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Abstract

Electrocardiogram (ECG) is a noninvasive technique that is used as a diagnostic

tool for cardiovascular diseases. During the acquisition and transmission of ECG

signals, different noises get embedded with it such as channel noise, muscle arti-

facts, electrode motion and baseline wander. In this project two techniques for

ECG enhancement is proposed. The first method is based on Empirical Mode De-

composition and second method is based on time-frequency domain filtering using

S-Transform. The performance of both techniques is compared with commonly

used Wavelet Transform (WT) ECG enhancement technique.

In EMD based ECG enhancement technique, the noisy ECG signal is initially

decomposed into a set of Intrinsic Mode Functions (IMFs). In this method, the

IMFs which are dominated by noise are automatically determined using Spectral

Flatness (SF) measure and then filtered using butterworth filters to remove noise.

This method gives good performance with high SNR and lower RMSE for channel

noise. However, the method fails to provide signal enhancement for other types of

noises.

In S-Transform based enhancement technique, noisy ECG signal is represented

in time-frequency domain using S-Transform. Next, masking and filtering tech-

nique is applied to remove unwanted noise components from time-frequency do-

main. This method gives good performance with high SNR and lower RMSE for

different noises that are more probable to get embedded with ECG signal during

its acquisition and transmission.

vii



List of Figures

1.1 Cross section of human heart . . . . . . . . . . . . . . . . . . . . . 3

1.2 Leads I, II and III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Unipolar limb leads . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Unipolar chest leads . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 ECG wave pattern for one cardiac cycle . . . . . . . . . . . . . . . . 6

1.6 Muscle Artifacts noise . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Electrode Motion noise . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Baseline Wander noise . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Channel noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The original ECG and its seven IMFs . . . . . . . . . . . . . . . . . 17

2.2 Block diagram of EMD based ECG enhancement method . . . . . . 18

2.3 Method to find out the number of noisy IMFs . . . . . . . . . . . . 19

2.4 EMD Technique: Original ECG, Noisy ECG (10dB SNR) and De-

noised ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Block Diagram of S-Transform based ECG enhancement technique . 29

3.2 Flowchart to calculate discrete S-Transform . . . . . . . . . . . . . 30

3.3 Different stages of S-Transform based enhancement method . . . . . 31

3.4 S-Transform based enhancement: Noisy and denoised ECG signal . 33

3.5 Enhancement of ECG signal with Gaussian Noise using S-Transform

based technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Enhancement of ECG signal with Muscle Artifacts (MA) Noise us-

ing S-Transform based technique . . . . . . . . . . . . . . . . . . . 37

viii



3.7 Enhancement of ECG signal with Electrode Motion (EM) Noise

using S-Transform based technique . . . . . . . . . . . . . . . . . . 39

3.8 Enhancement of ECG signal with Baseline Wander(BW) using S-

Transform based technique . . . . . . . . . . . . . . . . . . . . . . . 40



List of Tables

2.1 EMD method Results: Gaussian Noise . . . . . . . . . . . . . . . . 21

2.2 EMD method Results: MA Noise . . . . . . . . . . . . . . . . . . . 21

2.3 EMD method Results: EM Noise . . . . . . . . . . . . . . . . . . . 22

2.4 EMD method Results: BW Noise . . . . . . . . . . . . . . . . . . . 22

3.1 S-Transform method results: Gaussian Noise . . . . . . . . . . . . . 36

3.2 S-Transform method results: MA Noise . . . . . . . . . . . . . . . . 38

3.3 S-Transform method results: EM Noise . . . . . . . . . . . . . . . . 38

3.4 S-Transform method results: BW Noise . . . . . . . . . . . . . . . . 38

x



List of Abbreviations

ECG Electrocardiogram

MIT-BIH Massachusetts Institute of Technology - Beth Israel Hos-

pital

WT Wavelet Transform

ST Stockwell Transform (S-Transform)

TFR Time Frequency Representation

SNR Signal to Noise Ratio

RMSE Root Mean Square Error

MA Muscle Artifacts

EM Electrode Motion

BW Baseline Wander

xi



1
Introduction
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1.2 Anatomy of Heart

1.1 ECG

Electrocardiography (ECG) is a noninvasive technique that shows the electrical

activity of the heart [1]. This is achieved by placing electrodes on the skin at

specific points on the body. Since the electrical activity is directly correlated to

heart functioning, it can be used to inspect the regularities and rate of heart

rhythms. Therefore any change in heart rhythm caused by cardiac arrhythmias

will reflect in the person’s ECG also [2]. In General, ECG provides following

information [3]

• Position of the heart and the size of the chambers

• Origin of impulse and its propagation

• Heart rhythm, Heart rate and disturbances in conduction

• Variations in electrolyte concentrations

• Position of myocardial ischemia

Hence ECG is widely used as a diagnostic tool by physicians throughout the world

to analyze the hearts condition.

Heart muscles generally have a negative polarity and when this negative po-

larity charge becomes zero, it can be said that the heart muscle is depolarized [2].

During a cardiac cycle, a wave of depolarization occurs which results in the con-

traction of atria and ventricles which constitute a heart beat. ECG detects these

tiny changes of electric charges that is displayed on a monitor or printed on a

graph paper [4].

1.2 Anatomy of Heart

The heart is the central part of the cardiovascular system of human body [1].

Cross section of the human heart is shown in Fig. 1.1 [4]. The arteries carry blood

from the heart to different parts of the body and the veins carry the blood from all

parts of the body back to the heart. The heart consists of four chambers: The top

2



1.3 Leads in ECG

Figure 1.1: Cross section of human heart [4]

two chambers are called atria and the bottom two chambers are called ventricles.

The atria and ventricles are separated by A-V valves.

The right atrium and right ventricle circulate blood between the heart and

lungs. The oxygen poor blood from the veins flows to the right atrium through

the superior venacava and inferior venacava. When the right atrium contracts

this blood flows to the right ventricle through the tricuspid A-V valve. The right

ventricle then pumps the blood from the hear to the lungs through left pulmonary

artery. The blood gets oxygenated at the lungs [5].

The left atrium and the left ventricle circulate the oxygen-rich blood between

the heart and rest of the body. The oxygenated blood from the lungs flow to the

left atrium through the left pulmonary veins. When the left atrium contracts the

blood is pumped to the left ventricle through the mitral valve. The left ventricle

pumps this blood to rest of the body through the aorta [5].

1.3 Leads in ECG

A lead is a particular ”view” of the electrical activity of the heart which are

obtained by a pair of electrodes placed on designated location on the human

body [4]. The standard ECG has 12 leads which belongs to the following three

3



1.3 Leads in ECG

Figure 1.2: Leads I, II and III [6]

classes

1.3.1 Bipolar Leads

These leads are obtained with electrodes of opposite polarity (+ve and -ve) [6].

Leads I, II and III belong to this category.

• Lead I : Difference between left arm (LA) electrode potential and right arm

(RA) electrode potential (LA-RA).

• Lead II : Difference between left leg (LL) electrode potential and right arm

(RA) electrode potential (LL-RA).

• Lead III : Difference between left leg (LL) electrode potential and left arm

(LA) electrode potential (LL-LA).

1.3.2 Unipolar Leads

These leads are obtained with a single positive electrode and a reference point that

lies in the center of heart’s electric field. Leads aVR, aVL and aVF are unipolar

limb leads [6].

• Augmented Vector Right (aVR): The potential difference between right arm

electrode and the center of heart’s electric field
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1.3 Leads in ECG

Figure 1.3: Unipolar limb leads [6]

• Augmented vector left (aVL): The potential difference between left arm elec-

trode and the center of heart’s electric field.

• Augmented vector foot (aVF): The potential difference between left leg and

the center of the heart’s electric field.

Leads V1-V6 are unipolar chest leads. Here the positive electrodes of leads

V1-v6 is placed at specific points on the chest as shown in the Fig. 1.4. The leads

show the potential difference between the positive electrode and the center of the

heart’s electric field [6]. The location of the positive electrodes for V1-V6 leads is

given below

• V1: Fourth intercostal space in right side of sternum.

• V2: Fourth intercostal space in left side of sternum.

• V3: Directly between V2 and V4.

• V4: Fifth Intercostal space on the left midclavicular line.

• V5: In the same level of V4 at anterior axillary line on the left side.

• V6: In the same level of V5 at midaxillary line on the left side.
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1.4 ECG wave pattern

Figure 1.4: Unipolar chest leads [6]

Figure 1.5: ECG wave pattern for one cardiac cycle [6]

1.4 ECG wave pattern

ECG wave for one cardiac cycle is shown in the Fig. 1.5. In general one cycle

ECG signal consists of a P wave, a QRS complex, a T wave and U wave which

is visible sometimes. The baseline voltage, known as isoelectric line, is considered

as the line tracing from T wave to the next P wave [4].

• P wave: First wave seen and indicates depolarization of atria [2]. During

this time the electrical impulse starts from SA node to AV node spreading

through both the atria. The amplitude of this signal is approximately 1mV.

• QRS complex: This indicates the depolarization of the ventricles. QRS

complex consists of three peaks: Q and S are negative peaks and R is the

6



1.5 Noises in ECG

positive peak. It is the largest voltage deflection of around 10-20mv and has

a duration of 80 - 120 ms [4].

• PR Segment: This is the time duration between the outset of the P wave to

the outset of QRS complex. During this time, the electrical impulse travels

from the atria to the ventricles through the AV node [6].

• T wave: This is a positive deflection soon after the QRS complex and indi-

cates repolarization of the ventricles [3].

• ST Segment: This is the time duration between S wave and the outset of T

wave and occurs between the depolarization and repolarization of ventricles.

ST segment always align with the isoelectric line [6].

• U wave: It is a small deflection following T wave and represents the repo-

larization of purkinje fibres [6].

1.5 Noises in ECG

Different kinds of noises can affect ECG signal during its acquisition and trans-

mission [7]. These noises can corrupt the ECG signal and hence analysis of ECG

becomes very difficult. The probable types of noises that affect ECG are given

below

1.5.1 Muscle Artifacts

Muscle artifacts are also known as Electromyography (EMG) noise. These noises

occur due to the muscle activity during ECG acquisition especially during a stress

test [7]. Muscle artifacts are assumed to be transient bursts of gaussian noise and

is band limited and have zero mean. Burst duration can be upto 50ms with a

maximum frequency of 10 KHz [8].

1.5.2 Electrode Motion

Electrode motion or motion artifacts occur due to the shift in the electrode position

during exercise ECG [7]. The motion of electrodes can introduce a higher ampli-

tude signal in the ECG signal. Generally it can have a duration of 100-500ms [8]
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1.5 Noises in ECG

Figure 1.6: Muscle Artifacts noise

and have frequency components overlapping with the frequency contents of the

ECG signal.

1.5.3 Baseline wander

Baseline wander is the variation in the isoelectric line of the ECG signal. This

usually occurs due to respiration or cough which causes in a large movement of

chest for a chest-lead ECG and movement of arm or leg for a limb-lead ECG [9].

Effect of temperature and bias variations on the instruments and amplifiers can

also cause drift in ECG baseline voltage. This is generally a low frequency signal

with a frequency range of 0-0.5 Hz [10].

1.5.4 Channel noise

Poor channel conditions can also introduce noise to ECG when ECG is transmit-

ted. Usually it is modeled using white gaussian noise which contains all frequency

components [7].

8



1.5 Noises in ECG

Figure 1.7: Electrode Motion noise

Figure 1.8: Baseline Wander noise
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1.6 ECG Database

Figure 1.9: Channel noise

1.6 ECG Database

1.6.1 MIT-BIH Arrhythmia Database

MIT-BIH Arrhythmia database is setup by Massachusetts Institute of Technology

(MIT) and Beth Israel Hospital (BIH) to conduct research on arrhythmia analysis

and other cardiac dynamics [9]. This repository was made open to others from

1980 and was made available online in September 1999. Henceforth these datas

have been used by researchers worldwide for their research and analysis. The

database consists of 48 different records each having a duration of 30 minutes. All

these records have a sampling frequency of 360Hz and have 2 channels comprising

of lead II and lead V1 [9]. Each beat in these records are properly annotated by

a set of expert cardiologists.

1.6.2 MIT-BIH Noise Stress Test Database

This database includes 3 recordings of noise that usually appear during ECG

recordings such as baseline wander, muscle artifact and electrode motion. These

recordings are taken from physically fit volunteers and standard recorders and

instruments. The electrodes are placed on different positions on the body where

ECG signal is not available [11].
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1.8 Thesis Outline

1.7 Motivation

ECG reflect the condition of the heart and hence any abnormal heart condition

will also appear as irregularities in the signal. However, these irregularities might

not be consistent and hence it can be very tedious even for a trained physician to

do a proper diagnosis. Therefore, researchers throughout the world are working

on computational techniques that can assist in accurate analysis of ECG signal.

However, different noises that get embedded with ECG signal during its acquisi-

tion and transmission can cause a great deal of hindrance to manual and auto-

matic analysis of ECG signal. Therefore preprocessing has to be done to enhance

the signal quality of ECG signal for further processing. Many techniques are re-

ported in the literature for ECG denoising. Many of these techniques assume that

prior information of the signal or type of noise is available. However, in practical

scenario, it is not possible to obtain information of the signal or noise before pro-

cessing. This situation has motivated me to study and implement enhancement

techniques for ECG signal that can be applied for practical scenario where prior

information is not available. In this project, two novel approaches using EMD

and S-Transform are implemented and results are analyzed and compared with

conventional techniques.

1.8 Thesis Outline

Chapter 1 of the thesis gives brief introduction to ECG and its wave pattern, ECG

acquisition and different types of noise that can affect ECG

Chapter 2 explains ECG enhancement technique using Empirical Mode De-

composition (EMD). The Theoretical background of EMD is briefly outlined the

proposed method is explained with results and comparison.

Chapter 3 discusses ECG enhancement technique using S-Transform. The

proposed methodology is explained stage by stage and the output results are

analyzed and compared.

Chapter 4 gives the conclusion and future work of the thesis.
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2.1 Introduction

2.1 Introduction

Many denoising techniques have been reported in the literature for ECG denois-

ing such as adaptive filtering [1], statistical techniques like independent compo-

nent analysis [2], fuzzy multiwavelet denoising [3] and wavelet denoising [4]. The

wavelet based technique is more popular and shows better performance than the

earlier methods [4]. Daubechies-4 (dB4) wavelet with soft thresholding shows

the best performance among all wavelet families. Wavelet transform have been

widely used for denoising of ECG signal because of its ability to characterize time

frequency information where two types of thresholding are used to enhance the

ECG signal. However, the wavelet transform technique has following limitations

for application as a denoising method for ECG signal: (i) the hard thresholding

may lead to the oscillation of the reconstructed ECG signal (ii) Soft thresholding

method may reduce the amplitudes of the ECG waveforms and especially reduce

the amplitudes of the R waves which is more important to diagnose the heart

diseases [5].

Therefore, many researchers use Empirical Mode Decomposition (EMD) based

denoising technique [6]- [7]. EMD decomposes a signal into few oscillatory func-

tions known as Intrinsic Mode Functions (IMFs). Most of the denoising methods

based on EMD technique follows partial reconstruction of the signal by removing

noisy IMFs [6], [7]. However, this method removes the signal information along

with noise. Here, a method for ECG denoising based on EMD is proposed, where

noisy IMFs are automatically determined based on the Spectral Flatness (SF)

measure. The noisy IMFs are then filtered to remove the noise components of the

signals. Performance of this algorithm is tested on MIT-BIH arrhythmia database

and evaluated based on Signal to Noise Ratio (SNR) and Root Mean Square Error

(RMSE). The results are compared with the Wavelet Transform based denoising

technique.
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2.2 Theoretical Background

2.2 Theoretical Background

Empirical mode decomposition (EMD) was introduced by Huang et al [11] for

decomposing a given signal x(t) into a finite number of sub components called

Intrinsic Mode Functions (IMFs). The IMFs represent the oscillatory mode of a

particular signal and is obtained by a systematic process called sifting. An IMF

should satisfy the following two properties.

1. The maximum difference between the number of extrema and the number

of zero crossings should be 1.

2. At any given point, the mean of the envelopes created by the maximas and

minimas should be 0.

The algorithm for performing sifting on a given signal x(t) is given below

(i) Identify all the maximas and minimas of x(t).

(ii) Interpolate between minima, ending up with a signal xmin(t) and similarly

between maximas to give xmax(t)

(iii) Calculate the average between those two envelopes:

xavg(t) = (xmax(t) + xmin(t))/2 (2.1)

(iv) Extract the detail: d1(t) = x(t)− xavg(t). d1(t) is given as input to the next

iteration of sifting.

A stopping criterion to the number of sifting iterations is employed to ensure that

the IMF component retain enough physical sense of both amplitude and frequency

modulation. This is by limiting the Standard Deviation (SD) between two con-

secutive sifting iteration results. If k number of sifting iterations are performed,

then the SD is given by

SD =
L−1∑
t=0

[
|dk−1(t)− dk(t)|2

d2k−1(t)

]
(2.2)

Typically the value of SD is set between 0.2 and 0.3.
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2.2 Theoretical Background

Figure 2.1: The original ECG and its seven IMFs

Once dk(t) is accepted as first IMF, h1(t), the residue is calculated as

r1(t) = x(t)− dk(t) (2.3)

h1(t) = dk(t) (2.4)

r1(t) is given as the input to the next round of sifting process to extract second

IMF. The EMD process can be stopped when the residue r(t) becomes a monotonic

function from which no more IMF can be extracted.

If N rounds of sifting process is performed on the given signal x(t), it will be

decomposed to a set of N IMFs and a residue signal which can be denoted as

x(t) =
N∑
k=1

hk(t) + rN(t) (2.5)

The above equation shows that a signal which is decomposed by EMD can be

recreated easily by simple addition of the IMF components hk(t) and the residue

signal rN(t). The decomposition of an ECG signal using EMD is shown in Fig.

2.1.
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Figure 2.2: Block diagram of EMD based ECG enhancement method

2.3 Methodology

When a noisy signal is decomposed using EMD, the noise components are mainly

present in the initial IMFs [12]. In this work, Spectral Flatness (SF) measure is

used to determine whether a particular IMF is dominated by noise or not. Since

the bandwidth of ECG is usually in the range from 0.05 to 100 Hz [13], the power

spectrum of signal IMFs will be concentrated on a short range of frequencies. The

spectrum of noisy IMFs will be relatively flat compared to signal IMFs.

The proposed noise removal method using EMD is illustrated in Fig. 2.2 and

the different steps are explained below

Step 1: The ECG signals are taken from MIT/BIH arrhythmia data base [14].

Every file in the data base consists of two lead recordings sampled at 360 Hz

sampling frequency with 11 bits per sample of resolution. The noisy signal s(t) is

obtained as s(t) = x(t) +n(t) where x(t) is the original ECG and n(t) is the noise

signal.

Step 2: The noisy ECG signal is decomposed into IMFs using EMD method.

Step 3: The number of noisy IMFs, n, is obtained by comparing the Spectral
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Figure 2.3: Method to find out the number of noisy IMFs

Flatness (SF) of each IMF to a threshold T . The Spectral flatness is calculated

as the ratio of geometric mean of the power spectrum to its arithmetic mean [15].

It is given as

Spectral Flatness =

L

√
L−1∏
n=0

H(n)

L−1∑
n=0

H(n)

L

(2.6)

The first n IMFs whose Spectral Flatness is above the threshold T are considered

as noisy IMFs. This method is explained in Fig. 2.3. The threshold value of spec-

tral flatness, T , is taken as 0.09 based on the experiments done on the database.

Step 4: Since significant part of the high frequency content of ECG is in the

range of 40-60 Hz [12] the 1st IMF is filtered using a bandpass butterworth filter

of order 10 with pass band of 40-60 Hz. The remaining noisy IMFs are filtered

using low pass butterworth filter of order 10 with cut off frequency of 60 Hz to

extract the significant signal components.

Step 5: The ECG signal is reconstructed by adding the filtered IMFs and the

remaining signal IMFs. The reconstructed signal x̂(t)

x̂(t) =
n∑
k=1

h̃k(t) +
N∑

k=n+1

hk(t) + rN(t) (2.7)

where h̃k(t) is the filtered version of hk(t)
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Figure 2.4: Original ECG, Noisy ECG with 10 dB SNR and ECG with noise removed
by EMD based enhancement technique

2.4 Results and Discussion

The proposed algorithm is tested on MIT-BIH (Massachusetts Institute of Tech-

nology - Beth Israel Hospital) Arrhythmia database [14]. White Gaussian noise is

added artificially to the ECG signals that results in 5dB, 10dB and 15dB SNR.

The performance of this method is evaluated based on the Signal to Noise Ratio

(SNR) and Root Mean Square Error (RMSE) [16]. The SNR can be represented

as the following

SNR =

L−1∑
t=0

x(t)2

L−1∑
t=0

n(t)2
(2.8)

where x(t) is the signal and n(t) is the noise.

Here, RMSE is used to evaluate the quality of the information which is pre-

served in the denoised ECG signal. RMSE is defined as follows:

RMSE =

√√√√√L−1∑
t=0

(x(t)− x̂(t))2

L
(2.9)

where the numerator part is the square error, x̂(t) is the reconstructed ECG signal

and L is the length of the signal.

Fig. 4 shows the original ECG, noisy ECG and the denoised ECG using the

proposed algorithm.
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Table 2.1: Experimental Results for EMD method and Wavelet based enhancement
technique

5dB 10dB 15dB

MIT/BIH WT method EMD method WT method EMD method WT method EMD method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

100 8.10 0.393 9.50 0.334 11.46 0.267 14.35 0.191 15.11 0.175 18.67 0.116
101 8.92 0.357 9.85 0.321 11.96 0.252 14.48 0.188 15.69 0.164 16.70 0.146
115 9.45 0.336 10.22 0.308 13.09 0.221 14.59 0.186 16.76 0.145 17.61 0.131
118 9.53 0.332 10.01 0.316 12.04 0.249 14.95 0.178 15.52 0.174 19.39 0.104
122 9.43 0.331 9.99 0.316 12.76 0.231 14.97 0.171 16.20 0.154 19.77 0.102
205 8.43 0.380 10.08 0.313 11.85 0.255 14.73 0.183 14.92 0.179 18.22 0.122
209 7.93 0.405 9.97 0.316 11.03 0.282 14.84 0.182 14.17 0.195 16.68 0.146
213 8.49 0.375 9.95 0.317 11.76 0.258 14.62 0.185 14.76 0.187 20.02 0.092
215 8.26 0.386 9.65 0.329 11.18 0.271 14.89 0.181 14.10 0.192 18.86 0.114
230 8.99 0.355 9.94 0.318 12.43 0.238 14.68 0.184 15.83 0.161 19.54 0.105

2.4.1 Experimental Results with Gaussian Noise

The Table 2.1 given shows the comparison of the SNR achieved by the proposed

algorithm and the Wavelet Transform technique [4] for two different Input SNRs.

The comparison values are given for 10 random sets of data picked from the MIT-

BIH database. The average performance improvement of the proposed method is

also shown.

2.4.2 Experimental Results with Real Case Noises

The proposed method was tested on ECG signals affected with real case noises such

as Muscle Artifacts (MA), Electrode Motion (EM) and Baseline Wander(BW).

Table 2.2 to Table 2.4 shows below the SNR and RMSE comparison. It can be

seen that for real case noises, both WT based technique and proposed methodology

fails as ECG enhancement techniques.

Table 2.2: Experimental Results for Muscle Artifacts (MA) Noise

.

5dB 10dB 15dB

MIT/BIH WT method EMD method WT method EMD method WT method EMD method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

115 5.35 0.540 2.95 0.711 10.26 0.313 4.41 0.608 15.16 0.129 6.21 0.488
122 5.34 0.541 4.38 0.604 10.17 0.320 7.78 0.409 15.19 0.179 9.97 0.317
213 5.33 0.541 2.94 0.722 10.21 0.314 7.66 0.427 15.22 0.180 8.58 0.382
230 5.35 0.540 2.18 0.777 10.25 0.313 5.11 0.556 15.23 0.181 6.04 0.499
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Table 2.3: Experimental Results for Electrode Motion (EM) Noise

.

5dB 10dB 15dB

MIT/BIH WT method EMD method WT method EMD method WT method EMD method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

115 5.01 0.562 2.58 0.742 10.09 0.322 5.67 0.520 15.01 0.171 4.89 0.569
122 4.98 0.563 4.17 0.618 10.01 0.327 8.50 0.376 15.02 0.172 9.61 0.311
213 4.98 0.564 3.02 0.706 10.02 0.327 4.72 0.580 15.08 0.173 10.64 0.294
230 5.00 0.562 2.99 0.708 10.07 0.325 4.44 0.487 15.10 0.173 6.25 0.487

Table 2.4: Experimental Results for Baseline Wander (BW) noise

.

5dB 10dB 15dB

MIT/BIH WT method EMD method WT method EMD method WT method EMD method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

115 4.98 0.564 1.87 0.805 10.00 0.327 3.26 0.637 15.08 0.173 5.78 0.154
122 4.95 0.565 4.503 0.595 9.98 0.328 9.44 0.337 15.01 0.171 11.18 0.275
213 4.96 0.585 3.02 0.711 9.97 0.329 4.67 0.504 14.99 0.170 10.31 0.305
230 4.98 0.564 3.36 0.679 10.01 0.327 2.68 0.383 15.07 0.172 8.32 0.384

2.5 Conclusion

An EMD based method for denoising of ECG signal is proposed. Automatic de-

tection of noisy IMFs is done using spectral flatness measure. The noisy IMFs

are filtered and then added with signal IMFs to obtain the denoised ECG signal.

The proposed technique is evaluated on 5dB, 10dB and 15dB SNR where white

gaussian noise is artificially added with original signal. Performance of the pro-

posed method shows better SNR performance and lower RMSE for gaussian noise

compared to Wavelet Transform based technique which is usually used as an ECG

signal denoising technique. However, the proposed methodology fails to perform

as an enhancement technique for real case scenario.
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3.1 Introduction

During acquisition, ECG signals can be affected by different noises like muscle

artifacts, electrode motion and baseline wander [1, 2], especially during a stress

test. Muscle artifacts are introduced due to muscle activity and electrode motion

is caused by the shift in electrode location. Baseline wander is the variation in iso-

electric line of ECG which can occur during respiration. Poor channel conditions

can also introduce noise in the ECG signal during its transmission [1]. All these

noises can corrupt the signal thereby making its analysis difficult and error prone.

Hence noisy ECG signals should be enhanced by removing the noise components

for further processing.

Various techniques have been reported in the literature for enhancement of

ECG signal [2–9] including techniques like fuzzy multiwavelet denoising [3], In-

dependent Component Analysis [4], wavelet denoising [5] and Least Mean Square

(LMS) algorithm based adaptive filter [2]. However, most of these reported tech-

niques generally concentrated only on one kind of noise type [3–9]. Few reported

techniques [1, 2] show significant performance for enhancement of ECG signals

embedded with different types of noises. However, these techniques require prior

information of the signal to work efficiently such as the position of the R peak

for Empirical Mode Decomposition (EMD) based technique [1] and a reference

signal for the Least Mean Square (LMS) algorithm based method [2]. This kind

of information is difficult to obtain when the noise level is very high. The wavelet

transform based techniques [3,5] are more popular and widely used because of its

ability to characterize time-frequency domain information of a time domain signal.

However, the amplitude of the wavelet transform is dependent on the frequency.

Wavelet Transform also has other limitations [10] such as having better frequency

resolution and poor time resolution for low frequencies and vice versa for high

frequencies. It also has locally referenced phase.

Here, a novel method for ECG signal enhancement is proposed using Stock-

well Transform (S-Transform) to overcome the afore mentioned limitations. This

method is a generalized approach that can be applied for different noises which
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often get embedded with ECG signal during its acquisition and transmission [1].

The proposed method does not require any prior information like R peak position

or reference signal as auxiliary signal. The S-Transform, derived by Stockwell et

al. [11], is closely related to the Wavelet Transform (WT) and Short Time Fourier

Transform (STFT). The S-Transform (ST) has a similar form to the STFT ex-

cept that the width of window varies with frequency [10]. The S-Transform have

three characteristics that distinguishes it from Wavelet Transform: (i) Frequency

invariant amplitude response (ii) Progressive resolution and (iii) Absolutely ref-

erenced phase information [11]. Besides, the ST uses time-frequency axis rather

than the time-scale axis used in the WT [10]. Therefore the interpretation on the

frequency information in the ST is more straight forward than in the WT which

will be beneficial to remove noise components. ST is used to represent the noisy

ECG in time-frequency domain. An automatic mask window and morphological

filtering technique is applied to this time-frequency domain represented noisy sig-

nal for removing the noises. The proposed algorithm is evaluated for noises such

as muscle artifact, electrode motion, baseline wander and white gaussian noise.

Performance of the proposed algorithm is evaluated by means of Signal to Noise

Ratio (SNR) and Root Mean Square Error (RMSE). Experimental results show

that the proposed method yields superior performance compared to commonly

used Wavelet Transform based technique [5].

3.2 Theoretical Background

The S Transform was introduced by Stockwell et al. [12] inorder to obtain the time

frequency representation of a time domain signal. The S-transform is similar to

STFT except that this width and height of the analyzing window are permitted

to scale with changes in the frequency, which is similar to continuous wavelet

transform. The continuous S-transform S(τ, f) is defined as [13]

S(τ, f) =

∞∫
−∞

h(t)
|f |√
2π

e
−(τ−t)2f2

2 e−i2πft dt (3.1)
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where h(t) is a input signal. A voice S(τ, fo) is defined as a one dimensional

function of time for a constant frequency fo, which shows how the amplitude and

phase for this exact frequency changes over time. If the time series h(t) is windowed

(or multiplied point by point) with a window function (Gaussian function) g(t)

then the resulting spectrum is

H(f) =

∞∫
−∞

h(t)g(t) e−i2πft dt (3.2)

where generalized Gaussian function is

g(t) =
1

σ
√

2π
e−

t2

2σ2 (3.3)

and then allowing the Gaussian to be a function of translation τ and dilation (or

window width) σ.

S(τ, f, σ) =

∞∫
−∞

h(t)
1

σ
√

2π
e−

(t−τ)2

2σ2 e−i2πft dt (3.4)

This is a special case of the multiresolution fourier transform because there are

three independent variables in it, it is also impractical as a tool for analysis.

Simplification can be achieved by adding the constraint restricting the width of

the window to σ to be proportional to the period (or inverse of the frequency).

σ(f) =
1

|f |

The discrete S Transform [14] can be calculated by taking advantage of the

efficiency of the fast Fourier transform (FFT) and the convolution theorem. As-

sume h[kT ], k=0, 1,...,(N − 1) denote a discrete time series corresponding to h(t)

with a time sampling interval of T. The discrete Fourier transform is defined as

H
[ n

NT

]
=

1

N

N−1∑
k=0

h [kT ] e
−j2πnk

N (3.5)

where n=0, 1,...,(N−1). In the discrete case, the S-transform can be considered as

the projection of the time series vector h[kT ] onto a set of vectors. These vectors

are not orthogonal, and the elements of the S-transform are dependent on each
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Figure 3.1: Block Diagram of S-Transform based ECG enhancement technique

other. The fourier transform basis vectors are divided into N localized vectors by

multiplying with the N shifted Gaussian, such that by adding these N localized

vectors we get the original basis vector. Assuming in equ. (3.5), f → n/NT and

τ → jT ) the S-transform of the discrete time series h[kT ] is giving by

S
[
jT,

n

NT

]
=

N−1∑
m=0

h

[
m+ n

NT

]
e

−2π2m2

n2 e
−j2πj
N (3.6)

and for the n = 0 voice, it is equal to the constant which is defined as

S [jT, 0] =
1

N

N−1∑
k=0

h
[ m
NT

]
(3.7)

where j, m and n = 0, 1...,(N − 1). The previous equation puts the constant

average of the time series into the zero frequency voice [13] thus assuring the inverse

is exact for the general time series. The discrete S-transform suffers the familiar

problems from sampling and finite length, giving rise to implicit periodicity in the

time and frequency domains. The calculation of the S-transform is very efficient,

using the convolution theorem both ways, each to the advantage, and utilizing the

efficiency of the Fast Fourier Transform (FFT) algorithm.

3.3 Methodology

The objective of the proposed algorithm is to achieve enhanced signal by selecting

the required frequencies and removing the noise components. The block diagram

of proposed S-Transform based ECG enhancement is shown in Fig. 3.1 and the

different steps are explained below.

Step 1: Time-frequency domain representation: The S-Transform [12]

is used to obtain the time-frequency representation of a time domain noisy ECG

signal. The continuous S-transform S(τ, f) of a noisy ECG signal h(t) at time
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Figure 3.2: Flowchart to calculate discrete S-Transform

t = τ and frequency f is defined as

S(τ, f) =

∞∫
−∞

h(t)
|f |√
2π

e
−(τ−t)2f2

2 e−i2πft dt (3.8)

The Discrete S-transform of the noisy ECG signal h[kT ] is given by

S
[
jT,

n

NT

]
=

N−1∑
m=0

H

[
m+ n

NT

]
e

−2π2m2

n2 e
i2πmj
N (3.9)

where H
[
n
NT

]
is the Fourier Transform of h [kT ] and j, m, n = 0,1,...,N − 1.

Fig. 3.2 shows the computing procedure of Discrete S-Transform [10].

The time-frequency domain representation of a noisy ECG signal is shown in

Fig. 3.3(a).

Step 2: Remove High Frequency noises: The objective of this step is to

remove high frequency noise components by applying frequency domain thresh-

olding. A clean ECG signal generally has a bandwidth of 0.05 to 100 Hz [15].

However, ECG signals of different beat types available in MIT-BIH arrhythmia

database [16] has shown that it contain important information within 200Hz.

Hence a frequency domain threshold has been defined at 200Hz such that the

frequency components below 200Hz are retained and frequency components above

200Hz are removed. Fig. 3.3(b) shows the time-frequency domain representation

S1 after removing high frequency noises.
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Figure 3.3: Different stages of S-Transform based enhancement method: (a) Time-
frequency domain representation of noisy ECG signal (b) Time-frequency domain repre-
sentation of ECG signal after removing high frequency noise (c) Time-frequency domain
representation of ECG signal after masking (d) Time-frequency domain representation
of ECG signal after filtering

Step 3: Masking: The objective of masking is to remove noise components

whose frequencies are between the QRS complexes of time-frequency domain rep-

resented S1. Firstly, the output of the previous step, S1 is thresholded by selecting

an appropriate threshold as Tm. The binary matrix B is obtained as follows

B[m,n] =

1 if S1[m,n] > Tm,

0 if S1[m,n] ≤ Tm

(3.10)

where m and n represent row and column of S1 and B. Tm is the threshold

defined for mth row of S1. This threshold value Tm is selected such that the

ratio of between-class variance σ2
B to the total-class variance σ2

T [17] is maximized.

These two variables can be computed as follows.

σ2
B = ω0(µ0 − µT )2 + ω1(µ1 − µT )2 (3.11)

σ2
T =

L∑
i=1

(i− µT )2Pi (3.12)
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where

ω0 =
Tm∑
i=1

Pi and ω1 =
L∑

i=Tm+1

Pi

µ0 =
Tm∑
i=1

(iPi)/ω0 and µ1 =
L∑

i=Tm+1

(iPi)/ω1

Pi = ni/N (Pi ≥ 0 ;
L∑
i=1

Pi = 1)

The output binary matrix B is dilated using a structuring element A1 [18] as

follows.

B ⊕ A1 = {x|(Â1)x ∩B 6= Ø} (3.13)

where A1 and B are considered as sets in 2-D integer space Z2, x = {x1, x2}, Â1 is

the reflection of A1 and Ø is an empty set. Dilation expands the boundary of the

white area in binary matrix and avoids any small breaks in the binary image. The

largest connected area in this matrix is the second level mask M1. The output of

masking, S2 = S1 ◦M1, is shown in Fig. 3.3(c).

Step 4: Filtering: Filtering’s is used to smoothen the boundaries in time-

frequency domain represented masked output S2. This is done by performing

following steps [18] on S2.

1. Initially, S2 is dilated using the smaller structuring element A2 for more

precise operation.

S21 = S2 ⊕ A2 (3.14)

Here, dilation operation assigns each element the maximum value in the

neighborhood defined by the structuring element A2.

2. The dilated output S21 is eroded using A2 using the following equation. Ero-

sion is the opposite of dilation. Here, each element is assigned the minimum

value in the neighborhood defined by the structuring elementA2.

S22 = S21 	 A2 = {x|(A2)x ⊆ Ø} (3.15)
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Figure 3.4: S-Transform based enhancement: (a)Noisy ECG signal (Input) (b) De-
noised ECG signal (Output)

3. The eroded output S22 is opened by A2. Opening is a combination of erosion

and dilation. This step removes small unconnected areas and smoothen

sharp peaks.

S23 = {S22 	 A2} ⊕ A2 (3.16)

4. The opened output S23 is closed by A2. Closing is a combination of dilation

and erosion. This step combines small breaks in the area and smoothen the

boundaries.

S24 = {S23 ⊕ A2} 	 A2 (3.17)

Finally the output matrix S24 is converted into a binary matrix using (3.10).

Filtering is performed by multiplying S2 with the resultant binary matrix M2. The

output of filtering, S3 = S2 ◦M2, is shown in Fig. 3.3(d).

Step 5: Inverse S-Transform: The filtered time-frequency domain signal,

S3, is converted to time domain using the inverse S-Transform equation as

ĥ[kT ] =
1

N

N−1∑
n=0

{
N−1∑
j=0

S3

[ n

NT
, jT

]
} e

j2πnk
N (3.18)

where ĥ[kT ] is the enhanced ECG signal. Fig. 3.4(a) shows the noisy ECG signal

and Fig. 3.4(b) shows the enhanced ECG signal.

3.4 Results and Discussion

The proposed algorithm is tested on the ECG data available from online MIT-BIH

arrhythmia database [16]. This database contains 48 different ECG signals with
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30 minute duration which are sampled at 360Hz. Noise is added to these signals

that result 0dB, 1.25dB and 5dB SNR. These noisy ECG signals are denoised

using proposed method. The performance of the proposed method is compared

with WT based technique [5] which is commonly used for ECG enhancement.

The performance of this method is evaluated based on the SNR and RMSE [19].

The SNR can be represented as follows

SNR =

L−1∑
t=0

h(t)2

L−1∑
t=0

n(t)2
(3.19)

where h(t) is the ECG signal and n(t) is the noise signal. RMSE is used to

evaluate the quality of the information which is preserved in the denoised ECG

signal. RMSE is defined as follows:

RMSE =

√√√√√L−1∑
t=0

(h(t)− ĥ(t))2

L
(3.20)

where the numerator part is the square error, ĥ(t) is the reconstructed ECG signal

and L is the length of the ECG signal.

The proposed method is tested on different noises that are generally embedded

with ECG signal during its transmission and acquisition i.e., gaussian noise, muscle

artifacts, electrode motion and baseline wander.

3.4.1 Experimental Results with Gaussian Noise

Gaussian noise is used to model noise introduced due to poor channel conditions

[1]. Gaussian noise is artificially added to ECG data from MIT-BIH database.

Fig. 3.5(a) shows the Original ECG (MIT-BIH Record # 230) and Fig. 3.5(b)

shows the ECG to which white gaussian noise is added resulting in an SNR of

1.25dB. Fig. 3.5(c) and Fig. 3.5(d) depict the denoised ECG signal using WT

method and proposed method respectively.

Though both methods remove majority of the noise, it can be clearly seen from

Fig. 3.5(c) that WT method output has more distortions. The amplitude of the

Wavelet Transform is dependent on the frequency whereas S-Transform provides
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3.4 Results and Discussion

Figure 3.5: Enhancement of ECG signal with Gaussian Noise: (a) Original Signal
(MIT-BIH Tape No: 230) (b) Noisy Signal with 1.25dB SNR (c) WT method Output
(d) Proposed Method Output

uniform amplitude response for all frequncies [10]. This effect is evident in the

WT method output which has lower R and S peak amplitudes.

Table 3.1 shows the comparison in SNR and RMSE for WT method and pro-

posed method. The table contains comparative results for 10 different sets of data

taken from MIT-BIH database. From the results, it is evident that the proposed

method gives better performance with higher SNR and lower RMSE. For example,

the results using Tape No: 122 shows that for an input SNR of 5dB, WT method

gives an output with 9.77dB SNR. Meanwhile, the proposed method output has

a higher SNR of 11.42dB. Similarly, the RMSE comparison shows that proposed

method RMSE is 0.268 which is lower than the RMSE of WT method output i.e.,

0.325.
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3.4 Results and Discussion

Table 3.1: Experimental Results for Gaussian Noise

0dB 1.25dB 5dB

MIT/BIH WT method ST method WT method ST method WT method ST method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

103 5.84 0.511 9.96 0.318 6.72 0.461 10.95 0.284 9.66 0.330 12.91 0.226
105 7.35 0.429 8.85 0.361 7.96 0.400 9.95 0.318 10.22 0.308 13.54 0.210
111 7.04 0.445 7.55 0.419 7.72 0.412 8.38 0.381 9.62 0.330 10.09 0.313
116 6.63 0.466 7.95 0.401 7.37 0.428 8.73 0.366 9.65 0.329 9.82 0.323
122 6.69 0.463 8.32 0.384 7.47 0.423 9.32 0.342 9.77 0.325 11.42 0.268
205 5.45 0.534 8.45 0.378 6.31 0.484 9.15 0.349 8.57 0.373 10.10 0.313
213 5.92 0.506 8.14 0.392 6.62 0.467 9.42 0.338 8.74 0.366 12.49 0.237
219 7.25 0.434 8.94 0.357 8.02 0.397 10.03 0.315 10.36 0.303 12.54 0.236
223 7.35 0.429 9.56 0.332 8.10 0.394 10.81 0.288 10.87 0.286 13.86 0.203
230 5.73 0.517 9.93 0.319 6.44 0.476 11.05 0.280 8.85 0.361 13.14 0.220

3.4.2 Experimental Results with Real case noises

Real case noises such as Muscle Artifacts (MA), Electrode Motion (EM), and

Baseline Wander (BW) are more probable during ECG acquisition [1]. These

types of noises are more significant during stress test. For evaluating the proposed

methodology, these noises are taken from the Noise stress database [20] and added

to ECG data from MIT-BIH database.

Fig. 3.6 shows the experiment results for MA noise. Fig. 3.6(a) shows the

Original ECG (MIT-BIH Tape No: 230) and Fig. 3.6(b) shows the ECG to which

MA noise is added resulting in an SNR of 1.25dB. Fig. 3.6(c) and (d) shows WT

method output and Proposed method output. Similarly Fig. 3.7(a) - 3.7(d) shows

the experiment results for EM noise and Fig. 3.8(a) - 3.8(d) shows the experiment

results for BW. The real case noises have frequency components in the same range

as that of the Original ECG signal [21]. Output signals shown in Fig. 3.6 - 3.8

proves that WT method fails to remove these noise components and hence does

not improve the signal quality. Meanwhile, the proposed method performs time-

frequency domain filtering by using an appropriate mask and hence exhibits better

enhancement of signal quality .

Table 3.2 shows the SNR and RMSE comparison for WT method and proposed

method using MA noise. Table shows that WT method does provide only a minor

improvement in SNR and RMSE. For example, experiment results for Tape No:

105 shows that for 5dB input SNR, WT method output has an SNR of 5.37 whereas
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3.4 Results and Discussion

Figure 3.6: Enhancement of ECG signal with Muscle Artifacts (MA) Noise: (a) Origi-
nal Signal (MIT-BIH Tape No: 230) (b) Noisy Signal with 1.25dB SNR (c) WT method
Output (d) Proposed Method Output

the proposed method output has a higher SNR of 12.76. The RMSE of proposed

method output is 0.230 which is very lower than RMSE of WT method output.

The comparative results for other data also prove that the proposed method has

superior performance with higher SNR and lower RMSE.

Table 3.3 shows the SNR and RMSE comparison for WT method and proposed

method using EM noise. The comparative results show that WT method fails to

improve the signal quality whereas the proposed method gives better performance.

For example, the experiment results for Tape No: 230 with 5dB input SNR shows

that there is no improvement in SNR for WT method output. Meanwhile, the

proposed method gives an enhanced output with an SNR of 10.45dB. The proposed

method output also has a RMSE of 0.3 which is lower than the RMSE of WT

method output.

Table 3.4 shows the SNR and RMSE comparison for WT method and proposed

method with baseline wander. The comparative results show that WT method
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3.4 Results and Discussion

Table 3.2: Experimental Results for Muscle Artifacts (MA) Noise

.

0dB 1.25dB 5dB

MIT/BIH WT method ST method WT method ST method WT method ST method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

103 0.37 0.958 10.41 0.302 1.62 0.830 10.89 0.286 5.35 0.540 12.63 0.234
105 0.39 0.956 10.02 0.316 1.64 0.828 10.42 0.301 5.37 0.539 12.76 0.230
111 0.41 0.954 8.21 0.389 1.65 0.827 8.66 0.369 5.37 0.539 9.94 0.318
116 0.38 0.958 8.19 0.389 1.62 0.830 8.51 0.375 5.35 0.540 9.75 0.325
122 0.39 0.956 9.20 0.347 1.63 0.829 9.67 0.328 5.34 0.541 11.69 0.260
205 0.34 0.961 8.32 0.384 1.60 0.832 8.61 0.371 5.31 0.542 9.91 0.320
213 0.37 0.958 8.79 0.363 1.61 0.830 9.67 0.329 5.33 0.541 12.53 0.236
219 0.37 0.959 10.05 0.314 1.62 0.829 10.61 0.295 5.37 0.539 12.89 0.227
223 0.38 0.957 9.95 0.318 1.62 0.829 10.56 0.297 5.37 0.539 13.44 0.213
230 0.36 0.960 10.15 0.311 1.60 0.831 9.01 0.355 5.35 0.540 8.70 0.367

Table 3.3: Experimental Results for Electrode Motion (EM) Noise

.

0dB 1.25dB 5dB

MIT/BIH WT method ST method WT method ST method WT method ST method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

103 0.02 0.958 6.41 0.478 1.26 0.864 7.47 0.423 5.00 0.562 10.32 0.305
105 0.02 0.956 6.13 0.493 1.26 0.865 7.35 0.429 4.99 0.563 10.40 0.302
111 0.00 0.954 5.45 0.534 1.24 0.867 6.40 0.478 4.92 0.567 8.54 0.374
116 0.02 0.958 5.47 0.533 1.27 0.864 6.32 0.483 5.01 0.562 8.32 0.384
122 0.01 0.956 5.87 0.509 1.26 0.865 6.96 0.449 4.98 0.563 9.60 0.331
205 0.01 0.961 5.59 0.525 1.26 0.865 6.47 0.475 4.97 0.564 8.55 0.374
213 0.01 0.958 5.85 0.510 1.25 0.865 7.06 0.444 4.98 0.564 10.12 0.312
219 0.02 0.959 6.05 0.498 1.27 0.864 7.17 0.438 5.01 0.562 10.04 0.315
223 0.02 0.957 6.21 0.489 1.27 0.864 7.45 0.424 5.01 0.561 10.74 0.290
230 0.02 0.960 6.29 0.484 1.27 0.864 7.48 0.423 5.00 0.562 10.45 0.300

Table 3.4: Experimental Results for Baseline Wander (BW) noise

.

0dB 1.25dB 5dB

MIT/BIH WT method ST method WT method ST method WT method ST method

Tape No SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

103 -0.01 1.001 11.40 0.269 1.24 0.867 12.06 0.249 4.97 0.564 13.54 0.210
105 -0.01 1.001 11.56 0.264 1.23 0.867 12.23 0.245 4.96 0.565 13.77 0.205
111 -0.04 1.004 9.22 0.346 1.20 0.871 9.61 0.331 4.89 0.569 10.41 0.302
116 -0.01 1.001 9.01 0.354 1.24 0.867 9.35 0.341 4.98 0.564 10.04 0.315
122 -0.01 1.002 10.58 0.296 1.23 0.868 11.17 0.276 4.95 0.565 12.38 0.240
205 -0.02 1.002 9.31 0.342 1.22 0.868 9.70 0.327 4.94 0.566 10.46 0.300
213 -0.01 1.001 11.57 0.264 1.23 0.867 12.22 0.245 4.96 0.565 13.77 0.205
219 0.00 1.000 11.55 0.265 1.24 0.866 12.22 0.245 4.99 0.563 13.65 0.208
223 0.00 1.000 12.14 0.247 1.25 0.866 12.95 0.225 4.98 0.563 14.81 0.182
230 -0.01 1.001 11.68 0.261 1.24 0.867 12.35 0.241 4.98 0.564 13.89 0.202
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3.5 Conclusion

Figure 3.7: Enhancement of ECG signal with Electrode Motion (EM) Noise: (a) Orig-
inal Signal (MIT-BIH Tape No: 230) (b) Noisy Signal with 1.25dB SNR (c) WT method
Output (d) Proposed Method Output

fails as an enhancement technique for baseline wander. The WT method output

has a slightly lesser SNR than the input SNR due to the distortions introduced

during signal reconstruction. Meanwhile, the proposed method has a superior

performance with higher SNR and lower RMSE. For example, the experiment

results for Tape No: 122 with 5dB input SNR shows that WT method output has a

degraded SNR of 4.95 whereas the proposed method gives a superior enhancement

resulting in an output SNR of 12.38dB. The RMSE of proposed method output is

0.240 which is lower than the RMSE of WT method output.

3.5 Conclusion

Enhancement of ECG signals is required for accurate analysis of heart’s condi-

tion. A generalized approach to ECG signal enhancement using S-Transform is

proposed. The proposed method does not require any reference signal as aux-

iliary signal or prior information like R peak position. The noise components
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Figure 3.8: Enhancement of ECG signal with Baseline Wander(BW): (a) Original
Signal (MIT-BIH Tape No: 230) (b) Noisy Signal with 1.25dB SNR (c) WT method
Output (d) Proposed Method Output

are removed from the time-frequency domain represented noisy ECG signal by

automatic binary masking and filtering. The proposed method is evaluated for

different noises like White Gaussian Noise, Muscle Artifacts, Electrode Motion

and Baseline Wander at three different SNR levels i.e., 0dB, 1.25dB and 5dB. Ex-

perimental results show that the proposed method performs with better SNR and

lower RMSE compared to Wavelet Transform based technique which is usually

used as an ECG signal enhancement technique.
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4.1 Conclusion

ECG enhancement is essential for automatic or manual ECG signal processing.

This thesis explains two ECG signal enhancement techniques based on Empirical

Mode Decomposition (EMD) and Stockwell Transform (S-Transform)

• Chapter 2 explains the ECG signal enhancement methodology using Em-

pirical Mode Decomposition [1].The noisy ECG signal is decomposed into

Intrinsic Mode Functions (IMFs) using EMD. Automatic detection of noisy

IMFs is done using spectral flatness [2] measure. The noisy IMFs are fil-

tered and then added with signal IMFs to obtain the denoised ECG signal.

The proposed technique is evaluated on 5dB, 10dB and 15dB SNR where

white gaussian noise is artificially added with original signal. Performance

of the proposed method shows better SNR performance and lower RMSE for

gaussian noise compared to Wavelet Transform based technique [3] which

is usually used as an ECG signal denoising technique. However, the pro-

posed methodology fails to perform as an enhancement technique for real

case scenario.

• Chapter 3 explains the ECG signal enhancement methodology using S-

Transform [4]. This method is a generalized approach to ECG signal en-

hancement using S-Transform. The proposed method does not require any

reference signal as auxiliary signal or prior information like R peak posi-

tion. The noise components are removed from the time-frequency domain

represented noisy ECG signal by automatic binary masking and filtering.

The proposed method is evaluated for different noises like White Gaussian

Noise, Muscle Artifacts, Electrode Motion and Baseline Wander [5] at three

different SNR levels i.e., 0dB, 1.25dB and 5dB. Experimental results show

that the proposed method performs with better SNR and lower RMSE com-

pared to Wavelet Transform based technique which is usually used as an

ECG signal enhancement technique.
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Both the techniques work as ECG enhancement techniques without using any

prior information of the signal. However, EMD based technique cannot be used

for multiple scenarios. It works well only with gaussian noise. On the other hand,

S-Transform based approach can be applied for multiple noises and hence can be

developed as a generalized approach.

4.2 Future work

The S-Transform based approach being the superior among the techniques dis-

cussed in this thesis, can be developed as a practical solution by performing the

following steps

• Enhance the capability of the technique so that it can be also applied for

the less common Powerline Interference.

• Clinical evaluation of the method by collecting data from ECG machines in

normal and stress test conditions. Such an evaluation can be used to study

the effectiveness of the method for unpredictable real life ECG acquisition

scenarios.

• A hardware implementation of the technique can be done for interfacing

it with ECG acquisition environment for real time applications. A software

implementation with GUI can be developed if a off-line processing is planned.
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