
FPGA IMPLEMENTATION OF CIRCULAR

SPATIAL FILTER UNDER HIGH NOISE

VARIANCE CONDITIONS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
In

VLSI and Embedded systems
By

Rajulapati Bharat kumar

210EC2064

Under the Guidance of

Prof. SukadevMeher

 Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2011-2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FPGA IMPLEMENTATION OF CIRCULAR

SPATIAL FILTER UNDER HIGH NOISE

VARIANCE CONDITIONS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
In

VLSI and Embedded systems
By

Rajulapati Bharat kumar

210EC2064

Under the Guidance of

Prof. Sukadev Meher

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

iii

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis titled “FPGA IMPLEMENTATION OF

CIRCULAR SPATIAL FILTER UNDER HIGH NOISE VARIANCE

CONDITIONS” submitted by Mr. RAJULAPATI BHARAT KUMAR in

partial fulfillment of the requirements for the award of Master of Technology

degree in Electronics & Communication Engineering with specialization in

“VLSI and embedded systems during session 2011-2012 at National Institute

Of Technology, Rourkela (Deemed University) is an authentic work by him

under my supervision and guidance.

 Prof. SUKADEV MEHER

 Head of the Dept.

 Dept. of Electronics and Communication Engg.

 National Institute of Technology.

 Rourkela-769008.

Acknowledgement

I would like to express my gratitude to my thesis guide Prof. S.Meher for his

guidance, advice and constant support throughout my thesis work. I would like to thank him

for being my advisor here at National Institute of Technology, Rourkela.

Next, I want to express my respects to Prof. K.K. Mahapatra, Prof D.P.Acharya

Prof. A. K. Swain, Prof S.K.Patra,for teaching me and also helping me how to learn. They

have been great sources of inspiration to me and I thank them from the bottom of my heart.

I would like to thank all faculty members and staff of the Department of Electronics

and Communication Engineering, N.I.T. Rourkela for their generous help in various ways for

the completion of this thesis.

I would like to thank all my friends and especially my classmates for all the

thoughtful and mind stimulating discussions we had, which prompted us to think beyond the

obvious. I’ve enjoyed their companionship so much during my stay at NIT, Rourkela.

I am especially indebted to my parents for their love, sacrifice, and support. They are

my first teachers after I came to this world and have set great examples for me about how to

live, study, and work.

 Rajulapati Bharat Kumar

 Roll No: 210EC2064

 Dept. of ECE

 NIT Rourkela

CONTENTS

ABSTRACT………………………………………………………………………………….. i

List of Figures………………………………………………………………………………... ii

List of Tables………………………………………………………………………………... iii

CHAPTER-1: INTRODUCTION...………………….……………………………....……1

1.1. INTRODUCTION TO NOISE IN DIGITAL IMAGES………………….........2

1.1.1 SOURCES OF NOISE……………….………………………………….2

1.1.2 MATHEMATICAL REPRESENTATION OF NOISE….……………. 3

1.2. PLATFORMS USED IN THE DESIGN………..……………………………....4

1.2.1 FPGA………………….………………………………………………4

1.2.2 VHDL…………….………………………….………………………..5

1.2.3 MATLAB……………………………………………………………...6

1.3. DESIGN FLOW……………………………….…………………………….......6

1.4. AIM OF THE PROJECT…………….………………………………………….8

1.5. THESIS LAYOUT……………………..………………………………………..8

CHAPTER-2:STUDY OF IMAGE DENOISING…………….….…………………..….9

2.1 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING……………10

2.2 IMAGE METRICS…………………..………………………………………...12

2.3 DENOISING FILTERS………………………………………………………..12

2.3.1 MEAN FILTER………………………………………………………13

2.3.2 MEDIAN FILTER…………………………………………………...13

2.4 CIRULAR SPATIAL FILTER……………………………………………….13

2.4.1 CIRULAR SPATIAL FILTERING METHOD……………………..14

2.4.2 DISTANCE KERNEL……………………………………………….14

2.4.3 GREY LEVEL KERNEL……………………………………………15

vi

CHAPTER-3: DESIGNING O FPGA.............................………………………….………17

3.1 BACICS OF FPGA............…………………………..…………………………18

3.1.1 LOGIC CELLS...19

3.1.2 INTERCONNECTS..19

3.1.3 INPUT/OUTPUT CELLS...20

3.1.4 DEDICATED ROUTING...20

3.1.5 INTERNAL RAM...21

3.1.6 BLOCK RAM...22

3.1.7 CLOCKS AND GLOBAL LINES...22

3.2 DESIGN LANGUAGE.....……………………………………………………...23

3.2.1 VHDL..23

3.2.2 LIBRARIES..24

 3.3 FLOATING POINT ARITHMETIC...25

 3.4 IP CORE..29

CHAPTER-4: IMPLEMENTATION OF PROPOSED FILTER................................……..31

4.1 IMAGE DATA ACQUISITION………………………………………………....32

4.2 KERNEL EXTRACTION..…………….34

4.3 CONVOLUTION...…….……………………..40

 4.3.1 ROW COLUMN COUNTER...41

CHAPTER-5: RESULTS...…………………..……46

5.1 SYNTHESIS REPORT…………………………………………………………47

 5.1.1 REPORT FOR SIMULATION CODE………………………………...47

 5.1.2 REPORT FOR DUMP CODE………………………………………48

5.2 DESIGN SUMMARY…………………………………………………………49

 5.2.1 SUMMARY FOR SIMULATION CODE…………………………..50

 5.2.2 SUMMARY FOR DUMP CODE……………………………………51

 5.3 SIMULATION …………………………………………………………………51

 5.4 LENA IMAGE …………………………………………………………………52

 5.5 PEPPER IMAGE…………………………………………………………………53

vii

CHAPTER-6: CONCLUSION AND FUTURE WORK……………………….…………..54

6.1 COMPARATIVE ANALYSIS…………………………………………………..55

 6.1.1 COMPARITIVE ANALYSIS OF PSNR ………………………………55

 6.1.2 TIMING COMPARISION……………………………………………56

6.2 CONCLUSION…………………………………………………………………..56

6.3 SCOPE FOR FUTURE WORK……………………………………………........56

REFERENCES…………………………………………………………….…………..…….57

1

LIST OF FIGURES

Fig 1.3.1 design flow..7

Fig 2.1.1 Fundamental steps in digital image processing…...…………………………….…11

Fig 2.4.1 circular spatial filter mask………………………………….……………………...16

Fig 2.4.2 square shape filter mask …………………………………………………………..16

Fig 3.1.1 Basic unit of FPGA…………………………….………………………………….19

Fig 3.1.2 Interconnect between logic cells…………………………………………………...19

Fig 3.1.3 Input/output cells…………………………………………………………………..20

Fig 3.1.4 carry chains…………………………………………………………………….…..20

Fig 3.1.5Internal RAM shared by logic cells…………….………………………………….21

Fig 3.1.6Simple dual port RAM………………………………………………………….….21

Fig 4.1.1 Synthesized IP core of ROM with name imdata1 …………………………………33

Fig 4.2.1 7x7 window operator……………………………………...……………………….34

Fig 4.2.2 moving window architecture……………………………………………………….36

Fig 4.2.3 synthesized moving window operator..37

Fig 4.2.4 distance kernel......................………………………………………………………39

Fig 4.3.1 input window...…………………………………………...40

Fig4.3.2 mask...40

Fig 4.3.3 synthesized convolution architecture named as lapla...42

Figure 4.3.4 Synthesized architecture for circular spatial filter……………………………...45

Figure 5.2.1 design summary for simulation code………………………………………….49

Figure 5.2.2 design summary for dump code………………………………..…….....……..50

Figure 5.3.1 simulation in xilinx ise 13.4 simulator…………………………..……...………51

Figure 5.4.1 (a) original image (b) noisy image (c) processed image…………….………….52

Figure 5.4.2 (a) original image (b) noisy image (c) processed image………………………..52

Figure 5.4.3 (a) original image (b) noisy image (c) processed image……………………….53

2

Figure 5.4.4 (a) original image (b) noisy image (c) processed image………………………..53

LIST OF TABLES

Table 3.3.1 Representation floating point numbers………………………………………...25

Table 3.3.2 Range of floating point numbers………………………….……………………27

Table 3.3.3 equivalent decimal range …………………………………………………..…..28

TABLE 6.1.1 COMPARATIVE ANALYSIS FOR PSNR…………………………………..55

TABLE 6.1.2 COMPARATIVE ANALYSIS FOR PSNR………………………………..…55

TABLE 6.1.2 TIMING COMPARISON………………………………………………….…56

3

ABSTRACT

 The noise in digital images is additive in nature in various cases. Such kind of noise

is called to as Additive White Gaussian Noise (AWGN). This noise gets into image while

transmission, reception, storage and retrieval It is difficult to suppress AWGN because it

corrupts more or less all the pixels in a image. Some filters such mean filter had been

proposed to suppress AWGN but in most cases it incorparates a blurring effect in the image.

Image denoising is usually done before display or further processing like feature extraction,

segmentation, object identification, texture analysis, etc. The intention of denoising is to

suppress the noise efficiently and retaining the edges and other necessary features as far as

possible.

Many efficient digital image filters are found that perform well under low noise conditions.

But in the cases of moderate and high noise conditions their performance is limited. Thus, it

is felt that there is sufficient scope to investigate and develop quite efficient. And proposed a

spatial filter named as circular spatial filter which performs well under high noise

conditions.

Suppose CSF has to be used for real time applications such as before displaying the video on

HDTV a real time application. It is hard to implement this algorithm on a general purpose

computer where high amount of concurrency is needed. So we have chosen FPGA as a target

which is suitable for video and image processing. Here we chose virtex-5 Xilinx board to

implement the algorithm. The performance of the designed filters is compared with the

existing filters and the MATLAB simulation [1] in terms of peak-signal-to noise ratio, root-

mean-squared error.

4

 CHAPTER-1

INTRODUCTION

5

Image processing has got wide varieties of applications in computer vision, multimedia

communication, television broadcasting, etc. That demand very good quality of images. The

quality of an image degrades due to introduction of additive white Gaussian noise (AWGN)

during acquisition, transmission/ reception and storage/ retrieval processes. It is very much

essential to suppress the noise in an image and to preserve the edges and fine details as far as

possible.

In recent times, Field Programmable Gate Array (FPGA) technology has turn out to be a

feasible target for the implementation of algorithms apt for video image processing

applications. The distinctive architecture of the FPGA has permitted the technology to be

used in numerous such applications encircling all areas of video image processing.

Since image sizes and bit depths raise better, software has turn out to be fewer useful in the

video processing dominion. Real-time applications that are the target of this project are

requisite for the high speeds desired in processing video applications. In toting up, a frequent

quandary is dealing with the hefty amounts of data captured by means of satellites and

ground-based recognition systems. DIVP systems are being engaged to selectively diminish

the quantity of data to process, ensuring that only pertinent data is conceded on to a engineer

analyst. sooner or later, it is predictable that most video processing will be replaced with

DIVP systems, with little human intervention. This is perceptibly beneficial, since human

data analysts are luxurious and perhaps not exclusively precise.

In the present research work, efforts are made to develop efficient spatial-domain image filters

that suppress noise quite effectively of FPGA Xilinx virtex-5 device.

1.1 INTRODUCTION NOISE IN DIGITAL FILTERS:

In this section, various types of noise corrupting an image signal are studied; the sources of noise

are discussed, and mathematical models for the different types of noise are presented.

 1.1.1 SOURCES OF NOISE

6

During acquisition, transmission, storage and retrieval processes an image signal gets

contaminated with noise. Acquisition noise is usually additive white Gaussian noise

(AWGN) with extremely stumpy variance. In many engineering applications, the acquisition

noise is quite negligible. It is mainly due to very high quality sensors. In some applications

like remote sensing, biomedical instrumentation, etc., the acquisition noise may be high

enough. But in such a system, it is basically due to the fact that the image acquisition system

itself comprises of a transmission channel. So if such noise problems are considered as

transmission noise, then it may be concluded that acquisition noise is negligible. The

acquisition noise is considered negligible due to another verity that the human perception

system can’t recognize a large dynamic range of image. That is why, an image is usually

quantized at 256 levels. Thus, each pixel is represented by 8 bits (1 byte). The present-day

technology offers very high quality sensors that don’t have noise level greater than half of the

resolution of the analog-to-digital converter (ADC), i.e., noise magnitude in time domain,

where n(t) is the noise amplitude at any arbitrary instant of time t, and V is the maximum

output of the sensor and is also equal to the maximum allowed input voltage level for the

ADC. That is, for V = 3.3 volts, the noise amplitude must be a lesser amount of than ~ 6.5

mV. In many practical applications, the acquisition noise level is much below this margin.

Thus, the acquisition noise need not be considered. Hence, the researchers are mostly

concerned with the noise in a transmission system. Usually, the transmission channel is

linear, but dispersive due to a limited

1.1.2 THE MATHEMATICAL REPRESENTATION OF NOISE:

The AWGN is mathematically represented below. The Gaussian noise is given by,

 =

Where h(t) is a random variable that has a Gaussian probability distribution. It is an additive

noise that is characterized by its variance, where, s represents its standard deviation. In (1.5),

7

the noisy image is calculated as a sum of the original uncorrupted image and the Gaussian

distributed random noise When the variance of the random noise G h is very low, Gh(x, y) is

zero or very closes to zero at many pixel locations. Under such circumstances, the noisy

image AWGN f is same or very close to the original image f (x, y) at many pixel locations (x,

y).

The proposed filter developed in subsequent chapters is meant for suppression of AWGN. To

avoid ambiguity, the noisy image is taken as g(x, y) in the subsequent chapters. Thus, the

noisy image is expressed as

 G(x, y) =f(x, y) +

 .

1.2PLATFORMS USED FOR THE DESIGN

There are several different choices a designer has while implementing a DIVP system of any

class. Hardware, certainly, provides much greater speed while preffering to software

implementation, but one must mull over the enhancement in development time intrinsic in

creating a hardware design. Most software designers are well-known with C, but with the

purpose to develop a hardware system, one must learn a hardware design language such as

Verilog or VHDL, or use a software-to-hardware conversion method, like MATCH which

converts MATLAB image processing code to VHDL Streams-C converts the C code written

in image to VHDL. While such conversion methods are admirable, they are at present in

development and indisputably not appropriate to high speed applications of video or image

processing.

1.2.1 FPGA

Field Programmable Gate Arrays (FPGAs) correspond to reconfigurable technology , which

is in most ways supremely apt for video processing application. Reconfigurable devices are

processors that can be programmed with a the desired design specification, and then can be

8

reprogrammed or reconfigured with almost infinite designs as the designer’s needs alter.

FPGAs in general consists of a system of logic blocks typically look up tables and flip-flops

and a few amounts of Random Access Memory (RAM), all hardwired collectively using a

enormous collection of interconnects. All of the design logic in an FPGA can be rewired

reprogrammed, with a diverse designs as frequently as the designer desired. This sort of

architecture allows a huge assortment of logic designs reliant on the processor’s possessions,

which can be interchanged for a new-fangled design as rapidly as the device can be

reprogrammed.

In the present day, FPGAs can be urbanized to implement parallel design style, which is not

achievable in dedicated DSP designs. ASIC design methodology can be applied for FPGA

designs, prompting the designer to implement designs at gate level. However, frequently

engineers use a hardware language such as VHDL or Verilog, which fovours for a design

tactic comparable to software design. This software view of hardware design fovours for

lowering the on the whole support cost and design abstraction. The algorithms presented in

this thesis were written for virtex-5 FPGA architecture.

1.2.2 VHDL

In recent years, VHSIC (Very High Speed Integrated Circuit) Hardware Design Language

(VHDL) has become a sort of industry standard for high-level hardware design. Since it is an

open IEEE standard, it is supported by a large variety of design tools and is quite

interchangeable (when used generically) between different vendors’ tools. It also supports

inclusion of technology-specific modules for most efficient synthesis to FPGAs.

The first version of VHDL, IEEE 1076-87, appeared in 1987 and has since undergone an

update in 1993, appropriately titled IEEE 1076-93.

9

1.2.3 MATLAB

MATLAB means matrix laboratory, it is almost used in every branch of engineering. Usually

in MATLAB software data is stored in the form of matrix and is processed according to our

wish. It provides support to our designs with many predefined functions for every branch of

engineering. Here in our project we have used it to make files that are readable by block

ROM with extension of .coe and to find the metrics of image such as peak to signal noise

ratio and root means square error and to plot the compared results.

1.2 DESIGN FOLW

Here in this section we present the flow of the design. This is explained with the help of the

figure shown below. The design flow for this project is represented in Figure 1. This shows

the the VHDL design environment on the FPGA-specific tools. First the design is created in

VHDL, then the code’s syntax is checked and the design is synthesized into a library. The

design is next simulated with the help of test bench to check its functionality. Observing the

output waveforms in the VHDL simulator allows the designer to determine proper

functionality of the design. Next, the design is processed with vendor-specific place-and-

route tools and mapped onto a target specific FPGA in software. This allows the engineer to

view a floor plan and hierarchical view of the design, which can help verifying a proper

mapping procedure. Next, the design is verified for proper functionality once again. This step

is important because it assures that the design is correct in its translation from VHDL to gate

level. If this is found to be correct, the design can then be programmed onto the specified

FPGA

The software version of the image metrics are created in MATLAB and the processed image

are cross checked with that of the results [1].

10

VHDL CODE

 IMAGE DATA FILE

NETLIST

 IMAGE DATA FILE

GATE NETLIST

Figure1.3.1: Design flow

Create design

(VHDL)

DESIGN SYNTHESIS

IMPLEMENTATION

PLACE AND ROURE

TEST BENCH

SIMULATION

TEST BENCH POST

ROUTE

SIMULATION

MATLAB CODE

FOR IMAGE

METRICS AND

COMPARISION

COFIGURE TO

TARGET DEVICE

11

1.4 Aim of the project:

 The foremost aim of the project is to implement circular spatial filter on

FPGA under high noise variance conditions. Here the device used is virtex-5and language

used is VHDL.

1.5 Thesis Layout:

CHAPTER-1 This chapter explains the Introduction of implementation of CSF on FPGA.

CHAPTER-2 Explains about the fundamentals of Image denoising filters.

CHAPTER-3 This chapter explains the fundamentals of FPGA and VHDL.

CHAPTER-4 This chapter deals with the implementation of proposed filter.

CHAPTER-5 This deals with results.

CHAPTER-6 Contains Conclusion and Future work

12

CHAPTER-2

STUDY OF IMAGE DENOISING FILTERS

13

Image denoising is a frequent course of action in digital image processing for the

suppression of additive white Gaussian noise (AWGN) that might have corrupted an image

during its acquisition or transmission. This method is conventionally performed in the spatial-

domain or transform-domain by filtering. In spatial-domain filtering, this action is performed

on image pixels directly. The main idea behind the spatial-domain filtering is to convolve a

mask with the whole image. The mask is a small sub-image of any arbitrary size (e.g., 3×3,

5×5, 7×7, etc.). Other common names for mask are: window, template and kernel.

2.1 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING:

 The basic components in digital image processing are shown in fig 2.2.1. The first step in

processing is image acquisition i.e., to get the digital image required for processing. It

involves the conversion of a scene into a digital representation by sensors like

microdensitometer, image dissectors, vidicon cameras and photosensitive solid-state arrays.

After digital image is obtained, the next step deals with pre-processing the image. The

absolute function of pre-processing is to progress the image in areas that increases the chances

for the success of the other process by which the techniques for enhancing contrast, removing

noise and isolating regions. Segmentation, dividing an input image into its ingredient objects.

The raw pixel data, the output of segmentation is transformed into a form suitable for

computer processing and processing is done by representation block. Description, also called

feature solution deals with extracting features that are is basic for differentiating one class of

objects from another. Recognition is a process that assigns a label to an object based on the

information provided by its recognized objects. Finally, the knowledge base controls the

interaction roping and assigning pattern vectors into different pattern classes. The methods for

this type of recognition are minimum distance classifiers, correlates etc.

14

Fig.2.1.1 Fundamental steps in digital image processing

 Decision theoretic approaches to recognition are based on the use of decision (or

discriminate) functions. Let X=(X1, X2, X3, X4…Xn)
T

represent an n-dimensional pattern

vector, for M pattern classesW1, W2, W3…Wm the basic problem in decision theoretic

pattern recognition is to find m dimensions function d1(x), d2(x),..Dm(x) with the property

that, if pattern x belongs to class Wi, then

di(x) >dj(x ………….. (2.2.1)

 In other words, an unknown pattern X belongs to the i
th

 pattern class if,

upon substitution of X into all decision functions, di(x) yields the largest numerical value.

Ties are found out haphazardly.

 The decision boundary separating class Wi from Wj is given by valves of x for which di(x)

= dj(x) or equivalent, by valves of x for which di(x) = dj(x) = 0

 Common practice is to identify the decision boundary between two classes by the single

function dij(x)= di(x)-dj(x)=zero. Thus dij(x) > 0 for patterns of class Wi and dij(x) < 0 for

pattern of class Wj

KNOWLEDGE

BASE

IMAGE

ACQUISITION

PRE

PROCESSING

SEGMENTATION
REPRESENTATION &

 DESCRIPTION

RECOGNITION&

INTERPRETATIO

N

R

E

S

U

L

T

15

2.2 IMAGE METRICS

 The quality of an image is examined by objective evaluation as well as subjective

evaluation. For subjective evaluation, the image has to be pragmatic by a human professional.

The human visual system (HVS) [109] is so knotty that it is not yet modeled appropriately.

Therefore, in addition to objective evaluation, the image must be pragmatic by a human

expert to arbitrator its quality. There are various metrics used for objective evaluation of an

image. Some of them are mean squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE) and peak signal to noise ratio (PSNR) .

Let the original noise-free image, noisy image, and the filtered image be represented by

 f (x, y), g(x, y), and fˆ (x, y), respectively. Here, x and y represent the distinct spatial

coordinates of the images in digital domain. Let the images be of size M×N pixels, i.e.

x=1,2,3,…,M, and y=1,2,3,…,N. Then, MSE and RMSE are defined as:

The PSNR is prsented in logarithmic scale, in dB. It is a ratio of peak signal power to noise

power. Since the it represent the noise power and the peak signal power is unity in case of

normalized image signal, the image metric PSNR is defined as:

2.3 DENOISING FILTERS

Usually, sliding window technique is employed to perform pixel-by-pixel operation in a

filtering algorithm. The local statistics obtained from the neighborhood of the center pixel

give a lot of information about its expected value. If the neighborhood data are ordered

(sorted), then ordered statistical information is obtained. If this order statistics vector is

applied to a finite impulse response (FIR) filter, then the overall scheme becomes an order

statistics (OS) filter.

For example, if a 3×3 window is used for spatial sampling, then 9 pixel data are available at a

time. First of all, the 2-D data is converted to a 1-D data, i.e. a vector. Let this vector of 9

data be sorted. Then, if the mid value (5th position pixel value in the sorted vector of length =

9) is taken, it becomes median filtering with the filter weight vector [0 0 0 0 1 0 0 0 0]. If all

the order statistics are given equal weight age, then it becomes a moving average or mean

16

filter (MF). Strictly speaking, the MF is a linear filter and it has nothing to do with the

ordered statistics. Since the MF operation gives equal emphasis to each input data, it is

immaterial whether the input vector is sorted or not. Thus, simply to have a generalization of

OS filters, the MF is considered a member of this class. Otherwise, it is quite different from

all other members of this family of filters

2.3.1 MEAN FILTER

The moving average or mean filter (MF) is a linear filter . All the input data are summed

together and then the sum is divided with the number of data. It is very simple to implement

in hardware and software. The computational intricacy is very squat. It works fine for low

power AWGN. As the noise power increases, its filtering performance degrades. If the noise

power is high, then a larger window should be employed for spatial sampling to have better

local statistical information. As the window size increases, MF produces a reasonably high

blurring effect and thus thin edges and fine details in an image are lost.

2.3.2 RANK ORDER FILTER

The rank order filter is median (MED) filter, on the other hand, is a nonlinear filter. The

median is a very simple operation. The taxonomy (ordering) process is completed on the

input vector, the job is done as the mid-value is taken as the output. Of course, if the length of

the input vector is even, then the average of two mid-ordered statistical data is taken as

output. Usually, such a computation is not required in most of image processing applications

as the window length is normally an odd number. Thus, the MED operation can be completed

in a very short time. That is, a MED filter may be used for online and real-time applications

to suppress noise. If an image is corrupted with a extremely squat variance AWGN, then this

filter can perform a good filtering operation.

2.4 CIRCULAR SPATIAL FILTER

 Mean and Wiener filters suppress additive white Gaussian noise (AWGN) from an image

very effectively under low and moderate noise conditions. But, these filters distort and blur

the edges unnecessarily. Lee filter and non-local means (NL Means) filter work well under

very low noise condition. The method noise [88] for these filters is low as compared to other

17

spatial-domain filters. The computational complexity of simple mean filter is low whereas

that of NL-Means filter is very high. Mean, Wiener, Lee and NL-means filters are incapable

of suppressing the Gaussian noise quite efficiently under high noise conditions.

Therefore, efficient spatial-domain filters should be designed with the following ideal

characteristics.

i) Suppressing Gaussian noise very well under low, moderate and high noise

conditions without distorting the edges and intricate details of an image;

ii) Having low method noise; and

iii) Having less computational complexity.

A novel circular spatial filter (CSF) is proposed [P2] for suppressing additive white Gaussian

noise (AWGN). In this method, a circular spatial-domain window, whose weights are derived

from two independent functions: (i) spatial distance and (ii) gray level distance is employed

for filtering.. The filter is proficient of retaining the edges and intricate details of the image.

2.4. 1THE CIRCULAR SPATIAL FILTERING METHOD

In circular spatial filter (CSF), the name circular refers to the shape of the filtering kernel or

window being circular. In this method, the filtering kernel consists of distance kernel and

gray level kernel. The circular shaped kernel is moved invariably throughout the image to

remove the noise. The proposed filter has got some resemblance with Bilateral filter where

the filtering kernel is a combination of domain-filtering kernel and range-filtering kernel. The

weighting function used in gray level kernel of circular spatial filter is similar to the

weighting function used in range-filtering kernel. But the weighting function used in distance

kernel of CSF and domain-filtering kernel of bilateral filter is different. The weighting

function used in domain-filtering kernel is exponential whereas it is a simple nonlinear

function in case of distance kernel of the proposed method.

Let the original image f be corrupted with AWGN . Then the corrupted image g may be

expressed as:

(,) (,) (,)g x y f x y x y …………. (1)

2.4.2 DISTANCE KERNEL

18

In an image, the spatial distance between any arbitrary pixel in a particular window at

location (x1,y1) and the center pixel at location (x,y) is calculated as

Now the distance kernel is defined by

 √ …………………2

…………………………..………3

Where dmax is the maximum radial distance from center. The correlation between pixels

goes on decreasing as the distance increases. Hence, when wd becomes very small the

correlation can be taken as zero. When the small values of distance kernel are replaced by

zero we get a circular shaped filtering kernel. The circular shaped kernel is denoted as wcd .

2.4.3 GREY LEVEL KERNEL

The gray level distance between any arbitrary pixel g(x1,y1) of a particular window at

location (x1,y1) and the center pixel g(x, y) at location (x, y) is calculated as

 √ …………………………4

The gray level distance dg can be used to find the gray level kernel which is defined

 ………………………………………5

where, is the standard deviation of the distribution function wg.

The filtering kernel of CSF can be prepared from and as:

 …………………………………………………..6

The filtering kernel w is slide throughout the image corrupted with noise to get the estimated

output. The estimated pixel can be expressed as:

∑

 ∑

∑
 ∑

 ……………………….7

19

Figure2.4.1 circular spatial filter (7x7) Figure2.4.2square shape filter (7x7)

In the filtering window, the center coefficient is given the highest weight. The weight goes on

decreasing as distance increases from center and it is zero when correlation is insignificant. A

pictorial representation of circular spatial filtering mask is shown in Figure 2.4.1 A more

general filtering mask, i.e. a square mask, is also depicted in Figure 3.1 (b) to illustrate the

difference. It is evident from Figure 3.1 (a) that there are necessarily some zeros in the

circular spatial filter mask whereas it is not so in the case of a general square window shown

in Figure 2.4.2 .

20

 CHAPTER-3

 DESIGNING ON FPGA

21

This chapter explains about FPGA’s and designing on them and why they are preferred over

other hardware devises such as DSP and microcontrollers. The type of language used to in the

design, the packages, libraries, also the special functions designed by us for the project . The

special features used in the design and verification of the algorithm.

3.1 BASICS OF FPGA’s

Field Programmable Gate Arrays (FPGAs) are programmable digital logic chips that have

reconfigurable computing technology which is suited for image processing. Reconfigurable

means which can be programmed with a design and reprogrammed as desired. A computer to

describe a logic function we can draw a schematic, write code file using a HDL(hardware

description language) describing the function then we compile the logic function on a

computer, using a software provided by the FPGA vendor. That generates a binary file that

can be dumped into the FPGA by connecting a cable from your computer to the FPGA, and

dumped the binary file to the FPGA and it behaves according to logic function described.

We can download FPGAs as many time as we need there is no limit as desired.. If there is a

mistake in your design, just fix the logic function, recompile and download it. The designs

run faster because it runs inside the hardware of FPGA, on its silicon die. FPGA loses its

functionality when the power goes away (like RAM in a computer). You have to re-configure

them when power is off back up to restore the functionality.

FPGAs generally consist of a system of configurable logic blocks (usually lookup tables and

flip-flops) and some amount of Random Access Memory (RAM), all connected together

using a vast array of interconnects. The total logic in an FPGA can be reconfigured, with a

different design. This type of architecture allows a variety of logic designs to be designed

22

3.1.1 LOGIC CELLS

The basic unit of FPGA is a "logic-cell", duplicated to thousands time. A logic-cell

constitutes a small lookup table ("LUT"), a D-flipflop and a 2-to-1 mux generally to bypass

the flipflop.

Figure 3.1.1 basic unit of FPGA

The LUT reminds of RAM that can implement any logic function. It has typically shown in

the figure3.1.1.

3.1.2 Interconnect

Each logic-cell can be linked to new logic-cells through interconnect resource wires or

multiplexers placed around the logic-cells. Each cell implements minute part of total design

with all of them connected together, complex design can be created. This is shown in the

figure below

Figure3.1.2 interconnects between logic cells

23

3.1.3 IO-cells

The interconnects reach the boundary of the device where I/O cells are implemented and

connected to the input/output pins of the FPGAs. Generally I/O cell consists a mux and a

filpflop as shown in the figure.

Figure3.1.3 input/output cells

3.1.4 Dedicated routing/carry chains

In addition to interconnect resources, FPGAs have very fast dedicated interconnects between

neighbouring logic cells. The most usual type of these are "carry chains". Carry chains allow

generating arithmetic functions like counters and adders competently low logic usage high

operating speed. This is shown in the figure3.1.4 below

Figure3.1.4 showing carry chains

24

3.1.5 Internal RAM

In addition to the logic cells, all new FPGAs have dedicated blocks of static RAM distributed

and controlled by the logic elements. There are many factors affecting the operation of

RAM. The main factor is the number of logic elements that can access the RAM

simultaneously .single-port RAM have only one agent can read/write the RAM. dual-port and

quad-port RAMs have 2 and 4 logic cells that can read/write. Great to get data across clock

domains each cell can use a different clock).

Figure3.1.5 internal RAM shared by logic cells

25

Figure3.1.6 dual port RAM

To find number of logic cells sharing , count the number of address buses going to the RAM.

Each cell has a dedicated address bus. Each cell has also a read and a write data bus. Writing

into the RAM is done synchronously. Reading is frequently done synchronously but can now

and then be done asynchronously.

3.1.6 Blockram vs. Distributed RAM

There are two sorts of internal RAMs in an FPGA blockrams and distributed RAMs. The size

of the RAM desirable habitually determines which type is used. The big RAM blocks are

blockrams, which are positioned in dedicated areas in the FPGA. Each FPGA has a limited

number of these, and if we don't use them, we lose them that is they cannot be used for other

purposes but RAM. The small RAM blocks are either in smaller blockrams generally in

Altera, or in "distributed RAM" in Xilinx. Distributed RAM permit using the FPGA logic-

cells as minuscule RAMs which afford a very flexible RAM distribution in an FPGA, but

isn't well-organized in term of area as the logic-cell can actually hold little RAM. Altera

prefers building different size blockrams around the device more area efficient, but less

flexible.

26

3.1.7Clocks and Global lines

An FPGA design is generally "synchronous" means the design is clock based for every

clock rising edge the D-flipflops changes to new state.

In a synchronous design single clock drives lot of flipflops simultaneously which cause

timing and electrical problems inside the FPGA. For proper functioning, FPGA

manufacturers provide internal wires called "global routing" or "global lines". They distribute

the clock signal all over the FPGA with a low skew i.e. the clock signal appears almost

simultaneously to all the flipflops. When we feed a clock signal to FPGA, Use a dedicated

input clock pin, shouldn't use any FPGA pin,. Usually, only such pin has the ability to drive a

global line. FPGA software are aware of these dedicated clock input pins, and will

automatically assign clocks .

An FPGA can use multiple clocks which in turn uses multiple global lines and dedicated

input pins. Each clock forms a "clock domain" in the FPGA architecture.

For every clock domain, the FPGA software analyzes all flop-to-flop paths and gives the

report with the maximum allowed frequencies. One clock domain may work at 100MHz,

while another may work at 1000MHz. Given that every single clock uses a global line, and

we use clock speeds that are lower than the extremely testified by the software timing issues,

the design will work internally timing-wise. There may still some timing issues from the

FPGA input and output pins. The software will give you a report about that.

3.2 DESIGN LANGUAGE

For creating a FPGA design, a designer has several options for algorithm implementation.

Where gate-level design can result in optimized designs, the learning curve is considered

prohibitory for most engineers, and the knowledge may not be portable across FPGA

architectures. Here VHDL is used as high-level hardware design languages (HDLs) are

discussed in which FPGA algorithms may be designed.

3.2.1 VHSIC Hardware Design Language

27

In recent years, VHSIC (Very High Speed Integrated Circuit) Hardware Design Language

(VHDL) has become the industry standard for high-level hardware design. Since it is an

IEEE standard, it is supported by a wide variety of design tools and is interchangeable

between different vendors’ tools. It also allows inclusion of technology-specific modules for

most efficient synthesis to FPGAs. The first version of VHDL, IEEE 1076-87, appeared in

1987 and is updated in 1993, appropriately titled IEEE 1076-93. It is a high-level language,

which supports the design, verification, synthesis and testing of hardware designs.

VHDL is used to write text models that describes the logic circuit. That model is synthesized,

if it is part of the logic design. A simulation program is needed to test the logic design using

simulation models to represent the logic circuits design. These simulation models are

commonly called a testbench.

VHDL has constructs to handle the parallelism in hardware designs VHDL is strongly typed

and not case sensitive. In order to represent operations which are common in hardware, there

are several features of VHDL. VHDL allows arrays to be indexed in either ascending or

descending order; both conventions are used in hardware VHDL has capability of handling

text files input and output, but files are only used by a simulation testbench for verification

data. There are some VHDL compilers which can generate executable binaries files . In this

case we have to to write a VHDL testbench to verify the functionality of the design using

files on the host computer to compare results with those desired.

It is easy for an inexperienced developer to produce code that simulates successfully but not

be synthesized into a device, or is large to be practical. One mistake is the accidental

production of latches to D-type flip-flops as storage elements. Finally when a VHDL model

is translated into the "gates and wires" that are mapped onto FPGA, then it is the genuine

hardware being configured, than the VHDL code being executed.

3.2.2 LIBRARIES

In VHDL we can choose the type of libraries to be used which in turn helps to choose the

functions available that can be used in the design. Most of these libraries are of IEEE

standard. In this project the libraries used are IEEE which contain packages which are

described below

28

Std_logic_116: this package specifies the multi level logic system i.e the data types, text input /output

to be used.

Std_numeric: this specifies the signed and unsigned data types and arithmetic’s between these data

types.

Std_textio: this package specifies function and procedures for text file handling

\

3.3 FLOATING POINT ARITHMETIC

IEEE floating point numbers have three basic units: the sign, the exponent, and the mantissa.

The mantissa consists of the fraction and an implicit leading digit The exponent base (2) is

implicit and is not be stored.

The following figure shows the layout for single (32-bit) and doubles (64-bit) precision

floating-point values. The figure of bits for every field are represented in bit ranges are in

square brackets.

Precision Signbit Exponent length Fraction bits Bias value

Single 1 [31] 8 [30-23] 23 [22-00] 127

Double 1 [63] 11 [62-52] 52 [51-00] 1023

 Table 3.3.1 representation of floating point number

The Sign Bit

29

The sign bit denotes sign. 0 correspond to a positive number; 1 correspond to a negative

number. Reversing the value of this bit flips the sign of the number.

The Exponent

The exponent field requires to represent both negative and positive exponents. For this

representation , a bias is summed with the actual exponent. For IEEE single-precision floats,

this value is 127. if exponent is zero 127 is stored in the exponent field. A stored value of 198

indicates an exponent of (198-127), or 75. For reasons discussed later, exponents of -127 (all

0s) and +128 (all 1s) are reserved for unique numbers.

The Mantissa

The mantissa is also called as the significand which represents the number of precision bits in

the number. It is serene of fraction bits and the an implicit leading bit. For finding out the

value of the leading bit, optimization is done, since the lone probable non-zero digit is 1. So ,

we can just mark as leading digit of 1, and don't need to mention it separately. As a result, the

mantissa has 24 bits.

1. The sign bit is , 1 for negative ,0 for positive.

2. The exponent is of base two.

3. The exponent field contains 127 plus the true exponent for single-precision, or 1023

plus the true exponent for double precision.

4. The leading bit of the mantissa is normally supposed as 1.f, where f is the fraction

bits.

Floating-Point Numbers range

For instance consider single-precision floats number. i.e a 32-bit number the fields to cover a

much larger range.. For instance, standard 32-bit integers, with all precision zero, can

precisely pile up with integers of 32-bits wide. Single-precision floating-point, is not capable

to counterpart this resolution with its 24 bits. It doesapproximate this value by effectively

truncating from the LSB. For example:

 11110000111111100 10101010 00001111 // 32-bit integer

 = +1.1110000111111111111111 10101010 x 2
31

 // Single-Precision Float

30

 = 11110000 1101111111110 00000000 // Corresponding Value

This approximates the 32-bit value, which do not produce an exact representation.

alternatively, in addition the capability to represent fractional components (which integers

lack completely), the floating-point value can characterize numbers around 2
127

, associated to

32-bit integers maximum value around 2
32

.

The positive floating point numbers range can be split into normalized number that safeguard

the full precision of the mantissa, and denormalized numbers which use a portion of the

fraction's precision.

Denormalized Normalized
Approximate

Decimal

Single Precision ± 2
-149

 to (1-2
-23

)×2
-126

 ± 2
-126

 to (2-2
-23

)×2
127

 ± ~10
-44.85

 to ~10
38.53

Double

Precision

± 2
-1074

 to (1-2
-52

)×2
-

1022

± 2
-1022

 to (2-2
-

52
)×2

1023

± ~10
-323.3

 to ~10
308.3

Table 3.3.2 range of floating point numbers

Since the sign of floating point numbers is represented by a unique leading bit, the range for

negative numbers found out by the negation of the above values shown.

There are five distinct numerical ranges that single-precision floating-point numbers are able

to represent:

1. Negative numbers less than -(2-2
-23

) × 2
127

 (negative overflow)

2. Negative numbers greater than -2
-149

 (negative underflow)

3. Zero

4. Positive numbers less than 2
-149

 (positive underflow)

5. Positive numbers greater than (2-2
-23

) × 2
127

 (positive overflow)

31

Here's a table of the effective range (excluding infinite values) of IEEE floating-point

numbers:

Binary Decimal

Single ± (2-2
-23

) × 2
127

 ~ ± 10
38.53

Double ± (2-2
-52

) × 2
1023

 ~ ± 10
308.25

 Table 3.3.3 equivalent decimal range

Floating point used in the project

As the image pixel varies from 0 to 255 we have used just 8 bits for fraction and 4 bits for

exponent and 2 bit for sign and is shown in tne table

 sign exponent Fraction Bias

Used in design 1[12] 4[11_8] 7[7_0] 7

3.4 IP CORE

32

 An IP CORE (Intellectual Property) core is a block of HDL code that vendor company

engineers have already written to perform a specific logic function. It is a precise piece of

code designed to do a particular job. IP cores can be used in a intricate design where we need

to save time. IP cores have their advantages and disadvantages. Although they may simplify

the design, we have to design the interfaces to send and receive data from this “black box”.

Also, while an IP core may reduce design time, we have to pay for the right to use the core..

Here in the project the core used is block memory generator and in it simple ROM .Xilinx

provides a Block Memory Generator core to create high-performance memories operating at

frequencies up to 450 MHZ. The Block Memory Generator LogiCORE IP core automates the

generation of area and performance optimized block memories for Xilinx FPGAs. This

facility is provided through the ISE Design Suite CORE Generator System, the core enables

users to create block memory functions to suit the design. The key features are given below

 Generates Single-Port RAM, Simple Dual-Port RAM, True Dual-Port RAM, Single-

Port ROM, or Dual-Port ROM

 Performance up to 450 MHz

 Data widths from 1 to 4096 bits

 Memory depths from 2 to 9M (limited only by memory resources on target device)

 Variable Read-to-Write aspect ratios

 Optimized algorithm for minimum block RAM resource utilization

 Low Power implementation option to reduce power consumption

 Configurable memory initialization values

 Supports individual write enable per byte with or without parity.

 Selectable per-port operating mode: WRITE_FIRST, READ_FIRST or

NO_CHANGE

33

CHAPTER-4

FPGA IMPLEMENTATION OF THE PROPOSED

FILTER

34

The aim of this project is the implementation of the proposed algorithm on target FPGA

hardware. For this we have to compose the algorithms in the VHDL language and

synthesizing the algorithms for the FPGA. It convenient to develop a structural style of

VHDL coding which facilitates reusability and to develop a common hierarchy. This project

has been developed such that it is largely device independent means the code can be

compiled for any FPGA architecture with little difficultly.

As said in earlier chapters the image size used is 512x512 and FPGA used for

implementation of the proposed algorithm is virtex-5.The implementation is done according

to the steps given below

1 Image data acquisition

2 Kernel extraction

3 convolution

 4.1 Image data acquisition

In order to process the image the image pixels either has to be stored in FPGA internal

memory or to be given as input serially according to clock. Here we have stored the image

data in BROM (block ROM). From this block pixels are serially given for processing. For

storing image data in internal memory there are two ways either store individually all pixel in

BROM or we can make a file with extension .Coe in MATLAB, which can be directly

accessed by BROM created by using IP core wizard. Here BROM is used is single port

simple ROM of version 6.3 provided by logicore technologies in Xilinx ISE 13.4.

35

 The BROM specifications used in the project of 8 bit wide and depth of

262144(512x512).since the image pixel value varies from 0 to 255 it is at most 8 bit wide and

there are 262144 values of pixels to stored. For accessing every pixel is provide with a

address .For every rising edge of clock and with a valid address a 8 bit data is obtained as

output. While generating the core the image data file with extension .Coe is loaded by

enabling option load INTI FILE shown while generating. The generated core is shown in the

figure .the core synthesized automatically while it is being generated and is attached with the

project files as a component and port mapping as per our requirement.

Figure 4.1.1 synthesized IP core ROM with name imdata1

36

4.2Kernel extraction

 In the previous section as we said the output will be serially with the clock, now this data has

to be processed to get the kernel for convolution. In image processing, most of the algorithms

belong to a category called windowing operators. Windowing operators use a window to

calculate their output. For example, it performs operations like finding the average of all

pixels median, in the neighbourhood of a pixel. Generally window sizes are selected in odd

number such as 3x3 or 5x5.the window size used in the project is 7x7. The centre pixel

which the window is found is called the origin. Figure below, shows a 7 by 7 pixel window

and the origin.

 Figure 4.2.1 7x7 window operator

 origin

37

This window with some values according to is moved along the image and both mask and

window are convoluted .Actually in MATLAB mask moves all over the image but in the

hardware design the pixels in the window keep changing and the kernel remains constant .for

every clock cycle the data of the window is changed, convoluted with kernel or mask and

centre pixel is replaced with the calculated value.

Now we shall discuss the hardware realization of the moving window. Here window moves

the window not the kernel so we call moving window. In order to implement a moving

window hardware in VHDL, a method was proposed that took advantage of certain features

of FPGAs. FPGAs usually handle flip -flops quite easily, but instantiation of memory on chip

is more complicated.. It was determined that the output of the design should be vectors for

pixels in the window, along with a data -valid signal, which is used to inform an algorithm

using the window generation unit as to when the data is ready for processing. Since it was

necessary to achieve maximum performance in a relatively small area, FIFO units specific to

the target FPGA were used. As we choose window of size 7x7 we need six FIFO’s in

number. The idea of the hardware is shown in the figure and the implemented and

synthesized design is shown in the figure.

As we can see from the figure that as the data comes in for every clock the a pixel is sent

through a series of register and flip flops and the output window is obtained .The size of the

register i.e series of flip flops technically but we represent here as registers is 13 bit instead of

8 bit because the kernel coefficients are of floating point numbers. the size of FIFO used of

13 bits width and depth of 512 .

As we can see that the vectors of window are obtained using the above architecture . After the

pixels are available for processing data valid signal is activated for processing i.e after the

reading the 7
th

 pixel of the 3
rd

 row, so that first the centre pixel will be of 4
th

 pixel of row

4.the rows above and columns before are set to zero in output image since these pixels are not

processed so the border pixels are to be set zeros. The synthesized architecture is shown in

the figure below.

38

Din

 W11 W12 W13 W14 W15 W16 W17

 W27 W26 W25 W24 W23 W22 W21

W31 W32 W33 W34 W35 W36 W37

_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 W77 W76 W75 W74 W73 W72 W71

 Figure4.2.2 Moving window architecture

FIFOA

512X8
R7 R6 R5 R4 R3 R2 R1

FIFOB

512X8
R12 R11

7

R10 R9 R8

R15

R13

R20 R19 R18 R17 R16

FIFOC

512X8

R26 R25 R24 R23 R22 R21

39

 Figure4.2.3 synthesized moving window architecture

40

Now the window obtained has to be processed for this filter to get the kernel the equations

used are given earlier and shown here. Let the original image f be corrupted with AWGN .

Then the corrupted image g may be expressed as:

(,) (,) (,)g x y f x y x y …………. (1)

In an image, the spatial distance between any arbitrary pixel in a particular window at

location (x1,y1) and the center pixel at location (x,y) is calculated as

Now the distance kernel is defined by

 =√ …………………2

 =1-

…………………………..………3

where, dmax is the maximum radial distance from center. The correlation between pixels

goes on decreasing as the distance increases. Hence, when wd becomes very small the

correlation can be taken as zero. When the small values of distance kernel are replaced by

zero we get a circular shaped filtering kernel. The circular shaped kernel is denoted as wcd .

The gray level distance between any arbitrary pixel g(x1,y1) of a particular window at

location (x1,y1) and the center pixel g(x,y) at location (x,y) is calculated as

 = √ …………………………4

The gray level distance dg can be used to find the gray level kernel which is defined

 ………………………………………5

where, is the standard deviation of the distribution function wg.

The filtering kernel of CSF can be prepared from and as:

w = …………………………………………………..6

41

 The distance kernel is calculated prior according to the and stored as constants in a package

.The constants are shown in the figure below and this is distance kernel and denoted by wcd

 0 0.15 0.25 0.29 0.25 0.15 0

0.15 0.3 0.47 0.52 0.47 0.3 0.15

0.25 0.47 0.6 0.76 0.6 0.47 0.25

0.29 0.52 0.76 1 0.76 0.52 0.29

0.25 0.47 0.6 0.76 0.6 0.47 0.25

0.15 0.3 0.47 0.52 0.47 0.3 0.15

 0 0.15 0.25 0.29 0.25 0.15 0

 Figure 4.2.4 distance kernel

As these are floating point numbers for these numbers special packages are written for their

arithmetic and included in the project. In the package functions written are described here

.they are

(1) Std_float13

(2) Float13_std

(3) “+” overloading operator for addition

(4) “*“ overloading operator for multiplication

(5) “-“ overloading operator for subtraction

The function Std_float13 is used to convert 8 bit image pixel to 13 bit floating point as

explained in the chapter 3, this is done when we are reading the data from IP core. The

function Float13_std is used to convert 13 bit float point to std_logic_vector. Finally it is

converted integer while writing text file. and the other functions are for float point arithmetic.

Now the grey kernel is calculate by the window obtained from the moving window

architecture using over loading operators, denoted by wg. Now final kernel is obtained by

multiplying both distance kernel and grey level kernel.

42

Finally the kernel is obtained and has to be convoluted by the window at the same time so

kernel extraction and convolution has to be done in single clock cycle.

4.3 convolution

Convolution is commonly used algorithm in DSP systems. It is from a class of algorithms

called spatial filters. Spatial filters use a wide variety of masks, also known as kernels, to

calculate different results, depending on the function required. For example certain masks

results smoothing,while others results edge detection. The convolution algorithm is shown

here. For each input pixel of the window, the values in that window are multiplied by the

convolution mask. They are summed together and then divided by the total of pixels in the

window. This value is replaced for the origin pixel in the output image for that position.

Mathematically, this is represented using the following equation

..................................7

This is explained by using a 3x3 window in the figure . Here the window pixela are

multiplied and the added and divided by and rounded off and replaces the original pixel.

10 20 30

 30 40 25

32 45 55

4.3.1 Input window 4.3.2 mask

Output pixel=10x2+20+30+30+40+25+32+45+55x2/9=39

The hardware design of the convolution algorithm in VHDL is difficult problem . This is due

to its use of more complex mathematics. The convolution algorithm uses adders, multipliers,

2 1 1

1 1 1

1 1 2

43

and dividers to compute its output. On FPGAs, use of mathematics reduces performance.

Many hardware designers favor techniques that reduce the algorithm’s dependency on

complex mathematics. Since we have wrote some packages supporting floating point

arithmetic it is achievable. the architecture is simple kernel and window are multiplied and

added and replace the original pixel in the output image .the synthesized architecture is

according to the equation sown below

The filtering kernel w is slide throughout the image corrupted with noise to get the estimated

output. The estimated pixel can be expressed as

f’(x,y)=
∑

 ∑

∑
 ∑

 ……………………….8

4.3.1 ROW COLUMN COUNTER

A row column counter must be used to set data valid signal .The output image must be the

exact dimension as the input image. A VHDL counter was written to count pixels as the data

enters into the entity. Since images are two dimensional , two counters were needed one to

count

rows and other to count columns in the image. The VHDL entity that implements this

functionality is called rc_counter. Since it is a separate VHDL entity, this counter was usable

to later algorithms, where this functionality was also needed. This is shown in the synthesized

figure 4.3.3.

44

Figure 4.3.3 synthesized convolution architecture named as lapla

Figure 4.3.4 Synthesized architecture for circular spatial filter

45

 CHAPTER-5

RESULTS

46

In this chapter results of synthesis report, simulation of xilinx ise tool are presented.

The output images obtained from FPGA are presented.

5.1 Synthesis report

 Synthesis report presents the amount and type of the hardware used in the fpga

 5.1.1 Report for simulation code

 Device utilization summary:

 Selected Device : 5vlx110tff1136-3

 Slice Logic Utilization:

 Number of Slice Registers: 1968 out of 69120 2%

 Number of Slice LUTs: 16166 out of 69120 23%

 Number used as Logic: 15523 out of 69120 22%

 Number used as Memory: 643 out of 17920 3%

 Number used as RAM: 624

 Number used as SRL: 19

 Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 17332

 Number with an unused Flip Flop: 15364 out of 17332 88%

 Number with an unused LUT: 1166 out of 17332 6%

 Number of fully used LUT-FF pairs: 802 out of 17332 4%

 Number of unique control sets: 38

 IO Utilization:

 Number of IOs: 24

 Number of bonded IOBs: 24 out of 640 3%

47

 Specific Feature Utilization:

 Number of BUFG/BUFGCTRLs: 1 out of 32 3%

 Number of DSP48Es: 46 out of 64 71%

 Timing summary

 Minimum period: 218.650ns (Maximum Frequency: 4.574MHz)

 Minimum input arrival time before clock: 1.947ns

 Maximum output required time after clock: 2.775ns

 5.1.2 Report for dump code

 Device utilization summary:

 Selected Device : 5vlx110tff1136-3

 Slice Logic Utilization:

 Number of Slice Registers: 1967 out of 69120 2%

 Number of Slice LUTs: 16026 out of 69120 23%

 Number used as Logic: 15399 out of 69120 22%

 Number used as Memory: 627 out of 17920 3%

 Number used as RAM: 608

 Number used as SRL: 19

 Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 17123

 Number with an unused Flip Flop: 15156 out of 17123 88%

 Number with an unused LUT: 1097 out of 17123 6%

 Number of fully used LUT-FF pairs: 870 out of 17123 5%

 Number of unique control sets: 44

48

 IO Utilization:

 Number of IOs: 11

 Number of bonded IOBs: 11 out of 640 1%

 Specific Feature Utilization:

 Number of Block RAM/FIFO: 64 out of 148 43%

 Number using Block RAM only: 64

 Number of BUFG/BUFGCTRLs: 1 out of 32 3%

 Number of DSP48Es: 46 out of 64 71%

 Timing summary

 Minimum period: 220.985ns (Maximum Frequency: 4.525MHz)

 Minimum input arrival time before clock: 1.947ns

 Maximum output required time after clock: 2.775ns

5.2 Design summary

5.2.1 Report for simulation code

Figure 5.2.1 design summary for simulation code

49

 5.2.2 Report for dump code

Figure 5.2.2 design summary for dump code

50

5.3 simulation result in ISE simulator

Figure 5.3.1 simulation in xilinx ise 13.4 simulator

51

 5.4 Lena image

For noisy Lena image corrupted with AWGN of standard deviation =15

Figure 5.4.1 (a) original image (b) noisy image (c) processed image

For noisy Lena image corrupted with AWGN of standard deviation =40

Figure 5.4.2 (a) original image (b) noisy image (c) processed image

52

 5.5 Pepper image

For pepper image corrupted with AWGN of standard deviation =15

Figure 5.4.3 (a) original image (b) noisy image (c) processed image

For pepper image corrupted with AWGN of standard deviation =40

Figure 5.4.4 (a) original image (b) noisy image (c) processed image

53

 CHAPTER-6

 CONCLUSION AND FUTURE WORK

54

6.1Comparative Analysis:

6.1.1 Comparative analysis for PSNR

TABLE 6.1.1 COMPARATIVE ANALYSIS FOR PSNR

TABLE 6.1.2 COMPARATIVE ANALYSIS FOR PSNR

pepper Standard deviation=15 Standard deviation =40

CSF 7X7 FPGA 35.54 31.68

CSF 7X7 MATLAB 31.26 27.92

Lena Standard deviation =15 Standard deviation =40

CSF 7X7 FPGA 32.43 28.71

CSF 7X7 MATLAB 29.62 26.99

55

6.1.2 Timing comparison

TABLE 6.1.2 TIMING COMPARISON

6.2CONCLUSION:

6.3 SCOPE FOR FUTURE WORK:

 FPGA PENTIUM IV

CORE 2DUO

PROCESSOR

(64 BIT OS)

PENTIUM IV

DUO

PROCESSOR

(32BIT OS)

PENTIUM IV

PROCESSOR

(32 BIT OS)

TIME TAKEN

FOR A FRAME

57.9ms 3.52s 7.29s 19.3s

Clock frequency 4.525MHZ 2.4 GHZ 2.8 GHZ 1.7 GHZ

56

References

[1] sukadev meher ,nilmani bhoi Circular “spatial filtering under high-noise-variance

conditions “ elesiver Computers & Graphics 32 (2008) 568–580.

[2] Hussian z”practical appilication of prallelprocssing techniques ellis harword west

sussex uk 1991

[3] Nelson a “further study of image processing on fpga”independent study paper

may2005

[4] Mattahis jung “real time implementation of miscellanious edge detection

algorithm”independent study paper 2010

[5] pedroni “system design using vhdl’

[6] mathwork.com

[7] Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Englewood Cliffs,NJ:

Prentice-Hall; 2002.

[8] Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ:1532–46.

Prentice-Hall; 1989.

[9] Blum RS, Liu Z. Multi-sensor image fusion and its applications. Boca Raton:Taylor &

Francis; 2006.

[10] Liu J, Moulin P. Information-theoretic analysis of interscale and intrascale

dependencies between image wavelet coefficients. IEEE Transactions on Image

Processing 2001;10(11):1647–58.

[11] Kingsbury NG. Image processing with complex wavelets. Philosophical

Transactions of the Royal Society of London Series A 1999;357(1760):2543–60..

[12]www.cosmiac.com

[13] www.fun4fpga.com

[14]www.xilinx.com

[15]www.edaboard.com

[16]www.velocityreviews.com

