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ABSTRACT 
 
 
 

KEYWORDS: self supporting steel chimney, dynamic wind, vortex shedding, geometry 
limitations, resonance, stroughal critical velocity 

 
 
 

 

Most of the industrial steel chimneys are tall structures with circular cross-sections. Such 

slender, lightly damped structures are prone to wind-exited vibration. Geometry of a self 

supporting steel chimney plays an important role in its structural behaviour under lateral 

dynamic loading. This is because geometry is primarily responsible for the stiffness 

parameters of the chimney. However, basic dimensions of industrial self supporting steel 

chimney, such as height, diameter at exit, etc., are generally derived from the associated 

environmental conditions. To ensure a desired failure mode design code (IS-6533: 1989 

Part 2) imposes several criteria on the geometry (top-to-base diameter ratio and height-to-

base diameter ratio) of steel chimneys. The objective of the present study is to justify the 

code criteria with regard to basic dimensions of industrial steel chimney.  

 

A total of 66 numbers self supporting steel flared unlined chimneys with different top-to-base 

diameter ratio and height-to-base diameter ratio were considered for this study. The thickness 

of the chimney was kept constant for all the cases. Maximum bending moment and stress for 

all the chimneys were calculated for dynamic wind load as per the procedure given in 

IS 6533: 1989 (Part 2) using MathCAD software. Also the results were verified with the 

finite element analysis using commercial software ANSYS. Basic wind speed of 210 km/h 



 iii

which corresponds to costal Orissa area is considered for these calculations. Maximum base 

moments and associated steel stresses were plotted as a function of top-to-base diameter ratio 

and height-to-base diameter ratio. The results obtained from this analysis do not agree with 

the code criteria. 



iv 
 

TABLE OF CONTENTS  

 

Title Page No. 

ACKNOWLEDGEMENTS .......................................................................................... i 

ABSTRACT ................................................................................................................. ii 

TABLES OF CONTENTS ......................................................................................... iv 

LIST OF FIGURES .................................................................................................. .vii 

ABBREVIATIONS .................................................................................................. viii 

NOTATIONS .............................................................................................................. ix 

CHAPTER 1 INTRODUCTION  

1.1.Overview .................................................................................................................1 

1.2.Literature Review ....................................................................................................2 

1.1. Objective ................................................................................................................6 

1.2. Scope of Study .......................................................................................................6 

1.3. Methodology ..........................................................................................................7 

1.4. Organization of Thesis ...........................................................................................7 

CHAPTER 2 LOAD EFFECTS ON STEEL CHIMNEY 

2.1. Overview ...........................................................................................................8 

2.2. Wind engineering ..............................................................................................8 

2.2.1. Along wind effects ............................................................................................9 

2.2.2. Across wind effects .........................................................................................10 

2.3. Wind load calculation .................................................................................…10 

2.4. Static wind effects ...........................................................................................11 

2.5. Dynamic wind effects .....................................................................................12 

2.6. Seismic effects ................................................................................................15 



v 
 

2.6.1. Response Spectrum method ............................................................................16 

2.6.2. Horizontal seismic force .................................................................................17 

2.7. Shear and moment ...........................................................................................18 

2.8. Temperature effects ........................................................................................18 

2.9. Summary .........................................................................................................18 

 

CHAPTER 3 DESIGN OF STEEL CHIMNEY 

3.1.  Overview .........................................................................................................19 

3.2. Design aspects of steel chimney .....................................................................19 

3.2.1. Mechanical aspects .........................................................................................19 

3.2.2. Structural aspects ............................................................................................20 

3.3. Applicable codes for design ............................................................................20 

3.3.1 IS 875(Part-3):1987 ........................................................................................20 

3.3.2 IS 6533(part-1):1989 .......................................................................................21 

3.3.3. IS 6533(part-2):1989 .......................................................................................21 

3.3.4. ASME-STS-2000 ............................................................................................22 

3.5. Design methodology .......................................................................................22 

3.5.1. Assumptions ....................................................................................................22 

3.5.2. Loadings and load combinations ....................................................................23 

3.5.2.1.Load combinations ..........................................................................................24 

3.6. Sample design calculations .............................................................................24 

3.6.1. Design Inputs ..................................................................................................24 

3.6.2. Determination of the height of the chimney ...................................................24 

3.6.3. Other dimensions ............................................................................................26 

3.6.4 Load combinations ..........................................................................................27 

3.6.5 Permissible stress ............................................................................................28 



vi 
 

3.6.6. Chimney weight ..............................................................................................28 

3.6.7. Wind load calculation .....................................................................................29 

3.6.8. Design for static wind .....................................................................................30  

3.6.9. Check for seismic force ..................................................................................37 

3.6.10. Calculation of dynamic wind load ..................................................................40 

3.6.11. Check for resonance ........................................................................................45 

3.7. Summary .........................................................................................................47 

CHAPTER 4.EFFECTS OF GEOMETRYON THE SELF SUPORTING STEEL 

CHIMNEY 

4.1. Introduction ..........................................................................................................48 

4.2. Limitations on chimney geometry .......................................................................48 

4.3. Description of the selected chimney ....................................................................51 

4.4. Dynamic wind load as per IS 6533(Part-2)”1989 ................................................52 

4.5. Results and discussions ........................................................................................55 

4.6. Effect of inspection manhole on the behaviour of self supporting steel  

Chimney .................................................................................................................57 

4.7. Summary and conclusions ...................................................................................61 

Chapter 5       SUMMARY AND CONCLUSIONS 

5.1.  Summary .........................................................................................................63 

5.2.  Conclusions .....................................................................................................64 

5.3.  Scope for future work .....................................................................................64 

 

 

 



vii 
 

 

LIST OF FIGURES  

 

Title Page No 

Fig.1.1: Self supporting steel chimney .........................................................................1 

Fig.2.1: Regimes of fluid flow across circular cylinders ............................................14 

Fig.4.1: Geometrical distribution of selected chimney models ..................................51 

Fig.4.2: Fundamental mode shape of a typical chimney as obtained from finite 
element analysis ..........................................................................................................53 

Fig.4.3.: Comparision of fundamental mode shape obtained different analysis .........54 

Fig.4.4: Base moment of the chimney as a function of top to base diameter. ............55 

Fig.4.5  Base moment of the chimney as a function of height to base diameter ........56 

Fig.4.6  Variation of bending stress as a function of geometry ..................................56 

Fig.4.7: Von mises stresses for chimney without manole. .........................................58 

Fig.4.8. Von mises stresses for chimney with manole ................................................58 

Fig.4.9.: Top deflection of the chimney without manhole ..........................................59 

Fig.4.10: Top deflection of the chimney with manhole ..............................................59 

Fig.4.11: Mode shape without manhole consideration ...............................................60 

Fig.4.12: Mode shape without manhole consideration ...............................................61 



 

 viii

ABBREVIATIONS 
 

 
 ACI   American Concrete Institute  

 ASME   American Society of Mechanical Engineers 

 CICIND  International Committee on Industrial Chimneys 

 DIN   Deutsches Institut für Normung 

 IS   Indian Standards 

 GLC   Ground level concentration 

MEF   Ministry of Environment and Forest 

 

  



 

 ix

NOTATIONS 
 
 

ENGLISH  
 

 

A  Area of section normal to wind direction  

Ah  Horizontal acceleration spectrum 

An  Aerodynamic admittance at the structure’s natural frequency  

C  Maximum permissible ground level concentration of pollutant 

Cd  Drag coefficient 

Cpermissible Maximum permissible ground level concentration pollutants 

Ct  Coefficient depending on slenderness ratio of the structure 

CT  Coefficient depending upon slenderness ratio 

D  Mean diameter at the chimney 

Dfuel  Density of the fuel 

dm  Mass of the chimney 

Es  Modulus of elasticity of material of the structural shell 

F  Fundamental frequency 

Fd  Drag force 

Fdust=  Dimensionless coefficient rate of precipatations 

fy  Yield stress of the steel 

G  Acceleration due to gravity 

H  Height of the structure above the base 

I  Importance factor 

K1  Probability factor (risk coefficient) 
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K2  Terrain, height and structure size factor 

K3  Topography factor 

M  Estimated mass rate of emission of pollutants 

km   coefficient of pulsation of speed thrust 

Qsulphur  Total quantity of the sulphur quantity 

Qt  Quantity of the gas 

R  Response reduction factor 

Re  Reyonlds number 

Sa/g  Spectral acceleration coefficient 

iT   The period of ith mode 

Ūt  Mean wind speed at top of a chimney  

ν   Coefficient which takes care of the space 

V  Estimated volume rates of emission of total flue gases 

Vb  Basic wind speed 

VB  Design base shear 

Vz  Design wind speed 

W t  Total weight of the structure including weight of lining and contents above the     

  base 

Wfuel  Weight of the fuel 

Z  Zone factor  



CHAPTER 1 

INTRODUCTION 

 

 

1.1 OVERVIEW 

Chimneys or stacks are very important industrial structures for emission of poisonous gases to a 

higher elevation such that the gases do not contaminate surrounding atmosphere. These 

structures are tall, slender and generally with circular cross-sections. Different construction 

materials, such as concrete, steel or masonry, are used to build chimneys. Steel chimneys are 

ideally suited for process work where a short heat-up period and low thermal capacity are 

required. Also, steel chimneys are economical for height upto 45m. Fig. 1 shows a photograph of 

self-supporting steel chimneys located in an industrial plant.  

 

Fig. 1: Self-supporting Steel Chimney (ref. http://www.comdynam.com/) 
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There are many standards available for designing self supporting industrial steel chimneys: 

Indian Standard IS 6533: 1989 (Part-1 and Part-2), Standards of International Committee on 

Industrial Chimneys CICIND 1999 (rev 1), etc.  

Geometry of a self supporting steel chimney plays an important role in its structural behaviour 

under lateral dynamic loading. This is because geometry is primarily responsible for the stiffness 

parameters of the chimney. However, the basic geometrical parameters of the steel chimney 

(e.g., overall height, diameter at exit, etc.) are associated with the corresponding environmental 

conditions. On top of that design code (IS-6533: 1989 Part 2) imposes several criteria on the 

geometry of steel chimneys to ensure a desired failure mode. Two important IS-6533: 1989 

recommended geometry limitations for designing self supporting steel chimneys are as follows:  

i) Minimum outside diameter of the unlined chimney at the top should be one twentieth 

of the height of the cylindrical portion of the chimney. 

ii) Minimum outside diameter of the unlined flared chimney at the base should be 1.6 

times the outside diameter of the chimney at top. 

Present study attempts to justify these limitations imposed by the deign codes through finite 

element analyses of steel chimneys with various geometrical configurations. 

 

1.2  LITERATURE REVIEW 

A literature review is carried out on the design and analysis of steel chimney with special interest 

on the geometrical limitations. Although a number of literatures are available on the design and 

analysis of steel chimney there are only two published literature found that deals with the 

geometrical aspects of steel chimney. This section presents a brief report on the literatures 

reviewed as part of this project. 
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Menon and Rao (1997) reviews the international code procedures to evaluate the across wind 

response of RC chimneys. The disparities in the codal estimates of across wind moments as well 

as the load factor specifications are examined in this paper through reliability approach. This 

paper recommends that it is necessary to design for the across wind loading at certain conditions.  

Chmielewski, et. al. (2005) studied about natural frequencies and natural modes of 250 m high-

multi-flue industrial RC chimney with the flexibility of soil. This paper used finite element 

method for analysis. Also, experimental work to investigate the free vibration response is carried 

out by using two geophone sensors and experimental results are compared with analytical results. 

The results show that the soil flexibility under the foundation influences the natural modes and 

natural periods of the chimney by considerable margin.  

Ciesielski, et. al. (1996) observed cross vibration on a steel chimney arising out of aerodynamic 

phenomenon. This paper shows that specially designed turbulizers, mechanical dampers can 

reduce this cross vibrations considerably.  

Ciesielski, et. al. (1992) gives information on vortex excitation response of towers and steel 

chimney due to cross wind. A model is proposed to calculate maximum displacement of the 

chimney at top due to cross wind and the results are reported to match closely with the observed 

maximum top displacement. 

Flaga and Lipecki (2010) analysed the lateral response of steel and concrete chimneys of circular 

cross-sections due to vortex excitation. A mathematical model of vortex shedding is proposed for 

calculating maximum displacement of the chimney at top due to vortex shedding.  

Gaczek and Kawecki (1996) explained about the cross-wind response of steel chimneys with 

spoilers. 3-start helical strake system with strakes of pitch 5D is explained in this paper. Also, it 

is reported that the top displacement of a chimney depends on the parameter of excitation. 
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Galemann and Ruscheweyh (1992) presented the experimental work on measurements of wind 

induced vibrations of a steel chimney. For the along-wind vibration, the aerodynamic admission 

function has been developed from the vertical coherence of the wind speed as well as from the 

dynamic response directly. It is shown that the interaction effect between the strouhal frequency 

and the natural frequency of the chimney should produce a new exciting frequency which is 

lower than the strouhal frequency.  

Hirsch and Ruscheweyh (1975) also analysed a steel chimney which is collapsed due to wind-

induced vibrations. The analysis considered cross-wind oscillations of steel stacks of given 

structural data (such as natural frequencies and log decrements). Hydraulic automotive shock-

absorber to prevent vortex-induced oscillations is also demonstrated in this paper. 

Kareem and Hseih (1986) carried out the reliability analysis of concrete chimneys under wind 

loading. In this paper, safety criteria are taken into consideration. Excessive deflection at the top 

of the chimney and exceedence of the ultimate moment capacity of the chimney cross-section at 

any level were taken as failure criterion. Formulation for wind-induced load effects, in the both 

along-wind and across-wind directions, is presented according to the probabilistic structural 

dynamics. Covariance integration method is used to formulate a special description of fluctuating 

wind load effects on chimneys. Load effects and structural resistance parameters are treated as 

random variables. These random variables are divided into three categories such as, wind 

environment and meteorological data, parameters reflecting wind-structure interactions and 

structural properties.  

Kawecki and Zuranski (2007) measured the damping properties of the steel chimney due to 

cross-wind vibrations and also compared different approaches to the calculation of relative 

amplitude of vibration at small scruton number. They also gave importance to climatic 
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conditions during vibrations. They also presented better description of cross-wind vibrations 

according to the Eurocode and CICIND model code.  

Ogendo, et. al. (1983) presented a theoretical analysis that shows that for a large class of steel 

chimney designs a resilient damping layer at the base can help to achieve a sufficiently high 

overall damping level to inhibit significant vortex-induced vibrations. Also, it is concluded from 

full-scale experiments that the system damping level can be increased by a factor of up to 3.  

Pallares, et. al. (2006) discusses about the seismic behaviour of an unreinforced masonry 

chimney. A 3D finite element non-linear analysis is carried out incorporating cracking and 

crushing phenomena to obtain lateral displacements, crack pattern and failure mode. Also the 

maximum earthquake in terms of peak ground motion that the chimney can withstand is 

obtained. 

 Verboom and Koten (2010) shows that the design rules for cross-wind vibrations for steel 

chimney given by DIN 4133 and CICIND model code can differ by a factor 6 or more in terms 

of stress. Chimneys are modelled according to the Vickery-Basu model. This paper formulates a 

design rule that computes more accurately the stresses in industrial chimneys due to vortex 

excitation. It is shown that the results obtained from this formulation gives superior results 

compared to the DIN 4133 or CICIND model code.  

Wilson (2003) conducted experimental program to show the earthquake response of tall 

reinforced concrete chimney. A non-linear dynamic analysis procedure is developed to evaluate 

the inelastic response of tall concrete chimney subjected to earthquake excitation. Based on 

experiments, the results encourage reliance on the development of ductility in reinforced 

concrete chimneys to prevent the formation of brittle failure modes.  
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Kiran (2001) presented design and analysis of concrete chimney in conformity with various code 

such as IS 4998, ACI 307, CICIND, etc. 

The literature review presented above shows that there are a number of published work on steel 

and concrete chimneys. Experimental and theoretical studies are presented on the behaviour of 

tall chimneys subjected to wind and seismic force. It is found that majority of the research papers 

on chimney are concentrated on its response to vortex shedding. However, a very less research 

effort is found on the geometric limitations of the design code with regard to steel chimneys. 

 

1.3 OBJECTIVES 

Based on the literature review presented in the previous section the objective of the present study 

is defined as follows: 

• Assess the geometry limitations imposed by IS 6533:1989 for designing self supporting 

steel chimney. 

 

1.4 SCOPE 

i) Self-supporting flared steel chimney is considered for the present study 

ii) Chimneys are considered to be fixed at their support. Soil flexibility is not considered 

in the present study 

iii) All chimneys considered here are of single-flue type 

iv) Uniform thickness is considered over the full height of the chimney.  

v) Only wind load and seismic load are taken into consideration for design of the 

chimney. 
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1.5 METHODOLOGY 

To achieve the above objective following step-by-step procedures are followed:  

• Carry out literature study to find out the objectives of the project work. 

• Understand the design procedure of a self-supporting steel chimney as per Indian 

Standard IS 6533:1989. 

• Select various chimney geometry considering and ignoring code (IS 6533:1989) 

limitations. 

• Analyse all the selected chimney models using manual calculations (MathCAD) and 

finite element analysis (ANSYS). 

• Evaluate the analysis results and verify the requirement of the geometrical limitations.  

 

1.6 ORGANISATION OF THE THESIS 

This introductory chapter (Chapter 1) presents the background and motivation behind this 

study followed by a brief report on the literature survey. The objective, scope and 

methodology of the proposed research work are also presented in this chapter. 

Chapter 2 reviews load effects on the steel chimney as per Indian Standard. It also describe 

about the nature and effects of each type of load including the calculation of the loads.  

Chapter 3 explains the design and analysis of steel chimney as per IS 6533: 1989 (Part 1 & 

2). The design procedure is demonstrated through sample calculations. 

Chapter 4 presents the effect of geometry on the design of self supporting steel chimney and 

critically evaluate the geometric limitations imposed by IS 6533:1989. 

Chapter 5 presents the summery and conclusion obtained from the present study. 
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CHAPTER 2 

LOAD EFFECTS ON STEEL CHIMNEY 

 

 

2.1 OVERVIEW 

Self supporting steel chimneys experience various loads in vertical and lateral directions. 

Important loads that a steel chimney often experiences are wind loads, earthquake loads, and 

temperature loads apart from self weight, loads from the attachments, imposed loads on the 

service platforms. Wind effects on chimney plays an important role on its safety as steel 

chimneys are generally very tall structures. The circular cross section of the chimney subjects to 

aerodynamic lift under wind load.  

Again seismic load is a major consideration for chimney as it is considered as natural load. This 

load is normally dynamic in nature. According to code provision quasi-static methods are used 

for evaluation of this load and recommend amplification of the normalized response of the 

chimney with a factor that depending on the soil and intensity of earthquake.  

In majority of the cases flue gases with very high temperature released inside a chimney. Due to 

this a temperature gradient with respect to ambient temperature outside is developed and hence 

caused for stresses in the cell. Therefore, temperature effects are also important factor to be 

considered in the steel design of chimney.  

This chapter describes the wind load and seismic load effects on self-supporting steel chimney. 

 

2.2 WIND ENGINEERING 

For self-supporting steel chimney, wind is considered as major source of loads. This load can be 
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divided into two components respectively such as, 

i) Along-wind effect 

ii) Across -wind effect 

The wind load exerted at any point on a chimney can be considered as the sum of quasi-static 

and a dynamic-load component. The static-load component is that force which wind will exert if 

it blows at a mean (time-average) steady speed and which will tend to produce a steady 

displacement in a structure. The dynamic component, which can cause oscillations of a structure, 

is generated due to the following reasons: 

i) Gusts 

ii) Vortex shedding 

iii) Buffeting 

 

2.2.1. Along Wind Effects  

Along wind effects are happened by the drag component of the wind force on the chimney. 

When wind flows on the face of the structure, a direct buffeting action is produced. To estimate 

such type of loads it is required to model the chimney as a cantilever, fixed to the ground. In this 

model the wind load is acting on the exposed face of the chimney to create predominant 

moments. But there is a problem that wind does not blow at a fixed rate always. So the 

corresponding loads should be dynamic in nature. For evaluation of along wind loads the 

chimney is modelled as bluff body with turbulent wind flow. In many codes including IS: 6533: 

1989, equivalent static method is used for estimating these loads. In this procedure the wind 

pressure is determined which acts on the face of the chimney as a static wind load. Then it is 

amplified using gust factor to calculate the dynamic effects. 
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2.2.2. Across wind effects 

Across wind effect is not fully solved and it is required a considerable research work on it. For 

design of self supporting steel chimney, Indian standard remain silent about it. But it is 

mentioned in IS 4998 (part 1): 1992 and ACI 307-95 which is applicable for concrete chimney 

only. Also CICIND code does not mention this effects and depends on IS 4998 (part 1): 1992 

and ACI 307-95. 

Generally chimney-like tall structures are considered as bluff body and oppose to a streamlines 

one. When the streamlined body causes the oncoming wind flow, the bluff body causes the wind 

to separate from the body. Due to this a negative regions are formed in the wake region behind 

the chimney. This wake region produces highly turbulent region and forms high speed eddies 

called vortices. These vortices alternatively forms lift forces and it acts in a direction 

perpendicular to the incident wind direction. Chimney oscillates in a direct ion perpendicular to 

the wind flow due to this lift forces. 

 

2.3 WIND LOAD CALCULATION 

According to IS 875 (part 3):1987 basic wind speed can be calculated, 

                          1 2 3z bV V K K K=                                                                                     (2.1) 

Where  

          Vz= design wind speed at any height z m/s 

          K1= probability factor (risk coefficient) 

          K2= terrain, height and structure size factor 

          K3= topography factor 
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2.4 STATIC WIND EFFECTS 

A static force called as drag force, obstructs an air stream on a bluff body like chimney. The 

distribution of wind pressure depends upon the shape and direction of wind incidence. Due to 

this a circumferential bending occurs and it is more significant for larger diameter chimney. Also 

drag force creates along-wind shear forces and bending moments. 

 

(a) Drag 

The drag force on a single stationary bluff body is, 

                        
21

2 . . .d d aF C A Uρ=                                                                         (2.2) 

Where Fd = drag force, N 

Cd = Drag coefficient 

A = area of section normal to wind direction, sq. m 

The value of drag coefficient depends on Reyonlds number, shape and aspect ratio of a 

structure. 

(b) Circumferential bending 

The radial distribution of wind pressure on horizontal section depends on Re. normally 

the resultant force of along wind is counteracted by shear force s which is induced in the 

structure. These shear forces are assumed to vary sinusoidally along the circumference of 

the chimney cell. 

(c) Wind load on liners 

In both single-flue and multi-flue chimneys metal liners are being used but these are not 

directly contact or exposed to wind. But they are designed for wind loads which are 

transmitted through the chimney cell. The magnitude of the force can be estimated by 
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considering the liner as a beam of varying moment of inertia, acted upon by a transverse 

load at the top and deflection is calculated at the top of the cell. 

 

2.5 DYNAMIC-WIND EFFECTS 

Wind load is a combination of steady and a fluctuating component. Due to turbulence effect the 

wind load varies in its magnitude. 

(a) Gust loading 

Due to fluctuations wind load is random in nature. This load can be expressed as 

( )2
( ) uF t K U ρ= +

                                                                                       
(2.3) 

                          = ( )2
2 uK U Uρ+  , for small values of ρu 

Where       1
2 . .d aK C A ρ=  

 In the above expression (K Ū2) is quassi-static and Ū is the mean velocity. 

(b) Aerodynamic Effects 

In wind engineering there is a term called “aerodynamic admittance coefficient” which 

depends on spatial characteristics of wind turbulence. Spatial characteristics relates to 

structure’s response to wind load, at any frequency. This coefficient is expressed as; 

                                                                    (2.4) 

Where An = aerodynamic admittance at the structure’s natural frequency n, Hz 

            Ūt = mean wind speed at top of a chimney, m/s 

Always this coefficient has to be multiplied with response of a structure due to wind 

loads because it allows response modification due to spatial wind-turbulence 

characteristics. 
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(c) Vortex formation 

When wind flows through a circular cross section like chimney vortices are formed. 

These vortices cause a pressure drop across the chimney at regular pressure intervals. 

Due to this change in pressure, a lateral force perpendicular to wind direction is created. 

It depends on Reyonld’s number which has a range such as sub-critical (Re<3× 105), 

ultra-critical (Re >3× 105) and super-critical (3×105 to 3× 106). 

(d) Vortex excitation 

The alternate shedding of vertices creates a transverse forces called as lift. According to 

practical design purpose it is divided into two forms, such as 

(i) In sub-critical and ultra-critical Re range 

The frequency of lift force is regular, but magnitude is random. When frequency of 

vortex shedding is close to natural frequency of a chimney (when its motion is near 

sinusoidal), maximum response is obtained. The exciting force should be taken as, 

                                         sin  (2.5) 

The response of the structure depends on the time-average energy input from the vortex 

shedding forces. In the expression Cl has the time-average value rms value of the lifting 

force coefficient with a range of frequencies close to the natural frequency ωo of the 

structure. 
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Fig. 2.1: Regimes of fluid flow across circular cylinders 

 

(ii) In super-critical Re range 

In this range both frequency and magnitude are random in nature. Here structure’s 

response depends on the power input. If we plot power –input density function S’
l (St) 

against non-dimensional frequency St, then the power spectrum of the lift-force should be 

expressed as, 

                  ( )2 2 '1
2 . . . . .l a L l tS AU C S Sρ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (2.6) 

According to the (IS-6533 part-2:1989), if period of natural oscillation for the self-

supported chimney exceeds 0.25 seconds, the design wind load should take into 

Re < 5  
(Regime of un-separated flow) 

50 < Re ≤ 3×105  
(Vortex Street changes from laminar to turbulent)

5 ≤ Re < 40  
(A fixed pair of vortices in wake) 

3×105 < Re < 3.5×106  
(Turbulent transition wake is narrower and 

disorganised) 

40 ≤ Re < 150  
(Vortex Street is laminar) 

3.5×106 < Re  
(Re-establishment of turbulent vortex street) 
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consideration the dynamic effect due to pulsation of thrust caused by the wind velocity in 

addition to the static wind load. It depends on the fundamental period of vibration of the 

chimney. 

 

2.6 SEISMIC EFFECTS 

Due to seismic action, an additional load is acted on the chimney. It is considered as vulnerable 

because chimney is tall and slender structure. Seismic force is estimated as cyclic in nature for a 

short period of time. When chimney subjected to cyclic loading, the friction with air, friction 

between the particles which construct the structure, friction at the junctions of structural 

elements, yielding of the structural elements decrease the amplitude of motion of a vibrating 

structure and reduce to normal with corresponding to time. When this friction fully dissipates the 

structural energy during its motion, the structure is called critically damped. 

For designing earthquake resistant structures, it is necessary to evaluate the structural response to 

ground motion and calculate respective shear force, bending moments. Hence ground motion is 

the important factor for seismic evaluation. To estimate exact future ground motion and its 

corresponding response of the structure, it depends on soil-structure interaction, structural 

stiffness, damping etc. 

For analysis purpose, chimney is behaved like a cantilever beam with flexural deformations. 

Analysis is carried out by following one of the methods according to the IS codal provision, 

 

1. Response-spectrum method (first mode) 

2. Modal-analysis technique (using response spectrum) 

3. Time-history response analysis. 
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For chimneys which are less than 90m high called as short chimney, response spectrum method 

is used. 

 

2.6.1. Response-spectrum method 

This method consists of three steps such as, 

I. Fundamental period 

II. Horizontal seismic force 

III. Determine design shears and moments 

The fundamental period of the free vibration is calculated as, 

                                         
.

. .
t

T
s

W hT C
E A g

=                                                   (2.7) 

Where Ct = coefficient depending on slenderness ratio of the structure 

            W t= total weight of the structure including weight of lining and contents above the base,  

            A = area of cross-section at the base of the structural shell 

            h = height of the structure above the base 

           Es= modulus of elasticity of material of the structural shell 

           g= acceleration due to gravity 

Stiffness of the flared chimney is approximately two times the prismatic chimney. Therefore the 

the a conservative estimate of natural time period for this self supported steel chimney will be: 

                                               
2emprical
TT =  
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2.6.2. Horizontal seismic force 

The horizontal seismic force (Ah) is to be calculated according to IS 1893 (Part 1): 2002 as 

follows: 

                                 
( )

2
a

h

SZ
g

A
R

I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦=                                                                          (2.8) 

Where Z= zone factor  

            I= importance factor 

           R= response reduction factor. The ratio shall not be less than 1.0 

           Sa/g= spectral acceleration coefficient for rock and soil sites 

 

2.7 SHEAR AND MOMENT  

Base moment and base shear can be calculated as follows 

                             
0

h

dyn dynp dp= ∫
    

 

                            
0

h

dyn dynM x dp= ×∫  

As per IS 6533 (Part-2): 1989 Inertia force, dyndP , for ith mode for an infinitesimal height dx  at a 

height x from the base of the chimney is as follows: 

                           νηξ ×××= iidyn dmdP  

Where, 

 dm = mass of the chimney for an infinitesimal height dx  at height x from the base of the 

chimney, 

 ( ) 1200bii VT=ξ  is the dynamic coefficient for the ith mode of vibration,  
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iT = the period of ith mode 

 bV = basic wind speed in m/s,  

ν = coefficient which takes care of the space 

 

2.8 TEMPERATURE EFFECTS 

The shell of the chimney should withstand the effects of thermal gradient. Due to thermal 

gradient vertical and circumferential stress are developed and this values estimated by the 

magnitude of the thermal gradient under steady state condition. 

 

2.9 SUMMERY 

This Chapter presents the effects of wind and seismic load on self-supporting steel chimneys. It 

also describes briefly the procedures to calculate static wind, dynamic wind and seismic force as 

per Indian Standard IS 6533 (Part-2):1989.     
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CHAPTER 3 

DESIGN OF STEEL CHIMNEY 

 

 

3.1 OVERVIEW 

This chapter presents procedures to design self-supported steel chimney as per Indian Standard 

IS 6533 (Part 1 & 2):1989 through an example calculation. A typical chimney to be located at 

coastal Odisha for an exit flue discharge of 100000 m3/s is taken for the example. The chimney is 

first designed for static wind load and then the design is checked against dynamic wind load, 

possible resonance and seismic load. 

 

3.2 DESIGN ASPECTS OF STEEL CHIMNEY 

3.2.1 Mechanical aspects 

This part covers design, construction maintenance and inspection of steel stacks. This also 

includes lining materials, draft calculations, consideration for dispersion of pollutants into 

atmosphere and ash disposal. 

The sizing of stack depends upon many factors, broadly it can be said that a stack is sized such 

that it can be exhaust a given quantity of flue gases at a suitable elevation and with such a 

velocity that the ground level concentration (GLC) of pollutants, after atmospheric dispersion, is 

within the limits prescribed in pollution regulatory standards, while the stack retains structural 

integrity. Thus, while handling a given quantity of flue gases, the major factors which influence a 

stack dimensions are: 

i. Draft requirements 
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ii. Environmental regulations 

iii. Structural considerations 

iv. Compositions of flue gas are specific weight, quantity of dust data above the 

aggressiveness of gases. 

In order to minimize loss of heat from a stack and to maintain the temperature of the steel shell 

above the acid due point level external insulations may be fitted. The amount of insulation 

required to maintain the temperature of flue gases above he acid dew point depends upon  

I. Effective of insulation 

II. Te velocity of the gases 

III. The inlet temperature of the flue gases 

According to Indian standard code IS: 14164-2008, industrial application and finishings of 

thermal insulation materials at temperatures above -800 C and up to 7500 C, code of practice 

deals with the material selection for selection for insulation and method of application. 

 

3.2.2 Structural aspects 

It covers loadings, load combinations, materials of construction, inspection, maintenance and 

painting of both self supporting and guyed steel stacks (with or without lining) and there 

supporting structures. 

 

3.3 APPLICABLE CODES FOR DESIGN 

3.3.1 IS 875 (Part-3):1987 

Code of practice for design loads other than earthquake for buildings and structures (wind loads). 

This Indian standard IS: 875 (Part-3) was adopted by bureau of Indian Standards after the draft 
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finalized by the structural safety sectional committee had been approved by the civil engineering 

division council. This part covers 

a. Wind loads to be considered when designing buildings, structures and components. 

b. It gives the basic wind speeds for various locations in India. 

c. Factors to be considered while estimating the design wind speed/pressure. 

 

3.3.2 IS 6533 (Part-1): 1989 

Indian standard design and construction of steel stacks-code of practice (Mechanical aspects). 

This includes 

a. Determination of inside diameter. 

b. Determination of stack height based on pollution norms and dispersion of gases into the 

atmosphere. 

c. Estimation of draft losses. 

d. General requirements for materials of construction, insulation, lining and cladding. 

 

3.3.3 IS 6533 (Part-2): 1989 

This is Indian Standard Code of practice for design and construction of steel chimneys (structural 

aspect). This includes 

a. Material of construction for bolts, plates, rivets and welding 

b. Loadings and load combinations 

c. General design aspects covering minimum thickness of shell. Allowable stresses, 

allowable deflection, determination of dynamic force and checking for resonance. 
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d. Typical ladder details, painters trolley, location of warning lamps and the flue opening 

details, inspection, maintenance and protective coatings. 

 

3.3.4  ASME-STS-1_2000 

This standards covers many faces of the steel stack, it outlines the considerations which must be 

made for the mechanical and structural design. This includes 

a. Mechanical design- Size selection (Height, diameter, size), available draft, heat losses, 

materials, linings and coatings. 

b. Structural design- scope, types of construction, materials, allowable stresses, applied 

loadings, foundation, vibration, dynamic responses, wind responses, earthquake 

responses, prevention of excessive vibrations 

c. Access and safety- ladders, platforms. 

d. Fabrication and erection- codes and standards, welding, tolerances, grouting. 

e. Inspection and maintenance- inspection procedure and maintenance. 

f. Stack test requirements, mathematical expressions. 

 

3.5 DESIGN METHODOLOGY 

IS:6533 (Part-1 & 2): 1989, IS 875 (Part-3 & 4): 1987, and IS 1893 (Part-4):2005 will be used as 

the basis for design, which gives detailed procedure to determine static, dynamic and seismic 

loads coming on the structure. 

 

3.5.1 Assumptions 

1. The wind pressure varies with the height. It is zero at the ground and increase as the 
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height increases.  For the purpose of design it is assumed the wind pressure is uniform 

throughout the height of the structure. 

2. For the purpose of calculations, it is assumed that the static wind load (projected area 

multiplied by the wind pressure) is acting at the centre of pressure. 

3. In calculating the allowable stresses both tensile and bending, the joint efficiency for butt 

welds is assumed to be 0.85. 

4. The base of the stack is perfectly rigid and the effect of the gussets and stool plate on the 

deflection and the stresses in the stack is not considered. This is applicable only for 

manual calculations. 

5. There are no additional lateral movements from the duct transferred to the stack; suitable 

arrangement has to be provided to absorb this movement from the duct. 

6. Earthquake causes impulsive ground motions, which are complex and irregular in 

character, changing in period and amplitude each lasting for a small duration. Therefore 

resonance of the type as visualized under steady-state sinusoidal excitations will not 

occur, as it would need time to build up such amplitudes. 

7. Earthquake is not likely to occur simultaneously with maximum wind or maximum flood 

or maximum sea waves. 

 

3.5.2 Loadings and Load Combinations 

The followings loads are to be estimated while designing the steel chimney 

a. Wind load 

b. Earthquake load 

c. Imposed load 
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3.5.2.1 Load combinations 

As per IS: 6533 (Part 2), the following load causes are to be considered while designing the stack 

a. Load case 1 = Dead load + wind load (along X direction) + Imposed load 

b. Load case 2 = Dead load + wind load (along Y direction) + Imposed load 

c. Load case 3 = Dead load + Imposed load + earthquake  load 

 

3.6 SAMPLE DESIGN CALCULATIONS 

3.6.1. Design Inputs 

Burner capacity of the each dryer:
s

m
hr

Qcapa

3
410667.11600: −×==   

Total no of dryer: 2:=n  
Density of the fuel: 

l
kgd fuel 9.0:=  

Sulphur content in fuel is 4% of the total fuel weight.  

Estimated volume rates of emission of total flue gases: 
s

m
hr
mVemission

33

778.27100000: ==  

Basic wind speed in the site is:
s
m

hr
kmvb 333.58210: ==

 
Chimney is to be located on a level ground 

The material of construction of chimney should conform to IS 2062:2006 

The temperature to which the chimney shell is expected to be exposed is limited to c02000 −  

The chimney site is located on Terrain Category 1 and Seismic Zone III. 

The supporting soil condition is Medium (Type-II) 

 

3.6.1. Determination of the Height of the Chimney 

(a) Height as per Environment (protection) third amendment rules, 2002 

Considering one dryer will function at a time and the burner will run on its capacity, weight of 

the fuel burned:
hr
kgdQW fuelcapafuel 540.: ==  
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Amount of sulphur content in fuel is 4% of the total fuel weight. Therefore total sulphur quantity 

burned: 
hr
kgWQ fuelsulphur 6.21%4: ==  

1 mole of sulphur will react with 1 mole of 2O to form 1 mole of  

2SO : 22 SOOS =+  

Relative atomic weight of sulphur is 32g and that for oxygen is 16g. Atomic weight of 2SO

produced from 32g of sulphur is 64g. Therefore the weight of 2SO  produced is double the 

atomic weight of sulphur burned. 

Quantity of sulphur dioxide is then equals to total sulphur burned:
hr
kgQQ sulhurSO 2.43.2:

2
==  

Height of stack as per environment (protection) Third Amendment Rules, 2002; ministry of 

Environment and Forests:  

mm

hr
kg

Q
H SO

stack 328.431.
1

.14:

3.0

1
2 =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=  

 

(b) Height as per IS 6533(Part-1):1989 

Coefficient of temperature gradient of atmosphere for horizontal and vertical mixing of plume: 

280:=tropicalA  

Estimated mass rate of emission of pollutants:
s

gmQSO 12
2
=  

Dimensionless coefficient of rate of precipitation: 2:=dustF  

Maximum permissible ground level concentration pollutant: 
35.0:

m
mgC epermissibl =  
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Estimated volume rates of emission of total flue gases: 
s

m
hr
mVemission

33

778.27100000: ==  

Assumed diameter of the chimney at exit: mdassumed 2:=  

Height of stack as per Clause B-1.1; IS-6533 Part-1:1989: 

mm

s
m

V

m
mg

C

m
d

F

s
gm

Q
A

H

emissionepermissibl

assumed
dust

SO
tropical

stack 474.361.

1
.

1
.8

1
..

1
:

4
3

3

3

4
3

2

2

==

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=  

Minimum stack height: mH stack 30:min =
−

 

Height of chimney should be maximum of all the above calculated heights: 

( ) mHHHHt stackstackstackstack 328.43,max: min,21 ==
−

 

Height of the chimney considered: mHt 45:=  

 

3.6.3 Other Dimensions 

Height of the chimney  mHt 45:=  

Minimum height of the flare: mHth flare 15
3

:min. == (ref. clause 7.2.4; IS-6533 Part-2: 1989) 

Consider the height of the flare: mh flare 15:=  

Height of the cylindrical portion of the chimney: mhHth flarecy 30:1 =−=  

Minimum outside diameter of unlined chimney at the top: m
h

d cy
top 5.1

20
: 1

min. == (ref. Clause 7.24; 

I S-6533 Part-2:1989) 
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Capacity of each exhaust fan: 
hr
mcapa

3

100000:= (ref. input data) 

Total no of dryer : 2:=n (ref. input data) 

Quantity of the gas 
s

mcapanQ
3

556.55.: ==  

Velocity of the flue gas at exit point of chimney:
s
mVO 20:2 =  

Inside diameter of the chimney: 
2

4: 1.881
. O

QD m
Vπ

= = (ref. clause 6.2; IS-6533 Part-1:1989) 

Consider outside diameter of the chimney at top: mdtop 2:=  

Minimum outside diameter of flared chimney at base: mdd topbase 2.36.1:min. ==  

Consider outside diameter of the chimney at base: mdbase 2.3:=  

Minimum thickness of the shell: mm
d

T top 4
500

:min ==  

Consider a shell thickness: mmTtopA 6:= (>5mm, therefore, compliant) 

External corrosion allowance mmTce 3:= (ref.Table-1; IS-6533 part-2:1989 for non-copper 

bearing steel and design life 20 years) 

Internal corrosion allowance mmTci 5:=  

(Ref. Table-1; IS-6533 part-2:1989 for non-copper bearing steel and design life 20 years) 

mmTTTT cicetopAtop 14: =++=  

 

3.6.4. Load Combinations 

Reference: clauses 6.5, IS 6533(Part-2):1989 

(a) Dead load+ Wind load 
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(b) Dead load + Earthquake load 

(c) Dead load+ Load due to lining+ Imposed load on service platforms + Wind load 

(d) Dead load++ Load due to lining+ Imposed load on service platforms+ Earthquake load 

 

3.6.5. Permissible Stress 

The material of construction of chimney should conform to IS 2062:2006 

Yield stress of the steel: Mpaf y 250:=  

The minimum permissible stress in compression due to above load combinations for circular 

chimney with construction material mentioned above is given in table-3, IS 6553(part2): 1989 as 

a function of: 

=levelh effective height for consideration of buckling 

D= mean diameter of the chimney at the level considered 

T=thickness at the level considered 

Maximum permissible stress in tension: 

Permissible stress in tension: Mpaff yonallowtensi 1506.0: == (Ref: IS-800: 1984; Clause: 4.11) 

Efficiency of the butt weld: efficiency: = 0.85 

Allowable tensile stress: Mpafefficiencyf onallowTensiallowT 5.127.: ==  

Maximum permissible stress in shear: Mpaff yallowSh 100.4.0: ==  

(For un-stiffen web as per Ref:-IS-800:1984; Clause: 6.4.2) 

 

3.6.6. Chimney Weight 

Let levelh   be the distance from the top of chimney to the level considered 
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iG =weight of the part of the chimney above the level considered 

iA = area of the steel section at the level considered 

Mass density of the construction material used for chimney 

3: 78.5 kNden
m

=  

Weight of the (platform+ access ladder+ helical strake+ rain cap + etc) is assumed to be 20% of 

the self weight of chimney shell. 

 

3.6.7. Wind Load Calculation 

Considering general structure with mean probable design life of 50 years 

k1:=1.0 (ref. clause 5.3.1; IS-875 Part-3:1987) 

As the chimney is to be located on a level ground 

k3:=1.0(ref. clause 5.3.1; IS-875 Part-3:1987) 

As the chimney site is located on Terrain category 1 is considered for the wind load calculation 

as per clauses 5.3.2.1, IS-875 (Part-3):1987 

As the chimney is 45m tall, the size class of the structure is considered as Class-B as per 

clause 5.3.2.2, IS-873(part-3):1987 

As per the input provided, the basic wind speed in the site is:
s
m

hr
kmvb 333.58210: ==  

Wind load on the chimney will be increased due to the presence of platform, ladder, and other 

fittings.5% of the wind force on the chimney shell is considered in excess to account this. 
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3.6.8. Design for Static Wind 

For computing wind loads and design of chimney the total height of the is divided into 4 

parts:35m to 45m,25m to 35m,15m to 25m, and 0 to 15m. 

 

Part-1 

Part-1 is located at a height 35m to 45m from ground. Considering 2K  factor in this height range 

as per table 2, IS-875 (Part-3):1987, lateral wind force 

( )( )
2

1 2
35

30 1.18 1.13
: .6 1 1.13 3. . . . 54.475

50 30

Ht

b top
m

h m s NP o k k v d dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

Moment due to the wind force at base of Part-1(i.e. at 35m height) 

( ) ( )
2

1 2
35

30 . 1.18 1.13
: .6 1 1.13 3. . . . ( 5 ) 546.713

50 30

Ht

b top
m

h m s NM o k k v d h m dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + − =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

Section modulus (Z) of the tubular chimney section at 35m level 

2
3

1

.
: 0.019

4
top topAd T

Z m
π

= =  

Bending stress at the extreme fibre of the chimney shell at 35m level: 

MPa
Z

M
f mol 454.30

05.1

1

1 ==  

Axial compression stress due to self weight of the chimney shell 

( )
( )

35
1

. . .
: 1.832

.

Ht

top top
m

st
top topA

d T den dh
f MPa

d T

π

π
= =
∫

 

Axial compression stress due to platform etc: MPaff stpl 366.0.2.0: 11 ==  

Maximum tensile stress: MPaffff plstmot 652.32: 1111 =++=  



31 
 

Maximum permissible stress at 35m level: 

mmHthlevel 1035:1 =−=  31 =
top

level

d
h

(i.e., <20) 333.333=
topA

top

T
d

 

Maximum permissible compressive stress at 35m level as per clause 7.7 of IS 6533(Part-2): 1989 

(as per the input the temperature to which the chimney shell is expected to be exposed is limited 

to c02000 − ) 

( )

( ) MPa
T
d

MPa

MPaf topA

top

allowC 81
300350

350.7887

78:1 =
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

+=  therefore, 11 allowCc ff <  

Maximum shear stress: 1
1

1.05: 1.517
.sh

top topA

Pf MPa
d Tπ

= =  therefore, allowShsh ff <1  

 

Part-2 

Part-2 is located at a height 25m to 35m from ground. Considering 2K  factor in this height range 

as per table 2, IS-875(Part-3):1987, lateral wind force 

( )( )
235

2 2
30

30 1.18 1.13
: .6 1 1.13 3. . . . 26.359

50 30

m

a b top
m

h m s NP o k k v d dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

( )( )
230

2 2
25

20 1.13 1.10
: .6 1 1.10 3. . . . 25.726

30 20

m

b b top
m

h m s NP o k k v d dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

Shear force due to wind force at the base of Part-2 (i.e., at 25m level): 

2 1 2 2: 106.56a bP P P P kN= + + =  

Moment due to the wind force at base of Part-2 (i.e., at 25m height): 

( )( )
∫ −⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

−
−−

+=
m

m
topba dhmhd

m
N

m
svk

mm
mhkoM

30

25
2

2

2 )25(....3
2030

10.113.1.2010.116.:  
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( )( )
∫ −⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

−
−−

+=
Ht

m
topbb dhmhd

m
N

m
svk

mm
mhkoM

30
2

2

2 )25(....3
3050

13.118.1.3013.116.:  

( ) mkNMMM ba .6.1081: 222 =+=  

Considering an improved wall thickness for this part: mmmmTT topAA 82:2 =+=  

Therefore overall wall thickness of the shell including the corrosion resistance: 

mTTTT ciceA 016.0: 22 =++=  

Section modulus (Z) of the tubular chimney section at 25m level: 
2

2 3
2

. .
: 0.025

4
top Ad T

Z m
π

= =  

Bending stress at the extreme fibre of the chimney shell at 25m level: 

MPa
Z

M
f mo 188.45

05.1
:

2

2
2 ==  

Axial compression stress due to platform etc: MPaff stpl 589.0.2.0: 22 ==  

Maximum tensile stress: MPaff mot 188.45: 22 ==   therefore, MPaff allowTt 5.1272 =<  

Maximum compressive stress: MPaffff plstmoc 721.48: 2222 =++=  

Maximum permissible stress at 25m level: 

mmHthlevel 2025:2 =−=  102 =
top

level

d
h

(i.e., <20) 250
2

=
A

top

T
d

 

Maximum permissible compressive stress at 25m level as per clause 7.7 of IS 6533(Part-2)1989: 

(The temperature to which the chimney shell is expected to exposed is limited to C02000 − ) 

Corresponding allowable compressive stress: MPaf allowC 99:2 =  

(ref. Table-3, IS 6533 Part-2:1989)   therefore, 22 allowCc ff <  

Maximum shear stress: 2
2

2

1.05.: 2.226
.sh

top A

Pf MPa
d Tπ

= =  therefore, allowShsh ff <2  
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Part-3 

Part-3 is located at a height 15m to25m from ground. Considering 2k  factor in this height range 

as per table 2, IS-875(Part-3):1987, lateral wind force 

( )( )
225

3 2
20

20 1.13 1.10
: .6 1 1.10 3. . . . 25.043

30 20

m

a b top
m

h m s NP o k k v d dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

( )( )
220

3 2
15

15 1.10 1.07
: .6 1 1.07 3. . . . 24.037

20 15

m

b b top
m

h m s NP o k k v d dh kN
m m m m

⎡ ⎤⎡ ⎤− − ⎛ ⎞= + =⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫  

Shear force due to wind force at the base of Part-3(i.e., at 15m level): 

 3 2 3 3: 155.639a bP P P P kN= + + =  

Moment due to the wind force at base of Part-3 (i.e., at 15m height): 
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3 )15(....3
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13.118.1.3013.116.:  

( ) mkNMMMM cba .2396: 3333 =++=  

Considering an improved wall thickness for this part: mmmmTT AA 102: 23 =+=  

Therefore overall wall thickness of the shell including the corrosion resistance:

mmTTTT ciceA 18: 33 =++=  

Therefore, Section modulus (Z) of the tubular chimney section at 15m level: 

33
2

2 031.0
4

..
: m

Td
Z Atop ==

π
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Bending stress at the extreme fibre of the chimney shell at 15m level: 

MPa
Z

M
f mo 079.80

05.1
:

3

3
3 ==  

( ) ( ) ( )
( ) MPa

Td

dhdenTddhdenTddhdenTd
f

Atop

Ht

m

m

m

m

m
toptoptoptoptoptop

st 768.3
..

.........
:

3

35

35

25

25

15
3 =

++
=
∫ ∫ ∫

π

πππ
 

Axial compression stress due to platform etc: MPaff stpl 754.0.2.0: 33 ==  

Maximum tensile stress: MPaff mot 079.80: 33 ==   therefore, MPaff allowTt 5.1273 =<  

Maximum compressive stress: MPaffff plstmoc 601.84: 3333 =++=  

Maximum permissible stress at 15m level: 

mmHthlevel 3015:3 =−=  153 =
top

level

d
h

(i.e., <20) 200
3

=
A

top

T
d

 

Corresponding allowable compressive stress: MPaf allowC 112:3 =  

(ref. Table-3, IS 6533 Part-2:1989)   therefore, 33 allowCc ff <  

Maximum shear stress: 3
3

3

1.05.: 2.601
.sh

top A

Pf MPa
d Tπ

= =  therefore, allowShsh ff <3  

 

Part-4 

Part-4 is located at a height 0 to 15m from ground. Considering 2K  factor in this height range as 

per table 2, IS-875 (Part-3):1987, lateral wind force 

( ) ( )
⎥
⎥
⎦
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⎢
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⎥
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⎦
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⎛= ∫

m
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h
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m
N

m
svkkoP
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0
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4 .....303.1.16.:  
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Shear force due to wind force at the base of Part-4(i.e., at the base of the chimney):  

4 3 4 4: 241.022a bP P P P kN= + + =  

 

Moment due to the wind force at base of Part-4(i.e., at the base of the chimney):  
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13.118.1.3013.116.:  

( ) mkNMMMMMM edcba .4.5327: 444444 =++++=  

Considering an improved wall thickness for this part: mmmmTT AA 122: 34 =+=  

Therefore overall wall thickness of the shell including the corrosion resistance:

mmTTTT ciceA 20: 44 =++=  

Therefore, Section modulus (Z) of the tubular chimney section at base (0m level): 

34
2

4 097.0
4

..
: m

Td
Z Atop ==

π
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Bending stress at the extreme fibre of the chimney shell at base (0m level):  

MPa
Z

Mfmo 961.5705.1:
4

4
4 ==  

Axial compression stress due to self-weight of chimney at base (0m level): renaming 

mmTT topt 14: ==  

( ) ( ) ( ) ( )
( )

35 25 15

35 25 15 0
4

3

. . . . . . . . . . . .
:

. .

Ht m m m

top top top top top top top top
m m m m

st
top A

d T den dh d T den dh d T den dh d T den dh
f

d T

π π π π

π

+ + +
=
∫ ∫ ∫ ∫

 

4stf =3.925MPa 

Axial compression stress due to platform etc.: MPaff stpl 785.0.2.0: 44 ==  

Maximum tensile stress: 961.57: 44 MPaff mot ==   therefore, MPaff allowTt 5.1274 =<  

Maximum compressive stress: MPaffff plstmoc 671.62: 4444 =++=  

Maximum permissible stress at base (at 0m Level): 

mmHthlevel 450:4 =−=  

Mean diameter for this part: m
dd

d basetop
level 6.2

2
:4 =

+
=  

308.17
4

4 =
level

level

d
h

(i.e., <20) 667.266
4

=
A

base

T
d

 

Corresponding allowable compressive stress:  

( )

( ) MPa
T
d

MPa
MPaf A

base

allowC 107
250300

300.8799
99: 4

4 =
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+=  

(Ref.Table-3, IS 6533 Part-2:1989)   therefore, 44 allowCc ff <  



37 
 

Maximum shear stress: 4
4

4

1.05.: 2.098
.sh

top A

Pf MPa
d Tπ

= =  therefore, allowShsh ff <4  

 

3.6.9. Check for Seismic Force 

Area of cross section at base of chimney shell: 2
3: . . 0.181base baseA d T mπ= =  

Radius of gyration of the structural shell at the base section: m
d

r base
e 131.1

22
1: =⎟

⎠

⎞
⎜
⎝

⎛=  

Slenderness ratio: 775.39: ==
er

Htk  

Coefficient depending upon slenderness ratio: ( )( )
( ) 40.73

3540
35.0.658.730.65: =

−
−−

+=
kCT  

(ref. clause 14.1 and Table-6; IS-1893 Part-4:2005) 

Weight of the chimney shell:  renaming baseb dd =:  and topt dd =:  

( ) ( ) ( )
35 25 15

4
35 25 15 0

: . . . . . . . . . . . . .
2

Ht m mt m
b t

s top t top t top t
m m m m

d dW d T den dh d T den dh d T den dh T den dhπ π π π +⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫  

Weight of the platform, ladder, etc.: : 2. 85.822.p sW W kN= =  

Total weight of the chimney: : 515.932.T s pW W W kN= + =  

Modulus of elasticity of the material of structural shell: MPaEs 200000:=  

The fundamental period of vibration (ref. clause 14.1; IS-1893 Part-4:2005):

s
gAE

HtW
CT

bases

T
Tn 593.0

..
.

.: ==  

Stiffness of the flared chimney is approximately two times the prismatic chimney. Therefore the 

conservative estimate of natural time period for this chimney will be: s
T

T n
empiricaln 297.0

2
:_ ==  
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Modal analysis result (STADD-pro): sT al 381.0:mod =  

Maximum spectral acceleration value corresponding to the above period (ref. Clause 6.4.5; 

IS 1893 Part-1:2002): 

( ) ggSa .5.3.5.2.4.1: ==  (for all soil types consideration 2% damping) 

Importance factor for steel stack: 5.1:=I  (ref. table-8, IS 1893 Part-4:2005) 

Response reduction factor: 2:=fR  (ref. table-9, IS 1893 Part-4:2005) 

Zone factor: 10.0:=Z  (ref. table-2, IS 1893 Part-1:2002 for zone ii) 

Design horizontal acceleration spectrum value: 131.0
.

2
: =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

I
R

g
SZ

A
f

a

h (ref. clause 8.3.2, 

IS 1893 Part-4: 2005 for design basis earthquake) 

Design base shear: : . 67.585B h TV A W kN= =   (this value is less than the base shear obtained from 

the wind load) 

Calculation of design moment: 

2
1

35

min : . . . .
Ht

top top
m

Deno ator d T den h dhπ= ∫  

35
2

2 2
25

min : . . . .
m

top
m

Deno ator d T den h dhπ= ∫  

25
2

3 3
15

min : . . .
m

top
m

Deno ator d T den h dhπ= ∫  

( )
( )

15
2

4 4
0

.
min : . . . .

15 0

m
base top

base

d d h
Deno ator d T den h dh

m m
π
⎡ ⎤−
⎢ ⎥= −

−⎢ ⎥⎣ ⎦
∫  

atorDenomin := 4321 minminminmin atorDenoatorDenoatorDenoatorDeno +++  
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Moment due to seismic force at the 35m level 

( )2

35
1

. . . . . . 35
: 175.36. .

min

Ht

top top B
m

s

d T den h V h m dh
M kN m

Deno ator

π −
= =
∫

 

MPa
Z

M
f s

smo .768.9
05.1

:
1

1
1 ==  

MPaffff plstsmosc 966.11: 1111 =++=   MPaf alloeC .811 =  Therefore safe 

Moment due to seismic force at the 25m level 

2
2

35

: . . . . . .( 25 )
Ht

a top top B
m

Numerator d T den h V h m dhπ= −∫  

35
2

2 2
25

: . . . . . .( 25 )
m

b top B
m

Numerator d T den h V h m dhπ= −∫  

2 2
2 : 615.258. .

min
a b

s
Numerator NumeratorM kN m

Deno ator
+

= =  

MPa
Z

M
f s

smo .704.25
05.1

:
2

2
2 ==  

MPaffff plstsmosc 237.29: 2222 =++=   MPaf allowC .99:2 =   Therefore safe 

Moment due to seismic force at the 15m level 

2
3

35

: . . . . . .( 15 )
Ht

a top top B
m

Numerator d T den h V h m dhπ= −∫  

35
2

3 2
25

: . . . . . .( 15 )
m

b top B
m

Numerator d T den h V h m dhπ= −∫  

25
2

3 3
15

: . . . . . .( 15 )
m

c top B
m

Numerator d T den h V h m dhπ= −∫  
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3 3 3
3 : 1209.659. .

min
a b c

s
Numerator Numerator NumeratorM kN m

Deno ator
+ +

= =  

MPa
Z

M
f s

smo 43.40
05.1

:
3

3
3 ==  

MPaffff plstsmosc 951.44: 3333 =++=   MPaf allowC 112:3 =  Therefore safe 

Moment due to seismic force at the base (0m level) 

2
4

35

: . . . . . . .
Ht

a top top B
m

Numerator d T den h V h dhπ= ∫  

35
2

4 2
25

: . . . . . . .
m

b top B
m

Numerator d T den h V h dhπ= ∫  

25
2

4 3
15

: . . . . . . .
m

c top B
m

Numerator d T den h V h dhπ= ∫  

( )
( )

15
2

4 4
0

.
: . . . . . . .

15 0

m
base top

d base B
m

d d h
Numerator d T den h V h dh

m m
π
⎡ ⎤−
⎢ ⎥= −

−⎢ ⎥⎣ ⎦
∫  

4 4 4 4
4 : 2208.383 .

min
a b c d

s
Numerator Numerator Numerator NumeratorM kN m

Deno ator
+ + +

= =  

MPa
Z

M
f s

smo 027.24
05.1

:
4

4
4 ==  

MPaffff plstsmosc 737.28: 4444 =++=   MPaf allowC .107:4 =   Therefore safe 

 

3.6.10. Calculation of Dynamic Wind Load 

Fundamental period of vibration or the chimney: sT empiricaln 297.0_ =  

As the period of natural oscillation for the self-supported chimney exceeds 0.25 seconds, the 

design wind load should take into consideration the dynamic effect due to pulsation of thrust 
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caused by the wind velocity in addition to the static wind load.(ref. clause 8.3.1, IS-6533 Part-

2:1989) 

Dynamic coefficient for the 1st mode: 014.0
1200

.
: _

1 ==
m

vT
dc bempiricaln (ref. clause 8.3.1, IS-6533 Part-

2:1989) 

Coefficient of dynamic influence corresponding to the above value of dynamic coefficient:

( )( )
( ) 992.1

0.0025.0
0.3.15.2

3.1: 1
1 =

−
−−

+=
dc

E  

(ref. table-5,IS-6533 Part-2:1989) 

Coefficient which takes care of the space correlation of wind pulsation speed according to height 

and vicinity of building structures: 7.01 =v  

(ref. table-7,IS-6533 Part-2:1989 for 45m height and 1dc =0.029) 

Assuming the fundamental mode shape of the chimney is represented by second degree parabola 

whose ordinate at the top of the chimney is unity. So, the ordinate, y (in m) of the mode shape at 

a height ‘x (in m)’ from the ground is as follows (where Ht =total height of the chimney in m): 

2

⎟
⎠
⎞

⎜
⎝
⎛=

Ht
xy  

Coefficient of pulsation of speed thrust, as per table-6, IS-6533 Part-2:1989 for type A location 

(sea coast):  

 

Calculation of deduced acceleration: 

( ) ( )dh
h

dd
hd

m
N

m
svkk

Ht
hN

m

m flare

topbase
baseba 6.0......303.1.1.6.0:
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KNNNNNNNNumerator fedcbada 056.40: =+++++=  
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: . . . . .
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sDeno ator D D D D kN
m

= + + + =  

2736.5:
min

:
s
m

atorDeno
Numerator

factor
da

da
da ==  
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Inertia force at 35m level 

2

1 1 1
35

: . . . . . . . . 44.732.
Ht

dyn top top da
m

den hP d T E factor v dh kN
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

( )
2

1 1 1
35

: . . . . . . . . 35 . 242.204.
Ht

dyn top top da
m

den hM d T E factor v h m dh kN
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Check for stress at 35m level due to dynamic wind force: 

MPa
Z

M
ff dyn

ccdyn .502.45:
1

1
11_ =+=  MPaff allowCallowCdyn 73.107.33.1: 11_ ==   Therefore, safe 

 

Inertia force at 25m level 

235

2 2 1 1
25

: . . . . . . . . 28.872.
m

dyn a top da
m

den hP d T E factor v dh kN
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Shear force at the 25m level due to inertia: 2dynP := 1dynP + adynP 2 =73.605 kN 

( )
235

2 2 1 1
25

: . . . . . . . . 25 .
m

dyn a top da
m

den hM d T E factor v h m dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

( )
2

2 1 1
35

: . . . . . . . . 25 .
Ht

dyn b top top da
m

den hM d T E factor v h m dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Total moment at 25m level due to inertia: mkNMMM bdynadyndyn ..783.849: 222 =+=  

 

Check for stress at 15m level due to dynamic wind force: 

MPa
Z

M
ff dyn

ccdyn 533.82:
2

2
22_ =+=  MPaff allowCallowCdyn 67.131.33.1: 22_ == Therefore, safe 

Inertia force at 15m level 
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225

3 3 1 1
15

: . . . . . . . . 14.602.
m

dyn a top da
m

den hP d T E factor v dh kN
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Shear force at the 15m level due to inertia: 3dynP := 2dynP + adynP 3 =88.207 kN 

( )
225

3 3 1 1
15

: . . . . . . . . 15 .
m

dyn a top da
m

den hM d T E factor v h m dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

( )
235

3 2 1 1
25

: . . . . . . . . 15 .
m

dyn b top da
m

den hM d T E factor v h m dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

( )
2

3 1 1
35

: . . . . . . . . 15 .
Ht

dyn c top top da
m

den hM d T E factor v h m dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Total moment at 15m level due to inertia: mkNMMMM cdynbdynadyndyn ..76.1670: 3333 =++=  

Check for stress at 15m level due to dynamic wind force: 

MPa
Z

M
ff dyn

ccdyn 783.137:
3

3
33_ =+=  MPaff allowCallowCdyn 96.148.33.1: 33_ == Therefore, safe 

Inertia force at base (0m level) 

( )
( )

215

4 4 1 1
0

.
: . . . . . . . . 5.14.

15 0

m
base top

dyn a base da
m

d d h den hP d T E factor v dh kN
m m g Ht

π
⎛ ⎞⎡ ⎤− ⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥= − =⎢ ⎥⎜ ⎟⎜ ⎟− ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠
∫  

Shear force at the base (0m level) due to inertia: 4dynP := 3dynP + adynP 4 =93.347KN 

( )
( )

215

4 4 1 1
0

.
: . . . . . . . . . 56.321 .

15 0

m
base top

dyn a base da
m

d d h den hM d T E factor v h dh m kN
m m g Ht

π
⎛ ⎞⎡ ⎤− ⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥= − =⎢ ⎥⎜ ⎟⎜ ⎟− ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠
∫  

225

4 3 1 1
15

: . . . . . . . . .
m

dyn b top da
m

den hM d T E factor v h dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

235

4 2 1 1
25

: . . . . . . . . .
m

dyn c top da
m

den hM d T E factor v h dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  
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2

4 1 1
35

: . . . . . . . . .
Ht

dyn d top top da
m

den hM d T E factor v h dh
g Ht

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫  

Total moment at 15m level due to inertia: 

mkNMMMMM ddyncdynbdynadyndyn ...18.3050: 44444 =+++=  

Check for stress at the base (0m level) due to dynamic wind force: 

MPa
Z

M
ff dyn

ccdyn 276.94:
4

4
44_ =+=  MPaff allowCallowCdyn 31.142.33.1: 44_ == Therefore, safe 

 

3.6.11. Check for Resonance 

Fundamental period of vibration for this chimney: sT al 381.0mod =  sT empiricaln 297.0_ =  

Fundamental frequency of the vibration: 
sT

f
al

1625.21:
mod

==  

Stroughal critical velocity: 
s
mfdv topcr 274.26..5: ==  (ref. clause A-3, IS-6533 Part-

2:1989) 

Basic wind velocity: 
s
mvb 333.58=  

Design wind velocity: ( )
s
mvkkv bd 333.65.12.1.3.1: == (considering k2=1.12) 

Velocity (stroughal critical velocity) range for resonance:
s
mvv dULresonance 267.52.8.0:_ ==  

s
mvv dLLresonance 56.21.33.0:_ ==  

As the stroughal critical velocity lies within the ranges of resonance limits the chimney should be 

checked for the resonance: 
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Logarithmic decrement of dampening effect for unlined steel chimney: 05.0:=del  

(ref. clause A-5, IS-6533 Part-2:1989) 

Speed thrust corresponding to critical velocity: Pa

s
m
Pavq cr

cr 056.43
.16

.:

2

2

2

==  

(ref. clause A-5, IS-6533 Part-2:1989) 

Shape factor of the chimney: ( )7.0:=shapeC  (ref. clause A-5, IS-6533 Part-2:1989) 

Static wind load corresponding to the critical pressure: ( )paqCq crshapestatcr 139.30.:_ == (ref. 

clause A-5, IS-6533 Part-2:1989) 

 

Check at 15m level: 

Static transverse force: ( ).15 _: 15 . . 1.808st m top cr statF Ht m d q kN= − =  

Static transverse moment: ( )2
.15 _: 0.5. 15 . . 27.125. .st m top cr statM Ht m d q kN m= − =  

Transverse force at resonance: .15 .15: . 1704. .res m st mF F kN m
del
π⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

Moment at resonance: =:15. mresM .15. 1671. .st mM kN m
del
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

Dynamic transverse moment: .15 3: 1671. .dyn m dynM M kN m= =  

Design moment due to resonance: ( )22
15 .15 .15 .15: 2406. .m res m st m dyn mM M M M kN m= + + =  

Check for stress at 15m level due to resonance: MPa
Z

Mfff m
plstm .089.81:

3

15
3315 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

 MPafallowC .1123 =   Therefore, safe 

Check at base (i.e. at 0m level ) 
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Static transverse force: ( ) ( )
.0 _

.
: . . 2.984

2
flare base top

st m flare top cr stat

h d d
F Ht h d q kN

⎡ ⎤+
⎢ ⎥= − + =
⎢ ⎥⎣ ⎦

 

Static transverse moment:

( ) ( )15

.0 _ _
0

.( 15 ): 15 . . . . . . 62.388. .
2 2

m
base top

st m top cr stat base cr stat
m

d d hHt mM Ht m d q d q h dh kN m
⎡ ⎤−+ ⎢ ⎥= − + − =
⎢ ⎥⎣ ⎦

∫
 

Transverse force at resonance: .0 .0: . 187.475. .res m st mF F kN m
del
π⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

Moment at resonance: =:0. mresM .0. 3920. .st mM kN m
del
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

Dynamic transverse force: .0 4: 93.347. .dyn m dynF P kN m= =  

Dynamic transverse moment: .0 4: 3050. .dyn m dynM M kN m= =  

Design moment due to resonance: ( )22
0 .0 .0 .0: 211. .m res m st m dyn mF F F F kN m= + + =  

Design moment due to resonance: ( )22
0 .0 .0 .0: 5005 .m res m st m dyn mM M M M kN m= + + =  

Check for stress at 15m level due to resonance: MPa
Z

Mfff m
plstm 574.56:

4

0
440 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

 MPafallowC .1074 =   Therefore, safe 

 

3.7. SUMMARY 

This Chapter presents a step by step procedure for designing self supporting Steel chimney 

though example calculations. The chimney is first designed for static wind force and then the 

design is checked for seismic load, dynamic wind force and for possible resonance. 
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CHAPTER 4 

EFFECT OF GEOMETRY ON THE DESIGN OF  
SELF SUPPORTING STEEL CHIMNEY 

 

 

4.1 INTRODUCTION 

This Chapter deals with the analysis of steel chimneys. The chimney is idealized as cantilever 

column with tubular cross section for analysis. As explained in the previous chapter the main 

loads to be considered during the analysis of chimneys are wind loads and seismic loads in 

addition to the dead loads. Basic dimensions of a self supporting steel chimney is generally 

obtained from the environmental consideration. Other important geometrical considerations are 

limited by design code IS 6533 (Part 1 & 2): 1989 to obtained preferred mode of failure. 

Section 4.2 discusses the geometry limitations recommended by IS 6533 (Part 1 & 2): 1989. This 

chapter attempts to assess these limitations through analysis of different chimney geometries. 

Section 4.3 presents the different chimney geometry considered for this study. Also, a study is 

carried out to understand the chimney behaviour with inspection manhole at the lower end of the 

chimney. Last part of this chapter presents the difference of chimney behaviour with and without 

the inspection manhole.  Analysis is carried out through manual calculations using MathCAD as 

well as finite element analysis using commercial software ANSYS.    

 

4.2 LIMITATIONS ON CHIMNEY GEOMETRY 

Steel Chimneys are cylindrical in shape for the major portion except at the bottom where the 

chimney is given a conical flare for better stability and for easy entrance of flue gases. Height of 

the flared portion of the chimney generally varies from one fourth to one third of the total height 
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of the chimney. Design forces in a chimney are very sensitive to its geometrical parameters such 

as base and top diameter of the chimney, height of the flare, height of the chimney and thickness 

of the chimney shell. Design codes consider two modes of failure to arrive at the thickness of 

chimney shell: material yielding in tension and compression and local buckling in compression. 

Height of the chimney obtained from environmental conditions. As per notifications of the 

Ministry of Environment and Forests (MEF Notification 2002), Govt. of India, height of a self 

supporting steel chimney should be as follows: 

⎪
⎩

⎪
⎨

⎧

+=
m

locationtheinHeightBuildingTallestm
Q

h
30
6
14

max

3.0

 

Where Q = total SO2 emission from the plant in kg/hr and h = height of the steel chimney in m. 

Height of steel chimney as per IS-6533 (Part-1): 1989 also a function of environmental condition 

as follows: 

4
3

8 ⎥⎦
⎤

⎢⎣
⎡=

CV
AMFDh  

Where  

A = coefficient of temperature gradient of atmosphere responsible for horizontal and vertical 

mixing of plume  

M = estimated mass rate of emission of pollutants in g/s  

F = dimensionless coefficient of rate of precipitation 

C = maximum permissible ground level concentration of pollutant in mg/m3 

V = estimated volume rates of emission of total flue gases, m3/s 

D = diameter of stack at the exit of the chimney in m. 

Also, inside diameter of the chimney shell at top as per IS 6533 (Part 1): 1989 is given by: 
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exit

t

V
QD

π
4

=  

Where  

D = inside diameter of the chimney at top in m,  

Qt = Quantity of the gas in m3/s, and  

Vexit = Velocity of the flue gas at exit point of chimney in m/s.  

However, the diameter shall be so chosen that velocity of the flue gas at exit point of chimney 

will not exit, under any circumstances, 30 m/s. As per IS 6533 (Part 1): 1989, velocity may be 

taken as 15 – 20 m/s. 

It is clear that the height of the chimney and diameter of the chimney at top is completely 

determined from the dispersion requirement of the flue gases in to the atmosphere. Because of 

this IS 6533 (Part 2): 1989 limits the proportions of the basic dimensions from structural 

engineering considerations as follows: 

i) Minimum outside diameter of the unlined chimney at the top should be one twentieth 

of the height of the cylindrical portion of the chimney. 

ii) Minimum outside diameter of the unlined flared chimney at the base should be 1.6 

times the outside diameter of the chimney at top. 

 With this background this paper attempts to check the basis of design code limitations with 

regard to the basic dimensions of a self supporting unlined flared steel chimney. Two 

parameters: (i) top-to-base diameter ratio and (ii) height-to-base diameter ratio were considered 

for this study. A numbers chimneys with different dimensions analysed for dynamic wind load.  
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4.3 DESCRIPTION OF THE SELECTED CHIMNEYS  

From the discussions in the previous section it is clear that top-to-base diameter ratio and height-

to-base diameter ratio are the two important parameters that define the geometry of a self 

supporting chimney. In the present study a total of 66 numbers of Chimney were selected with 

varying top-to-base diameter ratio and height-to-base diameter ratio. The thickness and the 

diameter of flared base of the chimney were kept constant for all the cases. Fig.4.1 presents the 

different parameters of the selected chimneys. The shaded portion in the figure represents the 

region acceptable by the design code IS 6533 (Part 2): 1989. Design code limits minimum base 

diameter as 1.6 times the top diameter of the chimney. This gives maximum limit of top-to-base 

diameter ratio as 625.06.11 = . Also, as per IS 6533 (Part 2): 1989, minimum top diameter of the 

chimney should be one twentieth of the height of the cylindrical portion of the chimney, i.e., 

( ) ( ) 3020132 hh =× (considering the flare height of the chimney as one third of the total height).  

 

 

Fig. 4.1: Geometrical distribution of selected chimney models 
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Therefore the height-to-base diameter ratio as per the code limits to 75.186.130 =  (for a maximum 

top-to-base diameter ratio of 0.625). This figure shows that the selected chimneys cover a wide 

range of geometry. Here, top-to-base diameter ratio is one means self-supporting chimney 

without flare. The chimney models were considered to be located at costal Orissa area with a 

basic wind speed of 210 km/h. Safe bearing capacity of the site soil at a depth 2.5m below the 

ground level is assumed to be 30 t/m2. Fixity at the base of the chimney is assumed for the 

analysis.  

 

4.4 DYNAMIC WIND LOAD AS PER IS 6533 (PART-2): 1989  

IS 6533 (Part-2): 1989 requires design wind load to consider dynamic effect due to pulsation of 

thrust caused by wind velocity in addition to static wind load when the fundamental period of the 

chimney is less than 0.25s. The fundamental period of vibration for a self supporting chimney 

can be calculated as per IS-1893 Part-4:20056 as follows: 

gAE
hWCT

bases

T
T=  

Where, CT = Coefficient depending upon slenderness ratio, WT = Total weight of the chimney, h 

= total height of the chimney. Es = Modulus of elasticity of the material of structural shell and 

Abase = Area of cross section at base of chimney shell. Stiffness of the flared chimney is generally 

approximated as two times the prismatic chimney. Therefore a conservative estimate of 

fundamental period for flared chimney considered to be one half the period of given in the 

previous equation. Fundamental period of the chimney is also determined from finite element 

software STAAD-Pro and compared with that obtained from the empirical equation. Assuming 

the fundamental mode shape of the chimney is represented by second degree parabola whose 
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ordinate at the top of the chimney is unity. So, the ordinate, y (in m) of the mode shape at a 

height 'x (in m)' from the ground is as follows (where h = total height of the chimney in m). 

2

⎟
⎠
⎞

⎜
⎝
⎛=

h
xy  

This assumption holds good for the type of chimney considered in the present study. Fig. 4.2 

shows the fundamental mode shape of a typical chimney as obtained Eigen value analysis using 

STAAD-Pro.  

Fig. 4.2: Fundamental mode shape of a typical chimney as obtained from finite element analysis 

 
Fig. 4.3 presents the comparison of the fundamental mode shapes of a typical chimney obtained 

from empirical equation and Eigen value analysis. This figure shows that the empirical equation 

for fundamental mode shape is closely matching the actual mode shape. Therefore, the use of 

this empirical equation in the present study is justified. Dynamic effect of wind is influenced by 

a number of factors, such as, mass and its disposition along chimney height, fundamental period 

and mode shape. Values of dynamic components of wind load should be determined for each 

mode of oscillation of the chimney as a system of inertia forces acting at ‘centre of mass’ 

location. 
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Fig. 4.3:  Comparison of fundamental mode shape obtained different analysis 

 
As per IS 6533 (Part-2): 1989 Inertia force, dyndP , for ith mode for an infinitesimal height dx  at a 

height x from the base of the chimney is as follows: 

νηξ ×××= iidyn dmdP  

Where dm = mass of the chimney for an infinitesimal height dx  at height x from the base of the 

chimney, ( ) 1200bii VT=ξ  is the dynamic coefficient for the ith mode of vibration, iT = the period 

of ith mode and bV = basic wind speed in m/s, ν = coefficient which takes care of the space 

correlation of wind pulsation speed, and  iη = deduced acceleration in m/s2 for ith mode at height 

h. For the first mode deduced acceleration can be as follows: 

∫

∫

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
h

h

stk

dm
h
x

dPm
h
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Where, km = coefficient of pulsation of speed thrust at a height x from the base of the chimney 

and stdP = static wind force for an infinitesimal height dx  at height x from the base of the 

chimney. 

 

4.5 RESULTS AND DISCUSSIONS 

66 selected chimneys with different dimensions as explained in the previous section were 

analysed for dynamic wind load as per IS 6533 (Part-2): 1989 using MathCAD software to 

calculate base shear and base moment for each chimney as follows: 

Base Shear: ∫=
h

dyndyn dPP
0

   and    Base Moment: ∫ ×=
h

dyndyn dPxM
0

 

 

Fig. 4.4: Base moment of the chimney as a function of top-to-base diameter ratio 

 
Fig. 4.4 presents the bending moment at the base of the chimney for dynamic wind load as a 

function of top-to-base diameter ratio for different height-to-base diameter ratio. This figure 
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shows that the base moment increases with the increase of top-to-base diameter ratio almost 

proportionally. 

 

 

Fig. 4.5: Base moment of the chimney as a function of height-to-base diameter ratio 

 

 

 

Fig. 4.6: Variation of bending stress as a function of geometry 
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Fig. 4.5 presents the base moment as a function of height-to-base diameter ratio for different top-

to-base diameter ratio. This figure also shows similar results, i.e., that base moment increases 

with the increase of height-to-base diameter ratio. However, the rate of increase in base moment 

is slightly less for lower value of height-to-base diameter ratio. There is a sudden increase of the 

gradient of the base moment curve for height-to-base diameter ratio = 14. 

Maximum bending stresses in the chimney also calculated and presented in Fig. 4.6 for different 

height-to-base diameter ratio and top-to-base diameter ratio. a typical chimney model It is clear 

from these figures that base moment (maximum moment) and the maximum bending stress due 

to dynamic wind load are continuous function of the geometry (top-to-base diameter ratio and 

height-to-base diameter ratio). Therefore this study does not support the limitations imposed by 

IS 6533 (Part-2): 1989 with regard to the selection of basic dimensions of self supporting steel 

chimneys. 

 

4.6 EFFECT OF INSPECTION MANHOLE ON THE BEHAVIOUR OF SELF 
SUPPORTING STEEL CHIMNEY 

Manholes are generally provided at the bottom of the chimney for maintenance and inspection 

purpose. The standard dimension of the manhole is 500mm×800mm according to Indian 

standard IS 6533 (Part-2):1989. These manholes are at generally located at minimum suitable 

distance from the base of the chimney. Two chimney models, one with the manhole and other 

without manhole, are analysed using finite element software ANSYS for static wind load. 

Fig. 4.7 presents the Von-Mises stress for chimney model without manhole whereas Fig. 4.8 

presents the same for chimney with manhole. These results show that the maximum stress in the 

chimney with manhole is increased 55.6% as compared to the maximum stress in chimney 

without manhole. 
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diameter to the height ratio of the chimney and minimum base diameter to the top diameter of 

the chimney. 

Last part of this chapter presents the effect of inspection manhole on a self supporting steel 

chimney. This results show that manhole increases the von-mises stress resultant and top 

displacement in a chimney. This is because manhole reduces the effective stiffness of a chimney 

as evident from the modal analysis results. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

 

5.1.  SUMMARY 

The main objective of the present study was to explain the importance of geometrical 

limitations in the design of self supported steel chimney. A detailed literature review is 

carried out as part of the present study on wind engineering, design and analysis of steel 

chimney as well as concrete chimney. Estimation of wind effects (along wind & across 

wind), vortex shedding, vibration analysis, and gust factor are studied. There is no 

published literature found on the effect of geometry on the design of self supporting steel 

chimney.  

Design of a self supporting steel chimney as per IS 6533 (Part-1 and 2): 1989 is discussed 

through example calculations. A study is carried out to understand the logic behind 

geometrical limitations given in Indian Standard IS 6533 (Part-1 and 2): 1989. The 

relation between geometrical parameters and corresponding moments and shear is 

developed by using MathCAD software. Two parameters: (i) top-to-base diameter ratio 

and (ii) height-to-base diameter ratio were considered for this study. A numbers 

chimneys with different dimensions analysed for dynamic wind load. A total of 66 

numbers self supporting steel flared unlined chimneys were analysed for dynamic wind 

load due to pulsation of thrust caused by wind velocity. 
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To explain the effect of inspection manhole on the behaviour of self supporting steel 

chimney, two chimney models one with the manhole and other without manhole are 

taken into consideration. These models are analysed by finite element software ANSYS.   

 

5.2. CONCLUSIONS  

It is found from these analyses that maximum moment and the maximum bending stress 

due to dynamic wind load in a self supporting steel chimney are continuous function of 

the geometry (top-to-base diameter ratio and height-to-base diameter ratio).  This study 

does not support the IS 6533 (Part-2): 1989 criteria for minimum top diameter to the 

height ratio of the chimney and minimum base diameter to the top diameter of the 

chimney. 

Inspection manhole increases the von-mises stress resultant and top displacement in a self 

supporting steel chimney. This is because manhole reduces the effective stiffness of a 

chimney as evident from the modal analysis results. Therefore it is important to consider 

manhole opening in the analysis and design of self supporting steel chimney.  

 

5.3. SCOPE FOR FUTURE WORK 

i) The effect of across-wind can be analysed through computational fluid 

dynamics using finite element software ANSYS. 

ii) The present study considers only self supporting steel chimney .This study 

can be further extended to guyed steel chimney as well as concrete chimney. 
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