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PREFACE 

Transform methods are very useful to solve the ordinary and partial differential 

equations. Fourier and Laplace transforms are the most commonly used transforms. Wavelet 

transforms are most popular with electrical and communication engineers to analyse the signals. 

From last few years, Wavelet transforms are in use for structural engineering problems, like 

solution of ordinary and partial differential equations. Dynamical problems in structural 

engineering fall under two categories, one involving low frequencies (structural dynamics 

problems) and the other involving high frequencies (wave propagation problems).  

Spectral Finite Element (SFE) method is a transform method to solve the high frequency 

excitation problems which are encountered in structural engineering. SFE based on Fourier 

transforms has high limitations in handling finite structures and boundary conditions. SFE based 

with wavelet transforms is a very good tool to analyse the dynamical problems and eliminate 

many limitations.       

In this project, a model for embedded de-laminated composite beam is developed using 

the wavelet based spectral finite element (WSFE) method for the de-lamination effect on 

response using wave propagation analysis. The simulated responses are used as surrogate 

experimental results for the inverse problem of detection of damage using wavelet filtering. The 

technique used to model a structure that, through width de-lamination subdivides the beam into 

base-laminates and sub-laminates along the line of de-lamination. The base-laminates and sub-

laminates are treated as structural waveguides and kinematics are enforced along the connecting 

line. These waveguides are modeled as Timoshenko beams with elastic and inertial coupling and 

the corresponding spectral elements have three degrees of freedom, namely axial, transverse and 
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shear displacements at each node. The internal spectral elements in the region of de-lamination 

are assembled assuming constant cross sectional rotation and equilibrium at the interfaces 

between the base-laminates and sub-laminates. Finally, the redundant internal spectral element 

nodes are condensed out to form two-noded spectral elements with embedded de-lamination. The 

response is being obtained by coding programs in MATLAB. 
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CHAPTER-1 

INTRODUCTION 

1.1   Introduction 

Over the past few decades the composite materials are extensively used in many 

engineering fields such as civil, mechanical and aerospace engineering etc.  In-plane properties 

of the composite material are much higher than its transverse tensile and inter-laminar shear 

strength. Due to less strength in transverse direction composite structures are very much prone to 

defects like matrix cracking, fibre fracture, fibre de-bonding, de-lamination/inter-laminar de-

bonding, of which de-lamination is most common, easily exposed to damage and it may increase, 

thus reducing the life of the structure. Structural components are often subjected to damage 

which can potentially reduce the safety. It is very important to find the weakest location and to 

detect damage at the earliest possible stage to avoid brittle failure in future. This technique 

(WSFEM) is based on the response-based approach since the response data are directly related to 

damage. This approach is therefore fast and inexpensive. 

1.2   Solution methods for structural dynamic problems  

Generally dynamic analysis of the structure can be done by Finite Element Method 

(FEM). In structural engineering, dynamic analysis of structures can be divided into two 

categories, one is related with the low frequency loading categorized as structural dynamic 

problems and another related with high frequency loading categorized as wave propagation 

problems. Most of the structures of dynamic analysis come under structural dynamics. In 

structural dynamics problems , the solution can be determined either by system parameters such 

as natural frequencies and mode shapes or in terms of simulated response of the system to the 
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external excitation such as initial displacements support motion and applied load etc. The first 

few mode shapes and natural frequencies are sufficient to analyze the performance of the 

structure.  

Finite Element solution of the dynamic analysis of the structure can be obtained by two 

different methods [5] which are Modal Methods and Time Marching Schemes.  In general, for 

multi degree of freedom system (MDOF), the governing wave equation is coupled with a set of 

ordinary differential equations (ODE). Linear transformation of the above ordinary differential 

equations linearly and decoupled by modal matrix are  referred as modal analysis. Modal 

analysis is also an eigenvalue analysis and it is like one of the several numerical techniques such 

as matrix iteration method. Simple continuous systems like rod, beam, plates can be solved 

analytically. The solutions of such continuous systems are restricted though they are exact. But  

complicated structures can be solved by approximate techniques. In general, approximate 

techniques convert the continuous systems into discrete systems. These approximate techniques 

are grouped into two categories. In the first group, the solution in terms of known functions are 

assumed and they are combined linearly. For the continuous system, the governing differential 

equations are partial differential equations. These partial differential equations are converted to a 

set of ordinary differential equations by substituting the assumed solution with unknown 

coefficient as variables. The Rayleigh-Ritz and Galerkin methods are the examples of this 

method. In the other group, the dynamics of the continuous system is shown in terms of large 

number of discrete points on the system. The finite element technique falls under this group. In 

this finite element method the continuous structure is divided into number of elements and each 

element connects through nodes surrounded by it. The continuous system of structure can be 

reduced to multi degree of freedom system by expressing the dynamics in terms of the 
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displacements of the nodes. These displacements are approximated by some functions, the 

coefficients of these functions are obtained in terms of the displacements of the nodes. This finite 

element method can be applied to any arbitrary shapes and structure having high complexities. 

Other methods such as boundary element method [7, 39] and meshless methods [6] and wave 

finite element method [66]are applied for solving structural dynamic problems.   

1.3   Solution methods for wave propagation problems                           

 Multi modal problems are related with wave propagation analysis, in which the 

extraction of eigenvalues is computationally most expensive. So Modal Methods are not suitable 

for multi modal problems which are having very high frequencies. In the wave propagation 

problems, the short term effects are critical, because the frequency of the input loading is very 

high. To get the accurate mode shapes and natural frequencies, the wave length and mesh size 

should be small. Alternatively we can use the time marching schemes under the finite element 

environment. In this method, analysis is performed over a small time step, which is a fraction of 

total time for which response histories are required. For some time marching schemes, a 

constraint is placed on the time step, and this, coupled with very large mesh sizes, make the 

solution of wave propagation problem. Wave  propagation deals with loading of very high 

frequency content and finite element (FE) formulation for such problems is computationally 

prohibitive as it requires large system size to capture all the higher modes. These problems are 

usually solved by assuming solution to the field variables say displacements such that the 

assumed solution satisfies the governing wave equation as closely as possible. It is very difficult 

to assume a solution in time domain to solve the governing wave equation. Therefore, ignore the 

inertial part is ignored and the static part of the governing wave equation is solved exactly, and 

this solution is used to obtain mass and stiffness matrices. This method of develop of finite 
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element is called Super Convergent Finite Element Method (SCFEM) [20, 9, 10, 42, 11]. This 

method gives the smaller system size for wave propagation problems than conventional Finite 

Element Method (FEM).  

Alternatively, the solution in frequency domain is assumed and the governing equations 

solve are transformed and solved exactly. This simplifies the problem by introducing the 

frequency as a parameter which removes the time variable from the governing equations by 

transforming to the frequency domain. Among these techniques, many methods are based on 

integral transforms [22] which include Laplace transform, Fourier transform and most recently 

wavelet transform. The solution of these transformed equations is much easier than the original 

partial differential equations. The main advantage of this system is computational efficiency over 

the finite element solution. These solutions in transformed frequency domain contain information 

of several frequency dependent wave properties essential for the analysis. The time domain 

solution is then obtained through inverse transform. In the frequency domain Fourier methods 

can be used to achieve high accuracy in numerical differentiation. One such method is FFT based 

spectral finite element method. The WSFE technique is very similar to the fast Fourier transform 

(FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies 

scaling function approximation in time. In FSFEM, first the governing PDEs are transformed to 

ODEs in spatial dimension using FFT in time. These ODEs are then usually solved exactly, 

which are used as interpolating functions for FSFE formulation. 

The advantages of FSFEM are, they reduces the system size and the wave characteristics 

can be extracted directly from such formulation. The main drawback of FSFEM is that it cannot 

handle waveguides of short lengths. This is because the required assumption of periodicity 

results in wrap around problems, which totally distorts the response. It is in such cases, 
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compactly supported wavelets, which have localized basis functions can be efficiently used for 

waveguides of short lengths. The wavelet based spectral finite element method follows an 

approach very similar to FSFEM, except that Daubechies scaling functions are used for 

approximation in time for reduction of PDEs to ODEs. The approach removes the problem 

associated with ‘wrap around’ in FSFEM and thus requires a smaller time window for the same 

problem. The Fourier transform is a tool widely used for many scientific purposes, but it is well 

suited only to the study of stationary signals where all frequencies have an infinite coherence 

time. The Fourier analysis brings only global information which is not sufficient to detect 

compact patterns. 
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CHAPTER-2 

LITERATURE REVIEW 

This review is organized by the classification using the features extracted for damage 

identification, and these damage identification methods are categorized as follows: 

1. Natural frequency-based methods; 

2. Mode shape-based methods; 

3. Curvature/strain mode shape-based methods; 

4. Other methods based on modal parameters. 

2.1   NATURAL FREQUENCY-BASED METHODS:-  Natural frequency-based 

methods use the natural frequency change as the basic feature for damage identification. The 

choice of the natural frequency change is attractive because the natural frequencies can be 

conveniently measured from just a few accessible points on the structure and are usually less 

contaminated by experimental noise. 

Liang et al. [36] developed a method based on three bending natural frequencies for the 

detection of crack location and quantification of damage magnitude in a uniform beam under 

simply supported or cantilever boundary conditions. The method involves representing crack as a 

rotational spring and obtaining plots of its stiffness with crack location for any three natural 

modes through the characteristic equation. The point of intersection of the three curves gives the 

crack location and stiffness. The crack size is then computed using the standard relation between 

stiffness and crack size based on fracture mechanics. This method had been extended to stepped 

beams by Nandwana and Maiti [52] and to segmented beams by Chaudhari and Maiti [13] 

using the Frobenius method to solve Euler-Bernoulli type differential equations. 
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Chinchalkar [14] used a finite element-based numerical approach to mimic the semi-analytical 

approach using the Frobenius method.  The beam is modelled using beam elements and the 

inverse problem of finding the spring stiffness, given the natural frequency, is shown to be 

related to the problem of a rank-one modification of an eigenvalue problem. This approach does 

not require quadruple precision computation and is relatively easy to apply to different boundary 

conditions. The results are compared with those from semi-analytical approaches. The biggest 

advantage of this method is the generality in the approach; different boundary conditions and 

variations in the depth of the beam can be easily modelled. 

Morassi and Rollo [47] showed that the frequency sensitivity of a cracked beam-type structure 

can be explicitly evaluated by using a general perturbation approach. Frequency sensitivity turns 

to be proportional to the potential energy stored at the cracked cross section of the undamaged 

beam. Moreover, the ratio of the frequency changes of two different modes turns to be a function 

of damage location only.  Morassi’s method based on Euler–Bernoulli beam theory modeled 

crack and as a massless, infinitesimal rotational spring. The explicit expression is valid only for 

small defects. 

 Kasper et al. [30] derived the explicit expressions of wave number shift and frequency shift for 

a cracked symmetric uniform beam. These expressions apply to beams with both shallow and 

deeper cracks. But the explicit expressions are based on high frequency approximation, and 

therefore, they are generally inaccurate for the fundamental mode and for a crack located in a 

boundary-near field. 

Messina et al. [40] proposed a correlation coefficient termed the multiple damage location 

assurance criterion (MDLAC) by introducing two methods of estimating the size of defects in a 

structure. The method is based on the sensitivity of the frequency of each mode to damage in 
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each location. ‘MDLAC’ is defined as a statistical correlation between the analytical predictions 

of the frequency changes  f and the measured frequency changes  f. The analytical frequency 

change  f can be written as a function of the damage extent vector  D. The required damage 

state is obtained by searching for the damage extent vector  D which maximizes the MDLAC 

value. Two algorithms (i.e., first and second order methods) were developed to estimate the 

absolute damage extent. Both the numerical and experimental test results were presented to show 

that the MDLAC approach offers the practical attraction of only requiring measurements of the 

changes in a few of natural frequencies of the structure between the undamaged and damaged 

states and provides good predictions of both the location and absolute size of damage at one or 

more sites. 

Lele and Maiti[34] extended Nandwana and Maiti’s method [53] to short beam, taking into 

account the effects of shear deformation and rotational inertia through Timoshenko beam theory. 

Patil and Maiti proposed a frequency shift-based method for detection of multiple open cracks in 

an Euler–Bernoulli beam with varying boundary conditions. This method is based on the transfer 

matrix method and extends the scope of the approximate method given by Liang for a single 

segment beam to multi-segment beams. Murigendrappa et al. [50] later applied Patil and 

Maiti’s approach to single/multiple crack detection in pipes filled with fluid. 

Morassi  [45] presented a single crack identification in a vibrating rod based on the knowledge 

of the damage-induced shifts in a pair of natural frequencies. The analysis is based on an explicit 

expression of the frequency sensitivity to damage and enables non uniform bars under general 

boundary conditions to be considered. Some of the results are also valid for cracked beams in 

bending. Morassi and Rollo [47] later extended the method to the identification of two cracks of 

equal severity in a simply supported beam under flexural vibrations. 
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Kim  and Stubbs [31] proposed a single damage indicator (SDI) method to locate and quantify a 

crack in beam-type structures by using changes in a few natural frequencies. A crack location 

model and a crack size model were formulated by relating fractional changes in modal energy to 

changes in natural frequencies due to damage. In the crack location model, the measured 

fractional change in the i
th
 eigenvalue Zi and the theoretical (FEM based) modal sensitivity of the 

i
th

 modal stiffness with respect to the j
th
 element Fij is defined. The theoretical modal curvature is 

obtained from a third order interpolation function of theoretical displacement mode shape. Then, 

an error index eij is introduced to represent the localization error for the i
th
 mode and the j

th
 

location. SDI is defined to indicate the damage location. While in the crack size model, the 

damage inflicted aj at predefined locations can be predicted using the sensitivity equation. The 

crack depth can be computed from aj and the crack size model based on fracture mechanics. The 

feasibility and practicality of the crack detection scheme were evaluated by applying the 

approach to the 16 test beams. 

Zhong et al. [73] recently proposed a new approach based on auxiliary mass spatial probing 

using the spectral centre correction method (SCCM), to provide a simple solution for damage 

detection by just using the output-only time history of beam-like structures. A SCCM corrected 

highly accurate natural frequency versus auxiliary mass location curve is plotted along with the 

curves of its derivatives (up to third order) to detect the crack. However, only the FE verification 

was provided to illustrate the method. Since it is not so easy to get a high resolution natural 

frequency versus auxiliary mass location curve in experiment as in numerical simulation, the 

applicability and practicality of the method in in-situ testing or even laboratory testing are still in 

question. 
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Kim, B.H et al. [32] presented a vibration-based damage monitoring scheme to give warning of 

the occurrence, location, and severity of damage under temperature induced uncertainty 

conditions. A damage warning model is selected to statistically identify the occurrence of 

damage by recognizing the patterns of damage driven changes in natural frequencies of the 

structure and by distinguishing temperature-induced off-limits. 

Jiang et al. [29] incorporated a tunable piezoelectric transducer circuitry into the structure to 

enrich the modal frequency measurements, meanwhile implementing a high-order identification 

algorithm to sufficiently utilize the enriched information. It is shown that the modal frequencies 

can be greatly enriched by inductance tuning, which, together with the high-order identification 

algorithm, leads to a fundamentally-improved performance on the identification of single and 

multiple damages with the usage of only lower-order frequency measurements. 

In 1997 Salawu [64] presented an extensive review of publications before 1997 dealing with the 

detection of structural damage through frequency changes. In the conclusion of this review 

paper, Salawu suggested that natural frequency changes alone may not be sufficient for a unique 

identification of the location of structural damage because cracks associated with similar crack 

lengths but at two different locations may cause the same amount of frequency change. 

2.2   MODE SHAPE-BASED METHODS:-  

Compared to using natural frequencies, the advantage of using mode shapes and their derivatives 

as a basic feature for damage detection is quite obvious. First, mode shapes contain local 

information, which makes them more sensitive to local damages and enables them to be used 

directly in multiple damage detection. Second, the mode shapes are less sensitive to 

environmental effects, such as temperature, than natural frequencies. The disadvantages are also 
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apparent. First, measurement of the mode shapes requires a series of sensors; second, the 

measured mode shapes are more prone to noise contamination than natural frequencies. 

Shi et al. [65] extended the damage localization method based on multiple damage location 

assurance criterions (MDLAC) by using incomplete mode shape instead of modal frequency. 

The two-step damage detection procedure is to preliminarily localize the damage sites by using 

incomplete measured mode shapes and then to detect the damage site and its extent again by 

using measured natural frequencies. No expansion of the incomplete measured mode shapes or 

reduction of finite element model is required to match the finite-element model, and the 

measured information can be used directly to localize damage sites. The method was 

demonstrated in a simulated 2D planar truss model. Comparison showed that the proposed 

method is more accurate and robust in damage localization with or without noise effect than the 

original MDLAC method. In this method, the use of mode shape is only for preliminary damage 

localization, and the accurate localization and quantification of damage still rely on measured 

frequency changes. 

Lee et al. [33] presented a neural network based technique for element-level damage 

assessments of structures using the mode shape differences or ratios of intact and damaged 

structures. The effectiveness and applicability of the proposed method using the mode shape 

differences or ratios were demonstrated by two numerical example analyses on a simple beam 

and a multi-girder bridge. 

Hu and Afzal [28] proposed a statistical algorithm for damage detection in timber beam 

structures using difference of the mode shapes before and after damage. The different severities 

of damage, damage locations, and damage counts were simulated by removing mass from intact 
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beams to verify the algorithm. The results showed that the algorithm is reliable for the detection 

of local damage under different severities, locations, and counts. 

Pawar et al. [54] investigated the effect of damage on beams with clamped boundary conditions 

using Fourier analysis of mode shapes in the spatial domain. The damaged mode shapes were 

expanded using a spatial Fourier series, and a damage index (DI) in the form of a vector of 

Fourier coefficients was formulated. A neural network (NN) was trained to detect the damage 

location and size using Fourier coefficients as input. Numerical studies showed that damage 

detection using Fourier coefficients and neural networks has the capability to detect the location 

and damage size accurately. However, the use of this method is limited to beams with clamped-

clamped boundary condition. 

Abdo and Hori [2] suggested that the rotation (i.e., the first derivative of displacement) of mode 

shape is a sensitive indicator of damage. Based on a finite element analysis of a damaged 

cantilevered plate and a damaged simply-supported plate, the rotation of mode shape is shown to 

have better performance of multiple damage localization than the displacement mode shape 

itself. 

Hadjileontiadis et al. [24] and Hadjileontiadis and Douka [25] proposed a response-based 

damage detection algorithm for beams and plates using Fractal Dimension (FD).  This method 

calculates the localized FD of the fundamental mode shape directly. The damage features are 

established by employing a sliding window of length M across the mode shape and estimating 

the FD at each position for the regional mode shape inside the window. Damage location and 

size are determined by a peak on the FD curve indicating the local irregularity of the 

fundamental mode shape introduced by the damage. If the higher mode shapes were considered, 

this method might give misleading information as demonstrated in their study. 
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Wang and Qiao [69] proposed a modified FD method termed ‘generalized fractal dimension 

(GFD)’ method by introducing a scale factor S in the FD algorithm, Instead of directly applying 

the algorithm to the fundamental mode shape, the GFD is applied to the ‘uniform load surface’ 

(ULS) to detect the damage. Three different types of damage in laminated composite beams have 

been successfully detected by the GFD. It should be pointed out that the GFD bears no 

conventional physical meaning as compared to the FD, and it only serves as an indicator of 

damage. A scale factor S has to be carefully chosen in order to detect damage successfully. 

Qiao and Cao [58] proposed a novel waveform fractal dimension-based damage identification 

algorithm. An approximate waveform capacity dimension (AWCD) was formulated first, from 

which an AWCD-based modal irregularity algorithm (AWCD-MAA) was systematically 

established. Then, the basic characteristics of AWCD-MAA on irregularity detection of mode 

shapes, e.g., crack localization, crack quantification, noise immunity, etc., were investigated 

based on an analytical crack model of cantilever beams using linear elastic fracture mechanics. 

In particular, from the perspective of isomorphism, a mathematical solution on the use of 

applying waveform FD to higher mode shapes for crack identification was originally proposed, 

from which the inherent deficiency of waveform FD to identify crack when implemented to 

higher mode shapes is overcome. The applicability and effectiveness of the AWCD-MAA was 

validated by an experimental program on damage identification of a cracked composite 

cantilever beam using directly measured strain mode shape from smart piezoelectric sensors. 

Hong et al. [27] showed that the continuous wavelet transform (CWT) of mode shape using a 

Mexican hat wavelet is effective to estimate the Lipschitz exponent for damage detection of a 

damaged beam. The magnitude of the Lipschitz exponent can be used as a useful indicator of the 
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damage extent. It was also proved in their work that the number of the vanishing moments of 

wavelet should be at least 2 for crack detection in beams. 

Douka et al. [17, 18] applied 1D symmetrical 4 wavelet transform on mode shape for crack 

identification in beam and plate structures. The position of the crack is determined by the sudden 

change in the wavelet coefficients. An intensity factor is also defined to estimate the depth of the 

crack from the coefficients of the wavelet transform. 

Zhong and Oyadiji [72] proposed a crack detection algorithm in symmetric beam-like structures 

based on stationary wavelet transform (SWT) of mode shape data. Two sets of mode shape data, 

which constitute two new signal series, are, respectively, obtained from the left half and 

reconstructed right half of modal displacement data of a damaged simply supported beam. The 

difference of the detail coefficients of the two new signal series was used for damage detection. 

The method was verified using modal shape data generated by a finite element analysis of 36 

damage cases of a simply supported beam with an artificial random noise of 5% SNR. The 

effects of crack size, depth and location as well as the effects of sampling interval were 

examined. The results show that all the cases can provide evidence of crack existence at the 

correct location of the beam and that the proposed method can be recommended for 

identification of small cracks as small as 4% crack ratio in real applications with measurement 

noise present. However, there are two main disadvantages of this method. First, the use of this 

method based on SWT requires fairly accurate estimates of the mode shapes. Second, the method 

cannot tell the crack location from its mirror image location due to its inherent limitation. 

Therefore, in applying the method, both the crack location predicted and its mirror image 

location should be checked for the presence of a crack. 
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Chang and Chen [12] presented a spatial Gabor wavelet-based technique for damage detection 

of a multiple cracked beam. Given natural frequencies and crack positions, the depths of the 

cracks are then solved by an optimization process based on traditional characteristic equation. 

Analysis and comparison showed that it can detect the cracks positions and depths and also has 

high sensitivity to the crack depth, and the accuracy of this method is good. The limitation of this 

method is very common in wavelet transform methods, that is, there are peaks near the 

boundaries in the wavelet plot caused by discontinuity and the crack cannot be detected when the 

crack is near the boundaries. 

Cao and Qiao [15] proposed a novel wavelet transform technique (so called ‘integrated wavelet 

transform’), which takes synergistic advantage of the SWT and the CWT, to improve the 

robustness of irregularity analysis of mode shapes in damage detection. Two progressive wavelet 

analysis steps are considered, in which the SWT-based multiresolution analysis (MRA) is first 

employed to refine the retrieved mode shapes, followed by CWT-based multiscale analysis 

(MSA) to magnify the effect of slight irregularity. The SWT-MRA is utilized to separate the 

multi-component modal signal, eliminate random noise and regular interferences, and thus 

extract purer damage information; while the CWT-MSA is employed to smoothen, differentiate 

or suppress polynomials of mode shapes to magnify the effect of irregularity. The choice of the 

optimal mother wavelet in damage detection is also elaborately discussed. The proposed 

methodology is evaluated using the mode shape data from the numerical finite element analysis 

and experimental testing of a cantilever beam with a through-width crack. The methodology 

presented provides a robust and viable technique to identify minor damage in a relatively lower 

signal-to-noise ratio environment. 
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2.3   CURVATURE/STRAIN MODE SHAPE-BASED METHODS:- It has been 

shown by many researchers that the displacement mode shape itself is not very sensitive to small 

damage, even with high density mode shape measurement. As an effort to enhance the sensitivity 

of mode shape data to the damage, the mode shape curvature (MSC) is investigated as a 

promising feature for damage identification. 

Pandey et al. [53] suggested for the first time that the MSC, that is, the second derivatives of 

mode shape, are highly sensitive to damage and can be used to localize it. The curvature mode 

shapes are derived using a central difference approximation. Result showed that the difference of 

curvature mode shapes from intact and damaged structure can be a good indicator of damage 

location. It is also pointed out that for the higher modes, the difference in modal curvature shows 

several peaks not only at the damage location but also at other positions, which may lead to a 

false indication of damage. Hence, in order to reduce the possibility of a false alarm, only first 

few low curvature mode shapes can be used for damage identification. 

Abdel Wahab and De Roeck [1] investigated the accuracy of using the central difference 

approximation to compute the MSC based on finite element analysis. The authors suggested that 

a fine mesh is required to derive the modal curvature correctly for the higher modes and that the 

first mode will provide the most reliable curvature in practical application due to the limited 

number of sensors needed. Then, a damage indicator called ‘curvature damage factor’, which is 

the average absolute difference in intact and damaged curvature mode shapes of all modes, is 

introduced. The technique is further applied to a real structure, namely bridge Z24, to show its 

effectiveness in multiple damage location. 

Swamidas  and Chen [68] performed a finite element-based modal analysis on a cantilever plate 

with a small crack. It was found that the surface crack in the structure will affect most of the 
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modal parameters, such as the natural frequencies of the structure, amplitudes of the response 

and mode shapes. Some of the most sensitive parameters are the difference of the strain mode 

shapes and the local strain frequency response functions. By monitoring the changes in the local 

strain frequency response functions and the difference between the strain mode shapes, the 

location and severity of the crack that occurs in the structure can be determined. 

Li et al. [35] presented a crack damage detection using a combination of natural frequencies and 

strain mode shapes as input in artificial neural networks (ANN) for location and severity 

prediction of crack damage in beam-like structures. In the experiment, several steel beams with 

six distributed surface-bonded strain gauges and an accelerometer mounted at the tip were used 

to obtain modal parameters such as resonant frequencies and strain mode shapes. 

Amaravadi et al [4] proposed an orthogonal wavelet transform technique that operates on 

curvature mode shape for enhancing the sensitivity and accuracy in damage location. First, the 

curvature mode shape is calculated by central difference approximation from the displacement 

mode shapes experimentally obtained from SLV. Then, a threshold wavelet map is constructed 

for the curvature mode shape to detect the damage. The experimental results are reasonably 

accurate. 

Kim et al. [32] proposed a curvature mode shape-based damage identification method for beam-

like structures using wavelet transform. Using a small damage assumption and the Haar wavelet 

transformation, a set of linear algebraic equations is given by damage mechanics. With the aid of 

singular value decomposition, the singularities in the damage mechanism were discarded. 

Finally, the desired DI was reconstructed using the pseudo-inverse solution. The performance of 

the proposed method was compared with two existing NDE methods for an axially loaded beam 

without any special knowledge about mass density and an applied axial force. The effect of 
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random noise on the performance was examined. The proposed method was verified by a finite 

element model of a clamped-pinned pre-stressed concrete beam and by field test data on the I-40 

Bridge over the RioGrande 

Shi et al. [65] presented a damage localization method for beam, truss or frame type structures 

based on the modal strain energy change. The MSEC at the element level is suggested as an 

indicator for damage localization. 

2.4   OTHER METHODS BASED ON MODAL PARAMETERS:- 

Ren and De Roeck [60] proposed a damage identification technique from the finite element 

model using frequencies and mode shape change. The element damage equations have been 

established through the eigenvalue equations that characterize the dynamic behavior. Several 

solution techniques are discussed and compared. The results show that the SVD-R method based 

on the singular value decomposition (SVD) is most effective. The method has been verified by a 

simple beam and a continuous beam numerical model with numbers of simulated damage 

scenarios. The method is further verified by a laboratory experiment of a reinforced concrete 

beam. 

Wang and Qiao [69] developed a general order perturbation method involving multiple 

perturbation parameters for eigenvalue problems with changes in the stiffness parameters. The 

perturbation method is then used iteratively with an optimization method to identify the stiffness 

parameters of structures. The generalized inverse method is used efficiently with the first order 

perturbations, and the gradient and quasi-Newton methods are used with the higher order 

perturbations.  

Rahai et al. [59] presents a finite element-based approach for damage detection in structures 

utilizing incomplete measured mode shapes and natural frequencies. Mode shapes of a structure 
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are characterized as a function of structural stiffness parameters. More equations were obtained 

using elemental damage equation which requires complete mode shapes. This drawback is 

resolved by presenting the mode shape equations and dividing the structural DOFs to measured 

and unmeasured parts. The nonlinear optimization problem is then solved by the sequential 

quadratic programming (SQP) algorithm. Monte Carlo simulation is applied to study the 

sensitivity of this method to noise in measured modal displacements.  

Hao and Xia [26] applied a genetic algorithm with real number encoding to minimize the 

objective function, in which three criteria are considered: the frequency changes, the mode shape 

changes, and a combination of the two. A laboratory tested cantilever beam and a frame structure 

were used to verify the proposed technique. The algorithm did not require an accurate analytical 

model and gave better damage detection results for the beam than the conventional optimization 

method. 

Ruotolo and Surace [63] utilized genetic algorithm to solve the optimization problem. The 

objective function is formulated by introducing terms related to global damage and the dynamic 

behavior of the structure, i.e., natural frequencies, mode shapes and modal curvature. The 

damage assessment technique has been applied to both the simulated and experimental data 

related to cantilevered steel beams, each one with a different damage scenario. It is demonstrated 

that this method can detect the presence of damage and estimate both the crack positions and 

sizes with satisfactory precision. The problems related to the tuning of the genetic search and to 

the virgin state calibration of the model are also discussed. 
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CHAPTER-3 

TRANSFORM METHODS 

 

3.1   LAPLACE TRANSFORMS 

Laplace transforms provide a method for representing and analyzing linear systems using 

algebraic methods. The application of Laplace Transform methods is particularly effective for 

linear ODEs with constant coefficients, and for systems of such ODEs. To transform an ODE, 

we need the appropriate initial values of the function involved and initial values of its 

derivatives. In systems that begin undeflected and at rest the Laplace‘s’ can directly replace the 

d/dt operator in differential equations [70]. It is a superset of the phasor representation in that it 

has both a complex part, for the steady state response, but also a real part, representing the 

transient part. As with the other representations the Laplace “s” is related to the rate of change in 

the system. 

                                                                     
   

                                                 
 

 

 

 

 

where, 

F(s)= the function in terms of the Laplace s 

F(t)= the function in terms of time t 

The normal convention is to show the function of time with a lower case letter, while the same 

function in the s-domain is shown in upper case. Another useful observation is that the transform 

starts at    s.The Laplace method is particularly advantageous for input terms that are 

piecewise defined, periodic or impulsive. 
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Properties of Laplace transform: 

1. Linearity: 

                                                                                                                      

 

2. First derivative: 

                                                                                                                               

3. Second derivative:  

                                                                                                                  

4. Higher order derivative:  

                                                                                     

5.                                                                                                                                            

where                this also implies                  

6.                                                                                                                                      

where               this implies                      

The original time signal      can be obtained through an inverse transform of      and is 

written as 

                      if                

Let us consider        for      the Laplace transform is  

                         
 

 

 
 

 

 
 

 
      

    
 

 
        

 

 
      

 

 
               

This transform can be performed only analytically and there is no numerical implementation. 

This restricts the use of Laplace transform for analysis of problems with higher complexities, 

which need to be solved numerically. 
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3.2   FOURIER TRANSFORMS 

The Fourier transform is a tool, this can adopt easily and spread throughout system and it 

is used in many fields of science as a mathematical or physical tool to alter a problem into one 

that can be more easily solved. The Fourier transform, in essence, decomposes or separates a 

waveform or function into sinusoids of different frequency which sum to the original waveform. 

It identifies or distinguishes the different frequency sinusoids and their respective amplitudes. 

The main advantage of Fourier transform in structural dynamics and wave propagation problems 

is that several important characteristics of system can be obtained directly from the transformed 

frequency domain method. Fourier transform can be implemented analytically, semi analytically 

and numerically in the form of Continuous Fourier Transform (CFT), Fourier Series (FS) and 

Discrete Fourier Transform (DST) respectively. 

In Fourier analysis the complex exponential function    is often used. We have by the 

Euler formula 

                                                                                                                                                      

Hence,     can be considered as complex sinusoid. In general a complex valued function has the 

form of  

                                                                                                                                          

here     is the real part of the      and     is the imaginary part of the     , and both 

       are real valued functions. 

3.2.1 CONTINUOUS FOURIER TRANSFORMS 

The both forward and inverse continuous Fourier transform of any time signal     , generally 

shown as transform pair, which are 
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where       is the CFT of     ,   is the angular frequency,   is the complex number (   ). 

      should be complex and a plot of amplitude of this function against frequency will give the 

spectral density of the time signal     . As an example, consider a rectangular pulse width‘d’. 

this function can be written as  

                                                                         
   

 

 
   

 

 

          

                                                           

Substitute the equation (3.12) in the equation (3.11) of       , we get  

                                                                               
   

  
 

  
 

                                                            

Now, allow the pulse to propagate in the time domain by an amount of    seconds, and this can 

be written in mathematical form  

                                                                          
            
          

                                             

Substitute the above equation (3.14) in equation (3.13), we get 

                                                                  
   

  
 

  
 

         
 
 
                                                      

The magnitude of the equations (3.13) and (3.15) are same. The second transform exists phase 

information. The change of phase in frequency domain refers the propagation of signal in the 

time domain. By using CFT, spread of the signal can be calculated in the time and frequency 

domain. 
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Properties of CFT  

(a) Linearity: Consider, two functions              for the incident and reflected waves 

respectively in time and         are the constants. The Fourier Transform of a function 

              can be obtained as                  This expression can also be 

written as                                The symbol   represents the Fourier 

Transform. 

(b) Scaling: If multiply with some non zero constant   to the time signal       will become 

       The Continuous Fourier Transform of the signal       can be written as 

      
 

 
   

 

 
   This represents that compression occurs in time domain results and 

dilation occurs in frequency domain results. The amplitude however decreases to keep 

the energy constant.  

(c) Time shifting:  A shift in the time signal by    is manifested as a phase change in the 

transformed frequency domain obtained through Continuous Fourier Transform. After 

shifting the time the transform pair can be written as                    . 

(d) Symmetric property of the CFT: The CFT of the time signal      is in complex form, 

split this complex form into real and imaginary parts by using equation (3.9). The real 

and imaginary part of the CFT can be written as 

                                                 
 

  
                                                                    

 

  

 

                                                   
 

  
                                                                    

 

  

 

The first integral is an even function and second is an odd function. 

That is                                     . 
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Consider a point on CFT say origin (   ), the transform on the right side of the origin 

can be written as                      . Similarly on the left side can be written as  

                                            This origin point is called 

Nyquist frequency and it is very important to determine the half of the total frequency 

rang.  

(e) Convolution: This property of the CFT is very useful for understanding the signal 

processing aspects and it has great importance in wave propagation analysis. This 

property can be obtained by multiplying two time signals               each other. 

                                                                   
                                                       

 

  

 

Substitute the equation (3.11) in equation (3.18) for both these functions written as  

                        
               

 

  

 

  

 

                                                 
 

  

                                                          

The above equation (3.19) can also be written as  

                                             
 

  

                                                        

Conversely we can also write as  

                                                                                                   
 

  

 

3.2.2 FOURIER SERIES 

Fourier series is in between the Continuous Fourier Transform (CFT) and Discrete 

Fourier Transform (DFT). The inverse transform is represented by a series while forward 
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transform is still in the integral form as in the CFT. i.e. out of both equations, one still needs the 

mathematical description of the time signal to get the transforms.  

The Fourier Series (FS) can be written as  

                                         
  
 
            

 

 
           

 

 
                                       

 

   

 

where             

                                  
 

 
         

    

 
               

 

 

   
 

 
         

    

 
                     

 

 

 

The equation (3.22) and equation (3.23) are corresponding to the inverse transform and forward 

transform of the CFT respectively. Where   is the discrete representation of time signal, and it 

introduces the periodicity of time signal. The equations (3.22) and (3.23) can be writing in terms 

of complex exponentials as 

                                
 

 
         

          
                                              

 

  

 

  

 

                                             
 

 
        

 

 
                                                                       

 

 

 

where    
   

 
, and the signal repeats after  seconds due to enforced periodicity. 

Now this time signal, can also be write in terms of fundamental frequency as  

                                                            
             

     

 

  

                                                   

 

  

 

where the fundamental frequency     
  

  
 

 

 
  in radians per second or Hz. 

Consider the rectangular time signal and substitute in equation (3.25), we get 
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3.2.3 DISCRETE FOURIER TRANSFORM  

The transform pair of CFT requires mathematical description of the time signal and their 

integration. Data of the time signals are obtained from experiments. Hence, what we require is 

the numerical representation for the transform pair, which is called the Discrete Fourier 

Transform (DFT). It is an alternative way of mathematical representation of CFT in terms of 

summations. Here the ultimate aim is to replace the integral involved in computation of the 

Fourier coefficient by summation for numerical implementation. Divide the time signal into   

number of constant triangles. The height of the triangle is    and width of the triangle is    
 

 
. 

From equation (3.15) we can observe that the continuous transform of the rectangle is a      

function. Similarly in discrete system, idealizing the signal as rectangle. Therefore, the DFT of 

the signal will be the summation of        functions. Hence the second integral of equation 

(3.25) can be written as 

                                                                
    

    
  

 
    
  

     
                                                

 

   

 

If    is very small, the value of above equation (3.28) nearly equal to unity. Hence the forward 

and inverse Discrete Fourier Transform (DFT) can be written as  
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Here,         varies from           

The DFT of a real function is symmetric about nyquist frequency as like in the case of CFT. One 

side of DFT coefficients about nyquist frequency is the complex conjugate of the coefficients on 

other side of it. Thus   real points are transformed to 
 

 
 complex points. Nyquist frequency can 

be calculated by using the following expression 

                                                                   
 

   
                                                                                      

3.3 WAVELET TRANSFORMS 

The word wavelet has been derived from the French word. The equivalent French word ondelette 

meaning "small wave" was used by Morlet and Grossmann [23, 48, 49] in the early 1980s. A 

wavelet is a wave-like oscillation with an amplitude that starts out at zero, increases, and then 

decreases back to zero. It can typically be visualized as a "brief oscillation" like one might see 

recorded by a seismograph or heart monitor. Generally, wavelets are purposefully crafted to have 

specific properties that make them useful for signal processing. Wavelets can be combined, using 

a "shift, multiply and sum" technique called convolution, with portions of an unknown signal to 

extract information from the unknown signal. Wavelets are defined by the wavelet 

function ψ(t) (i.e. the mother wavelet) and scaling function φ(t) (also called father wavelet) in the 

time domain. The wavelet function is in effect a band-pass filter and scaling it for each level 

halves its bandwidth. This creates the problem that in order to cover the entire spectrum, an 

infinite number of levels would be required. The scaling function filters the lowest level of the 

transform and ensures all the spectrum is covered.  

Since from the last few decades many researchers showing their interest for the development and 

application wavelets in many fields. Some of the researchers include Morlet and Grossmann [23] 
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developed formulation for the Continuous Wavelet Transform, Meyer [41] and Mallt [38] 

developed multi resolution analysis using wavelets, Daubechies [16] for proposal of orthogonal 

compactly supported wavelets and Stromberg [67] for early works on discrete wavelet transform. 

As a mathematical tool, wavelets can be used to extract information from many different kinds of 

data of signals and images. Sets of wavelets are generally needed to analyze data fully. A set of 

"complementary" wavelets will deconstruct data without gaps or overlap so that the 

deconstruction process is mathematically reversible. Thus, sets of complementary wavelets are 

useful in wavelet based compression/decompression algorithms where it is desirable to recover 

the original information with minimal loss. 

3.3.1 TYPES OF WAVELETS  

We have several wavelet functions such as Morlet wavelets, Mexican hat wavelets, Mayer 

wavelets, Shanon wavelets, Daubechies wavelets e.t.c., out of these wavelet functions Morlet 

wavelets and Mexican hat wavelets are explained here, Daubechies wavelet function explained 

in chapter 4. 

3.3.1.1   MORLET'S WAVELET 

The wavelet defined by Morlet is:  

                                                                                    
       

 

                                            (3.32)                               

 

It is a complex wavelet which can be decomposed in two parts, one for the real part, and the 

other for the imaginary part. 
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where    is a constant. The admissibility condition is verified only if        . Figure 1shows 

the real part of the Morlet wavelet function and figure 2 shows the imaginary part of the Morlet 

wavelet function.  

 

Figure 3.1: (a) Morlet's wavelet: real part  

 

 Figure 3.1: (b) Morlet's wavelet Imaginary part  
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3.3.1.2   MEXICAN HAT WAVELET 

The Mexican hat defined by Murenzi is:  

                                                                                        
 
 
                                                        

It is the second derivative of a Gaussian (see figure 2).  

 

Figure 3.2: Mexican Hat wavelet. 

3.3.1.3   THE CONTINUOUS WAVELET TRANSFORM 

The Morlet-Grossmann definition of the continuous wavelet transform for a 1D signal      

      is:  
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where        is the mother wavelet, a (>0) is the scaling parameter, it represents the frequency 

content of the wavelet and b is the translation parameter, it represents the location of wavelet in 

time. The basis function of the wavelet transform retains the time locality and frequency locality. 

The transform is characterized by the following three properties: 

1. It is a linear transformation, 

2. It is covariant under translations:  

                                                                                                                        

3. It is covariant under dilations:  

                                                                       
 
                                                      

The last property makes the wavelet transform very suitable for analyzing hierarchical structures. 

It is like a mathematical microscope with properties that do not depend on the magnification. 

3.3.1.4   DISCRETE WAVELET TRANSFORM 

  The discrete wavelet transform (DWT) can be derived from this theorem if we process a 

signal which has a cut-off frequency. A digital analysis is provided by the discretisation of 

equation (3.34) with some simple considerations on the modification of the wavelet pattern by 

dilation. Usually the wavelet function        has no cut-off frequency and it is necessary to 

suppress the values outside the frequency band in order to avoid aliasing effects. We can work in 

Fourier space, computing the transform scale by scale. The number of elements for a scale can be 

reduced, if the frequency bandwidth is also reduced. This is possible only for a wavelet which 

also has a cut-off frequency. The decomposition proposed by Littlewood and Paley provides a 

very nice illustration of the reduction of elements scale by scale. This decomposition is based on 

an iterative dichotomy of the frequency band. The associated wavelet is well localized in Fourier 

space where it allows a reasonable analysis to be made although not in the original space. The 
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search for a discrete transform which is well localized in both spaces leads to multiresolution 

analysis. 

3.3.2 MULTI-RESOLUTION ANALYSIS 

In any discretised wavelet transform, there are only a finite number of wavelet coefficients for 

each bounded rectangular region in the upper half plane. Still, each coefficient requires the 

evaluation of an integral. To avoid this numerical complexity, one needs one auxiliary function, 

the father wavelet        . The sequence of nested subspaces    plays an important role in the 

construction of wavelet functions. These nested subspaces represent the multi resolution of 

wavelet function in      The closed subspaces    for     with the following properties,  

1.                             

2.           
     

3.             

4.         if and only if            

These properties of subspaces are related with scaling relation. Thus, the embedded 

subspaces    essentially reduces the problem of obtaining     

5. Each subspace is spanned by integers translates of a single function,  

                            

Based on the above properties multi resolution analysis, we can conclude that, first we need to 

find the scaling function        . Such that its integer translates              are the 

Riesz bases for the space   . Similarly,         will form a basis for the space   . Thus,  
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From equation (3.37) and (3.38), we can conclude that      . Therefore the basis function of 

space    can be write in terms of basis function    as  

                                                                                                                                            

 

  

 

where           are filter coefficients. The equation (3.39) gives the scaling function      for 

the space   . The basis function    can be defined as  

                                                                   
 
                                                                             

where         are the dilation and translation indices respectively. In the above equation   

represents the frequency content and   represents the time in the analysis of time signal. 

Let us consider the approximation of the function      into the subspace    by the scaling 

function         as      

                                                                                                                                                    

 

  

 

In the above equation (3.41),      are the approximation coefficients and             

Similarly the wavelet function      and its translates            are the Riesz basis for the 

subspace   , can be expressed in terms of basis functions for    as    

                                                                                                                                           

 

  

 

Where               and form the Riesz basis for subspace    can be written as  

                                                                   
 
                                                                             

Let us consider the approximation of the function      into the subspace    by the wavelet  

function          as      
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Here,      are called as detailed coefficients.  

The next step is to obtain the closure subspace        for the subspace    and its orthogonal 

compliment such that  

                                                                                                                                          

where the symbol   represents the direct sum. The above equation (3.45) shows that the 

subspaces           are orthogonal to each other and we can write expression for      . 

                                                                                                                                                      

Using the above procedure, calculate the approximations of the      at higher scale from the 

approximations of lower scale.   
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CHAPTER-4 

WAVELET INTEGRALS 

 

4.1   EVALUATION OF WAVELET INTEGRALS 

Many wavelet algorithms require the evaluation of integrals which involve combination of 

wavelets, scaling functions and their derivatives. We collectively refer to such integrals as 

wavelet integrals. There are a few instances in which wavelet integrals can be evaluated 

analytically. The accuracy and efficiency of the technique used to compute the integrals will 

have a significant impact on the wavelet performance of the wavelet algorithm. For instance 

wavelet-based algorithms for solving differential equations typically lead to integrals involving 

wavelets and their derivatives. Wavelet integrals[8] which are commonly encountered in 

construction of Daubechies compactly supported wavelet algorithms: 

(a) Filter coefficients, 

(b) Wavelet and Scaling function coefficients, 

(c) Moments of Wavelet and Scaling functions  and 

(d) Connection coefficients.   

4.2   CONSTRUCTION OF DAUBECHIES COMPACTLY  

        SUPPORTED WAVELETS  

For a wavelet with compact support, φ(t) can be considered finite in length and is equivalent to 

the scaling filter g. An orthogonal wavelet is entirely defined by the scaling filter - a low-pass 
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finite impulse responce (FIR) filter of length 2N and sum 1. In biorthogonal wavelets, separate 

decomposition and reconstruction filters are defined. For analysis with orthogonal wavelets the 

high pass filter is calculated as the quadrature mirror filter of the low pass, and reconstruction 

filters are the time reverse of the decomposition filters. Daubechies and Symlet wavelets can be 

defined by the filter coefficients. 

Conditions to calculate the filter coefficients: 

1. For uniqueness, normalization is done by considering the area under the scaling function 

to be unity, 

                                                                                                                                                        
 

  

 

The above equation leads to the following condition on the filter coefficients, 

                                                                            

 

  

                                                                             

2. For Daubechies wavelets, the integer translates of scaling functions are orthogonal, i.e., 

                                                                          
 

  

                                                

where             
                     
                  

  

This gives the condition on the filer coefficients as 
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The conditions given by equations (4.2) and (4.4) are not sufficient to get unique set of filter 

coefficients. For an   coefficient system, 
 

 
    equations can get from equations (4.2) and 

(4.4), remaining 
 

 
   equations can get by imposing some conditions on the wavelet functions. 

For Daubechies wavelets, assumed that the scaling functions represents exactly the polynomials 

order  . Where   
 

 
  Therefore the polynomial order   as  

                                                                   
         

                                              

The above polynomial is in expanded form, similar to the equation (3.42) for     and can be 

written as  

                                                                             

 

    

                                                               

Since      are orthogonal to the translates of     , taking inner product of equation (4.6) with 

     gives  

                                                                 

 

    

                                                       

Substitute the equation (4.5) in equation (4.7), we get 

                                       
 

  

                           
 

  

 

  

                         

The above expression is valid for all values of   . Where                  Consider      

and all other      gives  
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The above equation can be written in term of filter coefficients, we get 

                                                
                                                                  

 

    

 

where M is the moment of wavelet function. The scaling functions      are obtained by solving 

recursively the dilation equation (4.2), (4.4) and (4.5). Which can be expanded for DN as, 

                                                                                                 

Above equation can be written as the following equations, 

           (0) = a0   (0) 

          (1) = a0   (2) + a1   (1) + a2   (0) 

          (2) = a0   (4) + a1   (3) + a2   (2) + a3   (1) + a4   (0) 

           …            …                …            

          (N-2) = aN-3    (N-1) + aN-2   (N-2) + aN-1    (N-3) 

          (N-1) = aN-1   (N-1) 

This can also be written in the matrix form, 

            

 
 
 
 
 
 
    
      
      

                 
                 
                 

         
 
 
  

   
   
   

             
                   
             

    

 
    
     

 
 
 
 
 

 
 
 
 
 
 

    

    

    
 

      

       
 
 
 
 
 

 

 
 
 
 
 
 

    

    

    
 

      

       
 
 
 
 
 

                       

The above equation possesses eigenvalue problem and can be solved to obtain   as the 

eigenvector. The matrix A is known as the filter coefficients     and can be solved from 

equations. Filter coefficients are given table for N=22. Where N is the order of Daubechies 

wavelet. The function          in the MATLAB wavelet toolbox gives the filter coefficients. 

Table 1 shows the values of filter coefficients for N=22. 
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4.3   SCALING FUNCTION AND WAVELET FUNCTION   

Scaling functions      and wavelet functions      can be calculate by using the following 

equations, 

                                                                                                                                     

 

  

       

                                                                                   

 

  

                                                        

where              

The following figures are shows the scaling functions and wavelet functions for the 

                   By observing these figures we can say that smoothness increases by 

increasing order of Debauchies.   

Table 4.1: Filter Coefficients for N=22 

Filter Coefficients for N=22 

   0.0264377294333137     0.0443145095659574 

   0.203741535201907     0.0294734895982882 

   0.636254348460787     -0.0217291381089843 

   0.969707536626371     - 0.00472468792819149 

   0.582605597780612     0.00696983509023781 

   -0.229491852355296     -0.000436416206187889 

   -0.387820982791004     -0.00126292559260676 

   0.0933997381355307     0.000352354877907889 

   0.211866179836356     0.0000769884777628895 

   -0.0657325829045156     -0.0000489812643698126 

    -0.0939586317975106     6.35586363589251E-06 
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Figure 4.1(a): Scaling function for N=2. 

 

Figure 4.1(b):  Wavelet function for N=2. 
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Figure 4.2(a):  Scaling function for N=4. 

 

Figure 4.2(b):  Wavelet function for N=4. 
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Figure 4.3(a):  Scaling function for N=12. 

 

Figure 4.3(b):  Wavelet function for N=12. 
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Figure 4.4(a): Scaling Function for N=22 

 

Figure 4.4(b): Wavelet Function for N=22 
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4.4   CONNECTION COEFFICIENTS  

Connection coefficients (  
 ) are integrals involving combination of wavelets and scaling 

functions, their translates and their derivatives. They are frequently encountered during the 

discretization of ordinary and partial differential equations. The classes of wavelets for which 

connection coefficients are usually desired are those wavelets which are orthogonal, biorthogonal 

and compact support. The evaluation of connection coefficients for orthogonal wavelets: 

                                                             
                                                                         

                                                             
                                                                         

4.5   MOMENT OF SCALING FUNCTIONS 

Let     be the     
 
moment of scaling function      

                                                               
 

 
                                      

The moment of scaling functions are easily calculated by using the following  three recursive 

equations given in Amaratunga and Williams (1997) [3], 

Always the zero-th moment,     of      is 1by the normalization of     , 
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Table4. 2:  First order (Ω
1
) and Second order (Ω

2
) connection coefficients for N=22. 

Connection Coefficients for N=22 

  
 
 0   

 
 -3.47337840801057 

  
 
 -0.913209538941252   

 
 2.16026933978281 

  
 
 0.347183551085084   

 
 -0.602653205128255 

  
 
 -0.145808621125452   

 
 0.259980735100996 

  
 
 0.0565725329081428   

 
 -0.113990617900921 

  
 
 -0.0189618931390823   

 
 0.0444431406647273 

  
 
 0.00525147114923078   

 
 -0.0144806539860068 

  
 
 -0.00115026373575154   

 
 0.00377470685481452 

  
 
 0.000188643492331173   

 
 -0.000752954288200255 

   
 

 -0.0000214714239949848    
 

 0.000108557139788138 

   
 

 1.56173825099191E-06    
 

 -0.0000103988485588956 

   
 

 -8.57426004680047E-08    
 

 5.55791376315321E-07 

   
 

 5.88963918586183E-09    
 

 3.72688117300783E-09 

   
 

 3.91513557517705E-10    
 

 -5.40977631679387E-09 

   
 

 -1.13407211122615E-10    
 

 4.73721978304495E-10 

   
 

 -3.25544726094433E-12    
 

 3.16562432692258E-11 

   
 

 -1.60928747640703E-14    
 

 2.31293236538858E-13 

   
 

 -1.06221294110902E-17    
 

 -1.81854918345231E-15 

   
 

 2.4074144309226E-18    
 

 -1.72101206062974E-16 

   
 

 1.95845511016976E-17    
 

 1.70753154840549E-16 

   
 

 -1.16229834607148E-17    
 

 -2.32763511072116E-16 
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Table 4.3: Moment of Scaling Functions for N= 22 

Moment of Scaling Functions for N= 22 

  
   1 

  
   2.31726465941445 

  
  5.36971550177098 

  
  12.2319705607159 

  
   26.8773186714991 

  
   55.6323219714068 

  
  104.846598989408 

  
   169.689702637117 

  
   205.772899131726 

  
   92.0630949558087 

  
    -326.991286254096 
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4.6  IMPACT LOAD 

A discretized impulse time signal      has shown in figure(4.5). The time window varies from 

     to         The duration of time signal is        and it starts at        and ends at       . 

This load signal generated by using Gaussian function in the MATLAB. 

  

Figure 4.5: Discredited impulse time signal 
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CHAPTER 5 

WAVELET BASED SPECTRAL FINITE ELEMENT FORMULATION 

 

5.1   REDUCTION OF WAVE EQUATIONS TO ORDINARY DIFFERENTIAL   

EQUATIONS 

Governing wave equations for higher order composite beam [37] are, 

                                                  
   

   
    

   

   
     

   

   
    

   

   
                                               

                                                     
   

   
     

   

   
 
  

  
                                                                   

                                
   

   
    

   

   
      

  

  
        

   

   
    

   

   
                               

where                         are the axial, transverses and shear displacements respectively.  

                                                                       
   

    

   

                                                     

                                                                    
    

   

                                                               

where                 are the in-plane laminate maduli coefficients,  in-plane/ flexure coupling 

laminate moduli coefficients and flexural laminate stiffness coefficient.              are the 

inertial constants. These constants can be calculated by the following expression.   is the mass 

density ,   is the width of the beam and   is the thickness of each ply of laminate. The force 

boundary conditions associated with the governing differential equations are  

                                                                          
  

  
    

  

  
                                                                

                                                                          
  

  
                                                                     



55 
 

                                                                        
  

  
    

  

  
                                                                

where                          are the axial, transverse force and moment respectively. In 

the formulation WSFE, reduce the governing differential equations (5.1)-(5.3) to ODE using  

Daubechies scaling functions for approximation in time. The displacements 

                         discredited at n points in the time window. Therefore the number of 

sampling points                the time at a particular instant can be obtained by 

                                                                                                                                                                    

where    is the time interval between two sampling points. Approximate the functions 

              and       by scaling functions     at an arbitrary scale as  

                                                                                  

 

                                        

                                                                                                                 

 

        

                                                                                  

 

                                       

Substitute above expressions in the governing wave equations we get  
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Taking inner product of on both sides of above equations with the translates of scaling functions 

        ,  and using their orthogonal properties, we get n simultaneous equations ordinary 

differential equations are 

                          
 

   
     

            

     

       

    
    
   

    
    
   

                                     

                                 
 

   
     

          
    
   

 
   
  

   

     

       

                                                

     
 

   
     

            

     

       

     
   
  

        
    
   

    
    
   

                      

where               ,     is the order of the Daubechies wavelet and     
  ,     

  are the 

first and second order connection coefficients respectively. 

    
                   

    
                   

For compactly supported wavelets these first and second order connection coefficients [8] are 

non zeros at an interval of                       By observing the 

equations(ODEs), the connection coefficients near the boundaries at               lie 

outside the time window [    ]. The falling of these connections coefficients outside the time 

window will create problems with finite length data sequence. Therefore the coefficients at the 

boundary need treatment. This treatment can be done using capacitance matrix and penalty 

function methods [56,57]. To solve this boundary value problem, a wavelet based extrapolation 

scheme proposed by Amaratunga and Williams(1997)[3,71] is used. This method is particularly 

suitable for approximation time for the ease of imposition of initial conditions. The treatment of 
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boundaries for finite domain analysis can be done by using wavelet extrapolation technique. The 

equation (5.11) can be written in matrix algebraic equations and can be solved by conventional 

techniques. The equation (5.11) gives the   algebraic coupled equations.    are known in the 

interval of time 0 to   . Where   varies from         . Out of   algebraic coupled equations, 

some equations contain coefficients    corresponding to     to      . This condition 

shows that, the coefficients    lie outside of the time window [0-  ]. Similarly the same problem 

exist on other boundary for             to      .   

5.1.1   WAVELET EXTRAPOLATION TECHNIQUE  

The   coefficients of Daubechies scaling function has   
 

 
 vanishing moments, and that its 

translates can be combined to give exact representation of polynomial order    . Assume that 

   has a polynomial representation of order     in the vicinity of the left boundary    , we 

have  

                                                                
  

   

   

                                                    

 

 

where    are constant coefficients. By taking inner product of equation (5.12) with        on 

both sides, we get  

                                                      
 

   

   

                                                                  

where   
  are the moment of scaling functions defined in equation (4.17) and solving the 

recursive equations in 4.4. Solve the equation (5.12) using finite difference scheme, we get     

initial values of     . Substitute these      values in equation (5.13) and get the    values in 
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terms of initial values. Like that the unknown coefficients   on LHS can calculate by using the 

following relation 
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Similarly assume the polynomial representation to obtain the unknown coefficients    at the 

RHS as  

                    
 

   

   

                                                                      

The above equation (5.15) can be written in matrix form as  

(5.23)                        
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calculate the    values from the above equation (5.16), and substitute back in equation (5.15) for 

                       , we get   

(5.24)              
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 Finally, after getting the unknown coefficients on LHS and RHS, substitute these unknown
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coefficients in equation (5.9), (5.10) and (5.11), and the system of coupled equations can be 

written in matrix form as  

                                                        
    
   

      
    
   

                                        

                                                                      
    
   

 
   
  

                                                  

                                         
   
  

         
    
   

      
    
   

                     

where    is the first order connection coefficient matrix obtain after using the wavelet 

extrapolation technique.    is the second order connection coefficient matrix[8] evaluated 

independently, and this can also be written as      . This modification of second order 

connection coefficient matrix will helps in the imposition of initial conditions for non periodic 

solutions[43]. The reduced ordinary differential equations (ODE) are coupled in wavelet spectral 

finite element (WSFE). Decoupling of these equations can be done by eigenvalue analysis of 

connection coefficient matrix    and can be written as  

                                                                                                                                                        

Here  is the eigen vector matrix of    and   is the diagonal matrix containing corresponding 

eigenvalues     . Similarly the eigenvalue analysis of second order connection coefficient    

can be written as 

                                                                                                                                                        

Here,   is a diagonal matrix with diagonal terms    
 . These matrices    and    are 

independents of the problem and depends only on the order of wavelet   . After decoupling of 

the equations (5.18),(5.19) and (5.20) can be written as  
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where                     and          . Similarly the force boundary conditions 

given by (5.6)-(5.8) can be written as   

                                                                    
    
  

    
    
  

                                                                   

                                                                      
    
  

                                                                          

                                                                 
    
  

    
    
  

                                                                   

where               and      and    are the transformed force boundary conditions of 

              and        respectively.  

5.1.2   CALCULATION OF WAVE NUMBERS AND WAVE AMPLITUDES 

The parameters such as wave numbers and wave speeds are required to understand the wave 

mechanics in the wave guide and these are required in SFE formulation to know the wave 

characteristics like the wave mode is in propagating mode or damping mode or combination of 

both. This spectral analysis starts with the partial differential equations (5.1)-(5.3) governing the 

waveguide.               and        are the field variables in spatial and temporal 

dimensions. These field variables are transformed to frequency domain by using DFT as  
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Here   is the discrete circular frequency in        ,   is the total number of frequency points 

used in the transformation and    ,     and     are the DFT coefficients, varies with   only.  The 

discrete circular frequency   related with the time window as 

       
   
 

 
 

   
 
 

 
 

where   is the time sampling rate and    is the highest frequency captured by       decides the 

frequency content of the load and considering the wrap around problem and    decides the 

aliasing problem [18]. Substitute the equations (5.36)-(5.38) in equations (5.1)-(5.3), we get 

                                       
         

        
     
   

    
     
   

                                                 

                                                     
         

     
   

 
    
  

                                                          

                      
         

         
    
  

         
     
   

    
     
   

                              

Assuming the solutions of above equations as        
    ,        

     and        
    . 

Here       and    are the constants, later these can be derived from boundary values and k is the 

wave number. Substituting these solutions in equations (5.39)-(5.41), we get 

                                             
        

        
        

                                                   

                                                      
        

                                                                   

                 
        

                      
        

                                         

The above equations can also be write in matrix form, we get  
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These wave numbers k were obtained as a function of circular frequency  , and computation of 

wave numbers are very difficult for higher composite structures due to its coupling of transverse 

and shear displacements and elastic coupling. In order to calculate the wave numbers and 

associated wave amplitudes for such problems have been proposed by S. Gopalakrishnan [21]. 

Singular value decomposition (SVD) and polynomial evaluation problem (PEP) methods are 

used to solve these problems. In this project, PEP method is used to solve the equation (5.42)-

(5.44) and those equations are written in the form PEP in k as   

                                                              
     

                                                              

Here             are the     matrices, where   is the number of independent variables in 

the governing equations. Thus, the PEP is of the order    . In this project,     and    . 

The PEP for equation(5.45) is given as   

                                                                       
                                                                        

where  

    
        
     

        

       
   
      
     

         

     
      

 

      
  

    
       

     

  

By solving the equation (5.47)`using “polyeig” in the MATLAB, gives the eigenvalues and 

eigenvectors. These eigenvalues represents the wavenumbers and eigenvectors represents the 

corresponding wave amplitudes. 

5.2   SPECTRAL FINITE ELEMENT FORMULATION 

The equations (5.39) to (5.41) are solved exactly to get the shape functions in terms of some 

unknown constants. These unknown constants are again solved in terms of boundary values and 

these are useful in the formulation of elemental dynamic stiffness matrix of the transformed 

nodal displacements with transformed nodal forces. 
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Figure 5.1: Composite beam element with nodal forces and nodal displacements 

The above figure shows the beam element with three degrees of freedom such as      ,      and  

     represents the axial, transverse and shear displacements at node1 and node2 respectively and 

    ,      and      are the axial, transverse forces and moments at node1 and node2 respectively. 

The transformed ODEs (5.30) to (5.32) are need to be solved for the    ,     and     and the actual 

solutions       ,        and        are obtained from inverse wavelet transform and solve 

these equations exactly, gives the exact shape functions (interpolating functions) which are  

                   
            

                
            

                
     

       
                                                                                                                    

                  
            

                
            

                
     

       
                                                                                                                   

                 
            

                
            

                
     

       
                                                                                                                 

where L is the length of the element and       and    are the wave numbers corresponding to 

the axial, transverse and shear modes of the element and explained in Mitra & Gopalakrishnan 

(in press)  
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The above equations (5.48)-(5.50) can be written in matrix form as  
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Here       
   is the nodal displacement vector of element at each node. [  ] is the     amplitude 

ratio matrix and this matrix can be obtained by solving the PEP equation (5.47). The solution of 

equation (5.47) gives the eigenvalues and eigenvectors. [  ] is the eigenvector matrix and 

eigenvalues are the wave numbers         and    .     is the diagonal matrix with the 

diagonal elements     xik
e 1  )(-ik1e 

xL  x2-ik
e  )(-ik2e

xL  x3-ik
e  )(-ik3e

xL   and 

                            
  are the unknown coefficients and these are obtained by applying the 

boundary conditions at node 1 and node 2 as shown in figure 5.1. 

Applying the boundary conditions at two nodes of element as shown in figure 5.1 to get 

unknown constants     in terms of nodal displacements. Put     in equation (5.51), gives the 

nodal displacements at node1, and the equation becomes 

                                                                   
                                                                                   

Put     in equation (5.51), gives the nodal displacements at node2, and the equation becomes 
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Here     
                

 
 is the nodal displacement vector at node 1, similarly     

   

             
 
 is the nodal displacement vector at node 2.      and      are the diagonal matrices 

and these are shown in the next page. 
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From equations (5.52) and (5.53), the nodal displacement vector           
      

    of an element 

can be written as 

                                                                 
     

     
                                                                       

where           
      

                            
 
 and                   and similarly 

                 . 

The derivatives of the interpolating functions are given as 
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The above equations (5.55)-(5.57) can be written in matrix form as 
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Here       
   is the nodal force vector of element at each node.     is the diagonal matrix with the 

diagonal elements  xik
e 1  )(-ik1e 

xL  x2-ik
e  )(-ik2e

xL  x3-ik
e  )(-ik3e

xL   and 

                            
  are the unknown coefficients and these are obtained by applying the 

boundary conditions at node 1 and node 2 as shown in figure 5.1. 

Applying the boundary conditions at two nodes of element as shown in figure 5.1 to get 

unknown constants     in terms of nodal forces. Put     in equation (5.58), gives the nodal 

forces at node1, and the equation becomes 

                                                                   
                                                                                   

Put     in equation (5.58), gives the nodal displacements at node2, and the equation becomes 

                                                                   
                                                                                   

Here     
                

 
 is the nodal force vector at node 1, similarly     

                
 
 is the 

nodal force vector at node 2.      and      are the diagonal matrices as given above. 

From equations (5.59) and (5.60), the nodal force vector           
      

  
 
 of an element can be 

written as 
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where           
      

                            
 
 and                   and similarly 

                 . 

 From equation (5.54),  

                                                                                   
                                                                  

Substitute the equation (5.62) in equation (5.61) we get 

                                                                                       
                                                               

The above equation can also be written as 

                                                                         
                                                                          

 where    
   is the elemental dynamic stiffness matrix of size     and this matrix is divided 

into four sub matrices of size    , and rewrite the equation (5.64) as  

                                                          
   
 

   
 
   

   
    

 

   
    

    
   
 

   
                                                               

where    
  and    

  are the nodal force and displacement vectors of the     element at     node. 

5.3   MODELING OF DE-LAMINATION IN COMPOSITE BEAM 

The modeling of embedded de-lamination of the composite beam is done according to the 

method presented by Nag et al.[51]. The following figure 5.2 shows the embedded de-lamination 

of the graphite – epoxy cantilevered beam. 
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where L is the length of the beam,    is the distance between the free end and edge of the de-

lamination,    is the de-lamination length, 2h is the depth of the beam and b is the width of the 

beam. Figure 5.3(a) and 5.3(b) are shows the cross sections of the beam at the end and at the de-

laminated portion of the composite beam  

 

Figure 5.3(a): Cross section at the end                 Figure 5.3(b): Cross section at the de-lamination 

 

Figure 5.4:  Modeling of an embedded de-lamination with base and sub laminates. 

 

Figure 5.5: Representation of the base and sub base laminates by spectral elements. 

Figure 5.2 shows the delaminated composite beam divided into four elements as shown in 

Figure5.4, out of four elements element 1 and element 2 are called as base laminates and element 

3 and element 4 are called as sub laminates. Every element of the beam is considered as 

individual structural wave guides and modeled as coupled composite Timoshenko beam by using 

WSFE method as discussed in previous section. 

From equation (5.65), the nodal force vector for element 1is written as 
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Similarly, the nodal force vector for element 2 is written as 

                                                      
   
 

   
 
   

   
    

 

   
    

    
   
 

   
                                                                  

The kinematic assumption at the interfaces of the base and sub laminates is that the constant 

cross sectional slope. From this assumption, the constant and continuous slope at the two 

interfaces between base laminates and sub base laminates gives relation of nodal displacement 

vector of sub laminates in term of base laminates.  

 

Figure 5.6: Force balance at the interface between base and sub laminate elements. 

From the above Figure, the nodal displacement vector at node 3 and node 5 is written in terms of 

node 4 as 

   
   

   
   
   

   
         

   
   

               
   

   
   
   

   
         

   
   

   

From the above expression    
  and    

  can be written as  
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Similarly, the nodal displacement vector at node 6 and node 8 is written in terms of node 7 as 

   
   

   
   
   

   
         

   
   

               
   

   
   
   

   
         

   
   

  

From the above expression    
  and    

  can be written as  

                                                     
                 

                                                                               

where    
  represents the nodal displacement vector of     element at     node.    and    are the 

transformation matrices in terms of top and bottom sub laminate thicknesses     and    . 

    
    
   
   

                 
     
   
   

   

From the force equilibrium equation at interface AB as shown in figure (5.5)  

                     

   
   
   

   

   
   
   

   
 
 

     

   

   
   
   

   
 
 

      

   
 
 
 
                                                        

The equation (5.70) can be written as  

                                                                                  
       

                                                            

Similarly, the force equilibrium equation at interface CD as shown in figure (5.5) 

                          

   
   
   

   

   
   
   

   
 
 

     

   

   
   
   

   
 
 

      

   
 
 
 
                                                   

The equation (5.72) can be written as 

                                                                                
       

                                                            

The nodal force vector for element 3 is written as 
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Substitute    
  and    

  values in equation (5.74) and pre-multiplying with   
  on both sides, we get 

                                         
  
    

 

  
    

 
   

  
    

     
    

   
  
    

     
    

   
   
   
 

   
                                                             

Similarly, The nodal force vector for element 4 is written as 

                                                      
   
 

   
 
   

   
    

 

   
    

    
   
 

   
                                                                        

Substitute    
  and    

  values in equation (5.76) and pre-multiplying with   
  on both sides, we get 

                                         
  
    

 

  
    

 
   

  
    

     
    

   
  
    

     
    

   
   
   
 

   
                                                             

After calculation of elemental nodal force vectors, assemble the four spectral elements, we get  

 
 
 

 
  
 
 

   
   
    
 
 

 
 

 

 
 
 
 
 
    

                            
                                                                                       

   
    

    
    

      
    

                
    

      
    

               

              
    

      
    

                      
    

    
      

    
            

 

                                                                                
                                       

  
 
 
 
 

 

   
   
   
   

            

Nodal displacements at fixed end are zero i.e. at node 1,       and nodal forces vectors are zero 

at node 4 and node 7. Using these conditions, the equation (5.78) can be written as  

 

   
 
 
   

  

 
 
 
 
 
    

                            
                                                                                       

   
    

    
    

      
    

                
    

      
    

               

              
    

      
    

                      
    

    
      

    
            

 

                                                                                
                                       

  
 
 
 
 

 

 
   
   
   

              

                                                                                                                                                               

where      is the reconstructed dynamic stiffness matrix for the spectral element with embedded 

de-lamination of cantilever composite beam. 
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CHAPTER 6 

NUMERICAL EXAMPLES AND CONCLUSIONS 

 

The wave propagation of the composite beam is obtained by using WSFE as discussed in the 

previous chapter for broad band impulse load as shown in Figure (4.5). These numerical 

experiments are done over an eight layered AS4/3501-6 graphite-epoxy composite beam. The 

properties of AS4/3501-6 graphite-epoxy composite beam are given in the following table 6.1. 

Table 6.1:  Material properties of the Graphite- Epoxy composite beam: 

Material properties 

    141.90  Gpa. 

    9.78   Gpa. 

        6.13   Gpa. 

    4.80   Gpa 

    0.42 

Mass density ( ) 1449  kg/m
3
 

 

The length (L), breadth (2b) and depth (2h) of the beam are 0.5m, 0.01m and 0.01m respectively 

as shown in Figure (5.2). The de-lamination is provided at a distance of 0.25m (  ) from free end 

of the cantilever beam and extends towards the fixed end at mid depth and at various depths 

above the center line of the beam.  
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6.1    WAVE RESPONSES TO THE IMPULSE LOAD  

Wave propagation is studied in a AS4/3501-6 graphite-epoxy cantilevered composite beam due 

to the impulse load applied axially and transversely at the free end. The Figure (6.1) and (6.2), 

shows the axial and transverse velocities in a undamped [  ] cantilever composite beam 

respectively. These velocities are simulated using WSFE with     ,        with total time 

window         and for the length, width and depth of  beam are 0.5m, 0.01m and 0.01m 

respectively.  

 

Figure 6.1: Axial tip velocity of undamaged [  ] composite beam 
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 Figure 6.2: Transverse tip velocity of undamaged [  ] composite beam  

The figure (6.3) and (6.4) shows the axial and transverse tip velocities of the beam of same 

configuration as mentioned in the above plot, but here different length of de-lamination (  ) is 

embedded in the beam and compared with undamaged response. The de-laminations are 

embedded along the centerline of the beam and the de-lamination starts at a distance of 0.25m 

from free end and extends towards fixed end with different length of 10mm and 20mm. From 

figure (6.3), it is clearly observed that, the axial velocity of undamaged beam and de-lamination 

of 10mm and 20mm produced the same response. In case of transverse velocity, the damaged 

responses compared with undamaged response shows the early reflections from the fixed end 

due to its de-lamination and amplitude of these reflected waves increases with increase in the 

length of de-lamination which can be observed from figure (6.4). Figures (6.5) and (6.6) shows 

the axial and transverse tip velocities for undamaged and different length of de-lamination 

(30mm and 40 mm) along the centerline of the eight layered composite beam. 
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Figure 6.3: Axial tip velocities for undamaged and different de-lamination lengths (   =10mm 

and 20mm) along the centerline of [  ] layered composite beam 

 

Figure 6.4: Transverse tip velocities for undamaged and different de-lamination lengths         

(  =10mm and 20mm) along the centerline of [  ] composite beam 
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Figure 6.5: Axial tip velocities for undamaged and different de-lamination lengths (   =30mm 

and 40mm) along the centerline of [  ] layered composite beam 

 

Figure 6.6: Transverse tip velocities for undamaged and different de-lamination lengths         

(  =30mm and 40mm) along the centerline of [  ] composite beam 
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Figure 6.7: Axial tip velocities for undamaged and different position (0.25m and 0.35m) of 

20mm de-lamination from free end and along the centerline of [  ] layered composite beam 

 

Figure 6.8: Transverse tip velocities for undamaged and different position (0.25m and 0.35m) of 

20mm de-lamination from free end and along the centerline of [  ] composite beam 
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The figure (6.7) and (6.8) shows the axial and transverse tip velocities of undamaged beam and 

20mm de-lamination at different positions from the free end and along the centerline of the [  ] 

layered composite beam. From figure (6.7), it is clearly observed that, the axial velocity of 

undamaged beam and 20mm de-lamination at different positions from the free end and along the 

centerline of the composite beam produce  the same response.  From figure (6.8), it can be 

observed that the position of reflections due to the de-lamination changes by changing the de-

lamination position.  

 

Figure 6.9: Axial tip velocities for undamaged and different depths above the centerline (h1=h, 

h1=h/2 and h1=h/4) of 20mm de-lamination of [  ] layered composite beam 

From figure (6.9) it can be observed that the response of undamaged and 20mm de-lamination at 

  =h i.e. at the centerline of the beam is same in the axial tip velocity. The response, for h1=h/2 

and h1=h/4 gives undulations in the axial tip velocity. Where h1 is the depth of de-lamination 

from the top surface of the beam.   
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Figure 6.10: Transverse tip velocities for undamaged and different depths above the centerline 

(h1=h, h1=h/2 and h1=h/4) of 20mm de-lamination of [  ] layered composite beam 

 

Figure 6.11: Axial tip velocities for different orientation (    ,      ,      , and      ) of 

20mm de-lamination along the centerline of composite beam 
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Figure (6.10) shows the transverse tip velocity of  undamaged      composite beam compared 

with different depths above the centerline (  =h,   =h/2 and   =h/4) of 20mm de-lamination of 

beam. Undulations can be observed from figure (6.10) by reducing the    by which number of 

undulations increases and the amplitude of these undulations initially decreases and later on 

increases. In  figure  (6.11) and (6.12), comparing the axial and transverse tip velocities for 

different ply orientation of      ,      ,      , and       layered composite beam with 20mm 

de-lamination along the centerline. From these figures, it can be observed that the amplitude of 

the undulations increases and shifting of these undulations occurs by increasing the ply 

orientation.  

 

Figure 6.12: Transverse tip velocities for different orientation (    ,      ,      , and      ) of 

20mm de-lamination along the centerline of composite beam 
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