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ABSTRACT 

 

In this thesis, a method for forward and inverse kinematics analysis of a 5-DOF and a 7-

DOF Redundant manipulator is proposed. Obtaining the trajectory and computing the 

required joint angles for a higher DOF robot manipulator is one of the important concerns in 

robot kinematics and control. When a robotic system possesses more degree of freedom 

(DOF) than those required to execute a given task is called Redundant Manipulator. The 

difficulties in solving the inverse kinematics (IK) equations of these redundant robot 

manipulator  arises due to the  presence of uncertain, time varying and non-linear nature of 

equations having transcendental functions. In this thesis, the ability of ANFIS (Adaptive 

Neuro-Fuzzy Inference System) is used to the generated data for solving inverse kinematics 

problem. The proposed hybrid neuro-fuzzy system combines the learning capabilities of 

neural networks with fuzzy inference system for nonlinear function approximation. A single-

output Sugeno-type FIS (Fuzzy Inference System) using grid partitioning has been modeled 

in this work. The Denavit-Hartenberg (D-H) representation is used to model robot links and 

solve the transformation matrices of each joint. The forward kinematics and inverse 

kinematics for a 5-DOF and 7-DOF manipulator are analyzed systemically. 

ANFIS have been successfully used for prediction of IKs of 5-DOF and 7-DOF 

Redundant manipulator in this work. After comparing the output, it is concluded that the 

predicting ability of ANFIS is excellent as this approach provides a general frame work for 

combination of NN and fuzzy logic. The Efficiency of ANFIS can be concluded by observing 

the surface plot, residual plot and normal probability plot. This current study in using 

different nonlinear models for the prediction of the IKs of a 5-DOF and 7-DOF Redundant 

manipulator will give a valuable source of information for other modellers. 

 

Keywords: 5-DOF and 7-DOF Redundant Robot Manipulator; Inverse kinematics; ANFIS; 

Denavit-Harbenterg (D-H) notation. 
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Chapter 1 

1. INTRODUCTION  

 

1.1. Introduction to Robotics 

Word robot was coined by a Czech novelist Karel Capek in 1920. The term robot derives 

from the Czech word robota, meaning forced work or compulsory service. A robot is 

reprogrammable, multifunctional manipulator designed to move material, parts, tools, or 

specialized devices through various programmed motions for the performance of a variety of 

tasks [1]. A simpler version it can be define as, an automatic device that performs functions 

normally ascribed to humans or a machine in the form of a human. 

 

1.2. History of Robotics  

The first industrial robot named UNIMATE; it is the first programmable robot designed by 

George Devol in1954, who coined the term Universal Automation. The first UNIMATE was 

installed at a General Motors plant to work with heated die-casting machines. 

 

Figure 1. The first industrial robot: UNIMATE 

In 1978, the Puma (Programmable Universal Machine for Assembly) robot is developed 

by Victor Scheinman at pioneering robot company Unimation with a General Motors design 

support. These robots are widely used in various organisations such as Nokia corporation, 

NASA, Robotics and Welding organization. 

https://en.wikipedia.org/wiki/Victor_Scheinman
https://en.wikipedia.org/wiki/Robot
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Figure 2. Puma Robotic Arm 

Then the robot industries enters a phase of rapid growth to till date, as various type of 

robot are being developed with various new technology, which are being used in various 

industries for various work. Few of these milestones in the history of robotics are given 

below. 

1947 — The first servoed electric powered teleoperator is developed. 

1948 — A teleoperator is developed incorporating force feedback. 

1949 — Research on numerically controlled milling machine is initiated. 

1954 — George Devol designs the first programmable robot. 

1956 — Joseph Engelberger, a Columbia University physics student, buys the rights to 

              Devol’s robot and founds the Unimation Company. 

1961 — The first Unimate robot is installed in a Trenton, New Jersey plant of General 

             Motors to tend an die casting machine. 

1961 — The first robot incorporating force feedback is developed. 

1963 — The first robot vision system is developed. 

1971 — The Stanford Arm is developed at Stanford University. 

1973 — The first robot programming language (WAVE) is developed at Stanford. 

1974 — Cincinnati Milacron introduced the T3 robot with computer control. 

1975 — Unimation Inc. registers its first financial profit. 

1976 — The Remote Center Compliance (RCC) device for part insertion in assembly is 

             developed at Draper Labs in Boston. 

1976 — Robot arms are used on the Viking I and II space probes and land on Mars. 

1978 — Unimation introduces the PUMA robot, based on designs from a General Motors 

             study. 

1979 — The SCARA robot design is introduced in Japan 
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1981—The first direct-drive robot is developed at Carnegie-Mellon University 

1982—Fanuc of Japan and General Motors form GM Fanuc to market robots in North 

           America. 

1983—Adept Technology is founded and successfully markets the direct drive robot. 

1986—The underwater robot, Jason, of the Woods Hole Oceanographic Institute, explores 

           the wreck of the Titanic, found a year earlier by Dr. Robert Barnard. 

1988—Staubli Group purchases Unimation from Westinghouse. 

1988—The IEEE Robotics and Automation Society is formed. 

1993—The experimental robot, ROTEX, of the German Aerospace Agency (DLR) was 

             flown aboard the space shuttle Columbia and performed a variety of tasks under both 

           teleoperated and sensor-based offline programmed modes. 

1996—Honda unveils its Humanoid robot; a project begun in secret in 1986. 

1997—The first robot soccer competition, RoboCup-97, is held in Nagoya, Japan and 

           draws 40 teams from around the world. 

1997—The Sojourner mobile robot travels to Mars aboard NASA’s Mars PathFinder 

           Mission. 

2001—Sony begins to mass produce the first household robot, a robot dog named Aibo. 

2001—The Space Station Remote Manipulation System (SSRMS) is launched in space 

             on board the space shuttle Endeavor to facilitate continued construction of the space 

           station. 

2001—The first tele-surgery is performed when surgeons in New York performed  

            laparoscopic gall bladder removal on a woman in Strasbourg, France.                                                                                

2001—Robots are used to search for victims at the World Trade Centre site after the 

           September 11
th
 tragedy. 

2002—Honda’s Humanoid Robot ASIMO rings the opening bell at the New York Stock 

           Exchange on February 15
th
.  

2003—NASA’s Mars Exploration Rovers will launch toward Mars in search of answers     

           about the history of water on Mars. 

  2004—The humanoid, Robosapien is created by US robotics physicist and BEAM expert,    

Dr. Mark W Tilden. 

2005—The Korean Institute of Science and Technology (KIST), created HUBO, and claims     

  it is the smartest mobile robot in the world. This robot is linked to a computer via a    

            high speed wireless connection; the computer does all of the thinking for the robot. 

2006— Cornell University revealed its "Starfish" robot, a 4-legged robot capable of self 
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 modelling and learning to walk after having been damaged.  

2007—TOMY (Japanese toy co. Ltd.) launched the entertainment robot, i-robot, which is a     

 humanoid bipedal robot that can walk like a human beings and performs kicks and  

 punches and also some entertaining tricks and special actions under "Special Action  

 Mode".     

2010— To present —Robonaut 2, the latest generation of the astronaut helpers, launched to    

 the space station aboard Space Shuttle Discovery on the STS-133 mission. It is the  

 first humanoid robot in space, and although its primary job for now is teaching  

 engineers how dexterous robots behave in space, the hope is that through upgrades  

 and advancements, it could one day venture outside the station to help spacewalkers 

 make repairs or additions to the station or perform scientific work.  

 

1.3. Laws of Robotics 

Asimov [2] proposed three "Laws of Robotics", and later added a 'Zeroth law'. 

Zeroth Law: A robot may not injure humanity, or, through inaction, allow humanity to come 

to harm.  

First Law: A robot may not injure a human being, or, through inaction, allow a human being 

to come to harm, unless this would violate a higher order law. 

 

Second Law: A robot must obey orders given it by human beings, expect where such orders 

would conflict with a higher order law. 

 

Third Law: A robot must protect its own existence as long as such protection does not 

conflict with a higher order law [3]. 

 

1.4. Components and Structure of Robots  

The basic components of an industrial robot are: 

 The manipulator 

 The End-Effector (Which is a part of the manipulator) 

 The Power supply 

 The controller 

Robot Manipulators are composed of links connected by joints into a kinematic chain. 

https://en.wikipedia.org/wiki/TOMY
https://en.wikipedia.org/w/index.php?title=I-sobot&action=edit&redlink=1
https://en.wikipedia.org/wiki/Robonaut_2
https://en.wikipedia.org/wiki/Space_Shuttle_Discovery
https://en.wikipedia.org/wiki/STS-133
https://en.wikipedia.org/wiki/Humanoid_robot
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Joints are typically rotary (revolute) or linear (prismatic). A revolute joint rotates about a 

motion axis and a prismatic joint slide along a motion axis. It can also be define as a 

prismatic joint is a joint, where the pair of links makes a translational displacement along a 

fixed axis. In other words, one link slides on the other along a straight line. Therefore, it is 

also called a sliding joint.  A revolute joint is a joint, where a pair of links rotates about a 

fixed axis. This type of joint is often referred to as a hinge, articulated, or rotational joint. 

 

 

              

Figure 3. Symbolic representation of robot joints. 

The end-effector which is a gripper tool, a special device, or fixture attached to the robot’s 

arm, actually performs the work. 

Power supply provides and regulates the energy that is converted to motion by the robot 

actuator, and it may be electric, pneumatic, or hydraulic. 

The controller initiates, terminates, and coordinates the motion of sequences of a robot. Also 

it accepts the necessary inputs to the robot and provides the outputs to interface with the 

outside world. In other words the controller processes the sensory information and computes 

the control commands for the actuator to carry out specified tasks.  

 

1.5. Redundant Manipulator 

A manipulator is required have a minimum of six degree of freedom if it needs to acquire any 

random position and orientation in its operational space or work space. Assuming one joint is 

Revolute Prismatic 

2 D 

3 D 
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required for each degree of freedom, such a manipulator needs to be composed of minimum 

of six joints. Usually in standard practice three degree of freedom is implemented in the 

robotic arm so it can acquire the desired position in its work space. The arm is then fitted 

with a wrist composed of three joints to acquire the desired orientation. Such a manipulator is 

called non-redundant. Though non-redundant manipulators are kinematically simple to design 

and solve, but the non-redundancy leads to two fundamental problems: singularity and 

inability to avoid obstacles. The singularities of the robot manipulator are present both in the 

arm and the wrist and can occur anywhere inside the workspace of the manipulator. While 

passing through these singularities, the manipulator can effectively lose certain degree of 

freedom, resulting in uncontrollability along those directions [4]. The obstacle avoidance is 

another desirable characteristic to effectively plan the motion trajectories, especially for 

manipulators designed to perform demanding tasks in constricted environment [5]. The above 

two problems can be solved by adding a additional degree of freedom to the manipulator [6] 

These additional degree of freedom can be added to the joints, which effectively become 

singular in certain positions like shoulder, elbow, or wrist and hence help to overcome the 

singularities or obstacles avoidance. So a redundant manipulator should possess at least one 

degree-of-freedom (DOF) more than the number required for the general free positioning. 

The Redundant can also be define as, when a manipulator can reach a specified position with 

more than one configuration of the linkages , the manipulator is said to be redundant. From a 

general point of view, any robotic system in which the way of achieving a given task is not 

unique may be called redundant. 

A redundant manipulator offer several potential advantages over a non-redundant 

manipulator. The extra DOF that require for the free positioning of manipulator can be used 

to move around or between obstacles and thereby to manipulate in situations that otherwise 

would be inaccessible. Due to the redundancy the manipulators become flexible, compliant, 

extremely dextrous and capable of dynamic adaptive, in unstructured environment.  

   

1.6.  Degree of Freedom (DOF) 

The number of joints determines the degrees-of-freedom (DOF) of the manipulator. 

Typically, a manipulator should possess at least six independent DOF: three for positioning 

and three for orientation. With fewer than six DOF the arm cannot reach every point in its 

work environment with arbitrary orientation. Certain applications such as reaching around or 

behind obstacles require more than six DOF. The difficulty of controlling a manipulator 
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increases rapidly with the number of links. A manipulator having more than six links is 

referred to as a kinematically redundant manipulator. 

1.7. Motivations 

The motivation for this thesis is to obtain the inverse kinematic solutions of redundant 

manipulator such as 5-DOF Redundant manipulator and 7-DOF Redundant manipulator. As 

the inverse kinematic equation of these types of manipulators contain non-linear equations, 

time varying equations and transcendental functions. Due to the complexity in solving this 

type of equation by geometric, iterative or algebraic method is very difficult and time 

consuming. It is very important to solve the inverse kinematics solution for this type of 

redundant manipulator to know the exact operational space and to avoid the obstacles. So 

various researcher had applied various methods for solving the kinematic equation. L. 

Sciavicco et al. [7] used inverse jacobian, pseudo inverse jacobian or jacobian transpose and 

solve the IK problem of 7-DOF redundant manipulator iteratively. But the main drawback of 

this method are, these are slow and suffer from singularity issue. Shimizu et al. [8] proposed 

an IK solution for the PA 10-7C 7-DOF manipulator and considered arm angle as redundancy 

parameter. In his study, a detailed analysis of the variation of the joint angle with the arm 

angle parameter is considered, which is then utilizes for redundancy resolution. However link 

offset were not considered in his work. Some authors also applied ANN, due to its adapting 

and learning nature. Although ANN are very efficient in adopting and learning but they have 

the negative attribute of ‘black box’. To overcome this drawback, various author adopted 

neuro fuzzy method like ANFIS (Adaptive Neuro-fuzzy Inference system). This can be 

justify as ANFIS combines the advantage of ANN and fuzzy logic technique without having 

any of their disadvantage [9]. The neuro fuzzy system are must widely studied hybrid system 

now a days, as due to the advantages of two very important modelling technique i.e. NN [10] 

and Fuzzy logic [11]. So the goal of this thesis is to predict the inverse kinematics solution 

for the redundant manipulator using ANFIS. As a result suitable posture and the trajectories 

for the manipulator can be planned for execution of different work in various fields. 

 

1.8. Objectives of the Thesis   

 The objective of this thesis is to solve the inverse kinematics equations of the redundant 

manipulator. The inverse kinematics equations of this type of manipulator are highly 

unpredictable as this equation are highly non-linear and contains transcendental function. The 

complexity in solving this equation increases due to increase in higher DOF. So various 

authors had used neuro-fuzzy method (ANFIS) to solve the non-linear and complex equations 
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arise in different field. ANFIS was adopted by different researcher in their work, for 

mathematical modelling of the data, as it have high range of potential for solving the complex 

and nonlinear equations arise in different field like in marketing, manufacturing industries, 

civil engineering etc. Li ke et al. [12] applied ANFIS to solve the forecast problem of 

microwave effect by adopting microwave parameters and its threshold as variable. Then they 

develop an ANFIS model to study its forecasting ability. By comparing the output of ANFIS 

with training and testing data, they concluded with good forecasting ability, small error and 

low data requirement are found with ANFIS. Srinivasan et al. [13] applied ANFIS based on 

PD plus I controller to the dynamic model of 6-DOF robot manipulator (PUMA Robot). 

Numerical simulation using the dynamic model of 6-DOF robot arm shows the effectiveness 

of the approach in trajectory tracking problems. After the successfully implementation of 

ANFIS in various field for solving the non-linear equations, it is concluded that ANFIS is a 

best technique can be used for solving the non-linear equation arises in the inverse kinematic 

equation in robotics.  

The main objectives of this thesis can be summarized as: 

– The difficulties in solving the Inverse kinematics (IK) of the redundant manipulator 

increases, as the IK equations posses an infinite number of solution due to the presence 

of uncertain, time varying and non-linear nature of these equations having 

transcendental functions. So in this thesis ANFIS is adopted for estimating the IK 

solution of a 7-DOF Redundant manipulator.  

– The Denavit-Harbenterg (D-H) representation is used to model robot links and solve 

the transformation matrices of each joint.  

– The solution of the IK of redundant manipulator predicted by the ANFIS model is 

compared with the analytical value. It is found that the predicting ability of ANFIS is 

excellent. As it is a combination of neural network (NN) and neuro-fuzzy (NF) 

technique. 

–  The data predicted with ANFIS for 5-DOF and 7-DOF Redundant manipulator, in 

this work clearly depicts that the proposed method results in an acceptable error.  Hence 

ANFIS can be utilized to provide fast and acceptable solutions of the inverse 

kinematics, thereby making ANFIS as an alternate approach to map the inverse 

kinematic solutions.  

1.9. Research methods 

The theoretical discussion and results, or the method adopted in this thesis regarding the 

prediction of inverse kinematics solution of the redundant manipulator have been kept 
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general without reference to any particular manipulator. The purpose is to keep the findings 

useful for other developments and continue the research and discussion process on a wider 

scale. In the latter part of the thesis, the ANFIS methodology used for the prediction of IK 

solution of the redundant manipulator is carried out and the predicted values are verified with 

the analytical values. The D-H notation is used to model the robot link and solve the 

transformation matrices of each joint. Then multiplying each transformation matrices gives 

the global transformation matrix of the manipulator. The global transformation matrix 

consists of the position and orientations of the joint, and gives the forward kinematics 

equations. Then, using this forward kinematics equation with the joint limits, the position of 

the end-effector are been calculated. The position of the end-effector is taken as the inputs to 

trained in ANFIS to calculate the joint angles as output, this leads to the IK. The forward and 

inverse kinematics of the redundant manipulator is briefly described in the latter chapter. The 

data are trained in ANFIS many times such as to get a appropriate mathematical model. After 

the training of the data, the predicted values are compared with the analytical value. The 

residual of the analytical and predicted values are found out and the mean square error, 

normal probability plot and the regression plots are also carried out. It is concluded that the 

mean square error and the residual are accepted, thereby making ANFIS as an alternative 

technique for solving the non-linear equation of redundant manipulator. 

 

1.10. Structure of the Thesis 

The thesis is divided into 7 chapters covering the literature review, forward and inverse 

kinematics, ANFIS architecture, result and discussion, summary and conclusion followed by 

references. A brief description of each chapter is provided in the following paragraph. 

Chapter 2 provides the literature review relevant to the research work. An effort has been 

made to comprehensively cover the work of different researchers in the field robotics for 

study of inverse kinematic. Various methods used by different authors for solving the IK is 

covered in this part. 

In chapter 3 the theoretical back ground for forward and inverse kinematic is described. The 

chapter starts with a description of basic principle and assumption used for D-H notation and 

leads to the formulation and mathematical representation of forward and inverse kinematics 

of the 5-DOF and 7-DOF redundant manipulator. 

The description of the ANFIS methodology used in this work is the subject of chapter 4. It 

covers the steps to carry out the ANFIS technology such as loading, training and testing of 
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the data. It describe about the membership functions, number of membership functions, and 

total number of rules are used with the ANFIS structure diagram. 

 The result and discussions are carried out in chapter 5. It comprises of 3D surface viewer 

plots of all joint angles with input parameters for 5-DOF and 7-DOF redundant manipulator. 

The residual plots, normal probability plots and the regression plots are given in this chapter. 

The summary and conclusion of the research work are presented in chapter 6. The chapter 

also contains brief discussion about the topic which may which may require further study and 

investigation. 

The thesis is concluded in chapter 7 with references. 

  

******* 
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Chapter-2 

2. LITERETURE REVIEW  

 Obtaining the inverse kinematics solution has been one of the main concerns in robot 

kinematics research. The complexity of the solutions increases with higher DOF due to robot 

geometry, non-linear equations (i.e. trigonometric equations occurring when transforming 

between Cartesian and joint spaces) and singularity problems. Obtaining the inverse 

kinematics solution requires the solution of nonlinear equations having transcendental 

functions. In spite of the difficulties and time consuming in solving the inverse kinematics of 

a complex robot, researchers used traditional methods like algebraic [14], geometric [15], and 

iterative [16] procedures. But these methods have their own drawbacks as algebraic methods 

do not guarantee closed form solutions. In case of geometric methods, closed form solutions 

for the first three joints of the manipulator must exist geometrically. The iterative methods 

converge to only a single solution depending on the starting point and will not work near 

singularities [17]. In other words, for complex manipulators, these methods are time 

consuming and produce highly complex mathematical formulation, which cannot be 

modelled concisely for a robot to work in the real world. Calderon et al. [18] proposed a 

hybrid approach to inverse kinematics and control and a resolve motion rate control method 

are experimented to evaluate their performances in terms of accuracy and time response in 

trajectory tracking. Xu et al. [19] proposed an analytical solution for a 5-DOF manipulator to 

follow a given trajectory while keeping the orientation of one axis in the end-effector frame 

by considering the singular position problem. Gan et al. [20] derived a complete analytical 

inverse kinematics (IK) model, which is able to control the P2Arm to any given position and 

orientation, in its reachable space, so that the P2Arm gripper mounted on a mobile robot can 

be controlled to move to any reachable position in an unknown environment. Utilization of 

artificial neural networks (ANN) and fuzzy logic for solving the inverse kinematics equation 

of various robotic arms is also considered by researchers. Hasan and Assadi [21] adopted an 

application of ANN to the solution of the IK problem for serial robot manipulators. In his 

study, two networks were trained and compared to examine the effect of the Jacobian matrix 

to the efficiency of the inverse kinematics solution.  

 A Kinematically redundant manipulator is a robotic arm posses extra degree of freedom 

(DOF) than those required to establish an arbitrary position and orientation of the end-

effector. A redundant manipulator offer several potential advantages over a non-redundant 
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manipulator. The extra DOF that require for the free positioning of manipulator can be used 

to move around or between obstacles and thereby to manipulate in situations that otherwise 

would be inaccessible [22],[23],[24]. Due to the redundancy the manipulators become 

flexible, compliant, extremely dextrous and capable of dynamic adaptive, in unstructured 

environment [25]. . The redundancy of the robot increases with increasing in DOF and there 

exist many IK solutions for a given end-effector configuration for this type of robot. So 

various researcher have proposed many methods to solve the IK equation of redundant 

manipulator. L. Sciavicco et.al. [26] used inverse jacobian, pseudo inverse jacobian or 

jacobian transpose and solve the IK problem of 7-DOF redundant manipulator iteratively. But 

the main drawback of this method are, these are slow and suffer from singularity issue. 

Shimizu et.al. [27] proposed an IK solution for the PA 10-7C 7-DOF manipulator and 

considered arm angle as redundancy parameter. In his study, a detailed analysis of the 

variation of the joint angle with the arm angle parameter is considered, which is then utilizes 

for redundancy resolution. However link offset were not considered in his work. An 

analytical solution for IK of a redundant 7-DOF manipulator with link offset was carried out 

by G.K Singh and J. Claassens [28]. They have considered a 7-DOF Barrett whole arm 

manipulator with link offset and concluded that the possibility of in-elbow and out-elbow 

poses of a given end-effector pose arise due to the presence of link offset. They also 

presented a geometric method for computing the joint variable for any geometric pose. Dahm 

and Jublin [29] used angle parameter as redundancy and derived a closed-form inverse 

solution of 7-DOF manipulator. They also analysed the limitation of the parameter caused by 

a joint limit based on a geometric construction. The analysis has its own drawback as priority 

is being given to one of the wrist joint limit. Based on the closed-form inverse solution and 

using angle parameters by Dahm and Joublin in his work, Moradi and Lee [30] minimised 

elbow movement by developing a redundancy resolution method. 

Due to the presence of non-linearity, complexity, and transcendal function as well as 

singularity issue in solving the IK, various researchers used different methods like iteration, 

geometrical, closed-form inverse solution, redundancy resolution as discussed in above 

theory. But some researchers also adopted methods like algorithms, neural network, neuro 

fuzzy in recent year for solving the non-linear equation arises in different area such as in civil 

engineering for constitutive modelling [31], for structural analysis and design [32], for 

structural dynamics and control [33], for non-destructive testing methods of material [34] and 

many disciplines including business, engineering, medicine, and science [35]. Liegeois [36] 
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first introduced a gradient projection algorithm to utilise the redundancy to avoid mechanical 

joint limit. In his work, he obtained a homogeneous solution by considering the pseudo 

inverse method and projected it on to the null space of jacobian matrix but selection of 

appropriate scalar coefficient that determine the magnitude of self motion and oscillation in 

the joint trajectory are the main drawback of this algorithm. One of the main drawbacks to 

utilize redundant manipulators in an industrial environment is joint drift. The well known 

Closed-loop inverse kinematics (CLIK) algorithm was proposed by Siciliano [37], to 

overcome the joint drift for open-chain robot manipulators, by including the feedback for the 

end-effector’s position and orientation. Wampler [38] proposed a least square method to 

generate the feasible output around singularities, by utilising a generalised inverse matrix of 

jacobian, known as singularity robust pseudoinverse.  

Due to the adapting and learning nature, ANN is an efficient method to solve non-linear 

problems. So it has a wide range of application in manufacturing industry, precisely for 

Electro discharge machining (EDM) process. Various authors had adopted ANN with 

different training algorithms namely Levenberg-Marquardt algorithm, scaled conjugate 

gradient algorithm, Orient descent algorithm, Gaussi Netwon algorithm and with different 

activation finction like logistic sigmoid, tangent sigmoid, pure lin to model the EDM process. 

Mandel et.al. [39] used ANN with back propagation as learning algorithm to model EDM 

process. They concluded that by considering different input parameters such as roughness, 

material removal rate (MRR), and Tool wear rate (TWR) are found to be efficient for 

predicting the response parameters. Panda and Bhoi [40], predicted MRR of D2 grads steel 

by developing a artificial feed forward NN model based on Levenberg-Marquardt back 

propagation technique and logistic sigmoid activation function. The model performs faster 

and provides more accurate result for predicting MRR. Goa et.al. [41] considered different 

algorithm like L-M algorithm, resilient algorithm, Gausi-Newton algorithm to established 

different model for machining process. After several training of models and comparing the 

generalisation performance they conclude that L-M algorithm provides faster and more 

accurate result. Despite of the NN approach by different authors as discussed above, some 

authors have also adopted neuro fuzzy (NF) method for solving non-linear and complex 

equation. Although ANN are very efficient in adopting and learning but they have the 

negative attribute of ‘black box’. To overcome this drawback, various author adopted neuro 

fuzzy method like ANFIS. This can be justify as ANFIS combines the advantage of ANN and 

fuzzy logic technique without having any of their disadvantage [42]. The neuro fuzzy system 
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are must widely studied hybrid system now a days, as due to the advantages of two very 

important modelling technique i.e. NN [43] and Fuzzy logic [44]. Malki et.al. [45] adopted 

adaptive neuro fuzzy relationships to model the UH-60A Black Hawk pilot floor vertical 

vibration. They have considered 200 data of UH-60A helicopter flight envelop for training 

and testing purpose. They conducted the study in two parts i.e. the first part involves level 

flight conditions and the second part involves the entire (200 points) database including 

maneuver condition. They concluded from their study that neuro fuzzy model can 

successfully predict the pilot vibration. LI ke et.al. [46] applied ANFIS to solve the forecast 

problem of microwave effect by adopting microwave parameters and its threshold as 

variable. Then they develop an ANFIS model to study its forecasting ability. By comparing 

the output of ANFIS with training and testing data, they concluded with good forecasting 

ability, small error and low data requirement are found with ANFIS. Srinivasan et.al. [47] 

applied ANFIS based on PD plus I controller to the dynamic model of 6-DOF robot 

manipulator (PUMA Robot). Numerical simulation using the dynamic model of 6-DOF robot 

arm shows the effectiveness of the approach in trajectory tracking problems. Comparative 

evaluation with respect to PID, fuzzy PD+I controls are presented to validate the controller 

design. They concluded that a satisfactory tracking precision could be achieved using ANFIS 

based PD+I controller combination than fuzzy PD+I only or conventional PID only. 

Roohollah Noori et.al [48], predicted daily carbon monoxide (CO) concentration in the 

atmosphere of Tehran by means of ANN and ANFIS models. In this study they used Forward 

selection (FS) and Gamma test (GT) methods, for selecting input variables for developing 

hybrid models with ANN and ANFIS. They concluded that Input selection improves 

prediction capability of both ANN and ANFIS models and it not only reduces the output error 

but reduces the time of calculation due to less input variable. U. Yüzgeç et.al., [49], 

investigates different modelling approaches and compares for drying of baker’s yeast in a 

fluidized bed dryer based on ANN and ANFIS. In this work they investigates four modelling 

concepts: modelling based on the mass and energy balance, modelling based on diffusion 

mechanism in the granule, modelling based on recurrent ANN and modelling based on 

ANFIS, to predict the dry matter of product, product temperature and product quality. 

 Most of the researchers have studied only a limited numbers of nonlinear model using 

ANFIS and ANN, as discussed above in the above theory. Despite the widespread application 

of these nonlinear mathematical models in various field such as in civil engineering, 

manufacturing industry, marketing field, business field, some authors have carried out a 

comparison study using different nonlinear models of NN and NF, which gives a valuable 
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information for modellers. Mahmut Bilgehan [50], carried out the buckling analysis of 

slender prismatic columns with a single non-propagating open edge crack subjected to axial 

loads, using ANFIS and ANN model. The main feature of his work is to study the feasibility 

of using ANFIS and NN for predicting the critical buckling load of fixed-free, pinned-pinned, 

fixed-pinned and fixed-fixed supported, axially loaded compression rods. After the 

comparative study made using NN and NF technique, he concluded that the proposed ANFIS 

architecture with Gaussian membership function is found to perform better than the 

multilayer feed forward ANN learning by back propagation algorithm. Mahmut Bilgehan 

[51], again considered the same model of NN and NF as used for analysis of slender 

prismatic columns, and had successfully applied it for the evaluation of relationships between 

concrete compressive strength and ultrasonic pulse velocity (UPV) values using experiment 

data obtained from many cores taken from different reinforced concrete structure having 

different ages and unknown ratio of concrete mixture. He carried out a comparative study of 

NN and NF technique on the basis of statistical measure to evaluate the performance of the 

model used. Then by comparing the result, he found that the proposed ANFIS architecture 

performed better than the multilayer feed-forward ANN model.  

 In the present study, ANFIS is implemented to analyze the kinematics equation of PArm 

5-DOF robot manipulator having 6-DOF end-effector and 7-DOF redundant manipulator. 

Jang [52] reported that the ANFIS can be employed to model nonlinear functions, identify 

nonlinear components on-line in a control system, and predict a chaotic time series. It is a 

hybrid neuro-fuzzy technique that brings learning capabilities of neural networks to fuzzy 

inference systems. The learning algorithm tunes the membership functions of a Mamdani or 

Sugeno-type Fuzzy Inference System using the training input-output data. According to Jang 

[53], ANFIS is divided into two steps. For the first step of consequent parameters training, 

the least square (LS) method is used and the output of ANFIS is a linear combination of the 

consequent parameters. After the consequent parameters have been adjusted, the premise 

parameters are updated by gradient descent principle in the second step. It is concluded that 

ANFIS use the hybrid learning algorithm that combines least square method with gradient 

descent method to adjust the parameter of membership function. The detail coverage of 

ANFIS can be found in (Jang, [52]; Jang, [53]; Sadjadian et al., [54]). Due to its high 

interpretability and computational efficiency and built-in optimal and adaptive techniques, 

ANFIS is widely used in pattern recognition, robotics, nonlinear regression, nonlinear system 

identification and adaptive system processing and also it can be used to predict the inverse 
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kinematics solution. It is to be noted that ANFIS is suitable for solving complex, nonlinear 

mathematical equation for control of higher DOF robot manipulators.  

 

***** 
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 Chapter 3 

3. FORWARD KINEMATICS AND INVERSE KINEMATICS 

In this section of the thesis the forward kinematics and the inverse kinematics of the 5-

DOF and 7-DOF redundant manipulator is discussed. The Denavit-Hartenberg (D-H) 

notation for these two manipulators is discussed with steps used for deriving the forward 

kinematics is presented. Then this chapter is concluded with the solution of inverse 

kinematics for the 5-DOF redundant manipulator is given.  

 The forward kinematics is concerned with the relationship between the individual joints 

of the robot manipulator and the position (x,y, and z) and orientation ( ) of the end-effector. 

Stated more formally, the forward kinematics is to determine the position and orientation 

of the end-effector, given the values for the joint variables ( iiii ,d,a,  ) of the robot. The 

joint variables are the angles between the links in the case of revolute or rotational joints, and 

the link extension in the case of prismatic or sliding joints. The forward kinematics is to be 

contrasted with the inverse kinematics, which will be studied in the next section of this 

chapter, and which is concerned with determining values for the joint variables that achieve a 

desired position and orientation for the end-effector of the robot. The above mention theory is 

explained diagrammatically in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Forward and Inverse kinematics scheme 
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3.1. Denavit-Hartenberg Notation (D-H notation) 

A Robot manipulator with n joints (from 1 to n) will have 1n   links (from 0 to n, 

starting from base), since each joint connect to two links. By this convention, joint i connect 

link 1i  to link i. It is considered that the location of the joint i to be fixed with respect to link 

.1i Each link of the robot manipulator is considered to be rigidly attached to a coordinate 

frame for performing the kinematics analysis. In particular, link i is attached to iiii zyxo . It 

implies that whenever the robot executes motion, the coordinate of each point on the link i 

are constant when expressed in the thi  coordinate frame. Furthermore when joint i actuate, 

link i and its attached frame iiii zyxo , experience a resulting motion. The frame 0000 zyxo  is a 

inertial frame as it attached to the robot base. 

Now suppose, 
iA is the homogeneous transformation matrix that express the position and 

orientation of iiii zyxo with respect to 1i1i1i1i zyxo  , where matrix 
iA  is not constant but 

varies as the configuration of the robot changes. Again the homogeneous transformation 

matrix that expresses the position and orientation of jjjj zyxo with respect to iiii zyxo is called, 

by convention, a global transformation matrix [55] and denoted by i
jT .  

Where, i
jT = j1j2i1i AA...AA   if ji   

       
i
jT = I  if  ji   

       
i
jT =   1j

iT


if ij   

 As the links are rigidly attached to the corresponding frame, it concludes that the position 

of any point on the end-effector, when expressed in the frame n, is a constant independent of 

the configuration of the robot. Hence the transformation matrix gives the position and 

orientation of the end-effector with respect to the inertial frame. So D-H notation of the joint 

is introduced with some convention to solve this matrix. The convention and steps for D-H 

notation is represented as follows [56].  

The following steps based on D-H notation are used for deriving the forward kinematics, 

Step 1: Joint axes 1n0 z,...,z  are located and labelled. 

Step 2: Base frame is assigned. Set the origin anywhere on the .axisz0   The 0x and 0y  axes        

are chosen conveniently to form a right-hand frame. 
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Step 3: The origin io  is located, where the common normal to iz
 and 1iz   intersects at iz . If 

iz  intersects 1iz  , ia located at this intersection. If iz  and 1iz  are parallel, locate io in 

any convenient position along iz .  

Step 4: ix
 is considered along the common normal between 1iz  and iz  through io , or in  

thedirection normal to the i1i zz   plane if 1iz  and iz  intersect.  

Step 5: iy is established to complete a right-hand frame. 

Step 6: The end-effector frame is assigned as nnnn zyxo . Assuming the 
thn joint is revolute, 

set azn  along the direction 1nz  . The origin on is taken conveniently along nz  

direction, preferably at the centre of the gripper or at the tip of any tool that the 

manipulator may be carrying. 

Step 7: All the link parameters iiii ,d,a,   are tabulated. 

 

 

Figure 5.  D-H parameters of a link i.e. iiii ,d,a,   

Step 8: The homogeneous transformation matrices iA  is determined by substituting the 

above parameters as shown in equation (1). 

Step 9: Then the global transformation matrix End
0T  is formed, as shown in equation (2). 

This then gives the position and orientation of the tool frame expressed in base coordinates.  

 In this convention, each homogeneous transformation matrix iA is represented as a 

product of four basic transformations:  

),x(Rot)a,x(Trans)d,z(Trans),z(RotA iiiii 
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iiiiiii
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


















 Where

 

four quantities iiii ,d,a,   are parameter associate with link i and joint i. The 

four parameters iiii ,d,a,  in the above equation are generally given name as joint angle,  

link length, link offset, and link twist.   

3.2. The forward kinematics of a 5-DOF and 7-DOF Redundant manipulator. 

3.2.1. Coordinate frame of a 5-DOF Redundant manipulator. 

 

Figure 6.   A Pioneer Arm Redundant manipulator 

 

Figure 7. Coordinate frame for the 5-DOF Redundant manipulator 
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Table 1. Angle of rotation of joints 

Types of Joint Range of Rotation 

Rotating base/ shoulder (
1 ) 00 1800   

Rotating elbow (
2 ) 00 1500   

Pivoting elbow (
3 ) 

00 1500   

Rotating wrist (
4 ) 00 850   

Pivoting wrist (
5 ) 

00 4515   

  

3.2.2. Forward kinematics calculation of the 5-DOF Redundant manipulator. 

Robot control actions are executed in the joint coordinates while robot motions are 

specified in the Cartesian coordinates. Conversion of the position and orientation of a robot 

manipulator end-effecter from Cartesian space to joint space is called as inverse kinematics 

problem, which is of fundamental importance in calculating desired joint angles for robot 

manipulator design and control. The Denavit-Hartenberg (DH) notation and methodology 

[56] is used to derive the kinematics of the 5-DOF Redundant manipulator. The coordinates 

frame assignment and the DH parameters are depicted in Figure 2 and listed in Table 2 

respectively where )z,y,x( 444 represents the local coordinate frames at the five joints 

respectively, )z,y,x( 555  represents rotation coordinate frame at the end-effector where θi 

represents rotation about the Z-axis and transition on about the X- axis, id transition along the 

Z-axis, and ia  transition along the X-axis. 

Table 2. The D-H parameters of the 5-DOF Redundant manipulator. 

Frame 
i (degree) 

id (mm) ia (mm) i  (degree) 

O0 - O1 
1  130d1    

1a  = 70 -90 

O1 – O2 
2  0 

2a  = 160 0 

O2 – O3 
390   0 0 -90 

O3 – O4 
4  140d4    0 90 

O4 – O5 
5  0 0 -90 

O5 – O6 0 120d6    0 0 
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The transformation matrix Ai between two neighbouring frames 1io  and io is expressed 

in equation (1) as, 

),x(Rot)a,x(Trans)d,z(Trans),z(RotA iiiii   

 

 

























1000

d)cos(α)sin(α0

)sin(θa)sin(αθcos))cos(αcos(θ)sin(θ

)cos(θa))sin(αsin(θ)cos(α)sin(θθcos

iii

iiiiiii

iiiiiii

        (1) 

By substituting the D-H parameters in Table 1 into equation (1), it can be obtained the 

individual transformation matrices 1A  to 6 A  and the general transformation matrix from the 

first joint to the last joint of the 5-DOF Redundant  manipulator can be derived by 

multiplying all the individual transformation matrices (
0
T6). 





















1000

paon

paon

paon

AAAAAAT
zzzz

yyyy

xxxx

6543216
0

  

                                                                                     (2) 

where )p,p,p( zyx  are the positions and  )a,a,a(),o,o,o(),n,n,n( zyxzyxzyx  are the 

orientations of the end-effector. The orientation and position of the end-effector can be 

calculated in terms of joint angles and the D-H parameters of the manipulator are shown in 

following matrix as: 




























































1000

dsa

sdcsdsccd
cssccscssccc

sacsacsd

ccsdsscdscssd

ccs

sscscss
ccss1sscs

cscccss

caccaccd

cccdsssdscscd

ccc

sssscsc
cssscscc

cssccsc

122

234523654236
52354234235235423

112122314

523165416542316

5231

54154231

414235231

54154231

112122314

523165416542316

5231

54154231

4142315231

5414231 5

                 (3) 

where )( sins and )( cosc ),( sins ),( cosc 32233223iiii   

By equalizing the matrices in equations (2) and (3), the following equations are derived 

112122314523165416542316x caccaccdcccdsssdscscdp                        (4)  
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112122314523165416542316y sacsacsdccsdsscdscssdp          (5) 

1222345234523654236z dsasdcsdcsdsccdp                            (6)  

523154154231x scccssccscn                     (7)  

523154154231y scscscccssn               (8)  

5235423z sscccn                (9)  

414231x csssco                          (10)                                                                                                                                                      

414231y ccssso                           (11)  

423z sco                (12)  

523154154231x ccccssscsca             (13)  

523154154231y ccssscscssa             (14) 

5235423z csscca                  (15)  

From equation (4) to (15), the position and orientation of the 5-DOF Redundant manipulator 

end-effector can be calculated if all the joint angles are given. This is the solution to the 

forward kinematics. 

3.2.3. Work space for the 5-DOF Redundant manipulator. 

Considering all the D-H parameters, the x, y and z coordinates are calculated for 5-DOF 

Redundant manipulator End-effector using forward kinematics equation shown in equations 

4-15. For solving the forward kinematics equations, the angles of rotation of the joints are 

taken as tabulated in Table 1. Figure 4 shows the workspace for 5-DOF Redundant 

manipulator. 
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Figure 8.  Work space for 5-DOF Redundant manipulator 

3.2.4. Coordinate frame of a 7-DOF Redundant manipulator. 

 

Figure 9.   Coordinate frame for a 7-DOF Redundant manipulator 

3.2.5. Forward kinematics calculation of the 7-DOF Redundant manipulator.  

The D-H parameter for the 7-DOF Redundant manipulator is tabulated in Table 2. 

Table 3. The D-H parameters of the 7-DOF Redundant manipulator 

frame Link i
(degree) id (cm) ia (cm) i  (degree) 

10 oo   1 270  to2701    30d1    0 0 
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 By substituting the D-H parameters in Table 2 into equation (1), the individual 

transformation matrices A1 to AEnd can be obtained and the global transformation matrix 

)T( End
0 from the first joint to the last joint of the 7-DOF Redundant manipulator  can be 

derived by multiplying all the individual transformation matrices. So, 

(16)                                                            

1000

paon

paon

paon

AAAAAAAAT
zzzz

yyyy

xxxx

End7654321End
0





















 

Where zyx p,p,p
 

are the positions and  )a,a,a( and ),o,o,o(),n,n,n( zyxzyxzyx  are the 

orientations of the end-effector. The orientation and position of the end-effector can be 

calculated in terms of joint angles and the D-H parameters of the manipulator are shown in 

following equations:  

           

                                                                                cssccccsssccs        

ccssscscsccsscsssccccsscccn

2121421214376

21213576572121421214357567x





  

(17)

 

           

                                                                         sscccsccssccs        

sccsscscscssccssccsccsscccn

2121421214376

21213576572121421214357567y





     

(18)

 

                                      scssccssssccssccsccscsccn 543753743673367356754367z 
             

(19)
 

         

                                                                                                          ccsssss        

csscssscccccscssccccssscco

2121356

2121421214356212142121436x





    

(20)

 

21 oo   2 110  to1102    0 0 -90 

32 oo   3 180  to1803    35d3   0 90 

43 oo   4 110  to1104    0 0 -90 

54 oo   5 180  to1805    31d5   0 90 

65 oo   6 
      

90  to906    0 0 -90 

76 oo   7 270  to2707    0 0 90 

Endo7   End _ 42d7   0 0 
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         

                                                                                                           sccssss        

ssccssccscccssscccsccsscco

2121356

2121421214356212142121436y





      

(21)

 

                                                                                                   ccs  scs  ccsso 6436355436z 
            

(22)
 

           

                                                                               cssccccssscss       

ccssscccsscsscsssccccscccsa

2121421214376

21213576572121421214357567x





     

(23)

 

           

                                                                           sscccsccsscss       

sccssccscsssccssccsccscccsa

2121421214367

21213575672121421214357567y




(24)

 

                                                                 ccc sscc ssss cscs ccscs  a 75353473467356754367z 
                

(25)
 

             

                             csscdcssccccssscdssd        

ccssscccssdcsscsssccccscccsdp

21213212142121435677

2121357657721214212143575677x





     

(26)

 

             

                                                                sscccsccsscdssd       

sccsscccssdssccssccscccsccsdp

212142121435677

2121357657721214212143755677y





  

(27)

 

                dssdcccdccssdssssdccssdcccssdp 13453577473573467736577456377z 
               

(28) 

From equation (17)-(28), are the position and orientation of the 7-DOF Redundant 

manipulator end-effector and the exact value of these equations can be calculated if all the 

joint angles are given. This is the solution to the forward kinematics.  

3.2.6. Work space for the 7-DOF Redundant manipulator. 

 Considering all the D-H parameters, the x, y and z coordinates (i.e. End-effector 

coordinates) are calculated for 7-DOF Redundant manipulator using forward kinematics 

equation as shown in equations 17-28. For solving the forward kinematics equations, the 

angles of rotation of the joints are taken as tabulated in Table 2. Figure 6 shows the 

workspace for this manipulator. 
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Figure 10. Work space for 7-DOF Redundant manipulator 

3.3. Inverse kinematics of 5-DOF Redundant manipulator. 

The forward kinematics equations (4)-(15) are highly nonlinear and discontinuous. It is 

obvious that the inverse kinematics solution is very difficult to derive. This paper uses 

various tricky strategies to solve the inverse kinematics of the 5-DOF robot manipulator. 

From equations (4) and (13), the following equation is derived: 

)acacd(cadp 1222341x6x 
                               (29) 

Similarly by manipulating in similar way from equations (5) and (14), the following equation 

is derived as: 

)acacd(sadp 1222341y6y 
                                             (30) 

It can be noted that the values of  2  and 3   in 5-DOF Redundant manipulator only 

takes integral values in a limited range. By checking all possible joint angles 2   and 3  

that 0)acacd( 122234   holds good, which means that x6x adp   and y6y adp   will not 

equals to zero at same time. Now considering the two possible situations,    

                       If 0)acacd( 122234  , the solution for 1 is,  

                             )adp,adp2tana x6xy6y1                   (31) 

    Otherwise,       )pad,pad2tana xx6yy61                   (32) 
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In solving the inverse kinematics solution of a higher DOF robot, 
1tana   function cannot 

show the effect of the individual sign for numerator and denominator but represent the angle 

in first or fourth quadrant. To overcome this problem and determine the joint in the correct 

quadrant, atan2 function is introduced in equations (31) and (32).   

Now for deriving solutions for 2  and
3 , equations (29) and (30) can be represented as 

follows: 

11x6x22234 ac/)adp(cacd                                        (33)  

11y6y22234 as/)adp(cacd                 (34)                        

From equations (6) and (15), the following equation can be derived, 

                                    122234z6z dsasdadp                  (35) 

Now considering equations (33) and (35),  

                   let            11x6x ac/)adp(r                   (36)  

                   and       122234z dsasdr                     (37) 

 

Now squaring the equations (36) and (37) followed by addition, equation (38) can be derived 

as follows:  

                        
2
z

2
223223242

2
4 rra)sscc(da2d                                                             (38) 

Solving the terms 232232 sscc   in equation (38), we get 

                   ) ( cos)( cos)  ( cos  cos)sscc( 3333232232   

Therefore, there are several possible solutions for 3 , which are as follows: 

                    












 


42

2
4

2
2

2
z

2

3
da2

darr
acos  ±=                                                   (39) 

                or                   
























 


42

2
z

22
4

2
2

3
da2

rrda
cosa                                      (40) 

Where the positive sign on the right hand side of the equation denotes for the elbow-out 

and the negative sign represents elbow-in configuration. The two solutions for the elbow-out 

and elbow-in of the 5-DOF Redundant manipulator are shown in the Figure 10.  
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Figure 11. Elbow –in and Elbow-out configuration 

Now consider the possible solutions for
2 .  

For the sake of convenience, equation (35) can be rewritten as equation (41): 

221234 saBsd                                                   (41) 

                                Where     11zz6 Bdpad   

Considering the equations (33) and (34), equation (42) is derived as: 

            2
y6y

2
x6x 22 234 )pda()pda( =ca +cd                                                      (42) 

            Let 2
y6y

2
x6x 2 )pda()pda(=B  ,     so equation (42) can be rewritten as                                    

222234 caBcd 
                                                            (43)  

Rearranging equations (41) and (43) and solving for
21 B,B . Equations (44) and (45) are 

derived as: 

                             23422341 c )s(d + s )a + c(d = B
                 (44) 

                   23422342 s )s(d - c )a + c(d = B
                      (45) 

Dividing both sides of (44) and (45), by 2
2

2
1 BB  , equations (46) and (47) are derived as,  

2
2

2
1

1
2 2

BB 

B
   =  cos * sin  +sin  *  cos


                                       (46) 

                                    
2
2

2
1

2
2 2

BB 

B
   =  cos * sin  -sin  *  cos


                                      (47) 

                       where      
2
2

2
1

234

BB

)acd(
 = cos




     and      

2
2

2
1

34

BB

)sd(
 = sin 


  

The equations (46) and (47) are rewritten as: 

                                                
2
2

2
1

1
2

BB 

B
  = ) + sin(


                                                        (48) 
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                                        And 
2
2

2
1

2
2

BB 

B
= ) + cos(


                                                       (49) 

     Therefore,   m2)B,B(2tana 212
  and   

2
2

2
1

234

BB

)acd(
acos  ±= 




 , 

where m = -1, 0 or +1. It is clear that   could be in  ,0 or 0, . The range of   

depends on the range of 3 . Therefore, if  30 , then 0s3  and 0)sin(  , thus 0

. Then, 2 can be derived as:  

                                                                    2m +
BB

)acd(
cosa - )B ,atan2(B = 

2
2

2
1

234
212 




      (50) 

Otherwise if 03  , then 0s3   and 0)sin(  , thus 0 . Then the next possible 

solution for 
2 is as:  

                                                                 2m +
BB

)acd(
cosa + )B ,atan2(B = 

2
2

2
1

234
212 




        (51) 

Now that 321    and,, 
 
are known, the solutions for 4  and 5  can be found by using the 

remaining forward kinematics equations. 

Considering the equation (12), the value of
23

z
4

c

o
=  s  , when 0c23                                   (52) 

Similarly, from the equations (10) and (11), the possible solution for  4c  is derived as: 

                                              
1

23z231x
4

s

)c/osco(
c


                                                            (53)  

and again                               
1

23z231y
4

c

)c/osso(
c


                                                         (54) 

using equation (53) and (54) for small value of 1c , the solution for 4  is 

                                     







 


1

23z231z

23

z
4

s

)c/osco(
,

c

o
2tana                                             (55)  

Otherwise for small 1s ,    







 


1

23z231y

23

z
4

c

)c/osso(
,

c

o
2tana                                      (56) 

Now for solution of 5 ,considering equation (9), the value of  
423

523z
5

cc

ssn
c


                     (57) 

Similarly the value of 5s  is derived by using equation (15) i.e.,  
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423

523z
5

cc

csa
s


                                             (58)      

using equation (41) in (40) and vice versa, the term 5c and 5s  is rewritten as: 

                                     2
23

2
4

2
23

z23423z
5

scc

asccn
c




   and  2

23
2
4

2
23

z23423z
5

scc

)nscca(
s




   

now using this above derivation of 5c  and 5s , 5  is derived as follows:  

                                 z23423zz23423z5 asccn,nscca2tana                                         (59) 

The above derivations with various conditions being taken into account provide a 

complete analytical solution to inverse kinematics of 5-DOF Redundant manipulator. It is to 

be noted that there exist two possible solutions for 4321 ,,,  depicted in (31) or (32), (50) 

or (51), (39) or (40), (55) or (56) respectively. So to know which solution holds good to study 

the inverse kinematics, all joint angles are obtained and compared using the forward 

kinematics solution. This process is being applied for .,,, 4321  To choose the correct 

solution, all the four sets of possible solutions (joint angles) calculated, which generate four 

possible corresponding positions and orientations using the forward kinematics. By 

comparing the errors between these four generated positions and orientations and the given 

position and orientation, one set of joint angles, which produces the minimum error, is chosen 

as the correct solution. The solutions (32), (50), (39), and (56) holds correct for obtaining the 

values of 4321 ,,,   respectively. 
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            Chapter 4 

4.  ANFIS Architecture 

 

ANFIS stands for adaptive neuro-fuzzy inference system developed by Roger Jang [57]. It 

is a feed forward adaptive neural network which implies a fuzzy inference system through its 

structure and neurons. He reported that the ANFIS architecture can be employed to model 

nonlinear functions, identify nonlinear components on-line in a control system, and predict a 

chaotic time series. It is a hybrid neuro-fuzzy technique that brings learning capabilities of 

neural networks to fuzzy inference systems. It is a part of the fuzzy logic toolbox in 

MATLAB R2008a software of Math Work Inc [58]. The fuzzy inference system (FIS) is a 

popular computing frame work based on the concepts of fuzzy set theory, fuzzy if-then rule, 

and fuzzy reasoning. It has found successful application in a wide variety of fields, such as 

automatic control, data classification, decision analysis, expert system, time series prediction, 

robotics, and pattern recognition. The basic structure of a FIS consists of 3 conceptual 

components: a rule base, which contains a selection of fuzzy rules: a database, which define 

the membership function used in fuzzy rules; a reasoning mechanism, which performs the 

inference procedure upon the rules and given facts to derive a reasonable output or 

conclusion. The basic FIS can take either fuzzy input or crisp inputs, but outputs it produces 

are almost always fuzzy sets. Sometime it is necessary to have a crisp output, especially in a 

situation where a FIS is used as a controller. Therefore, method of defuzzification is needed 

to extract a crisp value that best represent a fuzzy set. 

For solving the IK of 5-DOF and 7-DOF redundant manipulator used in this work Sugeno 

fuzzy inference system is used, to obtain the fuzzy model,. The Sugeno FIS was proposed by 

Takagi, Sugeno, and Kang [59, 60] in an effort to develop a systematic approach to generate 

fuzzy rules from a given input and output data set. The typical fuzzy rule in a Sugeno fuzzy 

model for three inputs used in this work for both the manipulator has the form: 

If x is A, y is B and z is C, then )z,y,x(fz  ,  

where A, B, C are fuzzy sets in the antecedent, while )z,y,x(fz   is a crisp function in 

the consequent. Usually,
 

)z,y,x(f  is a polynomial in the input variables x, y, and z but it can 

be any function as long as it can appropriately describe the output of the model with the fuzzy 

region specified by antecedent of the rule. When )z,y,x(f  is a first order polynomial, the 

resulting FIS is called first order Sugeno fuzzy model. When the fuzzy rule is generated, 

fuzzy reasoning procedure for the fuzzy model is followed as shown in Figure 3. Since each 
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rule has a crisp output, the overall output is obtained via weighted average, thus avoiding the 

time consuming process of defuzzification required in Mamdani model [61]. In practice, the 

weighted average operator is sometime replaced with weighted sum operator (that is, 

332211 zzzz  in the Figure 3) to reduce computation further, especially in the training 

of FIS.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The Sugeno fuzzy model for three input 

 

From the above theory, it can be conclude that the antecedent of a fuzzy rule define a local 

fuzzy region while the consequent describe the behaviour within the region via various 

constituent. The consequent constitute of a first order Sugeno model is a linear equation. 

Different consequent constitute results in different FIS, but their antecedent are always same. 

Therefore, the method of portioning is followed, which is applicable to all three types of FIS 

like Sugeno, Mamdani, Tsukamoto [62]. The Grid partition method is often chosen in 

designing a fuzzy controller, which usually involves only several state variables as input to 

the controller. This partition strategy needs only a small number of membership functions for 

each input. However, it encounters problems when a large number of inputs are taken into 

consideration, leading to curse of dimensionality. Then the training of FIS is occurred, with 

some optimisation method like gradient descent and least square method. So, in this 

optimisation method, to explain the iteration and relationship between input and output of a 

system, a mathematical model is determined by observing its input and output data pairs, is 
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generally refer to as system identification. The system identification includes the following 

steps [63]. 

 Specify and parameterize a class of mathematical model representing the system to 

be identified. 

 Perform parameter identification to choose the parameters that best fit the training 

data. 

 Conduct validation tests to see if the model identified responds correctly to an 

unseen data set. 

 Terminate the procedure once the results of the validation tests are satisfactory. 

Otherwise, another class of model is selected and steps 2 through step 4 are 

repeated.  

From the above discussions, it is concluded that ANFIS is a fuzzy rule-based model using 

neural network like structure (i.e. involving nodes and links). It consists of five layers 

implementing fuzzy inference systems as schematically shown in Figure 12. The square 

nodes are adaptive nodes and the circle nodes are fixed ones. Figure 12 shows a simple 

ANFIS model that has been used in this work with three inputs (x, y, and z), seven 

membership functions for each input, and 343 rules for three inputs. The first layer of ANFIS 

determines the degree to a fuzzy condition involving the given input by using membership 

functions (Ai and Bi). The second layer evaluates the truth value (matching degree) of the 

premise of each rule in the rule base. The third layer normalizes these truth values. The fourth 

layer computes the consequent of each rule. Finally, the fifth layer computes the aggregate 

output of all the rules. 

The above mentioned layers for a first order Sugeno model can be describe in detail as 

follow. Here the Gaussian membership function is used for 7-DOF Redundant manipulator. 

Layer 1: (Input layer) 

In this layer, each node is equal to a fuzzy set and output of a node in the respective fuzzy set 

is equal to the input variable membership grade. The parameters of each node determine the 

membership function (Gaussian membership function for this present work) form in the fuzzy 

set of that node. 
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where x, y, z are the input to node and
iii C,B,A  are the linguistic label associated with this 

node. The i,1o indicate the i
th

 node output in the layer 1. For the neuro-fuzzy model used in 

this work, the membership function for A, B, C is taken as Gaussian which is an appropriate 

parameterized membership function. 
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In which x is the input value of the node and ‘c’ determines the Gaussian membership 

function centre and ‘σ’ determines the Gaussian membership function width.  

Layer 2: (Product layer) 

The output of each node represents the weighting factor of rule or product of all incoming 

signals. In which 
Ai is the membership grade of x in 

iA fuzzy set and 
Bi is the membership 

grade of y in fuzzy set 
iB and Ci is the membership grade of of z in fuzzy set 

iC .Here AND 

(Π) operator is used to product the input membership values. 

        )z()y()x(o
iii CBAii,2     where i -1,2,...,7 

Layer 3: (Normalization layer) 

Every node (circle) in this layer is a fixed node labelled as N. This layer is also called 

normalised layer. It calculates the ration of weight factor of the rule with total weight factor. 

Here i  is refer to as the normalised firing strength.  

1,2,...,7  i       where,  
...

o
721

i
ii,3 




  

Layer 4:  

The output of every node is calculated by multiplying the normalised one with the consequent 

parameters ( iii  r, q, p ) of the linear function. 

Where,   iiiii szryqxpf    
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Again the output of the layer is, 

)szryqxp(fo iiiiiii,4 

 

Layer 5: 

The single node here is a fixed node, labelled as , which compute the overall output as the 

summation of all incoming signal. It can be expressed as follow: 










i i

i ii

i iii5,

)f(
fo output    overall  

Thus, from the above theory an adaptive network is constructed, which is functionally 

equivalent to Sugeno fuzzy model. Note that the structure of this adaptive network is not 

unique as by combining layer 3 and layer 4, an equivalent network can obtain with only four 

layers. 
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Figure 13.   Architecture of three inputs with seven membership functions of the ANFIS model 

 

4.1  ANFIS Architecture used for 5-DOF Redundant manipulator. 

The coordinates and the angles obtained from forward kinematics solutions are used as 

training data to train ANFIS network with the triangular membership function with a hybrid 

learning algorithm. For solving the inverse kinematics equation of 5-DOF Redundant 

manipulator, in this work, considers the ANFIS structure with first order Sugeno model 

containing 343 rules. For the neuro-fuzzy model used in this work, 1024 data points 

analytically obtained using forward kinematics, of which 776 are used for training and the 

remaining 248 are used for testing (or validating). 
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Training of ANFIS is usually performed by using ANFIS editor GUI of MATLAB [64]. 

The ANFIS Editor GUI window displays the four main sub displays. These are 1. Load data, 

2. Generate FIS, 3. Train FIS and 4. Test FIS. Once the FIS is generated, the model structure 

can be viewed as shown in Figure 13. 

 

Figure 14. ANFIS model structure used for 5-DOF Redundant manipulator 

The branches in Figure 13 are color coded. Color coding of branches characterize the rules 

and indicate whether and, or, not are used in the rules. The input is represented by the left-

most node and the output by the right-most node. The node represents a normalization factor 

for the rules. Clicking on the nodes indicates information about the structure. To start the 

training, GENFIS1 function is used. GENFIS1 uses the grid partitioning and it generates 

rules by enumerating all possible combinations of membership functions of all inputs; this 

leads to an exponential explosion even when the number of inputs is moderately large. For 

instance, for a fuzzy inference system with 3 inputs, each with seven membership functions, 

the grid partitioning leads to 343 (=7^3) rules.  GENFIS1 use a given training data set to 

generate an initial fuzzy inference system (represented by a FIS matrix) that can be fine-tuned 

via the ANFIS command. GENFIS1 produces a grid partitioning of the input space and a 

fuzzy inference system where each rule has zero coefficients in its output equation. 

 



M.Tech. Project Report 2012 
 

Mechanical Engineering Department, N.I.T Rourkela Page 43 
 

4.2  ANFIS Architecture used for 7-DOF Redundant manipulator. 

For solving the inverse kinematics equation of 7-DOF Redundant manipulator, in this 

work, the grid partitioning option in the ANFIS toolbox is used. For each input, 7 

membership function (Gaussian membership) are used along with 343(=7^3) fuzzy rules are 

applied for all three inputs.  For the neuro-fuzzy model used, 2187 data points are analytically 

obtained from MATLAB, of which 1640 are used for training and the remaining 547 are used 

for testing (validating). The model structure for the 7-DOF Redundant manipulator used in 

ANFIS can be viewed as similar to the structure obtained for 5-DOF Redundant manipulator 

as discussed in the previous section. For obtaining the model for 7-DOF Redundant 

manipulator the Gaussian membership function with seven number of membership for each 

input is used as shown in following figure 14. The model structure obtained for 7-DOF 

manipulator. The Anfis information used for solving the 7-DOF Redundant manipulator for 

this work is tabulated in Table. 4. 

Table 4. ANFIS information used for solving 7-DOF Redundant manipulator 

3 inputs  : Cartesian coordinates: x, y, and z 

1 output : joint coordinate (θ) 

7 member functions each input node : Sugeno types  

Number of nodes : 734 

Number of linear parameters : 1372 

Number of nonlinear parameters : 42 

Total number of parameters : 1414 

Number of training data pairs : 1638 

Number of checking data pairs : 2187 

Number of fuzzy rules  : 343 
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Figure 15.  ANFIS model structure used for 5-DOF Redundant manipulator 
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 Chapter 5 

5.  RESULT AND DISCUSSION 

 In this section of the thesis the surface plots, the residual plots and the normal probability 

plots for the 5-DOF and 7-DOF redundant manipulator is carried out. The surface plots 

obtained for this type of manipulators explains the efficiency of the ANFIS methodology. 

The residual plots obtained by comparing the predicted data from the ANFIS and the 

analytical data show that, the data predicted using ANFIS methodology deviate very less 

from the analytical data. The last section of this chapter is concluded with obtaining the 

normal probability plots. The details of the plots are explains in the following section. 

    

5.1 3-D Surface viewer Analysis 

 In this section the 3-D surface plots, obtained  for the 5-DOF and 7-DOF Redundant 

manipulator is discussed. The surface plot dispaly both the connecting lines and faces of the 

surface in color. The surf command in MATLAB tool is use to create the 3-D surface plots of 

the matrix data. The surface plot explains the relation between the output and two inputs. 

5.1.1   3-D Surface plots obtained for all joint angles of 5-DOF Redundant manipulator   

Figures 15-19 show surface plot of five ANFIS networks relating inputs with joint angles 

of 5-DOF Redundant manipulator.  Figure 15 indicates the surface plot between Cartesian 

coordinates y and z for 1 . It shows that when the values of y and z moving in a positive 

direction, there is a marginal increase followed by a decrease in 1  values. The inputs-output 

surface plot of 2 is shown in Figure 16. The Figure depicts that the value of 2  increases 

linearly when moving in the positive direction of y coordinate to some values of y and then 

there is a sudden increase of 2 values. No significant change in the value of 2  is observed 

with change in values of z coordinate. By moving from negative direction to the positive 

direction of x and y coordinates, the 3 value decreases first then followed by slightly 

increase, can be easily conclude from figure 17. Similarly the surface plot of 5 with input 

variables x and z coordinate is depicted in figure 19. It shows that the value of inputs has 

significant effect in determining the value of 5 . It concludes from the surface plot that the 

contribution of interdependent parameters toward obtaining the output can easily provide 

through the ANFIS algorithm and can be hardly obtained otherwise without employing 
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massive computations. All the surface viewer plots show that the total surface is covered by 

the rule base. 

 

Figure 16. Surface plot for 1  

 

Figure 17.  Surface plot for 2  

 

Figure 18.  Surface plot for 3  
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Figure 19.  Surface plot for 4  

 

Figure 20.  Surface plot for 5   

5.1.2   3-D Surface plots obtained for all joint angles of 7-DOF Redundant manipulator   

The following Figure 19-25 shows the three dimensional surface plot of ANFIS network 

relating to the joint angle of 7-DOF Redundant manipulator. Figure 19 indicates the surface 

plot between Cartesian coordinates y and z for 1 . When the value of z decreases, there is a 

sudden increase in 1  value followed by decrease at the middle range of z value and there is 

no significant change in 1 value for y coordinate. The inputs-output surface plot of 2  is 

shown in Figure 20. The Figure depicts that the value of 2 decrease first followed by 

increase, for the increase in the value of z. No significant change in the value of 2 is 

observed with change in values of y coordinate. When y changes from positive value to 

negative value, there is a marginal increase in the value of 3 as well as there is no 

significant change with the value of z, as clearly noticed from Figure 21. With the increase in 

y value, at its middle range, the value of 5 decrease first then increase, where as there is no 
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significant change for values of z, as depicted in Figure 23. Similarly, the 3 dimensional 

surface viewer for 4 , 6 , 7 can be explain.All the surface plots obtained from ANFIS, 

are continuous, smooth and the total surface is covered by the rule base.  

 

Figure 21. Surface plot for 1  

 

Figure 22. Surface plot for 2   
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Figure 23. Surface plot for 3  

 

Figure 24. Surface plot for 4   

 

 

Figure 25. Surface plot for 5  
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Figure 26. Surface plot for 6  

 

Figure 27. Surface plot for 7  

5.2  Residual Plot Analysis 

Residuals are the difference between the predicted output from the model (ANFIS) and the 

actual values of joint angles. The residual plot is a graph that shows the residuals in the 

vertical axis and the independent variables in the horizontal axis. If the points in the residual 

plot are randomly dispersed around the horizontal axis, the prediction model is considered to 

be appropriate for the data i.e. there is no drift in the data. In this section the residual plots are 

obtained for training and testing data of all joint angles of 5-DOF Redundant manipulator. It 

depicts the distribution of resiauals of all joint angles are in the positive and negetive axis of 

the plot. The residual plots for 5-DOF and 7-DOF are shown in following section.  
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5.2.1 The Residual plot of Training data for all joint angle of 5-DOF Redundant  

manipulator. 

The residual plots of training data for 54321  and ,,,  of 5-DOF Redundant robot 

manipulator are depicted in Figures 27-31 respectively. The residual plot shows a fairly 

random pattern as some of the residuals are in positive and some are lies in the negative side 

of the horizontal axis. Figure 27 shows a random pattern indicating a good fit for training 

data of 1 . As a very large number of residuals lie close to the horizontal axis shown in 

Figure 28, it indicates a reasonably good fit for 2 . The Figures 29-30 indicates a decent fit 

to the model of 3 and 4 as most of the residuals lie between -0.01 to 0.01. The Figure 31 

explains the residual plot for training data of 5 . It indicates a few of the residuals of 5  
lies 

beyond the range  -0.1 to 0.1 and does not alter the prediction model of the data. The average 

absolute error (actual minus and predicted values) for the training data are found to be 

0.0700, 0.0011, 0.0330, 0.0850, and 0.0240 for the joint coordinates 54321  and ,,,   

respectively. Similarly, the average absolute error of the testing data for the joint coordinates 

54321  and ,,,  are found to be 0.06, 0.03, 0.09,0.10, and 0.11 respectively. 

 

Figure 28. Residual plot of training data for 1   
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Figure 29. Residual plot of training data for 2   

 

Figure 30. Residual plot of training data for 3  

 

Figure 31. Residual plot of training data for 4  
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Figure 32. Residual plot of training data for 5    

5.2.2 The Residual plot of Testing data for all joint angle of 5-DOF Redundant  

manipulator. 

 The residual plots of testing data for 54321  and ,,,  of 5-DOF Redundant robot 

manipulator are studied. The residual plot shows a fairly random pattern as some of the 

residuals are in positive axis and some are lies in the negative axis of the of the graph. Figure 

32 shows a random pattern indicating a good fit for training data of 1 . As a very large 

number of residuals lie close to the horizontal axis shown in Figure 33, it indicates a 

reasonably good fit for 2 . The residuals for 3  lie between -0.2 to 0.2 and distributed over 

both sides of the mean line. It indicates that the prediction model is well suited for the study 

Figure 34. The Figures 35-36 indicates a decent fit to the model of 4  and 5   as most of the 

residuals lie between -0.03 to 0.03. 

 

Figure 33. Residual plot of testing data for 1  
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Figure 34. Residual plot of testing data for 2  

 

 

Figure 35. Residual plot of testing data for 3  

 

Figure 36. Residual plot of testing data for 4  
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Figure 37. Residual plot of testing data for 5  

5.2.3 The Residual plot of Training data for all joint angle of 7-DOF Redundant 

manipulator. 

Similarly the residual plots of training data for 7654321  and ,,,,,,   of 7-DOF 

redundant robot manipulator are studied. The residual plot shows a fairly random pattern as 

some of the residuals are in positive and some are lies in the negative side of the horizontal 

axis. Figure 37 shows a random pattern indicating a good fit for training data of 1 . As a very 

large number of residuals lie close to the horizontal axis shown in Figure 38, it indicates a 

reasonably good fit for 2 . The Figures 39-40 indicates a decent fit to the model of 3  and

4   as most of the residuals lie between -0.01 to 0.01. The Figure 41 explains the residual 

plot for training data of 5 . It indicates a few of the residuals of 5 lies beyond the range -0.1 

to 0.1 and does not alter the prediction model of the data. The residual plots of training data 

for 6  ,
 7  are depicted in Figure 42 and Figure 43. 

 

Figure 38. Residual plot of training data for 1  
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Figure 39. Residual plot of training data for 2  

 

Figure 40. Residual plot of training data for 3  

 

Figure 41. Residual plot of training data for 4  
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Figure 42. Residual plot of training data for 5  

 

Figure 43. Residual plot of training data for 6  

 

Figure 44. Residual plot of training data for 7  

5.2.4  The Residual plot of Testing data for all joint angle of 7-DOF Redundant   

          manipulator.  

The residual plots of testing data for 7654321  and ,,,,,,  of 7-DOF redundant 

robot manipulator are studied.The residual plot shows a fairly random pattern as some of the 
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residuals are in positive axis and some are lies in the negative axis of the of the graph. Figure 

32 shows a random pattern indicating a good fit for training data of 1 . As a very large 

number of residuals lie close to the horizontal axis shown in Figure 33, it indicates a 

reasonably good fit for 2 . The residuals for 3 lie between -0.2 to 0.2 and distributed over 

both sides of the mean line. It indicates that the prediction model is well suited for the study 

Figure 34. The Figures 35-36 indicates a decent fit to the model of 4 and 5 as most of the 

residuals lie between -0.03 to 0.03. The residual plot of 6  and 7  
 
are presented in Figure 49 

and Figure 50. 

 

Figure 45. Residual plot of testing data for 1  

 

 

Figure 46. Residual plot of testing data for 2  
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Figure 47. Residual plot of testing data for 3  

 

 

 

Figure 48. Residual plot of testing data for 4  

 

Figure 49. Residual plot of testing data for 5  
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Figure 50. Residual plot of testing data for 6  

 

 

Figure 51. Residual plot of testing data for 7  

5.3  Normal Probability Plot Analysis 

The normal probability plot [65] is a graphical technique for assessing whether or not a 

data set is approximately normally distributed, if it is nearly straight, the data satisfy the 

nearly normal condition. The data are plotted against a theoretical normal distribution in such 

a way that the points should form an approximate straight line. Departures from this straight 

line indicate departures from normality. It provides a good assessment of the adequacy of the 

normal model for a set of data. It can also be define as, in the normal probability plot, the 

normal distribution is represented by a straight line angled at 45 degrees. The actual 

distribution is plotted against this line so that any differences are shown as deviations from 

the straight line, making identification of differences quite apparent and interpretable.  In this 

section, the normal probability plot of residuals of training and testing data of  all joint angles 

for the 5-DOF and 7-DOF Redundant manipulator is depicted in the following Figures. The 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
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Anderson-Darling test (AD Test) is also carried out to compare the fit of an observed 

cumulative distribution function to an expected cumulative distribution function. Smaller the 

AD value, greater is the evidence that the data fit to the normal distribution. The following 

figures suggest that all the data are normally distributed. Similarly, the normal probability 

analysis is made for all training and testing data of all joint angles and signifies that the data 

are normally distributed. 

5.3.1  Normal probability plot analysis of Training data for all joint angle of 5-DOF  

Redundant manipulator  

 

Figure 52. Normal probability plot for residuals (Training data of 1 ) 

 

 

Figure 53. Normal probability plot for residuals (Training data of  2 ) 
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Figure 54. Normal probability plot for residuals (Training data of  3 ) 

 

 

Figure 55. Normal probability plot for residuals (Training data of  4 ) 

 

Figure 56. Normal probability plot for residuals (Training data of  5 ) 
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5.3.2 Normal probability plot analysis of Testing data for all joint angle of 5-DOF  

Redundant manipulator 

 

Figure 57. Normal probability plot for residuals (Testing data of 1 )   

 

Figure 58. Normal probability plot for residuals (Testing data of 2 )   

 

Figure 59. Normal probability plot for residuals (Testing data of 3 )   
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Figure 60. Normal probability plot for residuals (Testing data of 4 )   

 

Figure 61. Normal probability plot for residuals (Testing data of 5 )   

5.3.3 Normal probability plot analysis of Training data for all joint angle of 7-DOF  

Redundant manipulator 

The normal probability analysis of training and testing data for 3 , 5  ,and 7 of 7-DOF 

Redundanr manipulator is carried out in the following section similar to the 5-DOF 

Redundant manipulator. The data are plotted against a theoretical normal distribution in such 

a way that the points should form an approximate straight line. Departures from this straight 

line indicate departures from normality. It provides a good assessment of the adequacy of the 

normal model for a set of data. The Anderson-Darling test (AD Test) is also carried out 

similar to the 5-DOF Redundant manipulator, to compare the fit of an observed cumulative 

distribution function to an expected cumulative distribution function.  
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Figure 62. Normal probability plot for residuals (Training data of  3 ) 

 

Figure 63. Normal probability plot for residuals (Training data of  5 ) 

 

Figure 64. Normal probability plot for residuals (Training data of  7 ) 
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5.3.4 Normal probability plot analysis of Testing data for all joint angle of 7-DOF  

Redundant manipulator 

 

Figure 65. Normal probability plot for residuals (Testing data of 3 )   

 

Figure 66. Normal probability plot for residuals (Testing data of 5 )   

 

Figure 67. Normal probability plot for residuals (Testing data of 7 )   
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5.4 Application of Artificial Neural Network (ANN) 

In this work, an artificial neural network (ANN) model has also been adopted for 

estimating the IK solution of a 7-DOF redundant manipulator. A comparative study of both 

the techniques i.e ANFIS and ANN has been carried out. In this work, for the construction of 

model, 3-30-7 feed forward ANN, input layer consisting of 3 nodes, single hidden layer 

containing 20 nodes with tangent sigmoid activation function, and the output layer containing 

7 nodes with linear activation function is used. The architecture of the neural network used in 

the analysis is shown in the Figure 68.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 68. Schematic representation of Neural network used 

 In this analysis, MATLAB R2008a (Math Works, USA) software with its NN tool box is 

used for creating, training and testing the neural network. Here, 1638 data are taken as 

training and rest 549 data are taken as testing. The transfer function between input layer and 

hidden layer, hidden layer and output layer use tangent sigmoid function tansig() and linear 

function purelin() differently. Then, the learning rate (lr) is set to 0.07, MAX training steps 

epoch to 2000, show to 1000 and the Mean Square Error (MSE) of the network output as goal 

to 0.01. Then the network is trained with trainlm function of L-M algorithm. The key codes 

are listed as below: 

Input layer 

(3 nodes) 

Hidden layer 

 (30 nodes) 

Output layer 

(7 nodes) 

x 

y 

z 

1  

Cartesian Coordinates 

as Inputs (x, y, z) 

Joint 

Coordinates 

as Outputs 

2  

3  

4  

5  

6  

7  
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net= newff ([-1 1; -1 1; -1 1],[30, 7], {‘tansig’, ‘purelin’, ‘trainlm’)}; 

net.trainparam.show= 1000; 

net.trainparam.lr= 0.07; 

net.trainparam.epochs= 2000; 

net.trainparam.goal= 1e-3; 

net= init(net); 

net= train(net, pn, tn); 

The performance of ANN and ANFIS model is compared using three statistics such as 

mean square error (MSE), mean bias error (MBE), and coefficient of determination (R
2
). 
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 

N

AP
N

1i

2
ii





, 

MBE= 

 

N

AP
N

1i

ii




, 

 

 












N

1i

2

ii

N

1i

2
ii

2

A
~

A

PA

1R , 

where iii A
~

 and,A ,P are the predicted, actual and average actual output of the network 

respectively, and N is the total number of observation. The comparative analysis of training 

data (Tr) and testing data (Ts) of the ANFIS and ANN using three statistical criteria (MSE, 

MBE, R
2
) is being carried out and is tabulated in the following Table 5and Table 6. 

According to these tables, for ANN and ANFIS model, the MSE values range between 1.06 

to 2.25 and between 0.046 to 0.623 respectively and R
2
 values range between 0.9150 to 

0.9823 and 0.9448 to 0.9998 respectively. These are in narrow ranges. In all the analyses, the 

ANFIS model result in the better prediction of the inverse kinematics solution of the 7-DOF 

redundant manipulators. The ANFIS model outperformed the ANN model and provides the 

best performance i.e., lowest MSE, lowest MBE and highest R
2
. The results of the study also 

indicate that the predictive capability of ANN models used is poor as compared to the ANFIS 

model used for solving inverse kinematics equation of 7-DOF redundant manipulator.   
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Table 5. Performance of ANFIS model used 

               

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts 

MSE 

 

MBE 

 

R
2
 

0.124 

 

0.008 

 

0.9918 

0.133 

 

0.015 

 

0.9842 

0.042 

 

0.004 

 

0.9826 

0.058 

 

0.030 

 

0.9760 

0.373 

 

0.033 

 

0.9958 

0.125 

 

0.125 

 

0.9448 

0.447 

 

0.036 

 

0.9907 

0.623 

 

0.061 

 

0.9889 

0.337 

 

0.030 

 

0.9956 

0.529 

 

0.037 

 

0.9497 

0.128 

 

0.022 

 

0.9925 

0.201 

 

0.044 

 

0.9689 

0.231 

 

0.041 

 

0.9998 

0.248 

 

0.067 

 

0.9484 

 

Table 6. Performance of ANN model used 

               

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts  

MSE 

 

MBE 

 

R
2
 

1.06 

 

0.025 

 

0.9647 

0.524 

 

0.030 

 

0.9666 

0.142 

 

0.009 

 

0.9719 

0.492 

 

0.030 

 

0.9370 

1.59 

 

0.069 

 

0.9765 

1.14 

 

0.083 

 

0.9675 

2.15 

 

0.079 

 

0.9370 

2.25 

 

0.116 

 

0.9178 

0.366 

 

0.031 

 

0.9520 

0.93 

 

0.150 

 

0.9150 

1.62 

 

0.077 

 

0.9712 

1.48 

 

0.088 

 

0.9248 

1.91 

 

0.118 

 

0.9703 

1.82 

 

0.183 

 

0.9323 

 

 The MSE plot for training and testing data of all joint angles obtained from ANN and 

ANFIS are shown in the Figure 69 and Figure 70 respectively. It can be conclude from the 

Figures 6 and7 that the MSE of training and testing data obtained from ANFIS model is 

reasonably low and meaningful error type as compare with the data obtained from ANN 

model. The MSE of the training data for joint angles 76321  and ,,,,  obtained from 

ANFIS model are acceptable and very low (0.124, 0.042, 0.373, 0.128, 0.231 respectively) as 

compare to ANN model which are very high (1.06, 0.142, 1.59, 1.62, 1.91 respectively). So 

the ANFIS model is more flexible than the model of ANN considered in this study for the 

prediction of inverse kinematics solution. This can be justified as the ANFIS approach 

provides a general frame work for the combination of neural networks and fuzzy logic. So the 

ANFIS models perform better than the ANN models in the prediction of inverse kinematic 

solution for 7-DOF redundant manipulator. 

1
 

2
 

3

 

4
 

5
 

6
 

7  

2  
6  3  5  4  1  

7  
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Figure 69. Comparison of Mean Square Error plot for Training data 

 

 

Figure 70. Comparison of Mean Square Error plot for Testing data. 

 By comparing the output from ANFIS and ANN model on the basis of global statistic i.e. 

MSE, MBE, and R
2
, it can be concludes that the ANFIS model is more flexible than the ANN 

model considered in this research, for prediction of IKs. As the ANFIS approach provides a 

general frame work for combination of NN and fuzzy logic. The efficiency of ANFIS over 

ANN can also be concluded by observing the graphs and tables which shows the comparison 

MSE, MBE, R
2
 for the two models. Based on comparison of the results of these two 

techniques, it is found that the proposed ANFIS model with Gaussian membership function is 

more efficient than the multilayer feed forward ANN using Levenberg-Marquardt (LM) 

algorithm for predicting the IK of the 7-DOF redundant manipulator. 
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 Chapter 6 

6.  CONCLUSION AND FUTURE WORK 

 

6.1  CONCLUSION 

In this study, the inverse kinematics solution using ANFIS for a 5-DOF and 7-DOF 

Redundant manipulator is presented. The difference in joint angle deduced and predicted with 

ANFIS model for a 5-DOF and 7-DOF Redundant manipulator clearly depicts that the 

proposed method results with an acceptable error. The modelling efficiency of this technique 

was obtained by taking three end-effector coordinates as input parameters and five and seven 

joint positions for a 5-DOF and 7-DOF Redundant manipulator respectivly as output 

parameters in training and testing data of NF models. Also, the ANFIS model used with a 

smaller number of iteration steps with the hybrid learning algorithm. Hence, the trained 

ANFIS model can be utilized to solve complex, nonlinear and discontinuous kinematics 

equation complex robot manipulator; thereby, making ANFIS an alternative approach to deal 

with inverse kinematics. The analytical inverse kinematics model derived always provide 

correct joint angles for moving the arm end-effector to any given reachable positions and 

orientations. 

As the ANFIS approach provides a general frame work for combination of NN and fuzzy 

logic. The efficiency of ANFIS for predicting the IK of Redundant manipulator can be 

concluded by observing the 3-D surface viewer, residual and normal probability graphs. The 

normal probability plots of the model are also plotted. The normal probability plot of 

residuals of training and testing data obtained from ANFIS shows that the data set of ANFIS 

are approximately normally distributed.  

The methods used for deriving the inverse kinematics model for the these manipulators  

could be applied to other types of robotic arms, such as the EduBots developed by the 

Robotica Ltd, Pioneer 2 robotic arm (P2Arm), 5-DOF Lynx 6 Educational  Robot arm. It can 

be concluded that the solution developed in this paper will make the PArm more useful in 

application with unpredicted trajectory movement in unknown environment.  

 

6.2  FUTURE WORK 

In this work a hybrid neuro-fuuzy technology is used for the study of inverse kinematics of 

redundant robot manipulator. ANFIS is adopted for solving the IK of higher DOF robot 

manipulator. Due to its compactness and adaptive nature this technology is highly efficiency 
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in predicting the IK of higher DOF robot manipulator. So this technology can used in 

different robot in different field to know the joint angles, orientations, and the robot working 

space to avoid osstacles.  

 The robotics industry has reached one plateau with the successful introduction of robots 

into automotive manufacturing for spot welding and painting, are two areas where robotic 

usage is almost universal. There are several other areas where the usage of robotics is in its 

infancy and this chapter is dedicated to brief descriptions of some of these fields along with a 

quick assessment of their current status. 

 A 20 meters long and 6-DOF remote robot manipulator is commonly used in space for 

repairing satellites and other coordinated activities on self-propelled platform. So ANFIS can 

be used to this robot for its free positioning and to determine its path. Apart from this, the 

neuro fuzzy technique can be used in various field to determine the positions and 

orientations. It can be used for: 

 Under water manipulator 

 Nuclear, toxic waste disposal and mining robot 

 Firefighting, construction and agricultural robot 

 Medical application 
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            Chapter 7 
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