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ABSTRACT 

 

Electric Railway Traction Drive has been introduced as a solution to the environmental problem 

caused by the diesel or steam engines. Generally, an AC electrified railway system is supplied with 

25kV, 50 Hz AC supply. It is fed to the traction motor after stepping down to three phase, 400 V, 

50Hz with the help of a transformer. This magnetically coupled transformer lead to high weight, 

several losses and reduced efficiency. The railway electric traction requires high voltage operation. 

This is achieved with the help of multilevel inverter. Among the various multilevel inverters, the 

cascaded multilevel inverter is best suited for railway traction application because of its modular 

structure and use of low rating devices. The three phase induction motors are widely used in the 

railway traction drive because of its low cost and weight, better torque characteristics, high 

reliability and less maintenance due to the absence of brushes. This thesis presents the application of 

the cascaded multilevel inverter in the transformerless railway traction drive. Cascaded inverters up 

to eleven level have been simulated to find that THD increases with the increase in the voltage level. 

Various modulation techniques- Phase Shifted Modulation, Level Shifted Modulation and Selective 

Harmonic Elimination techniques were implemented in the multilevel inverters to find out the best 

modulation techniques among them. It was found that SHE technique resulted in low THD. Thus, an 

IGBT based-cascaded eleven level inverter with SHE method has been modelled to lower the supply 

voltage to a level convenient for the traction induction motors. This eliminates the need of a 

transformer in the railway traction drives and also results in the reduction in the Total Harmonic 

Distortion of the voltage to be supplied to the traction motors.  
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1.1 Overview 

Steam and Diesel engines were considered to be a source of environmental disaster on 

wheels. Thus, there was a desire to improve the efficiency and reliability of the steam traction drive. 

This lead to the electrification of the railway system [1]. Electric traction drive has now been 

considered to be an efficient way of transmitting power to the traction motors that can deliver as 

much as 2
 

 
 times the tractive power output of equivalent diesel traction. It has high power-to-weight 

ratio which results in faster acceleration and higher tractive effort . Because of improved 

acceleration, extra stations can be served with less time delay and hence, a blessing to the minor 

stations. There can be a further increase in the efficiency through regenerative braking by recycling 

the energy of the slowing down train in the descending gradient. While descending a gradient, 

energy can also be dissipated by the on-board resistors in the form of heat. The improved overall 

performance and less vibration results in faster, more comfortable, smoother and quieter journeys for 

the passengers. 

The electric traction drives requires medium voltage and high power operation. This can be achieved 

with the help of multilevel inverters[2]. The traction transformer steps down the catenary voltage to 

a level convenient for traction motors. This bulky transformer reduces efficiency; add to weight, cost 

and floor space. In [3], it is shown that the multilevel inverters can be directly connected to the high 

voltage supply and can step down the voltage. Thus, it eliminates the need of the transformer.  

1.2 Research Background 

1.2.1 Multilevel Inverter 

The changing scenario of the power demand of the world has lead to the development of 

various new power converters and new power semiconductor devices. One of them is the multilevel 

converter technology that has been basically introduced for industrial application having medium 

voltage and high power requirement. In the power industry, the medium voltage is in the range of 2.3 

kV to 6.6 kV and high power range is considered to be 1 – 50 MW [2]. 

A single power semi-conductor cannot be connected to the medium voltage grids (2.3, 3.3, 4.16, 6.9 

kV). Hence, this multilevel converter has emerged as a solution to this [4]. Also, several 

semiconductor devices can be connected in series or parallel to meet this voltage or power 

requirement. But due to the differences in their inherent characteristics, they distribute the voltages 
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unevenly causing the voltage of the devices to be greater than their blocking voltage and hence affect 

the devices to a greater extent. To overcome this problem, multilevel converter has been introduced 

[5]. The three level inverter introduced by Nabae et al. lead the use of the term “multilevel’.  

In the late 1960s, the multilevel converter technology was introduced. Several H-bridges 

were connected in series to give multilevel stepped waveform. This was called cascaded H-bridge 

converter [2,4,5]. In the same year, a low power Flying Capacitor (FC) converter was developed. 

According to a patent that appeared in 1975, the cascaded inverter synthesized a staircase waveform 

from several DC sources [4]. In late 1970s, the Diode Clamped Converter (DCC) was introduced [4]. 

Later, in 1980s, the DCC was called Neutral Point Clamped (NPC) converter. it is because when it 

was used in a three level inverter, the mid-voltage was called as neutral point [2]. As in 1981, Nabae 

, I. Takahashi and H, Akagi presented the first NPC PWM converter [5]. The CHB was again 

reintroduced for the industrial application in the mid- 1990s [2]. Similarly, FCs were used in 

medium voltage converter in the early 1990s [2]. Recently, many new multilevel inverter topologies 

are emerging. Some of them are mixed level hybrid multilevel cells, soft switched multilevel 

inverters , five level H-bridge NPC (5L – HNPC), three level active NPC (3L- ANPC), modular 

multilevel converter (MMC), cascaded matrix converter (CMC), transistor clamped converter 

(TCC), hybrid NPC –CHB , hybrid FC - CHB and many more [2]. 

There are various modulation techniques of the multilevel converters [6]. Some of them are 

Sinusoidal PWM, Multicarrier PWM, Selective Harmonic Elimination (SHE), Space Vector 

Modulation (SVM) etc.. 

Various attractive features of the multilevel converters are as follows [4,7]: 

i. Because of the staircase output voltage waveforms, THD and the        is lowered.  

ii. Efficiency is increased because they can be switched at low frequency. 

iii. Common mode voltages are reduced and hence the stresses on the motor bearings are 

reduced. 

iv. The input current drawn by them has low distortion. 

v. There exists no EMI problem. 

But they have a limitation that with the increase in the level, there is an increase in control 

complexity and the voltage imbalance problem arises [4]. Even though the low voltage 
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semiconductor devices are used, each device should have its own gate circuit, making it expensive 

and complex.  The design of simple and fast modulation techniques are also one of the technological 

problems [5]. 

Some of the applications of the multilevel converters include compressors, fans, grinding mills, 

rolling mills, conveyers, blast furnace blowers, mine hoists, reactive power compensations, high 

voltage direct current (HVDC) transmission, Flexible Alternating Current Transmission 

System(FACTS), wind energy conversion, electric traction , railway traction , Hybrid Electric 

Vehicle. The multilevel converters are not only for high power applications like HVDC etc but also 

for low power requirements like in renewable energy sources.  These converters can be easily 

interfaced with the renewable energy sources like photo voltaic cells, fuel cells, wind energy 

conversion [2, 4, 7]. Application of the multilevel inverters in electric railway traction is a recent 

development. Thus, power electronics is contributing toward a greener and cleaner world. 

1.2.2 Electric Railway Traction Drive 

According to [8], the class 1822 dual-voltage locomotive of Austrian Railways (OBB) is the first 

railway traction drive using a three level PWM converter and inverter. Nabae et al. introduced the 

three level inverter . The three level configuration was popular for the high voltage DC operation 

requirement as a single semiconductor devices cannot be directly connected to high DC voltage of 

catenaries.  

1.2.3 Induction Motor in Railway Traction Drive 

In 20
th

 century, the three phase induction motors (IMs) were considered to be ideal for the electric 

railway traction because of the steep torque-speed characteristics and regenerative capability. The 

three phase traction system was first implemented in Germany for experimental purpose. It was also 

used in the Bergdorg – Thun line in Switzerland in the year 1899 and the Cascade tunnel in U S 

Great Northern Railroad in the year 1909 [9]. And nowadays, the induction motors are used in the 

inverter-driven electric train. It can withstand the mechanical shock, high temperature and the 

vibration due to the harmonics present in the supply voltage of the inverter. Due to the absence of 

the brushes in IMs, the maintenance is low and the weight is reduced. It has better torque 

characteristics [9]. These favourable characteristics of IMs served as a motivation to use IMs in the 

traction drive.  
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1.2.4 IGBT Based Traction Drive 

Earlier, the SCRs were used for the voltage regulation of the DC traction motor. Then, the GTO 

thyristors were developed for three phase induction motor drive. Presently, IGBTs are replacing 

GTOs to the performance of the drive. The IGBT based traction propulsion system has lesser losses, 

better controllability, superior performance, high reliability and modular design as compared to the 

GTO- based system . The Indian Railways has introduced the first fully IGBT based electric 

locomotive, WAG-9i, type 31248 in the year 2010 [10].   

1.3 Motivation 

1.3.1 Electric Traction Drive in Railway System 

In the 19
th

 century, the steam and diesel tractions were used in the railway vehicles. These proved to 

be very expensive and polluted form of traction [1]. As a solution to this, electric traction drive has 

been introduced in the railway system. Not only is it environmental friendly but also cost effective in 

terms of the fuel cost. With the help of this electric traction drive, the efficiency of the railway 

system has improved.  

1.3.2 Multilevel Inverter 

The railway electric traction requires high voltage operation. This can be fulfilled by the series 

and/or parallel combination of various semi-conductor devices. But because of the differences in 

their inherent characteristics, it will damage the devices. This limitation can be overcome with the 

help of multilevel converter [5]. The output voltage of multilevel inverter has low harmonic content 

(THD) in comparison to that of a two level inverter as shown in Fig.1.1 and Fig. 1.2. 

Also with the help of the multilevel inverter, the transformation of the voltage level can be done 

without the help of the bulky transformer. This results in transformerless traction drives [2]. Thus, 

the multilevel inverter prevents the motor damage and thereby increases the efficiency of the drive. 
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Fig1.1 Line voltage waveform of a two level inverter along with its FFT analysis 

 

 

 

 

 

 

 

 

 

 

 
Fig 1.2 Line voltage waveform of a three level inverter along with its FFT analysis 

 1.3.2.1 Cascaded Multilevel Inverter  

The NPC converters requires neutral point control and capacitor voltage balance. With the increase 
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control and the power circuit become complex [5]. The FC converter balances voltage naturally but 

the capacitors has to be precharged. Although this converter is modular in structure, but requires 

large number of flying capacitors as the output voltage level increases and thus adds to the cost. Also 

the increase in the cell does not guarantee increase in the power rating of the converter [5].   In 

contrast to this, CHB converters have no voltage balancing problems due to separate DC sources. Its 

power rating can be increased by the series connection of the cells [2,5]. The NPC converter requires 

medium-/high voltage devices (like IGCT and medium voltage / high voltage IGBT) whereas CHB 

converters require low voltage IGBTs. A commercially available CHB converter has more output 

levels as compared to the three level NPC converter [2].  Its only drawback is the presence of the 

transformer [5]. But this transformer can be eliminated with the help of cascaded multilevel rectifier 

and inverter combination. This results in a transformerless system. Thus, it increases the efficiency 

and reduces the cost of the traction drive. The CHB is suitable for high power applications because 

of its modular structure, improvement in the power factor reduction in the average device switching 

frequencies [2].  

In CHB converter, each switching devices always conduct for half cycle, hence distributing the 

current stress equally among the switching devices. It can act as rectifier when it returns the kinetic 

energy of the motor to the supply if regenerative braking is used and as inverter when it provides 

supply to motor. The pattern swapping scheme introduced in CHB converter balances voltage 

naturally [7].  

The advantages of the CHB converter can be summarised as below: 

i. Modular in structure so packing and circuit layout is  easier 

ii. No clamping diodes present as in NPC 

iii. No voltage balancing capacitors present in FC 

iv. Low voltage switching devices required 

v. No EMI problem 

vi. Less common mode voltage 

vii. Less       

viii. Suitable for medium voltage ,  high power applications 

ix. Separate DC sources eliminates the need of the voltage balancing circuits 
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x. With the increase in the number of the level, the staircase waveform approximates to a 

sinusoid 

xi. It can work at reduced power level when one of its cell or SDCSs is damaged 

xii. Soft switching techniques can be applied to CHB 

xiii. No transformer required as in multi-pulse inverters 

xiv. It makes Induction Motor more accessible / safer and open wiring possible for most of an 

induction motor power system. 

Because of these advantages, the CHB converter has been used in this traction drive. 

1.3.3 Choice of IGBT over GTO based drive 

Recently, Insulated Gate Bipolar Transistor (IGBT) based traction propulsion system has been 

developed for railway system because of its better control ability, superior performance, high 

reliability, less losses and most importantly , its modular structure [3,10]. Use of IGBT based electric 

locomotive is found to be more energy efficient than Gate Turn Off (GTO) based locomotives.  

1.3.4 Demand of Induction Motor 

Earlier DC motors were used as traction motors. But nowadays, three phase induction motors are 

widely used because of low cost and weight, better torque characteristics, high reliability and less 

maintenance due to the absence of brushes [8]. Induction motor is smaller in size as compared to the 

DC motor as shown in Fig. 1.3. 

 

Fig 1.3 DC motor and Induction Motor 

Three Phase 

Induction Motor DC Motor 
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1.4 Objective 

The objective of the project is to 

i. Implement various types of modulation techniques in the IGBT based cascaded 

multilevel inverter and then finally the best method is to be implemented in the cascaded 

multilevel rectifier and inverter. the best modulation technique can be obtained after 

comparing the THD values of each method with one another. 

ii. Simulate cascaded three level, five level, seven level, nine level and eleven level inverter 

to find how the THD is affected by the number of levels. 

iii. Design and develop an IGBT based cascaded multilevel inverter drive for electric railway 

traction. 
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Fig 1.4 Power circuit of three phase cascaded H-bridge eleven level inverter using IGBT 
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Fig 1.5 Schematic diagram of the drive system of induction motors used in railway traction system 

1.5 Thesis Outline 

In this thesis, the modelling and the performance of the cascaded multilevel inverter based 

transformerless railway traction drive has been analyzed. This thesis is divided into six chapters. 

Chapter 1 presents the cause for the electrification of the railway system. The introduction of 

multilevel inverter along with their applications has been discussed. Induction motor drives have 

been discussed. The advantages and limitations of the cascaded multilevel inverter has been 

enumerated. The motivation and the objective of this thesis have been presented. 

Chapter 2 presents the classical multilevel inverter topologies, their advantages and disadvantages. 

Various applications of these inverters are also discussed. 

Chapter 3 describes the different types of the modulation techniques available for the multilevel 

converters. A comparison is done to find the modulation technique that is suitable for the cascaded 

multilevel inverter. Selective Harmonic elimination technique was found to be the best among the 

discussed modulation techniques and is implemented in the cascaded converter system. 

Chapter 4 discusses about the steam traction drive, diesel traction drive and the electric traction drive 

used in railway systems. The characteristics of the traction motor, the traction mechanics and the 

speed time curve of a running train is analysed. Preference of induction motor over DC motor is 

discussed. 
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Chapter 5 presents the different multicarrier techniques implemented in the three level, five level, 

seven level, nine level and eleven level cascaded inverter. The modulation techniques and the 

inverters are compared on the basis of THD. From all the modelled inverters, eleven level inverter is 

chosen for the drive. Selective Harmonic Elimination Technique was implemented in the eleven 

level converter systems to reduce the switching losses. This cascaded multilevel inverter is then used 

in the transformerless railway traction drive and the speed time curve of the train is analyzed.  All 

the simulations are done in MATLAB-Simulink environment.  

Chapter 6 draws the conclusion for this thesis and presents the scope for future work.  
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Chapter 2 

MULTILEVEL CONVERTER 
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MULTILEVEL CONVERTERS 

2.1 Introduction 

Multilevel inverters comprises of power semi-conductor devices and capacitor voltage sources. 

These generates stepped or staircase waveforms. The on and off these devices generates voltages in 

steps which when added gives high voltage at the output. Thus, we get high voltage at the output 

with low voltage at the semiconductor devices.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 One phase leg of an inverter with (a) two levels (b) three levels (c) n levels 

Fig. 2.1 shows the schematic diagram of one phase leg of inverter with different of levels in which 

the semiconductor device is represented by an ideal switch with several positions. 

A two level inverter generates an output voltage with two levels (values) with respect to negative 

terminal of the capacitor as shown in Fig. 2.1(a) while the tree level inverter generates three level 

voltages and so on. 

Inverter with voltage level greater than two comes under multilevel inverter. The three level inverter 

was first introduced by Nabae et al. it is found that with the increase in the level, the steps increases 
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and the output waveform approaches to be a near sinusoidal waveform. Thus, it reduces the THD 

with a disadvantage of complex control and voltage imbalance problem. 

Some of the remarkable features of the multilevel inverters are [4,7]: 

i. Because of the staircase output voltage waveforms, THD and the        is lowered.  

ii. Efficiency is increased because they can be switched at low frequency. 

iii. Common mode voltages are reduced and hence the stresses on the motor bearings are 

reduced. 

iv. The input current drawn by them has low distortion. 

v. There exists no EMI problem 

The multilevel inverters are classified into three types [4,7]: 

i. Diode clamped multilevel inverter (Neutral Point Clamped inverter) 

ii. Flying Capacitor Multilevel Inverter (Capacitor Clamped Inverter) 

iii. Cascaded H-bridge Multilevel Inverter 

2.2 Diode Clamped Multilevel Inverter 

Fig.2.2(a) shows a three level diode clamped inverter in which the two series connected capacitors 

C1 and C2 divide the dc voltage Vdc into three output voltage  levels van :       ,  0 and -      by 

the switching combination as shown in Table 2.1. 

The switching state 1 implies the switch is ON whereas state 0 implies that it is OFF. 

The two diodes D1 and D2
’
 clamp the voltage across the switch to        When both S1 and S2 are 

turned ON, the voltage across a and 0 va0 = Vdc. S1
’
 blocks the voltage across C1 and S2

’
 blocks the 

voltage across C2. D1
’ 
balances the voltage sharing between S1

’
 ad S2

’
. 

The voltage van is ac whereas voltage va0 is dc. If the output is found between a and 0, then it is a dc-

dc converter which has three output voltage levels: Vdc ,       and 0. 
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Fig. 2.2 Single Phase Neutral Clamped Multilevel Inverter circuit (a) three level (b) five level 

Table 2.1 Switching combination for a three level neutral point clamped inverter 

Voltage van S1 S2 S1
’ 

S2
’ 

      1 1 0 0 

0 0 1 1 0 

-      0 0 1 1 

 

Similarly, Fig. 2.2(b)  shows a five level diode clamped converters having four capacitors C1, C2, C3 

and C4. Voltage across each capacitor is       and each device is required to block a voltage level 

of       . There are five switch combinations to obtain the output voltage as shown in the Table 2.2.  

Table 2.2 Five level Diode Clamped Voltage and Switching States 

Output 

va0 

Switch State 

S1 S2 S3 S4 S1
’ 

S2
’
 S3’ S4’ 

V5= Vdc 1 1 1 1 0 0 0 0 

V4= Vdc/4 0 1 1 1 1 0 0 0 

V3 = Vdc/2 0 0 1 1 1 1 0 0 

V2 = Vdc/4 0 0 0 1 1 1 1 0 

V1 = 0 0 0 0 0 1 1 1 1 
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Some of the advantages of Diode Clamped Inverter are [2,4,5]: 

i. The THD decreases with the increase in the number of levels. Thus avoid the need of 

filters. 

ii. It has simple control method for a back-to-back intertie. 

iii. Since all the devices are switched at the fundamental frequency, the efficiency of the 

inverter is high. 

iv. Reactive power flow can be controlled. 

v. Capacitors can be pre-charged as a group. 

vi. Since all the phases share a common dc bus, the capacitance requirements are minimised. 

Some of its major disadvantages are: 

i. There is a quadratic increase of clamping diodes with the increase in the level. 

ii. It is difficult to control the real power flow of the individual converter in multi-converter 

systems as the intermediate dc levels will tend to overcharge or discharge without precise 

monitoring and control. 

iii. Even though each active switching device voltage stress is limited to          , the 

clamping diodes must have different voltage ratings for reverse voltage blocking. 

 

2.3 Capacitor Clamped Multilevel Inverter: 

Fig.2.2(a) shows a three level capacitor clamped inverter. Here instead of diodes, capacitors are used 

to clamp the device voltage to one capacitor voltage level. The voltage across a and 0 van has three 

voltage levels van:       ,  0 and -      by the switching combination as shown in Table 2.3.The 

switching state ‘1’ denotes that switch is ON and state ‘0’ denotes that switch is OFF. 

There are two possible combinations to obtain the voltage level -     . 
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Fig. 2.3 Single Phase Capacitor Clamped Multilevel Inverter circuit (a) three level (b) five level 

Table 2.3 Switching combination for a three level capacitor clamped inverter 

Voltage van S1 S2 S1
’ 

S2
’ 

      1 1 0 0 

0 0 0 1 1 

-      1 0 1 0 

0 1 0 1 

 

Let us consider the one leg of the five level inverter as shown in Fig.2.3(b). The dc rail 0 can be 

considered as the reference point for the output phase voltage. There are various switching 

combinations to generate the five level voltages. One of the possible combinations is as in Table 2.4. 
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Table 2.4 Switching combination for a five level capacitor clamped inverter 

Output 

Va0 

Switch State 

S1 S2 S3 S4 S1
’ 

S2
’
 S3’ S4’ 

V5= Vdc 1 1 1 1 0 0 0 0 

V4= 3Vdc/4 0 1 1 1 1 0 0 0 

V3 = Vdc/2 0 0 1 1 1 1 0 0 

V2 = Vdc/4 0 0 0 1 1 1 1 0 

V1 = 0 0 0 0 0 1 1 1 1 

 

Fig. 2.4 shows the stepped output phase voltage waveform of a flying capacitor inverter. 
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Fig. 2.4 Stepped Output Waveform Of Flying Capacitor Inverter 

Some of its advantages can be summarized as follows: 

i. Switching redundancy helps to balance different voltage levels.  

ii. THD is lowered with the increase in the level as in NPC . 

iii. Both the real and reactive power flow can be controlled. 

iv. Large amounts of storage capacitors provide ride through capability during power 

outages. 

v. By proper selection of capacitor combination, the capacitor charge can be balanced. 

Some of its disadvantages can be summarized as follows: 

i. Large numbers of capacitors are required to clamp the voltage. This makes it bulky, 

expensive and difficult in packaging. 

ii. Its control is complicated. 

iii. It is less efficient for real power transmission as the switching frequency and switching 

losses are high. 

iv. Precharging of all the capacitors too the same voltage level is complex. 
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2.4 Cascaded H Bridge Multilevel inverters 

It is the series connection of the single phase H-bridge units with separate DC sources (SDCSs). 

These SDCSs may be batteries, fuel cells or solar cells [1]. Each unit produces three voltages at the 

output: + Vdc, 0 and – Vdc. The number of these units is decided by the operating voltage and 

manufacturing cost [2].   

Fig. 2.5 shows a phase leg of a five level cascaded inverter. It consists of two H-Bridge inverter units 

with two isolated and equal DC sources. When switches S11 , S21 and switches S12 , S22 conduct, the 

output voltage of the H Bridges H1 and H2 is vH1 = vH2 = E and the resultant inverter phase voltage is 

vAN = vH1 + vH2 = 2E.  

N
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-

+

-

DC

DC

 

Fig. 2.5 Cascaded multilevel inverter topology 

Sometimes, more than one switching state results in the same voltage level. This switching state 

redundancy provides a greater flexibility for switching pattern design, particularly in space vector 

modulation technique [2]. 

The number of the output line voltage level is found by           where H is the number of H-

bridges in each phase leg. Unlike other multilevel inverters, only odd number of voltage level is 

obtained in CHB. The total number of active switches used in CHB is given by           . 
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Fig.2.6 shows an IGBT based three phase eleven level cascaded inverter which is used in the 

modeling of the traction drive. Fig. 2.7 shows the output phase voltage waveform of an eleven level 

inverter. 
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Fig 2.6 An eleven level cascaded inverter 
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Fig. 2.7 Output phase voltage waveform of an eleven level cascaded multilevel inverter 

Some of the advantages of the CHB converter can be summarized as below: 

xv. Modular in structure so packing and circuit layout is  easier 

xvi. No clamping diodes present as in NPC 

xvii. No voltage balancing capacitors present in FC 

xviii. Low voltage switching devices required 

xix. No EMI problem 

xx. Less common mode voltage and less       

xxi. Suitable for medium voltage ,  high power applications 

xxii. Separate DC sources eliminates the need of the voltage balancing circuits 

xxiii. With the increase in the number of the level, the staircase waveform approximates to a 

sinusoid 

xxiv. It can work at reduced power level when one of its cell is damaged 

xxv. Soft switching techniques can be applied to CHB 

xxvi. No transformer required as in multi-pulse inverters 

xxvii. Number of possible output voltage levels is more than twice the number of DC sources 

         

Its major disadvantage is the requirements of separate DC sources. It is thus limited to the 

applications where SDCSs are already present. 

In Table 2.5, the three types of multilevel inverter have been compared on the basis of the 

component requirement.  
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Table 2.5 Comparison of component requirement per leg of three types of multilevel inverter 

Converter Type Diode-clamp Flying capacitors Cascaded inverter 

Main switching devices (m-1)*2 (m-1)*2 (m-1)*2 

Main diodes (m-1)*2 (m-1)*2 (m-1)*2 

Clamping diodes (m-1)*(m-2) 0 0 

DC bus capacitors (m-1) (m-1) (m-1)/2 

Balancing capacitors 0 (m-1)*(m-2)/2 0 

 

2.5 Applications of Multilevel Inverter 

Since the diode clamped and cascaded multilevel inverters have separate DC sources, they find 

applications in real power conversion. The capacitor clamped inverter is not suitable for reactive 

power conversion as they cannot balance voltage in case of only reactive power conversion [4]. 

Since separate Dc sources are used in the cascaded multilevel inverter, it is best suitable for 

harmonic compensation, reactive power compensation and other utility applications [4]. The 

Cascaded multilevel inverter is mostly used in FACTS and STATCOM applications. Neutral point 

Converter can also be used in FACTS and STACOM. A three port Universal Flexible Power 

Management (UNIFLEX-PM) System was proposed using Cascaded Multilevel Inverter [2]. 

Multilevel converters are used in train traction, ship propulsion and automotive applications also. 

The three level NPC in back to back configuration has been used in train drive systems, particularly 

in Transrapid maglev train [2].  The back-to-back three level NPC has been used in permanent 

magnet synchronous generator wind turbine [2]. A CHB-based and an NPC-based multilevel 

mutlistring photovoltaic topology have been developed [2]. Hydro-pumped energy storage is one of 

the recent applications of multilevel converters. FC based converters have limited applications in 

photovoltaic topology, automotive applications, active filters, UPFC etc.  

2.6 Summary 

The NPC converters requires neutral point control and capacitor voltage balance. With the increase 

in the output voltage level, the requirement of the clamping diodes increases, the neutral point 

control and the power circuit become complex [5]. The FC converter balances voltage naturally but 

the capacitors has to be precharged. Although this converter is modular in structure, but requires 

large number of flying capacitors as the output voltage level increases and thus adds to the cost. Also 
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the increase in the cell does not guarantee increase in the power rating of the converter [5].   In 

contrast to this, CHB converters have no voltage balancing problems due to separate DC sources. Its 

power rating can be increased by the series connection of the cells [4,5]. The NPC converter requires 

medium-/high voltage devices (like IGCT and medium voltage / high voltage IGBT) whereas CHB 

converters require low voltage IGBTs. A commercially available CHB converter has more output 

levels as compared to the three level NPC converter [7].  Its only drawback is the presence of the 

transformer [5]. But this transformer can be eliminated with the help of cascaded multilevel rectifier 

and inverter combination. This results in a transformerless system. Thus, it increases the efficiency 

and reduces the cost of the traction drive. The CHB is suitable for high power applications because 

of its modular structure, improvement in the power factor reduction in the average device switching 

frequencies [4].  
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Chapter 3 

MODULATION TEHCNIQUES 
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3.1 Introduction 

This chapter describes various modulation techniques to control the output voltage of the multilevel 

voltage source inverter. Broadly, these control techniques can be classified into Pulse Width 

Modulation (PWM), Selective Harmonic Elimination (SHE) Modulation and Optimised Harmonic 

Stepped Waveform (OHSM) [11]. The PWM technique can be open loop type like sinusoidal PWM, 

Space Vector Modulation, sigma delta and closed loop type like hysteresis current controller, linear 

current controller etc.  

PWM can be considered to be an efficient modulation technique as it does not require additional 

components and also the lower harmonics can be eliminated or minimised leaving higher order 

harmonics which can be easily filtered out whereas the requirement of SCRs in this technique with 

low turn-on and turn-off times makes it expensive. 

Sinusoidal Pulse Width Modulation (SPWM) is the simplest technique that can be implemented in 

both two level and multilevel inverters [12]. Basically, in SPWM, two signals - a sinusoidal 

reference signal and a high frequency carrier signal (triangular signal) are compared to give two 

states (high or low). The amplitude of the fundamental component of the output voltage of the 

inverter can be controlled by varying Modulation Index (MI). Modulation Index is defined as the 

ratio of the magnitude of the reference signal (Vr) to that of the magnitude of the carrier signal (Vc). 

Thus, by keeping Vc constant and varying Vr, the modulation index can be varied.  

3.2 SPWM of a Single Phase H-Bridge Inverter 

The basic SPWM techniques are unipolar pulse width modulation and bipolar pulse width 

modulation which are used in a single phase H –bridge inverter to vary its output voltage [13].  

3.2.1 Bipolar Pulse Width Modulation 

In this modulation, the gate pulses are obtained by comparing a sinusoidal modulating signal or 

reference signal with a high frequency carrier signal. 

3.2.2 Unipolar Pulse Width Modulation 

The unipolar modulation normally requires two sinusoidal modulating waves, which are of same 

magnitude and frequency but 180 degree out of phase. The inverter output voltage switches either 

between zero and +Vd during the positive half-cycle or between zero and –Vd during the negative 
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half-cycle of the fundamental frequency. This modulation is also possible with two triangular carrier 

waves and one sinusoidal modulating signal.  

 

Fig 3.1 Bipolar Pulse Width Modulation 

 

Fig 3.2 Output line voltage waveform for bipolar modulation 

 

Fig 3.3 Unipolar Pulse Width Modulation 
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Fig 3.4 Output voltage waveform for unipolar modulation 

 

Fig 3.5 Unipolar Pulse Width Modulation 

3.3 Multicarrier Pulse Width Modulation Techniques 

The carrier based PWM techniques for cascaded multilevel inverter can be broadly classified into : 

phase shifted modulation and level shifted modulation [13]. In both the techniques, for an m level 

inverter, (m-1) triangular carrier waves are required. And all the carrier waves should have the same 

frequency and the same peak to peak magnitude.  

3.3.1 Phase Shifted Multicarrier Modulation  

In phase shifted PWM (PS-PWM), there is a phase shift of     between the adjacent carrier signals. 

The phase shift is given by 
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For a three phase inverter, the modulating signals should also be three phase sinusoidal signals with 

adjustable magnitude and frequency. 

For this modulation scheme, the frequency modulation index    and the amplitude modulation 

index    is given by  

                                                                           
   

  
                                                                 (3.2)  

And   

                                                                           
    

    
                                                              (3.3) 

Where     and     is the frequency of the carrier and the modulating signals respectively and          

and       are the peak amplitudes of the carrier and the modulating signals respectively. The 

amplitude modulation lies in the range of 0 to 1. 

The switching frequency of the device can be calculated as                  .The switching 

frequency of the inverter can be found from the device switching frequency as                  

Consider the case of a seven level inverter. Here, m=5. So it requires (m-1) i.e. 4 number of carrier 

waves of the same frequency and having the same peak to peak magnitude as shown in Fig. 3.6. 

 

Fig 3.6 Phase-shifted PWM for five level CHB inverters 
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3.3.2 Level Shifted Multicarrier Modulation: 

In Level Shifted PWM (LS –PWM), the triangular waves are vertically displaced such that 

the bands occupy are contiguous. The frequency modulation is given by     
   

  
  and amplitude 

modulation index is    
   

           
, where fm and fcr are the frequencies of the modulating and 

carrier waves and VmA and Vcr are the peak amplitudes of modulating and carrier waves respectively. 

The amplitude modulation lies in the range of 0 to 1. Depending upon the disposition of the carrier 

waves, level shifted PWM can be In Phase Disposition PWM (IPD – PWM), Phase Opposition 

Disposition PWM (POD – PWM) and Alternate Phase Opposition Disposition PWM (APOD –

PWM). 

 IPD PWM: 

 In this modulation, all the triangular carrier waves are in phase as shown in Fig 3.7.   

POD PWM: 

The carrier waveforms are in all phase above and below the zero reference value; however there is 

180 degrees phase shift between the ones above and below zero respectively as shown in the Fig 3.8. 

APOD –PWM: 

The carrier waves have to be displaced from each other by 180 degrees alternately as shown in Fig 

3.9. 

In this modulation, the inverter switching frequency and the device switching frequency is given by 

          and       
   

     
  respectively. 

In [12], it was found that LS-PWM can be implemented in all types of multilevel inverters, but it is 

best suitable for NPC. It is do because each carrier signal can be related to each semiconductor 

devices. It is not suitable for CHB as there is an uneven distribution of power because each vertical 

shift relate to each carrier and output level to a particular bridge. 
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Fig 3.7 In Phase Disposition PWM for five level CHB inverter 

 
          Fig 3.8 Phase Opposition Disposition PWM for five level CHB inverter 

 

 
           Fig 3.9 Alternate Phase Opposition Disposition PWM for five level CHB inverter 
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In LS-PWM, each carrier is associated with the gating signals of NPC converter whereas in PS-

PWM, a pair of carriers is associated with each cell of the CHB and FC converters. Because of the 

phase shifting of the carriers, power is evenly distributed among the cells which results in the 

smooth operation of CHB and the natural voltage balancing of the FC. Therefore, LS-PWM is 

mainly used for NPC converter whereas PS-PWM is practically used for CHB and FC converter. 

Even though IPD PWM results in low THD as compared to PS-PWM, the small difference in the 

high frequency content can be filtered out [5,14]. 

3.4 Simulation results of a Single Phase H-Bridge Inverter 

The following voltage waveforms have been obtained by simulating a single phase H bridge inverter 

using different types of modulation techniques: 

A. Bipolar Modulation 

 

 

 

Fig 3.10 Output phase and line voltage waveform for bipolar modulation 
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B. Unipolar Modulation 

 

 

 
Fig 3.11 Output voltage waveform for unipolar modulation 

3.5 THD values of Single Phase Two Level Inverter 

 

On implementing the unipolar and bipolar modulation technique in the single phase two level 

inverter, the following THD values are obtained. It can be found from Table 3.1 that the unipolar 

modulation technique results in lower THD as compared to the bipolar modulation . 

 

Table 3.1 Comparison of THD values of the line voltage of a single phase two level inverter using different modulation 

techniques 

Modulation Technique THD (in %) 

Bipolar Modulation 215.50 

Unipolar Modulation 78.62 
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3.6 Simulation results of Cascaded Multilevel Inverters using Phase Shifted 

Modulation Technique: 

a.  Three Level Inverter 

 
Fig 3.12 Outpu/t phase voltage waveform of a three level inverter 

 
Fig 3.13 Output line voltage waveform of a three level inverter 

b. Five Level Inverter 

 

Fig 3.14 Output phase voltage waveform of a five level inverter 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-100

-50

0

50

100

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-200

-150

-100

-50

0

50

100

150

200

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-200

-150

-100

-50

0

50

100

150

200



34 
 

 

Fig 3.15 Output line voltage waveform of a five level inverter 

c. Seven Level Inverter 

 

Fig 3.16 Output phase voltage waveform of a seven level inverter 

 

Fig 3.17 Output line voltage waveform of a seven level inverter 

 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-400

-300

-200

-100

0

100

200

300

400

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-300

-200

-100

0

100

200

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-600

-400

-200

0

200

400

600



35 
 

d. Nine Level Inverter 

 

Fig 3.18 Output phase voltage waveform of a nine level inverter 

 

Fig 3.19 Output line voltage waveform of a nine level inverter 

e. Eleven Level Inverter 

 

Fig 3.20 Output phase voltage waveform of an eleven level inverter 
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Fig 3.21 Output line voltage waveform of an eleven level inverter 

3.7 Simulation results of Cascaded Multilevel Inverters using In Phase Level 

Shifted Modulation Technique: 

a.  Three Level Inverter 

 
Fig 3.22 Output phase voltage waveform of a three level inverter 

 
Fig 3.23 Output line voltage waveform of a three level inverter 
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b. Five Level Inverter 

 
Fig 3.24 Output phase voltage waveform of a five level inverter 

 
Fig 3.25 Output line voltage waveform of a five level inverter 

c. Seven Level Inverter 

 
Fig 3.26 Output phase voltage waveform of a seven level inverter 
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Fig 3.27 Output line voltage waveform of a seven level inverter 

d. Nine Level Inverter 

 
Fig 3.28 Output phase voltage waveform of a nine level inverter 

 
Fig 3.29 Output line voltage waveform of a nine level inverter 
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e. Eleven Level Inverter 

 
Fig 3.30 Output phase voltage waveform of an eleven level inverter 

 
Fig 3.31 Output line voltage waveform of an eleven level inverter 

3.8 Simulation results of Cascaded Multilevel Inverters using Phase Opposition 

Disposition Level Shifted Modulation Technique 

a.  Three Level Inverter 

 
Fig 3.32 Output phase voltage waveform of a three level inverter 
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Fig 3.33 Output line voltage waveform of a three level inverter 

b. Five Level Inverter 

 
Fig 3.34 Output phase voltage waveform of a five level inverter 

 
Fig 3.35 Output line voltage waveform of a five level inverter 
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c. Seven Level Inverter 

 
Fig 3.36 Output phase voltage waveform of a seven level inverter 

 
Fig 3.37 Output line voltage waveform of a seven level inverter 

d. Nine Level Inverter 

 
Fig 3.38 Output phase voltage waveform of a nine level inverter 
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Fig 3.39 Output line voltage waveform of a nine level inverter 

e. Eleven Level Inverter 

 
Fig 3.40 Output phase voltage waveform of an eleven level inverter 

 
Fig 3.41 Output line voltage waveform of an eleven level inverter 
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3.9 Simulation results of Cascaded Multilevel Inverters using Alternate Phase 

Disposition Level Shifted Modulation Technique 

a.  Three Level Inverter 

 
Fig 3.42 Output phase voltage waveform of a three level inverter 

 
Fig 3.43 Output line voltage waveform of a three level inverter 

b. Five Level Inverter 

 
Fig 3.44 Output phase voltage waveform of a five level inverter 
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Fig 3.45 Output line voltage waveform of a five level inverter 

c. Seven Level Inverter 

 
Fig 3.46 Output phase voltage waveform of a seven level inverter 

 
Fig 3.47 Output line voltage waveform of a seven level inverter 
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d. Nine Level Inverter 

 
Fig 3.48 Output phase voltage waveform of a nine level inverter 

 
Fig 3.49 Output line voltage waveform of a nine level inverter 

e. Eleven Level Inverter 

 
Fig 3.50 Output phase voltage waveform of an eleven level inverter 
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Fig 3.51 Output line voltage waveform of an eleven level inverter 

3.10 THD values of the Multilevel Inverters 

The value of THD so obtained for various modulation techniques implemented to various multilevel 

inverters is tabulated as Table 3.2. 

Table 3.2 Comparison of THD values (in %) of line to line voltage of several cascaded multilevel inverter obtained by 

implementing carrier based modulation techniques 

LINE 
VOLTAGE 

LEVEL 

LEVEL SHIFTED MODULATION PHASE 
SHIFTED 

MODULATION 

 
REMARKS 

APOD POD IPD 

3 Level 79.5 79.5 70.61 69.21  

 
IPD 

modulation 
results in 

reduced THD 

5 level 30.49 31.87 30.82 31.20 

7 Level 20.11 20.11 19.75 19.74 

9 Level 14.59 15.21 14.45 14.47 

11 Level 9.11 9.32 8.34 9.77 

3.11 Selective Harmonic Elimination Technique 

The multilevel inverter generates a staircase output voltage waveform by switching on and off the 

switches in the inverters once during one fundamental cycle. This minimizes the switching losses of 

the devices. Even if the switching frequencies reduce and certain higher order harmonics eliminates, 

low order harmonics still exists [11,12].  
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There are two ways to eliminate low frequency harmonics- i) by increasing the switching frequency 

in SPWM and SVM in case of two level inverters or in multicarrier based phase shift modulation for 

multilevel inverters or ii)  by computing the switching angles using SHE techniques.  

This first method is limited by the switching losses and the availability of the voltage steps [11]. 

The SHE techniques includes the mathematical modelling of output waveform and solving them for 

switching angles of based on the characteristics of the output waveform of the inverter, the 

amplitude of the fundamental wave of the output voltage and the order and number of the eliminated 

harmonics [15]. 

Thus, in SHE, the lower order harmonics are either eliminated or minimised while the higher order 

harmonics are filtered out. The transcendental equations reflecting each harmonics are solved to 

compute the switching angles of the inverter. Being highly non-linear in nature, these SHE equations 

are difficult to solve. Also it may produce single, multiple or even no solutions for a particular 

modulation index. 

In [16,17,18], to solve these equations, various iterative numerical techniques have been used with a 

proper initial guess and starting values of modulation index. In [19], a sequential homotopy based 

computation has been done to solve for the switching angles. In [20,21], theory of resultants of 

polynomials, the theory of symmetric polynomial and the resultant theory has been proposed to 

solve the polynomial equations obtained from the transcendental equations. But the computation 

becomes high as the order of the polynomials become very high with the number of H-bridges 

connected in series. In [22], the SHE equations were solved by using Genetic Algorithm (GA). But it 

requires proper selection of certain parameters such as population size, mutation rate etc. to 

eliminate all these problems. In [22], the Newton Raphson method has been used in solving these 

equations. The switching angles can be found with negligible computation effort for any initial 

guess. Switching angles can be computed to produce the desired fundamental voltage VI = mI 

(4sVdc/π) while eliminating 5
th

, 7
th

, 11
th

 and 13
th

 harmonics. 

Solving the transcendental equations with n number of unknowns is a tedious job. But the switching 

angles can be calculated offline to eliminate the specific low order harmonics and also switching 

takes place at the fundamental frequency and hence minimizes the switching losses. In other words, 

in SHE, few commutations takes place in one cycle and hence increases efficiency and enables air 
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cooling [13,14]. The computation of the switching angle increases with the increase in the voltage 

level [14]. With a limitation for the switching angles to be within (π/2), it provides a narrow range of 

modulation index [15]. This method is limited to open-loop applications [5,15] and low-dynamic-

performance demanding applications [5]. 

3.11.1 Mathematical Modelling of Switching Angles and SHE Equations for Cascaded 

Multilevel Inverter 

The Fourier series expansion of the staircase output voltage waveform of the multilevel inverter as 

shown in Fig.3.52  is given by  

                              
    

  

 
                                                           (3.4)

  

Where     is the magnitude of the dc voltage source and  

              s  is the number of dc sources in each phase. 

For a desired fundamental voltage     the switching angles         are to be determined so that 

                satisfying the following condition : 0                    as shown in 

Fig.3.52. 

Here, the first harmonics is made equal to the desired fundamental voltage   and specific higher 

harmonics of       equal to zero, i.e 

                                
     

 
                                                                           (3.5) 

                                                                                                               (3.6) 

Where n = 5, 7, 11, 13…. 

Hence, among the s number of switching angles, one is used for fundamental voltage and the 

remaining (s-1) for the predominating lower order harmonics elimination [14]. In three phase 

system, the triplen harmonics cancels out automatically in the line to line voltages [2]. The  5
th

 , 7
th

, 

11
th

, 13
th

 order harmonics has to be cancelled as they affect the THD vastly. 
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Figure 3.52 Selective Harmonic Elimination technique for eleven level inverter 

Thus, the following equations are to be solved: 

                                                               
     

 
                                                   (3.7) 

                                                                                                                          (3.8) 

                                                                                                                          (3.9) 

                                                                                                                        

                                                                                                                   (3.11) 

Where MI  is known as Modulation Index and is equal to the ratio of  the fundamental output voltage 

V1 to the maximum obtainable fundamental voltage V1max.           

Fundamental voltage V1max = 
     

 
 and   

     

 
 where m is the m level of the inverter output 

voltage.Thus, the equations (7) to (11) can be written as  

Θ1 

Θ2 

Θ3 

Θ4 

Θ5 

(π-θ3) 

(π-θ2) 

(π-θ1) 

Θ4   (π-θ4) 

Θ5   (π-θ5) 
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                         F(θ) = HM                                                                  (3.12) 

3.11.2   Algorithm for Newton Raphson Method for finding out the switching angles of an 

Eleven Level Cascaded Inverter: 

The step by step procedure to solve the SHE equations is as follows: 

1. Define a switching angle matrix  

Note: all switching angle must lie within 0 to (π/2) 

                     ] 

 

2. Specify the value of modulation index MI and the number of line voltage level m. 

3. Define a non-linear matrix F as below: 

   

 
 
 
 
 

                          

                                    

                                     

                                 

                                   
 
 
 
 

 

4. Define the corresponding harmonic amplitude matrix as  

     
       

 
         

 

 

5. Define dervF which is the derivative of the matrix F with respect to x1 , x2 , x3 , x4 , x5. 

6. Initial values for the switching angles are entered as                                

7. Solve for F and dervF at the initial values of      
 

As on linearizing the equation (3.12), we get  

                         (3.13) 

Where DelX  is the change in the switching angle. 

8. Solve for DelX from equation (3.13) as 

                                              

9. Update the value of the switching angle  

                 

10. The process is repeated until the desired condition is satisfied. 
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On solving the above equations, using Newton Raphson method, with m=11 and MI =0.8 for an 

eleven level inverter, the values of x1 , x2 , x3 , x4 , x5 were found.Thus, the switching angles are   

                                                 . 

On solving these equations in MATLAB, the following results were obtained as in Table 3.3. 

Table No. 3.3 The values of the switching angles obtained using the SHE algorithm 

Iteration Xold (in degree) F DelX (in degree) Xnew (in degree) 

0 5 4.1082 -0.1419 4.8581 

20 -0.2806 1.9920 21.9920 

25 -0.2694 -1.0478 23.9522 

40 0.5683 5.7090 45.7070 

60 0.6284 2.6641 62.6641 

1 4.8581 3.9951 1.9104 6.7686 

21.9920 0.0976 -7.6242 14.3678 

23.9522 -0.0840 7.8179 31.7701 

45.7070 0.0748 -0.5339 45.1731 

62.6641 0.7206 -0.4292 62.2348 

2 6.7686 3.9827 -0.4447 6.3238 

14.3678 0.1716 4.0250 18.3928 

31.7701 0.7249 -3.9744 27.7958 

45.1731 0.4084 0.3727 45.5458 

62.2348 -1.0186 -0.1212 62.1136 

3 6.3238 3.9955 0.2400 6.5638 

18.3928 0.0405 0.5262 18.9189 

27.7958 0.1373 -0.5918 27.2039 

45.5458 0.0325 -0.4081 45.1377 

62.1136 0.0515 0.1327 62.2463 

4 6.5638 3.9999 0.0060 6.5698 

18.9189 0.0012 0.0212 18.9401 

27.2039 0.0026 -0.0206 27.1833 

45.1377 0.0028 -0.0019 45.1358 

62.2463 -0.0031 -0.0038 62.2425 

5 6.5698 4.0000 0.0140e-4 6.5698 

18.9401 0.0000 0.4082e-4 18.9402 

27.1833 0.0000 0.4261e-4 27.1833 

45.1358 0.0000 0.0341e-4 45.1358 

62.2425 -0.0000 0.0120e-4 62.2425 
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3.12 Simulation Results 

The single phase H-bridge inverter was studied by implementing the bipolar and unipolar 

modulation techniques. The three phase three level, five level, seven level, nine level and eleven 

level cascaded inverters were simulated in MATLAB Simulink environment. The multicarrier 

modulation schemes – level shifted and phase shifted modulation were implemented in these 

inverters. It was found that as the number of the level increases, the output voltage waveform 

appears to be more sinusoidal and also the THD decreases. Hence, among all the simulated cascaded 

inverters, the eleven level inverter was chosen for the traction drive. SHE technique was also 

implemented in the eleven level inverter and compared with carrier based modulation technique. 

This was done to find the best modulation technique among the three. SHE was found to be the best 

and hence was used in the cascaded rectifier and inverter configuration to be used in the traction 

drives. 

The following voltage waveforms have been obtained by simulating eleven level cascaded inverter 

using Selective Harmonic Elimination techniques: 

 
Fig 3.53 Output phase voltage waveform of an eleven level inverter 

 
Fig 3.54 Output line voltage waveform of an eleven level inverter 
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3.13 THD values of cascaded eleven level inverter  

The value of THD so obtained for various modulation techniques implemented in a cascaded eleven 

level inverters is tabulated as in Table 3.4. 

Table 3.4 Comparison of THD values (in %) of line to line voltage of eleven level cascaded inverter obtained by 

implementing various modulation techniques 

MODULATION TYPE THD (in %) REMARKS 

Phase Shifted 9.77  
Selective Harmonic 

Elimination is better with low 
THD 

Level Shifted (IPD) 8.34 

Selective Harmonic 
Elimination 

4.56 

3.14 Cascaded Rectifier Inverter configuration ( ac-dc-ac converter) 

 The following voltage waveforms were obtained with three types of eleven level rectifier inverter 

configuration - one employing level shifted PWM, other Phase shifted PWM and the last one SHE 

Modulation. This was done to find the best modulation suitable for the traction drive. The THDs of 

the voltages were compared to choose the best among the three configurations. 

3.14.1 Rectifier Inverter configuration with phase shifted modulation technique 

 
Fig. 3.55 Output phase and line voltage waveform of eleven level cascaded rectifier inverter configuration with phase 

shifted modulation technique  
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3.14.2 Rectifier Inverter configuration with level shifted modulation technique 

 

 
Fig. 3.56 Output phase and line voltage waveform of eleven level cascaded rectifier inverter configuration with level 

shifted modulation technique  

3.14.3 Rectifier Inverter configuration with SHE modulation technique 

 

 

 
Fig. 3.57 Output phase and line voltage waveform of eleven level cascaded rectifier inverter configuration with Selective 

Harmonic Elimination modulation technique  
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3.15 THD values of cascaded eleven level rectifier and inverter  

The THD values of the cascaded eleven level rectifier and inverter with different modulation 

techniques were compared as in Table 3.4. 

Table 3.5 Comparison of THD values (in %) of line to line voltage of eleven level cascaded rectifier inverter 

configuration obtained by implementing various modulation techniques 

MODULATION TYPE THD (in %) REMARKS 

Phase Shifted 0.49  
Selective Harmonic 

Elimination is better with low 
THD 

Level Shifted 0.51 

Selective Harmonic 
Elimination 

0.27 

 

3.16 Summary  

There are various control strategies of multilevel inverters. In this chapter, the multicarrier 

modulation techniques were implemented in the cascaded multilevel inverter and it was found that 

the In Phase Disposition Level Shifted Modulation technique has lower THD in comparison to the 

Phase Shifted Modulation technique. To reduce the switching losses, the Selective Harmonic 

Elimination Technique was implemented in the cascaded eleven level inverter. The switching angles 

were calculated offline at the fundamental frequency. The THD of the cascaded eleven level inverter 

was found to be less than 5% and that of the cascaded rectifier and inverter was found to be 0.27%. 

Hence, the SHE technique was implemented in the cascaded eleven level inverter in the modeled 

traction drive. 
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4.1 Introduction 

In this chapter, the railway electrification and its traction drive has been discussed.   Comparison of 

the steam and diesel traction drive has been done with the electric traction. Different traction units 

have been discussed. Traction motor, traction mechanics and various other issues has been studied 

here. 

Traction system can be broadly classified into two groups:  

i. One which do not use electrical energy at any stage like steam engine, diesel engine and 

ICE, and 

ii. One that uses electrical energy at some stage or another like electric drive. 

In earlier days, the steam engine drives and the diesel engine drives were used [1]. Their 

characteristics and drawbacks are discussed below. 

4.2 Steam Engine Drive 

Some of the important features of the rail traction employing steam engine drive are: 

1. Simple in construction 

2. It does not involve electrification of railway track and hence Low initial cost  

3. Easy to maintain  

4. Easy speed control 

5. No Electromagnetic interference 

But it has the following limitations: 

1. Even though the train may be idle, the fire has to be banked. This results in low thermal 

efficiency. 

2. It requires adequate supply of feed water at regular interval. Also the supply of water and 

coal add to the cost. 

3. To put the steam engine into operation, steaming time is required. 

4. The steam engine is greatly influenced by the firing rate of the coal. 

5. Power weight ratio is low. 

6. Its centre of gravity is high due to the presence of boiler.  

7. It causes environmental disaster with high carbon emissions. 
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8. The man power requirement is more as compared to the electric drive. 

9. It cannot be used in underground railways because of the smoke. 

4.3 Diesel Engine Drives 

This drive has nearly the same characteristics and limitation as that of the steam engine.  It does not 

have a starting torque and thus requires an external means to start the engine. 

4.4 Electric Drive 

This involves use of the electric motors fed from overhead distribution system. 

Some of its remarkable features are: 

1. It is the cleanest form of drive. 

2. It has high starting torque. 

3. It has high power to weight ratio. 

4. It enables quicker acceleration. 

5. Railway electrification leads to rural electrification which is the most important industrial 

development. 

6. It requires less maintenance. 

7. It does not consume time to start  

8. Smooth braking is possible with electric braking 

9. No coal and water required and hence saves money. 

Every coin has two sides. Similarly, the electric drive too has some limitations. These include: 

1. High capital cost is required for electrification 

2. Power failure can affect the railway system. 

3. There is problem of electromagnetic interference due to the presence of both the 

communication lines and power lines. 

4.5 Railway Electric Traction Drive 

At the end of the nineteenth century, railway electrification emerged as a means of traction [24]. The 

advent of power electronics concept has proved to a blessing in the field of traction. It supplies the 

energy of the catenaries to traction motors in a controlled manner [25]. 
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There are mainly three types of traction units. These are: 

1. DC traction units: these units draw Direct Current from either a conductor rail or an overhead 

line. 

2. AC traction units: these draw alternating current from an overhead line. 

3. Multi-system unit: These units operate under several different voltages and current types. 

In 1925, electric traction at 1.5kV DC was introduced in India. Later, in 1957, 25kV, 50 Hz, AC was 

used for electric traction in India [26]. Figure 4.1 is an illustration of an electric locomotive. It can be 

seen that it consists of the transformer, the main rectifier, the main inverter and the three phase AC 

motors [27]. This thesis is mainly concerned with the main rectifier, main transformer, an inverter 

and three phase AC motors. So these are discussed here in brief.  

Main transformer is used to step down the supply voltage before it can be used by the train. Main 

rectifier is mainly used for the conversion of AC to DC. Main Inverter is mounted on the trains to 

provide alternating current from direct current. It is used for three phase drives. Three phase AC 

motors are used to generate tractive force to provide accelerate to the train. Earlier DC motors were 

used but nowadays, three phase AC motors are used.  

 

Fig. 4.1 Schematic layout of an electric locomotive 
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4.6 Tractive Effort 

“Tractive effort developed by the traction unit is the force provided at the wheel rims for moving the 

unit and the train”- as defined in [28]. 

It performs the following things: 

i. It provides necessary acceleration  

ii. It overcomes the train resistance 

iii. It overcomes the gradient 

iv. It provides the necessary effort to overcome the curvature. 

4.7 Train Movement 

The study of the train movement is done with the help of a speed time curve. The speed time curve 

of a train running on a main line is shown in Fig. 4.2. 

There are five different periods in the run [28]: 

1. Notching Up period (t0=0 to t1=0.05hr): During starting, motor fluctuates. Therefore, the torque 

developed by the motor and tractive effort also fluctuates. Since the average tractive effort remains 

same, the acceleration also remains constant and the speed time curve is therefore a straight line.  

2. Acceleration on speed curves (t1=0.05hr to t2=0.15hr): Here the acceleration decreases with speed. 

 
3. Free running period (t2=0.15hr to t3=1.3hr): During this period, train runs at constant speed. 

4. Coasting Period (t3=1.3hr to t4=1.5hr): During this period, supply to motors is cut off and train is 

allowed to run under its own momentum. The speed of the train gradually decreases because of its 

own resistance. 

5. Braking Period (t4=1.5hr to t5=1.6hr): At the end of the coating period, brakes are applied to stop 

the train. 
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The traction motor determines the acceleration and free running periods of the train. The train 

resistance determines the coasting period whereas the braking retardation decides the braking period. 

Practically, the shape of the speed-time graph is different as the distance covered by the train 

involves various gradients. In some cases like in short suburban service, the free running period may 

be totally absent. Similarly, in main line service, free running period will be more whereas the 

starting period will be negligible. The speed time curve is the most important part while electrifying 

a track. The scheduled train speed and the energy consumption can be determined from this curve. 

4.8 Traction Motors 

A good traction motor should have the following features: 

i. Simple speed control 

ii. Better  speed torque characteristics 

iii. High starting speed 

iv. It should be suitable for dynamic or regenerative braking 

v. The commutations should be good even the supply voltage fluctuates. 

vi. It should be robust and withstand continuous vibration due to the high speed. 

vii. It should have less weight and small size. 

viii. They should be protected from dirt and dampness. 

All these above requirements are not fulfilled by any single motor. For DC system, DC series and 

compound motors are used. For single phase AC system, AC series motor is used and for three phase 

system, induction motors are used [28]. 

DC series motors have high starting torque and variable speed characteristics. For this reason, it is 

very much used for electric traction. But because of presence of brushes and commutation problem, 

three phase induction motors are used. 

Nowadays, the three phase induction motor is generally used as traction motor [9] because of the 

following reasons: 

i. Absence of brushes. 

ii. Robustness and reliability with  low maintenance   

iii. Simple cooling arrangement with enclosed frames 

iv. High uniform torque with inherent overload management 
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v. High power to weight ratio 

vi. High voltage operation 

vii. Low cost to power ratio 

viii. High maximum speeds 

ix. Inherent regenerative braking capability 

x. Steep torque speed characteristics 

4.9 Converters and Transformers in Traction Drive 

Earlier, thyristor were used in the converters. But nowadays, IGBTs are replacing GTO thyristor and 

are commonly used in the cascaded multilevel inverter as it is smaller and requires less current to 

operate the switching sequences [27]. It offer low on-resistance and require very little gate drive 

power [29]. Its switching takes place easily and with low power loss [30]. Also it can handle the high 

power required by the motor drives. The Indian Railways has introduced the first fully IGBT based 

electric locomotive, WAG-9i, type 31248 in the year 2010. The IGBT based traction propulsion 

system has lesser  losses, better controllability, superior performance, high reliability and modular 

design as compared to the GTO- based system [10]. 

The transformer used in the electric locomotive is the most heavy and expensive equipment. It 

causes several losses and reduces efficiency. It requires a large floor space. Due to the saturation of 

the transformer, it leads to dc magnetising and dc overvoltage of the inverters [31]. Harmonic 

currents in the transformer lead to increase in temperature because of the losses. The alternating 

magnetic field caused by the harmonic current lead to unwanted noise and vibration [32]. Thus, 

making it uncomfortable for the passengers. But with the help of the cascaded multilevel inverter, 

this magnetically coupled bulky transformer can be eliminated and the multilevel inverter can be 

used for stepping down the voltage. This transformerless drive increases efficiency and reduces the 

cost of the traction drive. 

4.10 Electric Braking While Stopping 

When the supply is cut off from the motors, the speed decrease and gradually come to rest. So in 

order to bring the motor to rest quickly, brakes has to be applied [28,33]. Brakes can be either 

mechanical or electrical brakes. Because of the frequent wear of the mechanical brakes, high 

maintenance is required. To avoid this, electrical braking is done to have smooth and quick braking 

with low maintenance cost. 



63 
 

There are three types of electrical braking: plugging, rheostatic and regenerative braking.   

Plugging in induction motor occurs when any of the two stator phases are reversed. The direction of 

the rotating field reverses. The direction of the rotor and stator are opposite in nature and the slip is 

greater than unity. 

Rheostatic braking or DC dynamic braking of induction motor takes place, when the supply of an IM 

is cut off for braking. It will draw the magnetising current from the supply and no voltage could be 

generated. However, if a DC current is passed through the stator, a steady flux will be generated in 

the air gap and the rotation of the short circuited rotor in this flux produces an emf. Thus, a sufficient 

current is produced for the braking torque. In the case of slip ring IMs, extra resistance is added to 

the rotor circuit for braking. During the braking period, the rotor current is in opposite direction to 

the one in normal running condition. Fig. 4.3 shows the different types of stator connections during 

DC rheostatic braking. 

Regenerative braking of induction motor takes place when the rotor and stator rotates in the same 

direction and the speed is above the synchronous speed. It usually takes place in the downward 

motion of the hoist mechanism. Here the kinetic energy of the rotating part is fed to the supply.  

 

 

 

 

 

 

 

 

 
Figure 4.3 Different types of stator connections during DC rheostatic braking 

 

Comparison of different braking methods of induction motor [33]: 

Plugging or reverse current braking is a simple control scheme with a relay to stop. There is uniform 

current loading in all the three phases. But there is a significant amount of losses, heating of the 

machines, motor running in reverse direction due to the malfunction of the relay and also the 

appearance of the high voltage at the slip rings. 

Regenerative braking takes place only at high speeds (super synchronous speeds). It is applicable in 

hoisting type mechanisms or with a multi speed squirrel cage motor. 
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DC rheostatic braking is the most preferred method as the braking can take place even at low speed 

and also there is no possibility of the reversal of the motor. We can have automatic control of this 

braking process by means of closed loop. 

So, a transformerless railway traction drive with DC dynamic braking has been modelled using an 

IGBT based eleven level cascaded converter systems. 

4.11 Simulation Results of Railway Traction Drive 

The traction drive was simulated in MATLAB/SIMULINK using IGBT based eleven level cascaded 

converter feeding to four number of squirrel cage induction motors connected in parallel. On 

comparing the multicarrier SPWM with Selective Harmonic Elimination modulation technique, the 

latter was found to be an efficient technique with lower THD and lower switching losses. Hence, 

Selective Harmonic Elimination technique was implemented in the converter system.  

A three phase, 25kV, 50Hz supply of the catenary voltage is stepped down to three phase, 400kV, 50 

Hz to be used by the induction motors. Four numbers of 5 HP induction motor are used to generate 

the tractive force required by the railway traction. The specification of the induction motors are 

given in Appendix I. DC dynamic braking is used for electrical braking in the motors. 

From Fig. 4.4, it can be seen that the supply voltage of 25kV has been reduced to 400V which is the 

rated voltage of each motor. When supply was cut off, the voltage gradually becomes zero and 

during braking a constant DC supply was used 

 
Fig. 4.4 rms voltage fed to the induction motor 

Using this rectifier inverter configuration in the railway traction drives,  the speed time curve was 

obtained as shown in Fig. 4.5.In the speed –time curve, the five regions can be seen: notching up 

period from 0 to 1 sec, acceleration from 1 to 2.2 sec, free running period from 2.2 to 4 sec, coasting 

period from 4 to 5sec and braking period from 5 to 5.7 sec.  
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Fig. 4.5 Speed time curve of the train 

 

The electromagnetic torque developed by the induction motor drive can be seen in Fig. 4.6.At 

starting, a high torque was developed. At time=4 sec, the supply was cut off, hence torque 

approaches zero after a negative value. At time = 5 sec, DC dynamic braking was applied and the 

torque became negative and this is the braking torque. 

 

 

Fig. 4.6 Torque developed by the induction motor  
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Fig. 4.7 Output voltage of the inverter fed to the motors 

Fig.4.8 shows the output rms current of the inverter that is supplied to the induction motor. Fig. 4.9 

and Fig. 4.10 shows the rotor current and stator current of the induction motor. It can be seen that 

when a DC supply is given to the IMs, the stator current is also a DC. 

 
Fig. 4.8 rms current fed to the motor 

 
Fig. 4.9 Rotor current of each induction motor 
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Fig. 4.10 Stator current of each induction motor 

The active and reactive power consumption by the induction motors can be seen in Fig. 4.11 and Fig. 

4.13 respectively. 

 
                 Fig. 4.11 Active Power consumption by each induction motor 

 
               Fig. 4.12 Active power consumption during the coasting period 
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From Fig. 4.12, it can be seen that there is an overshoot in the active power consumption when the 

supply is cut off. It is because the induction motor draws small amount of power from the supply to 

meet the losses taking place in the motor. Initially, on no-load, the starting current is high. Also it 

draws high reactive component of current i.e. magnetizing current for flux generation. Hence the 

active and reactive power is large during starting as shown in Fig. 4.11 and Fig. 4.13.  

 

                Fig. 4.13 Reactive Power Consumption of each induction motor 

During the coasting period, the reactive power gradually decreases to zero as in Fig. 4.14. 

 

                             Fig. 4.14 Reactive power consumption of each induction motor during coasting period 

In order to bring the train to stop, DC dynamic braking was applied at time= 5 sec. a DC supply of 

200 V was applied. The braking current obtained after applying DC dynamic braking is shown in 
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Fig. 4.15 Braking current through the braking resistors when the DC dynamic braking is applied 

4.12 Summary 

It was found that the cascaded multilevel rectifier and inverter can be used in the traction drive of the 

railway system. It can step down the supply voltage to the rated voltage of the Induction motor. 

Hence, it eliminates the need of the transformer. This leads to a transformerless railway traction 

drive. 
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5.1 Conclusion 

The three level, five level, seven level, nine level and eleven level cascaded H-bridge inverters were 

simulated in MATLAB-Simulink environment. Two types of Multicarrier Pulse Width Modulation – 

Level Shifted Modulation and Phase Shifted Modulation were implemented for the cascaded 

multilevel inverter. Bipolar modulation and unipolar modulation techniques were used for a two 

level H-bridge inverter. The following things can be concluded about the modulation techniques and 

the multilevel inverters: 

1. Unipolar Modulation technique is better than Bipolar Modulation technique. It is  

because:  

a. The output voltage switches between either between zero and +Vd during the 

positive half-cycle or between zero and –Vd during the negative half-cycle of the 

fundamental frequency. So the voltage stress across the switches of the inverter is 

less as compared to that of the bipolar modulation. 

b. The value of THD obtained in case of unipolar modulation is less than that of the 

bipolar modulation. 

2. Among the Level Shifted Modulation techniques, the In Phase Disposition (IPD) 

modulation is better in terms of THD. 

3. Level Shifted Modulation was found to have better THD values as compared to Phase 

Shifted Modulation. 

4. As the number of levels of the output voltage of the inverter increases, the synthesized 

waveform has more steps, which produces a staircase wave that approximates to a 

sinusoidal waveform.  

5. Also as the level of the output voltage increases, the harmonic distortion of the output 

wave decreases. 

6. Selective Harmonic Elimination (SHE) Modulation Technique is found be better in 

comparison to the above mentioned modulation techniques. The THD of the output line 

voltage of the eleven level inverter is comparatively low (less than 5%). 

Thus, on comparison it was found that SHE technique is best suitable for the cascaded eleven level 

inverter. Hence, this technique was implemented in cascaded rectifier also. The cascaded rectifier 

inverter configuration with SHE modulation was used in the railway traction drive. It  



72 
 

was found that the cascaded rectifier inverter configuration gave sinusoidal output waveform. This 

converter system can meet the power or voltage requirement of the traction drive. The cascaded 

eleven level converter system modeled in this project can be used in traction drive consisting of four 

induction motors for stepping down the catenary voltage to the rated voltage of the induction motors. 

Thus, this model eliminates the necessity of the transformer in railway traction and hence lowers the 

cost and floor space and increases the efficiency of the traction drive. 

5.2 Scope for Future Work 

The following are the scope for the future work that can be performed for this traction drive: 

1. Space Vector Modulation technique can be implemented for the cascaded rectifier inverter 

configuration used in the transformerless traction drive. 

2. Direct Torque Control strategy can be employed in the transformerless inverter traction drive  
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APPENDIX I 
 

The specification and the parameters of the induction motor is : 

Power = 5HP, line-line voltage=400V, frequency = 50Hz, speed= 1445 rpm, Stator resistance Rs = 

7.34, leakage stator inductance Lls =0.021 H, mutual inductance Lm  = 0.5H,Rotor resistance Rr = 

5.64 Ω, leakage rotor inductance Llr = 0.021 H, moment of inertia J=0.16 kg-m
2
, frication factor 

B=0.035 kg-m
2
/s. 

 

 

 

 

 

 

 

 

 

 


