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Abstract

Proximal Support Vector machine based on Least Mean Square Algorithm classi-

fiers (LMS-SVM) are tools for classification of binary data. Proximal Support Vector

based on Least Mean Square Algorithm classifiers is completely based on the theory

of Proximal Support Vector Machine classifiers (PSVM). PSVM classifies binary pat-

terns by assigning them to the closest of two parallel planes that are pushed apart as

far as possible. The training time for the classifier is found to be faster compared to

their previous versions of Support Vector Machines. But due to the presence of slack

variable or error vector the classification accuracy of the Proximal Support Vector

Machine is less.

So we have come with an idea to update the adjustable weight vectors at the train-

ing phase such that all the data points fall out-side the region of separation and falls

on the correct side of the hyperplane and to enlarge the width of the separable region.

To implement this idea, Least Mean Square (LMS) algorithm is used to modify the

adjustable weight vectors. Here, the error is represented by the minimum distance

of data points from the margin of the region of separation of the data points that

falls inside the region of separation or makes a misclassification and distance of data

points from the separating hyperplane for the data points that falls on the wrong side

of the hyperplane. This error is minimized using a modification of adjustable weight

vectors. Therefore, as the number of iterations of the LMS algorithm increases, weight

vector performs a random walk (Brownian motion) about the solution of optimal hy-

perplane having a maximal margin that minimizes the error. Experimental results

show that the proposed method classifies the binary pattern more accurately than

classical Proximal Support Vector Machine classifiers.

Keywords: Data classification, least mean square (LMS), least square support vec-

tor machine (LS-SVM), proximal support vector machine (PSVM), support vector

machine (SVM).



Notations and terms

Some words about notations which are used in our work. All vectors are treated as

column vectors unless transposed to a row vector by a prime superscript T . The inner

(scalar) product of two column vectors x and y in the real n-dimensional space Rn is

denoted by xTy, and ||x|| represents the 2-norm of x. For the matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn. A column vector of ones of arbitrary

suitable dimension is denoted by column matrix e and the identity matrix of arbitrary

suitable order is denoted by I. The kernel function is denoted by φ(x). The Gaussian

kernel function is denoted by K(x,C) where C is the set of centers. exp is the base

of natural logarithm.
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1.1 Motivation Introduction

1.1 Motivation

Support vector machines (SVMs) are example of machine learning. Machine learning

is defined as the ability of a system to learn from its experience, i.e. to modify or

update its processing based on the basis of newly acquired informations. In this thesis

support vector machine is used as a classifier. The pattern used for classification have

two classes. The main objective of the SVM is to design a hyperplane and separate

the margin between the different classes. The SVM divides the space into two half

spaces such that datapoints of different classes are separated. As the size of the

patterns increases, the training time increases and also the computational complexity

increases in case for SVM. In order to overcome the drawbacks of SVM, proximal

support vector machine (PSVM) was developed. The classification accuracy of the

PSVM is comparable to standard SVM but the computational complexity of PSVM

is less than SVM. The training time required by PSVM is less as compared to large

training time in case of standard SVM. PSVM assigns the classes to the datapoints

by measuring its proximity from the two parallel hyperplanes. The datapoints are

clustered around the two parallel hyperplanes. The hyperplanes should be designed

such that the margin of separation between the two classes should be maximized.

The tuning parameter of the optimal hyperplanes are obtained by optimization of the

quadratic function. In PSVM equality constraint is used in place of the inequality

constraint, which makes the computation cheaper. In order to remove the human

effort automatic classification technique can be used.

The classification technique involved for approval of credit cards, detection of

good or bad RADAR signal and other diseases can be done using an automatic classi-

fier. This thesis considers the advance classification scheme to automatically classify

datasets into two classes.

1.2 Contribution

This thesis aims to introduce an improved version of proximal support vector machine

(PSVM). It can be used in fields like image based gender identification, handwritten

2



1.3 Organization of the thesis Introduction

digit recognition, bioinformatics, text categorization etc. This improved version of

proximal support vector machine (PSVM) focuses on the pattern classification of

binary datasets. It allows assessments of datasets and classifies the abnormal dataset

from normal dataset, for example in case of Bupa liver datasets, it picks out the

patients having a liver disorder from normal patients. The idea behind proposed

work is to maximize the margin between the hyperplanes or the decision surface such

that datapoints lie on the correct side of the hyperplanes in order to increase the

generalization ability of the classifier or to minimize the generalization error. The

minimum generalization error is described as when a new set of datapoints with

unknown class labels arrive for the classification, the chances of occurring an error

while predicting the class of datapoints based on the learning or hyperplane classifier

should be minimum. The proposed work makes use of least mean square (LMS)

algorithm, which modifies the weight vector during training time to reduce the training

classification error. These modified weight vector is used after training for testing

purpose. As compared to standard SVM and PSVM, the classification efficiency of

proposed work is more. The effectiveness of the proposed work is verified by tests on

several benchmark datasets for both linear and nonlinear classifiers.

1.3 Organization of the thesis

The thesis is organized as follows. Chapter 2 describes the experimental setup and

datasets used in the proposed work. Chapter 3 provides details about the standard

support vector machine (SVM) classifier, least square support vector machine (LS-

SVM)and proximal support vector machine (PSVM)for linear and nonlinear classifier.

Chapter 4 contains the proposed technique for linear classifier and the result of ex-

periments performed on different datasets to check its efficiency. Chapter 5 extends

the formulation of proposed method for nonlinear classifier. Chapter 6 presents the

testing and comparison, conclusion and discusses points for further research.

3



Chapter 2

Introduction to SVM

Theoretical Background

Support Vector Machine

Least Square Support Vector Machine

Proximal Support Vector Machine
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Conclusion
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2.1 Theoretical Background Introduction to SVM

2.1 Theoretical Background

Support vector machines (SVM) [1-4] are based on statistical learning theory [5].

They are supervised learning systems. SVM [1-4] proves to be an excellent statistical

tool for classification as well as regression analysis as it can analyze and recognize

the data very well. Due to its efficient implementations, SVM extends to many

fields like handwritten digit recognition [6], text categorization [7], Bioinformatics

[8] and image based gender identification [9]. The SVM was developed by Vapnik

[5] to approximately reduce the error on the training data. As SVM was developed

to implement SRM [10], which minimizes the upper bound on the expected risk that

reduces the misclassification error and is able to generalize well. The idea of a support

vector machine is to construct a decision surface in the form of a hyperplane that

separates or set apart the datasets of two classes in such a way that the margin

of separation [11] between the two classes is maximized. In case of the nonlinearly

separable dataset, input data are projected into another high dimensional feature

space [11], [12] with the help of kernel function which made the data separable in

that space. After that SVM [1-4] finds a linear separating hyperplane in this higher

dimensional space having the maximal margin. The decision surface is linear in the

high dimensional feature space but it is nonlinear in input space. The parameters

of the solution or optimal hyperplane are derived from the optimization of the cost

function subjected to inequality constraints.

The performance and accuracy of the SVM classifier depend upon some tuning

parameters [1], [2] which are selected during training time. SVM takes large training

time in order to obtain the best tuning parameters for the optimal classifier, which

reduces the performance and efficiency. In order to overcome this drawback many

versions of SVM have been developed with comparable classification quality. Suykens

et al. [13], [14] developed least square support vector machine classifier (LS-SVM),

which considers equality constraints for the classification problem instead of inequality

constraints as in case of classical SVM. As a result, the optimal hyperplane is obtained

by solving a set of linear equations [13], [14] instead of a quadratic function as in

the case of standard SVM. G. Fung and O. L. Mangasarian [15] proposed proximal

5



2.2 Support Vector Machine (SVM) Introduction to SVM

Figure 2.1: Optimal separating hyperplane

support vector machine (PSVM) based on assigning the dataset by measuring the

distance of it from the two parallel hyperplane. Datasets closest to one of the two

parallel hyperplane are assigned to the corresponding class of that hyperplane. PSVM

formulation uses strong convex objective functions which are not found in the case of

SVM [10], [16] and LS-SVM [13], [14]. Strong convexity [15] plays a key role for PSVM

in the reduction of complex code to simple code and also very fast computational time

is obtained due to its strong convexity during training.

In this chapter classifier such as SVM, LS-SVM and PSVM is discussed. This

chapter also extended to nonlinear classifiers and the merits and demerits of classifiers

over each other

2.2 Support Vector Machine (SVM)

Support vector machines (SVM) [1-4] are a powerful algorithmic approach to the prob-

lem of classification and regression. A classification task mainly involves separating

the datasets into training and testing sets. Each sample in the training set contains

one “target value” (i.e. the class tag) and several “attributes” (i.e. the observed

variables or features). The goal of SVM classifiers is to produce a model or a decision

surface based on the training data, which recognizes the target value of the testing

dataset.

6



2.2 Support Vector Machine (SVM) Introduction to SVM

Figure 2.2: Maximum margin hyperplane

2.2.1 Optimal Separating hyperplane

SVM firstly deal with the question of optimal hyperplane. In Fig. 2.1, the circle

points and star points respectively represent class +1 and class -1. In Fig. 2.1 there

are many possible hyperplane or classifier which can separate the datasets of class

+1 and -1, but only one can maximizes the margin. Here margin is defined as the

distance between the classifier and the nearest datapoint of each class. The bold

line is an optimal hyperplane, which maximizes the margin as well as separate the

datapoints successfully.

Fig. 2.2 represents the maximum margin hyperplane. The maximum margin hy-

perplane increases the generalization ability. If the set of hyperplane is able to separate

the two classes without any errors then the experimental risk is small. Therefore, op-

timal hyperplane means that a hyperplane which separate the two class clearly with

maximum margin.

7



2.2 Support Vector Machine (SVM) Introduction to SVM

Figure 2.3: Architecture of SVM

2.2.2 Architecture of SVM

The architecture of SVM is shown in Fig. 2.3. As compared to neural network,

support vector machine may be described as a feed-forward neural network having

one hidden layer. Here, x1, x2, ....., xm are an input layer of size m. x is an input

vector defined in n-real dimensional space Rn, it contains elements like x1, x2, ....., xm.

K(x, x1), K(x, x2), ....., K(x, xi) are hidden layer of mi linear-product kernel. w is the

weight vector having elements w1, w2, ....., wm. Output neuron is the output layer of

the feed-forward neural network. b is bias defined in real dimensional space R. f(n)

is decision function, which makes the final classification.

2.2.3 Formulation of SVM

Let the patterns to be classified denoted by x matrix in m×n real dimensional space

and (x1, y1), (x2, y2), ...., (xm, ym) are the m training patterns, where xi denotes the

attributes of the data whereas yi denotes the output or target value for the correspond-

ing data. The decision boundary or the hyperplane for the classification purpose is

defined as

ωTφ(x) + b = 0, (2.1)

where ω ∈ Rn is the weight matrix. φ(x) is the kernel function of x and b ∈ R is

8



2.2 Support Vector Machine (SVM) Introduction to SVM

Figure 2.4: Support vector machine (SVM)

the bias term of the hyperplane. The hyperplane is constructed such that it satisfies

the following inequality functions for both the classes. Fig. 2.4 shows the support

vector machine.

ωTφ(xi) + b ≥ +1, if yi = +1, (2.2)

ωTφ(xi) + b ≤ −1, if yi = −1. (2.3)

which is equivalent to

yi[ω
Tφ(xi) + b] ≥ 1, i = 1, .....,m. (2.4)

If the datapoints violate Eq. (2.4), in case a separating hyperplane in this higher

dimensional space does not exist then a new set of non-negative slack variable (scalar

variable) ξi is introduced such that

yi[ω
Tφ(xi) + b] ≥ 1− ξi (2.5)

and ξi ≥ 0 (2.6)

The SVM with slack variable or error vector is shown in Fig. 2.5. The optimal

hyperplane is obtained by minimizing the risk bound according to the structural risk

minimization principle and this is done by formulating the optimization problem in

Eq. (2.7).

min
ω,ξ

J(ω, b, ξ) =
1

2
||ω||2 + c

m∑
i=1

ξi (2.7)

9



2.2 Support Vector Machine (SVM) Introduction to SVM

Figure 2.5: SVM with slack variable or error vector

where c > 0

where c is the regularization parameter that is used for balancing the importance of

maximizing the margin and reducing the training error. The parameter c is deter-

mined experimentally with the help of the standard use of a training or (validation)

test set, which is a crude form of resampling. The above Eq. (2.5) and (2.7) can be

written in the Lagrangian function as:

L(ω, b, ξi;αi, βi) = J(ω, b, ξi)− c
m∑
i=1

αi[yi(ω
Tφ(xi) + b)− 1 + ξi]−

m∑
i=1

βiξi (2.8)

αi and βi are the Lagrange multipliers such that αi ≥ 0, βi ≥ 0 where i = 1, 2, ....,m.

The solution to the quadratic problem is obtained by solving saddled Lagrange func-

tion. As a result one obtains the following conditions.

∂L

∂ω
= 0 → ω =

m∑
i=1

αiyiφ(xi),

∂L

∂b
= 0 →

m∑
i=1

αiyi = 0,

∂L

∂ξi
= 0 → 0 ≤ αi ≤ c,

where i = 1, 2, .....,m.


(2.9)

Conditions in Eq. (2.9) lead to solution of the following quadratic programming

10



2.2 Support Vector Machine (SVM) Introduction to SVM

problem:

max
αi

Q(αi;φ(xi)) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjφ(xi)
Tφ(xj)αiαj (2.10)

such that
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ c, i = 1, 2, ....,m. (2.11)

The function φ(xi) in Eq. (2.10) is related to K(x, xi) by imposing φ(x)Tφ(xi) =

K(x, xi), which is motivated by Mercer’s theorem [13]. The classifier is designed by

solving Eq. (2.12)

max
αi

Q(αi;φ(xi)) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjK(x, xi)αiαi (2.12)

subject to
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ c, i = 1, 2, ....,m. (2.13)

Here K(., .) represents the kernel function of x.

2.2.4 Kernel methods

Kernel methods algorithm is used for pattern analysis. The main characteristic of

kernel is its distinct action to the problem of pattern classification of different types

of data. Kernel methods represent the patterns in high dimensional feature space such

that the patterns can be made more easily separated. The mapping is not subjected

to any constraints, so kernel method can conduct to infinite-dimensional space for

the purpose of classification. A tool called kernel trick is used in order to map the

patterns in the higher dimensional space.

The kernel trick can be implemented to algorithms which depends upon dot prod-

uct between two vectors. So, a dot product is replaced by a kernel function for map-

ping of patterns. Replacing the linear algorithm by nonlinear algorithm is not altering

their original working in feature space φ. The selection of correct kernel depends upon

type of patterns available. There are following choices for kernel function:

(i) Linear kernel

11
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It is the most simple and easy to use kernel function. Linear kernel is represented

as summation of inner product {x, xi} and an optional constant d.

K(x,xi) = xTxi + d

(ii) Polynomial kernel

Polynomial kernel is suitable for normalized datasets as it is a nonstationary

kernel.

K(x,xi) = (βxTxi + d)p

p is polynomial degree, d is constant and β is slope. Polynomial degree, constant

and slope can be adjusted according to the requirement.

(iii) Radial basis function

In this thesis Gaussian kernel is used, which is an example of radial basis func-

tion. Gaussian kernel can be represented as

K(x,xi) = exp(
−||x− xi||2

2σ2
)

The adjustable parameter is sigma, it plays an important role in the performance

of kernel function and should be selected carefully for the patterns available.

(iv) Hyperbolic tangent kernel

It is also known as the multilayer perceptron and as the sigmoid kernel. SVM

model using sigmoid kernel function is equivalent to the two layer perceptron

neural network.

K(x,xi) = tanh(βxTxi + d) (2.14)

The adjustable parameter are slope β and the constant d.

2.3 LS-SVM

The major drawback of the standard SVM [1-4] is that it takes large amount of training

time. Suykens et al. resolved this problem by introducing least square support vector

12
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machine (LS-SVM) [13], [14]. LS-SVM is reformulation of standard SVM that leads

to solving linear Karush-Kuhn-Tucker (KKT) [17] system. LS-SVM minimizes the

least square error [13], [14] on the training patterns while simultaneously maximizing

the margin between the two classes. The cost function of LS-SVM is as follow:

minω,ξJ(ω, b, ξ) = 1
2
||ω||2 + c

m∑
i=1

ξ2
i

s.t yi(ω
Tφ(xi) + b) = 1− ξi (2.15)

In this case, the inequality constraint condition used for standard SVM is replaced

by the equality constraints. The computational complexity reduces drastically as well

as gives approximately the same accuracy. The lagrangian of the cost function can

be defined as:

L(ω, b, ξ : α) = J(ω, b, ξ)−
m∑
i=1

αi[yi(ω
Tφ(xi) + b)− 1 + ξi] (2.16)

αi is the lagrangian multiplier due to equality constraint. The conditions of opti-

mality are obtained by differentiating the lagrangian function with respect to ω, b, ξ

and α and equating it to zero is given as:

∂L

∂ω
= 0 → ω =

m∑
i=1

αiyiφ(xi),

∂L

∂b
= 0 →

m∑
i=1

αiyi = 0,

∂L

∂ξi
= 0 → ξi = γyi,

∂L

∂αi
= 0 → [yi(ω

Tφ(xi) + b)− 1 + ξi] = 0,

where i = 1, 2, ....,m.



(2.17)

Therefore, the final solution for making decision is of the form:

f(x) = sign[
m∑
i=1

αiyiK(x, xi) + b] (2.18)

2.4 PSVM

In proximal support vector machine (PSVM) [15] instead of dividing the space into

disjoint regions for each class, the data points are assigned according to the proximity

13
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Figure 2.6: The Proximal Support Vector Machine Classifier

to the hyperplanes that are separated as far as possible [15]. This leads to a very fast

and simple algorithm [15]. The cost function is given as follows:

minω,b,ξ J(ω, b, ξ) = 1
2
||[ω, b]T ||2 + c

2

m∑
i=1

||ξi||2

s.t. yi(ω
Tφ(xi) + b) = 1− ξi (2.19)

The minimization of cost function leads to maximization of margin in (ω, b) space.

It also uses the equality constraint and minimizes the squared error like LS-SVM [13],

[14]. The PSVM [15] works much faster than SVM [1-4] as well as give performance

similar to SVM. The lagrangian of the cost function is given as:

L(ω, b, ξ : α) = J(ω, b, ξ)−
m∑
i=1

αi[yi(ω
Tφ(xi) + b)− 1 + ξi] (2.20)

αi is the lagrangian multiplier due to equality constraint. The cost function is differ-

entiated with respect to ω, b, ξ and α which gives:

14
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∂L

∂ω
= 0 → ω =

m∑
i=1

αiyiφ(xi),

∂L

∂b
= 0 → b =

m∑
i=1

αiyi,

∂L

∂ξi
= 0 →

m∑
i=1

αiyi = 0,

∂L

∂αi
= 0 → [yi(ω

Tφ(xi) + b)− 1 + ξi] = 0,

where i = 1, 2, .....,m.



(2.21)

The linear classifier to the linear separating surface is as follows:

ωTx− b


> 0, then x ∈ +1,

< 0, then x ∈ −1,

= 0, then x ∈ +1 or x ∈ −1.

(2.22)

2.5 Experimental Results

Table 2.1: Results of SVM as linear classifier for average 10-fold accuracy test with

and without shuffling

.

S.NO DATASET SVM (not shuffled) SVM (shuffled)

1. Colon (62x2000) 36.19±22.22 35.23±19.71

2. Lung (22x56) 43.33±47.25 40.00±30.91

3. ALL-AML (100x500) 72.50±42.50 71.66±13.54

4. Prostate (38x1000) 44.00±9.16 44.00±11.13
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Table 2.2: Results of LS-SVM as linear classifier for average 10-fold accuracy test

with and without shuffling

.

S.NO DATASET LS-SVM (not shuffled) LS-SVM (shuffled)

1. Colon (62x2000) 83.57±10.56 77.14±17.20

2. Lung (22x56) 41.66±30.95 38.33±37.30

3. ALL-AML (100x500) 90.00±16.58 94.16±11.81

4. Prostate (38x1000) 72.00±11.66 70.00±13.41

Table 2.3: Results of SVM as a linear classifier for average 10-fold accuracy test with

shuffling

.

S.NO DATASET SVM

1. Australian (690x14) 45.45±3.62

2. Bupa Liver (345x16) 57.95±23.20

3. German (1000x24) 30.00±4.64

4. Heart-Stat log(270x13) 44.44±5.73

5. Ionosphere (351x34) 64.00±21.31

6. Pima Indian (768x8) 34.91±7.35

7. WPBC (148x32) 24.38±14.60

Table 2.4: Results of SVM as a linear classifier for average 10-fold accuracy without

shuffling

.

S.NO DATASET SVM

1. Australian (690x14) 44.49±2.67

2. Bupa Liver (345x16) 57.95±23.20

3. German (1000x24) 30.00±4.64

4. Heart-Stat log(270x13) 44.44±5.73

5. Ionosphere (351x34) 64.00±21.31

6. Pima Indian (768x8) 34.91±7.35

7. WPBC (148x32) 24.38±14.60
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Table 2.5: Results of PSVM as a linear classifier for average 10-fold accuracy test

with and without shuffling

.

S.NO DATASET PSVM (not shuffled) PSVM (shuffled)

1. Colon (62x2000) 85.47±15.70 77.61±10.33

2. Lung (22x56) 41.66±38.18 40.00±30.91

3. ALL-AML (100x500) 84.16±17.26 87.50±16.77

4. Prostate (38x1000) 81.00±7.00 78.00±16.00

Table 2.6: Results of PSVM as a linear classifier for average 10-fold accuracy test

with shuffling

.

S.NO DATASET PSVM

1. Australian (690x14) 85.94±2.97

2. Bupa Liver (345x16) 66.66±7.75

3. German (1000x24) 77.20±3.51

4. Heart-Stat log(270x13) 84.67±3.17

5. Ionosphere (351x34) 85.42±10.64

6. Pima Indian (768x8) 76.94±5.53

7. WPBC (148x32) 75.05±10.34

Table 2.7: Results of PSVM as a linear classifier for average 10-fold accuracy test

without shuffling

.

S.NO DATASET PSVM

1. Australian (690x14) 85.94±5.68

2. Bupa Liver (345x16) 63.74±14.78

3. German (1000x24) 75.80±5.94

4. Heart-Stat log(270x13) 84.07±4.07

5. Ionosphere (351x34) 85.42±10.64

6. Pima Indian (768x8) 76.94±5.53

7. WPBC (148x32) 75.05±10.34
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Table 2.8: Results of average 10-fold accuracy test using nonlinear kernel without

shuffling

.

S.NO DATASET PSVM

1. Australian (690x14) 69.56±5.83

2. Bupa Liver (345x16) 52.46±7.56

3. German (1000x24) 71.40±5.85

4. Heart-Stat log(270x13) 66.66±6.53

5. Ionosphere (351x34) 64.00±22.46

6. Pima Indian (768x8) 71.34±6.85

7. WDBC (569x31) 91.21±3.19

8. WPBC (148x32) 73.94±14.68

Table 2.9: Results of PSVM for average 10-fold accuracy test using nonlinear kernel

with shuffling

.

S.NO DATASET PSVM

1. Australian (690x14) 69.56±5.83

2. Bupa Liver (345x16) 52.46±7.56

3. German (1000x24) 71.40±5.85

4. Heart-Stat log(270x13) 66.66±6.53

5. Ionosphere (351x34) 64.00±22.46

6. Pima Indian (768x8) 71.34±6.85

7. WDBC (569x31) 91.21±3.19

8. WPBC (148x32) 73.94±14.68
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2.6 Conclusion

As the size of the patterns increases, the training time increases and also the compu-

tational complexity increases for SVM. In order to overcome the drawbacks of SVM,

proximal support vector machine (PSVM) was developed. The classification accuracy

of the PSVM is comparable to standard SVM but the computational complexity of

PSVM is less than SVM. The training time required by PSVM is less compared to

large training time in case of standard SVM.
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3.1 Datasets

3.1.1 Cancer datasets

Cancer datasets are collected from Bioinformatics repository and UCI repository [1]

for the purpose of our experiment.

Table 3.1: Cancer datasets used for results and comparison in our experiment.

Name No. of instances No. of genes

Colon 62 2000

Lung 22 56

AML-ALL 38 1000

Lymphoma 45 4026

Prostate 100 500

Description of cancer datasets:

(i) Colon cancer: It is known as colorectal cancer caused due to uncontrolled

growth of cells in the colon or in an appendix or in the rectum.

(ii) Lung cancer: It is caused due to uncontrolled growth of cells in the tissues of

the lung.

(iii) AML-ALL: AML is acute myeloid leukemia, it is caused due to uncontrolled

growth of abnormal blood cells which are collected in the bone marrow and

interfere with normal production of blood cells. ALL is acute lymphoblastic

leukemia, it occurs due to accumulation of immature white blood cells which is

reproducing continuously in bone marrow.

(iv) Lymphoma cancer: It is caused due to abnormal cell reproduction which may

accumulate in one or more than one lymph nodes or in other lymph tissues.

(v) Prostate cancer: It is a cancer which occurs in the prostate gland. The

prostate gland is found in male reproductive system.
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3.1.2 Other datasets

These are some datasets collected from UCI repository [1] for experiment purpose.

Table 3.2: Details about other datasets used for results and comparison in our exper-

iment.

Name No. of instances No. of genes Class ratio

Australian 690 14 307:383

Bupa Liver 345 16 200:145

German 1000 24 700:300

Heart-Stat log 270 13 150:120

Ionosphere 351 34 225:126

Pima Indian 768 8 500:268

WDBC 569 31 357:212

WPBC 148 32 151:27

Description of datasets:

(i) Australian: It contains the datasets for approval of Australian credit card.

(ii) Bupa liver: It contains the blood test results which are sensitive to liver

disorder.

(iii) German: It contains the datasets for approval of German credit card.

(iv) Heart-Stat log: It contains datasets having information for heart disease.

(v) Ionosphere: It contains datasets having information of good or bad RADAR

signal when it returns from the iononsphere.

(vi) Pima Indian: It contains datasets having information for detecting diabetes

in Pima Indian heritage.

(vii) WDBC: It contains datasets containing digitized images taken with a fine

needle aspirate of a breast mass.

(viii) WPBC: It contains datasets containing follow up information of digitized im-

ages taken from a fine needle aspirate of a breast mass.
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3.2 Experimental setup

All the datasets are collected from publicly available sources. All the numerical testing

is done using MATLAB 7.6 Version [2] on Windows 7 operating system on a CPU

with an i5 processor with a speed of 3.33 GHz and 4 GB RAM. Proposed method,

SVM, LS-SVM and PSVM is tested for both linear and nonlinear kernel functions. In

this thesis, SVM Tool Box [3], LS-SVM Tool Box [4] and PSVM Tool Box [5] is used

for simulation purpose.
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4.1 LMS Based Linear PSVM

The objective of the proposed LMS-PSVM technique is to improve the performance

of PSVM [1-3] classifier for the training patterns and to find the optimal hyperplane

subjected to a constraint. The techniques used are based on least mean square (LMS)

algorithm [4], [5]. LMS algorithm is an adaptive algorithm which includes iterative

process that makes consecutive corrections to the weight vector in the direction which

leads to minimization of error. The weight vector is expressed as the linear combina-

tion of the previous and present input data weighted [4] by an analytical error. LMS

algorithm is also called as stochastic gradient descent method [4], in which the filter is

only adapted based on the error at the current time. The patterns to be classified are

projected in space with the help of kernel functions. A linear kernel function is used

for the data which is linearly separable in that space. When the data is not linearly

separable in that space then they are projected to another high dimensional space

with the help of nonlinear kernel function. In this chapter linear kernel LMS-PSVM

is discussed and next chapter elaborates the nonlinear kernel LMS-PSVM. The detail

of algorithm for the proposed method using linear kernel is as follows:

Step 1: The two planes which are to be constructed for classification is given below:

ωTx− b = +1

ωTx− b = −1 (4.1)

where ω is a weight vector defined in n-dimensional real space Rn, b is bias

term, which represents the relative position of the planes from the origin. Bias

is defined in real dimensional space R. The given datasets are considered to

be of dimension m × n, represented by A matrix. The hyperplanes in Eq.

(4.1) are not bounding planes, but can be thought of as “proximal” planes,

around which the datasets of each class are clustered. Y is a diagonal matrix

of dimension m×m with +1 or -1 along its diagonal.

Step 2: To obtain the hyperplanes in Eq. (4.1), PSVM optimizes the cost function

represented as:
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minω,b,ξ
1
2
[(ωTω + b2) + c||ξ||2]

s.t. Y (Aω − eb) + ξ = e (4.2)

where c is the regularization parameter and ξ is the slack variable or error

variable. The first term of the objective function in Eq. (4.2) maximizes the

margin between the two hyperplanes or minimizes the reciprocal of 2-norm

distance between the two planes in the (ω, b) space of (n + 1) dimensional

real space. The objective function is subjected to a linear constraint, which

states that the hyperplanes should be at a distance of 1 from the separat-

ing hyperplane. The second term of objective function minimizes the error

variable, thus attempting to minimize the misclassification. The separating

plane, described below

ωTx− b = 0 (4.3)

lies midway between the two proximal hyperplanes (4.1) and separates datasets

into class +1 and class -1. The solution of Eq. (4.1) is obtained by replac-

ing the original problem by Lagrangian function. The Lagrange multiplier

method solves the constrained optimization problem (4.2) by transforming it

into a nonconstrained optimization problem (4.4). With this approach the

optimization problem (4.2) can be expressed as

L(ω, b, ξ, ν) =
1

2
||[ω, b]||2 +

c

2
||ξ||2 − ν(Y (Aω − eb) + ξ − e) (4.4)

ν is the Lagrangian multiplier due to equality constraint. The Karush-Kuhn-

Tucker (KKT) optimality conditions [5] for PSVM are obtained by equating

the gradient of (4.4) to zero as follows:

∂L

∂ω
= 0 → ω − ATY ν = 0,

∂L

∂b
= 0 → b+ eTY ν = 0,

∂L

∂ξ
= 0 → cξ − ν = 0,

∂L

∂ν
= 0 → Y (Aω − eb) + ξ − e = 0.


(4.5)
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The first three equations of (4.5) give the following expressions for ω, b, ξ in

terms of the Lagrange multiplier ν.

ω = ATY ν

b = −eTY ν

ξ =
ν

c

 (4.6)

Substituting values of (4.6) in the fourth expression of (4.5) allow us to obtain

an expression of ν in terms of problem data A and Y as follows.

ν = (
I

c
+ Y (AAT + eeT )Y )−1e

= (
I

c
+MMT )−1e (4.7)

where,

M = Y [A − e] (4.8)

I is the identity matrix. Having ν from problem (4.9), one can obtain the

optimal hyperplane (4.2) by equating value of ω, b, ξ from Eq. (4.6) in Eq.

(4.2). The solution of (4.7) involves inversion of a large m ×m matrix. We

make use of the Sherman-Morrison-Woodbury formula [1] in order to reduce

the inversion of a matrix to (n + 1)×(n + 1), which is smaller in dimension.

Therefore the expression becomes

ν = c(I −M(
I

c
+MTM)−1MT )e (4.9)

Step 3: After constructing the hyperplane, LMS algorithm is used in order to enlarge

the separating boundary, such that the data points of each class lies on the

correct side of the hyperplane. The PSVM shown in Fig. 4.1 is for ideal case.

Actual PSVM is shown in Fig. 4.2, some of the data points of each class are

lying on the wrong side of the hyperplane, which is not present in the ideal

case for PSVM. The datapoints lying on the wrong side of the hyperplane

are assigned to matrix B and F . Matrix B contains the datapoints of class

+1 having ωTx− b < 0 and matrix F contains datapoints of class -1 having

ωTx − b > 0. Assume, the distance of these points from the separating

hyperplane as error is represented by
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Figure 4.1: The ideal Proximal Support Vector Machine Classifier in the (ω, b)-space

of Rn+1. The planes ωTx− b = ±1 around which points of the sets +1 and -1 cluster

and which are pushed apart by the optimization problem (4.2).

Figure 4.2: The Proximal Support Vector Machine Classifier in the (ω, b)-space of

Rn+1. The planes ωTx − b = ±1 around which points of the sets +1 and -1 cluster

and which are pushed apart by the optimization problem (4.2).
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P1(j) = ωTB(j)− b (4.10)

P2(i) = ωTF (i)− b (4.11)

where j = 1, 2, ..., N1, represents the number of data points of B and i =

1, 2, ...., N2, represents the number of data points of F . Here, data points

which fall on the wrong side of the hyperplane is taken. The weight vectors

of these data points are modified at the training phase. LMS algorithm is

developed for each data point which shows an error as follows:

ω(n+ 1) = ω(n)− ηB(j)E1(n) (4.12)

ω(n+ 1) = ω(n) + ηF (i)E2(n) (4.13)

where E1 and E2 are mean square error. Weight vector states the orientation

of the hyperplane, here two different sign is used for two different classes. In

order to make the datapoints fall on the correct side of the hyperplanes, the

orientation of the hyperplanes should be changed. n and η represents the

number of iterations and learning rate parameter respectively. The weight

vector is updated till our mean square error is reduced to 0.00001.

Step 4: The weight vectors are stored and used for reduction of error due to datapoints

lying inside the region of separation. In order to do this, those data points

which fall inside the region of separation or shows misclassification is collected.

The error for these data points [2] can be defined as E = y(i)− P (i), where

i = 1, 2, ....Ne. Ne is the number of the data points that make error, y(i) is

the desired output and P is the distance of the data point from the separating

hyperplane that are causing errors. The weight updating is done using the

following equation:

ω(n+ 1) = ω(n)− ηG(j)E11(n) (4.14)

ω(n+ 1) = ω(n) + ηH(i)E22(n) (4.15)

where E11 and E22 represents the mean square error due to class +1 and

-1 data and Matrix G and H contain data points of +1 and -1 which are
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Figure 4.3: The proposed lms based proximal support vector machine classifier, after

training the datasets lie outside the margin and on the correct side of the hyperplane.

lying inside the region of separation. The weight is updated till the mean

square error is reduced to 0.00001. Fig. 4.3 represents the LMS-PSVM, where

datasets lie on the correct side of the hyperplane and outside the margin. The

updated weight vector was stored at the time of training phase and is used

for testing purposes with the help of below function [4]:

ωTx− b


> 0, then x ∈ +1,

< 0, then x ∈ −1,

= 0, then x ∈ +1 or x ∈ −1.

(4.16)
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4.2 Experimental Results

Table 4.1: Results of average 10-fold accuracy test using linear kernel without shuffling

.

S.NO DATASET SVM LS-SVM PSVM LMS BASED

LINEAR PSVM

1. Colon (62x2000) 36.19±22.22 83.57±10.56 85.47±15.70 85.47±8.93

2. Lung (22x56) 43.33±47.25 41.66±30.95 41.66±38.18 58.33±30.95

3. ALL-AML (100x500) 72.50±42.50 90.00±16.58 84.16±17.26 95.00±10.00

4. Prostate (38x1000) 44.00±9.16 72.00±11.66 81.00±7.00 84.00±12.00

Table 4.2: Results of average 10-fold accuracy test using linear kernel with shuffling

.

S.NO DATASET SVM LS-SVM PSVM LMS BASED

LINEAR PSVM

1. Colon (62x2000) 35.23±19.71 77.14±17.20 77.61±10.33 84.28±13.39

2. Lung (22x56) 40.00±30.91 38.33±37.30 40.00±30.91 56.66±22.60

3. ALL-AML (100x500) 71.66±13.54 94.16±11.81 87.50±16.77 95.00±10.00

4. Prostate (38x1000) 44.00±11.13 70.00±13.41 78.00±16.00 82.00±13.26
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Table 4.3: Results of average 10-fold accuracy test using linear kernel with shuffling

.

S.NO DATASET SVM PSVM LMS BASED

LINEAR PSVM

1. Australian (690x14) 45.45±3.62 85.94±2.97 86.08±4.45

2. Bupa Liver (345x16) 57.95±23.20 66.66±7.75 69.63±7.08

3. German (1000x24) 30.00±4.64 77.20±3.51 78.00±5.54

4. Heart-Stat log(270x13) 44.44±5.73 84.67±3.17 85.18±3.70

5. Ionosphere (351x34) 64.00±21.31 85.42±10.64 86.92±4.51

6. Pima Indian (768x8) 34.91±7.35 76.94±5.53 77.58±3.69

7. WPBC (148x32) 24.38±14.60 75.05±10.34 76.28±2.29

Table 4.4: Results of average 10-fold accuracy test using linear kernel without shuffling

.

S.NO DATASET SVM PSVM LMS BASED

LINEAR PSVM

1. Australian (690x14) 44.49±2.67 85.94±5.68 86.52±4.35

2. Bupa Liver (345x16) 57.95±23.20 63.74±14.78 64.89±13.85

3. German (1000x24) 30.00±4.64 75.80±5.94 76.20±5.43

4. Heart-Stat log(270x13) 44.44±5.73 84.07±4.07 84.81±2.59

5. Ionosphere (351x34) 64.00±21.31 85.42±10.64 85.42±10.64

6. Pima Indian (768x8) 34.91±7.35 76.94±5.53 77.02±5.35

7. WPBC (148x32) 24.38±14.60 75.05±10.34 75.61±14.60
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4.3 Conclusion

The result shows that the proposed method for linear classifier is better as compared

to standard SVM, LS-SVM and PSVM for cancer datasets. The performance of

proposed method for linear classifier for UCI repository datasets is better from SVM

and PSVM. The experiment is performed on all the 5 cancer datasets from Table 2.1.

Out of 5 datasets linear classifier shows better result for 4 datasets. Better accuracy is

represented in bold letter. In case of UCI repository, out of 8 datasets linear classifer

performs better for 7 datasets. Two sets of experiments are performed, in first set the

sequence of the datasets is kept as it is but in the second set the dataset is randomized

or shuffled for the training purpose. Table 4.1 and Table 4.2 represent the comparison

and the result of cancer datasets with and without shuffling using standard SVM, LS-

SVM, PSVM and LMS-PSVM as a linear classifier. Table 4.3 and Table 4.4 represent

the comparison and the result of UCI repository datasets with and without shuffling

using standard SVM, PSVM and LMS-PSVM as a linear classifier.

36



4.4 References LMS based linear proximal support vector machine

4.4 References

[1] G. Fung and O. L. Mangasarian, “Proximal Support Vector Machine Classifiers,”

Proc. Knowledge Discovery and Data Mining, F. Provost and R. Srikant, eds., pp.

77-86, 2001, ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

[2] S. Ghorai, S. J. Hossain, A. Mukherjee and P. K. Dutta, “Newtons method for

nonparallel plane proximal classifier with unity,” Signal Process, vol. 90, pp. 93-

104, 2010.

[3] S. Ghorai, A. Mukherjee and P. K. Dutta, “Nonparallel plane proximal classifier,”

Signal Process, vol. 89, pp. 510-522, 2009.

[4] S. Haykin, Neural Networks- A Comprehensive Foundation, second ed., Pearson

Education, 2006.

[5] S. Ari, K. Hembram, G. Saha, “Detection of cardiac abnormality from PCG signal

using LMS based least square SVM classifier,” Expert Syst Appl, vol. 37, pp. 8019-

8026, 2010.

[6] O. L. Mangasarian, Nonlinear Programming , SIAM, Philadelphia, PA, 1994.

37



Chapter 5

LMS based nonlinear proximal

support vector machine

LMS Based Nonlinear PSVM

Experimental Results

Conclusion

38



5.1 LMS-Nonlinear PSVM LMS based nonlinear proximal support vector machine

5.1 LMS-Nonlinear PSVM

In this chapter formulation to nonlinear classifiers by applying kernel trick to max-

imum margin hyperplanes is discussed. The resulting algorithm is similar to formal

but here every dot product is replaced by a nonlinear kernel function [1-3]. This

allows the algorithm to fit the maximum margin hyperplane in a higher dimensional

feature space (transformed feature space). The transformation may be nonlinear; thus

though the classifier is a hyperplane in the high-dimensional feature space, it may be

nonlinear in the original input space. In our work, we have used Gaussian radial basis

function [4-6] as a kernel function for the nonlinear case. It nonlinearly maps patterns

into a higher dimensional space, unlike the linear kernel used during linearly separable

data classification. The Gaussian radial basis function has fewer numerical difficul-

ties as compared to other kernel functions, but it is not suitable when the number of

features is very large. In Gaussian radial basis function, instead of classifying data

according to their attributes, some datasets from any one class are chosen as centers

for classification. Here, the chosen centers from any one class is denoted by C̄. A

matrix is our input or given dataset and µ = 1
2σ2 . σ is variance, when larger value

of µ is chosen, variance becomes smaller and hence the kernel becomes more stricter

and vice versa. The kernel function used in our case is given by:

K(A, C̄T ) = exp−µ
∑

(Ai−C̄T
j )2 (5.1)

Step 1: The nonlinear proximal classifier is obtained from modified equality con-

strained optimization problem (4.2). The equality constrained optimization

problem is modified by replacing the weight vector ω by its dual equivalent

ω = ATY ν from (4.6), to obtain:

min(ν,b,ξ)
1
2
[(νTν + b2) + c||ξ||2]

s.t. Y (AATY ν − eb) + ξ = e (5.2)

Above objective function minimizes weighted 2-norm sums of the problem

variables (ν, b, ξ) instead of (ω, b, ξ).

Step 2: AAT is now replaced by a nonlinear kernel K(A,CT ) to obtain:
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min(ν,b,ξ)∈Rm+1+m
1
2
[(νTν + b2) + c||ξ||2]

s.t. Y (K(A,AT )Y ν − eb) + ξ = e (5.3)

The Lagrangian function to solve (5.3) can be written as:

L(ν, b, ξ, v) =
1

2
||[ν, b]T ||2 +

c

2
||ξ||2 − v(Y (KY ν − eb) + ξ − e) (5.4)

where K=K(A,AT ) and v is the Lagrange multiplier associated with equality

constraint of (5.3). The gradient of the above Lagrangian function is equated

to zero to give the following KKT optimality conditions:

ν − Y KTY v = 0

b+ eTY v = 0

cξ − v = 0

Y (KY u− eb) + ξ = e


(5.5)

From first three equation expressions for (u, b, ξ) is obtained in terms of the

Lagrange multiplier v:

ν = Y KTY v, b = −eTY v, c =
v

ξ
(5.6)

On substituting the above equations in the last equation of (5.5), following

expression is obtained:

v = ( I
c

+ Y (KKT + eeT )Y )−1e

= (
I

c
+NNT )−1e (5.7)

where N is defined as:

N = Y [K − e] (5.8)

In nonlinear kernels, the Sherman-Morrison-Woodbury formula [4] is not re-

quired because the kernel matrix K=K(A,AT ) is a square matrix of dimen-

sion m × m, so the inversion takes place in high dimension. To reduce the

m×m dimensionality of the kernel matrix reduced kernel techniques [7] can

be used, so that the large dimensionality kernel matrix is reduced to a smaller
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dimensionality kernel matrix. On using reduced kernel technique, kernel func-

tion becomes K(A, D̄T ) of dimension m×m′, where m′ � m and D̄ is a m′×n

random sub matrix of A. The nonlinear kernel generated surface is obtained

by substituting ω = ATY ν from (4.6) into (4.3) as follows:

ωxT − b = 0⇒ xTATY ν − b = 0 (5.9)

If the linear kernel xTAT is replaced by its corresponding kernel expression

K(xT , AT ), and substitute u and b from (5.6), to obtain:

K(xT , AT )Y ν − b = K(xT , AT )Y Y K(A,AT )TY v + eTY v

= (K(xT , AT )K(A,AT )T + eT )Y v = 0 (5.10)

Step 3: The datapoints lying on the wrong side of the hyperplane are assigned to

matrix Q and R. Matrix Q contains the datapoints of class +1 having

(K(xT , AT )K(A,AT ) + eT )Y v < 0 and matrix R contains datapoints of class

-1 having (K(xT , AT )K(A,AT )T + eT )Y v > 0. Assume, the distance of these

points from the separating hyperplane as an error. The equation is similar to

linear LMS-PSVM but the matrix Q and R is replaced by its corresponding

nonlinear kernel function, is represented by

P1(j) = ωTK(Q,QT )− b

P2(i) = ωTK(R,RT )− b (5.11)

where j = 1, 2, ...., N1, represents the number of data points of K(Q,QT ) and

i = 1, 2, ...., N2, represents the number of data points of K (R,RT ). Those

points which fall on the wrong side of the hyperplane is considered in this

case. The weight vectors of these data points are modified at the training

phase similarly as in linear LMS-PSVM. LMS algorithm developed for each

data point which shows an error as follows:

ω(n+ 1) = ω(n)− ηK(Q,QT )E1(n) (5.12)

ω(n+ 1) = ω(n) + ηK(R,RT )E2(n) (5.13)
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where E1 and E2 are mean square error. n and η represents the number of

iterations and learning rate parameter. The weight is updated till the mean

square error is reduced to 0.00001.

Step 4: Now the error due to data points lying inside the region of separation is

corrected. The weight updating formula becomes:

ω(n+ 1) = ω(n)− ηK(U,UT )E11(n) (5.14)

ω(n+ 1) = ω(n) + ηK(V, V T )E22(n) (5.15)

Here E11 and E22 are mean square error due to class +1 and -1. The error

is represented by E = y(i) − P (i), where i = 1, 2, ...Ne. Ne is the number

of datapoints that are causing errors, y(i) is the desired output and P is the

distance of the data point from the separating hyperplane that make error.

The weight is updated till the mean square error is reduced to 0.00001. The

updated weight vector was stored at the time of training phase and is used

for testing purposes with the help of below function [4]:

(K(xT , AT )K(A,AT )T + eT )Y v



> 0, then x ∈ +1

< 0, then x ∈ −1

= 0, then x ∈ +1

or

x ∈ −1

(5.16)
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5.2 Experimental results

Table 5.1: Results of cancer datasets for average 10-fold accuracy test using nonlinear

kernel without shuffling

.

S.NO DATASET SVM LS-SVM PSVM LMS BASED

NONLINEAR P-

SVM

1. Colon (62x2000) 63.80±22.22 63.80±22.22 63.80±23.43 73.10±4.79

2. Lung (22x56) 43.33±47.25 56.66±41.63 41.66±50.18 61.66±31.47

3. ALL-AML (100x500) 27.50±42.50 2.50±7.50 72.50±44.79 72.50±27.51

4. Lymphoma (38x1000) 48.50±28.55 58.00±31.24 65.00±28.38 82.50±17.83

Table 5.2: Results of cancer datasets for average 10-fold accuracy test using nonlinear

kernel with shuffling

.

S.NO DATASET SVM LS-SVM PSVM LMS BASED

NONLINEAR P-

SVM

1. Colon (62x2000) 64.76±11.20 64.28±14.86 65.00±27.33 65.47±17.75

2. Lung (22x56) 38.33±43.49 58.33±38.18 53.33±44.30 73.33±28.54

3. ALL-AML (100x500) 28.33±23.62 29.16±20.15 69.16±23.58 71.66±21.94

4. Lymphoma (38x1000) 48.50±19.88 63.00±18.33 66.50±21.35 73.50±28.09
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Table 5.3: Results of UCI repository datasets for average 10-fold accuracy test using

nonlinear kernel without shuffling

.

S.NO DATASET SVM PSVM LMS BASED

NONLINEAR P-

SVM

1. Australian (690x14) 43.18±3.02 69.56±5.83 70.28 ±5.92

2. Bupa Liver (345x16) 57.95±23.20 52.46±7.56 67.52±5.67

3. German (1000x24) 30.00±4.64 71.40±5.85 72.20±6.01

4. Heart-Stat log(270x13) 44.44±5.73 66.66±6.53 68.14±6.34

5. Ionosphere (351x34) 64.00±21.31 64.00±22.46 64.00±22.46

6. Pima Indian (768x8) 34.91±7.35 71.34±6.85 74.99±7.31

7. WDBC (569x31) 68.46±17.14 91.21±3.19 91.74±2.97

8. WPBC (148x32) 24.38±14.60 73.94±14.68 75.05±15.18

Table 5.4: Results of UCI repository datasets for average 10-fold accuracy test using

nonlinear kernel with shuffling

.

S.NO DATASET SVM PSVM LMS BASED

NONLINEAR P-

SVM

1. Australian (690x14) 43.18±3.02 69.56±5.83 70.43 ±4.98

2. Bupa Liver (345x16) 57.95±23.20 52.46±7.56 64.89±6.45

3. German (1000x24) 30.00±4.64 71.40±5.85 73.10±4.43

4. Heart-Stat log(270x13) 44.44±5.73 66.66±6.53 68.14±7.24

5. Ionosphere (351x34) 64.00±21.31 64.00±22.46 64.42±8.89

6. Pima Indian (768x8) 34.91±7.35 71.34±6.85 74.08±4.37

7. WDBC (569x31) 68.46±17.14 91.21±3.19 92.24±2.37

8. WPBC (148x32) 24.38±14.60 73.94±14.68 76.65±5.38
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Table 5.5: Time taken by the classifiers to train cancer datasets with reduced kernel

matrix size

.

S.NO DATASET R.R=1 R.R=0.7 R.R=0.5 R.R=0.1

1. Australian (690x14) 228.53 212.23 198.21 181.90

2. Bupa Liver (345x16) 107.60 97.56 86.31 71.57

3. German (1000x24) 296.79 114.89 94.24 86.21

4. Heart-Stat log(270x13) 62.89 79.03 62.74 59.33

5. Ionosphere (351x34) 127.91 119.48 92.86 87.29

6. Pima Indian (768x8) 345.32 336.12 197.24 182.94

7. WDBC (569x31) 492.27 458.23 412.48 385.57

8. WPBC (148x32) 38.25 27.35 21.97 16.38

Table 5.6: Time taken by the classifiers to train UCI repository datasets with reduced

kernel matrix size

.

S.NO DATASET R.R=1 R.R=0.7 R.R=0.5 R.R=0.1

1. Colon (62x2000) 43.62 36.37 27.28 18.90

2. Lung (22x56) 10.34 10.28 8.43 7.90

3. ALL-AML (100x500) 17.90 17.89 14.26 12.57

4. Prostate (38x1000) 54.34 48.51 33.46 28.20

5. Lymphoma (38x1000) 32.54 31.23 23.09 13.14
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5.3 Conclusion

The result shows that the proposed method is better as compared to standard SVM,

LS-SVM and PSVM for nonlinear classifier. The experiment is performed on all

the 5 cancer datasets from Table 2.1. Out of 5 datasets nonlinear classifier shows

better result for 4 datasets. The performance of proposed method for UCI repository

datasets is better for 7 datasets out of 8 datasets. Better accuracy is represented in

bold letter. Two sets of experiments are performed, in first set the sequence of the

datasets is kept as it is but in the second set the dataset is randomized or shuffled

for the training purpose. Table 5.1 and Table 5.2 represent the comparison and the

result of cancer datasets with and without shuffling using standard SVM, LS-SVM,

PSVM and LMS-PSVM as a nonlinear classifier. Table 5.3 and Table 5.4 represent

the comparison and the result of UCI repository datasets with and without shuffling

using standard SVM, PSVM and LMS-PSVM as a nonlinear classifier. Table 5.5

and Table 5.6 shows the result of reduced kernel matrix size. R.R is the reduction

ratio, firstly R.R=1 means that the size of the matrix is not reduced. R.R=0.7 means

that the size of the kernel matrix is reduced to 70% of the original matrix size. It is

evaluated that as the size of the kernel matrix reduces the training time also reduces.
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6.1 Testing and Comparison

The PSVM is implemented by using the PSVM Tool Box. 10-fold testing method

is performed for the experiment. In 10-fold testing process, 90% of data is used

for training purpose and 10% of data is used for testing purposes. This process

is performed 10 times, so that each and every data is used for both testing and

training purpose. In proposed LMS-PSVM, the number of iterations used for LMS

algorithm is 100,000. The parameter η for an lms algorithm for all the datasets was

preferred from the set 10−I , where i = 1, 2, 3, 4....., 20. On comparing the results of

LMS-PSVM with PSVM, it is found that the classification accuracy of LMS-PSVM

is greater than PSVM in case of all except colon for linear classifier and ALL-AML

for nonlinear classifier. On comparing the results of LMS-PSVM with PSVM, it is

found that the classification accuracy of LMS-PSVM is greater than PSVM in case

of all except ionosphere. LMS-PSVM classification efficiency is greater compared to

standard SVM for all the datasets. In order to test the effectiveness of nonlinear

kernel for LMS-PSVM, Gaussian kernel function is used to represent the datasets

into high dimensional space. Due to strong convexity LMS-PSVM code is simpler

than LS-SVM. Computation time in LMS-PSVM is reduced with the help of KKT

optimality conditions and Sherman-Morrison-Woodbury formula. To compete with

LMS-PSVM, more number training time is needed for SVM and it also requires more

iterations. Large margin hyperplanes are obtained in case of LMS-PSVM, which in

turn minimizes the generalization error. Minimum generalization error means that

when a new set of data points with unknown class values arrive for the classification,

the chances of occurring an error while predicting the class of the datapoints based on

the hyperplane or learning classifier should be minimum. As lms algorithm is simple

to implement, therefore the computational complexity of LMS-PSVM is not much

higher than PSVM. LMS-PSVM not only works for a linear classifier, but also for a

nonlinear classifier as well. In nonlinear case, the matrix A is replaced by K(A,AT )

as input, and the pair (ω, b) is replaced by (ν, b), where ω = ATY ν. On shuffling,

it is seen that the performance increases for all the datasets. The training time of

LMS-PSVM is not much greater than the training time of PSVM. For the reduced
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kernel case, 100%, 70%, 50% and 10% of class 1 data as training centers are chosen.

In this case only the total time taken by the classifiers for each dataset is checked. In

our work, two sets of experiments are conducted. In the first set the data are in the

same order as given in the datasets for the purpose of testing is used. In the second

case the data are shuffled in order to get the maximum information content in the

training process. The results of LMS-PSVM are compared with the PSVM, LS-SVM

and SVM for cancer datasets. The other datasets result of LMS-PSVM are compared

with PSVM and SVM. It is seen from the result that out of 8 datasets one dataset

shows accuracy similar to classical PSVM in the case for both linear and nonlinear

LMS-PSVM classifier.

6.2 Conclusion

In this thesis, a new method to improve the performance of the proximal support vec-

tor machine classifier is presented. The result shows that LMS-PSVM is more efficient

than PSVM for both linear and nonlinear classifiers. LMS-PSVM classification accu-

racy is more in case of nonlinear classifier than in linear classifier. The performance

of classifier is improved by using a new method which is based on least mean square

(LMS) algorithm. The idea behind our method is to enlarge the margin between the

hyperplanes in order to increase the classification accuracy. The data points due to

which error is occurring are collected, so that the weight vector is adjusted accord-

ing to these points. The weight vector is updated using least mean square (LMS)

algorithm till the mean square error is reduced to 0.00001. These updated weight

vectors are stored during the training phase so that it can be used for testing pur-

pose. Experiments are evaluated using 5 cancer datasets and 8 other datasets from

Bioinformatics repository and UCI repository. The performance of linear classifier

on 4 cancer datasets and 7 other datasets and performance of nonlinear classifier on

4 cancer datasets and 8 other datasets is reported in this thesis. It is seen that the

proposed technique performs classification more efficiently than classical PSVM.

50



6.3 Future Work Conclusion and future work

6.3 Future Work

The proposed method LMS-PSVM can be used for multiclass classification. LMS

algorithm can be applied to other version of SVMs to obtain more efficient classifier.

In place of Gaussain radial basis function, other kernel functions can be used for the

training purpose.
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