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ABSTRACT 

The present work proposes an intelligent approach to solve multi-response optimization problem 

in electrical discharge machining of AISI D2 using response surface methodology (RSM) 

combined with optimization techniques. Four process parameters (factors) such as discharge 

current (Ip), pulse-on-time (Ton), duty factor (τ) and flushing pressure (Fp) and four important 

responses like material removal rate (MRR), tool wear rate (TWR), surface roughness (Ra) and 

circularity (r1/r2) of machined component are considered in this study. A Box-Behnken RSM 

design is used to collect experimental data and develop empirical models relating input 

parameters and responses. Genetic algorithm (GA), an efficient search technique, is used to 

obtain the optimal setting for desired responses. It is to be noted that there is no single optimal 

setting which will produce best performance satisfying all the responses. In industries, to solve 

such problems, managers frequently depend on their past experience and judgement. Human 

intervention causes uncertainties present in the decision making process gleaned into solution 

methodology resulting in inferior solutions. Fuzzy inference system has been a viable option to 

address multiple response problems considering uncertainties and impreciseness caused during 

judgement process and experimental data collection. However, choosing right kind of 

membership functions and development of fuzzy rule base happen to be cumbersome job for the 

managers. To address this issue, a methodology based on combined neuro-fuzzy system and 

particle swarm optimization (PSO) is adopted to optimize multiple responses simultaneously. To 

avoid the conflicting nature of responses, they are first converted to signal-to-noise (S/N) ratio 

and then normalized. The proposed neuro-fuzzy approach is used to convert the responses into a 

single equivalent response known as Multi-response Performance Characteristic Index (MPCI). 

The effect of parameters on MPCI values has been studied in detail and a process model has 

been developed. Finally, optimal parameter setting is obtained by particle swarm optimization 

technique. The optimal setting so generated that satisfy all the responses may not be the best one 

due to aggregation of responses into a single response during neuro-fuzzy stage. In this direction, 

a multi-objective optimization based on non-dominated sorting genetic algorithm (NSGA) has 

been adopted to optimize the responses such that a set of mutually dominant solutions are found 

over a wide range of machining parameters. The proposed optimal settings are validated using 

thermal-modeling of finite element analysis.  
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Chapter 1 
BACKGROUND AND MOTIVATION 
 

1.1. Introduction  

The world is advancing technically in the field of space research, missile and nuclear 

industry. These industries demand very complicated and precise components having some 

special requirements. The challenges are taken by the new development taking place in 

manufacturing field. Now-a-days, many new materials and non-traditional machining and 

forming methods have been evolved to process difficult-to-machine materials, which are being 

put to commercial use with time. The non-traditional methods of machining have several 

advantages over traditional method of machining. Non-traditional methods are not limited by 

hardness, toughness, and brittleness of materials and can produce any intricate shape on any 

work piece material by suitable control over various process parameters. Non-traditional 

machining process can be classified into various groups depending on type of energy required, 

mechanism of material removal, source of energy required, and medium of energy transfer as 

described in Figure 1.1. [1]. 

 

Energy required

Non-traditional machining

Material removal mechanism Source of energy required Medium of energy trasnfer

Mechanical 
Thermal &

Electrothermal

Erosion 
Chemical &

Electrochemical

Hydrostatic 

pressure

Ionoc 

dissolution

Vapourization 

Hot gases

High current density

Electron 

electrolyte

High velocity 

particles

Ionised material

Ionised material

USM

WJM

AWJM

IJM

EDM

EBM

LBM

PAM

IBM

ECM

ECG

ECH

ECD

 

Figure 1.1. Classification of non-traditional machining processes 
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1.2. Electric discharge machining 

Electrical Discharge Machining (EDM) is a non-traditional machining process used for 

machining any toughened and high strength to weight ratio conductive materials which are hard 

enough to cut by traditional processes (for example hardened steel, tungsten carbide, special 

alloys for aerospace applications). Furthermore, any complex cutting geometry, sharp angles and 

internal corners having surface state roughness less than 100 µm and precise machining (<1µm) 

can be produced. Therefore, EDM process and AISI D2 steel have extensively used in 

manufacturing industries, especially aerospace, ordnance, automobile, electronics, domestic 

appliances, packaging, telecommunication, surgical instruments and general engineering [2,3,4]. 

On the other hand, low material removal rate (order of 100 mm
3
/min), surface modification of 

the machined work piece (white layer and heat affected zone) and limited size of work piece and 

tool have a disadvantage towards EDM process. 

1.2.1. Principle  

The material removal mechanism is owing to controlled erosion through a series of electric 

sparks between the tool and the work piece. The thermal energy of the sparks leads to intense 

heat conditions on the work piece causing melting and vaporizing of work piece material. The 

sparks are created in a dielectric liquid may be water or oil. There is no mechanical contact 

between tool and work piece during the whole process but in machining process small volumes 

of work piece material successively removed by melting or vaporized during a discharge. A 

simple explanation of erosion process as a result of single discharge is shown in Figure 1.2. 

(a) Pre-breakdown: 

voltage applied between  

the Electrode and the 

workpiece

(b) Breakdown : 

dielectric breakdown,

creation of the plasma 

channel

(c) Discharge :

heating, melting and 

vaporizing of the 

workpiece material

(d) End of the discharge :

plasma implosion,

removing of the

molten metal pool

(e) Post-discharge :

solidifying and flushing

of the eroded particles

by the dielectric  

Figure 1.2. Principle of EDM process 

Initially, voltage is applied between tool and work piece. The dielectric break down is 

initiated, while tool moves towards work piece and gap voltage increases till sufficient 

breakdown occurs. The break down location is the closest point between the electrodes [5].  As 
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breakdown occurs voltage falls and a current rises sharply. The dielectric has been ionised and 

plasma channel has been created between electrodes. The current is then maintained for 

continuous bombardment of ions and electrons on the electrodes, which leads to a huge amount 

heat generation and creates a molten metal pool (of both work piece and tool) at the surface. 

There may be possibility that, a small amount of metal can be directly vaporised due to huge 

amount heat generation. As the plasma channel expands with time, the radius of molten metal 

pool is also increases. During the discharge, maintaining inter electrode gap (IEG) is a difficult 

task as IEG increases with discharge current. Therefore an automatic positioning system (APOS) 

and sensitivity (SEN) is employed for maintaining the IEG. After the discharge current and 

voltage are shut down during Toff time and the molten pool is carried out by flushing leaving a 

tiny crater in the work piece. 

1.2.2. History  

The history of electric discharge machining describes from the discovery of electric 

discharge. In the first half of the 18th century investigation of electrostatic phenomena were 

performed with frictional machines. Then the around 1745, first sparks and pulsed arcs were 

produced with “Leyden jars”, an early form of capacitor invented in Germany and in the 

Netherlands [6] (Figure 1.3). Powerful discharges were created by putting several Leyden jars in 

parallel, creating thus a “battery”.  

Joseph Priestley (1733-1804), an English theologian and chemist, was the first to discover 

erosion craters left by electric discharges on the cathode surface in 1766: 

“June the 13th, 1766. After discharging a battery, of about forty square feet, with a 

smooth brass knob, I accidentally observed upon it a pretty large circular spot, the center 

of which seemed to be superficially melted. (...) After an interruption of melted places, 

there was an intrie and exact circle of shining dots, consisting of places superficially 

melted, like those at the center.” (Figure 1.4) 

“June the 14th, 1766. (...) Examining the spots with a microscope, both the shining dots 

that formed the central spot, and those which formed the external circle, appeared 

evidently to consist of cavities, resembling those on the moon, as they appear through a 

telescope, the edges projecting shadows into them, when they were held in the sun” [7]. 
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Figure 1.3. Engraved plate sent by Alessandro Volta to Joseph Priestley, showing the spark 

produced by short-circuit of a Leyden jar (1775) [8]; 

 

Figure 1.4. Sketches of erosion craters on cathode surface, observed by Joseph Priestley in 

1766 [7]. 

 

Priestley used pulsed and oscillating discharge to investigate the influence of electrode 

material on the crater size. In 1799 Alessandro Volta (1745-1827) was invented that continuous 

discharges can be produced with battery of electrochemical cells. In 1802, Vasilii Petrov at St-

Petersburg first to produce continuous carbon arc by developing very large voltaic batteries [9]. 

Humphry Davy (1778-1829) was discovered arcs, but his discovery remained ignored and 

forgotten for over a century. Petrov‟s in the Royal Institution of London around 1808, re-

discovered independently carbon arcs using the huge voltaic battery.  
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The principle of EDM was invented by Russian scientists Boris and Natalya Lazarenko in 

Moscow in 1943, while they are assigned to Soviet government to investigate the wear caused by 

sparking between tungsten electrical contacts that was a problem for maintenance of automotive 

engines. Putting the electrodes in oil, they found that the sparks were more uniform than in air. 

Then they reverse the phenomenon, and to use controlled sparking as an erosion method [10]. 

Lazarenkos developed the first EDM machines during world war, which were very useful to 

erode hard metals like tungsten or tungsten carbide. The „Lazarenko circuit‟ remained the 

standard EDM generator for years. In the 1950‟s, by understanding the erosion phenomenon, 

Swiss industries produced the first EDM machines [11-13]. 

1.2.3. State-of-the-art 

Sixty-two year after the first industrial machine, EDM has made significant progress. 

Recently improvements in accuracy of machined parts, speed of machining and surface 

roughness is achieved by adopting automation, process control, changing dielectric, flushing and 

generator design [14-17]. Though EDM have the ability such as machining hard material and 

complex geometry, this process has to improve constantly in order to stay competitive and 

economically interesting in the modern tooling market against other traditional or new machining 

technique [16-18]. 

These limitations offer new opportunities for EDM development and growth as follows: 

 There is a need to develop screening methodologies for EDM process for a high strength 

to weight ratio material (AISI D2 steel) machined by copper and brass tool.  

 A much better understanding is needed for the basic physics and chemistry of EDM 

processes that capture the complexity part production.  

 Technical and operation related advances are needed to ensure that EDM processes are 

more reliable and predictable than other non-traditional manufacturing processes. 

 Control algorithms based on predictive models of system response to process changes are 

needed to maximize the performance of EDM machines. 

 Developments of formalized standards for the EDM industry will help to achieve 

continued growth and further advancements of EDM technologies. 
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1.3. Research objectives 

 To sustain in this competitive market, product has to be modified and new product has to be 

developed. There are many external things which impose for development or modification. 

Among these materials, technologies, services and the attention paid to the end user requirements 

are significant. Though technological barriers exist, as in most technology areas, it is important 

to overcome them by developing proper understanding of process with related attributes. In this 

direction, next chapter (Chapter 2) explains the various efforts directed for improving the 

industrial feasibility of EDM process. Exhaustive literature review reveals that, there are many 

work carried out in EDM, but less work carried out using brass as tool material. The work 

represents choosing the best tool among two and a suitable condition for improving EDM 

performance. In this direction, present work emphasise on the EDM process functionality to 

understand the multiple interacting phenomena involved with this process and make it more 

reliable and predictable than other non-traditional manufacturing processes. 

Based on these guiding principles, the objective of present research are as follows: 

 Study on effect of process parameters on EDM performance. EDM performance is 

measured in terms of material removal rate, tool wear rate, surface roughness and 

circularity. 

 Analysis of experimental results using statistical methods. 

 Determination of relationship between process parameters and properties studied. 

 Neuro-fuzzy approach for solving multi-response problem. 

 Optimum parameters selection for overall improvement in EDM performance using 

genetic algorithm and particle swarm optimization. 

 Non-dominated sorting genetic algorithm (NSGA) to obtain pareto optimal setting. 

 Theoretical validation of material removal rate and tool wear rate model by thermal 

modeling using finite element analysis. 

Methodology adopted for achieving these objectives are quite general and can provide common 

methods for measuring the benefits and limitations of various RP processes. 
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1.4. Thesis outline 

The remainder of this thesis is organized as follows: 

 Chapter 2: Literature review 

Includes a literature review to provide a summary of the base of knowledge already available 

involving the issues of interest. 

 Chapter 3: Experimental details 

Include a description of the setup, material, sample preparation, measurement, design of 

experiments methodology and observation.  

 Chapter 4: Optimization stratergy 

Describes the methodology and algorithm for multi-response optimization using neuro-fuzzy 

approach, optimization technique such as genetic algorithm, particle swarm optimization, and 

multi-objective optimization using non-dominated sorting genetic algorithm.  

 Chapter 5: Results and discussions 

The effects of process parameters on responses are discussed. The relation between process 

parameter with responses are established by regression equation and optimized by genetic 

algorithm. Neuro-fuzzy method is proposed to covert multi-responses into an equivalent single 

response and optimum process conditions are determined for overall improvement of EDM 

performance using particle swarm optimization technique. The single optimal solution may 

change according to the requirement and also setting may not be available in machine, therefore 

non-dominated sorting genetic algorithm (NSGA) is proposed to obtain a set of pareto optimal 

solution to improve decision makers space. 

 Chapter 6: Theoretical validation of MRR and TWR 

The optimal setting may not available in machine. Therefore to check validation of model, 

thermal modeling has been carried out using ANSYS software.  

 Chapter 8: Executive summary and conclusions 

The conclusion and scope for future work are given in this part of thesis 
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1.5. Conclusions  

Present chapter highlights the importance of EDM in manufacturing industry, history of 

EDM and objective of work. The general attributes of EDM can be put together as:  

 Any conductive material can be machined irrespective of hardness. 

 Able to build complex 3D geometries including enclosed cavities. 

 Process is automatic and based tool design. 

 Require minimal or no human intervention to operate. 

These characteristics open new opportunities for faster product development in a simplified, 

minimal time, better performance and cost effective way. To improve the EDM performance in 

particular, research objective together with work outline is presented in this chapter. 

In next chapter, the literature review is presented through exhaustive study.  
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Chapter 2 
LITERATURE SURVEY 

 

2.1. Introduction 

One of the current challenges faced by manufacturing industries is the reduction of process 

time and improvement of performance through optimization of controllable process parameter 

using different optimization technique. This can be obtained by experimentation or using any 

model developed from experiment. Although performance improvement in EDM has been 

studied extensively, proper selection of machining parameters for the best process performance 

is still a challenging job. In this direction, the current chapter highlights some research paper on 

EDM  describing the effect of process parameters on EDM performance like material removal 

rate (MRR), tool wear rate (TWR), surface roughness (Ra), white layer thickness, surface cracks, 

etc. Literature survey begins with papers published after 1995 with maximum attention paid to 

last ten years. The search was restricted on those articles for which full text was available. Table 

2.1 provides the source and number of citations from each source.  

Table 2.1. Summary of publications referred 

Source Citation 

Applied Mathematical Modelling 1 

Applied Soft Computing 1 

Computational Material Science 1 

European Journal of Operational Research 1 

IEEE Transaction on Evolutionary Computation 2 

IEEE Transaction on Plasma Science 2 

International Journal of Advanced Manufacturing Technology 8 

International Journal of Engineering and Technology 1 

International Journal of Integrated Engineering. 1 

International Journal of Machine Tools and Manufacture 13 

Journal of Applied Physics 3 

Journal of Decision and Mathematical Sciences 1 

Journal of Materials Processing Technology 18 

Journal of Engineering for Industry 2 

Journal of Manufacturing Processes 1 

Journal of Engineering Research and Studies 1 

Journal of Manufacturing Technology Management 1 
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Journal of Reinforced Plastics and Composites 1 

Mathematical and Computer Modelling 1 

Materials and Manufacturing Processes 3 

Material Science and Applications 1 

Proceedings of Institution of Mechanical Engineering Journal of Engineering 

Manufacture 
1 

Proceedings of the 11th International Symposium for Electro Machining 1 

Proceedings of the 12th International Symposium for Electro Machining 2 

Quality and Reliability Engineering 2 

Soviet Physics-Technical Physics 1 

The Arabian Journal for Science and Engineering Science 1 

Total Quality Management 1 

World Academy of Science, Engineering and Technology 1 

World Congress on Computer Science and Information Engineering 1 

http://www.lindquiststeels.com/documentation/d2.pdf 1 

http://cadm.zut.edu.pl/pub/prawie%20wszystko%20o%20edm%20(ang).pdf 1 

Books 10 

Total 87 

The papers are broadly classified into five categories, such as theoretical model of EDM, 

numerical model of EDM, statistical model of EDM, soft computing model of EDM and 

technological modification of basic EDM process. 

2.2. Theoretical model of EDM 

Singh and Ghosh considered that melting is the main process for metal removal. For short 

pulse (< 5µs), melting does not accounted as metal does not get enough time to get adequately 

heated and almost no melting takes place. The electrostatic force acting on the surface is a very 

important factor in the removal of metal for short pulses. For long pulses (discharge duration > 

100µs), this electrostatic force becomes very small and does not play a significant role in the 

removal of metal. In the model proposed, the electro- static force acting on the metal surface and 

the stress distribution inside the metal due to this electrostatic force have been estimated. The 

variation of the yield strength with depth inside the metal has also been found out and finally the 

„crater depth‟ due to this electrostatic force has been calculated. The model also predicts that for, 

short pulses the crater depth is proportional to square root of current. The same result is also 

found by the experiments of Williams [19, 20]. Marafona and Wykes investigated the 

optimisation of the process which uses the effect of carbon, which has migrated from the 
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dielectric to tungsten–copper electrodes. This work has led to the development of a two-stage 

EDM machining process where different EDM settings are used for the two stages of the process 

giving a significantly improved material removal rate for a given tool wear ratio. It is observed 

that, a black layer modified surface is produced on the tool in the first stage which inhibits tool 

wear, thus giving better tool wear for a given material removal rate in the second stage. The 

responses MRR, TWR, Ra are taken as EDM performance and conclude that the percentage of 

carbon in the „black‟ layer is very important in the improvement of the EDM performance [21]. 

Chen and Mahdivian proposed a theoretical model to estimate the material removal rate and 

surface quality. The model provides equations to calculate work piece MRR and maximum peak-

to-valley height is used for surface finish. Process parameters such as discharge current, pulse 

duration time and interval time at different level wear taken to conduct experiment and their 

effect on MRR and surface roughness were studied. It is observed that the theoretical model and 

experimental results are identical [22]. A finite element model has been developed to estimate 

the temperature field and thermal stresses in HSS due to Gaussian distributed heat flux of a spark 

during EDM. First, the developed code calculates the temperature in the work piece and then the 

thermal stress field is estimated using this temperature field. The effects of process variables 

(current and duty cycle) on temperature distribution and thermal stress distribution have been 

reported. The damaging nature of the thermal stresses as they develop during EDM is 

illuminated. It is observed that, after one spark, substantial compressive and tensile stresses 

develop in a thin layer around the spark location. It is also found that the thermal stresses exceed 

the yield strength of the work piece mostly in an extremely thin zone near the spark [23]. 

Thermo-physical model using finite element analysis and joule heating factor is developed by 

Marafona and Chousal to obtain the material removal from anode electrode, cathode electrode 

and maximum roughness at cathode surface. The theoretical results are compared with 

experimental results. It is observed that the anode material removal efficiency is smaller than that 

of cathode because there is a high amount of energy going to the anode and also a fast cooling of 

this material. A comparison is made 2D and 3D finite element analysis and observed that 2D 

axisymmetric finite element has an easier formulation than the 3D finite element and allows a 

reduction in the CPU time with very similar results. The difference between both axisymmetric 

and 3D was found around 100 times, i.e. 3D modelling has taking1180 s while the 2D only 14.5 

s [24]. Recently, a new approach is proposed by Mahardika et al. to determine machining by 
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EDM processes using the product of the thermal conductivity (λ), melting point (θ) and electrical 

resistivity (ρ) of the work piece in relation to the machining time. Earlier developed theory was 

the function of thermal conductivity (λ) and melting point (θ). It is observed that the recent 

theory gives better result than previous one [25]. 

2.3. Numerical model of EDM 

Das et al. developed an EDM simulation model using finite element for calculation of 

deformation, microstructure and residual stresses. The process parameters such as power input, 

pulse duration, etc. are used to predict the transient temperature distribution, liquid- and solid-

state material transformation, and residual stresses that are induced in the work piece as a result 

of a single-pulse discharge. The model developed by DEFORM software has been validated 

using experimental data [26]. The measured and simulated crater morphology of EDM using 

ANSYS is compared for single discharge and a sequence of discharges. The thermal channel 

base parameters are computed along with measured current and voltage curves [27]. An 

axisymmetric two-dimensional model for powder mixed electric discharge machining (PMEDM) 

has been developed using the finite element method (FEM) in ANSYS (version 5.4) software. 

Some aspects such as temperature- sensitive material properties, shape and size of heat source, 

percentage distribution of heat among tool, work piece and dielectric fluid, pulse on/off time, 

material ejection efficiency and phase change (enthalpy) are used in the model to predict the 

thermal behaviour and material removal mechanism. The effect of various process parameters on 

temperature distributions along the radius and depth of the work piece are studied. Finally, the 

model has been validated by comparing the theoretical MRR with the experimental data [28]. 

Joshi and Pande developed an intelligent technique using ANSYS to study the effect of current, 

spark on time, discharge voltage, duty factor on MRR, TWR, crater-depth and crater,-height. A 

neural-network-based process model is proposed to establish the relation input process and 

process response and to optimize the process parameters for better performance [29]. In 2010 

Joshi and Pande developed an axisymmetric two-dimensional model using ANSYS to study the 

effect of of process parameter such as discharge current, discharge duration, discharge voltage 

and duty cycle on the process performance. Experimental studies were carried out to study the 

MRR and crater shapes produced during actual machining. When compared with the reported 

analytical models, ANSYS model was found to predict results closer to the experimental results 
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[30]. Pradhan used ANSYS 12.0 to develop an axisymmetric two-dimensional model for electric 

discharge machining AISI d2 steel. It is observed that the compressive thermal stresses are 

developed beneath the crater and become tensile as we move away from the axis of symmetry. 

The radial component of the residual stresses reaches its maximum values close to the surface 

but diminishes very rapidly to comparatively low values of compressive residual stresses. It is 

found that the radial component of the residual stresses acquired from FEM are dominant than 

other components for all the machining parameter combinations [30]. 

2.4. Statistical model of EDM 

Habib has analyzed the effect of machining parameters such as pulse current, gap voltage and 

pulse-on-time on MRR and TWR in EDM using response surface methodology. It is observed 

how MRR and TWR increase with increasing values of process parameters [32]. Chattopadhyay 

et al. have used Taguchi‟s design of experiment (DOE) approach to conduct experiment on 

rotary EDM using EN8 steel and copper as work piece-tool combination and developed 

empirical relations between performance characteristics (MRR and EWR) and process 

parameters such as peak current, pulse-on-time and rotational speed of tool electrode. It is found 

that peak current and rotational speed of tool electrode influence significantly on both the 

responses [33]. DOE approaches have been extensively used to determine best machining 

parameters in EDM. The DOE approaches are well suited to obtain optimal parametric 

combination for a single response problem. The method breaks down when multiple responses 

are simultaneously optimized due to some technical and practical reasons [34]. The influence of 

gap voltage, discharge current, pulse duration, pulse interval, flushing pressure on material 

removal rate, tool wear rate and surface roughness of EDM process using tungsten carbide (WC) 

as work piece and copper tungsten as electrode (CuW). It is observed that WC is suitable for 

EDM tool material and there exist an optimal condition for precision machining of WC although 

the condition may vary with composition of material [35]. Tebin et al. conducted the experiment 

on EDM to study the effect of discharge current, the pulse-on duration, the pulse-off duration, 

the tool electrode gap, and the tool material on MRR and TWR using steel 50CrV4 as work 

piece, copper and graphite as tool [36]. Pradhan and Biswas have adopted RSM design to 

conduct experiment on EDM and investigated the effect of four controllable input variables viz., 

discharge current, pulse duration, pulse-off-time and voltage on machining performance using 
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AISI D2 steel and copper as work piece-tool combination. It is observed that discharge current 

and pulse-on-time have significant effect on surface roughness [37]. Helmi et al. have 

investigated surface roughness and material removal rate in electro discharge grinding process 

employing Taguchi method when tool steel is machined with brass and copper electrodes. It is 

observed from analysis of variance that peak current and pulse-on-time are the significant factors 

influencing the performance characteristics [38]. Yunus analyzed the effect of factors such as 

pulse current, pulse-on-time, pulse-off-time, and voltage on surface roughness of machined 

component using factorial experiments and suggested optimal parameter setting to minimize 

surface roughness [39]. Prabhu and Vinayagam have experimentally demonstrated that surface 

roughness and micro-cracks on work piece (AISI D2 tool steel) can be substantially reduced if 

the tool (electrode) is coated with a carbon nono-tube layer [40]. Metal removal process in EDM 

is characterized by nonlinear, stochastic and time varying characteristics. In EDM, a quantitative 

relationship between the operating parameters and controllable input variables is often required. 

Many regression techniques have been used for modelling the EDM process [41]. 

Neural networks and fuzzy systems form an alternative approach to generalize the 

experimental results and develop the system model accurately. Unlike milling and drilling 

operations, operating speeds in EDM are very low. Large electric current discharge can enhance 

speeds but reduces the dimensional quality of machined surface. Similarly, the material removal 

rate is also affected by other process parameters. These parameters are selected from standard 

tables or by experience to improve the output performance of the process. Even in the computer 

controlled environments involving online process control, this selection is not an easy task. 

Presently many optimization techniques are being used in EDM practice to obtain the best 

process parameters.  Kansal et al. adopted the response surface optimization scheme to select the 

parameters in powder mixed EDM process [42]. The next year Keskin et al. used design of 

experiments (DOE) for the determination of the best machining parameters in EDM [43]. 

The approaches based on DOE are well suited to obtain optimal parametric combination for a 

single response problem. The methods break down when multiple responses are simultaneously 

optimized due to some technical and practical reasons. In this direction, Su and Tong indicated 

that Taguchi method can satisfactorily address a single response problem. However, they 

proposed that principal component analysis can be combined with Taguchi method to optimize 

the multi-response production process [44]. Tong et al. proposed a methodology that combines 
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principal component analysis with TOPSIS method to convert multiple responses into a single 

equivalent response. The reason of applying PCA is to obtain uncorrelated principal components 

when PCA is applied to responses. Finally, closeness coefficient obtained through TOPSIS is 

treated as single response [45]. Tong and Su proposed a fuzzy TOPSIS method to convert multi-

responses (deposition thickness and refractive index) in plasma enhanced chemical vapor 

deposition (PECVD) process into single response. The relative closeness coefficient is regarded 

as a performance measurement index to find the optimal combination of eight controllable 

factors [46]. Tarng et al. have used fuzzy logic in Taguchi method for simultaneous optimization 

of multiple responses in a submerged arc welding process. The process parameters viz., arc 

current, arc voltage, welding speed, electrode protrusion, and preheat temperature are optimized 

with considerations of the responses such as deposition rate and dilution. The optimal setting 

suggested by Taguchi method is tested through few confirmatory tests [47]. To solve this type of 

multi-optimization problem in EDM, Lin et al. used grey relation analysis based on an 

orthogonal array and fuzzy based Taguchi method [48, 49, 50].  

2.5. Soft computing model of EDM 

Researchers, of late, are focusing upon employment of artificial intelligence (AI) techniques 

viz. ANN, GA, fuzzy logic, etc. for the process modelling and optimization of manufacturing 

processes which are expected to overcome some of the limitations of conventional process 

modelling techniques. Genetic algorithm (GA) with artificial neural network (ANN) is used to 

find out optimal process parameters for improving performances in EDM process using graphite 

as tool and nickel based alloy as work piece [51]. A similar approach has been considered by Su 

et al. from the rough cutting to the finish cutting stage. In most of the studies, multiple objectives 

are transformed into a single objective and attempts to find optimal parameters [52]. However, 

non-dominated sorting genetic algorithm (NSGA) is used to optimize machining parameters in 

WEDM considering surface roughness and cutting speed as the output parameters. Multiple 

linear regression models have been developed to represent the relation between inputs and 

outputs [53]. Mandal et al. used neural networks to predict the MRR and Ra trained by 

experimental data from EDM of SiC and multiple response problem is solved using NSGA-II by 

getting pareto-optimal solution [54]. In order to overcome the single response optimization 

problem of Taguchi method, Liao proposed an effective procedure called PCR-TOPSIS that is 
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based on process capability ratio (PCR) theory and on the theory of order preference by 

similarity to the ideal solution (TOPSIS) to optimize multi-response problems [55]. Two case 

studies performed by Tarang et al. [56] and Reddy et al. [57] were resolved using the proposed 

method and the result shows that PCR-TOPSIS can yield a good solution for multi-response 

problems. 

Antony et al. have used Taguchi design and proposed a neuro-fuzzy system for simultaneous 

optimization of multiple responses [58]. A back propagation neural network (BPNN) with 

Levenberg-Marquardt (LM) algorithm have proposed by Panda and Bhoi [59] for the prediction 

of MRR. Recently, simulated annealing (SA) technique with ANN approach has been used for 

optimization of MRR and surface roughness [60]. The material removal rate has been optimized 

in micro-EDM usingartificial neural network and genetic algorithms [61]. 

Particle swarm optimization (PSO) is a computational simulation technique based on the 

movement of organisms such as flocks of birds and schools of fish used to solve optimization 

problems. It has a population of search points to probe the search space where each individual is 

referred as a „particle‟ and represents a potential solution. These are associated with the best 

solution (fitness) it has achieved so far known as personal best (pbest) and overall best value and 

its location obtained so far by any particle in the population. This location is global best (gbest). 

Each particle moves its position in search domain and updates its velocity according to its own 

flying experience toward its pbest and gbest locations [62]. Neural network and non-dominating 

sorting genetic algorithm (NSGA II) is used to optimize the surface roughness and material 

removal rate of electro discharge machining of SiC parameters simultaneously. The effect of 

discharge current (Ip), pulse on time (Ton), pulse off time (Toff) on MRR and surface roughness 

were studied [63]. A multiple regression model is used to represent relationship between input 

and output variables of Wire-EDM process and a multi-objective optimization method based on 

a non-dominated sorting genetic algorithm (NSGA) is used to optimize machining performance 

such as cutting velocity and surface finish [64]. 

2.6. Technological modification of basic EDM 

Many researchers have been carried out by modifying EDM process, changing dielectric or 

modifying dielectric medium. A silicon powder mixed electrical discharge machining 

experiment has been carried out and response surface methodology is used to plan the 
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experiment. The effect of process parameters such as pulse-on-time, discharge current, duty 

cycle and concentration of the silicon powder on material removal rate and surface roughness are 

analyzed. It is observed that MRR is increasing with concentration of silicon powder and 

discernible improvement in surface roughness is observed with suspended silicon powder [65]. 

An ultrasonic assisted dry machining experiment has been conducted with powder additives. It is 

observed that EDM with powder additives is concerning more on increasing surface quality and 

material removal rate [66]. Aluminium powder mixed electric discharge machining of hastelloy 

material is conducted to analyze the effect of machining parameter such as discharge current, gap 

voltage, pulse-on-time and duty cycle on material removal rate, tool wear rate and surface 

roughness. It is observed that all process parameter have strong influence on MRR, TWR, wear 

ratio and surface roughness [67]. 

2.7. Conclusions  

This chapter provide the insight into basic EDM process, technologically modified EDM 

process, different modelling technique, some optimization technique to optimize EDM 

performance and some soft computing techniques. The next chapter describes the experimental 

details in this study. 
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Chapter 3 

EXPERIMENTAL DETAILS 

 

3.1. Introduction 

EDM has significant advantages in terms of machining high strength to weight ratio material, 

high strength to volume ratio material, the flexibility and the possibility of producing very 

complex parts and shapes. One of the current challenges faced by EDM users is the improvement 

of quality and productivity of parts produced, which is allied with the accurate application of the 

specified performance. This makes it essential to understand the performance of EDM process 

with the variation of process parameters so make them reliable for industrial applications. To 

achieve this, the present chapter describes the materials and methods used for the testing of EDM 

process under investigation. It presents the details of material property, sample preparation, 

measurements. Material removal rate (MRR), tool wear rate (TWR), surface roughness (Ra) and 

circularity characteristics are considered as measure of process quality and productivity in 

accordance to industrial requirements. The methodology related to the design of experiment 

technique based on response surface method (RSM) is presented in this part of the thesis. 

3.2. Set up 

Experiments are carried out in a die sinking EDM machine (ELECTRONICA- 

ELECTRAPULS PS 50ZNC) shown in Figure 3.1 with servo-head (constant gap). The 

specification of machine is given in Table 3.1. Commercial grade EDM oil (specific gravity= 

0.763, freezing point= 94°C) was used as dielectric fluid. Positive polarity for electrode and side 

flushing was used to conduct the experiments. 
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Figure 3.1. Die Sinker EDM Model: PS 50ZNC 

 

Table 3.1. Specification of PS 50ZNC 

Mechanism of process 
Controlled erosion (melting and evaporation) through a 

series of electric spark 

Spark gap 0.010- 0.500 mm 

Spark frequency 200 – 500 kHz 

Peak voltage across the gap 30- 250 V 

Metal removal rate (max.) 5000 mm
3
/min 

Specific power consumption 2-10 W/mm
3
/min 

Dielectric fluid 
EDM oil, Kerosene, liquid paraffin, silicon oil, deionized 

water etc. 

Tool material Copper, Brass, graphite, Ag-W alloys, Cu-W alloys . 

Materials that can be machined All conducting metals and alloys. 

Shapes Microholes, narrow slots, blind cavities 

Limitations 
High specific energy consumption, non-conducting 

materials can‟t be machined. 
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3.3. Work piece material 

Steel is the common name for a large family of iron alloys. Steels can either be cast directly 

to shape, or into ingots which are reheated and hot worked into a wrought shape by forging, 

extrusion, rolling, or other processes. Wrought steels are the most common engineering material 

used, and come in a variety of forms with different finishes and properties. Tool steels typically 

have excess carbides (carbon alloys) which make them hard and wear-resistant. Most tool steels 

are used in a heat-treated state, generally hardened and tempered. The material used as work 

piece for electrical discharge machining is AISI D2 steel, which is basically an air-hardened high 

carbon, high chromium tool steel alloyed with molybdenum and vanadium characterized by: 

 High wear resistance 

 High compressive strength 

 Good through-hardening properties 

 High stability in hardening 

 Good resistance to tempering-back 

 Moderate toughness (shock-resistance) 

Composition 

It is composed of (in weight percentage) 1.55% Carbon (C), 0.60% Manganese (Mn), 0.60% 

Silicon (Si), 11.8% Chromium (Cr), 0.30% Nickel (Ni), 0.8% Molybdenum (Mo), 0.8% 

Vanadium (V), 1.00% Cobalt (Co), 0.25% Copper (Cu), 0.03% Phosphorus (P), 0.03% Sulphur 

(S), and the base metal Iron (Fe). Other designations of AISI D2 tool steel include UNS T30402. 

Table 3.2 list the properties of commercially available AISI D2 steel. 

Table 3.2. Properties of AISI D2 steel 

Property Value Unit 

Density 7700 kg/m
3
 

Mechanical property   

Hardness Rockwell R 57 HRC 

Tensile Strength 1736 MPa 

Modulus of elasticity 200 GPa 

Poissions ratio 0.29  

Thermal properties   

Thermal Conductivity 20  W/m-K 

Thermal expansion,  10.4×10
-6

 Per °C 
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Machinability  

AISI D2 steel has a machinability rating 65, as compared with a rating of 100 for a 1% 

carbon tool steel [68]. Since AISI D2 steel has conductive in nature it is also suitable for 

electrical discharge machining process. 

Application 

Manufacturing sectors especially industries  

• Aerospace 

• Ordnance 

• Automobile 

• General engineering  

• Die making 

• Tool material 

3.4. Sample preparation 

The material, AISI D2 steel has brought in the form of bar of 85 mm diameter and 300 mm 

length. This is cut into round plates of size 85 mm diameter and 6 mm thickness, that suitable for 

machining. Then the sample is grind and properly cleaned to get flat surface.  

3.5. Tool preparation 

Since a large amount of heat is dealt in EDM owing to spark, the tool should be of a good 

conductive material with high melting point. Therefore, pure brass and pure copper are taken as 

the tool material having density 8400 kg/m
3
 and 8940 kg/m

3
 respectively. Two stepped tool of 25 

mm machining diameter and 10 mm shank is made from a 25 mm diameter bar. 

 

Figure 3.2. Brass Tool 
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Figure 3.3. Copper Tool 

3.6. Measurements 

3.6.1.Weighing machine 

The weight of work piece and tool has taken by high precision balance Figure 3.4. This 

machine capacity is 300 gram and accuracy is 0.001 gram and Brand: SHINKO DENSHI Co. 

LTD, JAPAN, and Model: DJ 300S. 

 

Figure 3.4. Electronic Balance weight machine 

3.6.2.Talysurf  

Surface roughness measurement was carried out using a portable stylus type profilometer, 

Talysurf (Taylor Hobson, Surtronic 3+) as shown in Figure 3.5. The roughness measuring 
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conditions are shown in Table 3.3. Roughness measurements were carried out in the transverse 

direction. The measured profile was digitized and processed through the dedicated advanced 

surface finish analysis software Talyprofile for evaluation of the roughness parameters. 

Roughness is defined as the arithmetic value of the profile from the centreline along the length 

and can be express as 

)x(d)x(y
L

1
  Ra                                                                                                           (3.1) 

where L is the sampling length, y is the profile curve and x is the profile direction. The average 

‟Ra‟ is measured within L = 0.8 mm.  

 

Figure 3.5.  Talysurf 

Table 3.3. Roughness measuring conditions 

Condition Value 

Probe tip radius  0.005 mm 

Measuring range 0.800 mm 

Traverse length 4.000 mm 

Speed 1.000 mm/s 

Filter  2        CR 

 

3.6.3.Microscope 

The photo graphs of the machined parts were taken by microscope (RADIAL INS-

TRUMENT) with Samsung camera setup (45X magnification) Figure 3.6.  
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. 

Figure 3.6. Microscope with camera attachment  

3.6.4.Scanning electron microscope 

The surfaces of the specimens are examined directly by scanning electron microscope (SEM) 

JEOL JSM-6480LV as shown in Figure 3.7. The JEOL JSM-6480LV is a high-performance, 

scanning electron microscope with 1000 magnification. The low vacuum (LV) mode (which can 

be accessed by the click of a mouse), allows for observation of specimens which cannot be 

viewed at high vacuum due to excessive water content or due to a non-conductive surface. Its 

asynchronous five-axis stage can accommodate a specimen of up to 8-inches in diameter. 

 

Figure 3.7. Scanning Electron Microscope (SEM). 
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3.7. Experimental design 

A commonly use approach in scientific and engineering investigation is to study one factor at 

a time or study several factors one at a time. This approach has inherent disadvantages like, more 

experimental runs are require for the precision in effect estimation, factor interaction effects 

cannot be studied, conclusions are not general and may miss the optimal settings of factor. To 

overcome this problem design of experiment (DOE) is a scientific approach to effectively plan 

and perform experiments, using statistics and are commonly used to improve the quality of a 

products or processes. Such methods enable the user to define and study the effect of every 

single condition possible in an experiment where numerous factors are involved [69, 70]. EDM 

is such a process in which a number of control factors collectively determine the performance 

output in other words the part quality and productivity. Hence, in the present work a statistical 

technique called response surface methodology is used to optimize the process parameters 

leading to the improvement in performance output of the part under study. The most important 

stage in the DOE lies in the selection of the control factors and their levels. EDM process has 

large number of process related parameters which are defined in Table 3.4.  

Based on initial trials and exhaustive literature review [71] four parameters namely, 

discharge current (Ip), pulse-on-time (Ton), duty factor (τ) and flushing pressure (Fp) are 

identified as significant factors and hence are selected to study their influence on output 

responses as material removal rate (MRR), tool wear rate (TWR), surface  roughness (Ra) and 

circularity (r1/r2). The levels of factors are selected in accordance with the permissible minimum 

and maximum settings recommended by the equipment manufacturer, experience, and real 

industrial applications. The operating conditions under which tests are carried out are given in 

Table 3.5.  

Table 3.4. Process parameters in EDM 

Process parameter Definition 

Spark On-time (pulse time 

or Ton) 

The duration of time (μs) the current is allowed to flow 

per cycle. Material removal is directly proportional to the 

amount of energy applied during this pulse-on-time. This 

energy is really controlled by the peak current and the 

length of the pulse-on-time. 

 

Spark Off-time (pause time 

or Toff ) 

The duration of time (μs) between the sparks (that is to 

say, pulse-on-time). This time allows the molten material 

to solidify and to be wash out of the arc gap. This 
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parameter is to affect the speed and the stability of the cut. 

Thus, if the off-time is too short, it will cause sparks to be 

unstable. 

 

Arc gap (or gap) 

The Arc gap is distance between the electrode and work 

piece during the process of EDM. It may be called as 

spark gap. Spark gap can be maintained by servo system. 

 

Discharge current (Ip) 

Current is measured in amp Allowed to per cycle. Spark 

energy is directly controlled by discharge current which 

leads to the Material removal rate. 

 

Duty factor (τ) 

Duty factor is the pulse-on-time relative to the total cycle 

time (Ton+Toff) and expressed in percentage. It refers to 

the stability of spark. 

 

The open circuit voltage - 

V
o 
 

 

V
o
 is the potential that can be measure by volt meter when 

there is no spark between electrodes.  

 

The working voltage - V
w
 V

w
 is the potential exerted during machining. 

Polarity  

 

There are two type of polarity according to the 

connectivity of work piece. If work piece is connected to 

anode then it is positive (+ve) polarity and if connected to 

cathode, it is negative (-ve) polarity. Positive polarity is 

significant to MRR and negative polarity is significant to 

surface roughness. 

 

Flushing  

Flushing is necessary to carry out the eroded material 

from work piece to avoid deposition. 

 

Dielectric medium 

Since EDM is spark erosion process a medium is 

necessary. Initially the medium is ionised and plasma 

channel is created which leads to spark. 

 

Table 3.5. Factors and their levels 

Parameters Symbols 
Level Codes 

-1 0 1 

Discharge current (Ip) in A A 3 5 7 

Pulse on time (Ton) in µs B 100 200 300 

Duty Factor (τ) in % C 80 85 90 

Flushing Pressure in bar D 0.2 0.3 0.4 
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3.7.1.Response surface experimental design 

Response surface methodology (RSM) is a collection of statistical and mathematical 

technique useful for developing, improving and optimizing process. It deals with the situation 

where several input variable potentially influence the performance measure or quality of the 

product or process. The performance measure or quality is known as response. Response surface 

methodology (RSM) quantifies the relationship between the controllable input parameters and 

the obtained response. The goal is to find a suitable approximation for the true functional 

relationship between independent variables and the response. Usually a second-order model as 

given in Eq. 3.2 is utilized in response surface methodology. 

εxxβxβxββY ∑ ∑∑∑
ji jiij

k

1i

2

iiii

k

1i

i0                    (3.2) 

where Y is the corresponding response of input variables Xi, Xi
2
 and XiXj are the square and 

interaction terms of parameters respectively. β0, βi, βii and βij are the unknown regression 

coefficients and ε is the error.  

A full factorial design would provide estimation of all the required regression parameters (β). 

However, full factorial designs are expensive to use as the number of runs increases rapidly with 

the number of factors. Therefore, for the purpose of analysis Box-Behnken design is useful as it 

help to fit the second order model to the response with the use of a minimum number of runs [69, 

70]. Box-Behnken design performs non-sequential experiments. That is, only planning to 

perform the experiment once. These designs allow efficient estimation of the first- and second-

order coefficients. Because Box-Behnken designs have fewer design points, they are less 

expensive to run than central composite designs with the same number of factors. 

Box-Behnken designs can also prove useful in the safe operating zone for the process. 

Central composite designs usually have axial points outside the "cube" (unless it is specified less 

than or equal to one). These points may not be in the region of interest, or may be impossible to 

run because they are beyond safe operating limits. Box-Behnken designs do not have axial 

points, thus, it can be sure that all design points fall within the safe operating zone. Box-Behnken 

designs also ensure that all factors are never set at their high levels simultaneously. In practice, 

two or three centre runs are sufficient. In order to get a reasonable estimate of experimental error, 

three centre runs are chosen in the present work. Twenty seven base runs including three centre 

points are generated in MINITAB 15 as shown in Table 3.6. 
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Table 3.6. Experimental plan for Box-Behnken design 

Run Order Ip(A) Ton(B) τ(C) Fp(D) 

1 0 -1 0 1 

2 0 0 1 -1 

3 -1 0 1 0 

4 1 0 0 -1 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 -1 1 

8 -1 0 0 1 

9 -1 -1 0 0 

10 0 -1 1 0 

11 1 1 0 0 

12 1 -1 0 0 

13 0 1 0 1 

14 0 0 -1 -1 

15 0 1 1 0 

16 0 1 0 -1 

17 0 0 1 1 

18 1 0 -1 0 

19 0 -1 0 -1 

20 0 -1 -1 0 

21 0 1 -1 0 

22 1 0 0 1 

23 -1 1 0 0 

24 -1 0 -1 0 

25 -1 0 0 -1 

26 0 0 0 0 

27 1 0 1 0 

3.8. Data collection 

Four controllable parameters such as discharge current (Ip), pulse-on-time (Ton), duty factor 

(τ) and flushing pressure (Fp) are considered in this study. The experimental design is made as 

per Box-Behnken design of response surface methodology because it is capable of generating a 

satisfactory prediction model with few experimental runs [72, 73]. In three level four factor 

experimental design, the total number of experimental runs is twenty seven having three center 

points.  To run the experiment smoothly the parametric levels are decoded using the Eq. 3.3. 

 

           (3.3) 
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X-X
2
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-X
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where Z is coded value (-1, 0, 1), Xmax and Xmin is maximum and minimum value of actual 

variable and X is the actual value of corresponding variable.  

The weight of tool and work piece is taken and positioned at two electrodes. Each experiment 

is carried out for one hour and final weight of tool and work piece is measured. The initial 

weight and final weight for different experiment along with surface roughness are listed in Table 

3.7 and Table 3.8. Table 3.7 and Table 3.8 shows experimental table for brass and copper tool, 

AISI D2 steel tool work piece combination respectively. 

Table 3.7. Experiment table for brass AISI D 2 steel combination 

Expt. 

No. 

Ip 

(A) 

Ton 

(µs) 

τ 

(%) 

Fp 

(bar) 

Initial Wt. 

(Job) 

Final Wt. 

(Job) 

Initial Wt. 

(Tool) 

Final Wt. 

(Tool) 
Ra 

1 3 100 85 0.3 244.261 243.534 213.45 212.503 3.93 

2 7 100 85 0.3 243.534 241.976 212.503 210.712 4.57 

3 3 300 85 0.3 241.976 241.229 210.597 209.955 4.65 

4 7 300 85 0.3 239.166 235.915 208.967 207.289 7.59 

5 5 200 80 0.2 245.607 244.261 214.428 213.45 6.52 

6 5 200 90 0.2 215.439 213.562 200.44 198.822 6.15 

7 5 200 80 0.4 213.562 212.209 188.685 187.624 6.4 

8 5 200 90 0.4 208.646 206.72 177.531 175.858 5.93 

9 3 200 80 0.3 239.928 239.207 207.284 206.614 5.17 

10 7 200 80 0.3 239.207 236.76 206.614 205.166 6.47 

11 3 200 90 0.3 236.76 235.801 205.166 204.188 4.55 

12 7 200 90 0.3 235.801 232.924 204.188 201.853 5.48 

13 5 100 85 0.2 232.924 231.734 201.853 200.44 5.49 

14 5 300 85 0.2 231.732 230.023 195.305 194.178 7.35 

15 5 100 85 0.4 230.02 228.851 194.178 192.749 5.07 

16 5 300 85 0.4 228.851 227.145 192.749 191.599 7.46 

17 3 200 85 0.2 249.21 248.337 217.197 216.378 5.27 

18 7 200 85 0.2 248.337 245.607 216.378 214.428 7.73 

19 3 200 85 0.4 227.145 226.278 191.599 190.736 4.69 

20 7 200 85 0.4 226.278 223.508 190.736 188.683 6.83 

21 5 100 80 0.3 212.209 211.276 187.624 186.586 4.28 

22 5 300 80 0.3 211.276 209.86 180.026 179.152 8.51 

23 5 100 90 0.3 209.86 208.648 179.152 177.532 4.47 

24 5 300 90 0.3 206.72 204.757 175.858 174.475 7.79 

25 5 200 85 0.3 204.757 203.072 174.475 173.083 6.21 

26 5 200 85 0.3 203.072 201.417 173.083 171.636 5.77 

27 5 200 85 0.3 201.417 199.777 171.636 170.219 5.8 
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Table 3.8. Experiment table for copper AISI D 2 steel combination 

Expt

. No. 

Ip 

(A) 

Ton 

(µs) 

τ 

(%) 

Fp 

(bar) 

Initial Wt. 

(Job) 

Final Wt. 

(Job) 

Initial Wt. 

(Tool) 

Final Wt. 

(Tool) 
Ra 

1 3 100 85 0.3 193.862 192.495 162.795 162.788 3.61 

2 7 100 85 0.3 192.495 186.496 162.788 162.765 6.38 

3 3 300 85 0.3 186.496 185.889 162.765 162.762 2.6 

4 7 300 85 0.3 185.889 181.45 162.762 162.749 4.3 

5 5 200 80 0.2 181.447 179.097 162.727 162.724 4.33 

6 5 200 90 0.2 179.097 175.815 162.724 162.719 4.6 

7 5 200 80 0.4 175.815 173.403 162.719 162.715 5.1 

8 5 200 90 0.4 173.403 169.997 162.684 162.679 4.52 

9 3 200 80 0.3 170.001 168.988 162.673 162.67 3.42 

10 7 200 80 0.3 168.988 164.93 162.67 162.656 6.11 

11 3 200 90 0.3 232.859 231.558 162.65 162.646 2.83 

12 7 200 90 0.3 231.558 224.684 162.646 162.639 5.38 

13 5 100 85 0.2 224.684 221.74 162.639 162.621 4.78 

14 5 300 85 0.2 221.74 220.057 162.62 162.611 3.92 

15 5 100 85 0.4 220.053 217.02 152.271 152.265 5.54 

16 5 300 85 0.4 217.02 215.216 152.265 152.259 3.22 

17 3 200 85 0.2 234.119 232.857 162.86 162.856 3.11 

18 7 200 85 0.2 214.07 208.685 152.254 152.245 5.45 

19 3 200 85 0.4 215.216 214.07 152.259 152.254 3.21 

20 7 200 85 0.4 208.685 203.15 152.245 152.225 6.33 

21 5 100 80 0.3 179.9 177.241 152.22 152.207 5.42 

22 5 300 80 0.3 177.241 175.699 149.535 149.53 4.27 

23 5 100 90 0.3 175.699 172.057 149.53 149.52 4.67 

24 5 300 90 0.3 172.057 170.034 149.52 149.514 3.64 

25 5 200 85 0.3 170.034 167.37 149.514 149.507 3.8 

26 5 200 85 0.3 167.37 164.691 149.507 149.503 4.24 

27 5 200 85 0.3 164.691 162.077 149.503 149.497 4.52 
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3.9. Calculation of response  

3.9.1 Material removal rate (MRR): The weight of work piece before machining and after 

machining is found form experiment is shown in Table 3.7 and Table 3.8 is utilised to calculate 

material removal rate (MRR) using Eq. 3.4.  

Tρ

ΔWw1000
MRR

W

                                                                                                             (3.4) 

Where ΔWw is weight of material removed from work piece during machining, Wρ is the density 

of work piece, T is the machining time. 

 

3.9.2 Tool wear rate (TWR): The weight of tool before machining and after machining is found 

form experiment is shown in Table 3.7 and Table 3.8 is utilised to calculate tool wear rate 

(TWR) using Eq. 3.5. 

Tρ

ΔWt1000
TWR

t

                                                                                                               (3.5) 

ΔWt is the weight of material removed from tool during machining, ρt is the density of the tool, 

T is the machining time. 

 

3.9.3 Roughness is measured by portable stylus type profilometertalysurf (Taylor Hobson, 

Surtronic 3+). 

 

3.9.4 Circularity is measured as the ratio of minimum to maximum Feret‟s diameter. Feret‟s 

diameter is the distance between two parallel tangents on two opposite sides of the hole as shown 

in Figure 3.8 [74]. The diameters are measured using magnified photographs obtained through 

microscope (RADIAL INSTRUMENT with Samsung camera setup, 45-X magnification. 

The responses MRR, TWR, Ra and Circularity are calculated and listed in Table 3.9 and 

Table 3.10. 

 



32 
 

 

Figure 3.8. Feret‟s diameter 

 

Table 3.9. Response table using brass tool 

Expt. 

No. 

Ip 

(A) 

Ton 

(µs) 

τ 

(%) 

Fp 

(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra 

(µm) 
circularity 

1 3 100 85 0.3 1.573593 1.842771 0.85 3.93 

2 7 100 85 0.3 3.372294 3.485114 0.852 4.57 

3 3 300 85 0.3 1.616883 1.24927 0.8842 4.65 

4 7 300 85 0.3 7.036797 3.265227 0.8557 7.59 

5 5 200 80 0.2 2.91342 1.903094 0.8488 6.52 

6 5 200 90 0.2 4.062771 3.148472 0.852 6.15 

7 5 200 80 0.4 2.928571 2.064604 0.8375 6.4 

8 5 200 90 0.4 4.168831 3.255497 0.8598 5.93 

9 3 200 80 0.3 1.560606 1.303756 0.8366 5.17 

10 7 200 80 0.3 5.296537 2.817669 0.8888 6.47 

11 3 200 90 0.3 2.075758 1.903094 0.8435 4.55 

12 7 200 90 0.3 6.227273 4.543686 0.8028 5.48 

13 5 100 85 0.2 2.575758 2.749562 0.8275 5.49 

14 5 300 85 0.2 3.699134 2.193034 0.8461 7.35 

15 5 100 85 0.4 2.530303 2.780697 0.8411 5.07 

16 5 300 85 0.4 3.692641 2.237789 0.8439 7.46 

17 3 200 85 0.2 1.88961 1.593695 0.8494 5.27 

18 7 200 85 0.2 5.909091 3.794513 0.8424 7.73 

19 3 200 85 0.4 1.876623 1.679315 0.8383 4.69 

20 7 200 85 0.4 5.995671 3.994941 0.8397 6.83 

21 5 100 80 0.3 2.019481 2.019848 0.8329 4.28 

22 5 300 80 0.3 3.064935 1.70072 0.8479 8.51 

23 5 100 90 0.3 2.623377 3.152364 0.8536 4.47 

24 5 300 90 0.3 4.248918 2.691185 0.8369 7.79 

25 5 200 85 0.3 3.647186 2.708698 0.8402 6.21 

26 5 200 85 0.3 3.582251 2.815723 0.8366 5.77 

27 5 200 85 0.3 3.549784 2.757346 0.846 5.8 
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Table 3.10. Response table using copper tool 

Expt. 

No. 

Ip 

(A) 

Ton 

(µs) 

τ 

(%) 

Fp 

(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra 

(µm) 
circularity 

1 3 100 85 0.3 2.9589 0.01305 3.61 0.8403 

2 7 100 85 0.3 12.9848 0.042878 6.38 0.8437 

3 3 300 85 0.3 1.3139 0.005593 2.6 0.818 

4 7 300 85 0.3 9.6082 0.024236 4.3 0.8415 

5 5 200 80 0.2 5.0866 0.005412 4.33 0.8437 

6 5 200 90 0.2 7.1039 0.009321 4.6 0.8437 

7 5 200 80 0.4 5.2208 0.009457 5.1 0.835 

8 5 200 90 0.4 7.3723 0.009321 4.52 0.8412 

9 3 200 80 0.3 3.189 0.005312 3.42 0.8211 

10 7 200 80 0.3 10.32 0.0261 6.11 0.8442 

11 3 200 90 0.3 2.816 0.007457 2.83 0.8402 

12 7 200 90 0.3 14.587 0.016 5.38 0.8469 

13 5 100 85 0.2 6.3723 0.027 4.78 0.8524 

14 5 300 85 0.2 3.6429 0.012779 3.92 0.8355 

15 5 100 85 0.4 6.5649 0.019 5.54 0.8351 

16 5 300 85 0.4 3.9048 0.007 3.22 0.8453 

17 3 200 85 0.2 2.7316 0.007457 3.11 0.8397 

18 7 200 85 0.2 11.6558 0.018779 5.45 0.8446 

19 3 200 85 0.4 2.4805 0.000321 3.21 0.84 

20 7 200 85 0.4 11.9805 0.033286 6.33 0.8402 

21 5 100 80 0.3 5.7554 0.024236 5.42 0.8392 

22 5 300 80 0.3 3.3377 0.009321 4.27 0.8451 

23 5 100 90 0.3 7.8831 0.018643 4.67 0.8443 

24 5 300 90 0.3 4.817 0.011186 3.64 0.8344 

25 5 200 85 0.3 5.7662 0.01305 3.8 0.84 

26 5 200 85 0.3 5.7987 0.007457 4.24 0.8531 

27 5 200 85 0.3 5.658 0.011186 4.52 0.8467 

3.10. Conclusions 

This chapter summarizes the experimental details that uses in present study and the responses are 

obtained. The next chapter is the optimization strategy used in present study.
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Chapter 4 

OPTIMIZATION STRATEGY 

 
4.1. Introduction 

Optimization is a mathematical tool used to find the minima and maxima of functions 

subjected to constraints. In engineering and management, optimization or mathematical 

programming is generally used to select best element from some set of available alternatives. 

Optimization originated in the 1940s by George Dantzig to use mathematical techniques for 

generating programs (training timetables and schedules) for military application. Responses may 

not have same nature like productivity and quality are equally important for an production 

industry, but it is observed that better productivity is achieved with less quality. Optimization of 

both quality and productivity to find a setting of input factors from a number of alternatives is 

known as multiple response optimization. Therefore in case of multiple responses, it is need to 

convert them to equivalent single response. The present study represents a neuro-fuzzy method 

to convert the four responses to an equivalent single response. Optimization techniques like 

genetic algorithm, particle swarm optimization are proposed to optimize single response or 

equivalent single response. An intelligence technique, non-dominated shorting genetic algorithm 

(NSGA) is used to optimize multi-responses without converting them equivalent responses. 

4.2. Multi-response optimization using NEURO-FUZZY system 

This paper presents a structured and generic methodology that includes both RSM as well as 

AI tools to minimize the uncertainty in decision-making. The proposal is to map out multiple 

responses into a single performance characteristic index (MPCI) through neuro-fuzzy based 

model. Assume n experiments are conducted utilizing RSM and responses obtained as MRR, 

TWR, Ra, Circularity. Responses are divided into three main types: the smaller-the better (STB), 

the nominal-the-best (NTB), and the larger the-better (LTB) responses. In practice, all the 

responses are not of same category. Therefore, characteristic responses are converted to 

respective S/N ratios as follows [75]: 
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The larger-the-best performance characteristic can be expressed as: 

S/N ratio = – 10 Log10( 1/n   1/Yi
2
 )                                                                                      (4.1) 

The smaller-the-best performance characteristic can be expressed as: 

S/N ratio = – 10 Log10 (1/n  Yi
2
 )                                                                                          (4.2) 

where Yi is the i
th

 experimental data of response. 

 All the S/N ratio responses (Xij) are normalized to obtain normalized response (Zij) so that they 

lie in the range, 0  Zij 1. Normalization is carried out to avoid the scaling effect and minimize 

the variation of S/N ratio obtained at different scales. For responses of larger-the-better and 

smaller-the-better type, normalization is carried out using Eq. 4.3 [76]. 

 

                                                 (4.3) 

 

Systems, where relationship between the input and output is highly nonlinear or not known at all, 

fuzzy logic can be effectively applied to classify the input and output data sets broadly into 

different fuzzy classes. There are many ways of assigning membership function to crisp data 

sets, for example by intuition, by inference, and by applying some AI tools. Data points are 

divided into different classes using conventional clustering technique. The two most popular 

methods of clustering the data are hard c mean clustering (HCM), and fuzzy c-mean clustering 

(FCM). HCM is used to classify data in a crisp sense. In this method, each data point is assigned 

a single membership in any one, and only one, data cluster. FCM extends the crisp classification 

idea into a fuzzy classification notion. Thus, the membership to the various data points can be 

assigned in each fuzzy set (fuzzy class, fuzzy cluster).With the restriction (analogous to the crisp 

classification) that the sum of all membership values for a single data point in all of the classes 

has to be unity. It is advantageous to use the FCM as it minimizes the uncertainty in assigning 

the membership function of a crisp data into various fuzzy classes. Basically, fuzzy c-means 

algorithm calculates fuzzy partition matrix to group some of data points into c clusters. 

Therefore, the aim is to cluster centers (centroids) that minimize dissimilarity function (Jm) [75]. 

])d()([min v)](U,[Jmin)v,U(J
n

1k
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m                    (4.4) 

where,  is the membership value of the k
th

 data point in the i
th

 cluster,  is weighting 

parameter varying in the range [1, ∞], U is fuzzy partition matrix, viz cluster center matrix, and d 
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is similarity matrix given in Eq. 4.5. Utilizing the Euclidean distance measure to characterize the 

similarity, the elements of d are calculated by: 

m

1j

2

ijjkikikik )vx(vx)v-x(dd     (for i = 1 to c and k = 1 to n)     (4.5) 

where m is the number of features, xk is k
th

 data point and vi is the centroid of i
th

 cluster that can 

be presented by: 

vi = {vi1, vi2,…….vim} (for i = 1 to c)                                                                                     (4.6) 

In addition, cluster centers are calculated using following formulation 

n

1k

m

ik

n

1k kj

m

ik

ij

μ

xμ
v   (for i =1 to c and j = 1 to m)            (4.7) 

where, x is fuzzy variable describing data point. In essence, fuzzy partitioning is performed 

through an iterative optimization utilizing following formulation: 

c

1j

1m

2
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ik

ik

)s(d

)s(d

1
)1s(u                  (4.8) 

It should be noted that, sum of membership values for a cluster must be equal to 1 i.e.  

kIi ik 1μ                                                                                                                         (4.9) 

Finally, the best available solution within a predefined accuracy criterion is determined by: 

)r()1r( UU                                                                                                                    (4.10)                                      

where ε is error level for the termination of iteration which varies between 0 and 1. In detail, this 

iterative procedure converges to a local minimum of Jm. Algorithmically; fuzzy c-means 

methodology can be explained as given below (Figure 4.1). 
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Figure 4.1. Flow Chart for fuzzy c-mean clustering 

The membership function is repeatedly updated when the system parameters continuously 

changes in a non-deterministic fashion. Neural network is used for these types of systems, as it is 

capable of modifying itself by adapting the weights. Neural network do not learn by adding new 

rules to their knowledge base, they can learn by modifying their overall structure. In this paper, a 

back propagation neural network (BPN) is used to generate the fuzzy membership function for 

fuzzy classes of an output-data set. BPN is applied that uses each data in training-data set and 

corresponding membership values indifferent class, obtained by FCM, for training itself to 

simulate the relationship values between input data and membership values. Using BPN, each 

training-data set can be assigned a membership value in different fuzzy classes. Testing-data set 

is used to check the performance of neural network. Once the neural network is trained, its final 

version can be used to determine the membership values of any input data in the different fuzzy 

classes. 

Neural network basically use models that simulate the working model of the neurons in the 

human brain. It consists of two fixed layers an input layer and an output layer and one or more 

hidden layers. In the input layer, number of neuron is equal to number of input data to the neural 

network and in output layer, the number on neuron is equal to the number of output, but in 

hidden layer the number of neurons are optimized to minimize the error between the input and 

s = 0 

Initialize U matrix randomly 

yes 

Compute v matrix (Eq. 7) 

U(s+1)-U(s) < ε 

Modify U matrix (Eq. 8) 

Calculate d matrix (Eq. 6) 

Iteration is terminated 

no 

s = s+1 



38 
 

output predicted value. Among the neural network models, supervised learning neural networks 

are used to solve the parameter design problem with multiple responses and to establish a 

functional relationship between control factors and quality characteristic. In neural network, a set 

of training input data along with a corresponding set of output data is trained to adjust the 

weights in a network. Then, the well trained network is used to predict the membership functions 

to different fuzzy classes (clusters).The architecture of a typical m-h-n neural network indicates a 

basic three layered BPN represented by m-h-n neural model, where parameters m, h and n are the 

total number of neurons in input, hidden and output layers, respectively. For a multiple input and 

multiple output system, the data set for input and output comprising of vectors {(x1; x2; x3. . .xn); 

(y1; y2; y3. . yn)} are used. A weight wi as path joiner are randomly assigned in different layers. 

Then, an input x from the training-data set is passed through the neural network, corresponding 

to which an output y is computed and compared with desired output. The error (e) is computed 

as: 

e=yactual-ydesired                                (4.11) 

Error e is distributed to the neurons in hidden layer using a technique called back-propagation. 

The different weights wi connecting different neurons in the network are updated as: 

Wi(new)= Wi(old)+αexi               (4.12) 

where α is learning rate, e is associated error, xi input to the i-th neuron. 

Learning rate is defined as the rate by which a neural network updates its weight to minimize the 

error. It should be kept low to escape the local optima. The input value xi is again passed through 

the neural network with updated weights, and the errors are computed. This iteration technique is 

continued until the error value of the final output is within the prescribed limit. This procedure is 

continued for all data in the training-data set. Then, a testing-data set is used to verify the 

efficiency of the neural network to simulate the nonlinear relationship. When network attains a 

satisfactory level of performance, a relationship between input and output data established and 

the weights are used to recognize the new input patterns.  

It is advantageous to use the FCM as it minimizes the uncertainty in assigning the membership 

function of a crisp data into various fuzzy classes. Then, a BPN is applied that uses each data in 

training-data set and corresponding membership values in different class, obtained by FCM, for 

training itself to simulate the relationship values between input data and membership values. By 

the BPN method each training-data set can be assigned a membership value in different fuzzy 
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classes. Once the neural network is trained, its final version can be used to determine the 

membership values of any input data in the different fuzzy classes. 

Defuzzification is the conversion of a fuzzy quantity to a precise quantity. Among the various 

methods, the COA method is used for defuzzifying fuzzy output function into a crisp data [77, 

78]. In this method, the fuzzy output µA(y) transform into a crisp value y. It is given by the 

expression as in Eq.4.13. 

∫ (y)dyAμ

∫ (y).ydyAμ
=y                                                                               (4.13) 

4.3. Optimization technique 

4.3.1 Particle swarm optimization 

In this study, the basic PSO algorithm is described, followed by a discussion on side and 

functional constraint handling, and finally, a discrete version of the algorithm is presented. 

Particle swarm optimization (PSO) is a stochastic optimization algorithm that was originally 

motivated by the thinking model of an individual of the social organism such as birds, fish, etc. 

by Kennedy and Eberhart [79]. The PSO has particles driven from natural group with 

communications based on evolutionary computation and it combines self-experiences with social 

experiences. Here a contestant is considered as a particle and the objective is to get a global 

optimum. This algorithm uses a collection of flying particles in a search area as well as the 

movement towards a promising area. The flying particle is compared with changing solutions 

and search area is compared with current and possible solutions [80, 81]. It should be noted that 

while the GA is inherently discrete, i.e. it encodes the design variables into bits of 0‟s and 1‟s, 

therefore it easily handles discrete design variables, PSO is inherently continuous and must be 

modified to handle discrete design variables.  

The basic PSO algorithm consists of three steps, namely, generating particle‟s positions and 

velocities, velocity update and finally, position update. Here, a particle refers to a point in the 

design space that changes its position from one move (iteration) to another based on velocity 

updates. First, the positions, i
th

, and velocities, i
th

, of the initial swarm of particles are randomly 

generated using upper and lower bounds on the design variables values, xmin and xmax, as 

expressed in Eq. 4.14 and Eq. 4.15. The positions and velocities are given in a vector format with 

the superscript and subscript denoting the i
th

 particle at time t. In Eq. 4.14 and Eq. 4.15, rand is a 
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uniformly distributed random variable that can take any value between 0 and 1 [82]. This 

initialization process allows the swarm particles to be randomly distributed across the d 

dimensional design space. 

)xx(randxx minmaxmin0i                                                                                               (4.14) 

 

time

position

t

)xx(randx
v minmaxmin

0i                                                                              (4.15) 

The second step is to update the velocities of all particles at time t+1 using the particles 

objective or fitness values which are functions of the particles current positions in the design 

space at time t. The fitness function value of a particle determines which particle has the best 

global value in the current swarm, gbestj(t), and also determines the best position of each particle 

over time, pbesti(t), i.e. in current and all previous moves. The velocity update formula uses these 

two pieces of information for each particle in the swarm along with the effect of current motion, 

vi(t), to provide a search direction, vi(t +1) , for the next iteration. The velocity update formula 

includes some random parameters, represented by the uniformly distributed variables, rand, to 

ensure good coverage of the design space and avoid entrapment in local optima. The three values 

that effect the new search direction, namely, current motion, particle own memory, and swarm 

influence, are incorporated via a summation approach as shown in Eq. 4.16 with three weight 

factors, namely, inertia factor, w , self-confidence factor, c1 , and swarm confidence factor, c2 , 

 

    


influence Swarm

t

)t(x)t(gbest
rand c+

influence
memory Particle

t

)t(x)t(pbest
 rand c+

motion
Current

(t) vw=

1 tat time i
particle ofVelocity 

1)+(tv ii
2

ii
1ii

                (4.16) 

 

Position update is the last step in each iteration. The Position of each particle is updated using its 

velocity vector as shown in Eq. 4.17 and depicted in Figure 4.2. 

1)+(tv+(t)x=1)+(tx iii
                                            (4.17) 

i=1, 2, ….., N 
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Figure 4.2. Depiction of the velocity and position updates in Particle Swarm Optimization 

 

The three steps of velocity update, position update, and fitness calculations are repeated until 

a desired convergence criterion is met. In the PSO algorithm implemented in this study, the 

stopping criteria is that the maximum change in best fitness should be smaller than specified 

tolerance (ε) for a specified number of moves, S , as shown in Eq. 4.18.  

  1,2,.....Sq                 ))qt(gbest(f))t(gbest(f ii                                                   (4.18) 

The procedure for implementing the PSO is given by the following steps.  

Step 1: Initialization of swarm positions and velocities: Initialize a population (array) of particles 

with random positions and velocities in the D dimensional problem space using uniform 

probability distribution function. 

Step 2: Evaluation of particle‟s fitness: Evaluate each particle‟s fitness value. Fitness function is 

maximized rather than minimize in this study.  

Step 3: Comparison to pbest (personal best): Compare each particle‟s fitness with the particle‟s 

pbest. If the current value is better than pbest, then set the pbest value equal to the current value 

and the pbest location equal to the current location in a D-dimensional space. 

Step 4: Comparison to gbest (global best): Compare the fitness with the population‟s overall 

previous best. If the current value is better than gbest, then reset gbest to the current particle‟s 

array index and value. 

Current motion 

influence 

Particle memory 

influence 

swarm influence 

pbesti 

xi (t+1) 

gbesti (t)
 

xi (t) 

vi (t) 
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Step 5: Updating of each particle‟s velocity and position: Change the velocity, vi, and position of 

the particle, xi, according to Eq. 4.16 and Eq. 4.17 respectively. 

 

4.3.2 Genetic algorithm 

Genetic algorithm (GA) is the adaptive heuristic search algorithm based on mechanics of 

genetics and natural selection. GA is a family of computational models inspired by Darwin‟s 

theory of evolution i.e. survival-of-the-fittest. In nature, competition among individuals for 

resource results in the fittest individuals dominating over the weaker one. Genetic algorithms are 

noticed as function optimizer, which algorithms have been applied are quite broad area. 

Implementation of GA begins with a random population of chromosomes. Then these structures 

are evaluated and allocated in reproductive opportunities, so that the chromosomes representing 

better solution to the target are given more chances to reproduce than the chromosomes which 

are poorer solutions. Therefore goodness of a solution is typically defined with respect to the 

current population. Flow chart of genetic algorithm process is shown in Figure 4.3. 

 

4.3.2.1. Basic Principle 

 The working principle of a GA is illustrated below, in which the major steps involved are 

generation of a population of solutions, finding the objective function and fitness function and 

the application of genetic operators. They are described in detail in the following subsection. 

 

//* Algorithm GA*// 

randomly initialize population 

repeat 

 evaluate objective function 

 find fitness function 

 apply genetic operators 

  reproduction 

  crossover 

  mutation 

until stopping criteria 
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START

Encoding

Initial population

Calculate fitness

Reproduction

Crossover

Mutation

FINISH

END ?
NO

YES

 

Figure 4.3. Flow chart of genetic algorithm 
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4.3.2.2. Working Principle 

An unconstrained optimization problem is considered to illustrate the working principles of 

GA. Let us consider a maximization problem, 

N, . . . . . 1,2,3,i                  xx xf(x), Maximize u

ii

l

i                                                         (4.19) 

where 
l

ix  and 
u

ix  are the lower and upper bound the variable xi can take. Though a maximization 

problem is considered here, a maximization problem can also be handled using GA. The working of GA is 

done by performing the following tasks. 

4.3.2.3. Encoding 

To solve the above problem (Eq. 4.19) using GA, the variable xi are first coded in some 

string structures. Binary-coded strings having 1's and 0's are used. The length of the string is 

usually determined according to the desired solution accuracy. 

4.3.2.4. Fitness Function 

GA mimics the survival-of-the-fittest principle of nature to make the search process. 

Therefore, GA is suitable for solving maximization problems. Minimization problems are 

usually transformed into maximization problem by suitable transformation. Initially the fitness 

function F(i) is derived from the objective function f(x) and used in successive genetic 

operations. Generally GA fitness is used to allocate reproductive character to the individuals in 

the population and thus act as a measure of goodness to be maximized. Therefore individual 

having higher fitness value have higher probability of being selected as candidates for further 

examination. The fitness function can be considered to be the same as the objective function or 

F(i) = f(x) for maximization problems. To generate non-negative values in all the cases, it is 

necessary to map the objective function to fitness function form. There are many type of such 

transformations possible, among them two usually approved fitness mappings are presented in 

Eq. 4.20 and Eq. 4.21. 

)x(f1

1
)x(F                                                                                                                         (4.20) 

This transformation does not alter the location of the minimum, but converts a minimization 

problem to an equivalent maximization problem. The other function to transform the objective 

function to get the fitness value F (i) is shown in Eq. 4.21. 

p

1i
)x(f

P)x(f
V)i(F                                                                                                                (4.21) 
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where, f(x) is the objective function value of individual, P is the population size and V is a large 

value to ensure non-negative fitness values. The value of V is the maximum value of the second 

term of Eq. 4.21 so that the fitness value corresponding to maximum value of the objective 

function is zero. This transformation also does not alter the location of the solution, but converts 

a minimization problem to an equivalent maximization problem. The fitness function value of a 

string is known as the string fitness. 

4.3.2.5. GA operators 

The operation of GA begins with a population of a random string representing design or 

decision variables. The population is then functioned by three main operators; reproduction, 

crossover and mutation to create a new population of points. GA can be viewed as trying to 

maximize the fitness function, by evaluating several solution vectors. These operators are to 

create new solution vectors by selection, combination or alteration of the current solution vectors 

that have shown to be good temporary solutions. The new population is further evaluated and 

tested till termination. If the termination criterion is not met, the population is iteratively 

operated by the above three operators and evaluated. This procedure is continued until the 

termination criterion is met. One cycle of these operations and the subsequent evaluation 

procedure is known as a generation in GA terminology. 

4.3.2.6. Reproduction 

Reproduction is the first operator applied on a population that makes more copies of better 

strings in a new population. Reproduction chooses good strings in a population and forms a 

mating pool. This is also known as the selection operator. The process of natural selection causes 

those individuals that encode successful structures to produce copies more frequently. Therefore, 

the reproduction of the individuals in the current population is necessary to sustain the generation 

of a new population. The essential idea of all reproduction operators in GA is that the above 

average strings are picked from the current population and their multiple copies are inserted in 

the mating pool in a probabilistic manner. 

4.3.2.7. Crossover  

The second operator, crossover is used to recombine two strings to get a better one. The 

successive generations carried out by combining material from two individuals of the previous 

generation rather than forming new string. Good strings in a population are probabilistically 

assigned a larger number of copies and a mating pool is formed. The new strings are created in 



46 
 

crossover by exchanging information among strings of the mating pool. The two strings 

participating in information changing are known as parent string and resulting string is known as 

children strings. Good strings created by crossover have more copies in the next mating pool 

generated by crossover. Therefore the effect of cross over may be detrimental or beneficial. 

Thus, in order to preserve some of the good strings that are already present in the mating pool, all 

strings in the mating pool are not used in crossover. When a crossover probability (pc) is used, 

only 100pc percent strings in the population are used in the crossover operation and 100 (1-pc) 

percent of the population remains as they are in the current population. A crossover operator is 

mostly responsible for the search of new strings, however mutation operator is also used for this 

purpose sparingly. In the GA literature, there are many crossover operators exist. The most 

common adopted crossover operators are one site crossover and two site crossover. The one site 

crossover operator is achieved by randomly selecting a crossing site along the string of randomly 

selecting two strings from the mating pool and by exchanging all bits on the right side of the 

crossing site as shown in Figure 4.4. Thus the new string is a combination of the old strings. 

011|01100

110|11001

011|11001

011|01100String 2

String 1 String 1

String 2

Before crossover After crossover
 

Figure 4.4. One site crossover operation 

011|011|00

110|110|01

011|110|01

011|011|00String 2

String 1 String 1

String 2

Before crossover After crossover
 

Figure 4.5. Two site crossover operation 

In the two site crossovers, two crossover sites are chosen and the bits between the sites are 

exchanged as shown in Figure 4.5. For small string length one site crossover is mostly preferred 

wherever two site crossovers are suitable for large strings. The core objective of crossover is to 

get a new string by exchanging information between strings that is possibly better than the 

parents. 
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4.3.2.8. Mutation 

Mutation is the process of adding new information to the genetic search in a random way and 

to avoid getting trapped at local optima. The population becomes homogeneous due to repeated 

use of reproduction and crossover operators and mutation operator introduces diversity in the 

population. Significant different between parent and children is possible only due to random 

distribution of genetic information by mutation. 

Mutation operates at the bit level; there is a probability that each bit may become mutated, 

when the bits are being copied from the current string to the new string. This probability is 

usually a quite small value, known as mutation probability (pm). If the random number between 

zero and one, is less than the mutation probability (Pm), then the bit is altered, so that zero 

becomes one and vice versa. Thus diversity introduces to the population by random scattering 

which result in better optima or even modify a part of genetic code. There may be possibility of 

weak individual formation, which never be selected for further operations. Therefore, mutation is 

necessary to create a point in the neighborhood of the current point and to maintain diversity in 

the population.  

The function of these three operators are, reproduction operator selects good strings, the 

crossover operator recombines good sub-strings to create a better sub-string and the mutation 

operator alters a string locally expecting a better string. Even though none of these claims are 

guaranteed, the bad strings are eliminated by the reproduction operator and good strings are 

increasingly emphasized in the next generation, yielding solutions that are closer to the optimum 

solution. Finally the objective function value of the individuals of the new population is 

determined by decoding the strings, which is express the fitness of the solutions of the new 

generations. This is one generation, i.e. completes one cycle of genetic algorithm. The improved 

solution is stored as the best solution and this process is repeated till convergence. 

4.4. Multi-objective optimization using non dominated sorting genetic algorithm NSGA 

A single objective optimization algorithm provides a single optimal solution whereas most of 

the multi-objective problems, give rise to a set of optimal solutions instead of a single optimal 

solution. The set of solution is known as pareto-optimal solution, in which one of these pareto-

optimal solutions cannot be said to be better than the other. Suitability of one solution depends 

on a number of factors including user‟s choice and problem environment. Hence, this demands 
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finding the entire set of optimal solutions. Optimization of conflicting nature response requires 

multi-objective optimization. 

Genetic algorithm (GA) is a subclass of population based stochastic search procedure which 

is closely modelled on the natural process of evolution with emphasis on breeding and the 

survival of the fittest. Instead of starting with a single point, the algorithm starts with a set of 

initial solutions. Also, instead of a deterministic result at each iteration, GA operators produce 

probabilistic results leading to stochasticity. Proper search direction can be provided to the GA 

by simulating the natural process of evolution. In the process of evolution, the organisms which 

are better able to adapt to the environment have a higher chance of survival. This leads to a 

higher chance of breeding for such organisms and an increased probability of their traits being 

carried over to the next generation through their offspring. Thus, a trait which leads to a better 

organism has higher chances of making it to the next generation. Moreover, due to mating of two 

different organisms with better fitness leads to intermixing of favourable traits which hopefully 

would lead to better offspring. In case the new members are poorer, they would be lost in the 

next generation. At the same time, it is important to maintain diversity in the population so that 

potentially important regions of the search space are not eliminated during the initial stages. 

To keep a track of which traits are favourable and which are not, traits are coded in the form 

of genetic material which is stored in a chromosome. Due to selection of better traits and 

intermixing, eventually the entire population has the same chromosome set which is also the best 

possible trait combination. 

To incorporate the idea of natural evolution GA must have the following essential features: 

 Encoding of solution: To keep track of favourable solutions 

 Assigning fitness to a solution: To determine the chances of survival of the solution. 

 Selection operator: To select the fit solutions for mating.  

 Crossover or Recombination operator: For mixing of traits through mating of two different 

solutions.  

 Mutation operator: Random variations in encoded solutions to obtain new solutions.  

 Survivor operator: To determine the members which die off and those which go to the next 

generation 

These operators are responsible for providing the search direction to a GA. Selection operator 

selects good solutions and crossover operator recombines good genetic material from two good 
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solutions to (hopefully) form a better solution. Mutation operator alters a string locally to 

(hopefully) create a better string. If bad strings are created they are be eliminated by the 

reproduction operator in the next generation and if good strings are created, they are emphasized. 

In a single objective optimization, there exists only one solution. But in the case of multiple 

objectives, there is a set of mutually dominant solution, which is exclusive and unique with 

respect to all objectives. Classical methods for solving multi-objective problem suffer from 

drawback of trading off among objectives when a weighted function is used. These methods 

transform the multi-objective problem into single objective by assigning some weights based on 

their relative importance (Yu et al 2004). However, most of the multi-objective problems, in 

principle, give rise to a set of optimal solutions instead of a single optimal solution. The set of 

solution is known as pareto-optimal solution. 

Real-world problems require simultaneous optimization of several incommensurable and 

often conflicting objectives. Often, there is no single optimal solution; rather there is a set of 

alternative solutions. These solutions are optimal in the wider sense that no other solutions in the 

search space are superior to another when all objectives are considered. They are known as 

pareto-optimal solutions. The image of the efficient set in the objective space is called non-

dominated set. For example, consider a minimization problem and two decision vectors a, b  

X, the concept of pareto optimality can be defined as follows: a is said to dominate b if:  

i = {1, 2, . . . , n} : fi(a) ≤ fi(b) and 

j = {1, 2, . . . , n} : fj(a) < fj(b)  

Conditions which a solution should satisfy to become dominant are (i) Any two solutions of X 

must be non-dominated with respect to each other (ii) Any solution not belonging to X is 

dominated by at least one member of X. All the objective function vectors, which are not 

dominated by any other objective function vector of a set of Pareto-optimal solutions, are called 

non-dominated set with respect to that set of Pareto-optimal solutions. There are two goals in a 

multi-objective optimization: 

(i) Convergence to the Pareto-optimal set; and 

(ii)  maintenance of diversity and distribution in solutions  

Non-dominated Sorting Genetic Algorithm II (NSGA II) is a multi-objective evolutionary 

algorithm based on non-dominated sorting [83]. The algorithm uses elitist non-dominated sorting 

along with crowding distance sorting to obtain the non-dominated set. The algorithm is capable 
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of handling constrained multi-objective optimization problems with binary coding and real 

parameters. The appropriate objective function in terms of the variables is coded in the 

algorithm. The algorithm produces the non-dominated set out of the entire population after a 

specific number of generations. Members of Pareto-front belong to the non-dominated set which 

is obtained on convergence of the algorithm. Selection is done with the help of crowded-

comparison operator based on ranking (according to non-domination level) and crowding 

distance. 

Randomly an initially parent population (solution) P of size N is generated. In order to 

identify the non-domination level, each solution is compared with every other solution and 

checked whether the solution under consideration satisfies the rules given below 

Obj.1[i] > Obj.1[j] and Obj.2[i] ≥ Obj.2[j], 

or Obj.1[i] ≥ Obj.1[j] and Obj.2[i] > Obj.2[j] 

where, i and j are chromosome numbers. 

Now if the rules are satisfied, then the selected solution is marked as dominated. Otherwise, 

the selected solution is marked as non-dominated. In the first sorting, all the non-dominated 

solution (N1) is assigned rank 1. From the remaining N−N1 dominated solution from the first 

sorting, again solution are sorted and the non-dominated solutions in second sorting are assigned 

rank 2. This process continues until all the solutions are ranked. Each solution is assigned fitness 

equal to its non-domination level (rank 1 is the best level, rank 2 is the next-best level, and so 

on). Solutions belong to a particular rank or non-domination level, none of the solution is better 

with respect to other solutions present in that non-domination level. After identifying the rank of 

each solution, crowding distance of each solution belongs to a particular non-nomination set or 

level is calculated. The crowding distance is the average distance of two points on either side of 

this selected solution point along each of the objectives function. For calculation of crowded 

distance, all the populations of particular non-dominated set are sorted in ascending order of 

magnitude according to each objective function value. Then, the boundary solution of each 

objective function, i.e., solution with largest and smallest values is assigned an infinity value. 

Rest of the intermediate solution are assigned a distance value equal to the absolute normalized 

difference in the function value at two adjacent solutions. For solving optimization problem 

using GA, it needs fitness value. The fitness values are nothing but the objective function values. 
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Therefore, there is a need of function or equation, which relates the decision variable with the 

objective. The flow chart of the above algorithm is shown in Figure 4.6. 

Initialize population P 

of size N

Generation=1

Calculate fitness value

Sorting based on crowed 

comparision operator

Selection, Crossover and Mutation to create 

offspring population Q of size N

Combined population R=P+Q, of size 2N

Chose population P of size N based on 

crowded-comparision operator

if generation > 

Max.Gen.

Stop

 

Figure 4.6. Flow chart for NSGA algorithm 

4.5. Conclusions 

The chapter summarizes different optimization technique proposed in this present study. 

Experimental results and optimal setting for the responses individually and simultaneously are 

discussed in the next chapter. 
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Chapter 5 

RESULTS AND DISCUSSION 

 
5.1. Introduction 

This chapter presents experimental investigations on the influence of important process 

parameters such as discharge current (Ip), pulse-on-time (Ton), duty factor (τ) and flushing 

pressure (Fp) along with their interactions on responses  like material removal rate (MRR), tool 

wear rate (TWR), surface  roughness (Ra) and circularity (r1/r2). Response surface methodology 

(RSM) parameter design, being a simple and inexpensive method is adopted to understand effect 

of process parameters and their interaction on responses. Conventional RSM can effectively 

establish the relationship between parameters and a single response by developing regression 

equation. Genetic algorithm holds good to optimize the equation and finding optimal 

combination. When multiple performance characteristics with conflicting goals are considered, 

the approach becomes unsuitable. The multiple performance measures considered in this work 

are material removal rate (MRR), tool wear rate (TWR), surface roughness (Ra) and circularity 

(r1/r2). All these responses can be combined together into an equivalent response that, MRR, 

circularity should be maximized and TWR, Ra should be minimized. Neuro-fuzzy has the ability 

to combine all the objectives simultaneously, utilized in RSM to analyse and develop regression 

equation. Particle swarm optimization technique can optimize the regression equation to obtained 

optimal setting of process parameters (variables). Multi-response optimization by non-dominated 

sorting genetic algorithm has the capability to handle any number of equations of responses and 

to provide pareto solution satisfying all the responses. 

5.2. Optimization of single response  

5.2.1 Material Removal Rate  

Material removal is the main objective of machining process. So it is need to calculate the 

material removal rate (MRR) and analyze the effect of controllable factors on material removal 

rate. The Table 5.1 shows the experimental results for material removal rate using brass and 

copper as electrode. 
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Table 5.1. MRR using Brass and Copper tool 

Expt. No Ip (A) Ton (μs) Τ (%) Fp (bar) 
MRR using brass 

tool (mm
3
/min) 

MRR using copper 

tool (mm
3
/min) 

1 3 100 85 0.3 1.5736 2.9589 

2 7 100 85 0.3 3.3723 12.9848 

3 3 300 85 0.3 1.6169 1.3139 

4 7 300 85 0.3 7.0368 9.6082 

5 5 200 80 0.2 2.9134 5.0866 

6 5 200 90 0.2 4.0628 7.1039 

7 5 200 80 0.4 2.9286 5.2208 

8 5 200 90 0.4 4.1688 7.3723 

9 3 200 80 0.3 1.5606 3.189 

10 7 200 80 0.3 5.2965 10.32 

11 3 200 90 0.3 2.0758 2.816 

12 7 200 90 0.3 6.2273 14.587 

13 5 100 85 0.2 2.5758 6.3723 

14 5 300 85 0.2 3.6991 3.6429 

15 5 100 85 0.4 2.5303 6.5649 

16 5 300 85 0.4 3.6926 3.9048 

17 3 200 85 0.2 1.8896 2.7316 

18 7 200 85 0.2 5.9091 11.6558 

19 3 200 85 0.4 1.8766 2.4805 

20 7 200 85 0.4 5.9957 11.9805 

21 5 100 80 0.3 2.0195 5.7554 

22 5 300 80 0.3 3.0649 3.3377 

23 5 100 90 0.3 2.6234 7.8831 

24 5 300 90 0.3 4.2489 4.817 

25 5 200 85 0.3 3.6472 5.7662 

26 5 200 85 0.3 3.5823 5.7987 

27 5 200 85 0.3 3.5498 5.658 

 

ANOVA of Response Surface Quadratic Model for MRR 

The satisfactoriness of the model is checked by using the analysis of variance (ANOVA) 

technique. As per this technique, if the calculated value of the P value of the developed model 

does not exceed the standard tabulated value of P for a desired level of confidence (say 95%), 

then the model is considered to be satisfactory within the confidence limit. ANOVA test results 

are presented in the Table 5.2 and Table 5.3. 
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ANOVA for MRR using brass tool, Table 5.2 shows that the factor Ip, Ton, τ, Flushing 

Pressure, interaction of Ip and Ton, square term of Ip and Ton have significant effect on MRR. 

Among these terms Ip has the highest effect on MRR with contribution is about 77.15%, Ton has 

the second highest effect on MRR with a contribution 9.35%. Then the interaction effect of Ip 

and Ton with a contribution of 5.37% & and then flushing pressure and other main effect and 

their square terms have very less contribution towards MRR. 

Table 5.2. ANOVA for MRR using Brass Tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

% Contribution 

 

Model 61.41277 14 4.386627 136.5908 < .0001 99.37639 

A-Ip 47.67734 1 47.67734 1484.577 <0.0001 77.15011 

B-Ton 5.778105 1 5.778105 179.9186 < .0001 9.349964 

C- τ 0.274579 1 0.274579 8.549849 <0.0127 0.444316 

D-Fp 1.53246 1 1.53246 47.71773 <0.0001 2.479782 

AB 3.320413 1 3.320413 103.391 < .0001 5.372997 

AC 0.00248 1 0.00248 0.077223 0.7858 0.004013 

AD 0.043181 1 0.043181 1.344565 0.2688 0.069874 

BC 0.000299 1 0.000299 0.009319 0.9247 0.000484 

BD 0.084129 1 0.084129 2.619609 0.1315 0.136135 

CD 0.000557 1 0.000557 0.017343 0.8974 0.000901 

A^2 0.470804 1 0.470804 14.65991 <0.0024 0.761842 

B^2 1.336135 1 1.336135 41.60457 <0.0001 2.162095 

C^2 0.005246 1 0.005246 0.163347 0.6932 0.008489 

D^2 0.052881 1 0.052881 1.646607 0.2236 0.08557 

Residual 0.385381 12 0.032115 
  

0.623613 

Lack of Fit 0.380463 10 0.038046 15.47119 0.0622 0.615654 

Pure Error 0.004918 2 0.002459 
  

0.007959 

Cor Total 61.79815 26 
   

100 

< Significant 

 

ANOVA for MRR using copper tool, Table 5.3 shows that factor Ip, Ton, τ, Flushing 

Pressure, interaction factor of Ip and Fp, square term of Ip and Ton are significant terms. Among 

these terms Ip has the highest effect on MRR with contribution is about 80.99 %, Ton has 6.6 %  

effect on MRR. Then square of Ip have a contribution of 4.24% & and flushing pressure along 

with other main effect and their square terms have very less contribution towards MRR.  
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Table 5.3. ANOVA for MRR using copper Tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

 

% of Contribution 

Model 313.9927 14 22.42805 58.5686 < 0.0001 98.55762 

A-Ip 258.0435 1 258.0435 673.8545 < 0.0001 80.99599 

B-Ton 21.05399 1 21.05399 54.98036 < 0.0001 6.608532 

C- τ 1.838406 1 1.838406 4.800811 <0.0489 0.577048 

D-Fp 5.205574 1 5.205574 13.59383 <0.0031 1.633952 

AB 0.74961 1 0.74961 1.96E+00 0.1871 0.235291 

AC 0.082886 1 0.082886 0.216449 0.6501 0.026017 

AD 5.3824 1 5.3824 1.41E+01 <0.0028 1.689455 

BC 0.001201 1 0.001201 0.003135 0.9563 0.000377 

BD 0.105106 1 0.105106 0.274473 0.6099 0.032991 

CD 0.004502 1 0.004502 0.011758 0.9154 0.001413 

A^2 12.88169 1 12.88169 33.63924 < 0.0001 4.043371 

B^2 2.124591 1 2.124591 5.548155 <0.0364 0.666877 

C^2 0.000485 1 0.000485 0.001266 0.9722 0.000152 

D^2 0.9051 1 0.9051 2.363577 0.1501 0.284097 

Residual 4.595238 12 0.382936 
  

1.442376 

Lack of Fit 4.584385 10 0.458438 84.47888 0.0118 1.43897 

Pure Error 0.010853 2 0.005427 
  

0.003407 

Cor Total 318.588 26 
   

100 

< Significant 

 

Normal plot 

Normal plot is a graphical technique which shows whether the points are normally 

distributed or not. The data are plotted against Residuals in such a way that the points should lay 

in a straight line. If the points follow a straight line then the points are normally distributed. 

Figure 5.1 shows the normal probability plot for MRR using brass tool. The MRR values are 

looks fairly straight line except experiment no. 1 and 9 due to higher residual values. Therefore 

MRR using brass tool are normally distributed. Figure 5.2 shows the normal probability plot for 

MRR using copper tool. The MRR values are following the straight line. Therefore MRR using 

copper tool are normally distributed. 
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Figure 5.1. Normal plot of residuals for MRR using brass tool 

 

Figure 5.2. Normal plot of residuals for MRR using copper tool 
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Surface Plot 

Figure 5.3 shows the surface plot for MRR using brass tool, in relation to the process 

parameters such as discharge current (Ip) and pulse-on-time (Ton). It can be observed that the 

MRR tends to increasing with discharge current from 3 A to 7A due to more heat generation as a 

result of strong spark for any value of Ton. MRR increases slowly with increasing Ton from 100 

µs to 200 µs and then drop off up to 300 µs with increasing Ton for any value of Ip. This occurs 

due to increase of inter electrode gap (IEG). Also it can be observed that the MRR increases 

rapidly with the mutual effect of Ton and Ip. MRR attains maximum at 7A discharge current and 

200 µs pulse-on-time. 

Figure 5.4 shows the surface plot for MRR using brass tool, in relation to the process 

parameter such as duty factor and flushing pressure. It can be observed that MRR increases very 

slowly with increasing flushing pressure for any value of duty factor because this doesn‟t allow 

forming the carbon layer. Similarly MRR increases slowly with increasing τ value because work 

piece gets less time to cool between two spark. The figure shows that MRR increases at faster 

rate due to their mutual effect. MRR attains maximum at 0.4 bar flushing pressure and 90 % duty 

factor. 

 

Figure 5.3. Surface plot for MRR using brass tool 
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Figure 5.4. Surface plot For MRR using brass tool 

 

Surface plot for MRR using copper tool in relation with discharge current (Ip) and pulse –

on–time (Ton) is shown in Figure 5.5. It is observed that MRR tends to increase with Ip from 3A 

to 7A for any value of Ton due to more heat generation as a result of strong spark. The MRR 

increases slowly with increasing Ton from 100 µs to 200 µs and then drop off up to 300 µs for 

any value of Ip. This occurs due to increase of inter electrode gap (IEG). It is seen that Ip attains 

maximum at 7 A Ip and 100 µs Ton. 

 

Figure 5.6 shows the surface plot for MRR using copper tool, in relation with duty factor (τ) 

and flushing pressure (Fp). It can be observed from the plot that MRR increases very slowly with 

increasing flushing pressure for any value of τ because this doesn‟t allow forming the carbon 

layer. MRR increases slightly with increasing τ for any value of flushing pressure because work 

piece gets less time to cool between two sparks. MRR reaches maximum at 90% τ and 0.4 bar 

Fp. 
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Figure 5.5. Surface plot for MRR using copper tool 

 

Figure 5.6. Surface plot for MRR using copper tool 
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5.2.2 Tool Wear Rate 

In electric discharge machining process tool design is a difficult task, because the tool profile is 

transferred to the work piece. The heat generated in the spark is transferred to both tool as well 

as work piece. So tool is eroded during machining which affect the final product. It is impossible 

to avoid tool wear, but tool wear rate can be minimized. The tool wear rate of brass tool and 

copper tool is given in Table 5.4.  

Table 5.4. Tool wear rate of brass and copper tool 

Observation 

No 

Ip 

(A) 

Ton 

(μs) 

Τ 

(%) 

Fp 

(bar) 

TWR of brass tool 

(mm
3
/min) 

TWR of copper tool 

(mm
3
/min) 

1 3 100 85 0.3 1.8428 0.0131 

2 7 100 85 0.3 3.4851 0.0429 

3 3 300 85 0.3 1.2493 0.0056 

4 7 300 85 0.3 3.2652 0.0242 

5 5 200 80 0.2 1.9031 0.0054 

6 5 200 90 0.2 2.7700 0.0093 

7 5 200 80 0.4 2.8250 0.0095 

8 5 200 90 0.4 3.2555 0.0093 

9 3 200 80 0.3 1.3038 0.0053 

10 7 200 80 0.3 2.8177 0.0261 

11 3 200 90 0.3 1.9031 0.0075 

12 7 200 90 0.3 4.5437 0.0160 

13 5 100 85 0.2 2.7496 0.0270 

14 5 300 85 0.2 2.1930 0.0128 

15 5 100 85 0.4 2.7807 0.0190 

16 5 300 85 0.4 2.2378 0.0070 

17 3 200 85 0.2 1.5937 0.0075 

18 7 200 85 0.2 3.7945 0.0188 

19 3 200 85 0.4 1.6793 0.0003 

20 7 200 85 0.4 3.9949 0.0333 

21 5 100 80 0.3 2.0199 0.0242 

22 5 300 80 0.3 1.7007 0.0093 

23 5 100 90 0.3 3.1524 0.0186 

24 5 300 90 0.3 2.6912 0.0112 

25 5 200 85 0.3 2.7087 0.0131 

26 5 200 85 0.3 2.8157 0.0075 

27 5 200 85 0.3 2.7574 0.0112 

 

ANOVA of Response Surface Quadratic Model for TWR 

The satisfactoriness of the model is checked by using the analysis of variance (ANOVA) 

technique. As per this technique, if the calculated value of the P value of the developed model 
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does not exceed the standard tabulated value of P for a desired level of confidence (say 95%), 

then the model is considered to be satisfactory within the confidence limit. ANOVA test results 

are presented in the Table 5.5 and Table 5.6. 

ANOVA for TWR using brass tool, Table 5.5 shows that the factor Ip, Ton, τ, Fp, interaction 

of Ip and Fp, square term of Ton are the significant terms. Among these terms Ip has the highest 

effect on TWR with a contribution of 71.42%. Flushing pressure has the second highest effect on 

TWR with contribution 16.11%, Ton have 3.4% contribution, square of Ton have contribution 

2.39%, but other interaction and main effect terms have very less contribution on TWR as 

compared to Ip contribution. 

ANOVA for TWR using copper tool, Table 5.6 shows that the factor Ip, Ton, τ, Fp, 

interaction of Ip and Fp, square term of Ton are the significant terms. Among these terms Ip has 

the highest effect on TWR with a contribution of 71.42%. Flushing pressure has the second 

highest effect on TWR with contribution 16.11%, Ton have 3.4% contribution, square of Ton 

have contribution 2.39%, but other interaction and main effect terms have very less contribution 

on TWR as compared to Ip contribution. 

Table 5.5. ANOVA for brass tool wear rate 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

% Contribution 

 

Model 17.2911 14 1.23508 33.371 < 0.0001 97.4958 

A-Ip 12.6672 1 12.6672 342.259 < 0.0001 71.4239 

B-Ton 0.60449 1 0.60449 16.3328 <0.0016 3.4084 

C- τ 0.22944 1 0.22944 6.19929 <0.0284 1.29369 

D-Fp 2.85744 1 2.85744 77.2058 < 0.0001 16.1116 

AB 0.03489 1 0.03489 0.94282 0.3507 0.19675 

AC 0.00329 1 0.00329 0.08902 0.7705 0.01858 

AD 0.31736 1 0.31736 8.57492 <0.0126 1.78945 

BC 4.7E-05 1 4.7E-05 0.00127 0.9722 0.00026 

BD 0.00504 1 0.00504 0.1362 0.7185 0.02842 

CD 0.04761 1 0.04761 1.28642 0.2789 0.26846 

A^2 0.00196 1 0.00196 0.05291 0.8219 0.01104 

B^2 0.42514 1 0.42514 11.4871 <0.0054 2.39717 

C^2 0.00189 1 0.00189 0.05114 0.8249 0.01067 

D^2 0.04567 1 0.04567 1.23398 0.2884 0.25751 

Residual 0.44413 12 0.03701 
  

2.50421 

Lack of Fit 0.43839 10 0.04384 15.2752 0.0630 2.47184 

Pure Error 0.00574 2 0.00287 
  

0.03236 

Cor Total 17.7353 26 
   

100 

< Significant 
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Table 5.6. ANOVA for copper tool wear rate 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
% of Contribution 

Model 0.002331 14 0.000166 13.07474 < 0.0001 93.84762 

A-Ip 0.001242 1 0.001242 97.54791 < 0.0001 50.01269 

B-Ton 0.000465 1 0.000465 36.51011 < 0.0001 18.71868 

C-t 5.79E-07 1 5.79E-07 0.045439 0.8348 0.023296 

D-Fp 4.86E-06 1 4.86E-06 0.38179 0.5482 0.195743 

AB 3.13E-05 1 3.13E-05 2.456168 0.1430 1.259274 

AC 0.000117 1 0.000117 9.196468 < 0.0104 4.715017 

AD 3.75E-05 1 3.75E-05 2.943769 0.1119 1.509267 

BC 1.23E-06 1 1.23E-06 0.096846 0.7610 0.049653 

BD 1.39E-05 1 1.39E-05 1.092021 0.3166 0.559878 

CD 4.09E-06 1 4.09E-06 0.321235 0.5813 0.164697 

A^2 0.000115 1 0.000115 9.038456 < 0.0109 4.634005 

B^2 0.000222 1 0.000222 17.43569 <0.0013 8.939257 

C^2 1.45E-06 1 1.45E-06 0.113944 0.7415 0.058419 

D^2 1.11E-05 1 1.11E-05 0.871468 0.3690 0.446801 

Residual 0.000153 12 1.27E-05 
  

6.152385 

Lack of Fit 0.000137 10 1.37E-05 1.684083 0.4294 5.499294 

Pure Error 1.62E-05 2 8.11E-06 
  

0.653091 

Cor Total 0.002484 26 
   

100 

< Significant 

 

Normal plot 

Normal plot is a graphical technique which shows whether the points are normally 

distributed or not. The data are plotted against Residuals in such a way that the points should lay 

in a straight line. If the points follow a straight line then the points are normally distributed. 

Normal plot Figure 5.7, show that the TWR data points except two are very close to the straight 

line. This indicates that the experimental data are normally distributed. The run order 9 and 13 

have some distance below from the line due to higher tool wear rate. Figure 5.8, normal plot for 

TWR using copper tool shows that almost all points are nearer to straight line and looks like S-

shape, which indicates that the points are normally distributed.  
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Figure 5.7. Normal plot of residuals for TWR using brass tool 

 

Figure 5.8. Normal plot of residuals for TWR using copper tool 
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Figure 5.9 shows surface plot for TWR of brass tool in relation with discharge current (Ip) 

and pulse-on-time (Ton). It can be observed that TWR increases steeply with increasing Ip from 

3 A to 7 A for any value of Ton. This occurs due to melting and erosion of tool at high 

temperature as a result of strong spark. But TWR increases with increasing Ton up to 200 µs 

from 100 µs and then decreases up to 300 µs due to increase of inter electrode gap. This figure 

also shows that, minimum TWR can be achieved at 3 A discharge current and 100 µs pulse-on-

time. Figure 5.10 shows the surface plot for TWR of brass tool in relation with duty factor and 

flushing pressure. It can be observed that TWR increases with increasing τ value from 80 % to 

90% for any value of flushing pressure and also increases slowly with increasing flushing 

pressure from 0.2 to 0.4 bar for any value of duty factor. TWR increases with τ due to more time 

involvement of tool in spark generation. Although flushing pressure have not much effect but it 

does not allow carbon to deposit on tool face, so TWR increases. Minimum TWR is achieved at 

80 % duty factor and 0.2 bar flushing pressure. 

 

Figure 5.9. Surface plot For TWR using brass tool 
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Figure 5.10. Surface plot For TWR using brass tool 

 

Figure 5.11 shows the surface plot for TWR of copper tool in relation with discharge current 

and pulse-on-time. It is observed that TWR increases steeply with increasing Ip from 3 A to 7 A 

for any value of pulse-on-time. This occurs due to melting and erosion of tool at high 

temperature as a result of strong spark. But TWR decreases slightly with increasing Ton up to 

200 µs from 100 µs and then increases slowly up to 300 µs for any value of discharge current 

due to carbon deposition. So minimum tool wear rate is achieved at 3 A discharge current and 

200 µs pulse-on-time.  Figure 5.12 shows the surface plot for TWR of copper tool in relation 

with duty factor and flushing pressure. It can be observed that TWR increases with increasing 

duty factor from 80 % to 90 % and also increases slowly with increasing flushing pressure from 

0.2 bar to 0.4 bar for any value of duty factor. TWR increases with τ due to more time 

involvement of tool with respect to total time in spark generation. Although flushing pressure 

have not much effect but it does not allow carbon to deposit on tool face, so TWR increases. 
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Figure 5.11. Surface plot for TWR using copper tool 

 

Figure 5.12. Surface plot for TWR using copper tool 
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5.2.3 Surface roughness (Ra) 

Surface roughness is the measure of texture of a surface and an important objective of any 

precision machining process. Therefore, the controllable factors are to be optimized to minimize 

surface roughness. The Table 5.1 shows the experimental results for surface roughness (Ra) 

using brass and copper as electrode. 

Table 5.7. Ra using Brass and Copper tool 

Expt. No. Ip (A) Ton (μs) τ (%) Fp (bar) 
Ra using brass tool 

(μm) 

Ra using copper tool 

(μm) 

1 3 100 85 0.3 3.93 3.61 

2 7 100 85 0.3 4.57 6.38 

3 3 300 85 0.3 4.65 2.6 

4 7 300 85 0.3 7.59 4.3 

5 5 200 80 0.2 6.52 4.33 

6 5 200 90 0.2 6.15 4.6 

7 5 200 80 0.4 6.4 5.1 

8 5 200 90 0.4 5.93 4.52 

9 3 200 80 0.3 5.17 3.42 

10 7 200 80 0.3 6.47 6.11 

11 3 200 90 0.3 4.55 2.83 

12 7 200 90 0.3 5.48 5.38 

13 5 100 85 0.2 5.49 4.78 

14 5 300 85 0.2 7.35 3.92 

15 5 100 85 0.4 5.07 5.54 

16 5 300 85 0.4 7.46 3.22 

17 3 200 85 0.2 5.27 3.11 

18 7 200 85 0.2 7.73 5.45 

19 3 200 85 0.4 4.69 3.21 

20 7 200 85 0.4 6.83 6.33 

21 5 100 80 0.3 4.28 5.42 

22 5 300 80 0.3 8.51 4.27 

23 5 100 90 0.3 4.47 4.67 

24 5 300 90 0.3 7.79 3.64 

25 5 200 85 0.3 6.21 3.8 

26 5 200 85 0.3 5.77 4.24 

27 5 200 85 0.3 5.8 4.52 

ANOVA of Response Surface Quadratic Model for Ra 

The satisfactoriness of the model is checked by using the analysis of variance (ANOVA) 

technique. As per this technique, if the calculated value of the P value of the developed model 

does not exceed the standard tabulated value of P for a desired level of confidence (say 95%), 
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then the model is considered to be satisfactory within the confidence limit. Analysis of variance 

(ANOVA) has been conducted on Ra values using brass tool and shown in Table 5.8.  It is 

observed that the parameters such as Ip, Ton, τ, interaction of Ip and Ton, square of Ip and 

flushing pressure are the found to be significant for improving surface roughness. Ip and Ton 

have largely contribute to the surface roughness at 21 % and 49 % respectively. As the tool work 

piece contact time is more there is uneven inter electrode gap with heated atmosphere which 

results in uneven material rate and roughness is more. The coefficient of performance is found to 

be 92.77 %. Analysis of variance (ANOVA) has been conducted on Ra values using copper tool 

and shown in Table 5.9.  It is observed that the parameters such as Ip, Ton, τ, are the found to be 

significant for improving surface roughness. Ip and Ton have largely contributed to the surface 

roughness at 66.75 % and 20.71 % respectively. This occurs due to high heat at large discharge 

current and as tool work piece contact time is more there is uneven inter electrode gap with 

heated atmosphere which results in uneven material rate and roughness is more. The coefficient 

of performance is found to be 94.71 %. 

Table 5.8. ANOVA for Surface Roughness (Ra) using brass tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

% of contribution 

 

Model 31.00029 14 2.21431 10.99749 < 0.0001 92.76955 

A-Ip 7.06868 1 7.06868 35.10701 < 0.0001 21.15328 

B-Ton 16.68521 1 16.68521 82.86812 < 0.0001 49.93113 

C-τ 1.32003 1 1.32003 6.55603 < 0.0250 3.95025 

D-Fp 0.30720 1 0.30720 1.52573 0.2404 0.91931 

AB 1.31103 1 1.31103 6.51129 < 0.0254 3.92329 

AC 0.16000 1 0.16000 0.79465 0.3902 0.47881 

AD 0.05760 1 0.05760 0.28607 0.6025 0.17237 

BC 0.19360 1 0.19360 0.96153 0.3462 0.57936 

BD 0.00250 1 0.00250 0.01242 0.9131 0.00748 

CD 0.00250 1 0.00250 0.01242 0.9131 0.00748 

A^2 1.53606 1 1.53606 7.62893 < 0.0172 4.59672 

B^2 0.05787 1 0.05787 0.28742 0.6017 0.17318 

C^2 0.01356 1 0.01356 0.06733 0.7997 0.04057 

D^2 1.04233 1 1.04233 5.17682 < 0.0420 3.11922 

Residual 2.41616 12 0.20135 
  

7.23044 

Lack of Fit 2.29529 10 0.22953 3.79806 0.2263 6.86875 

Pure Error 0.12087 2 0.06043 
  

0.36170 

Cor Total 33.41645 26 
   

100 

< Significant  
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Table 5.9. ANOVA for Surface Roughness (Ra) using copper tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

% of contribution 

 

Model 27.20597 14 1.94328 15.33600 < 0.0001 94.7067 

A-Ip 19.17741 1 19.17741 151.34420 < 0.0001 66.7585 

B-Ton 5.95021 1 5.95021 46.95782 < 0.0001 20.7133 

C-t 0.04441 1 0.04441 0.35046 0.5648 0.1546 

D-Fp 0.33668 1 0.33668 2.65697 0.1290 1.1720 

AB 0.28623 1 0.28623 2.25883 0.1587 0.9964 

AC 0.15210 1 0.15210 1.20034 0.2948 0.5295 

AD 0.00490 1 0.00490 0.03867 0.8474 0.0171 

BC 0.53290 1 0.53290 4.20554 0.0628 1.8551 

BD 0.00360 1 0.00360 0.02841 0.8690 0.0125 

CD 0.18063 1 0.18063 1.42546 0.2556 0.6288 

A^2 0.01356 1 0.01356 0.10699 0.7492 0.0472 

B^2 0.00005 1 0.00005 0.00036 0.9852 0.0002 

C^2 0.26502 1 0.26502 2.09151 0.1737 0.9226 

D^2 0.32122 1 0.32122 2.53503 0.1373 1.1182 

Residual 1.52057 12 0.12671 
  

5.2932 

Lack of Fit 1.25710 10 0.12571 0.95428 0.6138 4.3761 

Pure Error 0.26347 2 0.13173 
  

0.9172 

Cor Total 28.72654 26 
   

100 

 

Normal plot 

Normal plot is a graphical technique which shows whether the points are normally 

distributed or not. The data are plotted against Residuals in such a way that the points should lay 

in a straight line. If the points follow a straight line then the points are normally distributed. 

Figure 5.13 shoes the normal probability plot for Ra using brass tool. It can be observed that 

about all points are close to the line having „S‟ shape, which means  the Ra values are normally 

distributed. Figure 5.14 shows the normal probability plot for Ra using copper tool. The Ra 

values are following the straight line. Therefore Ra using copper tool are normally distributed. 
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Figure 5.13. Normal probability of residuals for Ra using brass tool  

 

Figure 5.14. Normal probability of residuals for Ra using copper tool 
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Surface Plot 

Figure 5.15 shows the surface plot for MRR using brass tool, in relation to the process 

parameters such as discharge current (Ip) and pulse-on-time (Ton). It can be observed that 

surface roughness value tends to increase with Ip up to 5A after that it is increasing but less as 

compared to previous one for any value of Ton due to more heat generation and more is the 

crater. Ra tends to increase with Ton from 100 µs to 300 µs as tool work piece contact time is 

more, there is uneven inter electrode gap with heated atmosphere which results in uneven 

material. Therefore better surface roughness is obtained at 3 A discharge current due to their 

dominant control over the input energy and 100 µs pulse-on-time.  

Figure 5.16 shows the surface plot for Ra using brass tool, in relation to the process 

parameters such as duty factor and flushing pressure. Surface plot indicates that Ra decreases 

slowly with increasing τ from 80 % to 90 % for any value of flushing pressure. Ra decreases 

with increasing flushing pressure from 0.2 bar to 0.4 bar for any value of Ton as there is no 

material deposition on the surface. Also it can be observed that better roughness is achieved at 90 

% τ and 0.4 bar flushing pressure. 

 

 

Figure 5.15. Surface plot for Ra using brass tool 
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Figure 5.16. Surface plot for Ra using brass tool 

 

Figure 5.17 shows the surface plot for Ra using copper tool, in relation to the process 

parameters such as discharge current (Ip) and pulse-on-time (Ton). It can be observed that 

surface roughness tends to increase with discharge current from 3 A to 7A due to more heat 

generation as a result of strong spark for any value of Ton. Surface roughness is decreasing with 

increasing pulse-on-time for any value of discharge current. It is clearly seen from the plot that 

better surface roughness is achieved at 3 A discharge current and 300 µs pulse-on-time. 

 

Figure 5.18 shows the surface plot for Ra using copper tool, in relation to the process 

parameter such as duty factor and flushing pressure. It can be observed that the duty factor and 

flushing pressure doesn‟t have much effect on Ra. But minimum roughness is obtained at 90 % 

duty factor and 0.4 bar flushing pressure. 
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Figure 5.17. Surface plot for Ra using copper tool 

 

Figure 5.18. Surface plot for Ra using copper tool 
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5.2.4 Circularity 

Electrical Discharge Machining is used for making complicated shape by transferring the tool 

profile to work piece. In case of cylindrical tool, circularity is the measure of transformation of 

tool profile to work piece. Circularity is measured by taking the ratio of minimum to maximum 

diameter and the circularity values are shown in Table 5.10 for brass and copper tool. 

Table 5.10. Circularity using Brass and Copper tool 

Expt. 

No 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Fp 

(bar) 

Circularity using brass 

tool 

Circularity using copper 

tool 

1 3 100 85 0.3 0.8500 0.8403 

2 7 100 85 0.3 0.8520 0.8437 

3 3 300 85 0.3 0.8842 0.8180 

4 7 300 85 0.3 0.8557 0.8415 

5 5 200 80 0.2 0.8488 0.8437 

6 5 200 90 0.2 0.8520 0.8437 

7 5 200 80 0.4 0.8375 0.8350 

8 5 200 90 0.4 0.8598 0.8412 

9 3 200 80 0.3 0.8366 0.8211 

10 7 200 80 0.3 0.8888 0.8442 

11 3 200 90 0.3 0.8435 0.8402 

12 7 200 90 0.3 0.8028 0.8469 

13 5 100 85 0.2 0.8275 0.8524 

14 5 300 85 0.2 0.8461 0.8355 

15 5 100 85 0.4 0.8411 0.8351 

16 5 300 85 0.4 0.8439 0.8453 

17 3 200 85 0.2 0.8494 0.8397 

18 7 200 85 0.2 0.8424 0.8446 

19 3 200 85 0.4 0.8383 0.8400 

20 7 200 85 0.4 0.8397 0.8402 

21 5 100 80 0.3 0.8329 0.8392 

22 5 300 80 0.3 0.8479 0.8451 

23 5 100 90 0.3 0.8536 0.8443 

24 5 300 90 0.3 0.8369 0.8344 

25 5 200 85 0.3 0.8402 0.8400 

26 5 200 85 0.3 0.8366 0.8531 

27 5 200 85 0.3 0.8460 0.8467 

 

ANOVA of Response Surface Quadratic Model for circularity 

The satisfactoriness of the model is checked by using the analysis of variance (ANOVA) 

technique. As per this technique, if the calculated value of the P value of the developed model 

does not exceed the standard tabulated value of P for a desired level of confidence (say 95%), 
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then the model is considered to be satisfactory within the confidence limit. ANOVA test results 

are presented in the Table 5.11 and Table 5.12. 

The experimental study ANOVA (Table 5.11), it is found that the factor Ip, Ton, τ and 

square of Ton, τ and Fp are significant terms. Ton largely affects the circularity having a 

contribution of 29.36 % as a result of more time of spark in between the tool and work piece. 

Therefore the total region of tool is heated and circular profile is transferred to the work piece. Ip 

has also significantly affects circularity with a contribution of 19.53 %. The other significant 

terms have very less effect on circularity. The coefficient of performance value (R
2
) of the model 

is found to be 86.6%. 

The experimental study ANOVA (Table 5.12), it is found that the factor Ip, interaction of 

Ton and τ are significant terms. Ip largely affects the circularity having a contribution of 21.08 % 

as a result of more time of spark in between the tool and work piece. Therefore the total region of 

tool is heated and circular profile is transferred to the work piece. Interaction of Ton and τ have 

the effect on circularity with a 12.2 % of contribution. The coefficient of performance value (R
2
) 

of the model is found to be 86.4%. 

Table 5.11. ANOVA for Circularity using brass tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

% of contribution 

 

Model 0.0004 14 2.9E-05 5.44552 <0.0028 86.4003 

A-Ip 9.1E-05 1 9.1E-05 17.23332 <0.0013 19.5307 

B-Ton 0.00014 1 0.00014 25.90678 <0.0003 29.3604 

C-t 3.3E-05 1 3.3E-05 6.24538 <0.0280 7.0779 

D-Fp 3E-08 1 3E-08 0.00568 0.9411 0.0064 

AB 1.2E-05 1 1.2E-05 2.24175 0.1602 2.5406 

AC 1.8E-06 1 1.8E-06 0.35039 0.5649 0.3971 

AD 2.3E-05 1 2.3E-05 4.41941 0.0573 5.0086 

BC 7.6E-06 1 7.6E-06 1.44831 0.2520 1.6414 

BD 5.8E-06 1 5.8E-06 1.09117 0.3168 1.2366 

CD 1.7E-05 1 1.7E-05 3.29414 0.0946 3.7333 

A^2 2.1E-05 1 2.1E-05 4.03969 0.0675 4.5782 

B^2 6.1E-05 1 6.1E-05 11.48004 <0.0054 13.0104 

C^2 2.5E-05 1 2.5E-05 4.80523 <0.0488 5.4458 

D^2 2.8E-05 1 2.8E-05 5.36604 <0.0390 6.0814 

Residual 6.3E-05 12 5.3E-06 
  

13.5997 

Lack of Fit 4.5E-05 10 4.5E-06 0.49331 0.8176 9.6766 

Pure Error 1.8E-05 2 9.1E-06 
  

3.9231 

Cor Total 0.00047 26 
   

100 

< Significant  
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Table 5.12. ANOVA for Circularity using copper tool 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
% of contribution 

Model 0.001061 14 7.58E-05 2.032892 0.1125 70.35809 

A-Ip 0.000318 1 0.000318 8.537635 <0.0128 21.08753 

B-Ton 0.000103 1 0.000103 2.769784 0.1219 6.830239 

C-t 2.43E-06 1 2.43E-06 0.065185 0.8028 0.161141 

D-Fp 2.08E-06 1 2.08E-06 0.055886 0.8171 0.137931 

AB 0.000101 1 0.000101 2.709406 0.1257 6.697613 

AC 5.52E-06 1 5.52E-06 0.148142 0.7071 0.366048 

AD 6.72E-05 1 6.72E-05 1.803722 0.2041 4.456233 

BC 0.000184 1 0.000184 4.925162 <0.0465 12.20159 

BD 6.24E-05 1 6.24E-05 1.674157 0.2201 4.137931 

CD 9.61E-06 1 9.61E-06 0.25779 0.6208 0.637268 

A^2 0.000165 1 0.000165 4.413452 0.0575 10.94164 

B^2 7.52E-05 1 7.52E-05 2.016358 0.1811 4.986737 

C^2 5.93E-06 1 5.93E-06 0.158986 0.6971 0.393236 

D^2 5.56E-05 1 5.56E-05 1.491838 0.2454 3.687003 

Residual 0.000447 12 3.73E-05 
  

29.64191 

Lack of Fit 0.000362 10 3.62E-05 0.842511 0.6553 24.00531 

Pure Error 8.58E-05 2 4.29E-05 
  

5.689655 

Cor Total 0.001508 26 
   

100 

 

Normal plot 

Normal plot is a graphical technique which shows whether the points are normally 

distributed or not. The data are plotted against Residuals in such a way that the points should lay 

in a straight line. If the points follow a straight line then the points are normally distributed. The 

normal probability plot for circularity using brass tool shown in Figure 5.19 indicates that about 

all points are close to a straight line and looks like „S‟ shape. So the circularity values are 

normally distributed. The normal probability plot for circularity using copper tool shown in 

Figure 5.20 indicates that about all points are close to a straight line and looks like double „S‟ 

shape. So the circularity values are normally distributed. 
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Figure 5.19. Normal probability plot of the residuals for circularity using brass tool 

 

Figure 5.20. Normal probability plot of the residuals for circularity using copper tool 
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Surface plot 

Figure 5.21 shows the surface plot for circularity using brass tool, in relation to the process 

parameters such as discharge current (Ip) and pulse-on-time (Ton). It can be observed that the 

circularity tends to increase with discharge current for any value of pulse-on-time due to 

concentration of spark. When tool moves downward as a result of more MRR the spark is 

concentrated and better circularity achieved. Circularity decreases slowly with increase Ton up 

to 200 µs and then tends to increase up to 300 µs for any value of discharge current. Due to the 

mutual effect the circularity seems to be very good. It is observed that best circularity is achieved 

at 7 A discharge current and 300 µs pulse-on-time. 

Figure 5.22 shows the surface plot for circularity using brass tool, in relation with duty factor 

and flushing pressure. It can be observed that circularity initially decreases up to 85 % of duty 

factor, then increase slowly with increasing duty factor value from 85 % to 90 % for any value of 

flushing pressure. This occurs due to more time of contact of electrodes with respect to total 

cycle time and uniform heat distribution. Circularity is also initially decreases up to 3 bar, and 

then increases with increasing flushing pressure for any value of duty factor as this doesn‟t allow 

the eroded particle to interrupt in machining process. It is also seen that good circularity is 

achieved at 90 % duty factor and 0.4 bar flushing pressure. 

Figure 5.23 shows the surface plot for circularity using coppr tool, in relation to the process 

parameters such as discharge current (Ip) and pulse-on-time (Ton). It can be observed that the 

circularity tends to increase with discharge current up to 5 A and then decreases for any value of 

pulse-on-time. Circularity decreases slowly with increase Ton for any value of discharge current. 

Due to the mutual effect the circularity seems to be very good. It is observed that best circularity 

is achieved at 7 A discharge current and 300 µs pulse-on-time. 

Figure 5.24 shows the surface plot for circularity using copper tool, in relation with duty 

factor and flushing pressure. It can be observed that circularity decreases in very slower rate with 

increasing duty factor for any value of flushing pressure. This occurs due to more time of contact 

of electrodes with respect to total cycle time and uniform heat distribution. Circularity slowly 

increases with flushing pressure for any value of duty factor. It is also seen that good circularity 

is achieved at 90 % duty factor and 0.4 bar flushing pressure. 
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Figure 5.21. Surface plot for circularity using brass tool 

 

Figure 5.22. Surface plot for circularity using brass tool 
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Figure 5.23. Surface plot for circularity using copper tool 

 

Figure 5.24. Surface plot for circularity using copper tool 
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The process models of four responses using brass and copper as tool materials (8 models) are 

obtained by regression analysis as given in equations below: 

 

MRR (brass) = 9.76000 -1.02475*Ip -1.63867E-003*Ton -0.20600*τ +2.04408*Fp +4.55550E-

003*Ip*Ton +2.49000E-003*Ip*τ +0.51950*Ip*Fp +1.73000E-005*Ton*τ +0.014502*Ton*Fp 

+0.023600*τ*Fp +0.074278*Ip*Ip -5.00525E-005*Ton*Ton +1.25450E-003*τ*τ -

9.95750*Fp*Fp              (5.1) 

MRR(copper)=10.28928-4.09740*Ip +0.024741*Ton +0.044073*τ -49.59242*Fp-2.16450e-

003*Ip*Ton+0.014395*Ip*τ+5.80000*Ip*Fp +3.46500e-005*Ton*τ -0.016210*Ton*Fp 

+0.067100*τ*Fp+0.38853*Ip*Ip-6.31158e-005*Ton*Ton-3.81333e-004*τ*τ+41.19542*Fp*Fp  

                    (5.2) 

TWR (brass) = -1.67293 -0.19824*Ip +7.19683E-003*Ton -0.050700*τ +22.64712*Fp 

+4.67000E-004*Ip*Ton+2.87000E-003*Ip*τ+1.40838*Ip*Fp+6.85000E-006*Ton*τ -3.55000E-

003*Ton*Fp -0.21820*τ*Fp-4.79062E-003*Ip*Ip-2.82337E-005*Ton*Ton+7.53500E-004*τ*τ-

9.25375* Fp*Fp               (5.3) 

TWR (copper) = 0.065851 -0.045130*Ip -4.00746e-004*Ton +1.18213e-003*τ +0.29134*Fp -

1.39813e -005*Ip*Ton +5.41075e-004*Ip*τ -0.015306*Ip*Fp +1.11050e-006*Ton*τ 

+1.86450e-004*Ton*Fp -2.02250e-003*τ*Fp +1.16135e-003*Ip*Ip +6.45204e-007*Ton*Ton-

2.08633e-005*τ*τ -0.14425*Fp*Fp            (5.4) 

Ra (brass) = -19.93708 +2.67292*Ip +0.038296*Ton +0.47950*τ -27.37500*Fp 

+2.86250e-003*Ip*Ton -0.020000*Ip*τ +0.60000*Ip*Fp -4.40000e-004*Ton*τ +2.50000e-

003*Ton*Fp -0.050000*τ*Fp -0.13417*Ip*Ip -1.04167e-005*Ton*Ton -2.01667e-003*τ*τ 

+44.20833* Fp* Fp              (5.5) 

Ra (copper) = 52.48135-0.83146*Ip+0.060679* Ton-1.32767* τ+20.00000* Fp-1.33750e-003 * 

Ip * Ton+0.019500*Ip* τ-0.17500*Ip*Fp-7.30000e-004*Ton* τ+3.00000e-003*Ton*Fp -

0.42500*τ*Fp+0.012604*Ip*Ip+2.91667e-007*Ton*Ton+8.91667e-003*τ*τ +24.54167*Fp* Fp 

                    (5.6) 

Circularity (brass) = 1.62695 -3.21458e-003*Ip -3.45708e-004*Ton -0.016026*τ -0.53163*Fp 

+8.62500e-006*Ip*Ton -6.75000e-005*Ip*τ +0.012125*Ip*Fp +2.80000e-006*Ton*τ -

1.22500e-004*Ton*Fp+4.20000e-003*τ*Fp+4.96875e-004*Ip*Ip+3.37500e-007*Ton*Ton 

+8.75000e-005*τ*τ+0.23000*Fp*Fp            (5.7) 
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Circularity (copper) = 0.69268 +0.027573*Ip -1.03804e-003*Ton +4.02583e-003*τ 

+0.11592*Fp +2.51250e-005*Ip*Ton -1.17500e-004*Ip*τ -0.020500*Ip*Fp +1.35500e-

005*Ton*τ -3.95000e-004*Ton*Fp +3.10000e-003*τ*Fp -1.38854e-003*Ip*Ip -3.75417e-

007*Ton*Ton -4.21667e-005*τ*τ -0.32292*Fp*Fp          (5.8) 

 

Genetic algorithm optimization technique is proposed to determine the optimal level for each 

parameter and the developed regression models are used as the fitness function in genetic 

algorithm (GA) optimization technique. The GA tool in Matlab 2009 is used to run the GA. The 

GA tool is run by changing population size, reproduction cross over fraction, migration fraction 

to minimize the fitness/objective function. In case of larger-the-best type of responses a unity 

negative factor is multiplied to fitness function to make them minimize type. The fitness vs 

generation/iteration is plotted at different generation and observed that about all curves are 

converges at generation 51 as shown in Figure 25-28. The optimal combination of process 

parameter and optimal value of responses are listed in Table 5.13. 

 

Table 5.13. Optimal condition and optimal value 

Response Tool material Ip (A) Ton (µs) τ (%) Fp (bar) 
Optimal value 

of response 

MRR 
Brass 6.997 299.998 90.000 0.398 7.706 

Copper 7.000 100.000 90.000 0.400 15.992 

TWR 
Brass 3.000 300.000 80.002 0.200 0.648 

Copper 3.648 255.155 80.000 0.200 0.271 

Ra 
Brass 3.000 100.000 80.000 0.332 3.729 

Copper 3.001 299.998 90.000 0.365 2.162 

Circularity 
Brass 7.000 299.999 89.997 0.400 0.868 

Copper 4.910 100.008 80.000 0.346 0.853 
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Figure 5.25. The convergence curve for MRR using brass and copper tool respectively 

 

Figure 5.26. The convergence curve for TWR using brass and copper tool respectively 
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Figure 5.27. The convergence curve for Ra using brass and copper tool respectively 

 

Figure 5.28. The convergence curve for circularity using brass and copper tool respectively 
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5.3. Multi-response optimization using neuro-fuzzy approach 

The experiments have been conducted as per experimental plan shown in Table 3.6. Four 

responses are measured as explained in Chapter 3. Out of four responses, two responses such as 

MRR and circularity are to be maximized whereas two responses EWR and Ra are to be 

minimized. Since the responses are contradicting in nature, they are converted to S/N ratio to 

make them into same characteristic nature as explained Eq. 5.9 and Eq. 5.10.  

 

The larger-the-best performance characteristic can be expressed as: 

S/N ratio = – 10 Log10( 1/n   1/Yi
2
 )           (5.9) 

The smaller-the-best performance characteristic can be expressed as: 

S/N ratio = – 10 Log10 (1/n  Yi
2
 )                     (5.10) 

where Yi is the i
th

 experimental data of response. 

All the S/N ratio responses (Xij) are normalized to obtain normalized response (Zij) so that they 

lie in the range, 0  Zij 1. Normalization is carried out to avoid the scaling effect and minimize 

the variation of S/N ratio obtained at different scales. For responses of larger-the-better and 

smaller-the-better type, normalization is carried out using Eq. 5.11. 

 

              (5.11) 

 

The S/N ratios of responses are shown in the Table 5.14. The S/N ratios exhibit large variation as 

evident from Table 5.14. Therefore, they are normalized using Eq. 5.11 and shown in the same 

Table 5.14. Then, a supervised learning BPN is modeled to find the membership function. These 

normalized data sets have been clustered by using fuzzy clustering into four fuzzy classes R1, R2, 

R3, and R4. There are twenty seven numbers of data sets as listed in Table 3, each of them 

comprising four responses or coordinates. They have been divided into four fuzzy classes R1, R2, 

R3 and R4 by using fuzzy clustering. The fuzzy partition matrix U gives an idea of the 

membership of each of data into four fuzzy classes. The matrix U is shown in Table 5.15 which 

gives an idea of the membership of each data into four fuzzy classes when the objective function 

of FCM is converged after thirty four iterations. The numbers for each cluster indicate the 

experiment number or run number. 

 

n},1,2,......j,min{X-n},1,2,......j,max{X

n},1,2,......j,min{X-X
Z

ijij

ijij

ij
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R1 =     4     8    10    12    14    16    18    20    22    24 

R2=     5     6     7    23    25    26    27 

R3=     2 

R4 =     1     3     9    11    13    15    17    19    21 

Table 5.14. Signal-to-noise ratio and Normalized value 

Sl. 

No. 

Ip 

(A) 

Ton 

(µs) 

τ 

(%) 

Fp 

(bar) 

Signal-to-noise ratio Normalized value 

MRR TWR Ra circularity MRR TWR Ra circularity 

1 3 100 85 0.3 3.94 -5.31 -12.02 -1.44 0.126 0.698 1.000 0.4146 

2 7 100 85 0.3 11.36 -10.84 -13.2 -1.46 0.624 5.609 0.805 0.2876 

3 3 300 85 0.3 3.01 -1.93 -13.48 -1.4 0.000 1.000 0.758 0.6478 

4 7 300 85 0.3 16.95 -10.28 -17.6 -1.35 1.000 0.255 0.077 0.9589 

5 5 200 80 0.2 9.29 -5.59 -16.28 -1.4 0.485 0.674 0.295 0.6574 

6 5 200 90 0.2 11.17 -8.85 -15.78 -1.42 0.611 0.383 0.379 0.5063 

7 5 200 80 0.4 10.67 -9.02 -16.12 -1.46 0.578 0.368 0.322 0.2686 

8 5 200 90 0.4 12.4 -10.25 -15.46 -1.40 0.694 0.258 0.431 0.6512 

9 3 200 80 0.3 3.87 -2.3 -14.44 -1.44 0.121 0.966 0.600 0.4161 

10 7 200 80 0.3 14.48 -9 -16.91 -1.42 0.834 0.370 0.191 0.4877 

11 3 200 90 0.3 6.34 -5.59 -13.27 -1.48 0.287 0.674 0.792 0.1541 

12 7 200 90 0.3 15.89 -13.15 -16.69 -1.37 0.928 0.000 0.228 0.8434 

13 5 100 85 0.2 7.62 -8.79 -12.63 -1.46 0.373 0.389 0.899 0.2861 

14 5 300 85 0.2 11.36 -6.82 -18.07 -1.42 0.624 0.564 0.000 0.4995 

15 5 100 85 0.4 8.06 -8.88 -12.4 -1.43 0.403 0.380 0.936 0.4355 

16 5 300 85 0.4 11.73 -7 -16.93 -1.34 0.649 0.548 0.189 1.0000 

17 3 200 85 0.2 5.53 -4.05 -14.27 -1.5 0.232 0.811 0.628 0.0000 

18 7 200 85 0.2 15.43 -11.58 -16.22 -1.39 0.898 0.139 0.306 0.6710 

19 3 200 85 0.4 5.47 -4.5 -13.16 -1.46 0.228 0.770 0.811 0.2827 

20 7 200 85 0.4 15.56 -12.03 -14.07 -1.38 0.906 0.099 0.661 0.7783 

21 5 100 80 0.3 6.1 -6.11 -14.79 -1.47 0.271 0.627 0.542 0.1989 

22 5 300 80 0.3 9.73 -4.61 -17.33 -1.37 0.515 0.761 0.123 0.8041 

23 5 100 90 0.3 8.38 -9.97 -14.1 -1.44 0.424 0.283 0.656 0.4075 

24 5 300 90 0.3 12.57 -8.6 -16.94 -1.39 0.705 0.405 0.187 0.7058 

25 5 200 85 0.3 11.24 -8.66 -15.27 -1.44 0.616 0.400 0.463 0.3981 

26 5 200 85 0.3 11.08 -8.99 -15.22 -1.47 0.606 0.370 0.470 0.1905 

27 5 200 85 0.3 11 -8.81 -15.86 -1.5 0.600 0.386 0.365 0.0099 
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Table 5.15. Membership values from FCM 

Expt. No. 
Membership value 

of R1 

Membership value 

of R2 

Membership value 

of R3 

Membership value 

of R4 

1 0.0546 0.1098 0.0028 0.8328 

2 0 0 1 0 

3 0.1217 0.1883 0.0076 0.6824 

4 0.7892 0.1494 0.0033 0.0580 

5 0.349 0.449 0.0032 0.1988 

6 0.1526 0.8095 0.0006 0.0373 

7 0.0746 0.8773 0.0008 0.0473 

8 0.6384 0.3088 0.0012 0.0516 

9 0.074 0.1454 0.0037 0.7769 

10 0.6028 0.3415 0.0016 0.0541 

11 0.0277 0.0827 0.0012 0.8885 

12 0.7546 0.1805 0.003 0.0619 

13 0.1094 0.3215 0.0032 0.5659 

14 0.4509 0.4248 0.0036 0.1206 

15 0.1417 0.3438 0.0037 0.5108 

16 0.6917 0.2075 0.0037 0.0971 

17 0.0703 0.1876 0.0038 0.7384 

18 0.8064 0.1547 0.0014 0.0375 

19 0.0056 0.0141 0.0002 0.9801 

20 0.5627 0.3126 0.0042 0.1205 

21 0.0634 0.2492 0.0019 0.6855 

22 0.4693 0.3369 0.0056 0.1881 

23 0.1415 0.6276 0.0020 0.2288 

24 0.8798 0.0977 0.0006 0.0219 

25 0.0158 0.9749 0.0001 0.0091 

26 0.0813 0.8300 0.0012 0.0876 

27 0.1538 0.6585 0.0033 0.1844 

 

Therefore, four neurons in input layer and four neurons in output later have been chosen. To 

determine the number of neurons in the hidden layer, various BPN models have been chosen to 

achieve performance error equal to 0.001. Six BPN models 4–5–4, 4–6–4, 4–7–4, 4–8–4, 4–9–4, 

4–10–4 have been selected. Data set 1–18 are selected as training data and data set 19–27 have 

been used to test the performance of the selected neural network. Finally, BPN architecture 4-8-4 

showed minimum root mean square error (RMSE). Learning and momentum parameters are set 

at 0.12 and 0.50. The number of epochs the BPN was run was 31250. In spite of higher number 



88 
 

of iterations to converge at a final value, low learning rate is used to ensure the neural network to 

escape from local optima. 

Initial quasi-random weights have been assigned for all four layers. Thereafter, the data serial 

no. 1 with input co-ordinates x1=0.125995, x2= 0.698949, x3 = 1 and x4=0.4145741 with 

corresponding output membership 0.0546 (R1), 0.1098(R2), 0.0028(R3) and 0.8328(R4) is 

entered. The output of the network is computed and compared with the desired output to 

calculate the error. Using back propagation, initially assigned weights are repeatedly adjusted to 

minimize this error, until this error achieves the target 0.001 as shown in Figure3. Similarly, data 

set (2–18) are entered and weights are readjusted. Then, data set (19-27) are used to test the 

performance of the network. It has been observed that after 31250 iterations, the network 

achieves a satisfactory level of error as shown in Figure 5.29. The obtained adjusted membership 

values are shown in Table 5.16. 

 

 

Figure 5.29. Training in neural network 
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Table 5.16. Adjusted membership value 

Expt. No. 
Membership value 

of R1 

Membership value 

of R2 

Membership value 

of R3 

Membership value 

of R4 

1 0.0594 0.1072 0.0022 0.8284 

2 0.0126 0.0152 0.9915 0.0088 

3 0.1203 0.1887 0.0006 0.6834 

4 0.7582 0.1348 0.0040 0.0582 

5 0.3447 0.4495 0.0008 0.1979 

6 0.1531 0.7974 0.0010 0.0369 

7 0.0760 0.8642 0.0026 0.0098 

8 0.6454 0.3103 0.0014 0.0459 

9 0.0693 0.1420 0.0006 0.7785 

10 0.6088 0.3470 0.0093 0.0512 

11 0.0535 0.0987 0.0074 0.8342 

12 0.7698 0.1928 0.0045 0.0251 

13 0.0969 0.3035 0.0094 0.5777 

14 0.4513 0.4252 0.0018 0.1301 

15 0.1445 0.3574 0.0025 0.5084 

16 0.7130 0.2097 0.0013 0.1028 

17 0.0532 0.1884 0.0091 0.7469 

18 0.7651 0.1434 0.0084 0.0331 

19 0.0722 0.1206 0.0015 0.8389 

20 0.7971 0.0064 0.0030 0.0864 

21 0.0700 0.6341 0.0009 0.3346 

22 0.6089 0.1789 0.0011 0.3122 

23 0.1831 0.4561 0.0007 0.2811 

24 0.6752 0.1525 0.0019 0.1856 

25 0.1223 0.8325 0.0016 0.0185 

26 0.1072 0.8507 0.0068 0.0112 

27 0.1228 0.8510 0.0171 0.0074 

 

Regression curves are plotted in Figure 5.30 and Figure 5.31 between actual membership 

function and predicted membership function via neuro-fuzzy model for training data and testing 

data respectively. It can be observed that data are well fitted because a high degree of coefficient 

of determination (R
2
) as 0.99897 for training and a high degree of coefficient of determination 

(R
2
) as 0.99854 for testing data is obtained. 



90 
 

 

Figure 5.30. Regression plot for training data 

 

Figure 5.31. Regression plot for testing data 

Figure 5.32 shows the membership functions for output predicted by neural network. After 

getting fuzzified value, it is needed to defuzzify them to get a crisp value containing the 

combined quality characteristic which can be used as higher the best criteria. This is done by 

center if area (COA) method. These defuzzified data are called MPCI, listed in Table 5.17. 
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Figure 5.32. Membership function plot 

Table 5.17. MPCI 

Sl. No. Ip (A) Ton (µs) τ (%) Fp (kg/cm
2
) MPCI 

1 -1 -1 0 0 0.42805 

2 1 -1 0 0 0.89407 

3 -1 1 0 0 0.63183 

4 1 1 0 0 0.84881 

5 0 0 -1 -1 0.60064 

6 0 0 1 -1 0.41836 

7 0 0 -1 1 0.36551 

8 0 0 1 1 0.55886 

9 -1 0 0 -1 0.47000 

10 1 0 0 -1 0.66304 

11 -1 0 0 1 0.21636 

12 1 0 0 1 0.73710 

13 0 -1 -1 0 0.32799 

14 0 1 -1 0 0.58683 

15 0 -1 1 0 0.41793 

16 0 1 1 0 0.68113 

17 -1 0 -1 0 0.17097 

18 1 0 -1 0 0.73192 

19 -1 0 1 0 0.34790 

20 1 0 1 0 0.79249 

21 0 -1 0 -1 0.48420 

22 0 1 0 -1 0.70094 

23 0 -1 0 1 0.32184 

24 0 1 0 1 0.66965 

25 0 0 0 0 0.41702 

26 0 0 0 0 0.38558 

27 0 0 0 0 0.40928 
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The MPCI values are considered now as single response and analyzed. From analysis of 

variance shown in Table 5.18, it is observed that the factors Ip, Ton, and τ and square terms 

Ip×Ip and Ton×Ton, and interaction Ip×τ re statistically significant. From percentage of 

contribution, it is said that Ip has the highest effect followed by Ton, Ton×Ton, Ip×Ip, Ip×τ and 

τ. Ip has highest effect because it directly contribute to the heat generation. As Ip increases the 

spark become stronger and more erosion arise. The process model is obtained by regression 

analysis as given in Eq. 5.12 and coefficient of determination (R
2
) is found to be 82.7%. 

Table 5.18. ANOVA for MPCI 

Term Coef SE Coef T P 

Constant 0.426 0.03032 14.051 0 

Ip 0.20019 0.02626 7.625 0 

Ton 0.10375 0.02626 3.952 0.001 

τ -0.03017 0.02626 -1.149 0.264 

Ip×Ip 0.11189 0.03595 3.112 0.005 

Ton×Ton 0.11946 0.03595 3.323 0.003 

Ip×τ 0.08193 0.04548 1.801 0.087 

 

MPCI=0.4260+0.2002×Ip+0.1038×Ton-.0302×τ+0.1119×Ip×Ip+0.1195×Ton×Ton 

+0.0819×Ip×τ (in coded form)               (5.12)         

                                                                        

Figure 5.33 shows the response surface for MPCI in relation to the process parameters of 

discharge current and pulse on time. It can be seen from the figure that the MPCI tends to 

increase rapidly with increase in peak current for any value of pulse-on-time. The figure also 

indicates that maximum MPCI value is obtained at high peak current (7 A) and high pulse on 

time (300 μs). This is due to their principal control over the input spark energy. As the discharge 

current increases, it generates strong spark which produce the higher temperature as a result of 

more material is melted and eroded from the work piece. Figure 5.34 shows the response surface 

for MPCI in relation to the process parameters of discharge current and duty factor. It can be 

observed from the figure that MPCI increases as Ip increases for any value of τ.  
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Figure 5.33. Surface plot of MPCI vs Ip, Ton 

 

Figure 5.34. Surface plot of MPCI vs Ip, τ 

 

Particle swarm optimization technique is proposed to determine the optimal parameter setting 

using the model shown in Eq. 5.12. The algorithm is coded in Visual C
++

 and run on Pentium IV 

machine. The algorithm is run for 100 iterations but converges at 59 iterations as shown in 

Figure 5.35. The optimal value of MPCI is obtained as 0.946074 at parametric values of 

Ip=0.962, Ton=0.987, τ= 0.112 in coded form. These values are decoded using Eq. 3.3 as 
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described in Chapter 3 and actual values of factors are found to be Ip=6.924 A, Ton=298.7 µs, 

τ=85.56 %.  

 

Figure 5.35. The convergence curve 

The same neuro-fuzzy route is proposed to find optimal setting for the responses MRR, TWR 

Ra, circularity obtained using copper as tool material. The optimal parametric combination in 

actual form is found to be Ip = 6.87 A, Ton = 116.2 µs, τ = 80 %.  

5.4. Multi-response optimization using non dominated sorting genetic algorithm (NSGA) 

In the present study, the objectives are maximization of MRR, circularity and 

minimization of TWR, Ra which are functions of decision variables viz., discharge current (Ip), 

pulse on time (Ton), duty factor (τ) and flushing pressure (Fp). But there is no such mathematical 

equation, which relates these objectives with the decision variable. Thus empirical relation 

between input parameters and output parameters obtained from the RSM analysis is used as 

functional equations. Note that objectives are conflicting in nature. In order to convert the 

responses single characteristice, it is suitably modified. The objective functions are given below. 

Objective 1 = - (MRR) 

Objective 2 = TWR 

Objective 3 = Surface Roughness (Ra) 

Objective 4= - (Circularity) 

There are four decision variables. The range and the step length of decision variables are 

different. Here, the range of discharge current (Ip) is between 3-7 A, pulse on time (Ton) is 
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between 100-300 µs, duty factor (τ) is between 80-90 %, flushing pressure (Fp) is between 0.2-

0.4 bar. Matlab tool (optimtool („gamultiobj‟)) is used for solving the multi-objective problem. 

Initially, the chromosomes are created randomly. An initial size of 100 populations is chosen. 

Simple crossover and bitwise mutation have been used with a crossover probability, Pc = 0.8, 

migration interval 20, migration fraction 0.2 and pareto fraction 0.35. Objective values are 

calculated from the RSM model as described earlier. Ranking and sorting of solutions have been 

done as it is mentioned in the NSGA-II algorithm. 100 non-dominated solutions are obtained at 

the end of 108 generation. The corresponding objective function values and the decision 

variables of selected non-dominated solution set are shown in Table 5.19. Figure 5.36 and Figure 

5.37 shows the pareto-optimal solution front for responses MRR, TWR and Ra, Circularity 

respectively. This shows the formation of the pareto-optimal front leading to the final set of 

solutions. Since none of the solutions in the pareto-optimal front is absolutely better than any 

other, any one of them is an acceptable solution. The choice of one solution over the other 

depends on the requirement of the process engineer. 

 

Table 5.19. Pareto Optimal solution set and corresponding variable settings 

Sl. No. Ip (A) Ton (µS) τ     (%) 
Fp 

(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra 

(µm) 
circularity 

1 6.9689 287.6651 89.8221 0.3964 7.5433 4.1215 7.2351 0.8655 

2 6.9576 282.9828 89.2089 0.3963 7.4514 4.1318 7.2709 0.8639 

3 6.3316 281.6500 80.6657 0.3341 5.8229 3.2327 7.9634 0.8524 

4 6.9571 282.7784 80.0158 0.3958 7.0986 4.0167 8.5979 0.8568 

5 4.8205 246.0264 82.2590 0.3430 3.6752 2.6323 6.5820 0.8452 

6 3.0460 283.0952 80.4193 0.2160 0.9469 0.8904 5.8656 0.8520 

7 6.7066 281.4000 80.6657 0.3966 6.6864 3.8697 8.4294 0.8554 

8 6.9576 283.1078 89.2401 0.3963 7.4541 4.1316 7.2676 0.8640 

9 6.6260 270.0997 82.4138 0.3741 6.4296 3.7642 7.8382 0.8536 

10 6.5259 282.1139 80.8575 0.3892 6.3723 3.7031 8.3002 0.8543 

11 4.6818 241.8751 81.8282 0.3953 3.6277 2.7590 6.7127 0.8451 

12 3.1145 257.0338 80.7411 0.2236 1.3189 1.1426 5.6888 0.8496 

13 6.5973 281.4312 80.6970 0.2716 5.9063 2.9040 8.0424 0.8540 

14 6.1916 269.6910 82.0395 0.3752 5.7440 3.4954 7.7502 0.8516 

15 6.5120 265.2738 82.5515 0.3719 6.2066 3.7088 7.7020 0.8527 

16 6.4304 282.9966 81.0996 0.3348 6.0011 3.2938 7.9715 0.8529 

17 6.9571 282.7784 80.0158 0.3958 7.0986 4.0167 8.5979 0.8568 

18 5.9947 273.9215 82.6449 0.3961 5.5582 3.4547 7.8106 0.8519 

19 6.5166 261.7889 81.6577 0.3629 6.1232 3.6629 7.7003 0.8520 

20 5.0904 256.7973 80.9818 0.3926 4.1512 2.9362 7.2205 0.8468 
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21 6.9605 195.4649 89.6421 0.3890 6.2832 4.4435 5.8508 0.8571 

22 5.0633 238.2708 82.2666 0.3515 3.9687 2.8507 6.6577 0.8455 

23 6.8103 252.8930 82.7219 0.3898 6.6183 4.0705 7.6589 0.8540 

24 6.1456 279.9306 83.1241 0.3696 5.7437 3.3854 7.7258 0.8524 

25 6.7130 264.0038 84.2647 0.3812 6.6023 3.9205 7.5709 0.8547 

26 4.8155 225.0956 82.7662 0.3440 3.6197 2.7353 6.3000 0.8444 

27 6.6208 276.5871 81.3257 0.3060 6.1251 3.2362 7.8529 0.8530 

28 6.5529 277.0494 81.2208 0.3728 6.3275 3.6554 8.0692 0.8536 

29 6.9643 249.8267 86.9139 0.3928 6.9903 4.2571 7.0976 0.8576 

30 6.5551 265.8930 84.9494 0.3833 6.4032 3.8300 7.4958 0.8547 

31 3.2680 248.1609 83.9896 0.2691 1.7891 1.5356 5.3346 0.8458 

32 4.2827 225.2354 84.3440 0.3987 3.2124 2.5872 6.1020 0.8450 

33 6.7568 209.1346 88.2383 0.3985 6.1973 4.3087 6.3381 0.8560 

34 6.7136 279.0062 83.5886 0.3900 6.7448 3.8754 7.9624 0.8559 

35 3.1085 283.2827 80.1693 0.3410 1.5202 1.3294 5.4279 0.8441 

36 6.5120 265.0238 82.5515 0.3719 6.2045 3.7102 7.6980 0.8527 

37 3.1659 214.2010 81.3885 0.3695 2.0501 1.8474 5.0067 0.8415 

38 6.5059 280.0064 82.1310 0.3809 6.3305 3.6656 8.0436 0.8540 

39 3.5267 126.5512 85.1870 0.3437 2.0615 2.1754 4.4241 0.8438 

40 6.6421 205.4448 84.0586 0.3340 5.6167 3.7926 6.4105 0.8488 

41 6.7407 263.9586 84.5922 0.3810 6.6568 3.9420 7.5305 0.8550 

42 6.8719 232.6433 84.4105 0.3616 6.4209 4.0403 6.9379 0.8523 

43 6.7907 279.2445 80.8506 0.3700 6.7099 3.7674 8.2007 0.8548 

44 6.3556 258.1096 86.0041 0.3577 5.9735 3.6284 7.0614 0.8529 

45 6.0270 267.7529 84.6297 0.3680 5.5394 3.3990 7.3226 0.8517 

46 5.9995 223.3485 89.3988 0.3757 5.3611 3.7061 6.2142 0.8539 

47 5.6961 274.2029 82.6452 0.3636 5.0012 3.1025 7.4719 0.8499 

48 6.9571 282.8431 80.0158 0.3825 7.0474 3.9264 8.4941 0.8564 

49 3.4321 226.7327 80.9908 0.3884 2.2765 1.9949 5.4821 0.8418 

50 4.5640 203.4894 82.0734 0.3737 3.3058 2.7662 6.0406 0.8435 

51 3.0001 111.0658 83.5648 0.3203 1.6834 1.7953 3.9364 0.8443 

52 6.1441 281.7437 80.5407 0.3497 5.5968 3.2220 7.9552 0.8518 

53 6.7488 230.7229 86.3499 0.3875 6.3814 4.1558 6.8258 0.8544 

54 6.3382 264.5740 82.9661 0.3994 6.0418 3.7577 7.7879 0.8531 

55 6.9571 282.8097 80.0939 0.2708 6.4744 3.0424 8.2173 0.8558 

56 4.9567 277.8829 81.7995 0.3844 4.0015 2.6852 7.2617 0.8476 

57 6.8326 283.3109 89.2557 0.2869 6.6945 3.4475 6.9097 0.8581 

58 6.9466 282.0338 80.6239 0.3909 7.0718 3.9859 8.4638 0.8565 

59 5.5504 211.2700 84.0622 0.3596 4.4385 3.3029 6.4075 0.8463 

60 6.4923 206.4058 80.2149 0.3396 5.3534 3.6723 6.7821 0.8488 

61 4.2807 244.7531 81.7253 0.3434 3.0409 2.3142 6.2158 0.8440 

62 4.9288 267.8218 80.8302 0.3656 3.8798 2.6542 7.1041 0.8466 

63 6.6880 282.3546 84.5361 0.3892 6.7594 3.8443 7.8732 0.8567 

64 6.1923 221.6003 88.8176 0.3819 5.5873 3.8477 6.3202 0.8540 

65 6.0508 246.0594 83.3313 0.3685 5.3822 3.5109 7.1699 0.8496 
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66 5.7827 267.9517 80.8833 0.3649 5.0592 3.1812 7.6137 0.8495 

67 5.9491 223.1114 88.4778 0.3432 5.1448 3.5176 6.1763 0.8509 

68 6.7290 277.3360 81.7688 0.3428 6.5000 3.5702 7.9086 0.8538 

69 6.6696 275.5220 83.4602 0.3275 6.3688 3.4780 7.6095 0.8534 

70 6.8155 282.3427 82.3058 0.3855 6.8819 3.8796 8.1771 0.8560 

71 5.2917 282.9625 80.1593 0.3441 4.2972 2.6670 7.5249 0.8487 

72 5.1806 251.4427 81.1670 0.2257 3.5634 2.0877 7.2538 0.8496 

73 6.1916 281.9615 82.3345 0.2786 5.3617 2.8080 7.7235 0.8521 

74 5.4139 237.2952 81.2286 0.3487 4.3583 3.0355 6.8994 0.8463 

75 6.8181 284.6349 89.7485 0.3947 7.2462 4.0293 7.1805 0.8642 

76 5.1085 248.4753 81.8236 0.3873 4.1537 2.9756 7.0211 0.8465 

77 6.9390 276.1812 80.8774 0.3950 7.0282 4.0458 8.3593 0.8562 

78 6.8076 249.6728 88.7637 0.2944 6.3896 3.6339 6.5069 0.8541 

79 3.1126 181.0954 83.6537 0.3538 2.0528 1.9067 4.6056 0.8421 

80 6.6595 266.4564 84.0045 0.3756 6.5095 3.8369 7.5968 0.8542 

81 4.7284 227.3257 81.3834 0.3814 3.5929 2.8080 6.5128 0.8444 

82 3.3138 208.0326 84.6758 0.3166 2.1501 1.8870 4.9344 0.8431 

83 4.3428 232.2641 82.5874 0.3442 3.1240 2.4259 6.0834 0.8437 

84 3.0460 283.0952 80.4193 0.2160 0.9469 0.8904 5.8656 0.8520 

85 6.8439 279.7541 86.4637 0.3739 7.0125 3.9096 7.4804 0.8581 

86 3.7692 281.0214 81.5442 0.3137 2.2279 1.6788 6.0773 0.8458 

87 3.8911 211.9571 84.3172 0.3404 2.6878 2.2550 5.4538 0.8431 

88 6.9148 287.2052 88.5464 0.3067 6.9434 3.5663 7.0632 0.8586 

89 3.1778 244.4651 82.9448 0.3774 2.0049 1.7177 5.2197 0.8426 

90 5.7359 272.9939 82.1580 0.3682 5.0579 3.1522 7.5496 0.8499 

91 3.6511 222.9683 86.2731 0.3205 2.4747 2.0596 5.2444 0.8446 

92 6.3708 276.5871 81.3257 0.3060 5.7347 3.1030 7.7832 0.8521 

93 6.9571 283.0597 80.1564 0.2708 6.4776 3.0430 8.2141 0.8558 

94 3.4321 226.8577 80.7408 0.3884 2.2717 1.9948 5.4918 0.8418 

95 3.2941 111.4408 84.0296 0.3323 1.8020 1.9848 4.1354 0.8440 

96 5.7586 274.2654 82.3952 0.3636 5.0861 3.1380 7.5300 0.8500 

97 5.9917 222.9093 83.3898 0.3387 4.9954 3.4019 6.6873 0.8474 

98 5.7495 223.5985 89.3988 0.3132 4.8224 3.2921 6.0099 0.8503 

99 6.9576 282.7328 89.2089 0.3963 7.4492 4.1334 7.2674 0.8639 

100 5.2440 238.9719 82.9181 0.3619 4.2412 3.0110 6.7504 0.8463 
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Figure 5.36. Pareto-optimal front for objectives MRR and TWR 

 

Figure 5.37. Pareto-optimal front for objectives Ra and Circularity 
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The proposed route multi-response optimization using non-dominated sorting genetic 

algorithm (NSGA) is followed for the responses obtained using copper as tool material in electric 

discharge machining. An initial size of 100 populations is chosen. Simple crossover and bitwise 

mutation have been used with a crossover probability, Pc = 0.8, migration interval 20, migration 

fraction 0.2 and pareto fraction 0.35. Objective values are calculated from the RSM model as 

described earlier. Ranking and sorting of solutions have been done as it is mentioned in the 

NSGA-II algorithm. 100 non-dominated solutions are obtained at the end of 123 generation. The 

corresponding objective function values and the decision variables of selected non-dominated 

solution set are shown in Table 5.20. Figure 5.38 and Figure 5.39 shows the pareto-optimal 

solution front for responses MRR, TWR and Ra, Circularity respectively. This shows the 

formation of the pareto-optimal front leading to the final set of solutions. Since none of the 

solutions in the pareto-optimal front is absolutely better than any other, any one of them is an 

acceptable solution. The choice of one solution over the other depends on the requirement of the 

process engineer. 

Table 5.20. Pareto Optimal solution set and corresponding variable settings 

Sl. 

No. 
Ip(A) Ton(μs) τ(%) Fp(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra(μm) circularity 

1 5.5351 119.1320 82.0902 0.2735 7.3425 0.0234 5.0330 0.8490 

2 6.9642 119.4133 88.7668 0.3214 13.6171 0.0383 6.7244 0.8363 

3 3.0168 279.4258 87.0141 0.2056 2.6061 -0.0003 2.9042 0.8249 

4 3.0200 276.4820 85.6742 0.2063 2.5861 0.0008 2.9436 0.8242 

5 4.1949 137.6921 88.0478 0.2986 4.7864 0.0111 4.2735 0.8422 

6 5.5405 119.0570 80.5773 0.3197 7.7127 0.0220 4.9817 0.8512 

7 6.9884 115.7624 89.1673 0.3725 14.9948 0.0358 6.7713 0.8340 

8 3.0035 277.5294 89.1828 0.3729 1.5848 0.0030 2.3659 0.8320 

9 3.0637 279.3555 87.1948 0.3110 1.6482 0.0044 2.4985 0.8305 

10 4.4347 131.0068 87.7621 0.3346 5.4767 0.0128 4.4054 0.8443 

11 5.6338 167.3074 88.5583 0.2948 8.0224 0.0181 5.1539 0.8449 

12 5.5721 128.9747 86.7570 0.2688 7.7429 0.0232 5.3768 0.8436 

13 3.0356 276.3570 85.7367 0.2063 2.5924 0.0007 2.9504 0.8244 

14 3.0035 277.5294 89.1203 0.3729 1.5815 0.0031 2.3684 0.8320 

15 6.9877 113.8193 89.9057 0.3849 15.4092 0.0355 6.9100 0.8321 

16 3.0168 279.4258 87.0453 0.2056 2.6075 -0.0004 2.9039 0.8249 

17 6.9995 113.8662 89.9584 0.3653 14.9588 0.0374 6.9422 0.8326 

18 4.4462 131.0200 87.7621 0.3190 5.3952 0.0133 4.4397 0.8438 

19 5.4626 114.6460 89.2279 0.3342 8.4154 0.0224 5.5482 0.8411 

20 3.4991 132.2536 86.5254 0.2868 3.6250 0.0098 3.7127 0.8401 

21 5.1796 168.4988 88.2924 0.3008 6.8022 0.0140 4.7513 0.8452 
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22 6.7478 117.5080 87.7091 0.3801 13.9500 0.0313 6.3460 0.8376 

23 6.1615 145.4457 89.3929 0.3046 10.0989 0.0259 5.8899 0.8416 

24 4.9790 253.2869 83.2574 0.2565 4.5089 0.0083 3.9545 0.8430 

25 4.7811 162.4285 86.2305 0.3100 5.7974 0.0122 4.3392 0.8462 

26 6.9230 126.6892 87.3546 0.3938 14.9676 0.0303 6.3600 0.8369 

27 5.0972 134.4022 87.0566 0.3066 6.7956 0.0176 4.8676 0.8450 

28 4.6270 144.0095 85.5613 0.2588 5.3171 0.0141 4.4729 0.8440 

29 3.0077 277.1712 86.2820 0.3167 1.5739 0.0054 2.5287 0.8293 

30 6.8250 134.3964 87.9742 0.3000 12.4234 0.0347 6.3687 0.8401 

31 5.5771 119.1546 80.5175 0.2916 7.4957 0.0227 5.0013 0.8510 

32 3.0168 279.4258 86.9985 0.2056 2.6054 -0.0003 2.9043 0.8249 

33 6.9046 135.6046 89.9401 0.3896 14.9577 0.0306 6.5597 0.8348 

34 4.7892 148.5991 87.2110 0.3464 6.3041 0.0126 4.4723 0.8459 

35 3.8416 269.7997 82.2144 0.3190 2.3254 0.0082 3.3366 0.8325 

36 4.9062 268.7027 87.8341 0.3720 5.1363 0.0081 3.5480 0.8419 

37 6.7138 155.9761 86.1960 0.3750 13.1321 0.0247 5.7658 0.8419 

38 4.4177 156.5823 87.5781 0.3342 5.2859 0.0098 4.1711 0.8450 

39 5.5639 119.1490 80.5348 0.2972 7.5182 0.0226 4.9903 0.8511 

40 4.0321 175.0079 80.8312 0.2316 3.9464 0.0090 3.9389 0.8415 

41 6.5079 132.2824 89.7686 0.3435 12.2128 0.0298 6.2847 0.8384 

42 6.1788 134.8454 87.2564 0.2813 9.7238 0.0278 5.8091 0.8430 

43 5.2108 168.5242 88.3236 0.3145 7.0107 0.0139 4.7385 0.8455 

44 3.2051 277.8920 88.9136 0.2941 1.9589 0.0021 2.5747 0.8332 

45 4.6270 144.0408 85.5642 0.2646 5.3301 0.0141 4.4501 0.8443 

46 6.5693 118.8459 87.1897 0.3537 12.5236 0.0309 6.1222 0.8404 

47 3.0168 279.4258 87.0141 0.2056 2.6061 -0.0003 2.9042 0.8249 

48 6.9096 117.2831 89.7395 0.3964 15.3150 0.0329 6.7720 0.8328 

49 5.5042 236.2144 89.4635 0.3294 7.0938 0.0119 4.3038 0.8467 

50 6.7141 118.0119 85.5374 0.3010 11.8942 0.0345 6.1309 0.8425 

51 5.5673 131.3959 87.2478 0.3574 8.8389 0.0197 5.2077 0.8447 

52 6.8538 172.3406 86.6076 0.3696 13.4138 0.0247 5.7245 0.8418 

53 5.5123 152.8727 86.2139 0.3216 7.9120 0.0178 4.9192 0.8467 

54 4.0389 219.0780 84.9847 0.2858 3.6328 0.0059 3.5066 0.8414 

55 6.3839 212.5165 88.0323 0.3006 9.7845 0.0209 5.1451 0.8469 

56 5.7636 129.2632 86.8453 0.3103 8.7657 0.0236 5.3975 0.8445 

57 4.1603 169.6543 87.1539 0.3211 4.5631 0.0079 3.8818 0.8443 

58 3.0168 279.4258 87.0155 0.2056 2.6061 -0.0003 2.9042 0.8249 

59 3.9331 124.1373 86.0480 0.2733 4.2228 0.0131 4.0881 0.8415 

60 3.9203 159.1534 89.7337 0.3837 4.7100 0.0042 3.9155 0.8430 

61 6.9999 113.8505 89.9486 0.3966 15.7908 0.0347 6.9282 0.8314 

62 6.4013 182.5371 88.1120 0.3772 11.7379 0.0198 5.3934 0.8428 

63 5.7804 122.0629 83.0767 0.3635 9.3429 0.0218 5.2111 0.8480 

64 6.2038 160.4813 86.8812 0.3366 10.3785 0.0220 5.3910 0.8451 

65 5.8433 123.1914 89.8630 0.3372 9.7175 0.0245 5.8610 0.8400 

66 5.2020 208.5971 87.2371 0.3399 6.6589 0.0105 4.2522 0.8462 
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67 6.9062 125.1459 88.7073 0.3628 14.2577 0.0337 6.5223 0.8366 

68 3.9338 225.1033 88.5347 0.2865 3.6213 0.0032 3.4460 0.8410 

69 6.8848 169.6248 88.5833 0.3720 13.8558 0.0265 5.9491 0.8400 

70 6.8137 138.7099 88.0594 0.3811 14.1051 0.0287 6.2008 0.8384 

71 3.7866 274.7030 87.2040 0.3211 2.4783 0.0053 2.8976 0.8370 

72 4.4038 245.8278 86.4405 0.3013 3.9214 0.0063 3.4969 0.8425 

73 5.3183 170.1273 85.5327 0.2736 6.7141 0.0153 4.7072 0.8468 

74 5.0336 267.5796 82.4218 0.2236 4.2386 0.0075 4.0559 0.8411 

75 4.7061 210.0210 85.2336 0.2848 4.9152 0.0086 3.9669 0.8452 

76 3.3135 199.7309 88.8234 0.2710 3.2586 0.0009 3.3169 0.8364 

77 5.4367 199.5727 88.2387 0.2928 7.0385 0.0136 4.6532 0.8465 

78 6.4569 159.6711 86.5984 0.3753 12.0809 0.0221 5.5653 0.8429 

79 3.1555 276.7165 89.1088 0.3191 1.8400 0.0023 2.4910 0.8335 

80 3.0224 183.9154 86.9784 0.2546 3.1881 0.0024 3.2138 0.8337 

81 6.9874 119.7785 89.7884 0.3981 15.7057 0.0333 6.8155 0.8323 

82 6.6472 133.5673 87.7022 0.3706 13.1528 0.0283 6.0815 0.8399 

83 5.0939 223.4606 83.4095 0.2827 5.3806 0.0098 4.1290 0.8456 

84 6.5132 117.3250 87.3548 0.3776 12.8561 0.0290 6.1132 0.8396 

85 6.5343 118.2847 88.2053 0.3352 12.1034 0.0323 6.2541 0.8393 

86 5.4713 210.6299 86.6299 0.3053 6.9494 0.0128 4.4393 0.8471 

87 4.4174 215.2488 84.9974 0.2721 4.2738 0.0071 3.7888 0.8433 

88 3.5682 199.0648 89.5343 0.3103 3.4706 0.0016 3.3949 0.8400 

89 4.9430 241.1191 88.9447 0.3518 5.6828 0.0077 3.8275 0.8450 

90 6.7524 144.1759 86.4676 0.3575 13.0580 0.0279 5.9263 0.8419 

91 6.7738 134.6294 86.3086 0.3235 12.5019 0.0315 6.0519 0.8423 

92 4.7580 148.6099 87.2110 0.3611 6.3794 0.0120 4.4482 0.8459 

93 3.0040 269.3453 89.5870 0.2081 2.8502 -0.0033 2.9949 0.8270 

94 6.9058 125.9612 88.7257 0.3961 15.1039 0.0309 6.5175 0.8351 

95 6.8784 117.2831 89.7395 0.3964 15.1714 0.0325 6.7449 0.8330 

96 5.5863 119.1764 80.5378 0.2660 7.2862 0.0232 5.0373 0.8504 

97 3.0168 279.4493 86.9828 0.2271 2.3257 0.0009 2.7745 0.8265 

98 5.5405 119.0570 80.5773 0.2884 7.3667 0.0226 4.9796 0.8509 

99 6.9956 113.8193 89.9057 0.3536 14.6455 0.0382 6.9471 0.8330 

100 6.9311 164.9897 88.8850 0.3843 14.4630 0.0268 6.0754 0.8385 
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Figure 5.38. Pareto-optimal front for objectives MRR and TWR 

 

Figure 5.39. Pareto-optimal front for objectives Ra and Circularity 
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5.5. Comparison of responses using brass and copper tool 

Experiment is conducted in electric discharge machining, of AISI D2 steel using two tool 

such as brass tool and copper tool. Responses such as MRR, TWR, Ra, circularity are obtained in 

both cases. It is observed that responses are different for different tool material. A comparison is 

described below to obtain the better tool material. Table 5.21 shows the optimal response values 

and corresponding optimal process parameters, optimized by genetic algorithm individually. 

Table 5.21 shows that the optimal MRR obtained by copper tool is twice of time of MRR 

obtained by brass tool. The tool wear rate of copper tool is very less as compared to brass tool. 

Minimum surface roughness is obtained by machining copper tool. The circularity is nearly 

equal in both cases. Therefore copper as tool material should be preferred rather than brass. 

 

Table 5.21. Optimal solution for individual responses and corresponding variable 

Response Tool material Ip (A) Ton (µs) τ (%) Fp (bar) 
Optimal value 

of response 

MRR (mm
3
/min) 

Brass 6.997 299.998 90.000 0.398 7.706 

Copper 7.000 100.000 90.000 0.400 15.992 

TWR (mm
3
/min) 

Brass 3.000 300.000 80.002 0.200 0.648 

Copper 3.648 255.155 80.000 0.200 0.271 

Ra (μm) 
Brass 3.000 100.000 80.000 0.332 3.729 

Copper 3.001 299.998 90.000 0.365 2.162 

Circularity 
Brass 7.000 299.999 89.997 0.400 0.868 

Copper 4.910 100.008 80.000 0.346 0.853 

 

The optimal setting using neuro-fuzzy and PSO model is exposed in Table 5.22. From table, 

observed that better MRR, TWR and Ra are achieved by using copper tool with less pulse-on-

time and duty factor. Discharge current is almost same in both cases. The circularity is nearly 

equal in both cases. Therefore copper tool can be preferred rather than brass tool. 

 

Table 5.22. Condition for optimal EDM performance using neuro-fuzzy model 

Tool 

material 

 

Optimal process parameter 

MPCI 

Optimal value of response 

Ip (A) 
Ton 

(μs) 

τ    

(%) 

Fp 

(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra  

(μm) 
Circularity 

brass 6.924 298.7 85.56 0 0.9465 4.1676 0.0347 11.737 0.8741 

copper 6.87 116.2 80 0 0.8579 10.0912 0.0303 8.135 0.8245 
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5.6. White layer thickness and crack analysis 

In EDM total eroded material can‟t be removed from surface due to improper flushing. The 

un-flushed material recrystallizes on the machined surface forming a white layer. Hence white 

layer modifies the machined surface. The machined material is cut in transvers section to study 

the white layer for experiment number 11, 12, 14, 15, 17, 18, 19, 20 by as shown in Figure 40-47 

and the measured white layer value is listed in Table 5.23. Table 5.23 indicates that the white 

layer thickness increases with increasing discharge current due to more material removed as a 

result of strong spark. White layer thickness increases with decreasing pulse-on-time with same 

duty factor. This occurs because, as pulse-on-time is less there is much time for recrystallization 

formation. White layer thickness is decreases with increasing flushing pressure due to effectively 

removal of eroded material.  

 

 

Figure 5.40. White layer at Ip=3A, Ton =200µs, τ =90%,Fp=0.3bar 
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Figure 5.41. White layer at Ip=7A, Ton= 200µs, τ =90%, Fp=0.3bar 

 

Figure 5.42. White layer at Ip=5A, Ton=300µs, τ =85%, Fp= 0.2bar 
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Figure 5.43. White layer at Ip=5A, Ton=100µs, τ =85%, Fp=0.4bar 

 

Figure 5.44. White layer at Ip=7A, Ton=200 µs, τ =85%, Fp=0.2bar 
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Figure 5.45. White layer at Ip=3A,Ton=200µs, τ =85%, Fp=0.2bar 

 

Figure 5.46. White layer at Ip=3A, Ton=200µs, τ =85%, Fp=0.4bar 
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Figure 5.47. White layer at Ip=7A, Ton=200µs, τ=85%, Fp=0.4bar 

Table 5.23. White layer thickness 

Experiment No. Ip Ton τ Fp White layer thickness 

11 3 200 90 0.3 2.28 

12 7 200 90 0.3 137.00 

14 5 300 85 0.2 3.63 

15 5 100 85 0.4 396.33 

17 3 200 85 0.2 8.49 

18 7 200 85 0.2 472.00 

19 3 200 85 0.4 10.23 

20 7 200 85 0.4 25.83 

 

The machined surface of experiment numbers 22 (Ip = 5 A, Ton = 300 µs, τ = 80%, Fp=0.3 

bar) and 23 (Ip=5A, Ton =100µs, τ =90%, Fp=0.3bar) is analysed under scanning electron 

microscope at 1000 magnification (Model JEOL JSM-6480LV). Figure 5.48 shows pores and 

micro cracks for experiment number 22 whereas Figure 5.49 shows the same for experiment 

number 23. It can be observed that few larger pores and small number of micro cracks are 

present in Figure 5.48. In Figure 5.49, more number of small pores and more number of micro 

cracks are present. It can be deduced that increase of pulse-on-time causes pores and cracks to be 

larger.  
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Figure 5.48. SEM picture showing pores and cracks for experiment number 22 

 

Figure 5.49. SEM picture showing pores and cracks for experiment number 22 

3.11. Conclusions  

The chapter describes the optimal setting for single response as well as multi-response 

(equivalent single response of multi-response). NSGA is proposed to obtain 100 pareto optimal 

solution and corresponding input variables instead of single optimal solution. By comparing it is 

concluded that copper tool giver better EDM performance that brass tool. The machined surface 

and its transverse section are studied under scanning electron microscope to analyse cracks and 

white layer thickness respectively. The model is validated using finite element thermal modelling 

in the next chapter. 
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Chapter 6 

TRHERMO-PHYSICAL MODELLING 

 

6.1. Introduction 

Electrical discharge machining EDM contributes a prime share in the manufacture of 

complex-shaped dies, mould, and critical parts used in automobile, aerospace, and other 

industrial applications [84, 85]. It is, thus, important to improve the process productivity and 

finishing capability to produce complex part shapes accurately in the shortest possible lead times. 

The physics of the EDM spark (plasma) is so complicated that, it is difficult to observe the 

process experimentally and quantify the mechanism of material removal [86, 87]. Researchers 

worldwide are developing models for accurate prediction of crater shapes, material removal rate 

(MRR), and tool wear rate (TWR). The present study describes an intelligence technique for 

thermo-physical modelling to validate the model developed by empirical relation and neuro-

fuzzy system. 

6.2. Thermal analysis of the EDM process 

During EDM process, the dielectric medium ionizes due to high potential as a result plasma 

arc produced. The primary mechanism of material removal is spark erosion process which 

produces large heat and melted the work piece as well as tool material. For thermal analysis 

conduction is thus considered as primary mode of heat transfer. In the present study flourier heat 

conduction equation is used as governing equation (Eq. 6.1) [85]. Transient nonlinear analysis of 

the single spark operation of EDM process has been carried out in ANSYS 10 software. 
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r∂

∂

r

1
                                                                                  (6.1) 

Where r and z are the coordinates of cylindrical work domain, T is temperature, Kt is thermal 

conductivity, ρ is density, Cp is specific heat capacity of work piece. 

A small cylindrical portion of the work piece around the spark is chosen for analysis. Figures 

6.1 show the two-dimensional axisymmetric process continuum and Figures 6.2 shows the mode 

of heat transfer in the work piece.  
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6.2.1. Assumptions  

The following assumptions have been made during the thermal analysis. 

1. Homogeneity in tool and work piece material which are temperature dependant. 

2. Heat transfer is only due to conduction, not by convection and radiation. 

3. Spark channel is cylindrical column and spark radius a function of discharge current 

and time. 

4. Flushing efficiency is 100%. 

5. Only fraction of heat is conducted to the work piece, rest goes to the dielectric. 

 

 

 

 

 

 

 

 

Figure 6. 1. Two-dimensional axisymmetric model 

 

 

 

 

 

 

Figure 6. 2. Mode of heat transfer in the work piece 

6.2.2. Heat input, spark radius and boundary condition 

The heat conduction equation used is shown in Eq. 6.2 and the spark radius is calculated by 

the empirical formula Eq. 6.3. 

}2)
R

r
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Where qw is the heat enters to the work piece. The maximum heat flux is 
R

VIcF 56.4
=oq , Fc is 

Fraction of heat going to cathode. V discharge voltage (V), I discharge current (A), R is spark 

radius in μs. 

 44.0
dT43.0I)3-e04.2(=R              (6.3) 

Where I is discharge current, Td pulse-on-time. 

The boundary of work piece is immersed in dielectric medium having ambient temperature (Ta) 

and heat flux is applied on the top surface of the work piece at the spark region. 

 

6.2.3. Solution methodology 

The governing equation (Eq. 6.1) with boundary conditions is solved by Finite Element 

Method to predict the temperature distribution. ANSYS
TM

 10.0, an FEM solver was used. The 2-

D continuum (size 0.35×0.3 mm) was considered for the analysis. An axisymmetric, four-noded, 

thermal solid element (PLANE 55) was used for discretization of the continuum. Isometric 

material properties, thermal conductivity were employed and following steps are followed to find 

crater and temperature distribution. 

Step 1. Model geometry is created and meshing is done using PLANE 55 thermal solid element. 

Step 2. Material property such as thermal conductivity, density, heat capacity is given along with 

initial and bulk temperature as 300 K . 

Step 3. The heat flux location equation is imported Eq 6.2 and applied to the spark location. 

Step 4. Temperature distribution is obtained. 

Step 5. The node having temperature more than melting point temperature is identified and killed 

to eliminate from mesh. 

Step 6. The MRR and TWR are calculated using coordinate data of the craters of work and tool 

material for the optimal setting obtained from empirical combined with GA model and 

neuro-fuzzy model. 
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6.3. Results and comparison of models 

The optimal conditions from empirical model combined with GA and neuro-fuzzy model, i.e 

input process parameter for ANSYS are listed in Table 6.1. 

 

Table 6.1. Process parameter for ANSYS 

Response Tool material Ip (A) Ton (µs) τ (%) 

Optimal setting from empirical model combined with GA 

MRR (mm
3
/min) 

Brass 6.997 299.998 90.000 

Copper 7.000 100.000 90.000 

TWR (mm
3
/min) 

Brass 3.000 300.000 80.002 

Copper 3.648 255.155 80.000 

Optimal setting from Neuro-fuzzy model 

MRR (mm
3
/min) (MPCI) 

Brass 6.924 298.700 85.56 

Copper 6.870 116.200 80.000 

TWR (mm
3
/min) (MPCI) 

Brass 6.924 298.700 85.56 

Copper 6.870 116.200 80.000 

 

Radius is calculated using Eq. 6.3 and the transient heat transfer problem was solved by 

applying the heat flux at the spark location (Eq. 6.2). The discharge duration is used as the time 

step for the analysis. Figure 6.3 shows the results for a typical problem showing the temperature 

contour plots. The results are for work material AISI D2 tool steel with machining conditions, 

discharge current 3 A, pulse-on-time 300 μs and duty cucle 80 %. The nodes showing 

temperature more than melting point were selected and eliminated from the complete mesh of the 

work domain for further analysis. A typical crater cavity generated by this analysis is shown in 

Figure 6.4. 
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Figure 6. 3. Temperature distribution 

 

Figure 6. 4. Predicted bowl shaped crater using the FEM analysis 
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The material removal rate due to single spark discharge is calculated by dividing the cavity 

volume into number of cylindrical discs Figure 6.5. 

 

 Radius of crater

Nodes

Depth of crater

D0

D1

Dn-1

(x0 y0)

(x1 y1)

(xn-1 yn-1)

(xn yn)

 

Figure 6. 5. Calculation of crater volume 

 

Total crater volume Cv (µm
3
) is given by Eq. 6.4 

 

1n

0i

iv DC                (6.4) 

Where Di is given by Eq. 6.5 
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i                            (6.5) 

where x and y are the coordinates of nodes and n is the number of nodes. 

 

The material removal rate in mm
3
/min is calculated assuming all sparks are equally effective 

using Eq. 6.6. The similar procedure is followed to calculate tool wear rate putting tool material 

properties instead of work piece material. The MRR, TWR results are listed in Table 6.2 with 

results from AI model for comparison.  

 

ToffTon

C60
MRR v

              (6.6) 
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Table 6.2. Comparison of AI and thermo-physical model 

Response 
Tool 

material 

Optimal parametric value 
AI model 

response value 

Thermo-physical 

model response value Ip (A) Ton (µs) τ (%) 

Single response optimization using GA 

MRR 

(mm
3
/min) 

Brass 6.997 299.998 90.000 7.706 7.22000 

Copper 7.000 100.000 90.000 15.992 15.05724 

TWR 

(mm
3
/min) 

Brass 3.000 300.000 80.002 0.648 0.709874 

Copper 3.648 255.155 80.000 0.271 0.304146 

Multi-response optimization using Neuro-fuzzy model 

MRR 

(mm
3
/min) 

Brass 6.924 298.700 85.560 4.1676 4.266725 

Copper 6.870 116.200 80.000 10.0912 10.12844 

TWR 

(mm
3
/min) 

Brass 6.924 298.700 85.560 0.0347 0.034185 

Copper 6.870 116.200 80.000 0.0303 0.034535 

 

From Table 6.2, it is observed that the response obtained in thermo-physical model is very 

close to the optimal response obtained from AI model. Therefore the model is validated within 

and beyond the boundary of process parameter. 

6.4. Conclusions 

In the present study a non-linear, transient, thermo-physical model of die-sinking EDM 

process has been developed using the FEM and thermal analysis of the process is carried out. 

The results obtained from the numerical model are compared with results of AI model. It is 

observed that the MRR values predicted by our model are closer to the results of AI model, 

which validate the model. 
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Chapter 7 

CONCLUSIONS 

 

7.1. Introduction  

Electric discharge machining (EDM) is one of the non-traditional machining processes to 

manufacture complex shape in conductive material irrespective of hardness. EDM has significant 

advantage in terms of elimination of multi pass manufacturing, the flexibility and the possibility 

of producing very complex parts and shapes. The present study describes a solution to solve one 

challenge faced by EDM user, i.e. improvement of quality and productivity of parts produced, 

which is allied with the accurate application of the specified performance. 

7.2. Summary of findings 

The understandings generated in this work not only properly explain the complex build mechanism 

but also present in detail the processing parameter effect on output responses. The comparison of EDM 

performance using copper and brass as tool material. The development of an artificial intelligence model 

to optimize process parameters for better performance. The optimization of the process parameters 

for MRR, TWR, Ra, circularity has been performed individually for both brass and copper tool. 

The optimal results are shown in Table 7.1. 

 

Table 7.1.  Optimal condition and optimal value 

Response Tool material Ip (A) Ton (µs) τ (%) Fp (bar) 
Optimal value 

of response 

MRR 
Brass 6.997 299.998 90.000 0.398 7.706 

Copper 7.000 100.000 90.000 0.400 15.992 

TWR 
Brass 3.000 300.000 80.002 0.200 0.648 

Copper 3.648 255.155 80.000 0.200 0.271 

Ra 
Brass 3.000 100.000 80.000 0.332 3.729 

Copper 3.001 299.998 90.000 0.365 2.162 

Circularity 
Brass 7.000 299.999 89.997 0.400 0.868 

Copper 4.910 100.008 80.000 0.346 0.853 
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It is concluded from the table that copper tool has better performance than brass tool as the optimal 

value of response in case of copper tool are found to be larger. The responses are optimized 

simultaneously using neuro-fuzzy model and the results are shown in Table 7.2. In this case flushing 

pressure is found to be insignificant and better performance is achieved using copper tool. 

 

Table 7.2.  Condition for optimal EDM performance using neuro-fuzzy model 

Tool 

material 

 

Optimal process parameter 

MPCI 

Optimal value of response 

Ip (A) 
Ton 

(μs) 

τ    

(%) 

Fp 

(bar) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra  

(μm) 
Circularity 

brass 6.924 298.7 85.56 - 0.9465 4.1676 0.0347 11.737 0.8741 

copper 6.870 116.2 80.00 - 0.8579 10.0912 0.0303 8.135 0.8245 

 

The analytical model is validated by a non-linear, transient, thermo-physical model. The results 

obtained using analytical and thermo-physical models are shown in Table 7.3. From Table 6.2, it is 

observed that the response obtained in thermo-physical model is very close to the optimal 

response obtained from analytical model. Therefore the model is validated within and beyond the 

boundary of process parameter. 

 

Table 7.3.  Comparison of AI and thermo-physical model 

Response 
Tool 

material 

Optimal parametric value 
AI model 

response value 

Thermo-physical 

model response value Ip (A) Ton (µs) τ (%) 

Single response optimization using GA 

MRR 

(mm
3
/min) 

Brass 6.997 299.998 90.000 7.706 7.22000 

Copper 7.000 100.000 90.000 15.992 15.05724 

TWR 

(mm
3
/min) 

Brass 3.000 300.000 80.002 0.648 0.709874 

Copper 3.648 255.155 80.000 0.271 0.304146 

Multi-response optimization using Neuro-fuzzy model 

MRR 

(mm
3
/min) 

Brass 6.924 298.700 85.560 4.1676 4.266725 

Copper 6.870 116.200 80.000 10.0912 10.12844 

TWR 

(mm
3
/min) 

Brass 6.924 298.700 85.560 0.0347 0.034185 

Copper 6.870 116.200 80.000 0.0303 0.034535 
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7.3. Limitation of the study 

In spite of several advantages obtained through proposed study, the following may be treated 

as limitations of the study since they have not been addressed in study. 

 Heat affected zone is not been considered. 

 The effect of process parameter on white layer thickness and crack density has not been 

studied. 

 The present study mainly develops empirical model, numerical model and soft computing 

technique but mathematical approach must be developed to study the effect of process 

parameters on various responses. 

 In this work, only EDM process has been considered limiting the scope of improving 

other non-traditional machining process. 

7.4. Future scope 

 White layer thickness and crack density can be considered as a response with lower-the-

better criteria. 

 Heat affected zone can be considered as a response with lower-the-better criteria. 

 Mathematical approach can be developed to study the effect of process parameters on 

various responses. 

 The model can be used in other field for optimization purpose. 
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