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Abstract 

 

Distributed wireless sensor networks finds many remote sensing applications like battle field 

surveillance, target localisation, environmental monitoring, precision agriculture, smart spaces 

and medical applications. Due to their vast range of applications efficient design and 

implementation become the current area of research.  

A distributed network consists of certain number of processing elements called nodes. These 

nodes are distributed over a geographical area which collects the information for particular 

phenomena and communicates with other nodes of the network to arrive at estimation the 

parameter. A network needs effective and efficient designs to function properly with the limited 

available resources. 

In this thesis, we review some of the computationally efficient adaptive distributed strategies 

developed using incremental partial update techniques. The schemes mentioned here solve the 

problem of linear estimation with less number of computations in a cooperative fashion. In a 

distributed network each node contains local computing equipment which estimates and shares 

them with other nodes. The resulting algorithms are less complex in competitions and in 

communication because of Incremental partial update algorithms and each node communicate 

with immediate node only. Computational complexity analysis is evaluated and performance 

characteristics of each algorithm are given with computer simulations. Simulation results show 

that with a small degradation in performance, a considerable amount of computational 

complexity is reduced. 

Index terms- Adaptive strategies, distributed processing, Incremental LMS, sequential partial 

update LMS, stochastic partial update LMS, Max-partial update LMS, computational 

complexity. 
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Chapter 1 

 Introduction 
 

Wireless sensor network is comprised of a large number of small sensing self-powered sensor 

nodes distributed over a geographical area, which gather information or detect special events and 

communicate in a wireless fashion. Sensing, processing and communication are three key elements 

whose combination in one tiny device gives rise to a vast number of remote sensing applications, 

including environmental monitoring, precision agriculture, medical applications and battlefield 

surveillance. Due to their several popular applications, efficient design and implementation of 

wireless sensor networks have become an area of current research. Since the nodes in a network 

function with small and limited battery power and usually non-renewable resources, it is important 

to design the networks with less communication among the nodes to estimate the required 

parameter vector because communication and computation consumes most of the energy. 

However, recent advances in low power VLSI, embedded computing, communication hardware, 

and in general, the convergence of computing and communication are making this emerging 

technology a reality. 

Each node in network collects noisy observations related to a certain desired parameter. In the 

centralized solution, every node in the network transmits its data to a central processor. This 

approach has the disadvantage of being non-robust to the failure of central processor and need a 

powerful processor. Again the central processor is lack of scalability, required a large number of 

communication resources. Alternatively each node in the network can estimate the parameter from 

the local observations and by cooperating with the neighbors. 

So there is a need for distributed adaptive algorithms to reduce communication overhead for low-

power consumptions, and low-latency system for real-time operation. Among them incremental 

algorithm is the majority choice.  
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1.1 Adaptive signal processing 
 

In practice most systems are inherently time varying and or nonlinear. The signals associated with 

these systems often have time-varying characteristics. Adaptive signal processing that deals with 

the challenging problem of estimation and tracking of time varying systems. By virtue of its 

applicability to time varying and or nonlinear systems, adaptive signal processing finds application 

in a broad range of practical fields such as telecommunications, radar and sonar signal processing, 

biomedical engineering and entertainment systems. In order to make the estimation and tracking 

task tractable, the unknown system is usually modeled as time-varying linear system or in some 

cases as a finitely parameterized nonlinear system such as the volterra filter. This simplified system 

modeling is guided by prior knowledge of the system characteristics. An important objective of 

adaptive signal processing is to learn the unknown and possibly time-varying signal statistics in 

conjunction with system estimation.  

The fundamental building block of an adaptive system is the adaptive filter. The objective of an 

adaptive filter is to learn an unknown system from observations of the system input or output 

signals utilizing any prior knowledge of the system and signal characteristics. The task of learning 

an unknown system is fundamental to many signal processing problems and comes in many 

disguises in the application of adaptive filters. 

 

1.2 adaptive system identification 
 

Most adaptive filtering problems are either a special case of adaptive system identification or 

utilize adaptive system identification as a means of solving another signal processing problem. In 

this sense, adaptive system identification provides the basis for a range of signal processing 

applications. It is therefore, essential that we have a good understanding of the underlying 

principles of and assumptions relating to adaptive system identification.  

As depicted in figure1.1, in adaptive system identification, the objective is to estimate an unknown 

system from its and output observations given by )(kx and )(kd , respectively. A model for the 
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adaptive filter is chosen based on prior knowledge of the unknown system characteristics, as well 

as the complexity considerations.  

 

 Figure 1.1 Adaptive system identification 

 

In this and most preferred form, the adaptive filter is a finite impulse response filter of length N  

with the adjustable impulse response coefficients. 

)1.1()](......).........(),([)( 21  T

N kwkwkwkw  

Here T denotes the transpose operator. Equation (1) is perhaps the most widely used Adaptation 

 filter model mainly because of its applicability to a wide range of practical problems. IN a system 

 identification context, the adaptive filter attempt to learn the unknown system By using a model of  

the unknown system represented by )(kw . The difference between the noisy response of the 

 unknown system (the desired response )(kd ) and the response of the  adaptive filter )(ky is called 

 the error signal )(ke . 

)2.1())()(  ykkdke  

At each iteration k  the adaptive filter updates coefficients in order to minimize the appropriate 

norm of the error signal )(ke . When the error norm is minimized in a statistical sense, the 

corresponding )(kw gives an estimate of the unknown system parameters. If the unknown system 

is time varying, i.e. its parameters change with time, the adaptive filter can track these changes 

by updating its coefficients in accordance with error signal. It can take several iterations for the 

Unknown 

system

Adaptive filter

Adaption 

process

+
d(k)

n(k)

+
y(k)

e(k)

x(k)
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adoption process to converge. The time taken by the adaption process to converge provides the 

indication of the convergence rate. 

There are two main tasks performed by the adaptive filter; viz. adaption process and filtering 

process. In figure 1.1 these processes are identified by the adoption process and adaptive filter 

block. For linear adaptive filters given by equation (1.1), the filtering process involves 

convolution. If the number of filter coefficients is large, the convolution operation may prove to 

be computationally expensive. Reduced complexity convolution techniques based on fast Fourier 

transform (FFT), such as overlap-add and overlap-save may use to ease computational demand. 

The adoption process has also become computationally expensive for long adaptive algorithms 

due to the arithmetic operations required to update the adaptive filter coefficients. The 

computational complexity of the adoption process depends on the adoption algorithm employed. 

Prediction of the random signals and noise cancellation are two special cases of adaptive system 

identification. Figure 1.2(a) shows a one-step predictor which estimates the present value of the 

random signal )(kx  based on the past values ).(),........1( Nkxkx   if )(kx is a stable 

autoregressive process of order N : 

)3.1()()(.....................)2()1()( 21  kvNkxakxakxakx N  

Where )(kv  is white noise, the adaptive filter )(kw in figure 1.2(a) estimate the auto regressor 

coefficients T

Naaaa ].........,,[ 321 . After convergence the prediction error )(ke  is equal to )(kv , 

which implies whitening of the colored noise signal )(kx . Referring to figure 1.1, we observe 

that the adaptive system identification setup can be converted to a one step predictor by replacing 

the unknown system with a direct connection (short-circuiting the unknown system), setting 

0)( kn  and inserting a one-sample delay 1z  at the input of the adaptive filter. Swapping 

)()( knandkx in figure 1.1 and referring to )(kx as the signal of interest and )(kn as the 

interfering noise changes the system identification problem to a noise cancellation problem with 

)(ke giving the cleaned signal (see figure 1.2(b)). The noise signal )(kn is the reference signal 

and the unknown system represents any filtering that )(kn  may undergo before interfering with 
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the signal of interest )(kx . The sum of )(kx  and filtered )(kn is the primary signal. The 

unknown  

 

Figure 1.2 One step prediction of a random signal by an adaptive filter which identifies the auto regressive 

model of the random signal with y (k) giving the prediction output and e(k) the prediction error. 

 

is identified by an adaptive filter. Subtracting the adaptive filter output from the reference signal 

give the error signal. Minimization of the error norm implies a minimization of the difference 

between the adaptive filter output and the filtered reference signal. 

 

Figure 1.3 adaptive noise cancellation where the adaptive filter estimates the unknown system filtering the 

input noise signal n(k) with x(k) denoting the signal of interest and e(k) the cleaned signal. 

Adaptive filter

Adaption 

process

+
d(k)

n(k)

+
y(k)

e(k)

x(k)

z -̂1
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 If the adaptive filter provides a perfect estimate of the unknown system, then the error signal 

becomes identical to the signal of interest. This provides the perfect noise removal. 

 

1.3 Motivation 
 

The motivating factor behind employing distributed wireless sensor networks is the availability 

of low-power micro-sensors, actuators, embedded processors, and radios. Most of the sensor 

networks consists relatively small numbers of sensors, wired to a central processing unit which 

performs all of the signal processing. But here we focus on distributed wireless sensor networks 

in which sensing and signal processing is also distributed. 

When the exact location of a signal of interest is unknown over a geographical area we go for 

distributed sensing. In distributed sensing certain number of sensors are placed closer to the 

phenomena being monitored instead of using a single sensor. We can improve the signal quality 

as the signal to noise ratio improves and improved opportunities for line of sight communication. 

Thus, distributed sensing provides robustness to environmental obstacles. 

Though wired networking of distributed sensors has its own advantages like ease connectivity, 

simple system design and simplified operation when the nodes wired to renewable energy 

sources, we go for wireless because, in many existing and future applications, the geographic 

area being monitored will not infrastructure readily for communication or energy. Remote nodes 

must depend on local, finet, and small energy sources along with wireless communication 

channels.   

The central processor limits the network performance as the nodes has to communicate back and 

forth for conveying the information which consumes most of the energy and channel bandwidth 

and is not true distributed process. So we go for distributed process in which each local node has 

its own computing system and communicates independently with other nodes of the network.  

Scientists and environmentalists needs to monitor soil and chemical content of air, as well as 

populations of animal species and plants and their density over a particular geographical area, for 

these type of monitoring process the primary methods are imaging and acoustics to localize, 

identify and track species or phenomena based on implicit signals, or explicit signals. These 

facilities must be deployed in remote places which lack installed energy and communication 

infrastructures; this is the motion for the need for low-power wireless sensor networks.  
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The strategies for node cooperation have significant effect in terms of energy consumption and 

communication bandwidth utilization. For example in the task of bird species identification, we 

need several cameras. For the task to be accomplished through image analysis, we have to stream 

all the video and pictures back to a human operator which is a costly approach. In an alternate 

method, we could stream audio to a central location where central processor performs signal 

processing to detect and stream back only those streams that are most identical to contain a target 

species. This method reduces the communications complexity greatly, but it still suffers from 

communications latency and lacks scalability as the stream audio has to pass through a central 

processing point. Finally, we go for distributed solution, enabling the local node to process audio 

signal itself, and developing distributed algorithms that require only local cooperation to make a 

decision to capture images. This approach needs no long-range streaming of audio or video is 

necessary, resulting in scalability and more efficient use of communications bandwidth and 

limited energy resources. 
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Chapter 2 

Design considerations for Incremental adaptive strategies  

 

2.1 Introduction 

 
 A wireless sensor network consists of a certain number of sensor nodes distributed over 

a geographical area. These sensor nodes are self-powered and some cases consist of a 

local computing mechanism. Nodes of the network collect the information or detects the 

special events and communicates in with other nodes or with a central processor in a 

wireless fashion so the name wireless sensor networks. In a distributed processing each 

node interacts with other nodes in the network to arrive at an estimate of the particular 

parameter. Nodes in the network communicate in a certain manner as dictated by the 

topology of the network.  Adaptive strategies with incremental mode of communication 

described in [1] focus on reduction in communication among the nodes by restricting a 

particular node receiving and transmitting to the immediate nodes only instead of every 

node of the network. 

 Consider a network consisting of nodes observing temporal data for a particular 

phenomenon from different spatial sources with different statistical profiles. The 

objective is to enable the nodes to arrive at an estimate of the parameter of interest from 

observed data. For estimating the vector of parameter of interest there are two general 

approaches, in first approach called centralized approach the data or local estimates from 

all the nodes of the network are passed to a central processor where the individual 

estimates from nodes are combined and vector of parameter is estimated. 

 This approach requires sufficient communication to transmit data to and fro 

between the central processor and nodes.  

 This approach is not a truly distributed system and it limits the autonomy of the 

network and failure of the network due to the presence of the central node at 

some critical points. 
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 The tracking performance of the network is reduced because the network fails to 

adapt to the real-time environmental changes. 

In the second approach we eliminate the central processor and enable each node in the 

network to have local computing abilities. Each node acts like an adaptive filter and 

estimate the parameter of interest from local observations. The individual estimates at 

each node then conveyed to the neighboring nodes where they combine the estimates of 

the network in order to arrive at an estimate of the parameter influenced by the data of the 

neighboring nodes. The consensus strategy gives this type distributed estimation which 

will be studied later in this chapter.  

 

 2.2 Applications 
 

Let us consider a network spread over a geographical area with L nodes as shown in the 

fig3.1. Each node calculates local temperature it . The objective is to provide each node of 

the network with the information about the average temperature avgt .  

 

 

Figure 2..1 Distributed network accessing temperature data with L nodes 
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For providing each node with the average temperature we can use consensus 

implementation in which each node fuses the measurements from its neighbors. The 

result of the combination is the node’s new measurement. 

)1()1()1()( 11111   iyiyiyiy kkLL     For node 1 

Where iy denotes the new measurement of the node1 at iteration i , and ’s the 

coefficients chosen appropriately. Every node of the network computes new 

measurement same as the operation performed at node1 and the process is repeated. For 

suitable coefficients ( ) and network topology all node measurements will converge to 

the desired average temperature  avgt  . 

Other applications distributed processing are tracking and monitoring of a moving target 

over a geographical area. The sensors in the network communicate with each other to 

detect the presence of the target. Physiological monitoring, distributed networks liking 

PCs, environmental monitoring, smart spaces, military, precision agriculture, target 

localization. 

 

2.3 Modes of cooperation 
 

Mode of cooperation the manner with which the nodes of the distributed network 

communicate with the neighboring nodes. Incremental mode, diffusion mode and 

probabilistic diffusion mode are the three modes of cooperation generally used in the 

distributed network. In this section we are going to illustrate these cooperation modes.   

 

 

Figure2.2 modes of cooperation in distributed networks 
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In incremental mode of cooperation, information from one node to adjacent node flows in 

a sequential manner. A cyclic pattern of collaboration among the nodes is required for 

this mode of cooperation. A single node in the network communicates with adjacent 

neighboring nodes only instead of communicating with all the nodes of the network. So 

this mode of cooperation requires the least amount of communication and power. Each 

node exchanges its estimation with adjacent nodes then they are fused and given to local 

adaptive filter, so the estimate at each node is a combined effect of both its temporal data 

as well as the spatial data across the neighbors.  

In diffusion mode of cooperation, each node communicates with all its neighbors 

depending on the network topology. The amount of communication is higher compared 

to the incremental mode. At each node, estimates are exchanged with neighboring nodes 

and combined and then fed to the local adaptive filter. 

The probabilistic diffusion mode is modified version of the diffusion mode to reduce the 

communication complexity. A particular node is allowed to communicate with a subset 

of its neighbors. We can choose the randomized subset of nodes to be communicated by 

some performance criterion. 

 

2.4 distributed consensus 
 

We can find distributed averaging in many ways .Generally used and straightforward 

method is flooding. In this method each node contains a table of the initial node values of 

all the nodes in the network, initialized with their own nodes value only. For each step or 

iteration the nodes exchange information from tables of their neighbours and their own. 

After several iterations, every node comes to know all the initial values of all the nodes, 

so the average can be computed. But flooding is some complex and needs to higher 

amount of communication. 

Consensus strategies solve the problem of finding linear iteration that produces the 

average estimation over a network. In other words it asymptotically computes the average 

of some initial values given at the nodes. The temperature example of fig 3.1 is a special 
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case of a distributed processing, known as consensus. Distributed consensus 

implementations employ two time scales broadly and they function as follows. Assume 

the network is estimating a parameter of interest. Nodes collect noisy observations over a 

period of time from the geographical area and then reach an individual decision about the 

parameter. During this time, nodes act like individual agents as there is limited 

interaction among the nodes. Following this initial stage, the nodes then fuse their 

estimates through several consensus iterations, under suitable conditions, the estimates 

generally converge asymptotically to the global or desired estimate of the parameter. 

We will illustrate another example of a distributed consensus implementation, which can 

serve as motivating contributions for this work. Consider a network of nodes. Each node 

has access to a data vector kx  and a data matrix kH  . The kx  are noisy and distorted 

measurements of some unknown vector 0w , follows: 

kkk uwHx  0  

Each node can evaluate the least-squares estimate of 0w  based on its own local data

}{ , kk Hx  . To do so, each node evaluates its local cross-correlation vector kkk xH
*

  and 

its autocorrelation matrix  kkk HHR *  . Then, local estimate of 0w  can be found from

kkRw 1ˆ  . This operation requires that each node collects sufficient data into kx  and kH

. Once the local quantities },{ kk R  have been evaluated at the individual nodes, one can 

apply consensus iterations at the nodes to determine k̂  and kR̂  , which are estimates of 

the overall average quantities and defined, as follows: 





L

k

kR
L

R
1

1
 and 




L

k

k
L 1

1
  

A global estimate of 0w  is given by ̂ˆˆ 1 Rw  . For all practical considerations, least-

squares implementation of this manner is an offline or non-recursive solution. For 

example, if a particular node collects an extra entry in kx  and an extra row in kH  , a 

difficulty that occurs is how to update the current solution to account for new data 

without having to repeat prior processing and afresh iterations. In addition to that, the 
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offline averaging limits the ability of consensus-based solutions to track fast-changing 

environments, especially in networks with limited communication and power resources. 

 

2.5 Distributed least-mean-squares (LMS) algorithm 
 

To solve the distributed estimation that meets real-time operation, adaptive 

implementations, and low computational and communications complexity, we propose 

distributed least-mean-squares (LMS)-like algorithm that requires low computational and 

communication complexity and inherits the robustness of LMS implementations. The 

proposed method promptly adapts to data changes in the environment, as the information 

flows through the entire network. This algorithm requires neither intermediate averaging 

nor two separate time scales as in consensus implementations. This distributed adaptive 

solution is an extension of adaptive filters and can be implemented without requiring any 

prior knowledge of data statistics in other words, it is not model dependent. we focus in 

this chapter on LMS-type updates for simplicity and  the same ideas and techniques will 

be applied to other types of adaptation rules. 

We design and develop distributed algorithms that enable a network of nodes to function 

as an adaptive entity in its own right. As the regular adaptive filter has the ability to 

responds in real time to its data and to variations in the statistical properties of this data, 

the same can be extended to the network domain. Specifically, the purpose of this chapter 

is as follows: 

 Based on the extensive works on distributed optimization we can develop a family 

of incremental adaptive algorithms for distributed estimation. 

 To use the developed incremental algorithms to meet the addressed adaptive 

network structures composed of an interconnected set of nodes that are able to 

respond to data in real time and to track variations in the statistical properties of 

the data as follows: 

i) When a node receives a new piece of information from environment, then 

the node updates its local estimate of the parameter of interest with this 

new information. 
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ii) Node then shares the local estimates of the parameter with its immediate 

neighbours in a process that allows the information to flow to the other 

nodes in the network. 

iii) To analyse the performance of the resulting interconnected network of 

nodes. This task is challenging since an adaptive network comprises a 

“system of systems” that processes data cooperatively in both time and 

space. Different nodes will converge to different mean-square-error (MSE) 

levels, reflecting the statistical diversity of the data and the different noise 

levels. 

Finally, we considered all the factors that tend to design an incremental adaptive 

algorithm over ring topologies and we derive closed form expressions for its mean-square 

performance in the subsequent chapters. 
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Chapter 3 

Distributed estimation using the Incremental LMS algorithm 

 

There have been extensive works in the literature on incremental methods for solving 

distributed optimization problems. It is known that whenever a cost function can be 

decoupled into a sum of individual cost functions, a distributed algorithm can be 

developed for minimizing the cost function through an incremental procedure. We 

explain the procedure as follows in the context of MSE estimation. 

Consider a network with L nodes. Each node k  has access to time realizations 

}),({ ,ikk vid  of zero-mean spatial data }{ , kk vd , Lk ......2,1  , where each kd  is a scalar 

measurement and each kv  is a row regression vector. We collect the regression and 

measurement data into two global matrices, as follows: 
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these quantities collect the data across all L  nodes. The objective is to estimate the 1M

vector w  that solves 

)(min wJ
w

)3.3(  

Where the cost function )(wJ denotes the mean square error (MSE) as fallows 

2
)( UwdEwJ  )4.3(  
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And E  is the expectation operator. The optimal solution 0w  of (3.3) satisfies the 

orthogonality condition. 

0)(* UwdEU )5.3(  

So that 0w  is the solution to the normal equations 

)6.3(10  

vv PRw  

Which are defined in terms of the correlation and cross-correlation 

)7.3()( **  dEURMMUEUP vV  

If the optimal solution 0w  were to be computed from (3.6), then every node in the 

network would need to have access to the global statistical information },{ vv RP  . 

Alternatively, the solution could be computed centrally and the result broadcast to all 

nodes. Either way, these approaches drain considerable communications or 

computational resources or they do not endow the network with the necessary adaptively 

to cope with possible changes in the statistical properties of the data. We shall instead 

develop and study a distributed solution that allows cooperation among the nodes through 

limited local communications, while at the same time equipping the network with an 

distributed incremental adaptive mechanism. Specifically, in this chapter we focus on the 

incremental mode of cooperation, where the estimation task is distributed among the 

nodes and each node is allowed to cooperate only with one of its direct neighbours at a 

time. The single-neighbour case is already challenging in its own right, and the analysis 

will bring forth several interesting observations. The same mechanism can be extended to 

other modes of cooperation. 

 

3.1 Incremental adaptive solution 
 

Though there some other techniques like steepest-descent solutions they relies on the 

second order moments like kvR ,  and kvP ,  which are needed to evaluate the local gradients. 

We can replace these second-order moments },{ ,, kvkv PR  by instantaneous approximations, 

say of the LMS type, as follows 

ikikkv vvR ,

*

,,   and )8()( *

,,  ikkkv vidP  
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by using data realizations }),({ ,ikk vid  at time i . The approximations (8) lead to an 

adaptive distributed incremental algorithm, or simply a distributed incremental LMS 

algorithm of the following form: 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Where 

k =step size parameter at node k  

)(i

k = local estimate at node k  at time i  

iw =estimate of ow at node k  

ikv , = input at node k  at thi  iteration. 

)(

1

i

k = local estimate of immediate node 1k   

*

,ikv  is the hermitian of ,k iv . The above mentioned algorithm uses local data realizations

)(idk , ikv ,  and )(

1

i

k  weight estimate of immediate node. This incremental procedure 

purely relies on the local data estimation and gives truly distributed solution.The 

operation of algorithm (9) is illustrated in Fig. 5. At each time instant, each 

 node uses local data realizations }),({ ,ikk vid  and the weight estimate received from its 

adjacent node to perform the following three tasks: 

1) Evaluate a local error quantity:
)(

1,)()( i

kikkk vidie    ; 

2) update its weight estimate: )(*

,

)(

1

)( iev kikk

i

k

i

k     ; 

3) pass the updated weight estimate to its neighbour node 1k . 

For each time  
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This distributed incremental adaptive implementation generally has better steady-state 

performance and convergence rate.The subsequence chapter shows the simulation results 

and performance analysis of the incremental LMS algorithm for distributed estimation. 

 

 

3.2 simulations and performance analysis 
 

 

An important question now is, how well does the adaptive incremental solution perform 

That is, how close does each )(i

k  (local estimate at node) get to the desired solution 0w  as 

time evolves? Studying the performance of such an interconnected network of nodes is 

challenging (more so than studying the performance of a single LMS filter) for the 

following reasons: 

1) Each node k  is influenced by local data with local statistics },{ ,, kvkv PR  (spatial 

information); 

2) Each node k  is influenced by its neighbours through the incremental mode of 

cooperation (spatial interaction); 

3) Each node is subject to local noise with variance 
2

,kv (spatial noise profile). 

In the next section, we provide a framework for studying the performance of such 

network by examining the flow of energy through the network both in time and space. 

For instance, we shall derive expressions that measure for each node the steady-state 

values and as it will be shown that despite the quite simple cooperation strategy adopted, 

in steady-state each individual node is affected by the whole network, with some 

emphasis given to local statistics. Furthermore, as the step size is decreased 

asymptotically, both quantities mean-square deviation (MSD) and EMSE approach zero 

for every node in the network, which also drives the MSE for every node asymptotically 

to the background noise level. In order to pursue the performance analysis, we shall rely 

on the energy conservation approach. This energy-based approach needs to be extended 

to account for the space dimension because the distributed adaptive algorithm of (9) 

involves both a time variable and a space variable. Moreover, we need to deal with the 
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Energy flow across interconnected filters and since each node in the network can now 

stabilize at an individual MSE value, some of the simplifications that were possible in the 

single node case cannot be applied here. For example, due to cooperation, the 

performance of every node ends up depending on the whole network, an effect which we 

shall capture by a set of coupled equations. In order to evaluate individual node 

performance, weighting will be used to decouple the equations and to evaluate the 

quantities of interest in steady state. The main result of this section is Theorem 1, further 

ahead, which provides closed-form expressions for the performance of  each node in the 

network in terms of the so-called MSE, MSD, and EMSE measures defined next. 

Here we give the simulation results comparing the each technique. Number nodes in 

network L= 20.The regressor vector or data vector 
,k iv  is 1 M  and collects the data as 

follows. 

, { ( ), ( 1),......, ( 1)} (5)k i k k kv col v i v i v i M      

In the network each node k depends on local statistics and influenced by immediate 

neighbors. 300 independent experiments were performed and averaged. In all the 

experiments step-size parameter is chosen to be small and kept constant. The curves are 

generated for 100 iterations. Here Mean Square Error (MSE) is taken as the performance 

metric. MSE gives how far the local estimate from the optimum weight 0w . The 

performances of the proposed algorithms are compared with that of incremental 

algorithm.  
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Figure 3.1 mean-square-errors (MSE) for the Incremental LMS algorithm 

 

 

Figure 3.2 correlation index of the nodes 
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Figure 3.3 power profile of the nodes 

 

 

 

Figure 3.4 noise power profile of the nodes 
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Chapter 4 

 

Incremental Partial update LMS Techniques  

 

Partial update techniques are developed to reduce the computational complexity. 

Complexity depends on the number of hardware multipliers required for the computing 

system and decides the power consumption. Bandwidth plays an important role in 

communication complexity. Even though the Incremental adaptive solution mentioned in 

the previous chapter reduces the amount of communications to considerable amount the 

numbers of calculations in each iteration are equal to the LMS. We can reduce 

computational complexity by partial update techniques. In some applications adaptive 

filters have a large number of coefficients. Updating the entire coefficient vector is costly 

in terms of memory, computations and power consumption. Generally more number of 

hardware multipliers imply to more power. Here we propose incremental partial update 

techniques which reduce computational complexity to a considerable amount. 

These Partial Update Incremental Partial update Techniques reduce both computation 

complexity and communication complexity to a significant amount. The techniques 

mentioned in this chapter have the following advantages 

 

 Communication complexity is reduced i.e. less bandwidth is sufficient for the 

communication as Nodes in the network communicates with the immediate 

neighbors only. 

 Computational complexity is reduced as number of hardware multipliers required 

is less compared to the usual LMS techniques.  

 Physical complexity is reduced as the technique suits for the Low-energy sources 

and the need for the central processor is eliminated through the Incremental 

techniques in which nodes have local computational capabilities.  
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The complexity constraint posed by scarce resources necessitates the development of 

resource allocation schemes that assign available resources for adaption processes on the 

basis of a well-defined allocation or selection criterion. In general, the selection criterion 

must reflect the merit of a given resource assignment in terms of performance measure is 

the convergence rate for a given steady-state error level. The computational complexity 

associated with the adaption process can be reduced when an adaptive filter has M  

coefficients while the adaption process can update only N  coefficients so as to reduce the 

computational complexity. 

In the following chapter we review some of incremental partial update LMS algorithms 

like Incremental-sequential, incremental-stochastic and incremental-Max-partial update 

algorithms. In the chapter wherever partial update technique is mentioned it is the 

Incremental partial update technique until unless it is mentioned. 

 

4.1 Sequential Partial update Incremental LMS  
 

This method updates a subset of the adaptive filter coefficients so as to reduce the 

computational complexity associated with the adoption process at each iteration for every 

node in the network. In this sense sequential partial update results in decimation of the 

adaptive filter coefficient vector. Coefficient subset to be updated is selected in a 

deterministic fashion. 

The update equation is given by 

 

( ) ( ) ( ) ( ) *

1 , , (4.1)i i i i

k k k N k k k iI e v      

Where  

)(i

ke =
)(

1,)( i

kikk vid  
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)(

,

i

kNI  is the coefficient selection matrix to select a subset of N  coefficients out of M  total 

coefficients at node k at thi  iteration. 

 

Let the coefficient index set be Q = {1, 2 ... M } i.e. there are M  coefficients totally out 

of which N  coefficients are to be updated. Then Q is divided into S number of subsets 

,,2,1 ..... sPPP  with each subset having N coefficients where M

NS c . Let NMR /  be an 

integer then R  coefficient subsets are arranged in periodic sequences with respective 

coefficient selection matrix ,

i

N kI . 

 

1

2

( )

, 3

( ) 0 . . 0

0 ( ) . . .

(4.3). . ( ) . .

. . . . .

0 . . . ( )

i

N k

M

a i

a i

I a i

a i

 
 
 
  
 
 
    

 

 ( mod )1 1

0( ) i Rif j j

j otherwisea i
 


 

 

As an example for M =4 and N =2 and we have S =6 and 1P ={1,2}, 2P ={1,3}, 3P

={1,4},  4P ={2,3}, 5P ={2,4}, 6P ={3,6}. The R  coefficient subsets to be updated where 

R =2 can be arranged into periodic sequence with corresponding coefficient selection 



25 
 

matrix
( )

,

i

N kI  by equation 4.3. In general there is no unique way to design periodic 

coefficient subsets as long as the N subsets used in sequential partial updates satisfy the 

above mentioned conditions. Updating N coefficients in an adaptive filter of length M at 

each iteration leads to a complexity reduction in the adaption process roughly 

proportional to R .We will discuss some of the performance metrics like convergence 

properties of the sequential partial update technique. 

 

4.1.1 Convergence performance 

 

 

The results for the convergence performance of the sequential incremental algorithm are 

shown. The total number of coefficients assumed for the filter M is 10. For the 70% 

coefficient update, 7 coefficients to be updated in each iteration i.e. N =7. Step-size 

parameter ( k ) is taken as 0.03. The MSE obtained from simulation is 0.1203.  

 

 
Figure 4.1 Time averaged MSE for sequential partial update LMS for the 70 % coefficient update 

and incremental LMS 
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For a 50% coefficient update 5 coefficients ( N =5) are updated in each iteration and 

obtained MSE is 0.2005. The MSE for full-update incremental algorithm mentioned in 

the previous chapter is 0.0078 

 

 
Figure4.2 Time averaged MSE for sequential partial update LMS for the 50 % coefficient update 

and incremental LMS 

 

For 30% coefficient update 3coefficients ( N =3) are updated in each iteration, MSE 

obtained is 0.2255 and the results are compared with an incremental algorithm in which 

all the coefficients are updated whose MSE is 0.0078. 

Other performance techniques like EMSE and MSD are also calculated for each node of 

the network. For describing the steady-state quantities as a function of fixed step-size k . 

Correlation index, noise power profile, power profile of the network has in following 

figure. It would be desirable to drive the whole network to an equalized performance. A 

good step-size design, together with the cooperative scheme that has been proposed, may 

take advantage of the spatial diversity provided by the adaptive network. By properly 

tuning the step size at each node, a good level of performance equalization could be 

achieved throughout the network. Nodes presenting poor performance, or high noise 
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level, can be assigned with small step sizes, such that, in the limit case, they would 

become simply relay nodes. 

 

Figure 4.3 Time averaged MSE for sequential partial update LMS for the 30 % coefficient update 

and incremental LMS 

 
Figure 4.4 correaltion index of the nodes 
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Figure 4.5 noise power profile of the networks 

 

 

Figure 4.6 Power profile of the nodes 
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4.2 Stochastic partial-update Incremental LMS  
 

Stochastic partial update improves the performance of the network over the sequential 

partial update algorithm with the same amount of computational complexity reduction. In 

this method coefficient subset to be updated are chosen randomly instead of deterministic 

fashion as in sequential partial update algorithm.  

The update equation is given by  

 

( ) ( ) * ( ) ( )

1 , , (3)i i i i

k k k k i N k kv I e      

 

The coefficient selection matrix is given by  
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Where )(im is an independent random process with probability mass-function 

 

Pr {  cim )( } = c ,
 c=1... R  

1
1




R

c

c
 

The computational complexity of stochastic algorithm is same as that of the sequential 

algorithm and slower than the Incremental LMS algorithm by a factor R because of the 

decimation of the adaptive filter coefficient. 
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4.2.1 Convergence performance 

 

The results for the convergence performance of stochastic algorithm are shown. The total 

number of coefficients assumed for the filter M is 10. Fig 4.7 shows for a 70% 

coefficient update, 7 coefficients to be updated in each iteration i.e. N =7. Step-size 

parameter (
k ) is taken as 0.03. The MSE obtained from simulation is 0.1389.  

 
Figure4.7 Time averaged MSE for stochastic partial update Incremental LMS for the 70 % 

coefficient update and incremental LMS 

 

Fig4.8 shows for 50% coefficient update 5 coefficient ( N =5) are updated in each 

iteration and obtained MSE is 0.1910. The MSE for full-update incremental algorithm 

mentioned in the previous chapter is 0.0078. The simulation results were shown in the 

following figure for the 50 percent update. 

Fig4.9 sows for 30% coefficient update 3coefficients ( N =3) are updated in each 

iteration, MSE obtained is 0.2255 and the results are compared with an incremental 
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Figure 4.8 Time averaged MSE for stochastic partial update Incremental LMS for the 50 % 

coefficient update and incremental LMS 

 

Figure4.9 Time averaged MSE for stochastic partial update Incremental LMS for the 30 % 

coefficient update and incremental LMS 
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Fig4.9 sows for 30% coefficient update 3coefficients ( N =3) are updated in each 

iteration, MSE obtained is 0.2255 and the results are compared with an incremental 

algorithm in which all the coefficients are updated whose MSE is 0.0078. 

 

4.3 Max- partial update incremental LMS  
 

In this algorithm at iteration largest magnitude vector entries are updated. This is a data 

dependent partial update technique which is based on finding N  largest magnitude 

entries from M  total coefficients [4]. 

 

The update equation is given by 
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The Max partial update is similar to the sequential update method in decimating the 

coefficient update vector, but the magnitude of the update vector entries to be ranked 

before updating instead of deterministic fashion in sequential update method. The 

coefficient selection scheme determines the convergence of the algorithm. This reduces 

the complexity by a factor NMR / . 
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4.3.1 Convergence performance 

 

The results for the convergence performance of the Max - partitioning algorithm is 

shown. The total number of coefficients assumed for the filter M is 10. Fig 5.10 shows 

for a 70% coefficient update, 7 coefficients to be updated in each iteration i.e. N =7. 

Step-size parameter (
k ) is taken as 0.03. The MSE obtained from simulation is 0.0593. 

The simulation result is shown in the following figure with comparison for full-update 

incremental LMS  

 

Figure 4.10 Time averaged MSE for Max-partial update Incremental LMS for the 70 % coefficient 

update and incremental LMS 

 

Fig 4.11 shows for 50% coefficient update 5 coefficient ( N =5) are updated in each 

iteration and obtained MSE is 0.1014. The MSE for full-update incremental algorithm 

mentioned in the previous chapter is 0.0078. The simulation results were shown in the 

following figure for the 50 percent update 
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Figure 4.11 Time averaged MSE for Max-partial update Incremental LMS for the 50 % coefficient 

update and incremental LMS 

 

Figure 4.12 Time averaged MSE for Max-partial update Incremental LMS for the 30 % coefficient 

update and incremental LMS 
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 Fig 4.12 shows for 30% coefficient update 3coefficients ( N =3) are updated in each 

iteration, MSE obtained is 0.1954 and the results are compared with the incremental 

algorithm in which full-update of coefficients takes place whose MSE is 0.0078 

 

The simulation results for performance estimation are shown after each technique. Partial 

update techniques are compared with incremental LMS in which all the coefficients are 

updated at each iteration. In all the cases Max-partial outperforms sequential partial and 

stochastic partial incremental techniques in performance and Stochastic technique gives 

better performance over sequential for the same computational complexity. But 

sequential partial update technique converges with a faster convergence rate compared to 

stochastic and Max algorithms. Stochastic algorithm converges at a faster rate over Max 

algorithm. The advantage of proposed algorithms over incremental algorithm is achieved 

at the cost of degradation in performance. From the simulation results it is obvious  

 MSE depends on number of coefficients updated. 

 It is more sensitive to local statistics. 

 Since incremental mode of communication is taken into account each node k is 

influenced by its immediate neighbors only. 

 

4.4 Summary 
 

Here we review and compare all the techniques that were studied in the previous chapter. 

The three Incremental partial update techniques developed are compared with each other 

and with incremental algorithm developed chapter 3. The MSE is taken as the 

performance metric which gives the convergence rate. It is obvious that percentage of 

saving the computations degrades the performance. All the techniques mentioned here are 

compared for 70%, 50%, and 30% coefficient update. The fallowing results give the clear 

analysis over each technique. 
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Figure4.13 Comparison of each technique with incremental LMS for 70% coefficient update 

 

Figure4.14 Comparison of each technique with incremental LMS for 50% coefficient update 
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Figure4.15 comparison of each technique with incremental LMS for 30% coefficient update 

 

For all the algorithms proposed here ring type topology is considered as shown in Fig.1. 

In sequential incremental algorithm number of coefficients M is 10. For 70% coefficient 

update, 7 coefficients to be updated in each iteration i.e. N =7. Step-size parameter is 
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coefficient ( N =5) are updated in each iteration and obtained MSE is 0.2005. For 30% 
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coefficients are updated whose MSE is 0.0078. 
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The simulation results for performance estimation are shown in Figs.4.13,4.14 and 4.15. 

Partial update techniques are compared with incremental LMS in which all the 

coefficients are updated at each iteration. In all the cases Max-partial outperforms 

sequential partial and stochastic partial incremental techniques in performance and 

Stochastic technique gives better performance over sequential for the same computational 

complexity. But sequential partial update technique converges with a faster convergence 

rate compared to stochastic and Max algorithms. Stochastic algorithm converges at a 

faster rate over Max algorithm. The advantage of proposed algorithms over incremental 

algorithm is achieved at the cost of degradation in performance. 
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Chapter 5 

Conclusion and future work 

 

5.1 Conclusion 
 

In this thesis we focus on reducing the communication and computational complexity for 

the distributed wireless sensor networks [1]. The adaptive algorithms developed assume 

the robustness of the standard LMS algorithm. It is clear from the analysis that sequential 

and stochastic partial update algorithms reduces the computation complexity in equal 

manner but stochastic partial update algorithm give better performance over sequential. 

Max-partial algorithm converges quickly and has consistent steady state performance and 

reduces the computational complexity in the same amount as of other two techniques.  

So with a little deterioration in the performance the computational complexity can be 

reduced to considerable amount. This in turn reduces the power consumption and is 

suitable for networks with low-energy sources. 

 

5.2 Scope for future work 
 

 These techniques can be implemented for networks using diffusion mode of 

communication which involves heavy computational complexity. 

 These techniques have the possibility for no-linear cases like artificial neural 

networks. 

 Networks using probabilistic diffusion mode of communication can 

implemented by this techniques. 

 Communication complexity can be further reduced by transmitting 

differential estimation.  
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