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Abstract   
 

 
Engineering problems often embodying with multi-response optimization may be 

confiscatory in nature. Multi-response optimization problems basically correspond to 

choosing the ‘best’ alternative from a set of available alternatives (where ‘best’ can be 

interpreted as ‘the most preferred alternative’ from the set of alternative solutions). 

 

Manufacturing process often involves optimization of machining parameters in order to 

improve product quality as well as to enhance productivity. Quality and productivity are 

two important but contradictory parameters while performing machining operations. 

Quality mainly concerns on surface roughness of the machined part whereas productivity 

is directly related to Material Removal Rate (MRR) during machining. As surface finish 

(roughness average value) is seemed inversely related to MRR, hence it becomes 

essential to evaluate the optimal cutting parameters setting in order to satisfy 

contradicting requirements of quality and productivity.  

 

The aim of this study is to propose an integrated methodology to state the machining 

characteristics in order that it may be competitive as regards of productivity and quality. 

Owing to this issue, in the present reporting two integrated multi-response optimization 

philosophies viz. (i) PCA coupled with TOPSIS and (ii) utility based fuzzy approach 

combined with Taguchi framework has been adopted for assessing favorable (optimal) 

machining condition during the machining of polymers (Nylon and Teflon, as case 

studies).  
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CHAPTER 1: Preliminaries  
 

 

1.1 Background, State of Art and Motivation 

Today's economic climate which is characterised by increasing competition and structural 

turbulence requires an improved level of productivity and high product quality than has been 

the case in the past. Quality and productivity are being viewed as two important indices of 

company’s performance, especially in manufacturing industries. However, they are always 

emphasized separately. Quality represents the properties of products and/or services that are 

valued by the consumer. Quality of a product concerns more valuable as it directly influence 

the customer’s satisfaction during the usage of procured goods. Apart from quality, 

productivity also pertain an important factor, as it directly associates with profit level of an 

organisation. After companies determine customer needs, they must concentrate on meeting 

those needs in an optimized way by yielding high quality products at a faster rate. Here, the 

term ‘optimized’ has been introduced to evaluate such a solution which would give the values 

of the entire objectives acceptable to the decision maker. 

In the present growing inflation scenario, it has been observed that optimization of single 

response proves unbeneficial to manufacturing firm. Optimizing a single response may yield 

positively in some aspects but it may adversely affects in other aspects, however, the problem 

can be evoked if multiple objective are optimized simultaneously. The introduction of multi-

objective optimization technique provides optimal solution among the confiscatory 

parameters. Multiple objective functions can be found its application in various fields like 

products and designing wherever the optimal setting has been required with a motivation of 

maximizing the strength of machine components and minimizing the production cost. 

In any machining process, product quality attributes represents satisfactory yield with surface 

finish, form stability along with dimensional accuracy whereas productivity can be 
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interpreted in terms of Material Removal Rate (MRR). The main reason that quality and 

productivity are not emphasized simultaneously is that the objectives of quality management 

and productivity management are traditionally viewed as contradictory. Increase in 

productivity results reduction in machining time which may results quality loss. On the 

contrary, an improvement in quality results in increasing machining time thereby reducing 

productivity. Since the definitions of quality and productivity are different, it is essential to 

select a common base through which to correlate them. 

Machinability aspects on a wide variety of materials with different cutting tools have been 

mostly investigated in various machining operations like: turning, drilling, milling etc. Effort 

has been made to study the influence of process parameters on performance of various 

aspects of machining like: tool wear, interaction of cutting forces, surface roughness, 

Material Removal Rate (MRR), tool life, machine tool chatter and vibration etc. 

Mathematical models have also been developed to understand the functional relationship 

among process parameters with aforesaid process responses (Ab Rashid et al., 2009; 

Kadirgama et al., 2009; Abhang and Hameedullah, 2011, Orhan et al., 2007; Khorasani 

et al., 2011).   

Optimization aspects of machining processes have been well documented in literature. In 

which Taguchi’s optimization philosophy (Taguchi et al., 1989; Antony and Antony, 2001; 

Antony et al., 2006) has gained immense popularity. The Japanese management consultant 

named Dr.  Genichi Taguchi contributed to the field of quality and manufacturing 

engineering from both a statistical and an engineering viewpoint. His major contributions are 

the concepts univariate quality loss functions (QLFs), orthogonal arrays (OAs), robust 

designs, and Signal-to-Noise (S/N) ratios. The method is often applied by technicians on the 

manufacturing floor to improve their product and the processes. The goal is not simply to 

optimize an arbitrary objective function, but rather to reduce the sensitivity of engineering 
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designs to uncontrollable factors or noise. The objective function used is the S/N ratio which 

is maximized. This moves design targets toward the middle of the design space so that 

external variation affects behaviour as less as possible. This permits large reductions in both 

part and assembly tolerances which are major drivers of manufacturing cost (Taguchi et al. 

1989). However Taguchi method fails to solve multi-objective optimization problems. 

In order to overcome this, desirability function approach (Trautmann, 2004; Mehnen and 

Trautmann, 2006; Trautmann and Weihs, 2006; Réthy et al. 2004; Huu et al., 2009; 

Jeong and Kim 2009), utility theory (Kumar et al., 2000; Walia et al., 2006), grey relation 

theory (Kao and Hocheng, 2003; Balasubramanian and Ganapathy, 2011; Chakradhar 

and Venu Gopal, 2011; Lin et al. 2009) has been applied by previous investigators in 

combination with Taguchi method. The purpose is to aggregate multiple responses (objective 

functions) into an equivalent quality index (single objective function) which can easily be 

optimized using Taguchi method. 

These approaches are based on a number of assumptions as well as approximations. 

1. In desirability function approach, calculation of desirability value for individual responses 

is based on the nature of desirability function chosen. There are three types of desirability 

function viz. Higher-the-Better (HB), Lower-the-Better (LB) and Nominal-the-Best (NB)/ 

Target-the-Best (TB). The functions may be linear or nonlinear. However, choosing of a 

function is based on sole discretion of the decision maker.  

2. Utility theory is based on logarithmic scale with preference number. This scaling also 

depends on individuals’ discretion. There may be more accurate scale to compute utility 

values of individual responses. 

3. In grey relation theory, computation of grey relational coefficient requires a smoothing 

constant (varies from 0 to 1). Again selection of smoothing constant depends on decision 

maker. The grey relational analysis reflects the trend relationship between an alternative 
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and the ideal alternative, but it cannot reflect the situational relationship between the 

alternative and the ideal alternative. 

4. While computing overall quality index (grey relation grade, overall utility degree), 

priority weight is assigned to individual responses. Degree of importance of various 

responses cannot be obtained accurately. Assignment of response weights also affects the 

optimal process setting. 

5. Taguchi’s optimization methodology relies on quadratic quality loss function. It is not 

guaranteed that, in all cases, it should be perfectly parabolic in nature. 

6. Many of the quality features assume HB/ LB criteria. But in practice it is not possible to 

maximize/ minimize it up to infinite value within selected experimental domain. 

7. Aforesaid approaches are based on the assumption that response features i.e. quality 

indices are uncorrelated which seems to be totally infeasible in practical case.  Thus 

assumption of negligible response correlation may create imprecision, uncertainty as well 

as vagueness in the solution.  

It has been found that Principal Component Analysis (PCA) may be a useful statistical 

technique to solve this kind of inter-correlation problem by examining the relationships 

within a given data set of multiple-performance-characteristic (Antony, 2000; Lu et al., 2009; 

Chen et al., 2011). A new set of uncorrelated data, called principal components (PCs) can be 

derived by PCA in descending order of their ability to explain the variance of the original 

dataset. Thus, the present work aims to develop an efficient procedural hierarchy for multi-

objective optimization by exploring the concept of Principal Component Analysis (PCA) and 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) combined with 

Taguchi method followed by two case studies. Machining of polymers (Nylon as well as 

Teflon) has been carried out to optimize productivity and product quality features 
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simultaneously. Appropriate machining process environment (optimal parameters setting) has 

been identified accordingly.  

The PCA-TOPSIS based Taguchi optimization methodology proposed here can efficiently 

tackle the issues of response correlation but it relies on the judgment of decision-maker on 

assigning response priority weights which may vary depending on individuals’ perception. In 

order to avoid such kind of uncertainty fuzzy logic has come into picture (Lan, 2010; Gupta 

et al., 2011). Exploring a Fuzzy Inference System (FIS), multiple objectives (responses) can 

be aggregated logically and meaningfully to compute an Overall Performance Index (OPI) or 

defined as Multi-Performance Characteristic Index (MPCI). MPCI (or OPI) can further be 

optimized using Taguchi method. Aforesaid two aspects that cause uncertainty (i) presence of 

response correlation as well as (ii) response weight assignment can be taken care of by FIS 

itself in its internal hierarchy. Application feasibility of fuzzy based Taguchi method along 

combined with utility theory has also been demonstrated in course of the present work.        
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CHAPTER 2: Mathematical Background 
 

 

2.1 Taguchi Method 

Robust design method, also called the Taguchi Method, pioneered by Dr. Genichi Taguchi in 

1940s greatly improves engineering productivity (Nalbant et al., 2007; Zhang et al., 2007; 

Akhyar et al., 2008, Selvaraj and Chandramohan, 2010). Robust design focuses on 

improving the fundamental function of the product or process, thus facilitating flexible 

designs and concurrent engineering. Indeed, it is the most powerful method available to 

reduce product cost, improve quality, and simultaneously reduce development interval. The 

concepts behind the Taguchi methodology are: 

1. Quadratic Loss Function (also known as Quality Loss Function, Fig. 2.1) is used to 

quantify the loss incurred by the user due to deviation from target performance. 

2. Signal-to-Noise (S/N) Ratio is used for predicting the field quality through laboratory 

experiments. 

3. Orthogonal Arrays (OA) are used for gathering dependable information about control 

factors (design parameters) with a reduced number of experiments. 

 

Fig. 2.1: Taguchi loss functions graph 
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The experiment design theory and quality loss functions have been applied combined 

together to the robust design of products and process. Taguchi method uses a special design 

of orthogonal arrays to study the entire parameter space with a reduced number of 

experiments. 

 

Taguchi technique uses S/N ratio as a performance measure to choose control levels. The S/N 

ratio considers both the mean and the variability. The change in quality characteristics of a 

product response to a factor introduced in the experimental design is the signal of the desired 

effect. The effect of the external factors of the outcome of the quality characteristic under test 

is termed as noise. To use the loss function as a figure of merit an appropriate loss function 

with its constant value must first be established which is not always cost effective and easy. 

The experiment results are then transformed into a Signal-to-Noise (S/N) ratio. Taguchi 

recommends the use of S/N ratio to measure the quality characteristics deviating from the 

desired value. The S/N ratio for each level of process parameters is computed based on the 

S/N analysis and converted into a single metric. The aim in any experiment is to determine 

the highest possible S/N ratio for the result irrespective of the type of the quality 

characteristics. A high value of S/N implies that signal is much higher than the random effect 

of noise factors.  In the Taguchi method of optimization, the Signal-to-Noise ratio is used as 

the quality characteristic of choice. 

 

The different S/N ratio characteristics have been given below. 

1. Nominal-the-Best (NB) or Target-is-Best (TB)  

2. Lower-the-Better (LB)  

3. Higher-the-Better (HB)  
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Nominal-the-Best (NB) or Target-is-Best (TB)  

In this approach, the closer to the target value, the better. It does not matter whether the 

deviation is above or below the target value (example: diameter of a shaft). Under this 

approach the deviation is quadratic. 
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The following graph (Fig. 2.2) portrays Nominal-the-Best (NB) characteristics. 

 

Fig. 2.2: Nominal-the-Best (NB)/ Target-is-Best (TB) 

 

Fig. 2.3: Lower-the-Better (LB) 
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Lower-the-Better (LB)  

Lower-the-Better criteria for S/N ratio always predict values pessimistically. It includes 

quality characteristic which has the undesired output such as defects in product like surface 

roughness, pin holes or unwanted by-product. The formula for these characteristics is:     
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 The following graph (Fig. 2.3) portrays Lower-the-Better (LB) characteristics. 

Higher-the-Better (HB)  

Larger the better characteristic includes the desired output such as bond strength, material 

removal rate, employee participation and the customer acceptance rate. The formula for these 

characteristics is:     
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The following graph (Fig. 2.4) portrays Higher-the-Better (HB) characteristics. 

 

Fig. 2.4: Higher-the-Better (HB) 
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2.2 Principal Component Analysis (PCA) 

PCA is a multivariate statistical technique, which explores an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of 

uncorrelated variables called principal components (PCs) (Liao, 2006; Routara et al., 2010). 

Each PC has the property of explaining the maximum possible amount of variance obtained 

in the original dataset. The PCs, which are expressed as linear combinations of the original 

variables which can be used for effective representation of the system under investigation, 

with a lower number of variables in the new system of variables being called scores, while 

the coefficient of linear combination describes each PCs, i.e. the weight of each PCs. 

Following are the mathematical procedure for evaluating the desired principal components. 

(a) Checking for correlation between each pair of quality characteristics 

Let, ( ) ( ) ( ) ( ){ }iXiXiXiXQ mi
**

2
*
1

*
0 ,..........,.........,,=  where, .....,,.........3,2,1 ni =                     (2.4) 

It is the normalized series of the ith  quality characteristic. The correlation coefficient 

between two quality characteristics is calculated by the following equation: 

( )
kj QQ

kj
jk

QQCov

σσ
ρ

×
=

,

                                                                                                               (2.5) 
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...,..........,.........3,2,1

,

 

Here, jkρ
 is the correlation coefficient, jQσ

and kQσ
denotes standard deviation of the quality 

characteristicsj and quality characteristics of k respectively. 

(b) Calculation of the principal component score 

1) Compute the Eigen value kλ  and the corresponding Eigen vectorkβ  ( )nk .,.........3,2,1=  

from the correlation matrix formed by all the quality characteristics. 

2)  Compute the principal component scores of the normalized reference sequence and 

comparative sequences using the equation shown below: 

nkmijXkY kj

n

j
ii ....,..........3,2,1,.........,2,1,0,)()(

1

* ===∑
=

β
                                                 (2.6) 

Here, )(kYi is the principal component score of the kth element in theith  series. Let, )(* jX i

be the normalized value of the jth  element in the ith sequence, and kjβ
is thejth  element of 

the Eigen vector kβ . 

(c) Estimation of quality loss
)(,0 ki∆
 

Loss estimate 
)(,0 ki∆
 is defined as the absolute value of the difference between desired 

(ideal) value and ith experimental value for kth response. If responses are correlated then 

instead of using [ )(kX o  )(kX i  ]; [ )(0 kY  )(kYi ] should be used for computation of
)(,0 ki∆
. 
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                                                                                                      (2.7)            
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It can be mathematically proved that each principal component has coefficients equal to the 

Eigen vectors of the correlation or covariance matrix. In the study, the tested sample 

correlation matrix has been used instead of the covariance matrix, to avoid the units’ effects. 

The PCs are then sorted in descending order by Eigen values ( )pλ which are equal to the 

variances of the components. 

PCs have certain desirable properties. The first is that the sum of the variances of the 

principal component is equal to the sum of the variances of the original variables i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( )ppp ZVarZVarZVarXVarXVarXVarZVar ............................ 2121 ++=+++=
 

(2.8) 

The second is that, unlike the original variables, ppZ p ...,,2,1, = are mutually orthogonal. 

That is, they are totally uncorrelated, or there is zero multi-co linearity among them. 

In most cases in which PCA is used, the first few components contain a large part of the total 

variance, and the original p- dimensional dataset can, without substantial loss of information, 

be approximated by a q- dimensional (q < p) dataset, by discarding the p–q highest order 

PCs. 

2.3 TOPSIS 

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method was 

initially proposed by (Hwang and Yoon, 1981) for evaluating the alternatives before the 

multiple-attribute decision making. TOPSIS is implemented to measure the proximity to the 

ideal solution. The basic concept of this method is that the chosen alternative should have the 

shortest distance from the positive ideal solution and the farthest distance from negative ideal 

solution (Tong et al., 2005). Positive ideal solution is composition of the best performance 

values demonstrated (in the decision matrix) by any alternative for each attribute. The 
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negative-ideal solution is the composite of the worst performance values. The steps involved 

for calculating the TOPSIS values are as follows: 

Step 1:  This step involves the development of matrix format. The row of this matrix is 

allocated to one alternative and each column to one attribute. The matrix can be expressed as: 
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                 (2.9) 

Here, iA ( ).......,,2,1( mi =  represents the possible alternatives; ( )njx j ........,,2,1= represents 

the attributes relating to alternative performance, nj .,,.........2,1=  and ijx  is the performance 

of iA  with respect to attribute .jX  

Step 2: Obtain the normalized decision matrix ijr .This can be represented as: 

∑
=

=
m

i
ij

ij
ij

x

x
r

1

2

                              (2.10) 

Here, ijr  represents the normalized performance of iA  with respect to attribute .jX  

Step 3: obtain the weighted normalized decision matrix, [ ]ijvV =  can be found as: 

ijj rwV =                   (2.11) 

Here,       ∑
=

=
n

j
jw

1

1 
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Step 4: Determine the ideal (best) and negative ideal (worst) solutions in this step. The ideal 

and negative ideal solution can be expressed as: 

a) The ideal solution: 

( ) ( ){ }miJjvJjvA ij
i

ij
i

,..........,2,1min,max ' =∈∈=+             (2.12) 

     { }++++= nj vvvv ,.....,........,, 21  

b) The negative ideal solution: 

( ) ( ){ }miJjvJjvA ij
i

ij
i

........,,2,1max,min ' =∈∈=−                         (2.13) 

     
{ }−−−−= nj vvvv ,....,........,, 21  

Here,  

{ }:,.......,2,1 jnjJ == Associated with the beneficial attributes 

{ }:,.......,2,1' jnjJ == Associated with non beneficial attributes 

Step 5: Determine the distance measures. The separation of each alternative from the ideal 

solution is given by n- dimensional Euclidean distance from the following equations: 

( )∑
=

++ −=
n

j
jiji vvS

1

2
mi .........,,2,1=                           (2.14)   

( )∑
=

−− −=
n

j
jiji vvS

1

2
mi .........,,2,1=                            (2.15) 

Step 6: Calculate the relative closeness (closeness coefficient, CC) to the ideal solution: 

10;,,.........2,1, ≤≤=
+

= +
−+

−
+

i
ii

i
i Cmi

SS

S
C                          (2.16) 

Step 7: Rank the preference order: the alternative with the largest relative closeness is the best 

choice. 



18 

 

2.4 PCA-TOPSIS Integrated with Taguchi’s Philosophy  
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2.5 Utility Theory 

Utility function approach provides a methodological framework for the evaluation of 

alternative attributes made by individuals, firms and organizations. Utility refers to the 

satisfaction that each attributes provides to the decision maker. Thus, utility theory assumes 

that any decision is made on the basis of the utility maximization principle, according to 

which the best choice is the one that provides the highest satisfaction to the decision maker 

(Kaladhar et al., 2011). 

It is the measure of effectiveness of an attribute (or quality characteristics) and there are 

attributes evaluating the outcome space, then the joint utility function can be expressed as: 

))(.......,),........(),(().......,,.........( 22112,1 nnn XUXUXUfXXXU =
             (2.17)

 

The overall utility function is the sum of individual utilities if the attributes are independent, 

and is given as follows: 

∑
=

=
n

i
iin XUXXXU

1
2,1 )().......,,.........(

               (2.18)
 

The overall utility function after assigning weights to the attributes can be expressed as: 

∑
=

=
n

i
iiin XUWXXXU

1
2,1 )().......,,.........(

                (2.19)
 

The preference number can be expressed on a logarithmic scale as follows: 









×=

'
log
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i
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X
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                   (2.20)
 

Here,  

iX  is the value of any quality characteristic or attribute i  
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'
iX  is just acceptable value of quality characteristic or attribute i   and A is a constant. The 

value A can be found by the condition that if *XX i = (where *X is the optimal or best value), 

then .9=iP Therefore, 

'

*

log

9

iX

X
A =                                                                                                                          (2.21) 

The overall utility can be expressed as follows: 

i

n

i
i PWU ∑

=

=
1                                (2.22)

 

Subject to the condition: 

1
1

=∑
=

n

i
iW

                                                                                                                               (2.23)
 

Overall utility index that has been computed treated as a single objective function for 

optimization. Among various quality characteristics types, viz. Lower-the-Better (LB), 

Higher-the-Better (HB), and Nominal-the-Best (NB) suggested by Taguchi, the utility 

function would be Higher-the-Better (HB) type. Therefore, if the quality function is 

maximized, the quality characteristics considered for its evaluation will automatically be 

optimized. 

 

2.6 Fuzzy Inference System (FIS) 

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using fuzzy logic. The mapping then provides a basis from which decisions can be made, or 

patterns discerned (Zadeh, 1976; Cox, 1992; Mendel, 1995; Yager and Filev, 1999). The 

process of fuzzy inference involves the following elements: Membership Functions, Logical 

Operations, and If-THEN Rules. Most commonly two types of fuzzy inference systems can 
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be implemented: Mamdani type and Sugeno type. These two types of inference systems vary 

somewhat in the way outputs are determined.  

Fuzzy inference systems have been successfully applied in fields such as automatic control, 

data classification, decision analysis, expert systems, and computer vision. Because of its 

multidisciplinary nature, fuzzy inference systems are associated with a number of names, 

such as fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy associative 

memory, fuzzy logic controllers, and simply (and ambiguously) fuzzy systems.  

Mamdani's fuzzy inference method is the most commonly viewed fuzzy methodology. 

Mamdani's method was among the first control systems built using fuzzy set theory. It was 

proposed in 1975 by Ebrahim Mamdani (Mamdani, 1976; 1977) as an attempt to control a 

steam engine and boiler combination by synthesizing a set of linguistic control rules obtained 

from experienced human operators.  

Fuzzy values are determined by the membership functions, which define the degree of 

membership of an object in a fuzzy set. However, so far there has been no standard method of 

choosing the proper shape of the membership functions for the fuzzy set of control variables. 

Trial and error methods are usually employed. On the basis of fuzzy rules, the Mamdani 

implication method is employed in this study for fuzzy inference reasoning.  

To obtain a rule, 

,,

,,: 2211

ii

iMsiii

CisyThen

AisxandAisxAisxifR

                                                                                   (2.24) 

Here M is the total number of fuzzy rules. ),,.........,2,1( sjx j = are the input variables,iy  are 

the output variables and iij andCA  are fuzzy sets modeled by the membership functions

)( jAij xµ  and )( iCi yµ , respectively. Based on the Mamdani implication method of inference 

reasoning for a set of disjunctive rules, the aggregated output for the M rules is 
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[ ]{ },)(),......,(),(minmax)( 2211 sAisAiAijCi xxxy µµµµ =          Mi ,........,2,1=          (2.25) 

Basic structures of Fuzzy Inference System (FIS) have been shown in Fig. 2.5. Using a 

defuzzification method, fuzzy values can be combined into one single crisp output value as 

shown in Fig.2.6. The centre of gravity, one of the most popular methods for defuzzifying 

fuzzy output functions, is employed in this study. The formula to find the centroid of the 

combined outputsiŷ is given by: 

∫
∫=

dyy

dyyy
y

ici

icii

i
)(

)(
ˆ

µ

µ
                                                               (2.26) 

 

Fig. 2.5 Basic structure of FIS 

 

Fig. 2.6 Operation of fuzzy inference system 
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2.7 Utility-Fuzzy Integrated with Taguchi’s Philosophy 

Selection of Process Parameters and Domain 

of Experimentation

Design of Experiments

Conduction of Experiments

Response Measurements

Calculation of Individual Utility Values

Aggregation of multiple responses into single 

quality index i.e. MPCI by FIS

Taguchi’s Optimization
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CHAPTER 3: Machining of Nylon 6  
 

 
In today’s competitive corporate world manufacturers should pay more emphasis to maintain 

overall product quality at an economic cost. Hence it becomes essential to optimizevarious 

machining parameters. In the present study, Principal Component Analysis (PCA)integrated 

with TOPSIS has been used in the Taguchi method to assess optimal process environmentin 

machining of Nylon 6. Multiple surface roughness parameters of statistical importance have 

been optimized simultaneously. 

 

3.1 Nylon: Structure, Properties, Performance:  

Issues on Nylon Machining  

 
The term nylon refers to a family of plastics.  The two most common grades of nylon are 

Nylon 6 and Nylon 6/6.  The number refers to the number of methyl groups which occur on 

each side of the nitrogen atoms (amide groups).  The term polyamide, another name for 

nylon, reflects the presence of these amide groups on the polymer chain.  The difference in 

number of methyl groups influences the properties of the nylon. 

Unlike polycarbonate, nylon is crystalline in nature; so the molecular chains do not have 

large substituent groups (such as the phenyl ring in polycarbonate).  The crystalline nature of 

the material is responsible for its wear resistance, chemical resistance, thermal resistance, and 

higher mold shrinkage.The properties of nylon include: 

1. very good heat resistance 

2. excellent chemical resistance 

3. excellent wear resistance 

4. moderate to high price 

5. fair to easy processing 
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As the separation of the amide groups increases (by adding more methyl groups) and the 

polarity of the amide groups is reduced, moisture absorbance is decreased.  Resistance to 

thermal deformation is lowered due to more flexibility and mobility in the methyl unit 

sections of the chain.  Some common applications of nylon include:  

1. electrical connectors 

2. gear, slide, cams, and bearings 

3. cable ties and film packaging 

4. fluid reservoirs 

5. fishing line, brush bristles 

6. automotive oil pans 

7. fabric, carpeting, sportswear 

8. sports and recreational equipment 

Cast and extruded nylon are used in a wide variety of applications for their outstanding 

mechanical properties including high wear and abrasion resistance, superior strength and 

stiffness. Nylon's toughness, low coefficient of friction and wide size range availability make 

it an ideal replacement for a wide variety of materials from metal to rubber. 

Standard nylon offers up to three times better wear than acetal and tops UHMW-PE in 

applications imposing high loads and stresses. Using nylon reduces lubrication requirements; 

eliminates galling, corrosion and pilferage problems; and improves wear resistance and sound 

dampening characteristics. Nylon has a proven record of outstanding service in a multitude of 

parts for such diverse fields as paper, textiles, electronics, construction, mining, 

metalworking, aircraft, food and material handling. 

Different types of nylon have been developed to satisfy a wide variety of application 

demands. Nylons with added molybdenum disulfide offer tremendous value in general 
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purpose structural or bearing and wear applications. Heat-stabilized nylons resist degradation 

at higher temperatures. And for demanding wear applications, an internally lubricated nylon 

may be specified.The machining and fabrication guidelines are applicable to good quality 

nylons. The basic properties of nylon are to be clearly understood which may be relevant to 

machinists and fabricators. 

Machining operations can induce internal stress within work material High-quality nylon 

stock shapes are delivered with very low residual stress. Improper machining or removal of 

large amounts of material can create large internal stresses that can result in warping, ovality 

or other dimensional instabilities. Whenever possible, select a stock shape which minimizes 

the amount of material to be removed to make a finished part. In some cases, it may be 

advantageous to order custom size stock or consider a near net shape nylon casting. The 

effects of machined-in stress can be minimized by allowing a part to rest for several hours 

between machining operations. In rare cases, it may be necessary to post-machine anneal a 

nylon part if extraordinary dimensional stability is required. 

Satisfactory finishes can be easily obtained on nylon over a wide range of surface speeds. Use 

tools that are honed sharp and have high rake and clearance angles, to minimize cutting force 

and reduce heat build-up. Chips will be continuous and stringy. They should be directed away 

from the cut and prevented from winding around the work piece. Coolants are generally not 

necessary for lathe work unless there is excessive heat build-up. 

 

3.2Modelling-Prediction and Optimization of Surface 

Roughness in Machining: State of Art and Problem 

Formulation in context of Nylon Machining  

 
Literature has been found rich enough highlighting various aspects of machining of 

conventional metals; emphasis made to a lesser extent on machining and machinability of 
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polymeric materials. With the worldwide application of polymeric material; in depth 

knowledge is highly essential for better understanding of machining process behavior, 

parametric influence and their interaction etc. in order to produce high quality finished part in 

terms of dimensional accuracy, material removal rate as well as good surface finish. Part 

quality can be improved by proper selection and precise control of the adjustable process 

parameters; the combination of which is called a particular process environment. There exists 

tremendous need to search the most suitable process environment (optimal) in order to satisfy 

multi-requirements of part quality simultaneously. This invites multi-objective optimization 

problem which seeks to determine an optimal solution (optimal process environment) to be 

determined prior to initiate mass production.  

Surface roughness of the finished/ machined part is an important quality characteristic in any 

machining operation. A number of parameters of statistical importance are defined to 

describe extent of surface finish. Predictive modeling, optimization of surface roughness has 

been addressed by pioneer researchers and highlighted in literature.              

Lou et al. (1998-99) developed a multiple regression model for predicting surface finish in 

end milling process. The surface roughness (Ra) predication model was constituted by 

considering machining parameters viz. spindle speed, feed rate and depth of cut and their 

interaction. Lee and Tarng(2001) proposed a polynomial network model to inspect surface 

roughness by developing the relationship between the features of the surface image and the 

actual surface roughness under a variation in machining parameter on turning operation. Özel 

and Karpet(2005) used neural network and regression model analysis for predicating the 

surface quality and tool flank wear over the machining time for variety of machining 

conditions in finish hard turning of AISI 52100 steel by using CBN tools. Aggarwal and 

Singh (2005) made a comparative study on the methods for optimizing machining parameters 

in turning process by comparing conventional and latest method methods of optimization. 
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Various conventional techniques employed for machining optimization include geometric 

programming, geometric plus linear programming, goal programming, sequential 

unconstrained minimization technique, dynamic programming etc. The latest techniques for 

optimization included fuzzy logic, scatter search technique, genetic algorithm, and Taguchi 

technique, response surface methodology etc. Kirby (2006) discussed on the application of 

Taguchi framework of experimental design for optimizing the surface roughness during the 

CNC milling. Nalbant et al. (2007) examined the performance characteristics of the cutting 

parameters viz. insert radius, feed rate and depth of cut  during the turning operation of AISI 

1030 steel bars by using the TiN coated tools. The performance characteristic comprised the 

surface roughness which was optimized by using Taguchi’s robust design technique. 

Özel et al. (2007) investigated the influence of design of nose radius on surface finish and the 

tool flank wear by developing a neural network model and multiple linear regression models 

during the turning of AISI D2 steels with the help of ceramic wiper (multi-radii) design 

inserts. Zhang et al. (2007) adopted the Taguchi robust technique combined with the 

ANOVA to examine the factors influencing the surface quality in a CNC face milling 

operation.Routara et al. (2007) predicted optimal machining parameter condition for multi 

performance characteristics of the surface finish in CNC turning on AISI 1040 mild steel bar. 

The machining parameter viz. spindle speed, depth of cut and feed rate were used for 

assessing the different roughness parameters of statistical significance such as centre line 

average, root mean square and mean-line peak spacing.Akhyar et al. (2008) applied Taguchi 

technique to optimize the quality of surface finish during the turning of Ti-6%Al-4% with 

coated and uncoated cemented carbide tools under dry cutting condition and high cutting 

speed. Suhail et al. (2010) optimized machining parameters to increase the degree of 

machine utilization and to decrease the production cost. The orthogonal array, S/N ratio and 

ANOVA were applied to study work piece surface temperature and surface roughness.Singh 
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et al. (2010) suggested a comprehensive study for improving the surface quality of the 

machined product. The study emphasized on the methodology adopted for the optimization of 

process parameter to improve the surface roughness as it indicates the product appearance, 

function and reliability.Kadirgama et al. (2010) focused on controlling machining 

parameters during milling of mould aluminium alloys by the aid of Response Ant Colony 

Optimization (RACO). This approach comprised the both Response surface methodology and 

Ant colony optimization which were useful for assessing the dominant variables viz. cutting 

speed, feed rate, axial depth and radial depth. The model predicted that feed rate was found 

more important factor which affects surface quality. 

Jurkovic et al. (2010) made a comparative study on the methods of optimization based on 

experimental plan in between the conventional rotatable central composite design and 

orthogonal array for enhancing the surface finish in finish longitudinal turning operations. 

Selvraj and Chandramohan(2010) analyzed the cutting characteristics during the dry 

turning of AISI 304 austenitic stainless steel (ASS) by using the TiC and TiCN coated 

carbide tool with the aid of the Taguchi robust technique integrated with the 

ANOVA.Dhavamani and Alwarsamy(2011) reviewed different methods of optimizing 

techniques including conventional methods like geometric programming, non linear 

programming etc. and compared to modern methods such as fuzzy logic, scatter search 

method, genetic algorithm for optimal selection of machining variables in drilling 

process.Kaladhar et al., (2011) presented a multi-characteristics response model for 

optimizing process parameter in turning on AISI 202 austenitic stainless steel using a CVD 

coated cemented carbide tool with Taguchi robust design integrated with utility concept.  

Ramesh et al. (2011) developed correlation between the process parameters viz. cutting 

speed, depth of cut and feed rate by using the multiple regression analysis and examined the 

influence of machining conditions in turning of Duplex stainless steel 2205. Deep et al. 
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(2011) proposed a mathematical model for analyzing the effect of the machining parameters 

during single and multi-pass turning by using the Real Coded Genetic Algorithm. 

In this present reporting, Taguchi’s robust technique integrated with PCA and TOPSIS has 

been used to achieve an optimal machining parameter setting for enhancing surface quality of 

machined nylon product. PCA has been adopted to convert correlated multiple responses 

(multiple surface roughness characteristic indices) into uncorrelated quality indices called as 

principal components. TOPSIS has been applied to combine individual principal components 

into an Overall Performance Index (OPI). OPI has been optimized (maximized) finally using 

Taguchi method. 

 

3.3Experimentation 

 
Work material 

Sample of Nylon 6 bars having dimension of diameter 50 mm and length of 150 mm (cutting 

length 50 mm) has been used as work-piece material. Structure of Nylon 6 has been shown in 

Fig. 3.1. 

Tool material 

Single point HSS tool of INDOLOV SHRIRAM IK-20 has been used during experiments. 

Experimental set up 

The turning operation has been carried on the manually operated Lathe PINACHO. The 

surface roughness parameters have been measured inTalysurf. 

Design of Experiment (DOE) 

For machining of nylon (turning operation), three controllable process parameters: spindle 

speed, feed and depth of cut have been chosen and these have been allowed to vary in five 

different levels (Table 3.1). Taguchi’s philosophy has been explored for adapting a 

framework for experimental design and its execution. L25 orthogonal array has been adopted 
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for this experimental set up and furnished in Table 3.2. Here, only the direct / main effects of 

machining parameters i.e. spindle speed, feed rate and depth of cut has been considered for 

assessing the optimal condition. Parametric interaction effect has been assumed insignificant. 

Response Measurement 

Multiple surface roughness parameters (of the machined Nylon product) have been measured 

using the stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 3+). The values of 

measured roughness parameters: (average of five trials) Rq, Ra, Rt, Rku, Rz, Rsm have been 

shown in Table 3.3. Pictorial representation of micro-surface profile has been shown at the 

end of this thesis in Appendix 1. 

 

3.4Proposed Methodology 

 
Thepreceding study highlights on procedural steps for the multi-response optimization based 

on PCA-TOPSIS combined with Taguchi’s philosophy. Multiple responses always contain 

some extent of correlations; the PCA has been initially performed on the (Signal-to-Noise 

ratio) S/N values obtained from each response to reduce the dimension of multiple responses 

to a less number of uncorrelated indices called principal components (PCs). Quality loss 

estimates has been derived based on the deviation of individual PCs from their ideal value. 

Based on computed quality loss estimates, TOPSIS has been applied to determine the 

positive-ideal and negative-ideal solution and thus, closeness coefficient.The closeness 

coefficient has been treated here as OPI. Optimal factorial combination (parameter setting) 

has been evaluated finally by optimizing OPI using Taguchi method. 

Step 1: calculate the S/N ratio 

Taguchi’sformulae have been used to evaluate the S/N ratio for each response. For all surface 

quality characteristics considered in the present study, the Lower-the-Better (LB) criterion 

has been imposed on. 
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In this step, i
jη (the SN ratio for the thj response at the thi trial, for ( mi .......,,2,1=  and

nj .......,,2,1= ) is computed. According to Taguchi, the following three formulae are given: 
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variation of observed data for thethj response at thethi trial,) for mi ......,,2,1=  ; nj ......,,2,1=  

and lk ......,,2,1= . 

Step 2: Normalisation of S/N ratios  

After computing S/N ratio of experimentally obtained response data; the requirement of S/N 

ratio is as high as possible. Therefore, Higher-the-Better criterion has been presumed for the 

normalisation of S/N ratio values (of each response) by using the following equation: 

( ) ( )
( ) ( )kNSkNS

kNSNS
kNS

ikii

ii
i /min/max

/min/
/

−
−

=
(3.4) 

Here, iNS / is the signal-to-noise ratio under the thi  experimental run, ( )kNS i/min minimum 

value of NS / ratio and ( )kNS i/max maximum value of NS / ratio of the experimental run. 
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Step 3: Application of PCA 

PCA is a multivariate mathematical procedure which explores an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of uncorrelated indices called principal components (PCs). Each PC has the property 

of explaining the maximum possible amount of variance obtained in the original dataset. The 

PCs, which are expressed as linear combinations of the original variables which can be used 

for effective representation of the system under investigation, with a lower number of 

variables in the new system of variables being called scores, while the coefficient of linear 

combination describes each PCs, i.e. the weight of each PCs.  

(a) Checking for correlation between each pair of quality characteristics 

Let, ( ) ( ) ( ) ( ){ }iXiXiXiXQ mi
**

2
*
1

*
0 ,..........,.........,,=  where, .....,,.........3,2,1 ni = (3.5) 

It is the normalized series of the ith  quality characteristic. The correlation coefficient 

between two quality characteristics is calculated by the following equation: 

( )
kj QQ

kj
jk

QQCov

σσ
ρ

×
=

,

(3.6) 

kj

nk

nj

here

≠
=
=

...,..........,.........3,2,1

...,..........,.........3,2,1

,

 

 

Here, jkρ  is correlation coefficient, 
jQσ and 

kQσ denotes standard deviation of the quality 

characteristicsj and quality characteristics of k respectively. 

(b) Calculation of the principal component score 
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1) Compute the Eigen value kλ  and the corresponding Eigen vectorkβ

( )nk .,.........3,2,1=  from the correlation matrix formed by all the quality 

characteristics. 

2)  Compute the principal component scores of the normalized reference sequence and 

comparative sequences using the equation shown below: 

nkmijXkY kj

n

j
ii ....,..........3,2,1,.........,2,1,0,)()(

1

* ===∑
=

β
(3.7)

 

Here, )(kYi is the principal component score of the kth element in theith  series. Let, )(* jX i

be the normalized value of the jth  element in the ith sequence, and kjβ is thejth  element of 

the Eigen vector kβ . 

(c) Estimation of quality loss )(,0 ki∆  

Loss estimate )(,0 ki∆  is defined as the absolute value of the difference between desired (ideal) 

value and ith experimental value for kth response. If responses are correlated then instead of 

using [ )(kX o )(kX i  ]; [ )(0 kY )(kYi ] should be used for computation of )(,0 ki∆ . 
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Step 4: Apply TOPSIS to obtain the OPI for multiple responses 

(Tong et al., 2005) initially proposed the TOPSIS for evaluating the alternatives before the 

multiple-attribute decision making. TOPSIS facilitates to assess the propinquity to the ideal 

solution. The basic fact of this method is that the chosen alternative should have the 

snippiestspace from the positive ideal solution and the uttermostspace from negative ideal 

solution. Positive ideal solution compromises of the best execution values to be demonstrated 

(in the decision matrix) by any alternative for each criteria attribute. The negative-ideal 
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solution is the composite of the worst execution values. The steps involved for calculating the 

TOPSIS values are as follows: 

(a) Development of matrix format 

The row of this matrix is allocated to one alternative and each column to one attribute. The 

matrix can be expressed as: 
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Here, iA ( ).......,,2,1( mi =  represents the possible alternatives; ( )njx j ........,,2,1= represents 

the attributes relating to alternative performance, nj .,,.........2,1=  and ijx  is the performance 

of iA  with respect to attribute .jX  

(b) Obtain the normalized decision matrix ijr  

The quality loss ( )(,0 ki∆ ) that has been estimated by aforesaid procedure has been 

normalized by the following equation  

∑
=

=
m

i
ij

ij
ij

x

x
r

1

2

(3.10) 

Here, ijr  represents the normalized performance of iA  with respect to attribute .jX
 

 

(c)  Obtain the weighted normalized decision matrix  
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[ ]ijvV =
 

ijj rwV =           (3.11) 

Here,       ∑
=

=
n

j
jw

1

1
 

(d) Determine the ideal (best) and negative ideal (worst) solutions  

The ideal solution is given by: 

( ) ( ){ }miJjvJjvA ij
i

ij
i

,..........,2,1min,max ' =∈∈=+     (3.12) 

{ }++++= nj vvvv ,.....,........,, 21  

The negative ideal solution is given by: 

( ) ( ){ }miJjvJjvA ij
i

ij
i

........,,2,1max,min ' =∈∈=−    (3.13) 

{ }−−−−= nj vvvv ,....,........,, 21  

 

Here,  

{ }:,.......,2,1 jnjJ == Associated with the beneficial attributes 

{ }:,.......,2,1' jnjJ == Associated with non beneficial attributes 

(e) Determine the distance measures  

The separation of each alternative from the ideal solution is given by n- dimensional Euclidean 

distance from the following equations: 

( )∑
=

++ −=
n

j
jiji vvS

1

2
mi .........,,2,1=        (3.14) 
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( )∑
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(f) Calculate the relative closeness (closeness coefficient) to the ideal solution 

10;,,.........2,1, ≤≤=
+

= +
−+

−
+

i
ii

i
i Cmi

SS

S
C    (3.16) 

 

Step 5: Determine the optimum process variable by optimization OPI using Taguchi method 

The optimum process parameter combination ensureshighest OPI value. The closeness 

coefficient value is optimized using Taguchi method. For calculating S/N ratio 

(corresponding to the values of closeness coefficient); Higher-the-Better (HB) criterion is to 

be considered. As larger the value of closeness coefficient, better is the proximity to the ideal 

solution.  

 

3.5Results 

Experimental data have been analyzed by following aforesaid procedure. The S/N ratios for 

each response evaluated by using Taguchi‘s S/N ratio formula has been furnished in the Table 

3.4. S/N ratios (of the responses i.e. multiple surface roughness characteristics) have been 

normalized by using Eq. 3.4 and these have been shown in Table 3.5.  

The Pearson’s correlation coefficient between individual responses pairs have been valuated 

(Table 3.6)next. Eigen values, Eigen vectors, accountability proportion (AP) and cumulative 

accountability proportion (CAP) computed in PCA for the six surface quality indicators (S/N 

ratios) has been shown in Table 3.7. It has been found that, the first four PCs can take care of 

68.2%, 28.7%, 1.9% and 0.9% data variability respectively. The contribution of fifth and 

sixth PCs has been found negligible effect to interpret data variability. Consequently, the 
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effects of these PCs have been snubbed and the first four PCs have been considered for 

further analysis (Table 3.8). From the aforementioned four major PCs, the quality loss 

estimates have been assessed (Eq. 3.8) and their representing values have been tabulated in 

Table 3.9. 

TOPSIS has been applied utilizing these quality loss estimates. Individual experimental runs 

have been dealt as the alternatives and the normalized decision matrix have been calculated 

shown in the Table 3.10. The weighted normalized matrix has been presented in Table 3.11. 

The positive ideal and negative-ideal solution has been evaluated by using Eqs. 3.12-3.13 and 

confronted in Table 3.12. The deviation from the ideal solution (distance measures) has been 

assessed from the Euclidian equation and tabulated in Table 3.13. The relative closeness 

measure (closeness coefficient) has been calculated usingEq. 3.16and furnished in Table 

3.14. 

Finally, the Taguchi method has been applied on the closeness coefficient (OPI) to assess the 

optimal machining parameter by using S/N ratio plot of OPI(Table 3.15, Fig.3.2). Higher the 

value of closeness coefficient, the corresponding parameter combination is said to be close to 

the optimal solution. The optimal parametric combination has been found as 514 DFN . In 

coded form it is A4B1C5.  It has been found that at optimal setting predicted value of S/N ratio 

has become 0.94220 (highest among all entries of corresponding S/N ratio values in Table 

3.14); whereas in confirmatory test it has reached a value i.e. 1.200. So quality has been 

improved using this optimal level. 

 

3.6Concluding Remarks 

The antecedentresearch has applied PCA and TOPSIS method coupled with Taguchi’s 

parameter design philosophy for optimization of the process variables forproducing good 

surface finish of the machined nylon product. Correlated multiple responses has been 
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transformed into equal or less number of uncorrelated quality indices with the aid of PCA, 

whichfacilitates insituation towards optimization of large number of responses. TOPSIS has 

been found efficient to convert the multiple responses (criteria-attributes) into a single 

objective function i.e. closeness coefficient. This closeness coefficient has been treated as the 

Overall Performance Index (OPI) to be optimized (maximized) by Taguchi method. The 

integrated approach highlighted in this chapter can be efficiently applied for continuous 

quality improvement and off-line quality control in any production processes which involve 

multiple response features correlated with each other. 
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Table 3.1: Domain of experiments (process control parameters and their limits) 

Sl. No. Factors Notation  Unit  Level 1 Level 2 Level3 Level 4 Level 5 
1 Spindle Speed N (A) RPM 260 360 530 860 1400 
2 Feed rate  F (B) mm/rev 0.050 0.052 0.055 0.060 0.063 
3 Depth of cut  D (C) mm 2 3 4 5 6 

 

Table 3.2: L25 orthogonal array design of experiment 

Sl. No. Factorial combinations (coded form) 
N (A) F (B) D (C) 

1 1 1 1 
2 1 2 2 
3 1 3 3 
4 1 4 4 
5 1 5 5 
6 2 1 2 
7 2 2 3 
8 2 3 4 
9 2 4 5 
10 2 5 1 
11 3 1 3 
12 3 2 4 
13 3 3 5 
14 3 4 1 
15 3 5 2 
16 4 1 4 
17 4 2 5 
18 4 3 1 
19 4 4 2 
20 4 5 3 
21 5 1 5 
22 5 2 1 
23 5 3 2 
24 5 4 3 
25 5 5 4 



45 

 

Table 3.3:Multiple surface roughness estimates of statistical significance 

Sl. No. Ra µm Rq µm Rt µm Rku Rz µm Rsm mm 

1 2.528 2.892 13 2.016 10.634 65.74 

2 2.334 2.902 16.22 3.192 13.32 72.88 

3 .3836 .5888 8.162 44.22 2.97 338.8 

4 3.324 4.156 23.22 2.976 18.62 83.24 

5 3.014 3.728 21.38 2.9 17.7 72.88 

6 2.878 3.324 18.72 2.63 12.24 69.06 

7 2.434 2.972 17.16 2.848 13.68 68.4 

8 2.234 2.84 17.8 3.422 14.66 64.04 

9 .9452 1.6518 32.88 724.6 8.458 927.4 

10 2.1918 2.6962 19.2 39.06 12.326 66.26 

11 3.112 3.428 15.2 2.056 12.62 66.92 

12 4.628 7.802 184 341.8 41.6 877.8 

13 4.548 8.146 184 320.2 44 1294 

14 2.592 3.068 32.86 57.8 9.372 289.4 

15 2.186 2.624 15.34 2.722 12.14 61.12 

16 8.572 15.3 194 45.92 86 796.8 

17 8.985 15.6 194 41.82 85.6 752.6 

18 19.58 30.42 208 5.348 153.6 593.4 

19 2.358 2.882 16.8 2.792 13.22 65.9 

20 6.4558 7.438 38.68 4.644 31.408 290.2 

21 4.466 7.316 190 412 40 593 

22 .826 1.388 18.26 106.12 6.826 412.6 

23 5.7698 7.0834 39.8 232.01 30.586 428.44 

24 8.888 10.86 60.24 2.892 47.38 120.2 

25 5.7216 7.3252 69.934 109.438 31.1956 331.2 
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Table 3.4: Calculated S/N ratio of each response 

Sl. No. Calculated S/N ratios for: 

Ra dB Rq dB Rt dB Rku dB Rz dB Rsm dB 

1 -8.0555 -9.2240 -22.2789 -6.0898 -20.5339 -36.3566 

2 -7.3620 -9.2539 -24.2010 -10.0813 -22.4901 -37.2522 

3 8.3224 4.6006 -18.2359 -32.9124 -9.4551 -50.5989 

4 -10.4332 -12.3735 -27.3172 -9.4727 -25.3996 -38.4066 

5 -9.5829 -11.4295 -26.6002 -9.2480 -24.9595 -37.2522 

6 -9.1818 -10.4332 -25.4461 -8.3991 -21.7556 -36.7845 

7 -7.7264 -9.4610 -24.6903 -9.0908 -22.7217 -36.7011 

8 -6.9817 -9.0664 -25.0084 -10.6856 -23.3227 -36.1290 

9 0.4895 -4.3591 -30.3386 -57.2020 -18.5454 -59.3453 

10 -6.8160 -8.6150 -25.6660 -31.8346 -21.8164 -36.4250 

11 -9.8608 -10.7008 -23.6369 -6.2605 -22.0212 -36.5111 

12 -13.3079 -17.8441 -45.2964 -50.6754 -32.3819 -58.8679 

13 -13.1564 -18.2189 -45.2964 -50.1084 -32.8691 -62.2387 

14 -8.2727 -9.7371 -30.3334 -35.2386 -19.4366 -49.2300 

15 -6.7930 -8.3793 -23.7165 -8.6978 -21.6844 -35.7237 

16 -18.6616 -23.6938 -45.7560 -33.2400 -38.6900 -58.0270 

17 -19.0704 -23.8625 -45.7560 -32.4277 -38.6495 -57.5313 

18 -25.8363 -29.6632 -46.3613 -14.5638 -43.7278 -55.4670 

19 -7.4509 -9.1939 -24.5062 -8.9183 -22.4246 -36.3777 

20 -16.1990 -17.4291 -31.7497 -13.3378 -29.9408 -49.2539 

21 -12.9984 -17.2855 -45.5751 -52.2979 -32.0412 -55.4611 

22 1.6604 -2.8478 -25.2300 -40.5159 -16.6833 -52.3106 

23 -15.2232 -17.0048 -31.9977 -47.3101 -29.7105 -52.6378 

24 -18.9761 -20.7166 -35.5977 -9.2240 -33.5119 -41.5981 

25 -15.1503 -17.2964 -36.8938 -40.7834 -29.8819 -50.4018 
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Table 3.5: Normalized S/N ratio  

Sl. No. Normalized S/N ratios 

Ra Rq Rt Rku Rz Rsm 

Ideal Situation 1 1 1 1 1 1 

1 0.520535 0.596525 0.856251 1 0.676746 0.97613 

2 0.540837 0.595652 0.787911 0.921907 0.619668 0.942353 

3 1 1 1 0.475221 1 0.438989 

4 0.450928 0.504605 0.677114 0.933814 0.534775 0.898816 

5 0.47582 0.532156 0.702607 0.93821 0.547617 0.942353 

6 0.487562 0.561234 0.743641 0.954819 0.641099 0.959992 

7 0.530169 0.589608 0.770513 0.941286 0.612911 0.963138 

8 0.551971 0.601124 0.759203 0.910084 0.595375 0.984714 

9 0.770691 0.738508 0.569688 0 0.734766 0.109123 

10 0.556822 0.614298 0.735822 0.496308 0.639325 0.973551 

11 0.467685 0.553424 0.807967 0.99666 0.63335 0.970304 

12 0.36677 0.344944 0.037863 0.127692 0.331048 0.127128 

13 0.371206 0.334006 0.037863 0.138785 0.316832 0 

14 0.514176 0.58155 0.569873 0.42971 0.708762 0.490617 

15 0.557495 0.621177 0.805137 0.948975 0.643177 1 

16 0.21004 0.174219 0.021521 0.468812 0.146992 0.158842 

17 0.198073 0.169295 0.021521 0.484704 0.148173 0.177537 

18 0 0 0 0.834208 0 0.255391 

19 0.538235 0.597403 0.777059 0.944661 0.621579 0.975335 

20 0.282133 0.357056 0.519516 0.858194 0.402274 0.489715 

21 0.375831 0.361247 0.027953 0.095948 0.340989 0.255614 

22 0.804969 0.782616 0.751324 0.32646 0.789097 0.374433 

23 0.3107 0.369439 0.510699 0.193533 0.408993 0.362093 

24 0.200833 0.261109 0.3827 0.93868 0.298077 0.77845 

25 0.312834 0.360929 0.336617 0.321227 0.403992 0.446423 
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Table 3.6: Check for correlation among response pairs  

Sl. No. Correlation Between 
Pearson’s Correlation 

Coefficient 
P-Value 

1 Ra, Rq 0.987 0.000* 

2 Ra, Rt 0.737 0.000* 

3 Ra, Rku -0.077 0.715 

4 Ra, Rz 0.943 0.000* 

5 Ra, Rsm 0.245 0.238 

6 Rq, Rt 0.846 0.000* 

7 Rq, Rku 0.066 0.753 

8 Rq, Rz 0.987 0.000* 

9 Rq, Rsm 0.405 0.045* 

10 Rt, Rku 0.518 0.008* 

11 Rt, Rz 0.884 0.000* 

12 Rt, Rsm 0.765 0.000* 

13 Rku, Rz 0.128 0.541 

14 Rku, Rsm 0.830 0.000* 

15 Rz, Rsm 0.466 0.019* 

*Significant correlation 
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Table 3.7: Results of PCA: Eigen values, eigenvectors, accountability proportion (AP) and 
cumulative accountability proportion (CAP) 

 
PC1 PC2 PC3  PC4 PC5 PC6 

Eigen value 4.0948 1.7228 0.1114 0.0533 0.0171 0.0006 
Eigen vector 

278.0

969.0

042.0

775.0

990.0

994.0

−
 

910.0

185.0

984.0

570.0

121.0

033.0−

 

304.0

075.0

174.0

058.0

060.0

008.0

−
−

−
−
−

 

050.0

082.0

002.0

267.0

026.0

049.0

−

−

 

012.0

123.0

006.0

015.0

011.0

087.0

−
−

 

001.0

004.0

001.0

001.0

020.0

015.0

−

−

 

AP 0.682 0.287 0.019 0.009 0.003 0.000 
CAP 0.682 0.970 0.988 0.997 1.000 1.000 

 

 
Table 3.8: Calculated values of major principal components (PCs) 

Sl. No. PC1 PC2 PC3 PC4 
Ideal solution 3.964 2.737 -0.331 0.374 
1 2.60272 2.530236 -0.25894 0.316354 
2 2.498471 2.362392 -0.25483 0.290087 
3 3.832419 1.655294 -0.26146 0.34711 
4 2.124005 2.246118 -0.21923 0.252179 
5 2.222267 2.31035 -0.23608 0.261884 
6 2.404853 2.391274 -0.25068 0.282852 
7 2.465602 2.390637 -0.25537 0.286154 
8 2.477436 2.366735 -0.2666 0.281828 
9 2.641191 0.510994 -0.18684 0.195715 
10 2.543227 1.903847 -0.34618 0.280272 
11 2.419335 2.480894 -0.24819 0.300476 
12 0.978359 0.241372 -0.07455 0.025086 
13 0.919933 0.133207 -0.03189 0.016836 
14 2.287523 1.309802 -0.20636 0.219877 
15 2.595123 2.461768 -0.27188 0.299616 
16 0.424772 0.5768 0.010094 0.007101 
17 0.413803 0.611166 0.007757 0.008573 
18 -0.13028 1.004073 0.077376 -0.00299 
19 2.499491 2.411698 -0.2601 0.289145 
20 1.427275 1.660678 -0.07842 0.18151 
21 1.044312 0.321924 -0.12107 0.02987 
22 2.980008 1.227279 -0.22289 0.261446 
23 1.464129 0.81809 -0.1686 0.173813 
24 1.103607 1.90152 -0.1272 0.150711 
25 1.334742 0.932405 -0.15863 0.13046 
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Table 3.9: Computed quality loss estimates of PC1 to PC4 

Sl. No. 
Quality loss estimates 

PC1 PC2 PC3 PC4 

1 1.36128 0.206764 0.07206 0.057646 

2 2.49847 2.36239 0.25483 0.29009 

3 3.83242 1.65529 0.261455 0.34711 

4 2.124 2.24612 0.21923 0.25218 

5 2.22227 2.31035 0.23608 0.26188 

6 2.40485 2.39127 0.250683 0.28285 

7 2.4656 2.39064 0.255367 0.28615 

8 2.47744 2.36673 0.2666 0.28183 

9 2.64119 0.51099 0.186838 0.19572 

10 2.54323 1.90385 0.346182 0.28027 

11 2.41933 2.48089 0.248187 0.30048 

12 0.97836 0.24137 0.074547 0.02509 

13 0.91993 0.13321 0.031894 0.01684 

14 2.28752 1.3098 0.206362 0.21988 

15 2.59512 2.46177 0.271876 0.29962 

16 0.42477 0.5768 0.01009 0.0071 

17 0.4138 0.61117 0.00776 0.00857 

18 0.130278 1.00407 0.07738 0.002994 

19 2.49949 2.4117 0.2601 0.28915 

20 1.42727 1.66068 0.078424 0.18151 

21 1.04431 0.32192 0.121066 0.02987 

22 2.98001 1.22728 0.222892 0.26145 

23 1.46413 0.81809 0.168603 0.17381 

24 1.10361 1.90152 0.127205 0.15071 

25 1.33474 0.9324 0.158633 0.13046 
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Table 3.10: Normalized quality loss coefficients 

Sl. NO. Normalized quality loss coefficients 

PC1 PC2 PC3 PC4 

1 0.131604 0.024586 0.072244 0.052989 

2 0.241543 0.280906 0.255482 0.266654 

3 0.370505 0.196826 0.262124 0.319067 

4 0.205341 0.26708 0.219791 0.231806 

5 0.214841 0.274718 0.236684 0.240723 

6 0.232492 0.28434 0.251325 0.259998 

7 0.238365 0.284265 0.256021 0.263032 

8 0.23951 0.281422 0.267282 0.259061 

9 0.255341 0.060761 0.187316 0.179908 

10 0.24587 0.226382 0.347068 0.257627 

11 0.233892 0.294996 0.248822 0.276204 

12 0.094584 0.028701 0.074738 0.023063 

13 0.088936 0.01584 0.031976 0.015479 

14 0.221149 0.155745 0.20689 0.202116 

15 0.250887 0.292723 0.272572 0.275414 

16 0.041065 0.068586 0.010116 0.006526 

17 0.040005 0.072673 0.00778 0.007878 

18 0.012595 0.119391 0.077578 0.002752 

19 0.241642 0.286769 0.260766 0.265789 

20 0.137983 0.197467 0.078625 0.166846 

21 0.10096 0.038279 0.121376 0.027457 

22 0.288097 0.145933 0.223462 0.240327 

23 0.141547 0.097277 0.169035 0.159768 

24 0.106693 0.226105 0.127531 0.138534 

25 0.129038 0.110869 0.159039 0.11992 
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Table 3.11: Weighted normalized quality loss coefficients of majors PCs 

Sl. No. Weighted normalized quality loss coefficients 

PC1 PC2 PC3 PC4 

1 0.089754 0.007056 0.001373 0.000477 

2 0.164732 0.08062 0.004854 0.0024 

3 0.252684 0.056489 0.00498 0.002872 

4 0.140042 0.076652 0.004176 0.002086 

5 0.146522 0.078844 0.004497 0.002167 

6 0.15856 0.081606 0.004775 0.00234 

7 0.162565 0.081584 0.004864 0.002367 

8 0.163346 0.080768 0.005078 0.002332 

9 0.174142 0.017438 0.003559 0.001619 

10 0.167684 0.064972 0.006594 0.002319 

11 0.159515 0.084664 0.004728 0.002486 

12 0.064507 0.008237 0.00142 0.000208 

13 0.060654 0.004546 0.000608 0.000139 

14 0.150824 0.044699 0.003931 0.001819 

15 0.171105 0.084011 0.005179 0.002479 

16 0.028007 0.019684 0.000192 .000058734 

17 0.027283 0.020857 0.000148 .0000709 

18 0.00859 0.034265 0.001474 .0000248 

19 0.1648 0.082303 0.004955 0.002392 

20 0.094105 0.056673 0.001494 0.001502 

21 0.068855 0.010986 0.002306 0.000247 

22 0.196482 0.041883 0.004246 0.002163 

23 0.096535 0.027919 0.003212 0.001438 

24 0.072765 0.064892 0.002423 0.001247 

25 0.088004 0.03182 0.003022 0.001079 
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Table 3.12: Ideal and negative-ideal solutions 

Sl. No. Ideal positive Ideal negative 
1 0.00859 0.252684 
2 0.004546 0.084664 
3 0.000148 0.006594 
4 0.0000248 0.002486 

 
Table 3.13: Separation measures between attributes from ideal and negative ideal solution 

 

Sl. No. −S  +S  
1 0.247769 0.085351 
2 0.093821 0.239298 
3 0.030174 0.303717 
4 0.123471 0.209648 
5 0.114399 0.21872 
6 0.099147 0.233972 
7 0.095047 0.238072 
8 0.094904 0.238215 
9 0.149669 0.18345 
10 0.10486 0.228259 
11 0.095036 0.238083 
12 0.272057 0.061062 
13 0.280481 0.052638 
14 0.145155 0.187964 
15 0.083654 0.249465 
16 0.298486 0.034633 
17 0.298069 0.035051 
18 0.302074 0.031046 
19 0.091979 0.24114 
20 0.192655 0.140464 
21 0.264034 0.069085 
22 0.101655 0.231465 
23 0.217325 0.115794 
24 0.205101 0.128018 
25 0.222504 0.110616 

 

 

 

 

 



54 

 

Table 3.14: Closeness coefficient and corresponding S/N ratio 

Sl. No. +
iC  S/N Ratio 

1 0.743783 -2.5711 

2 0.281644 -11.0060 

3 0.090371 -20.8794 

4 0.370651 -8.6207 

5 0.343418 -9.2835 

6 0.297632 -10.5264 

7 0.285324 -10.8932 

8 0.284895 -10.9063 

9 0.449296 -6.9494 

10 0.314782 -10.0398 

11 0.285291 -10.8942 

12 0.816696 -1.7588 

13 0.841984 -1.4939 

14 0.435745 -7.2153 

15 0.251123 -12.0023 

16 0.896034 -0.9535 

17 0.894780 -0.9657 

18 0.906802 -0.8497 

19 0.276115 -11.1782 

20 0.578337 -4.7564 

21 0.792612 -2.0188 

22 0.305160 -10.3094 

23 0.652394 -3.7098 

24 0.615699 -4.2126 

25 0.667939 -3.5053 
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Table 3.15: Mean response table for S/N ratio of OPI 

Level N F D 
1 -10.472 -5.393 -6.197 
2 -9.863 -6.987 -9.685 
3 -6.673 -7.5681 -10.327 
4 -3.471 -7.635 -5.149 
5 -4.751 -7.917 -4.142 
Delta = Max.-Min. 6.731 2.525 6.185 
Rank 1 3 2 

 

 
 

 
Fig.3.1: Nylon 6 molecule 

 

 

 

 

 

 

 

 
 



56 

 

 

Fig.3.2: S/N ratio plot (of OPI): Evaluation of optimal setting 
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CHAPTER 4: Machining of Teflon   
 

 
Machining of polymeric materials has been increasingly carried out and has become 

necessary when the quantity of precious items does not justify the cost of tooling for moulds 

or extrusion dies, or when a product needs a costly dimensional accuracy, precision and 

surface finish. Depending on multi-requirements of overall product quality; machining 

parameters optimization is indeed essential especially in mass production line. Determining 

an optimal parameter setting is seemed very difficult due to involvement of multiple product 

quality characteristics and the extent of correlation associated with them. To address this 

issue, in the present work, a Taguchi based integrated optimization approach combining 

Principal Component Analysis (PCA) and TOPSIS has been attempted for optimal machining 

parameters selection for surface quality improvement in machining of PTFE (Teflon). 

Various statistical measures (parameters) of surface roughness characteristic (of the machined 

Teflon product) have been optimized simultaneously. Detailed methodology and 

effectiveness of the aforesaid approach has been illustrated. 

 

4.1 Introduction to PTFE:  

Structure, Properties, Application and Machinability  

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene (Fig. 4.1), 

most widely known by DuPont's trade name of Teflon, was discovered in 1938 by Roy J. 

Plunkett at DuPont’s laboratories. Teflon was found to be heat resistant and chemically inert 

and to have very low surface friction. In electrical applications, Teflon exhibits excellent 

electrical stability over a wide range of frequency and environmental conditions. Teflon is 

unaffected by outdoor weathering, it is non-flammable and non-adhesive. 
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PTFE is a fluorocarbon solid, as it is a high-molecular-weight compound consisting of carbon 

and fluorine. PTFE is hydrophobic i.e. neither water nor water-containing substances wet 

PTFE, as fluorocarbons demonstrate mitigated dispersion forces (part of the van der Waals 

forces) due to the high electro-negativity of fluorine. PTFE has one of the lowest coefficients 

of friction against any solid. 

PTFE is widely used as a non-stick coating for cookware. It is very non-reactive, partly 

because of the strength of carbon–fluorine bonds, and so it is often used in containers and 

pipe work for reactive and corrosive chemicals. Where used as a lubricant, PTFE reduces 

friction, wear, and energy consumption of machinery. 

PTFE has excellent dielectric properties. This is especially true at high radio frequencies, 

making it suitable for use as an insulator in cables and connector assemblies and as a material 

for printed circuit boards used at microwave frequencies. Combined with its high melting 

temperature, this makes it the material of choice as a high-performance substitute for the 

weaker and lower melting point polyethylene that is commonly used in low-cost applications. 

Because of its chemical inertness, PTFE cannot be cross-linked like an elastomer. Therefore, 

it has no ‘memory’ and is subject to creep. This is advantageous when used as a seal, because 

the material creeps a small amount to conform to the mating surface. However, to keep the 

seal from creeping too much, fillers are used, which can also improve wear resistance and 

reduce friction. Sometimes, metal springs apply continuous force to PTFE seals to give good 

contact, while permitting a beneficially low percentage of creep. 

Owing to its low friction, it is used for applications where sliding action of parts is needed: 

plain bearings, gears, slide plates, etc. In these applications, it performs significantly better 

than nylon and acetal (Polyoxymethylene); it is comparable to ultra-high-molecular-weight 

polyethylene (UHMWPE), although UHMWPE is more resistant to wear than Teflon. For 

these applications, versions of Teflon with mineral oil or molybdenum disulfide embedded as 
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additional lubricants in its matrix are being manufactured. It’s extremely high bulk resistivity 

makes it an ideal material for fabricating long-life electrets, useful devices that are the 

electrostatic analogues of magnets. 

Powdered PTFE is used in pyrotechnic compositions as oxidizers together with powdered 

metals such as aluminum and magnesium. Upon ignition, these mixtures form carbonaceous 

soot and the corresponding metal fluoride, and release large amounts of heat. Hence they are 

used as infrared decoy flares and igniters for solid-fuel rocket propellants.  

In optical radiometry, sheets made from PTFE are used as measuring heads in 

spectroradiometers and broadband radiometers (e.g., illuminance meters and UV radiometers) 

due to its capability to diffuse a transmitting light nearly perfectly.  

PTFE is also used to coat certain types of hardened, armor-piercing bullets, so as to prevent 

the increased wear on the firearm's rifling that would result from the harder projectile. 

High corrosion resistance favors the use of PTFE in laboratory environments as containers, as 

magnetic stirrer coatings, and as tubing for highly corrosive chemicals such as hydrofluoric 

acid, which will dissolve glass containers. PTFE is also widely used as a thread seal tape in 

plumbing applications, largely replacing paste thread dope. PTFE can be used to prevent 

insects climbing up surfaces painted with the material. PTFE is so slippery that insects cannot 

get a grip and tend to fall off.  

PTFE machining or Teflon machining has a variety of uses as manifolds, insulators, guides, 

slide blocks, cathode and anode end blocks, arc shields, beads, seals, washers, valve seats and 

can be found in many industries. 

Because of its unique molecular structure, granular PTFE does not melt. It cannot be molded 

into complex forms like other plastics. However, it is easily machined on all standard 

equipment, including the most advanced CNC machining equipment. PTFE can be cut, bored, 

milled and turned using standard tooling. PTFE is very resilient which allows machined parts 
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to conform to most working dimensions. A part can sometimes be press-fitted at lower cost 

than doing final machining to exact size. When closer tolerances are required, it is essential to 

use stress-relieved products. A complete machine shop is indeed required to turn out finished 

parts from prototypes up to production quantities.  

 

 

Fig. 4.1: Structure of PTFE 
 

4.2 Literature review on Surface Quality Improvement in 

Machining 

 
Lee and Tang (2000) developed the polynomial network model to assess the optimum 

cutting parameters to enhance the production rate. The model itself established the 

relationship between the machining parameters (cutting speed, feed, and depth of cut) and 

machined performances (surface finishing and tool life). Suresh et.al (2002) proposed the 

surface roughness predication model by using Response Surface Methodology (RSM) 

combined with Genetic Algorithms (GA) for machining the mild steel. Hocheng et al. (2004) 

predicated the mathematical model based on the Fourier transform to evaluate the surface 

roughness on turning the phosphor–bronze lens mould. Sahin et al. (2004) derived a surface 

roughness prediction model in turning of AISI 1040 carbon steel by using RSM and 

optimized the machining parameters viz. cutting speed, depth of cut and feed rate. Özel and 
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karpat (2005) presented the neural network model to predict cutting tool flank wear and 

surface roughness and compared with the regression model. Palanikumar et al. (2006) 

developed empirical model for studying the correlation between the machining parameters 

and surface roughness in machining of GFRP composites by using the carbide tool. The 

optimal cutting parameters were assessed by using fuzzy logic coupled with Taguchi’s robust 

technique. Doniavi et al. (2007) suggested an empirical model for improving surface finish 

by using RSM methodology based on the full factorial design of experiment. Raj and 

Namboothiri (2010) investigated the influence of the machining parameters to assess the 

surface finish on the dry turning of stainless steel materials by using the Genetic Algorithm. 

Datta and Mahapatra (2010) adopted the utility theory combined with the PCA and 

Taguchi robust technique for assessing the optimal condition in straight turning of mild steel.  

Literature highlights immense exertions by the pioneers to study the various aspects of the 

machining operations and output performance measures, especially on conventional metals, 

composites to a limited extent. Issues of tool life, tool wears and product surface quality have 

been addressed too. Statistical modelling and parametric appraisal-optimization have also 

been attempted by previous investigators. But with the upcoming widespread application of 

polymeric materials, machining and machinability issues have gained immense importance. 

Surface roughness is the major concern in machining polymeric materials. However, past 

research highlighted in literature mainly concentrated on average surface roughness of the 

machined product. Apart from roughness average, there exist a number of statistical measures 

for describing product surface integrity which need to be taken under consideration. 

Simultaneously there is an increasing need to optimize process environment for producing 

desired surface quality. In this context, in the current research, Principal Component Analysis 

(PCA) and TOPSIS method have been integrated with Taguchi’s robust design philosophy in 

order to select the most suitable machining parameters for producing good surface finish of 
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the machined Teflon product.  PCA has been implemented to convert the correlated of 

response variables (multiple surface roughness parameters) into uncorrelated quality indices 

called as principal components. TOPSIS has applied to combine multiple uncorrelated 

responses into an overall performance index (OPI) which has been maximized finally by the 

Taguchi method. 

Lan et al. (2010) presented a study on the multiple-attribute optimization of (cutting depth, 

feed rate, speed, tool nose runoff) by using the FAHP (Fuzzy Analytic Hierarchy Process) 

coupled with TOPSIS in turning on an ECOCA-3807 on CNC lathe. Lee et al. (2005) 

proposed a procedure for optimization of multiple responses by using Taguchi robust 

technique coupled with the principal component analysis (PCA) combined with TOPSIS 

method. The study on chemical-mechanical polishing of copper (Cu-CMP) thin films 

demonstrated the effectiveness of the said approach. 

 

4.3 Experimentation 

 
Work Material 

Teflon bar ( )5030×φ  has been used as the work-piece material. 

Cutting Tool 

Single point HSS cutting tool of INDLOV SHRIRAM IK 20 has been used.  

Experimental Setup 

The machining of Teflon samples has been performed on the PINACHO manually operated 

lathe. 

Design of Experiment (DOE) 

Taguchi’s 25L orthogonal array (OA) design of experiment has been adopted. Here the 

machining parameters (spindle speed, feed rate and depth of cut) have been varied in five 
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different levels to optimize the machining condition. Interaction effect of process parameters 

have been assumed negligible. Domain of experiment (process parameters and their levels of 

variation) has been shown in Table 4.1. Selected 25L orthogonal array (OA) has been 

furnished in Table 4.2 (all factors in coded form).  

 Response Measurement 

Multiple surface roughness parameters (of the machined Teflon product) have been measured 

using the stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 3+). The values of 

measured roughness parameters: (average of two trials) Rq, Ra, Rt, Rku, Rz, Rsm have been 

shown in Tables 4.3.1-4.3.2 with corresponding S/N ratio values. Pictorial representation of 

micro-surface profile has been shown in Appendix 2, at the end of this thesis. 

 

4.4 Proposed Methodology 

 
 The methodology adapted for optimization in the present study has already been discussed in 

Chapter 2 (Section 2.4). For the convenience of understanding to the readers it has been 

reproduced below. 

This study attempts optimization procedure for multiple responses based on PCA and 

TOPSIS integrated with Taguchi’s parameter design. Because multiple responses always 

contain some extent of correlations; the PCA has been initially performed on the (Signal to 

Noise) S/N values obtained from each response to reduce the dimension of multiple 

responses to a smaller number of uncorrelated indices called principal components (PCs). 

Quality loss estimates has been derived based on the deviation of individual PCs from their 

ideal value. Finally, TOPSIS has been applied to determine the ideal and negative-ideal 

solution and finally to obtain the closeness coefficient which has been treated as OPI. 

Optimal factorial combination (parameter setting) has been evaluated finally by Taguchi 



64 

 

method. The aforesaid procedural hierarchy for optimizing multi-response problems includes 

the following seven steps: 

Step 1: Calculate the SN ratio for each response 

In this step, i
jη (the SN ratio for the thj response at the thi trial, for ( mi .......,,2,1=  and

nj .......,,2,1= ) is computed. According to Taguchi, the following three formulae are given: 
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variation of observed data for thethj response at thethi trial,) for mi ......,,2,1=  ; nj ......,,2,1=  

and lk ......,,2,1= . 

Step 2: Normalization of the S/N ratios of the responses (quality characteristics) 

The S/N ratio calculated for each response has been normalized by following equation: 

( ) ( )
( ) ( )kNSkNS

kNSNS
kNS

ikii

ii
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/min/
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−
−

=                                                                           (4.4) 

 

For this normalization purpose Higher-the-Better (HB) criteria has been used. 
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Step 3: Checking for correlation between each pair of quality characteristics 

Let, ( ) ( ) ( ) ( ){ }iXiXiXiXQ mi
**

2
*
1

*
0 ,..........,.........,,=  where, .....,,.........3,2,1 ni =  

It is the normalized series of the ith  quality characteristic. The correlation coefficient 

between two quality characteristics is calculated by the following equation: 
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Here, jkρ  is correlation coefficient, 
jQσ and 

kQσ denotes standard deviation of the quality 

characteristicsj and quality characteristics of k respectively. 

Step 4: Calculation of the principal component score 

1) Calculate the Eigen value kλ  and the corresponding Eigen vectorkβ  

( )nk .,.........3,2,1=  from the correlation matrix formed by all the quality 

characteristics. 

2)  Calculate the principal component scores of the normalized reference sequence and 

comparative sequences using the equation shown below: 

nkmijXkY kj

n

j
ii ....,..........3,2,1,.........,2,1,0,)()(

1

* ===∑
=

β
                                                 (4.6)

 

 

Here, )(kYi is the principal component score of the kth element in theith  series. Let, )(* jX i

be the normalized value of the jth  element in the ith sequence, and kjβ is thejth  element of 

the Eigen vector kβ . 
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Step 5: Estimation of quality loss )(,0 ki∆  

)(,0 ki∆  is defined as the absolute value of the difference between desired (ideal) value and 

ith experimental value for kth response. If responses are correlated then instead of using 

[ )(kX o  )(kX i  ]; [ )(0 kY  )(kYi ] should be used for computation of )(,0 ki∆ . 
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Step 5: Apply TOPSIS to obtain the OPI for multiple responses 

TOPSIS is applied on the quality loss estimates )(,0 ki∆ obtained (in Step 5) to determine the 

closeness coefficient. According to the optimization direction of the selected principal 

components obtained; TOPSIS is used to determine the closeness coefficient to be treated as 

OPI. The closeness coefficient is evaluated by using the Eq. 2.16 of Chapter 2. In this 

computation, the experimental runs can be treated as alternatives; and the selected quality 

loss estimates components are treated as attributes and a quality performance matrix is 

formed. The weighted quality performance matrix can be obtained, where the criteria weights 

(priority importance) are properly assigned. The ideal and negative-ideal solutions are then 

obtained by Eqs. 2.12-2.13 of Chapter 2. It is obvious that a smaller value is desired for all 

quality loss estimates, hence, the ideal and negative ideal solution are selected representing 

the minimum and maximum quality loss scores in all experimental combinations. 

Correspondingly, the OPI values (or +iC  values for mi ...,..........,2,1= for each experimental 

run are derived using Eq. 2.16 of Chapter 2. 

Step 6: Determine the optimal factor/ level combination  

The main factorial effects on OPI are determined based on the +
iC values. Thus, the 

corresponding diagram plots the factor effect on OPI. The optimal factor/level combination 
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produces the maximum OPI value. The closeness value is optimized using Taguchi method. 

For calculating S/N ratio; Higher-the-Better (HB) criterion is to be selected. 

Step 7: Conduct the confirmatory experiment 

According to the optimal factor/level combination, confirmation experiments are performed 

to verify whether the experimental results can be reproduced. The predicted S/N value for 

each response is compared with the associated actual S/N value obtained from the 

confirmation experiments. If the predicted S/N values and the actual S/N values differ only 

slightly then the experiment can be reproduced. If the predicted S/N values and the actual S/N 

values differ substantially, the experimental result cannot be reproduced. In this case, suitable 

quality characteristics, control factors, or signal factors must be reselected, and return to Step 

1 of the proposed procedure to start all over again.    

 

4.5 Results  

Experimental data have been analyzed by aforementioned procedure. The S/N ratios for each 

response resulting from the Taguchi‘s S/N ratio formula has been furnished in Tables 4.3.1-

4.3.2. The S/N ratios (of the responses i.e. multiple surface roughness characteristics) have 

been normalized and then tabulated as shown in the Table 4.4.  

After normalization, The Pearson’s correlation coefficients between individual responses 

pairs have been computed (Table 4.5). Eigen values, Eigen vectors, accountability proportion 

(AP) and cumulative accountability proportion (CAP) computed in PCA for the six surface 

quality indicators has been shown in Table 4.6. It has been found that, the first four PCs can 

take care of 47.5%, 25.8%, 1.37% and 1.11% data variability respectively. The contribution 

of fifth and sixth PCs has been found negligible effect to interpret data variability. 

Consequently, the effects of these PCs have been snubbed and the first four PCs have been 

considered in further analysis (Table 4.7). From the aforesaid four major PCs, the quality 
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loss estimates have been computed and their corresponding values have been presented in 

Table 4.8. 

TOPSIS have been applied utilizing these quality loss estimates. The experimental runs have 

been treated as the alternatives and the normalized decision matrix have been calculated 

shown in the Table 4.9. The weighted normalized matrix has been presented in Table 4.10. 

From Table 4.10, the ideal and negative-ideal solution has been evaluated and presented in 

Table 4.11. The deviation from the ideal solution has been assessed from the Euclidian 

equation and presented in Table 4.12. The relative closeness value (closeness coefficient) has 

been calculated and furnished in Table 4.13. 

Finally, the Taguchi method has been applied on the closeness coefficient (OPI) to assess the 

optimal machining parameter by using S/N ratio plot (Fig. 4.2) and Table 4.14. Higher the 

value of closeness factor, the corresponding parameter combination is said to be close to the 

optimal solution. The optimal parametric combination has been found as 511 DFN . 

After evaluating the optimal machining condition, it is required to predict and verify 

improvement of the quality characteristics by using the optimal parametric combination. The 

predicated value of the S/N ratio of OPI became -0.572677, highest among the entries of all 

S/N ratios of OPI, except in experiment run no. 1 (Table 4.13). From Table 4.13 it has been 

observed that experiment run no. 1 i.e. for setting 111 DFN corresponds to S/N ratio -0.2735; 

higher than that of predicted at optimal setting 511 DFN . As S/N ratio should always be as high 

as possible so apparently it indicates that setting 111 DFN is better compared to 511 DFN . 

However, unlike conventional metal, high depth of cut is necessary for polymer/ plastic 

machining in order to achieve good surface finish. At low depth of cut, very fine stringy chips 

(continuous but in the form of glass wool; chip curl is very high) are generated and due to the 

heat generated during machining; fibrous chips immediately stick on the machined surface, 

thereby, deteriorating surface finish. High depth of cut is thus required to ensure formation of 
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comparatively thicker (continuous stringy) chips capable of withstanding elevated 

temperature (without melting). Therefore, optimal setting having high depth of cut is quite 

justified. Confirmatory test has been conducted showed good agreement with the prediction.      

 

4.6 Concluding Remarks 

The preceding study employs PCA based TOPSIS integrated with Taguchi’s robust design 

philosophy for optimization of multiple surface roughness parameters, thereby determining 

an optimal machining condition to produce desired surface quality in PTFE machining, as a 

case study. Detailed methodology and procedural chronology of the aforesaid approach have 

been illustrated in this reporting. Correlated multiple responses can be transformed into equal 

or less number of uncorrelated quality indices with the aid of PCA, and it facilitates in 

situation towards optimization of large number of responses. TOPSIS is efficient to convert 

the multiple attributes into the single objective function i.e. closeness coefficient. This 

closeness coefficient can be treated as the Overall Performance Index (OPI) which can be 

further optimized (maximized) by Taguchi method. The integrated approach highlighted in 

this paper can be applied for continuous quality improvement and off-line quality control in 

any production processes which involve multiple response features. 
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Table 4.1: Domain of experiments (process control parameters and their limits) 

Sl. No. Factors Notation  Unit  Level 1 Level 2 Level3 Level 4 Level 5 
1 Spindle Speed N RPM 260 360 530 860 1400 
2 Feed rate  F mm/rev 0.050 0.052 0.055 0.060 0.063 
3 Depth of cut  D mm 2 3 4 5 6 

 

Table 4.2: L25 orthogonal array design of experiment 

Sl. No. Factorial combinations (coded form) 
N F D 

1 1 1 1 
2 1 2 2 
3 1 3 3 
4 1 4 4 
5 1 5 5 
6 2 1 2 
7 2 2 3 
8 2 3 4 
9 2 4 5 
10 2 5 1 
11 3 1 3 
12 3 2 4 
13 3 3 5 
14 3 4 1 
15 3 5 2 
16 4 1 4 
17 4 2 5 
18 4 3 1 
19 4 4 2 
20 4 5 3 
21 5 1 5 
22 5 2 1 
23 5 3 2 
24 5 4 3 
25 5 5 4 
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Table 4.3.1: Roughness parameters and corresponding S/N ratios 

Sl. No. Ra mµ  S/N (Ra) (dB) Rq mµ  S/N (Rq) (dB) Rt mµ  S/N (Rt) (dB) 

1 2.01667 -6.0927 2.43333 -7.7240 11.6667 -21.3390 

2 2.32667 -7.3347 2.96667 -9.4454 21.2667 -26.5540 

3 2.22667 -6.9531 2.75667 -8.8077 19.8667 -25.9625 

4 2.26333 -7.0950 2.80000 -8.9432 20.6333 -26.2914 

5 2.17000 -6.7292 2.74667 -8.7761 17.1333 -24.6768 

6 2.43333 -7.7240 3.38000 -10.5783 22.0000 -26.8485 

7 4.46000 -12.9867 7.34333 -17.3179 18.0000 -25.1055 

8 2.15667 -6.6757 2.59667 -8.2883 17.5667 -24.8938 

9 1.96333 -5.8599 2.4533 -7.7950 16.5333 -24.3672 

10 2.93000 -9.3374 3.57000 -11.0534 16.7000 -24.4543 

11 2.93000 -9.3374 3.78333 -11.5575 25.0333 -27.9704 

12 3.22330 -10.1660 3.94333 -11.9173 23.6333 -27.4705 

13 2.21667 -6.9140 2.89667 -9.2380 21.5667 -26.6757 

14 1.76333 -4.9267 2.46333 -7.8305 13.3000 -22.4770 

15 2.24333 -7.0179 2.78000 -8.8809 18.7000 -25.4368 

16 2.85333 -9.1070 3.53000 -10.9555 21.6667 -26.7159 

17 2.92667 -9.3275 3.74333 -11.4652 21.0333 -26.4581 

18 1.92000 -5.6660 2.53000 -8.0624 18.3667 -25.2806 

19 2.94000 -9.3669 3.29667 -10.3615 26.0333 -28.3106 

20 2.12667 -6.5540 2.84000 -9.0664 19.1333 -25.6358 

21 3.05333 -9.6955 3.79000 -11.5728 21.2667 -26.5540 

22 2.26000 -7.0822 3.23000 -10.1841 21.2333 -26.5403 

23 2.70666 -8.6487 3.56670 -11.0453 23.9000 -27.5680 

24 2.37333 -7.5072 2.93667 -9.3571 23.1667 -27.2973 

25 2.63000 -8.3991 3.40000 -10.6296 20.7333 -26.3334 
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Table 4.3.2: Roughness parameters and corresponding S/N ratios (continued with Table 4.3.1) 

Sl. No. Rku mµ  S/N (Rku) (dB) Rz mµ  S/N (Rz) (dB) Rsm (mm) S/N (Rsm) (dB) 

1 2.58667 -8.2548 9.9867 -19.9884 70.500 -36.9638 

2 3.76667 -11.5192 13.9000 -22.8603 89.867 -39.0720 

3 4.53000 -13.1220 13.7333 -22.7555 90.467 -39.1298 

4 7.19000 -17.1346 11.0667 -20.8804 75.033 -37.5050 

5 3.65667 -11.2617 12.7000 -22.0761 98.433 -39.8628 

6 3.70233 -11.3695 16.8667 -24.5406 72.433 -37.1987 

7 4.08333 -12.2203 12.3333 -21.8216 74.733 -37.4702 

8 3.79667 -11.5881 12.8000 -22.1442 70.833 -37.0047 

9 3.9333 -11.8951 12.2333 -21.7509 83.83333 -38.4683 

10 3.72000 -11.4109 15.6000 -23.8625 145.000 -43.2274 

11 3.56333 -11.0371 19.0000 -25.5751 85.567 -38.6461 

12 3.41667 -10.6721 19.6333 -25.8599 71.133 -37.0414 

13 7.02667 -16.9350 14.4667 -23.2074 73.033 -37.2704 

14 3.50000 -10.8814 9.8700 -19.8863 147.000 -43.3463 

15 4.85000 -13.7148 12.5000 -21.9382 117.533 -41.4032 

16 3.32000 -10.4228 16.0667 -24.1185 72.633 -37.2227 

17 3.19000 -10.0758 17.3333 -24.7776 95.367 -39.5880 

18 7.63000 -17.6505 12.0667 -21.6318 88.933 -38.9813 

19 6.58333 -16.3689 17.0000 -24.6090 153.667 -43.7316 

20 3.83000 -11.6640 13.2667 -22.4553 133.667 -42.5205 

21 2.87333 -9.1677 17.0000 -24.6090 81.400 -38.2125 

22 4.71667 -13.4727 14.6600 -23.3227 102.333 -40.2003 

23 9.06667 -19.1490 15.8333 -23.9914 115.667 -41.2642 

24 7.38000 -17.3611 13.0000 -22.2789 159.667 -44.0643 

25 5.22667 -14.3645 15.4667 -23.7880 154.333 -43.7692 
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Table 4.4: Normalized S/N ratios  

Sl. No. Normalized data of multiple surface roughness parameters 

Ra  Rq Rt Rku Rz Rsm 

Ideal sequence 1 1 1 1 1 1 

1 0.855335 1 1 1 0.978975 1 

2 0.701241 0.820573 0.254152 0.700354 0.500133 0.703091 

3 0.748586 0.887043 0.339733 0.55323 0.517607 0.694951 

4 0.73098 0.872919 0.292147 0.184906 0.830249 0.92378 

5 0.776365 0.890337 0.525754 0.723991 0.630886 0.591719 

6 0.65294 0.702488 0.211543 0.714096 0.219971 0.966918 

7 0 0 0.463728 0.635999 0.673319 0.928681 

8 0.783002 0.941181 0.494357 0.69403 0.619531 0.99424 

9 0.884218 0.992599 0.570548 0.66585 0.685107 0.788114 

10 0.452767 0.652967 0.557946 0.710295 0.333033 0.117865 

11 0.452767 0.600423 0.049222 0.744607 0.047486 0.763073 

12 0.349963 0.56292 0.121549 0.778111 0 0.989071 

13 0.753437 0.842191 0.236544 0.203227 0.44226 0.95682 

14 1 0.988899 0.84403 0.758899 1 0.10112 

15 0.740546 0.879413 0.415794 0.498816 0.653878 0.374776 

16 0.481352 0.663171 0.230728 0.800995 0.290349 0.963538 

17 0.453995 0.610044 0.268028 0.832847 0.180456 0.63042 

18 0.908275 0.964728 0.438393 0.13755 0.704965 0.715865 

19 0.449107 0.725086 0 0.255191 0.208567 0.046856 

20 0.798102 0.860078 0.387002 0.687063 0.56766 0.217421 

21 0.408337 0.598828 0.254152 0.916203 0.208567 0.824139 

22 0.732568 0.743577 0.256135 0.521039 0.423036 0.544187 

23 0.538213 0.653811 0.107443 0 0.311541 0.394353 

24 0.679839 0.829777 0.146609 0.164115 0.597072 0 

25 0.569181 0.697141 0.28607 0.439179 0.345455 0.04156 
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Table 4.5: Check for correlation among response pairs  

Sl. No. Correlation Between Pearson’s Correlation Coefficient P-Value 

1 Ra, Rq 0.950 0.000* 

2 Ra, Rt 0.542 0.004* 

3 Ra, Rku -0.014 0.947 

4 Ra, Rz 0.655 0.000* 

5 Ra, Rsm -0.029 0.888 

6 Rq, Rt 0.428 0.029* 

7 Rq, Rku -0.035 0.866 

8 Rq, Rz 0.521 0.006* 

9 Rq, Rsm -0.072 0.725 

10 Rt, Rku 0.497 0.010* 

11 Rt, Rz 0.813 0.000* 

12 Rt, Rsm 0.155 0.451 

13 Rku, Rz 0.044 0.830 

14 Rku, Rsm 0.361 0.070 

15 Rz, Rsm 0.050 0.808 

 

*Significant correlation 
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Table 4.6: Results of PCA: Eigen values, eigenvectors, accountability proportion (AP) and cumulative accountability proportion (CAP) 

 
PC1 PC2 PC3  PC4 PC5 PC6 

Eigen value 2.8150 1.5452 .8250 .6650 .0774 .0365 
Eigen vector 

063.0

320.0

082.0

229.0

972.0

930.0

−

−
 

005.0

923.0

078.0

862.0

187.0

328.0

−
−
−
−
−
−

 

153.0

120.0

980.0

373.0

037.0

064.0

−

−
−

 

986.0

001.0

164.0

009.0

062.0

039.0

−
−
−
−

 

001.0

174.0

017.0

253.0

016.0

009.0

−

−
−
−

 

000.0

010.0

002.0

004.0

123.0

151.0

−
−

−

 

AP .475 .258 .137 .111 .013 .006 
CAP ..475 .733 .870 .981 .994 1.000 
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Table 4.7: Calculated values of major principal components 

Sl. No. 
Major principal components (PCs) 

PC1 PC2 PC3 PC4 

Ideal Situation 2.306 -2.383 1.285 -1.059 

1 2.164734 -2.3181 1.370782 -1.06462 

2 1.566271 -1.1233 0.814184 -0.73267 

3 1.712677 -1.22968 0.698012 -0.69534 

4 1.78751 -1.44185 0.317402 -0.862 

5 1.813063 -1.51734 0.903699 -0.62205 

6 1.289415 -0.79189 0.884465 -1.0036 

7 0.210997 -1.0768 0.857539 -1.02483 

8 1.83493 -1.49113 0.927031 -1.01032 

9 2.032768 -1.65705 0.883852 -0.79607 

10 1.224428 -1.11561 0.877455 -0.17992 

11 0.92202 -0.40904 0.852365 -0.82011 

12 0.774342 -0.39047 0.957645 -1.05538 

13 1.638054 -1.03824 0.363657 -0.89773 

14 2.335892 -2.22518 0.926605 -0.13245 

15 1.783441 -1.41138 0.60795 -0.37233 

16 1.111623 -0.81665 0.977347 -1.02389 

17 1.026293 -0.72906 0.98448 -0.70525 

18 2.052014 -1.52261 0.300816 -0.63782 

19 1.165317 -0.49596 0.230313 -0.02579 

20 1.778469 -1.33597 0.763564 -0.24666 

21 0.959707 -0.7335 1.089766 -0.9123 

22 1.521063 -1.03479 0.619281 -0.55008 

23 1.235496 -0.68156 0.052773 -0.32858 

24 1.649973 -1.06963 0.131061 0.049128 

25 1.344384 -0.91766 0.49137 -0.0505 
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Table 4.8: Computed quality loss coefficients 

Sl. No. PC1 PC2 PC3 PC4 

1 0.141266 0.0649 0.08578 0.00562 

2 0.739729 1.2597 0.470816 0.32633 

3 0.593323 1.15332 0.586988 0.36366 

4 0.51849 0.94115 0.967598 0.197 

5 0.492937 0.86566 0.381301 0.43695 

6 1.016585 1.59111 0.400535 0.0554 

7 2.095003 1.3062 0.427461 0.03417 

8 0.47107 0.89187 0.357969 0.04868 

9 0.273232 0.72595 0.401148 0.26293 

10 1.081572 1.26739 0.407545 0.87908 

11 1.38398 1.97396 0.432635 0.23889 

12 1.531658 1.99253 0.327355 0.00362 

13 0.667946 1.34476 0.921343 0.16127 

14 0.02989 0.15782 0.358395 0.92655 

15 0.522559 0.97162 0.67705 0.68667 

16 1.194377 1.56635 0.307653 0.03511 

17 1.279707 1.65394 0.30052 0.35375 

18 0.253986 0.86039 0.984184 0.42118 

19 1.140683 1.88704 1.054687 1.03321 

20 0.527531 1.04703 0.521436 0.81234 

21 1.346293 1.6495 0.195234 0.1467 

22 0.784937 1.34821 0.665719 0.50892 

23 1.070504 1.70144 1.232227 0.73042 

24 0.656027 1.31337 1.153939 1.10813 

25 0.961616 1.46534 0.79363 1.0085 
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Table 4.9: Normalized quality loss coefficients 

Sl. No. 
Normalized quality loss coefficients for major PCs 

PC1 PC2 PC3 PC4 

1 0.029495 0.009755 0.026247 0.00201 

2 0.154449 0.189351 0.144062 0.116693 

3 0.12388 0.17336 0.179609 0.130041 

4 0.108256 0.141468 0.29607 0.070445 

5 0.102921 0.130121 0.116672 0.156249 

6 0.212254 0.239166 0.122557 0.019811 

7 0.437417 0.19634 0.130796 0.012219 

8 0.098355 0.134061 0.109533 0.017408 

9 0.057048 0.109121 0.122745 0.094021 

10 0.225822 0.190507 0.124702 0.314351 

11 0.288962 0.296714 0.13238 0.085425 

12 0.319796 0.299505 0.100166 0.001294 

13 0.139461 0.202136 0.281917 0.057669 

14 0.006241 0.023723 0.109663 0.331326 

15 0.109105 0.146048 0.207167 0.245547 

16 0.249375 0.235445 0.094137 0.012555 

17 0.267191 0.248611 0.091954 0.126498 

18 0.05303 0.129329 0.301145 0.15061 

19 0.238164 0.283649 0.322718 0.369466 

20 0.110144 0.157383 0.159551 0.290485 

21 0.281093 0.247943 0.059739 0.052459 

22 0.163888 0.202655 0.2037 0.181985 

23 0.223511 0.25575 0.377042 0.261192 

24 0.136972 0.197418 0.353087 0.396257 

25 0.200776 0.220261 0.242838 0.36063 
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Table 4.10: Weighted normalized quality loss coefficients of majors PCs 

Sl. No. 
Weighted normalized quality loss coefficients of majors PCs 

PC1 PC2 PC3 PC4 

1 0.007374 0.002439 0.006562 0.000502 

2 0.038612 0.047338 0.036016 0.029173 

3 0.03097 0.04334 0.044902 0.03251 

4 0.027064 0.035367 0.074017 0.017611 

5 0.02573 0.03253 0.029168 0.039062 

6 0.053063 0.059792 0.030639 0.004953 

7 0.109354 0.049085 0.032699 0.003055 

8 0.024589 0.033515 0.027383 0.004352 

9 0.014262 0.02728 0.030686 0.023505 

10 0.056456 0.047627 0.031176 0.078588 

11 0.072241 0.074179 0.033095 0.021356 

12 0.079949 0.074876 0.025041 0.000324 

13 0.034865 0.050534 0.070479 0.014417 

14 0.00156 0.005931 0.027416 0.082831 

15 0.027276 0.036512 0.051792 0.061387 

16 0.062344 0.058861 0.023534 0.003139 

17 0.066798 0.062153 0.022989 0.031624 

18 0.013257 0.032332 0.075286 0.037653 

19 0.059541 0.070912 0.080679 0.092367 

20 0.027536 0.039346 0.039888 0.072621 

21 0.070273 0.061986 0.014935 0.013115 

22 0.040972 0.050664 0.050925 0.045496 

23 0.055878 0.063938 0.094261 0.065298 

24 0.034243 0.049355 0.088272 0.099064 

25 0.050194 0.055065 0.06071 0.090158 
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Table 4.11: Ideal and negative-ideal solutions 

Sl. No. Ideal Negative Ideal 
1 0.00156 0.109354 
2 0.002439 0.074876 
3 0.006562 0.094261 
4 0.000324 0.099064 

 

Table 4.12: Separation measures between attributes from the ideal and negative ideal solution 

Sl. No. −S  
+S  

1 0.181804 0.005817 
2 0.118491 0.06851 
3 0.11834 0.068827 
4 0.124004 0.079513 
5 0.128932 0.057055 
6 0.127675 0.077338 
7 0.116931 0.11521 
8 0.149462 0.041388 
9 0.145117 0.042241 
10 0.089105 0.105761 
11 0.10563 0.102494 
12 0.124119 0.104214 
13 0.117779 0.08576 
14 0.145275 0.085369 
15 0.106919 0.085632 
16 0.129114 0.080653 
17 0.107707 0.091381 
18 0.123191 0.083935 
19 0.052215 0.146215 
20 0.10776 0.090042 
21 0.123989 0.087978 
22 0.100049 0.086402 
23 0.064183 0.134353 
24 0.079554 0.139108 
25 0.071396 0.124932 
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Table 4.13: Closeness coefficient (OPI) and ranking of alternatives 

Sl. No. +
iC  S/N Ratio 

1 0.9690 -0.2735 

2 0.6336 -3.9637 

3 0.6323 -3.9815 

4 0.6093 -4.3034 

5 0.6932 -3.1828 

6 0.6228 -4.1130 

7 0.5037 -5.9566 

8 0.7831 -2.1237 

9 0.7745 -2.2196 

10 0.4573 -6.7960 

11 0.5075 -5.8913 

12 0.5436 -5.2944 

13 0.5787 -4.7509 

14 0.6299 -4.0146 

15 0.5553 -5.1094 

16 0.6155 -4.2154 

17 0.5410 -5.3361 

18 0.5948 -4.5126 

19 0.2631 -11.5976 

20 0.5448 -5.2753 

21 0.5849 -4.6584 

22 0.5366 -5.4070 

23 0.3233 -9.8079 

24 0.3638 -8.7827 

25 0.3637 -8.7851 
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Table 4.14: Mean response table for S/N ratio of OPI 

Level N F D 
1 -13.2020 -12.1464 -11.7279 
2 -9.2153 -7.0129 -6.0544 
3 -7.2287 -8.1421 -6.3383 
4 -6.4800 -7.2631 -8.0962 
5 -5.1130 -6.6744 -9.0223 
Delta = Max.-Min. 8.0889 5.4720 5.6735 
Rank 1 3 2 

 

 

Fig. 4.2: S/N ratio plot of OPI for evaluation of optimal setting 
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CHAPTER 5: Utility based Fuzzy Approach  
 

 
This chapter presents a multi response optimization problem for selection of optimal cutting 

parameter in turning of nylon bar by using fuzzy-integrated utility theory combined with 

Taguchi’s robust design technique. In this study, three cutting parameters: cutting speed, 

feed, and depth of cut have been considered for optimizing Material Removal Rate (MRR) of 

the process and centre line roughness average for the machined product based on L9 

orthogonal array experimental design. To avoid the uncertainty, imprecision in application of 

existing multi-response optimization techniques; a utility theory combined with fuzzy 

inference system (FIS) has been proposed to compute a Multi-Performance Characteristic 

Index (MPCI). MPCI has been optimized finally using Taguchi method. The study 

demonstrates application feasibility of the proposed approach with satisfactory result of 

confirmatory test.   

 

5.1 Background and State of Art  

Nylon is used in a wide variety of applications for their outstanding mechanical properties 

including high wear and abrasion resistance, superior strength and stiffness. Nylon's 

toughness, low coefficient of friction and wide size range availability make it an ideal 

replacement for a wide variety of materials from metal to rubber. Therefore, machining 

aspects of nylon is an emerging area of research. 

Turning operation is the basic machining process to remove the metal from the outer diameter 

of rotating work piece with the help of single point cutting tool which move parallel to the 

axis of rotation. Several process parameters like cutting speed, feed, depth of cut, tool 

geometry etc. are assumed to influence machining performance. Material Removal Rate 

(MRR), tool life-tool wear, interaction of various cutting forces, quality-dimensional 
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accuracy of the turned product and others are the most important areas of research. Literature 

depicts substantial amount of work attempted by previous investigators on various aspects of 

turning on a variety of work materials. In most of the cases surface roughness features have 

been given immense attention for both prediction as well as its optimization. Because of the 

fact, thatthe surface finish is related to the product surface quality.   

Feng and Wang (2002) reported on the predication of the surface roughness in turning 

operation by developing the empirical model. Empirical model was developed by using Data 

mining techniques, non regression analysis with logarithmic data transformation. Ozel and 

Karpet(2005) developed the neural network model in comparison with regression model for 

the predication of the surface roughness and tool flank wear. Pal and Chakarborty(2005) 

highlighted predication of the surface operation by using the back neural network model. 

Mahapatra et al. (2006) developed a genetic algorithm for the optimization of the cutting 

parameter as well as for surface roughness predication. Palanikumar et al. (2006) used 

Taguchi method with fuzzy logic to optimize the cutting parameters for machining the GFRP 

composites. Cutting parameters were optimized by considering the MPCI. Doniavi et al. 

(2007) developed the empirical model for optimizing the cutting parameters and for the 

predication of the surface roughness by using Response Surface Methodology (RSM). 

Srikanth and Kamala (2008) studied for the predication of surface roughness and 

optimizing the machining parameters by using RCGA (Real coded genetic Algorithm). 

Namboothriet al. (2010) developed an improved genetic algorithm for the predication of the 

surface roughness in dry turning of SS 420 materials. 

Literature highlights immense effort given by the previous researchers to optimize the various 

machining parameters during the machining operation. Some researchers highlighted the 

optimization of surface roughness by developing the several empirical model and network 

based methodology. Apart from surface quality; there is another important aspect which is 
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called productivity. Material Removal Rate (MRR) is indirectly related to productivity. It is 

an essential requirement to improve quality as well as productivity simultaneously.   

In this context, present work aims to apply utility embedded fuzzy approach coupled with 

Taguchi philosophy for simultaneous optimization of quality and productivity. The method 

has been found efficient in overcoming limitations/ assumptions of various existing 

optimization methodologies available in literature (Singh et al., 2011). In this study, the 

utility degree has been evaluated for individual responses: MRR and roughness average (Ra) 

which has been fed to fuzzy inference system to generate the MPCI. MPCI has been finally 

optimized by Taguchi method. Application feasibility of the aforesaid technique has been 

highlighted through a case study in turning of nylon. 

 

5.2 Experimental part  

Work Material 

Samples of nylon 6 bars with dimensions of 50 mm diameter and length of 150 mm with 

cutting length of 50mm have been used as working material. 

Cutting Tool Used 

Single point High Speed Steel Tool of Indolov SHRIRAM IK-20 has been used for the 

machining operation.  

Design of Experiment (DOE) 

Taguchi method is used to reduce the source of variation on the quality characteristics of the 

product and to reach the desired value.Taguchi method is used to construct the orthogonal 

array for minimizing the number of experiments.In the present study, three cutting parameters 

(speed, feed, depth of cut) varied in three different levels have been used to optimize the 

machining condition.The most suitable array based on Taguchi’s method has been found as 



88 

 

L9 orthogonal array used for the present study.Table 5.1 indicates selected process control 

parameters and their limits. 

Equipments used 

The manually operated lathe PINACHO has been used for the machining. Corresponding 

MRR values have also been computed. The surface roughness has been measured by the 

Talysurf (Taylor Hobson, Surtronic 3+) having a stylus that skids over the surface based on 

carrier modulating principle.Table 5.2 represents DOE and measured response parameters. 

5.3 Data Analysis 

The aim of this study is to maximize the MRR and to minimize the surface roughness. In this 

study, a multi response optimization methodology based on Taguchi technique with the 

utility based fuzzy concept has been used for the optimizing multiple responses: MRR and 

surface roughness. For surface roughness;   the Lower-the-Better (LB); whereas for 

MRR;Higher-the-Better (HB) criterion has been used. Multiple objective responses have 

been converted into corresponding utility values (also called preference number) (Table 5.3). 

The individual utility value of each response has been treated as input to the fuzzy inference 

system(Fig.5.1). The output of the fuzzy inference system has been defined as MPCI(Table 

5.3).This Multi-Performance Characteristic Index (MPCI) has been finally optimized by 

using the Taguchi methodology. Higher- the-Better (HB) criterion has been used for 

optimizing (maximizing) the MPCI(Eq.5.1). 

�
� ������	
�������	 � �10��� ���∑

�
���

���� �(5.1) 

In calculating MPCI in FIS system, three membership functions (Fig.5.2) have been assigned 

to each of the input variables: (i) individual utility of MRR (ii)individual utility of Ra. The 

selected membership functions for input variables are: “Low”, “Medium”, and “High”. Five 

membership functions have been selected for MPCI: “Very Small, “Small”, “Medium”, 
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“Large”, and “Very Large” (Fig.5.3). Fig.5.4 shows fuzzy based rule matrix. Fuzzy logic 

converts linguistic inputs into linguistic output. Linguistic output is again converted to 

numeric values (MPCI) by defuzzification method. 

Fig.5.5 represents optimal parametric combination (N3 f1 d3). Optimal result has been 

validated by satisfactory confirmatory test. Predicted value of S/N ratio of MPCI becomes 

17.3204 (highest among all entries in Table 5.3. 

 

5.4 Concluding Remarks 

The present work has beencarried out to achieve the optimum setting of the process 

parameter under the consideration of the multiple attributes (quality and productivity) during 

turning of nylon bar. This studycombines the fuzzy linguistic technique, utility theory and 

Taguchi method for improving the cutting environment for simultaneous optimization of 

quality as well as productivity. This approach can efficiently bypass limitations of existing 

optimization approaches in literature. Aspects of response correlation need not to be checked 

and at the same time individual response priority weights need not to be assigned as well. FIS 

can take care of these aspects into its internal hierarchy. The technique adapted here can 

efficiently be applied in any manufacturing/ production processes for continuous quality 

improvement and off line quality control. 
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Table 5.1:Domain of Experiments (DOE) 

Sl. No. Factors Notation  Unit  Level 1 Level 2 Level 3 

1 Cutting speed  N m/min 360 530 860 

2 Feed rate  f mm/rev 0.083 0.166 0.331 

3 Depth of cut  d mm 2 3 4 

 

Table 5.2:DOE and collected response data 

Sample no N f d MRR Ra1 Ra2 Ra3 Ravg 

1 1 1 1 1436.839 1.51 1.08 1.46 1.35 

2 1 2 2 3992.6746 5.77 2.87 3.93 4.19 

3 1 3 3 9909.7919 5.02 4.69 4.57 4.76 

4 2 1 2 4290.9832 2.35 1.49 1.52 1.787 

5 2 2 3 7693.0652 2.65 2.65 2.62 2.64 

6 2 3 1 5298.241 4.81 4.62 4.53 4.653 

7 3 1 3 6048.7008 .822 .889 0.863 0.858 

8 3 2 1 4762.783 3.08 3.17 2.68 2.977 

9 3 3 2 18843.154 4.19 4.24 4.3 4.243 
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Table 5.3:Individual utility of response parameters and MPCI 

 

 

Fig.5.1:Input(s)/Output in FIS 

 

Fig.5.2:Membership Functions for Input Variables 

Sl. No Individual utility values of responses MPCI S/N Ratio (dB) 

U1 (MRR) U2 (Ravg) 

1 0 6.618 3.32 10.4228 

2 3.5738 0.6699 2.62 8.3660 

3 6.752 0 3.38 10.5738 

4 3.8258 5.14 4.48 13.0256 

5 5.8673 3.096 4.49 13.0449 

6 4.563 0.1194 2.41 7.6403 

7 5.026 8.9999 6.77 16.6118 

8 4.1906 2.465 3.45 10.7564 

9 8.9999 0.6039 4.89 13.7862 
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Figure 5.3:Membership Functions for Output Variable 

 

Fig.5.4:Fuzzy Reasoning  

 

Fig.5.5: Evaluation of Optimal Setting   
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Appendix 1: Roughness Profile (Machined Nylon 6) 
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Appendix 2: Roughness Profile (Machined Teflon) 
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