design the target architecture needs to be implemented.
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3.1 CoWare Design Flow

Figure 3.1 shows the flow for Coware Processor Designer Platform. The design flow

concentrates on Hardware Software Co-Design. As Shown in the figure, a LISA 2.0

description of the processor is written. The Coware Processor Designer then generates

software development tools. Any particular application can then be fed to these

software development tools. The executable file is then analyzed using the Processor

Debugger. Once the design goals are met, the synthesizable RTL can be generated.

The advantage of this flow is that if the design goals are not met, we just have

to change the LISA description of the processor. The processor generator does the

appropriate changes in the software development tools and the RTL.

Figure 3.1: CoWare design flow block diagram

Its advanced and flexible features are

• Automatic generation of synthesizable RTL with both control and datapath.

• Accurate profiling capabilities for high speed instruction set simulator.
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• Compatible with extensively used synthesis tool like SYNOPSYS and physical

design tool like Cadence Encounter.

• Software development tool generation like assembler, linker, debugger, C- com-

piler.

• Integrated profiling helps to optimize instructions for the target architecture.

• Enables the design team to develop flexible and reusable ASIPs rapidly.

3.2 Designing Application-Specific Processors with

ADLs

The typical design flow of a microprocessor and the associated tools was introduced

in Fig.3.3. In the classical approach, we start with an architecture description and

then develop the instruction set and architecture. We then write the HDL code for

the processor and write, based on this developed architecture, the development tools

(e.g., the instruction set simulator (ISS), the C compiler, the assembler, et cetera).

While this hand-coded HDL may allow us to obtain an extremely small core-size by

taking advantage of the underlying logic blocks (e.g., PicoBlaze by Xilinx used the

32x1 LUT to implement the processor registers and save many resources), the disad-

vantage is that any changes in hardware also need to be coded in all the development

tools. This is considered a major source of cost and inefficiency in embedded pro-

cessor design when using HDL. Architecture Description Languages (ADLs) allow a

microprocessor to be modeled in all levels of the design [5,6] with just one consistent

description. With ADLs the microprocessor design process becomes efficient and re-

liable. Let us have a brief look at available ADLs and their features. Early ADLs

were either structure-oriented (MIMOLA, UDL/I) or behavior-orientated (Valen-C or

ISDL). Later, mixed ADLs such as nML, LISA, HMDES, ASIP meister, Flexware,

TDL, and EXPRESSION adopted an integrated approach: the language captures

both the structural as well as the behavioral design of the embedded processor, often

called an Application-Specific Integrated Processor (ASIP).
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Figure 3.2: Processor Design using LISA. (a) Architecture explorations: ISA, caches,

co-processor. (b) SW tools: C-compiler, assembler, linker, instruction set simulator,

profiler. (c) Implementation: size, power, speed.

Several of these tools have been developed in academia, and some have become

commercial tools. Currently, three professional packages are available that have a full

tool set including VHDL/Verilog code generation: nML, ASIP Meister, and LISA.

The nML comes with a Chess/Checkers retargetable C compiler, an RTL synthesis

generator GO, and RISK a test-program generator. These commercial tools have been

used in a wide variety of products, such as portable audio and hearing instruments by

Cool-Flux, Wireline modems ADSL2+ by STMicroelectronics, wireless modems HS-

DPA by Nokia, and TI video accelerators and network processors [5]. ASIP Meister

is a GUI-based processor system and has been used by 180 academic institutions in

37 countries since 2002. Since 2006 ASIP Solution Inc. has taken over the mainte-

nance and further development of ASIP Meister. The GUI-based platform is somehow
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more restrictive that nML or LISA, but allows a much improved development time.

MIPS processor for instance could be developed in 8 h, and DLX in only 3.5 h [5].

The Language for Instruction Set Architecture (LISA) [6,17] allows to specify first

an instruction- or cycle-accurate lP using a few LISA operations, then to create ar-

chitecture exploration using a tool generator and profiler, and to finally determine

speed/size/power parameters via automatically synthesized VHDL or Verilog code.

The LISA tools developed at ISS RWTH Aachen are now the Processor Designer

product of Coware/Synopsys Inc. (CA, US)[17,6]. The LISA tool environment is

shown in Fig.3.3. The design flow (see Fig.3.2) is similar to the classic approach, the

only difference is that one LISA 2.0 based processor description is used to specify the

behavior of the microprocessor as well as the generated development tools. We de-

cided to use the LISA tool sets since they are available at University pricing, provide

HDL production quality code, and offer many different ASIP starting point models.

The authors have developed tutorials for a iterative LISA-based processor refinement

which are used at FSU for embedded lP design course and have been posted online

recently [18,19]. Although LISA is used in this study similar hardware acceleration

results are expected with other tools such as nML,ASIP Meister, or EXPRESSION.

3.3 The LISA processor models

The LISA processor designer (PD) design flow was used to develop the embedded

processors in this study. The LISA language supports a profile-based and stepwise

refinement of processor models down to cycle-accurate and even VHDL or Verilog

RTL synthesis models for fast custom VLSI implementation. Microprocessors from

simple RISC to highly complex VLIW processors have been described and successfully

implemented using the Processor Designer for FPGAs and cell-based ASICs. There

are more than 40 LISA models in both industry and academia from different archi-

tectural categories (RISC, PDSP, and ASIP) available [2023]. These include different

ARM and MIPS models: PDSP from TI and StarCore, as well as ASIPs from Infineon

(ICORE), STMicroelectronis, etc. LISA has been adopted by several leading ASIC

houses and has over 40 members in the CoWare PD University program.
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Figure 3.3: LISA Development tools. Disassembler (Left). Memory monitor and

Pipeline profiles (Center). Source files and register window (Right)

3.4 CoWare Processor Designer

CoWare Processor Designer is an automated, application-specific embedded processor

design and optimization environment. The Processor Designer is the top-level model

managing tool of the Processor Designer product family and is intended to facilitate

designing LISA 2.0 models of processor architectures in the LISA 2.0 language. Figure

3.4 shows the Processor Designer Main Window

The key to Processor Designers automation is its Language for Instruction Set Ar-

chitectures, LISA 2.0. In contrast to SystemC, which has been developed for efficient

specification of systems, LISA 2.0 is a processor description language that incorpo-

rates all necessary processor-specific components such as register files, pipelines, pins,

memory and caches, and instructions. It enables the efficient creation of a single

golden processor specification as the source for the automatic generation of the in-

struction set simulator (ISS) and the complete suite of software development tools,
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Figure 3.4: CoWare Processor Designer Main Window

like Assembler, Linker, Archiver and C-Compiler, and synthesizable RTL code.

The development tools, together with the extensive profiling capabilities of the

debugger,enable rapid analysis and exploration of the application-specific processors

instruction set architecture to determine the optimal instruction set for the target

application domain. Processor Designer enables the designer to optimize instruction

set design, processor micro-architecture and memory sub-systems, including caches.

Processor Designers use of a single high-level processor specification ensures the

consistency of the ISS, software development tools and RTL implementation, eliminat-

ing the verification and debug effort necessitated by multiple, independently-created

models.
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3.5 The Instruction Set Designer

The Instruction-Set Designer is a graphical user interface (GUI) for viewing, editing,

and creating LISA processor models. Having a graphical representation of a processor

model rather than just the source code makes it much easier to get an overview

and understand its hierarchy.Instruction sets can be designed and maintained in an

intuitive way without having to cope with all the details of the syntax of the LISA

language. Figure 3.5 shows the Instruction Set Designer Window. The Instruction-Set

Figure 3.5: Instruction Set Designer Window

Designer does not replace the text editor; rather complements it. You can arbitrarily

switch between the graphical and the textual representation. Changes made to the

model in the GUI only result in minimal changes to the LISA code. All comments

and formatted code are preserved. While the LISA hierarchy and the encoding of the

instruction set is most efficiently designed with the GUI, the processors resources and

the hardware behavior is still manually written as LISA code.

3.6 Simulation in CoWare Processor debugger

The simulation in the CoWare processor debugger can be described by following three

step process Figure 3.6 represents that . The assembler and the linker are the standard
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software tools generated by the LISATek product family. An assembly file is written

corresponding to the instruction set defined for the processor.

Figure 3.6: Simulation in CoWare Processor debugger

The assembler takes this file as input and outputs a ”.lof” file, among other files.

The linker takes in the ”.lof” file as input and together with ”.cmd” file having specified

format, it generates the executable ”.out”, which can be used to run on the virtual

QSIP architecture.

Figure 3.7: Processor Debugger Window
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3.7 CoWare Processor Debugger

The Processor Debugger GUI allows you to observe, debug, and profile the executed

application source code and the state of the processor by visualizing all processor

resources and the output which is produced by the executed application. Figure 3.7

shows the Processor Debugger Window for a loaded application.

Furthermore, this GUI is intended to analyze and debug the LISA 2.0 processor

model with special regard to the hardware behavior, instruction set, micro-architecture,

and memory subsystem. The underlying ISS is derived from the LISA 2.0 model of

the processor architecture.

3.8 Major Benefits

• Design teams can rapidly develop flexible and re-usable application specific em-

bedded processors section which include essential SoC functionality, through:

– Rapid architecture design with LISA 2.0 by any designer conversant with

C/C++

– Automatic generation of software development tools and simulator

– Instruction set profiling and optimization are easy to meet or beat perfor-

mance objectives

– Synthesizable RTL for both control and datapath hardware can automati-

cally generated, with robust links to established RTL simulation and syn-

thesis tools

– An automated , unified methodology that ensures consistency of hardware

implementation, simulation model and software development tools imple-

mentations with the high level design specification

• Enables embedded software application development and debug with greatly

reduced time to market through:

– Early commencement of software development
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– Reduced software application design and development time

– Fast and accurate instruction set simulator
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4.1 LISATEK Design Methodology

The idea of the LISATek design flow is to define a programmable platform tailored

to a specific application domain. This puts a heavy burden on the ASIP designer to

compose a capable platform from a huge design space for the target application. The

goal of the LISA 2.0 based processor design flow is to guide the designer from the

algorithmic specification of the application down to the implementation of the micro-

architecture. In every phase of the processor design the designer maintains an abstract

model of the target architecture written in the LISA 2.0 language. The language

LISA 2.0 is aiming at the formalized description of programmable architectures, their

peripherals and interfaces. LISA 2.0 is not a completely new language it is an

extension to C. The hardware behavior as well as processor resources like registers

are modeled in pure C, whereas LISA 2.0 adds on top of the Clanguage capabilities to

describe an instruction-set with its binary encoding and assembly syntax. Also, LISA

2.0 allows to express timing in processors. An example is a pipelined architecture

where instruction execution is spread over multiple cycles. LISA 2.0 is very easy to

learn so that a couple of days is sufficient to become familiar with this language.

From such a model, a working software development tool set supporting the eval-

uation tasks for the current development phase can be generated automatically. The

first stage of the design process is concerned with the examination of the application

to be mapped onto the processor architecture. Critical portions of the application

need to be identified that will later require parallelization and specific hardware ac-

celeration. For this reason the design space exploration starts with the definition of

the processors instructionset.

The two main ASIP development phases of the LISA 2.0 based design flow are

shown in figure 4.1. On the left hand side the architecture exploration phase with

the software development tool generation is visualized, on the right hand side the

implementation phase which starts with the automatic creation of an RTL model of

the ASIP.

As a starting point for model creation CoWare LISATek provides a library of sam-

ple models which contains processors that are already tailored to specific applications.
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Figure 4.1: CoWare design flow block diagram

These processors efficiently implement algorithms like turbo decoding and the FFT.

Also, there are sample models for different architecture categories available which

cover DSPs, micro controllers with specific features like SIMD (single instruction

multiple data) which is popular in the multimedia domain as well as the increas-

ingly popular VLIW architectures which comprises massively parallel functionality.

It is important to distinguish these sample models from configurable template models

where only some parameters may be changed. Taking such models as a basis has the

major advantage to directly have compiler support for the architecture due to the

existence of an instruction-set. This makes the C- and instruction profiling of the

application possible from the very beginning of the architecture development. The

simulator which is derived from this model constitutes a virtual machine executing

the application directly. The profiling capabilities of the simulator are used to gen-

erate execution statistics of the application code. Once the profiling information is

gathered, critical portions which require parallelization are identified. Based on the
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profiling results the instruction-set is adapted until the application profiling meets the

given criteria.

At this point in the design phase the designer has to consider different aspects of

the micro architecture. The major exploration and optimization point is the pipeline.

The designer has to decide how many pipeline stages are required with respect to

control flow instructions and the efficient implementation of hardware loops and in-

terrupts. For the performance of the architecture it is important to avoid data hazards

during program execution. For this reason data bypassing may be implemented when

specifying the pipeline of the processor. This mechanism serves already calculated

results to pipeline stages prior in the pipeline. The intention of this mechanism is

to bypass data storage in registers or memories. Having an optimal pipeline in an

ASIP requires a memory subsystem to support this pipeline with memory data fast

enough because otherwise the pipeline has to be stalled working on the application

while waiting for the memory data. The memory hierarchy directly contributes to the

performance of the memory subsystem, thus, the developer has to consider it carefully.

Caches with varying parameters are widely used to enhance the performance of the

memory subsystem. Here the cache parameters i.e. the cache size and the cache read

and write policies must be determined with respect to the target application. Addi-

tionally, the designer has to evaluate the role of a memory managing unit (MMU) and

has to check the performance of the utilized bus to ensure the optimal configuration

of the utilized memories. A very powerful capability of the LISA 2.0 language besides

its ability to model arbitrarily complex processors is a special template library with

memory modules which can be easily parameterized from within the LISA 2.0 model.

Using these library elements, caches, MMUs and buses can be easily modeled.

When assigning different parts of the instruction execution to the already defined

pipeline stages the developer must care about resource sharing and the length of the

critical path in the emerging architecture. This is important for an efficient hardware

implementation of the ASIP. Here the required chip area and the gate count are

commonly used constraints which directly refer to the power consumption of the

resulting hardware. The critical path is important, since its length limits the clock
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speed which is another important criteria when designing an ASIP.

When the architecture meets the design criteria and efficiently implements the ap-

plication, in a final architecture development step hardware implementation is done.

Synthesizable HDL RTL code (currently VHDL and Verilog) for the control and data

path of the processor can be derived from the abstract processor model automati-

cally. This includes the entire hardware model structure such as the pipeline, pipeline

controller including complex interlocking mechanisms, forwarding, etc. to steer the ar-

chitectures behavior and an implementation of the data path which is directly derived

from the behavioral specification in the LISA 2.0 model. Having the RTL generation

capabilities in the processor exploration loop allows to easily explore the trade off area

vs. timing (clock speed) vs. flexibility. Based on the simulation and synthesis results

of the hardware, the abstract LISA 2.0 model might be modified to meet power, area

and frequency constraints. Due to the fact that RTL and ISS simulator are derived

from a sole processor model, they are automatically consistent. It is obvious that

deriving both software tools and hardware implementation model from the same ar-

chitecture specification in LISA 2.0 has significant advantages. Only one model needs

to be maintained, even if changes to the micro-architecture or the behavior in the

hardware model must be realized.

Once the processor design is finished, a set of production quality software develop-

ment tools is generated from the LISA 2.0 model. These software tools (C-compiler,

assembler, linker) can compete well in terms of functionality and feature richness with

state-of-theart tools from Greenhills, ARM, etc. The generated C-Compiler is an op-

timizing compiler which is capable of generating code which is close to handwritten

assembly code. In addition to these generated software development tools a macro

assembler and an archiver are provided for the LISATek product family.

In order to be able to integrate into system simulation environments (SoC) to

gather realistic stimuli from the system, LISATek generates processor simulators

which couple directly with the following tools: CoWare ConvergenSC, Cadence Inci-

sive, Mentor Graphics Seamless CVE, OSCI reference simulator as well as with any

Cbased environments. The generated simulators automatically interface with popular
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busses like AMBA AHB and can be extended to work with proprietary buses easily.

The generated instructionset simulators (ISS) support system simulation on differ-

ent levels of abstraction from cycle accurate to untimed system simulations. Utiliz-

ing the patent pending Just-In-Time-Cache-Compiled (JITCC) simulation technology

LISATek simulators run at a very high speed.

Moreover, LISATek tools support multi-processor debugging in such a system.

Here, the designer can debug one ore more processors with a single graphical debug-

ger. The verification of the ISS vs. the RTL model can be performed by using the

IBM Genesys [17] test-generation tool. Genesys is a test-generator which has been

exclusively developed for validating processors. It works based on a test plan and

generates test programs automatically which are run directly on an ISS. Finally the

test-program together with the expected result values in the processor are given. A

major benefit of the LISATek approach is the fact that the designer has neither to be

a software nor a hardware expert. So a single person can cover a broad spectrum of

development tasks which cannot be covered by the traditional ASIP design approach.

4.2 LISA Description

A LISA 2.0 processor description mainly consists of hardware and software model of

the architecture. The hardware model comprises the definition of processor resources

like registers, memories, pipeline and buses for accessing memories. The software

model comprises the definition of the processor instruction set, their binary instruction

coding, assembly syntax and response of the processor hardware to instruction.

The acronym of LISA that is ”Language for Instruction Set Architecture” give a

clear idea that it is a language by which we can model any architecture that is driven

by an instruction set. LISA is a mixed behavioral/structural modeling language for

the formalized description of programmable processor architectures, their peripherals

and interfaces. LISA is having so much flexibility that the elements of this language

are generic enough to build any kind of target architectures like general purpose

processors, RISC processor, DSPs, ASIPs, and so on. The instruction resource is

often a register that is referred as IR (Instruction Register). Instruction resource in
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LISA can be a memory location, an input pin array, or a concatenation of multiple

storage elements.

The idea of the LISATek design flow is to define a programmable platform tailored

to a specific application domain. This puts a heavy burden on the ASIP designer to

compose a capable platform from a huge design space for the target application. The

goal of the LISA 2.0 based processor design flow is to guide the designer from the

algorithmic specification of the application down to the implementation of the micro-

architecture. In every phase of the processor design the designer maintains an abstract

model of the target architecture written in the LISA 2.0 language. The language

LISA 2.0 is aiming at the formalized description of programmable architectures, their

peripherals and interfaces. LISA 2.0 is not a completely new language it is an

extension to C. The hardware behavior as well as processor resources like registers

are modeled in pure C, whereas LISA 2.0 adds on top of the Clanguage capabilities to

describe an instruction-set with its binary encoding and assembly syntax. Also, LISA

2.0 allows to express timing in processors. An example is a pipelined architecture

where instruction execution is spread over multiple cycles.

4.3 Hardware Modelling (RESOURCE Section)

The RESOURCE section lists the definitions of all objects which are required to build

the memory model and the resource model. These resources represent the current

state of the processor. Each time the processor performs one control step - this can

be an instruction, cycle, phase - the processor is driven into a new state according

to the behavior of the functional units.The Resource declarations follow the style of

variable declaration in C and data values of resources are treated like variables in C.

However, they can only be declared outside the scope of operations. Consequently,

all resources are defined globally and visible for all operations. This resembles the

properties of hardware components that are global by their nature. The RESOURCE

section allows the declaration of the following types of objects:

Simple Resources:
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• Register and Register Flags

• Ideal Memory Arrays

• Signals and flags

• Other resources that are not visible in the architecture

Memory Maps:

• The mapping of memories into processor addresses space.

• The connectivity between memory and bus modules.

The Pipeline structure for instruction and data paths. Pipeline registers storing

data on its way from one pipeline stage to the next. And some no ideal memories

such as Caches, Buses etc. as a part of the memory subsystem.

4.4 Software Modelling

The software model of the processor consists of processor instructions that are imple-

mented using operations. An operation represents a basic entity in LISA 2.0 model.

They represent behavior, structure and instruction set of the programmable archi-

tecture. The execution of any instruction ultimately leads to the execution of corre-

sponding instruction. An operation possesses several attributes which are described

below.

• The DECLARE element is used to reference elements from other operations and

to define used resources.

• The CODING includes the binary coding of the instructions as a sequence of

coding fields. The value can be ”0”, ”1”, or ”X”, all equally interchangeable.

Alternatively, it can reference the coding field of other LISA operations.

• The SYNTAX describes the assembler syntax that references variables via labels.
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• The BEHAVIOR description is included in the processors data path function.

Coding is sequential, just as in regular C coding.Resources such as registers,

memories, flags, and pins can be accessed, modified, and stored.

• The ACTIVATION allows a LISA operation to activate another operation or a

group of operations typically for the next pipeline stage and also includes the

coding root tree specification with CODING AT.

• The DOCUMENTATION allows specification of a description that will be in-

cluded in the instruction set manual generated automatically by the PD.

Each tool derived from LISA models needs a subset of these sections to perform

its particular task. For example, the Assembler utilizes the information contained

in the CODING and SYNTAX sections, since this tool maps the instruction syntax

onto a binary coding word, while the De-assembler works the other way round. For

this reason, it also makes use of the CODINGand SYNTAX sections. The Simulator

depends on the information of the BEHAVIOR sections, while the operation scheduler

relies on the ACTIVATION section.
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5.1 Processor Specification

The designed processor is based on a 32-bit architecture with the following specifica-

tions:

Figure 5.1: Processor Specification

5.2 Processor Specification Description

5.2.1 Instruction Length

The total number of bits used to represent an instruction including the opcode and

operands. The current instruction being executed is stored in the instruction register

(IR).

5.2.2 Opcode Length

The number of bits reserved for the opcode segment of the instruction. Since the

opcode length is 8-bits, the total number of instructions that can be defined is 28 =

256.
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5.2.3 GPR (General Purpose Register)

Eight GPRs each 32 bits in length have been defined to store any transient data

required by the program.

5.2.4 Program Counter (PC)

The Program Counter keeps track of the next instruction to be executed. It stores

the address of the program memory location corresponding to the next instruction.

The IR in turn is loaded with the instruction from the memory location pointed to

by the PC at the start of the next clock cycle. Since the PC is 32 bits in length, it

can point to a program memory with 232 locations.

5.2.5 Program Memory

The program memory stores a sequence of instructions comprising the program that

implements the application functionality. The address space of the program memory

for the designed architecture is 232 as the PC length is 32-bits. However, due to

resource constraints of the final implementation platform, the range is kept limited

to 0x1000 memory locations (0x0000-0x0FFF). Also, each memory location is 32-bits

long in accordance with the IR length which is also 32-bits long.

5.2.6 Data Memory

The data memory stores the input data on which the program operates as well as the

final results computed from the operation. Each memory location is 19-bits in length

i.e., same as that of a GPR and hence data can be transferred from memory to GPR

in just one clock cycle. The defined range is 0x0000-0x8FFF (0x9000 locations).

5.2.7 Pipeline

A computer program is, in essence, a stream of instructions executed by a processor.

These instructions can be re-ordered and combined into groups which are then exe-

cuted in parallel without changing the functionality of the program. This is known as
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instruction-level parallelism and implemented through pipelining. The designed ar-

chitecture implements a 3-stage pipeline. The three stages comprise of the following

stages:

• FE (Fetch and Decode): Fetching the instruction from the IR and decoding its

functionality.

• DC (Address Generation): Generating the address of the data memory locations

that store the required operands. Also, the branch address in the program

memory as specified by the flow control (branch) instructions is generated in

this stage.

• EX (Execution): Actual execution of the fetched instruction occurs in this stage.

Figure 5.2: Pipeline Stages

FE and EX stages occur for every instruction. AG stages occur only for those

instructions that require data memory access or involve branching in program memory

(Flow control instructions).
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6.1 The generated HDL model structure

The Processor Generator tool provided in the Processor Designer generated the syn-

thesizable RTL for both the processors. The structure of the generated HDL is given

in the Figure.6.2 Resource model and memory model of LISA tells the information

about register, memory configuration, pipeline sets and pipeline registers. To gen-

erate the base structure of a HDL model this information is used. Different entities

are there in the base structure for the register esources, memory resources and the

pipeline.To model the register behavior the register resources are completely gener-

ated at RTL level. As the memory entity is left empty the designer has the freedom

to place any desired memory model into this entity.

To model the register behavior the register resources are completely generated at

RTL level. As the memory entity is left empty the designer has the freedom to place

any desired memory model into this entity. In the pipeline there are several entities

representing the pipeline registers and stages. Further the pipeline has the controller

which has been derived from the LISA model. LISA has the ability to provide a

formalized way to initiate several pipeline functions like stall, flush. So the HDL gen-

erator can use these information. The pipeline decoder which is placed in the pipeline

stage entities drives the pipeline controller. The entities having the functional units

are contained in the pipeline stages. More precisely, the functional units implement

the data path and will be discussed in detail later. Besides decoder, multiplexers are

generated to avoid driver conflicts. the information about the exclusiveness from the

coding information included in the LISA instruction set model is derived by the HDL

generator.

6.2 HDL Modules Overview

This section provides a closer look at the generated HDL code structure. Consider

the following LISA model with the RESOURCE section.

The above code sample shows a three-stage pipeline, some global registers, a pro-

gram and data memory. It also includes some UNIT declarations to group the op-
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Figure 6.1: LISA Code

erations of the model into functional units. This leads to the following HDL code

structure showen in Figure 6.1.

All generated files for the entities VHDL respective modules Verilog have the

suffix-gen, which allows you to store unique hand-written HDL modules in the same

source directory without the danger of accidentally overwriting them. In general, the

entity/module name is the same as the file name, without the suffix-gen. The following
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Figure 6.2: HDL Code Structure

modules can be identified in the above figure:

6.2.1 Architecture (My Model-gen):

This is the top-level module. The module name is the name of the LISA model,

defined as Architecture Name in the Processor Compiler Setup dialog box of the

Processor Designer. It instantiates three submodules: MemoryFile, pipe (named

after the pipeline name) and RegisterFile. Beside this, all global signals in the design

(declared as nonclocked registers) are implemented in this module. As this module is

the top-level module of the generated HDL code, its interface are the main input and

output ports, as there are:

• Clock and reset input Their names, defined in the Processor Generator config-

uration are retained throughout the whole design.

• Input and output ports of the LISA model (PINs), if present.

• Input and output ports for a memory, if configured to be external.
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6.2.2 Memories (MemoryFile-gen):

This module implements the interface to all memories, in the example the interface to

the program memory prog-mem and data memory data-mem. If a memory is config-

ured to be internal, it is also instantiated in this module; if a memory is configured to

be external, the interface is routed to the architecture module as input/output ports.

Basically, the implementation of the memory interface consists of the following parts:

• The mapping of all accesses (read/write) in the design to the available ports

of the specified memory. If for example, there are three write accesses from

three different operations to a memory with only one write port (single port

memory), it is necessary to implement a multiplexer for the addresses and data.

Processor Generator performs some analysis to detect if the three operations

are exclusive to each other, meaning that they cannot be executed at the same

time. During the generation process, Processor Generator informs about this

analysis; if exclusivity cannot be guaranteed a warning is given. In this case,

you need to check carefully, if the given memory will meet the actual design

structure.

• The mapping of the port accesses to the signals for the specified memory. In

case of the use of the generic memory interface, these signals are specified in the

Memory Interface Description File (MIDF).

6.2.3 Pipeline (pipe-gen):

This module implements the whole pipeline. The name of the module is taken from

the pipeline resource declaration. This declaration is shown as pipe. It instantiates

modules for each pipeline stage (the stages FE, DC and EX in the example) and for

each pipeline register between the stages (FE-DC for the registers between the FE

and DC stage, and DC-EX for the registers between the DC and EX stage). Thus, the

names directly correspond to the names specified in the RESOURCE section. If stalls

(stall()) and flushes (flush()) are used in the LISA model, then a pipeline controller

is also implemented.
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6.2.4 Registers (RegisterFile-gen):

This module implements all global clocked register resources. It is either explicitly

marked as TClocked in the RESOURCE declaration, or implicitly set to TClocked by

configured to Automatic assignment of cycle-accurate behavior to processor resources

in the Processor Compiler Setup dialog box of the Processor Designer.

6.2.5 Stage XX (FE-gen, DC-gen, EX-gen):

These are the modules that correspond to the pipeline stages defined in the RE-

SOURCE section. A pipeline stage module holds all operations assigned to that

stage. These can be explicitly assigned to functional units defined. If not explicitly

assigned to a functional unit, all operations with a nonempty BEHAVIOR section are

collected in a default functional unit (unit-pipeName-stageName). Besides the func-

tional units (and potentially a default unit) that basically implement all BEHAVIOR

code of the model, each stage also consists of an instruction decoder (pattern matcher)

for each of the operations in this stage, and a part for the activation signal genera-

tion of operations in this and the following stages. Each of this is implemented in a

separate combinational process.

6.2.6 Pipeline Register XX (FE-DC-gen, DC-EX-gen):

The pipeline register modules hold all pipeline registers that are required to pass

information from one stage to the following stage. Thus, only the required registers

are implemented. For example, consider the following instruction: OUT.insn = code-

from-ROM; If this assignment to the instruction pipeline register is in a fetch operation

(in FE), and it is read in the DC stage, but not used in the further pipeline stages,

then the insn pipeline register will be present only in the FE-DC module. Similarly

if, for example, the pipeline registers operand1 and operand2 are only written in the

DC stage and read in the EX stage, they will be present only in the DC-EX module.

As a consequence of this,even a complete pipeline register stage may be omitted if

no pipeline registers are used between two pipeline stages. On the other hand, if a
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pipeline register is written in a certain stage and read in some other pipeline stage that

occur later, then all pipeline registers that lie between these stages shall automatically

be implemented and the value gets automatically shifted through these stages.

6.2.7 Functional units (U-FETCH-gen, U-CONTROL-gen, U-

ARITH-DC-gen, U-ARITH-EX-gen):

These modules hold all operations that are grouped together in the RESOURCE

section. Within a functional unit, each operation is implemented in a separate (com-

binational) process.

6.3 Comparison of the HDL codes generated

The HDL codes generated from the two different processors. This gives the idea about

the number of lines of code of the HDL models it has been observed that the HDL

code of our optimized model has very less number of lines compared with that of

the previous processor(without optimization). Then both the processors have been

compared with there desigine summery estimated value as The HDL code generated

was synthesized using Xilinx ISE10.1.03. Figure 6.3 show the difference.

Figure 6.3: LISA Code
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7.1 Simulation Results using Xilinx ISE

All the blocks of the processor are simulated individually using Xilinx ISE Figure.7.1

represents the top-module simulation result.

Figure 7.1: simulation result using Xilinx ISE

7.2 Synthesized report using Synopsys

After simulating the final processor Figure.7.2 represents synthesixed report of the

processor and also the internal structure of the designed Processor. To find out the

area and power of the circuit the logic is again synthesized using Synopsys tool.

7.3 Power Analyses Report

Power is find out from the power analyses report of the circuit and Figure.7.3 repre-

sents that from the report it is found out that the power consumption by the circuit

is 86.5202 W.

7.4 Area Analyses Report

Area is find out from the area analyses report of the circuit and Figure.7.4 represents

that, from the report it is found out that the area of the circuit is 43765 square micron.
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Figure 7.2: RTL synthesis
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Figure 7.3: Power Analyses Report

Figure 7.4: Power Analyses Report

7.5 Layout of the ASIP

The lay out of the processor is generated Cadence Encounter(Cadence-IC5141 UMC180nm

technology) and Statistics for net list and Complete Global Routing report is gener-52
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ated. The Figure.7.5 show the layout.

Figure 7.5: Layout of the ASIP

7.6 Statistics for net list

• Number of cells = 15232

• Number of nets = 11866

• Number of design nets = 228

• Number of pins = 48587

• Number of inputs/outputs = 214
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7.7 Complete Global Routing

• Total wire length = 1500892 um.

• Total half perimeter of net bounding box = 762721 um.

• Total wire length on LAYER Metal1 = 19207 um.

• Total wire length on LAYER Metal2 = 195779 um.

• Total wire length on LAYER Metal3 = 403413 um.

• Total wire length on LAYER Metal4 = 360563 um.

• Total wire length on LAYER Metal5 = 338683 um.

• Total wire length on LAYER Metal6 = 183247 um.

• Total number of vias = 103657 um.
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8.1 Conclusion

Application Specific Instruction-set Processors (ASIPs) are a type of processor that

serve as a compromise between General Purpose Processors (GPPs) and Single Pur-

pose Processors (SPP). Their data-path can be optimized for a particular class of

operations such as embedded control, Digital Signal Processing (DSP) applications

etc. This project was based on designing an Application Specific Instruction-Set Pro-

cessor whose instructions were tailored made for a specific application. This processor

processed different temperature data of different areas and show the highest temper-

ate with the location of that area. The simulation of this design was carried out on

CoWare Processor Debugger platform. LISA code used to describe the architecture of

this processor and CoWare tool generated HDL structure. Following the simulation

work, the entire model was synthesized using Synopsys design vision(synopsys TSMC

65nm Technology) and layout was generated in Cadence encounter. This design has

a three stage pipelined.

8.2 Main Contributions

In this thesis, using LISA and the CoWare Processor Designer Platform a processor

model was implemented. The processor includes arithmetic, branch, logical and data

transfer instructions. The functionality of all the instructions was checked and found

to be correct using Processor Debugger. The same model was then optimized to

an ASIP, According to the profiling results, the optimization was with respect to

resources like data memory, program memory, instruction set and number of general

purpose registers. The RTL for both the processors was generated and synthesized.

The synthesis results were compared and ASIP was found to be much better than the

general purpose processor in terms of power, area, memory used and lines of HDL code

generated. Thus the CoWare design flow was explored. By considering the profiling

any ASIP can be implemented and optimized taking our general purpose processor

as a reference.
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8.3 Future Work

In future we can go for designing a complex five stage pipelined processor and we can

compare that with a hand written HDL coded design of the same. Further we can

explore our design process by modeling more and more real world processor archi-

tectures. How ever the optimized generation of data path, considering the resource

sharing issue, is another area of research.Further optimization can be done with re-

spect to resources, memory size and power consumption by changing the LISA code

written in CoWare platform.
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