
Parallel Algorithms for

Iris Biometrics

Anukul Chandra Panda

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India

Parallel Algorithms for
Iris Biometrics

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

(Research)

in

Computer Science and Engineering

by

Anukul Chandra Panda

(Roll: 608CS403)

under the guidance of

Prof. Banshidhar Majhi

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Department of Computer Science and Engineering

National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

September 6, 2011

Certificate

This is to certify that the work in the thesis entitled Parallel Algorithms for Iris

Biometrics by Anukul Chandra Panda is a record of an original research work

carried out under our supervision and guidance in partial fulfillment of the require-

ments for the award of the degree of Master of Technology (Research) in Computer

Science and Engineering. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Banshidhar Majhi

Professor

CSE department of NIT Rourkela

Acknowledgement

“The will of God will never take you where Grace of God will not protect you.”

Thank you God for showing me the path. . .

I owe deep gratitude to the ones who have contributed greatly in completion of this

thesis.

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Ban-

shidhar Majhi for providing me with a platform to work on challenging areas of parallel

processing and biometrics. His profound insights and attention to details have been

true inspirations to my research.

I am very much indebted to Prof. Sanjay Kumar Jena and Prof. Ashok Kumar

Turuk for providing insightful comments at different stages of thesis that were indeed

thought provoking.

My special thanks go to Prof. Dipti Patra, Prof. Gopal Krishna Panda and

Prof. Bibhudatta Sahoo for contributing towards enhancing the quality of the work

in shaping this thesis.

I would like to thank all my friends and lab–mates for their encouragement and

understanding. Their help can never be penned with words.

Most importantly, none of this would have been possible without the love and

patience of my family. My family to whom this dissertation is dedicated to, has been

a constant source of love, concern, support and strength all these years. I would like

to express my heartfelt gratitude to them.

Anukul Chandra Panda

Abstract

Iris biometrics involves preprocessing, feature extraction and identification phase. In

this thesis, an effort has been made to introduce parallelism in feature extraction

and identification phases. Local features invariant to scale, rotation, illumination

are extracted using Scale Invariant Feature Transform (SIFT). In order to achieve

speedup during feature extraction, parallelism has been introduced during scale space

construction using SIMD hypercube. The parallel time complexity is 𝑂(𝑁2) whereas

sequential algorithm performs with complexity of 𝑂(𝑙𝑠𝑁2), where 𝑙 is the number of

octaves, 𝑠 is the number of Gaussian scale levels within an octave and 𝑁 × 𝑁 is the

size of iris image.

During identification, search time plays a significant role. Indexing is done using

Geometric Hashing of SIFT keypoints. This indexing approach achieves invariance

to similarity transformations, illumination and occlusion. The traditional geomet-

ric hashing technique performs with a time complexity of 𝑂(𝑀𝑛3), where 𝑀 is the

size of the database containing gallery images and 𝑛 being the number of SIFT key-

points detected from an iris image. Here, the time complexity of geometric hashing

approach is reduced by imbibing parallelism during calculation of geometric invari-

ants and storage. SIMD hypercube architecture is used to perform computations in

parallel. The time complexity of parallel geometric hashing approach is reduced to

𝑂(𝑀𝑛2). During the retrieval phase, votes are cast to different gallery iris images.

These vote counts are unordered which requires sorting to find the top 𝑘 matches.

So, parallel sorting (bitonic sorting) of vote counts using hypercube mesh architecture

(𝐻𝑀𝐴) is done to obtain the top 𝑘 ranks among different gallery iris images. The

bitonic sorting performs better than the other sequential sorting algorithms. Parity

based bitonic sort through 𝐻𝑀𝐴 is done to reduce the interprocessor communica-

tion by half. The parity based strategy finds the top 𝑘 ranks with least amount of

interprocessor communication. The time complexity of proposed sorting algorithm

is 𝑂(log22𝑀). Thus, the proposed iris biometric system is comparatively faster and

could find its applicability in various real time scenarios.

Contents

Certificate ii

Acknowledgement iii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Elements in Parallel Processing . 3

1.1.1 Architectural Classification Schemes 3

1.1.2 Model of Communication for Parallel Platforms 6

1.1.3 Interconnection Networks for Parallel Computers 7

1.2 Literature Review . 11

1.2.1 Preprocessing . 12

1.2.2 Feature Representation . 13

1.2.3 Identification . 14

1.3 Problem Definition . 16

1.4 Thesis Organization . 16

2 Parallel Scale Space Creation of SIFT 19

2.1 Scale Invariant Feature Transform (SIFT) 20

2.1.1 Keypoint Detection . 20

2.1.2 Keypoint Descriptor . 24

2.1.3 Keypoint Pairing . 25

v

2.2 Parallel Scale Space Construction using SIMD Hypercube 26

2.3 Asymptotic Analysis . 30

2.3.1 Serial Scale Space Construction 30

2.3.2 Parallel Scale Space Construction 30

2.4 Summary . 31

3 Parallel Geometric Hashing based Indexing 32

3.1 Serial Geometric Hashing based Indexing 33

3.1.1 Geometric Hashing . 33

3.2 Parallel Geometric Hashing using SIMD Hypercube 36

3.2.1 Indexing Phase . 36

3.2.2 Retrieval Phase . 39

3.3 Asymptotic Analysis . 41

3.3.1 Serial Geometric Hashing . 41

3.3.2 Parallel Geometric Hashing 42

3.4 Summary . 43

4 Rank Based Identification using Bitonic Sort 44

4.1 Related Works on Bitonic Sort . 46

4.2 Proposed Bitonic Sorting using Hypercube Mesh Architecture 48

4.2.1 Non–Parity Strategy based Bitonic Sort 49

4.2.2 Parity Strategy based Bitonic Sort 55

4.3 Asymptotic Analysis . 60

4.3.1 Non–Parity Strategy Based Bitonic Sort 60

4.3.2 Parity Strategy Based Bitonic Sort 61

4.4 Summary . 61

5 Conclusions and Future Work 62

List of Figures

1.1 Computing the global sum of 3 partial sums using 4 processors 2

1.2 Flynn’s Classification . 5

1.3 Static Network Topologies . 8

1.4 General Biometric System . 10

1.5 Block Diagram of General Iris Biometrics 10

2.1 Scale space extrema . 22

2.2 Maxima or minima of DOG images 23

2.3 Keypoint detection on annular iris image 24

2.4 Window is taken relative to direction of dominant orientation. This

window is weighted by a Gaussian and histogram is obtained for 4× 4

regions . 25

2.5 𝐴1 and 𝐴2 storing iris images with different sizes and Gaussian filters

with different 𝜎 values, respectively 26

2.6 Mapping of Iris Images and Gaussian Filters to the Hypercube 27

2.7 Broadcast of Different Versions of Images 29

2.8 Broadcast of Gaussian Kernel . 29

2.9 Final Configuration of Hypercube . 29

2.10 Smoothed Images in 𝑙 × 𝑠 (2 × 4) matrix 30

3.1 An instance showing the robustness of geometric hashing to rotation,

scaling and occlusion. 34

3.2 Geometric Hashing for Iris . 35

3.3 Proposed Geometric Hashing . 37

vii

3.4 Mapping of detected keypoints to the shared global memory and 3D

hypercube. 38

3.5 All-to-all broadcast is performed. [0,1,. . .𝑛-1] represents the local mem-

ory of individual processors. 39

3.6 Parallel geometric hashing during iris retrieval phase. 43

4.1 Block diagram finding ranks of individuals using bitonic sort 45

4.2 Types of Comparators . 46

4.3 Sorting network for 8 vote counts for decreasing sequence 48

4.4 Embedding Hypercube to Mesh . 50

4.5 Knuth Diagram for eight vote counts (decreasing sequence) 51

4.6 Non–Parity Based Bitonic Sorting . 54

4.7 Parity Based Bitonic Sorting . 58

List of Tables

3.1 An example showing allocation of 8 keypoints to 8 processors and the

number of computations performed by individual processors. 40

4.1 Inter–Processor Communication in Non–Parity Based Strategy 53

4.2 Local–Global Memory Communication in Parity Based Strategy . . . 59

4.3 Steps involved during Bitonic Sort . 60

ix

Chapter 1

Introduction

Most of the real time applications are computing intensive. To meet the response

time requirements, high speed computers are essential. But the computing speed is

limited by the sequential execution of the application. Hence, it is necessary to exploit

concurrency in the execution of the application to achieve faster execution even with

a single processor. In parallel computers, concurrency is maximally exploited to gain

speedup. Various applications like weather forecasting, remote sensing, biometrics

are associated with massive data inputs and non–linear processing. Further, they are

hard real time systems and hence are better candidates of parallel processing. Parallel

algorithms give a better output to the problems which can be decomposed into sub–

problems. The main goal of decomposing a problem using a divide–and–conquer

strategy is to enable the large task to be completed in less time. This improvement

in time can be achieved by assigning each sub–task to the processors of a parallel

architecture and execute them concurrently.

The performance gain due to the introduction of parallelism is generally measured

by a metrics called speedup. Speedup is a measure that captures the relative benefit

of solving a problem in parallel. It is defined as the ratio of the time taken to solve

a problem on a single processor to the time required to solve the same problem on a

parallel computer with 𝑝 identical processors [1]. Mathematically it can be represented

as,

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

1

Introduction

where, 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 is the time complexity of the algorithm that solve the problem in

parallel using 𝑝 processors and 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 is the time complexity of the sequential algorithm

to solve the same problem.

To understand the importance of parallel algorithms, let us consider a problem to

add 𝑛 elements in parallel with 𝑛 processors. The 𝑖𝑡ℎ element is mapped (distributed)

to the 𝑖𝑡ℎ processor initially. The pairs of processors communicate among each other

in parallel and the partial sum is stored in one of the processors having smaller

processor label. The procedure is repeated until the final sum is computed. The

pictorial representation of finding the sum of four elements using four processors in

parallel is shown in Figure 1.1.

The time complexity (𝑇𝑠𝑒𝑟𝑖𝑎𝑙) for the sum of 𝑛 elements using serial algorithm in

a single processor system is 𝑂(𝑛) and that of parallel algorithm (𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) using 𝑛

processors is given by 𝑂(log2 𝑛) [1], 𝑖.𝑒.,

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑂(log2 𝑛)

𝑇𝑠𝑒𝑟𝑖𝑎𝑙 = 𝑂(𝑛)

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
=

𝑂(𝑛)

𝑂(log2 𝑛)
(1.1)

During parallel computation, interprocessor communication is always prevalent

Figure 1.1: Computing the global sum of 3 partial sums using 4 processors

2

Chapter 1 Introduction

and becomes a bottleneck to the speedup gain. Hence, most of the present parallel

processing research thrust upon reducing this communication overhead to maximize

the speedup. A good parallel algorithm exploits the concurrency and implements the

algorithm using an environment better suited for parallel programming. When an

algorithm runs on a parallel architecture with multiple processors, the results of the

computation are evident in less time.

However, the development of parallel algorithms presents unique challenges. The

dependencies within concurrent tasks must be identified and correctly handled. In

problem solving, a good parallel algorithm must be designed to ensure that nonde-

terministic issues do not affect the quality of the final output. Creating safe parallel

programs can take considerable effort from the programmer. Even when a parallel

program is “correct”, it may fail to deliver the anticipated performance improvement

from exploiting concurrency. Care must be taken to ensure that the overhead incurred

by managing the concurrency does not overwhelm the program runtime. Also, parti-

tioning the work among the processors in a balanced way is often not as easy as the

summation of 𝑛 numbers in parallel. The effectiveness of a parallel algorithm depends

on how well it maps onto the underlying parallel computer. So, a parallel algorithm

could be very effective on one architecture and may be disastrous on another [2].

In this thesis, parallel algorithms at various phases of an iris biometric system

are proposed. Initially, inherent parallelism in the sub–steps is identified and subse-

quently, parallel algorithms are developed. For the sake of completeness, architectural

classification schemes, various models and interconnection networks for parallel plat-

forms are discussed briefly in Section 1.1 before discussing about literature review,

problem definition and thesis organization.

1.1 Elements in Parallel Processing

1.1.1 Architectural Classification Schemes

There are three well–known architectural classification schemes like 𝐹 𝑙𝑦𝑛𝑛’𝑠 classifi-

cation which is based on the instruction streams and data streams in a computer or-

3

Chapter 1 Introduction

ganization, 𝐹𝑒𝑛𝑔’𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 which is based on the serial and parallel processing

and 𝐻�̈�𝑛𝑑𝑙𝑒𝑟’𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 which determines the degree of parallelism and pipelin-

ing in a subsystem. From the above mentioned classifications, 𝐹 𝑙𝑦𝑛𝑛’𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

is very popular and holds a standard [3].

Flynn’s Classification

Computer organizations are characterized by the multiplicity of the hardware provided

to service the instruction and data streams. Flynn’s four machine organizations are

listed below:

(i) Single instruction stream single data stream (SISD)

(ii) Single instruction stream multiple data stream (SIMD)

(iii) Multiple instruction stream single data stream (MISD)

(iv) Multiple instruction stream multiple data stream (MIMD)

The term 𝑠𝑡𝑟𝑒𝑎𝑚 represents a sequence of instructions or data as executed by a sin-

gle processor. An instruction stream is sequence of instructions as executed by the

machine. A data stream is a sequence of data including input, partial or temporary

results used by the instruction stream. Generally, the memory modules provide the

instructions and data. The control unit decodes the instructions and sends to the

processing element (PE). The instruction stream and data stream are stored in the

instruction pool and data pool, respectively. The flow between the data pool and the

PE is bidirectional as shown in Figure 1.2 [3].

(i) SISD computer organization

Most of the serial computers fall under this category (Figure 1.2 (a)). Sequen-

tial execution of instructions takes place but they may be overlapped in the execu-

tion stages (pipelining). One control unit supervises all functional units. IBM 701,

PDP VAX11/780, etc. are few computers falling under this category [3].

4

Chapter 1 Introduction

Instruction Pool

PE

D
at

a
P

oo
l

(a) SISD (b) SIMD

(c) MISD (d) MIMD

Figure 1.2: Flynn’s Classification: (a) Single Instruction Stream Single Data Stream
(SISD) (b) Single Instruction Stream Multiple Data Stream (SIMD) (c) Multiple
Instruction Stream Single Data Stream (MISD) (d) Multiple Instruction Stream Mul-
tiple Data Stream (MIMD)

5

Chapter 1 Introduction

(ii) SIMD computer organization

A single instruction stream is concurrently broadcast to multiple processors, each

with its own data stream (Figure 1.2 (b)). Most of the array processors are classified

under this category. Illiac IV, BSP, PEPE [3] are the most well–known parallel archi-

tectures under this class.

(iii) MISD computer organization

There are multiple processing element, each receiving distinguishing instructions

operating over the same data stream as shown in Figure 1.2 (c). The output of one

processor become the input (operands) of the next processor. This structure has no

practical utility and do not exist in physical world [3].

(iv) MIMD computer organization

Most multiprocessor systems and multiple computer systems fall in this category

(Figure 1.2 (d)). When same data space is shared by all processors, then it is an

MIMD computer system. This organization can be classified into two categories 𝑖.𝑒.

tightly coupled when degree of interactions among the processors is high and loosely

coupled otherwise. The known architectures under this category are IBM 370/168

MP, Univac 1100/80, Tandem/16, etc [3].

1.1.2 Model of Communication for Parallel Platforms

There are two primary forms of data exchange between parallel tasks – accessing a

shared data space and exchanging messages.

Shared–Address–Space Platforms

A common data space that is accessible to all processors is supported by shared–

address–space of parallel platform. This shared address space is interacted by pro-

cessors to modify data objects. Memory in these platforms can be local (exclusive

to a processor) or global (common to all processors). The time taken by a processor

6

Chapter 1 Introduction

to access any memory word in the system is identical is called the Uniform Memory

Access (UMA). On the other hand, if the time taken to access certain memory word

is longer than others, the platform is called Non-Uniform Memory Access (NUMA).

It is important to note the difference between shared–address–space and shared

memory parallel computers. The term shared memory parallel computer is used for

architectures in which the memory is physically shared among all the processors, 𝑖.𝑒.,

each processor has equal access to any memory segment [1].

Message–Passing Platforms

The machine view of a message–passing platforms consist of 𝑝 processors each with its

own exclusive address space. Each of the processors can be either a single processor

or shared–address–space multiprocessor. The interactions between processes running

in different processors must be accomplished using messages; hence, the interaction is

termed as message–passing. Message–passing paradigms support execution on each

of the 𝑝 processors [1].

These two models of communication are very well supported by different intercon-

nection networks of parallel computers.

1.1.3 Interconnection Networks for Parallel Computers

Interconnection networks provide mechanisms for data transfer between processors

or between processors and memory words. Links and switches are used to build

interconnection networks. A link corresponds to physical media such as a set of wires

of fibers capable of carrying data. Interconnection networks is generally classified into

two types namely, static and dynamic. Static networks consist of point–to–point

communication links among processors and are otherwise called as direct networks.

Static networks are classified according to the dimensions. 1–D topologies include

linear array whereas 2–D topologies constitute the ring, star, tree, mesh, etc. 3–D

topologies contain the 3–cube–connected cycle network, 3–cube, etc. The mesh and

the 3–cube are examples of 2–D and 3–D hypercube respectively [3]. A few widely

used network topologies are shown in Figure 1.3.

7

Chapter 1 Introduction

Li
ne

ar
 A

rr
ay

N
ea

r-
ne

ig
hb

ou
r m

es
h

3D
 -

H
yp

er
cu

be

00
0

00
1

01
1

01
0

10
0

01
0

01
1

00
1

00
0

11
1

11
0

10
1

00
0

00
1

00
0

2D
 -

H
yp

er
cu

be

1D
 -

H
yp

er
cu

be

0D
 -

H
yp

er
cu

be

F
ig
u
re

1.
3:

S
ta
ti
c
N
et
w
or
k
T
op

ol
og
ie
s

8

Chapter 1 Introduction

Dynamic networks contain switches and communication links. Communication

links are connected dynamically by the switches to establish a path among processors

and memory words. Dynamic networks are otherwise known as indirect networks

[1]. It is of two types– single stage and multistage. Data manipulator, Omega, flip

n–cube, Benes network, Clos network, etc. are few well–known examples of this ar-

chitecture. Although various architectures with different communication mechanisms

are available, but they are implementation dependent. In turn, these implementations

are dependent on parallel algorithms. It is the job of the parallel algorithm designer

to map different data/tasks to a suitable architecture.

Parallel processing can be applied to many real time applications. Biometrics is

one such application. It involves a substantial amount of image processing opera-

tions and hence, computation intensive. The processing steps are mostly sequential

and interdependent. However, intra–stage computation involves concurrent tasks and

hence is suitable for parallel processing. In this thesis, iris biometrics is considered as

application to exploit the inherent parallelism.

Biometrics is the science of establishing the identity of an individual based on

the physical or behavioral characteristics of the person. It is highly used to discover

the identity of individuals in a group. Biometric traits can be categorized into two

types, namely, behavioral and physiological. Behavioral characteristics related bio-

metric deals with the behavior of a person. Gait, keystroke dynamics, signature and

voice recognition are few well–known instances under this class. Physiological class

helps in recognizing an individual based on anatomy of the body. Face recognition,

fingerprint, palm print, DNA, hand geometry, iris recognition, etc are few examples.

Characterization of a good biometric trait can be done based on its stability, unique-

ness and robustness of the features. A generic biometric system operates by taking an

input image from the user, preprocessing the image to find region of interest, extracts

features, and enrolls/matches the features [4]. A general biometric system operates

in two stages i.e., enrollment and matching. During enrollment the acquired image

(gallery image) is preprocessed to extract region of interest, features are extracted and

stored in the database. During matching stage, the features from the probe image

9

Chapter 1 Introduction

are compared with already stored features to find the potential match. The block

diagram of a general biometric system is shown in Figure 1.4.

Figure 1.4: General Biometric System

Every biometric trait has its own strengths and weaknesses and it is also dependent

on the application scenario. The reliability of a particular biometric trait is relied on

its ability to extract the unique features in an invariant manner. For instance, the

uniqueness of fingerprint features are evident over a passage of time while the features

extracted from face though unique may vary due to its ability to undergo change in

viewing angle, illumination and age [5].

Iris biometric is one such popular trait used worldwide due to its robustness.

Amongst various available biometric traits, iris provide a promising solution to rec-

ognize an individual using unique texture patterns [6]. Iris has been proved to work

efficiently where reliability and invasiveness is a major concern. Iris is a protected in-

ternal organ whose random texture is stable throughout lifetime proving its resistance

to invasiveness. Recognition decisions are made with confidence levels high enough

to support rapid and reliable exhaustive searches through national level databases.

Figure 1.5: Block Diagram of General Iris Biometrics

To generate and store biometric template in the database, image processing tech-

10

Chapter 1 Introduction

niques can be employed to extract unique iris features from acquired image. This

biometric template contains a mathematical representation of unique texture infor-

mation stored in the iris, and allows comparisons to be made between individuals.

When identification of an individual is to be done by an iris recognition system, their

eye is first photographed, and then a template is extracted for their iris region. This

template is then compared with its other counterparts stored in a database to gen-

erate the identity of an individual [6]. A general iris biometric system is shown in

Figure 1.5.

It can be observed that in any biometric system stages like preprocessing, fea-

ture extraction and recognition/verification. The accuracy of any biometric system

depends on the accuracy of these phases performed in sequel. Various schemes sug-

gested by researchers are discussed below in the following section.

1.2 Literature Review

Originally Flom and Safir proposed the idea of automated biometric system in 1987

[7]. The illumination has been changed to make pupil of predetermined size to restrict

the variation in the size of iris. In addition, the authors have suggested some crucial

benchmarks that have influenced the research later. Pattern recognition tools have

been proposed by them to extract iris features and an initial method of finding pupil

has been suggested using static threshold. Daugman developed the first operational

iris biometric system at University of Cambridge in 1994 [8]. To control the change in

illumination, near infrared light source is used for iris acquisition. The next step is to

locate the iris in the image that uses deformable templates. A deformable template

is trained with some parameters and the shape of eye, to guide the detection process

[9]. Daugman assumed iris and pupil boundaries to be a circular in nature. Thus,

the boundary of circle can be described with three parameters: radius 𝑟, center of the

circle (𝑥0, 𝑦0) [5]. The operator is defined as

𝑚𝑎𝑥(𝑟, 𝑥0, 𝑦0)∣𝐺𝜎(𝑟) ∗ ∂

∂𝑟

�
𝑟,𝑥0,𝑦0

𝐼(𝑥, 𝑦)

2𝜋𝑟
𝑑𝑠∣ (1.2)

11

Chapter 1 Introduction

where 𝐺𝜎(𝑟) is a smoothing kernel and 𝐼(𝑥, 𝑦) is the image of the eye. The oper-

ator searches over the image domain (𝑥, 𝑦) for the maximum in the blurred partial

derivative with respect to increasing radius 𝑟 of the normalised contour integral of

𝐼(𝑥, 𝑦) along a circular arc 𝑑𝑠 of radius 𝑟 and centre coordinates (𝑥0, 𝑦0). After the

segmentation of iris , the next step is feature description of iris for comparison. The

variation of the size of iris is a major challenge in iris comparison. The iris represen-

tation should be consistent to change in size, scale, orientation, etc. The iris pattern

undergoes linear deformation due to variation in illumination that causes pupil to

expand or contract and change in orientation of iris due to head tilt, camera position,

movement of eyeball, etc. Daugman has overcome this problem by mapping iris into

dimensionless polar coordinate system [5].

An iris biometric system was developed at Sarnoff labs with a variation to Daug-

man’s approach. For image acquisition, diffused source of light with low level light

camera has been used. Pupil and iris segmentation is done using Hough transform.

For matching of two iris images, the Laplacian of Gaussian filter at multiple scales

have been used by the system to produce template and computes normalised corre-

lation as a similarity measure [10]. Significant research has been done in these three

models of iris recognition which are laid by Flom and Safir, Daugman and Wildes.

This section discusses in detail about the different areas like feature representation

and identification where the concept of parallelism is introduced.

1.2.1 Preprocessing

Preprocessing of iris involves the detection of pupil and iris boundaries which is as-

sumed to be of circular shape. However, few authors have also worked to further

improve localization performance by detecting eyelids/eyelashes [11]. Coarse–to–fine

strategy is proposed by Huang et. al [12] to improve the iris localization time. This

technique detects outer iris boundary in the rescaled image and information regard-

ing iris circles are found. Further many authors have proposed the method to detect

eyelids and eyelashes. Searching of two curves that satisfies polynomial equation of

the form 𝑥(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐, 𝑡 ∈ [0, 1] helps in detecting eyelids. Checking variance

12

Chapter 1 Introduction

for each block detects eyelashes.

Various schemes have been developed as an improvement over traditional Hough

transform. The authors have used canny edge detector with Hough transform to

improve localization speed in [13]. Normal line algorithm is created using canny edges

for detecting center and inner edge. Homocentric circle algorithm is used to detect

outer edge. The authors in [14] have used bisection method to find inner boundary.

Some authors have used thresholding based approaches to find coarse localisation of

pupil. Pixels below a threshold is searched as pupil in [15] and circles in the limited

area is found using Hough transform and edge detection. Further, an automatic iris

segmentation based on local areas is proposed in [16]. In this approach, iris image is

divided into rectangular grid and for each block mean is obtained.

1.2.2 Feature Representation

Features can be of two types, global and local. There already exists several global fea-

ture extraction techniques for iris [17, 18]. The main drawback of global techniques is

that they fail to extract relevant features if there exists significant variations in pose,

illumination and viewpoint of an individual. Local features are invariant to image

scaling and rotation, and partially invariant to change in illumination and viewpoint.

These local features have the capability to perform well under partial occlusions as

well. In order to extract local features from iris, special points known as keypoints

are detected where there can be a corner, an isolated point of local intensity maxi-

mum or minimum, line endings, or a point on a curve where the curvature is locally

maximal. Around the neighborhood of every detected keypoint a descriptor is taken

that represents the feature vector. There are various detector–descriptor schemes to

extract local features like Harris corner detector [19], Scale Invariant Feature Trans-

form (SIFT) [20], Speeded Up Robust Features (SURF) [21], etc. The Harris corner

detector to locate feature points in images has been proposed by Harris and Stephens.

Harris corner detector works brilliantly under occlusion but fails if the image has un-

dergone scale change. David G. Lowe introduced a keypoint detector and feature

descriptor scheme to detect and describe local features called SIFT (Scale Invariant

13

Chapter 1 Introduction

Feature Transform). This feature extraction technique which is based on scale space is

consistent to image scaling, rotation and affine transformation, and partially invariant

to change in illumination and view angle [20]. This local feature extraction technique

contains various steps. The steps are construction of scale space, finding Difference

of Gaussian (DOG) images, keypoint detection, keypoint descriptor assignment and

keypoint pairing.

1.2.3 Identification

During identification, the comparison is made between probe iris image with enrolled

iris in the database. This requires substantial time and needs indexing of the overall

database so that it is partitioned based on some criteria and comparison is made with

a partial subset Indexing hand geometry database using pyramid technique has been

proposed in [22]. It has been claimed to prune the database to 8.86% of original size

with 0% false rejection rate. In [23], an efficient indexing scheme for binary feature

template using B+ tree has been proposed. In [24], a modified B+ tree indexing

for biometric database indexing has been proposed. The higher dimensional feature

vector is projected to lower dimensional feature. The reduced dimensional feature

vector is used to index the database by forming B+ tree. Further, an efficient indexing

technique that can be used in an identification system with large multimodal biometric

database has been proposed in [25]. This technique is based on kd–tree with feature

level fusion which uses the multi–dimensional feature vector. In [26], two different

approaches of iris indexing have been analysed. First one uses the iris code while

second one is based on features extracted from iris texture. In [27], an iris indexing

technique based on the iris color for noisy iris images is proposed. The performance

measures prove the effectiveness of iris color for indexing very large database. A

robust iris indexing approach has been proposed using geometric hashing of Scale

Invariant Feature Transform (SIFT) keypoints [28]. To identify the top 𝑘 matches

during the matching, sorting of the vote counts of the gallery iris images which have

received votes due to the hashing of the probe iris image into the hash table is needed.

From the existing literature, it has been discovered that iris biometrics deals with

14

Chapter 1 Introduction

various features and different matching schemes. In the present thesis, SIFT features

extracted from annular segmented iris is considered. For identification, geometric

hashing is utilized. The overall processing is composed of various stages and each

stage further consists of different phases. They are briefly discussed below,

(𝑎) Preprocessing of the acquired image to find region of interest i.e. 𝑖𝑟𝑖𝑠 [29].

(𝑏) Extraction of SIFT features.

(𝑐) Generation of hash bins during enrollment and matching of probe image is done

by using geometric hashing based indexing scheme.

(𝑑) The top 𝑘 best matches with respect to vote is found using rank based identifi-

cation.

To understand the processes better, each stage is elaborated as,

• Preprocessing

(𝑎) Removal of specular highlights

(𝑏) Localization of Iris (𝑖.𝑒., Pupil and Iris detection)

(𝑑) Removal of eyelids by considering sectored annular region

• Extraction of SIFT Features

(𝑎) Construction of Scale Space

(𝑏) Finding Difference of Gaussian (DOG) images

(𝑐) Location of DOG extrema

(𝑑) Detection of keypoints

(𝑒) Filtering of edge and low contrast responses

(𝑓) Orientation assignment to keypoints

(𝑔) Building keypoint descriptors

• Geometric Hashing based Identification

15

Chapter 1 Introduction

(𝑎) Indexing of gallery images (𝑖.𝑒., Indexing of Geometric Invariants)

(𝑏) Retrieval of potential matches (𝑖.𝑒., Indexing of Geometric Invariants, find-

ing top 𝑘 matches)

1.3 Problem Definition

It has been observed that each stage of the processing itself deals with a good amount

of computation and requires accuracy as well. Almost all the stages are performed

sequentially. Researchers have proposed various schemes in each stage of processing

[20, 29]. A sequential version of geometric hashing followed by rank based identifi-

cation is proposed in [28]. The performance of such a system is well accepted when

the size of database is small. But as the size of database increases, the response time

for an identification or verification increases further. In such a situation, performance

improvement becomes a challenging task. Alternatives to handle this are to use high

speed devices. But its performance is again limited by the sequential execution of each

stage. Hence the remaining option is to exploit the inherent parallelism if exists. In

this thesis, parallel activities in different phases of the biometric system are identified

and parallel algorithms are devised for those phases with a SIMD hypercube.

After rigorous study the following phases are identified to be the candidates for

parallel processing,

(𝑖) Construction of scale space extrema.

(𝑖𝑖) Computation of geometric invariants and mapping of SIFT keypoints into the

hash table.

(𝑖𝑖𝑖) Finding the top 𝑘 best matches using bitonic sort.

1.4 Thesis Organization

The thesis is organized as follows.

16

Chapter 1 Introduction

Parallel scale space creation to extract SIFT keypoints is discussed in Chapter 2.

The first step has inherent parallelism. The keypoints are generally extracted at dif-

ferent scales to get sufficient number of keypoints. The scale space representation

consists of octaves. Each octave again contains different smoothed images, 𝐿. These

smoothed images, 𝐿 are obtained at different values of sigma (𝜎). In [20], these

smoothed images were found in serial. In this chapter, an effort has been made to

parallelize the computation of the smoothed images, 𝐿 using SIMD hypercube.

Chapter 3 deals in the identification phase after extraction SIFT keypoints. This

chapter discusses parallel geometric hashing approach. Geometric hashing is an in-

dexing approach for model based object recognition that uses location of keypoints

which are invariant to similarity transformation as an index to the hash table [30, 31].

Let, 𝑛 keypoints are detected using SIFT. The key advantage of this indexing based

approach is that this technique possesses invariance to various possible transforma-

tions and occlusion. Geometric hashing based approach has two stages: indexing and

recognition phase. In this chapter, parallel calculation of the geometric invariants is

made using SIMD hypercube. These geometric invariants are indexed to the hash

table in parallel.

Chapter 4 discusses the rank–based identification of an individual during the re-

trieval phase of the geometric hashing. After the mapping of geometric invariants of

the probe iris image, the gallery images receive votes. The number of votes that can

be cast to a gallery iris image during retrieval phase is in the range of [0, 𝑛𝐶2(𝑛− 2)],

where, 𝑛 denotes the number of keypoints present in the probe iris image. The num-

ber of gallery iris images which can receive votes are within a range 0 ≤ 𝑚 ≤𝑀 , with

𝑀 being the total number of gallery iris images. Now these vote counts are generally

unordered. So, a parallel sorting can often be used to find top 𝑘 matches. Vote counts

are sorted using both non–parity and parity based strategy to bitonic sorting algo-

rithm using general–purpose parallel architecture called as hypercube mesh parallel

architecture.

17

Chapter 1 Introduction

Finally, Chapter 5 gives the concluding remarks.

18

Chapter 2

Parallel Scale Space Creation of

SIFT

Feature extraction involves simplifying the amount of information required to describe

an iris image. The purpose is real time, high confidence recognition of an individual’s

identity by mathematical analysis of the random patterns that are visible within

the iris from some distance. There are several feature descriptors like Scale Invariant

Feature Transform (SIFT) [20], PCA–SIFT [32], Speeded Up Robust Features (SURF)

[33], etc. which have served brilliantly in describing the features within the iris.

Among available feature extraction techniques, SIFT outperforms its counterparts

due to the following reasons [34].

1. The accuracy of matching is highest for an affine transformation of 50∘ compared

to other descriptors.

2. SIFT based descriptors performs with higher accuracy on the textured images.

3. It possesses strong invariance to blurring.

SIFT has three different phases namely, keypoint detection, keypoint descriptor

assignment and keypoint pairing. In keypoint detection phase, there are various steps

like detection of scale space extrema, keypoint localization and orientation assign-

ment. It has been observed that there exists an inherent parallelism during scale

space construction. A parallel algorithm for this computationally intensive step has

19

Chapter 2 Parallel Scale Space Creation of SIFT

been developed using SIMD hypercube parallel architecture. An asymptotic time

complexity is obtained for serial and parallel implementation. The sequential phases

involved in SIFT are discussed in Section 2.1. Section 2.2 describes the proposed

parallel scale space algorithm. The comparative time complexity analysis is discussed

in Section 2.3.

2.1 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) is a keypoint detector and feature descriptor

scheme. This algorithm works in applications like object recognition, robotic mapping

and navigation, biometrics, image stitching, 3D modeling, gesture recognition, video

tracking, and match moving. Owing to its advantages SIFT could find its applicability

in biometrics [29, 35, 36].

The local features from an iris image are computed using cascade filtering approach

that minimizes the feature extraction cost by applying more expensive operations at

locations that pass an initial test. The feature vector is generated by performing the

phases as outlined in the following subsections:

2.1.1 Keypoint Detection

The keypoint detection begins with finding potential keypoints that are invariant to

scale and orientation. For each detected keypoint the location and scale is determined.

Image gradients help in assigning orientations to each location. The steps involved in

keypoint detection are outlined with explanation in the following subsections.

Detection of Scale Space Extrema

The first step of keypoint detection is to find the positions and scales that can be

iteratively assigned under different viewing of same object. Identification of locations

consistent to scale change of the image can be found by exploring stable features

across different scales using a continuous function of scale known as scale space [20].

The only possible scale space mask is the Gaussian function. To define the scale space,

20

Chapter 2 Parallel Scale Space Creation of SIFT

input iris image (𝐼) is convolved with Gaussian kernel 𝐺(𝑥, 𝑦, 𝜎) as defined by

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (2.1)

where ∗ is the convolution operation and 𝜎 defines the width of Gaussian filter. The

smoothed images, 𝐿(𝑥, 𝑦, 𝜎) is obtained by convolving the Gaussian kernel with the

iris image. The Difference of Gaussian (DOG) images are computed from two nearby

scales differentiated by constant multiplicative factor 𝑘

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎)− 𝐿(𝑥, 𝑦, 𝜎) (2.2)

The scale space is divided into various octaves. An octave is represented by a series

of smoothed image, 𝐿 which is obtained by convolving the iris image with Gaussian

with different values of 𝜎 varied by a constant factor. The total number of Gaussian

scale levels within an octave are denoted by 𝑠. A constant number of Gaussian scale

levels are found in each octave. The subsequent octave is obtained by downsampling

the input iris image size by half and generating the Gaussian scale levels using equa-

tion 2.1 as shown in the Figure 2.1. This step is iterated for 𝑙 such octaves. The serial

scale space construction algorithm is given in Algorithm 1. This technique is found

to be conducive for annular iris images since the size of iris is viable to change owing

to pupil contraction and expansion. The parallelism can be exploited both within

octave (Gaussian scale level computation) and across octave simultaneously.

Algorithm 1: Serial Scale Space Construction

Result: Serial Computation of Smoothed Image, 𝐿

for Each Octave (𝑙) do1

for Each Scale (𝑠) do2

Convolve input image with Gaussian kernel3

Downsample the input image by half4

Firstly, the calculation of the smoothed image, 𝐿 (Gaussian scale levels) within the

octave are found with changed values of 𝜎. Each Gaussian scale level is independent

21

Chapter 2 Parallel Scale Space Creation of SIFT

Figure 2.1: Scale space extrema for different octaves. Adjacent Gaussian images are
subtracted to produce DOG images on right

of the other since the smoothed image is found for varied values of 𝜎 and hence, 𝐿

is found in parallel using different processors. The same operation is carried out for

change in scales within all 𝑙 octaves.

Secondly, the parallelism can also be introduced across octaves. The present octave

always receives the iris image with half the image size of the previous octave. This

dependency can also be avoided by performing parallel computation for 𝑙 octaves.

These two parallelism can simultaneously be exploited by taking a SIMD Hypercube

which is discussed in detail in Section 2.2.

Keypoint Localization

DOG iris images which are found in different octaves are used to detect landmark

points with the help of local maxima or minima across different scales. Each sam-

ple point in DOG image is compared to eight neighbors in current image and nine

neighbors in the scales (above and below). The sample point is chosen as a candidate

keypoint that is either a local maxima or minima in 3× 3× 3 regions at current and

adjacent scales as shown in Figure 2.2. Once the candidate keypoints are detected

the next step is to reject keypoints with edge and low contrast responses. In [20], it

22

Chapter 2 Parallel Scale Space Creation of SIFT

C
ha

ng
e

in
 s

ca
le

Figure 2.2: Maxima or minima of DOG images are obtained by comparing sample
point (marked as red) to 26 neighbors in 3× 3× 3 region

has been found that keypoints with low contrast are sensitive to noise or are poorly

localized, hence they should be discarded.

Orientation Assignment

In the previous step, an effort has been made to make features invariant to scale.

However, in order to mitigate the effect of rotation, orientation assignment is used.

In this step, local image gradient is used to assign one or more orientations to the

keypoints. In this step, the keypoint descriptor is represented with respect to the

orientation and therefore achieves invariance to image rotation. A gradient orienta-

tion histogram is computed in the neighbourhood of keypoint to determine keypoint

orientation. The scale of keypoint is used to select Gaussian smoothed image 𝐿 for

achieving the computation in scale invariant manner. For each Gaussian smoothed

image 𝐿(𝑥, 𝑦), magnitude 𝑚(𝑥, 𝑦) and orientation 𝜃(𝑥, 𝑦) are computed using the pixel

level differences as

𝑚(𝑥, 𝑦) =
√
(𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1))2 (2.3)

𝜃(𝑥, 𝑦) = tan−1

(
𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦)

)
(2.4)

The magnitude and orientation calculations for the gradient are done for every

23

Chapter 2 Parallel Scale Space Creation of SIFT

(a) (b)

Figure 2.3: Keypoint detection on annular iris image using SIFT (a) Detected key-
points at different scales, (b) Scale and orientation of keypoints are indicated by
arrows

pixel in a neighboring region around the keypoint in the Gaussian–blurred image 𝐿.

An orientation histogram is formed with 36 bins such that each bin covers 10 degrees.

Each sample in the neighboring window is weighted by gradient magnitude and Gaus-

sian weighted circular window with 𝜎 of 1.5 times of scale of keypoint before adding

it to orientation histogram. The peaks in this histogram correspond to dominant ori-

entations. Once the histogram is filled, the orientations corresponding to the highest

peak and local peaks that are within 80% of the highest peaks are assigned to the

keypoint. This is done to increase stability during matching [20].

2.1.2 Keypoint Descriptor

Once orientation has been selected, the feature descriptor vector for each keypoint is

computed such that the descriptor is highly distinguishing and partly consistent even

under change in illumination, viewpoint, etc. Initially, a set of orientation histograms

on 4×4 pixel neighborhoods are created. The orientation histograms are relative to

the keypoint orientation as shown in Figure 2.4. The histogram contains 8 bins each

and each descriptor contains an array of 16 histograms around the keypoint. This

generates SIFT feature descriptor of 4× 4× 8 = 128 elements.

24

Chapter 2 Parallel Scale Space Creation of SIFT

Figure 2.4: Window is taken relative to direction of dominant orientation. This
window is weighted by a Gaussian and histogram is obtained for 4× 4 regions

2.1.3 Keypoint Pairing

Let 𝑝 = {𝑝1, 𝑝2, 𝑝3...𝑝𝑛} and 𝑞 = {𝑞1, 𝑞2, 𝑞3...𝑞𝑛} be 𝑛 dimensional feature descriptor

for each point from gallery and probe images respectively. The Euclidean distance

between 𝑝 and 𝑞 is defined as,

𝐷(𝑝, 𝑞) =

√√√⎷ 𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 (2.5)

where 𝑛 is 128 dimensional feature descriptor. The naive approach to nearest neighbor

matching is to simply iterate through all points in the database to determine the

nearest neighbor.

25

Chapter 2 Parallel Scale Space Creation of SIFT

Figure 2.5: 𝐴1 and 𝐴2 storing iris images with different sizes and Gaussian filters with
different 𝜎 values, respectively

2.2 Parallel Scale Space Construction using SIMD

Hypercube

During scale space creation, there are various octaves which divides the scale space.

Each octave contains different Gaussian scale levels. Each Gaussian scale level pro-

duces smoothed image, 𝐿 by the convolution of iris with Gaussian kernel at a particu-

lar scale (𝜎). For instance, the 𝐿𝑡ℎ
𝑖 smoothed iris image is obtained by the convolution

of input iris image (𝐼𝑗) with Gaussian kernel (𝐺𝑖) at scale (𝜎𝑖), where 0 ≤ 𝑖 ≤ 𝑠 − 1

and 0 ≤ 𝑗 ≤ 𝑙−1. This same operation is iterated across different octaves to obtain 𝐿

. Octave𝑗+1 receives the input image size that is half the input iris image size of

Octave𝑗 . The size of iris image and the number of octaves is always known a priori

to execution. So, the inter–dependency between the octaves is eliminated by storing

the different sizes of iris image in an array.

The (𝑝 + 1)𝑡ℎ position stores half the iris image size stored in 𝑝𝑡ℎ position of the

array (𝐴1) and the Gaussian kernels for change in 𝜎 are stored in array (𝐴2). So, 𝐴1

stores 𝑙 versions of iris images based on the number of octaves. Similarly, 𝑠 Gaussian

filters with different 𝜎 values are stored in 𝐴2 based on the number of Gaussian scale

levels (𝑠). The states of array 𝐴1 and 𝐴2 for two octaves and four Gaussian scale

levels within the octave are shown in Figure 2.5.

The scale space representation with 𝑠 Gaussian scale levels for 𝑙 octaves can be

constructed using an 𝑙𝑠–processor hypercube (assume, 𝑙𝑠 = 2𝑥). The application of

26

Chapter 2 Parallel Scale Space Creation of SIFT

Figure 2.6: Mapping of Iris Images and Gaussian Filters to the Hypercube

hypercube facilitates in achieving both the parallelism simultaneously. The iris image

labeled as 𝑗 is mapped to the ((𝑗 + 1)𝑠− 𝑠)𝑡ℎ processor of the hypercube. Similarly,

𝑖𝑡ℎ Gaussian filter is mapped to the 𝑖𝑡ℎ processor of the hypercube. Figure 2.6 shows

the mapping of iris image and Gaussian filters for two octaves and four Gaussian scale

levels within octave. The content of ((𝑗 + 1)𝑠 − 𝑠)𝑡ℎ processor of the hypercube is

broadcast to processors spanning from ((𝑗+1)𝑠−(𝑠−1)) to ((𝑗+1)𝑠−1) using recursive
doubling. The broadcast takes log2 𝑠 steps. Similarly, 𝑖𝑡ℎ Gaussian filter present in

𝑖𝑡ℎ processor is broadcast to the processor with empty local memory having label of

the processor as 𝑖 after performing the operation 𝑖.𝑒., (𝑖 % 𝑠) . The broadcast takes

log2 𝑙 steps using recursive doubling mechanism.

27

Chapter 2 Parallel Scale Space Creation of SIFT

Algorithm 2: Parallel Scale Space Construction

Result: Parallel Computation of Smoothed Image, 𝐿

Store the iris images in array 𝐴11

Store the Gaussian filters in array 𝐴22

Map 𝑗𝑡ℎ iris image to ((𝑗 + 1)𝑠− 𝑠)𝑡ℎ processor of the hypercube3

Map 𝑖𝑡ℎ Gaussian filter to 𝑖𝑡ℎ processor of the hypercube4

if 𝑦 ≤ ((j + 1)s -1) and y ≥ (j + 1)s - (s+1) then5

Perform broadcast of iris image at ((𝑗 + 1)𝑠− 𝑠)𝑡ℎ to 𝑦𝑡ℎ processor using6

recursive doubling

if (𝑖 mod 𝑠) == 𝑖 then7

Perform broadcast of the 𝑖𝑡ℎ Gaussian filter to the (𝑖 𝑚𝑜𝑑 𝑠)𝑡ℎ processor8

using recursive doubling

Convolve iris image with Gaussian filter in parallel in the hypercube9

Store the calculated smoothed image, 𝐿 in a 𝑙 × 𝑠 matrix10

The broadcast of images and Gaussian kernels among the processors are shown

in Figure 2.7 and 2.8 respectively. The 0𝑡ℎ iris image is broadcast to 1𝑠𝑡 processor as

shown in Figure 2.7 (a). Later 0𝑡ℎ and 1𝑠𝑡 processor concurrently broadcast their con-

tent to 2𝑛𝑑 and 3𝑟𝑑 processors as shown in Figure 2.7 (b). The same communications

can be performed for other images simultaneously in other octaves. The communi-

cation of Gaussian filters across different processors can performed in similar way.

These communications across processors take 2 (𝑖.𝑒., log2 4) and 1 (𝑖.𝑒., log2 2) steps

for broadcasting images and Gaussian kernels respectively. Figure 2.9 shows the final

configuration of the processors. Since each processor contains iris image, 𝐼 and the

Gaussian filter, 𝐺, hence, the convolution take place in each processor concurrently

yielding different smoothed image 𝐿. After obtaining the smoothed images they are

stored in an 𝑙 × 𝑠 matrix as shown in Figure 2.10 and from which the DOG images

are found in serial. Algorithm 2 outlines the steps involved in parallel scale space

construction.

28

Chapter 2 Parallel Scale Space Creation of SIFT

(a) (b)

Figure 2.7: Broadcast of Different Versions of Images

Figure 2.8: Broadcast of Gaussian Kernel

Figure 2.9: Final configuration of hypercube after broadcast. The local memory
contains the iris image and Gaussian Filter required to find smoothed image, 𝐿

29

Chapter 2 Parallel Scale Space Creation of SIFT

2 X 4 Matrix for
Smoothed Images

Figure 2.10: Smoothed Images in 𝑙 × 𝑠 (2 × 4) matrix

2.3 Asymptotic Analysis

2.3.1 Serial Scale Space Construction

The construction of the octaves involves the following steps:

1. The calculation of smoothed iris image, 𝐿 involves a convolution at a value 𝜎.

The convolution generally takes a time complexity of 𝑂(𝑁2), where 𝑁 × 𝑁 is

the size of the input iris image.

2. The calculation of 𝑠 Gaussian smoothed iris image, 𝐿 take place at different

values of 𝜎 which is changed by a constant factor. So, the time complexity now

becomes 𝑂(𝑠𝑁2).

3. The above two operations are iteratively applied across 𝑙 octaves.

Hence, the total time complexity of these serial operations denoted as 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 is𝑂(𝑙𝑠𝑁2)

i.e., 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 = 𝑂(𝑙𝑠𝑁2)

2.3.2 Parallel Scale Space Construction

The time complexity of parallel octave creation with 𝑙 octaves and 𝑠 scale levels using

SIMD hypercube is given as

30

Chapter 2 Parallel Scale Space Creation of SIFT

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = log2 𝑙 + log2 𝑠+𝑁2 (2.6)

= 𝑂(𝑁2)

The various terms of the above equation are,

1. log2 𝑙 is number of computations to broadcast the iris images

2. log2 𝑠 is the number of computations to broadcast the Gaussian function

3. 𝑁2 denotes the number of computations to perform convolution operation in

each of the hypercube in parallel

Speedup is given as,

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙
𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

=
𝑂(𝑙𝑠𝑁2)

𝑂(𝑁2)

2.4 Summary

In this chapter, parallelism has been introduced both within and across octaves using

𝑙𝑠–processor SIMD hypercube. This was possible due to the independence of different

scale levels within the octave and the independence of various octaves. This has

enabled a speedup of 𝑙𝑠 between parallel and serial scale space construction where 𝑙

denotes the number of octaves and 𝑠 represents the number of Gaussian scale levels

within an octave.

31

Chapter 3

Parallel Geometric Hashing based

Indexing

Automatic identification of an individual is an area of keen interest among the re-

searchers. Among several existing biometric traits, iris performs with enhanced ac-

curacy and reduced time [5]. Visually recognizing an individual reliably through iris

has become an intriguing approach when an image is captured at a very short dis-

tance. A generic iris biometric system extracts features from the input image and

performs identification by comparing the probe template with all templates stored in

the database. The number of false acceptances grows significantly due to the increase

in the size of the database. Further, the time required to find the identity of an indi-

vidual is directly proportional to the size of the database [22]. Thus, there is stringent

requirement to minimize the time required to claim identification.

In this chapter, an effort has been made to provide an effective indexing approach

that is unaffected to possible coordinate transformation and partial obstruction. Ge-

ometric hashing is a model based object recognition indexing technique in which the

location of the keypoints are used [30]. In this technique, the position of the keypoints

remains unchanged under similarity transformation. During retrieval, the location of

the keypoints are computed for probe image and indexed into the hash table to find

the possible matches. The primary reason behind the popularity of geometric hashing

is its searching speed and recognition of object efficiently. Owing to above–mentioned

32

Chapter 3 Parallel Geometric Hashing based Indexing

advantages, geometric hashing can be very efficiently used in the field of biometrics.

Geometric hashing has already been applied to iris biometrics for indexing database

during identification [28]. In this chapter, an effort has been made to introduce the

concept of parallelism using shared SIMD hypercube [37].

The rest of the chapter is organized as follows. Section 3.1 discusses the traditional

geometric hashing approach applied on the iris image to find the identity of an indi-

vidual. The proposed parallel geometric hashing is discussed in detail in Section 3.2.

The asymptotic analysis of the two approaches is compared in Section 3.3.

3.1 Serial Geometric Hashing based Indexing

The concept of geometric hashing have been proposed originally for indexing. The fea-

tures are matched against the set of features available in the database. This technique

performs well in case the probe image has undergone various possible transformations

and occlusion compared to its database counterpart. Geometric hashing is a well

known approach for model based object recognition and is even successful in finding

its applicability to iris indexing [28]. In this approach, the keypoints are detected us-

ing Scale Invariant Feature Transform (SIFT) [20]. The detected keypoints are used

for indexing using geometric hashing. The detailed description of traditional indexing

approach is given below.

3.1.1 Geometric Hashing

Geometric hashing is an indexing technique for object recognition that uses location

of keypoints which are invariant to similarity transformation as an index to the hash

table [30, 31]. The extracted keypoints are used for indexing the database using the

spatial location. The transformed locations are stored into 2–D hash table. The key

advantage of geometric hashing over other indexing approaches is that this technique

possesses invariance to various possible transformations and occlusion. Thus, if the

probe iris image is transformed, the keypoints are indexed to the same entries of the

hash table as shown in Figure 3.1. The steps involved are indexing and retrieval and

33

Chapter 3 Parallel Geometric Hashing based Indexing

Figure 3.1: An instance showing the robustness of geometric hashing to rotation,
scaling and occlusion.

are described below.

Indexing

The detected keypoints (𝑘) on annular iris image are used for indexing the database

as shown in Figure 3.2(a). Using orthonormal bases for coordinate system, two points

(𝑘1 and 𝑘2) are chosen as basis pair (Figure 3.2(b)) and remaining points are trans-

formed using

𝑃 − 𝑃 𝑖
0 = 𝑢𝑃 𝑖

𝑥 + 𝑣𝑃 𝑖
𝑦 (3.1)

where 𝑃 = [𝑥 𝑦] is the keypoint to be indexed, (𝑢, 𝑣) is the location of 𝑃 after similarity

transformation. 𝑃 𝑖
𝑥 and 𝑃 𝑖

𝑦 are defined by

𝑃 𝑖
𝑥 =

𝑘2 − 𝑘1
2

(3.2)

𝑃 𝑖
𝑦 = Rot90(𝑃

𝑖
𝑥) (3.3)

where Rot90 refers to rotation of coordinate locations by 90 degrees. The midpoint

34

Chapter 3 Parallel Geometric Hashing based Indexing

𝑃 𝑖
0 between 𝑘1 and 𝑘2 is defined by,

𝑃 𝑖
0 =

𝑘1 + 𝑘2
2

(3.4)

50 100 150

20

40

60

80

100

120

140

160

180

50 100 150

20

40

60

80

100

120

140

160

180

k
1

k
2

50 100 150 200 250

50

100

150

200

250

Figure 3.2: Geometric Hashing for Iris. (a) Detected keypoints on annular iris image,
(b) Selection of basis pair (𝑘1 and 𝑘2) (c) Transformed coordinates with respect to 𝑘1
and 𝑘2 as basis pair.

The transformed points with respect to basis pair (𝑘1 and 𝑘2) is shown in Fig-

ure 3.2(c). For the formation of hash table, all possible ordered basis pairs of an

iris image are selected to obtain transformation invariant coordinates (𝑢, 𝑣) of the

remaining points (𝑥, 𝑦). The hash bin occupancy for the hash table is non–uniform

and consists of peak that accumulates large number of entries. Wolfson and Rigoutsos

have proposed an efficient technique for uniform distribution of entries in the hash

table [30]. This approach has been used in [28] to have uniform distribution of entries

over the hash table. The hash table at (𝑢, 𝑣) contains entry of 3–tuple form (𝑀, 𝑘1, 𝑘2)

for each iris image 𝑀 with basis pair
−−→
𝑘1𝑘2.

Retrieval

During identification, iris images that have close proximity with the probe image

are retrieved from the database. The probe image is preprocessed to detect annular

portion of iris. The keypoints are localized on the annular probe iris image and

arbitrarily two keypoints are chosen as ordered basis pair and transformed such that

its midpoint coincides with the center of origin with direction in the positive 𝑥 axis.

The magnitude of basis vector has unit length. The coordinates of remaining keypoints

are determined using equation (3.1) for a chosen basis pair. Each transformed entry is

quantized and mapped to the hash table. For each entry found in the corresponding

35

Chapter 3 Parallel Geometric Hashing based Indexing

hash table bin, a vote is cast. The basic assumption is that in case the probe image

contains basis pair that corresponds to that of model image from database and then

it is expected to receive votes from all other unoccluded points. The total number

of votes for various basis pairs corresponding to each model image is determined. If

the number of votes received for each model images are greater than a threshold (𝜆)

then these images are considered to be potential matches for probe image. Further

the keypoint descriptor for probe and candidate model images are compared to find

top best matches.

3.2 Parallel Geometric Hashing using SIMD Hy-

percube

The geometric hashing discussed earlier is an efficient approach for performing iris

identification in reduced time. However, this approach has a scope to further improve

in terms of time by imbibing underlying parallelism. The work proposed in this

chapter is an extension of geometric hashing based indexing proposed by Mehrotra et

al. [28]. This chapter highlights the scope of parallelism at indexing as well as retrieval

phase. The primary differences between the proposed work and traditional geometric

hashing approach for iris has been outlined as follows. Firstly, during indexing phase,

geometric invariants are computed and indexed into the hash table in parallel for

each basis pair using SIMD hypercube. This significantly improves running time in

contrast to indexing phase of traditional geometric hashing. Secondly, during iris

retrieval the keypoints from probe image are used to compute geometric invariants to

cast votes for the corresponding entries in the hash table in parallel. These two steps

in parallel provide a significant improvement in computation time. Block diagram of

the proposed model is shown in Figure 3.3.

3.2.1 Indexing Phase

The indexing approach discussed in Section 3.1.1 can be made parallel during the

calculation of transformed locations (𝑢, 𝑣) for each basis pair (𝑘𝑖 and 𝑘𝑗). In the pro-

36

Chapter 3 Parallel Geometric Hashing based Indexing

I1 2 3
I2 4 5

I1 1 2
I1 2 3

I4 7 9
I4 11 15

I2 7 8
I1 11 17

I1 2 3
I2 4 5

I1 2 3
I2 4 5

I6 11 17
I5 41 51

Gallery Image

Probe Image

Hash Table

SIFT Keypoints

SIFT Keypoints Geometric Invariants

Geometric Invariants

Top Best MatchesComputation in Parallel

Storage

Casting Votes

Figure 3.3: Proposed geometric hashing: Solid arrows indicate serial computation and
dotted arrows represent parallel computation.

posed approach hash bin entry is computed in parallel using 𝑛–dimensional hypercube

SIMD computer [37, 38]. The process starts with assigning a label to each keypoint

(0 ≤ 𝑘 ≤ 𝑛−1) which are already computed and stored in a shared global memory as

shown in Figure 3.4. The keypoints on the shared memory are mapped to local mem-

ory of each processor within the hypercube having same index using static mapping

scheme [38]. Static mapping is used when the number of keypoints to be distributed

among processors is known prior to indexing. For static mapping, data partitioning is

generally done using arrays and graphs. In this approach, block distribution is used to

assign uniform contiguous portions of an array (represented as shared global memory)

to different processors. For instance, the 𝑘𝑡ℎ point on the shared global memory is

mapped to 𝑘𝑡ℎ processor of the hypercube. The reason for storing the keypoints on

shared memory is to enable concurrent access by all the processors.

Here all-to-all broadcast is performed by using recursive doubling to store the 𝑛

keypoints in local memory of each processor so that it contains its own information

and the information of other processors in the hypercube [38]. The local memory of

individual processors is represented by square brackets as shown in Figure 3.5. After

allotting 𝑛 keypoints to 𝑛 processors geometric hashing is used to perform indexing.

In the serial geometric hashing approach, for each choice of basis pair (𝑘𝑖 and 𝑘𝑗)

37

Chapter 3 Parallel Geometric Hashing based Indexing

Shared Global Memory0 7654321

Iris Keypoints

6

2

7

3

5

10

4

3D Hypercube

.....

Figure 3.4: Mapping of detected keypoints to the shared global memory and 3D
hypercube.

the remaining (𝑛 − 2) keypoints are transformed as discussed in Section 3.1.1. This

computation requires 𝑛𝐶2 operations to be performed serially, hence expensive. Thus,

in the proposed parallel geometric hashing approach, each basis pair (𝑘𝑖 and 𝑘𝑗) is

allotted to 𝑖𝑡ℎ processor with other (𝑛−2) keypoint locations. The reason for choosing

all-to-all broadcast is to perform independent computation of geometric invariants

(using equation 3.1) by individual processors. As it has already been mentioned by

the authors in [30] that the basis pair should be chosen with positive 𝑥 direction.

Thus, each processor performs atmost (𝑛− 𝑖− 1) computations to find the geometric

invariants for allotted basis pairs. Table 3.1 shows the allocation of basis pair to each

processor. Due to parallel execution and novel mapping strategy the time required

to perform indexing reduces significantly. The invariants are indexed into 2-D hash

table and each entry is represented by 3-tuple (M, 𝑘𝑖, 𝑘𝑗). Algorithm 3 outlines the

steps involved in parallel indexing phase.

38

Chapter 3 Parallel Geometric Hashing based Indexing

Algorithm 3: Parallel Indexing Phase

Result: Computation and storage of geometric invariants in hash table

for Each of 𝑀 iris images do1

𝑛 keypoints are extracted using SIFT2

Map 𝑛 keypoints to shared global memory3

All-to-all broadcast is performed4

Choose two keypoints as basis pair (𝑘𝑖 and 𝑘𝑗) and assign to 𝑖𝑡ℎ processor5

Compute geometric invariants (𝑢, 𝑣) for each basis pair using equation (3.1)6

in parallel

Store 3-tuple entry (M, 𝑘𝑖, 𝑘𝑗) at (𝑢, 𝑣) in the hash table7

3.2.2 Retrieval Phase

During retrieval phase, the keypoints (𝑛) are extracted from probe iris image (𝑞).

The 𝑖𝑡ℎ keypoint is mapped to 𝑖𝑡ℎ processor of the hypercube using the same mapping

scheme as discussed in Section 3.2.1. Two points are chosen as basis pair and geometric

invariants are obtained for remaining (𝑛 − 2) keypoints in parallel as discussed in

Algorithm 3. The invariants (𝑢, 𝑣) are used to index into the hash table and for

each entry found, a vote is cast as shown in Figure 3.6. As parallel computation

during vote counting requires virtual processor set associated to each hash bin entry,

this is quite costly for hash table with large number of bins. Further, concurrent

updation of votes by independent hash bin entry (represented as a processor) may

6

2

7

3

5

10

4

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

Figure 3.5: All-to-all broadcast is performed. [0,1,. . .𝑛-1] represents the local memory
of individual processors.

39

Chapter 3 Parallel Geometric Hashing based Indexing

Table 3.1: An example showing allocation of 8 keypoints to 8 processors and the
number of computations performed by individual processors.

Processor Basis Remaining No.of
id Pair Points Computations

0

0 1 2 3 4 5 6 7

7

0 2 1 3 4 5 6 7
0 3 1 2 4 5 6 7
0 4 1 2 3 5 6 7
0 5 1 2 3 4 6 7
0 6 1 2 3 4 5 7
0 7 1 2 3 4 5 6

1

1 2 0 3 4 5 6 7

6

1 3 0 2 4 5 6 7
1 4 0 2 3 5 6 7
1 5 0 2 3 4 6 7
1 6 0 2 3 4 5 7
1 7 0 2 3 4 5 6

2

2 3 0 1 4 5 6 7

5
2 4 0 1 3 5 6 7
2 5 0 1 3 4 6 7
2 6 0 1 3 4 5 7
2 7 0 1 3 4 5 6

3

3 4 0 1 2 5 6 7

4
3 5 0 1 2 4 6 7
3 6 0 1 2 4 5 7
3 7 0 1 2 4 5 6

4
4 5 0 1 2 3 6 7

34 6 0 1 2 3 5 7
4 7 0 1 2 3 5 6

5
5 6 0 1 2 3 6 7

2
5 7 0 1 2 3 4 6

6 6 7 0 1 2 3 4 5 1

7 – – 0

40

Chapter 3 Parallel Geometric Hashing based Indexing

create synchronization issues [39]. Thus, the top best matches are found serially using

traditional geometric hashing approach. The votes are accumulated for each gallery

image (𝑀) in the hash bin indexed by probe image. These accumulated votes are

compared against threshold value (𝜆) and corresponding gallery images are retained to

get the candidate set. For each entry in the candidate set, the descriptor information

is matched with that of probe image to find top best matches. The proposed iris

retrieval algorithm is given in Algorithm 4.

3.3 Asymptotic Analysis

3.3.1 Serial Geometric Hashing

The cost of computing the location of 𝑛 keypoints to index into the hash table is given

by:

∑𝑛

𝑖=1
(𝑛− 2)(𝑛− 𝑖) = (𝑛− 2){(𝑛− 1) + (𝑛− 2) +

(𝑛− 3) + . . .+ 1 + 0} (3.5)

Applying arithmetic series, we get the serial complexity as,

𝑇𝑠𝑒𝑟𝑖𝑎𝑙 = (𝑛− 2)

{
(𝑛− 1)𝑛

2

}
(3.6)

=
𝑛(𝑛− 1)(𝑛− 2)

2

= 𝑂(𝑛3)

(3.7)

Algorithm 4: Parallel Retrieval Phase

Result: Top Matches for probe image
Interest points, 𝑛 are extracted using SIFT1

Repeat steps 3 to 6 from Algorithm 32

Cast a vote for each entry found at (𝑢, 𝑣) in the hash table3

Find potential images with votes greater than 𝜆4

Match keypoint descriptor of potential images with probe image to return top5

best match

41

Chapter 3 Parallel Geometric Hashing based Indexing

As it is clearly evident from equation (3.5) that the term in the braces containing the

addition indicates the sequential computation of invariants. The computations for

each basis pair are independent of each other. Thus, in this chapter, the invariants

for each basis pair are computed in parallel using hypercube.

3.3.2 Parallel Geometric Hashing

In the proposed scheme, the inherent parallelism is exploited at two different phases,

both during indexing and retrieval phase:

For 𝑛 keypoints the time required is,

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑛 + log2 𝑛+ (𝑛− 1)(𝑛− 2)

= 𝑛 + log2 𝑛+ (𝑛2 − 3𝑛+ 2)

= 𝑂(𝑛2) (3.8)

The terms in 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 can be explained as,

1. 𝑛 computations for mapping of 𝑛 keypoints to the shared global memory

2. log2 𝑛 computations to perform all-to-all broadcast

3. (𝑛− 1)(𝑛− 2) computations for parallel indexing of keypoints

(𝑖) (𝑛− 2) for finding geometric invariants by each basis pair

(𝑖𝑖) atmost (𝑛− 1) computations are required by the processor to find (𝑛− 2)

invariants.

Retrieval Phase

The time required during retrieval is same as indexing phase (i.e., 𝑂(𝑛2) as proved

above) since the same steps are followed as mentioned in Algorithm 4.

The time complexity mentioned in the section is for single iris instance. This can

be extended for 𝑀 iris images in the database. Thus, the indexing as well as retrieval

42

Chapter 3 Parallel Geometric Hashing based Indexing

Figure 3.6: Parallel geometric hashing during iris retrieval phase.

time can be expressed as 𝑂(𝑀𝑛2). This shows the improvement of proposed parallel

geometric hashing algorithm over traditional algorithm [28]. The proposed approach

performs with time complexity of 𝑂(𝑀𝑛2) in comparison to traditional approach

which performs with complexity of 𝑂(𝑀𝑛3) for 𝑀 iris instances.

Hence, the speedup is given as,

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙
𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

=
𝑂(𝑀𝑛3)
𝑂(𝑀𝑛2)

3.4 Summary

This chapter proposes a parallel indexing scheme for iris biometrics. In the proposed

approach, inherent parallelism has been introduced at two different phases i.e., index-

ing and retrieval. This scheme provides an improvement over traditional geometric

hashing based indexing scheme in terms of time. It has been analytically proved

that the parallel geometric hashing approach using hypercube has time complexity

of 𝑂(𝑀𝑛2) in comparison to traditional approach which has complexity of 𝑂(𝑀𝑛3),

where 𝑀 is the database size. This marks the applicability of the proposed iden-

tification system in real time applications where both time and accuracy cannot be

compromised.

43

Chapter 4

Rank Based Identification using

Bitonic Sort

Sorting of data is an essential ingredient for many real life and computer science appli-

cations. Sorting is defined as the process of arranging a random collection of data into

monotonically decreasing (or increasing) order. Manipulating data in sorted order is

always easier than data in unsorted order, hence many algorithms are developed to

serve this purpose. The sequential sorting algorithms have optimal time complexity of

𝑂(𝑀 log2𝑀) to sort a random sequence of order 𝑀 . Thus, when 𝑀 is large, sequen-

tial sorting algorithms do not meet the real time requirements of different applications

where speed is a criterion. To alleviate this limitation, parallel sorting algorithms play

an important role and many such algorithms exist in literature [1]. These algorithms

not only utilizes the computer hardware efficiently, but also drastically reduces the

execution time. Usually parallel sorting algorithms are implemented in two models,

namely special purpose architecture and general purpose architecture. Special pur-

pose architecture includes sorting network where sorting algorithms like AKS [40],

bitonic sort [41] are implemented. Bitonic sorting involves a lot of interprocessor

communication. This sorting approach could find its applicability to vote counts dur-

ing identification/verification of a probe iris in a gallery iris is generally encountered.

As mentioned in the previous chapter, during the retrieval phase of geometric hashing

based indexing, the geometric invariants of the probe iris image are mapped to the

44

Rank Based Identification using Bitonic Sort

I1 2 3
I2 4 5

I1 1 2
I1 2 3

I4 7 9
I4 11 15

I2 7 8
I1 11 17

I1 2 3
I2 4 5

I1 2 3
I2 4 5

I6 11 17
I5 41 51Probe Image

Hash Table

SIFT Keypoints

Top Best Matches

16 13 17 14

Bitonic Sort

Computation in Parallel

Geometric Invariants

Computation in Parallel

Casting Votes

16 1317 14

Figure 4.1: Block diagram finding ranks of individuals using bitonic sort

hash table. The corresponding mapped gallery iris receives votes and vote counts are

incremented every time a mapping takes place. This generates a set of images which

have non–zero vote count and are candidates for potential matches. But while finding

rank based matching there is a need to find the top 𝑘 best matches which need to be

sorted in decreasing order of vote counts. Hence, sorting plays a vital role. In this

chapter, bitonic sorting scheme using 𝐻𝑀𝐴 to sort the bins that receives non–zero

votes is used. The overall block diagram of the identification scheme along with par-

allel sorting is shown in Figure 4.1. In this chapter, a bitonic sorting algorithm using

Hypercube Mesh Architecture (𝐻𝑀𝐴) is discussed. As discussed earlier, interpro-

cessor communication is a bottleneck for speedup gain in parallel processing. So, a

bit–parity based strategy [41] is suggested to minimize this in 𝐻𝑀𝐴. This strategy

is not applied in general purpose architecture (𝐻𝑀𝐴).

45

Chapter 4 Rank Based Identification using Bitonic Sort

(a) (b)

Figure 4.2: (a) Increasing Comparator (+) (b) Decreasing Comparator (−)

4.1 Related Works on Bitonic Sort

Bitonic sort is a mechanism of rearranging the bitonic sequence into a sorted sequence.

A bitonic sequence is a sequence of numbers {𝑎0, 𝑎1, . . . , 𝑎𝑚−1} with the following

two properties [1]:

(𝑖) There exists an index 𝑖, 0 ≤ 𝑖 ≤ 𝑚−1, such that {𝑎0, 𝑎1, . . . , 𝑎𝑖} is monotonically

decreasing and {𝑎𝑖+1, . . . , 𝑎𝑚−1} is monotonically increasing and vice–versa.

(𝑖𝑖) If cyclic shift of any sequence exhibits the above property, then the sequence

can also be termed as a bitonic sequence.

Example:

(a) {16, 15, 13, 12, 11, 14, 17, 18} is a bitonic sequence because it first decreases

and then increases.

(b) {13, 11, 12, 14, 16, 19, 18, 15} is another bitonic sequence because it is a

cyclic shift of {19, 18, 15, 13, 11, 12, 14, 16}.

A bitonic sequence can be rearranged to monotonically decreasing sequence through

a bitonic merger [1, 41]. Let us consider an example,

Example: Let 𝑠 = {𝑎0, 𝑎1, . . . , 𝑎𝑚−1} be a bitonic sequence such that 𝑎0 ≥ 𝑎1 ≥
. . . ≥ 𝑎𝑚/2−1 and 𝑎𝑚/2 ≤ 𝑎𝑚/2+1 ≤ . . . ≤ 𝑎𝑚−1.

The sequence, 𝑠 are divided into two subsequences to create two different bitonic

sequences through the following criteria:

𝑠1 = [𝑚𝑎𝑥{𝑎0, 𝑎𝑚/2}, 𝑚𝑎𝑥{𝑎1, 𝑎𝑚/2+1}, . . . , 𝑚𝑎𝑥{𝑎𝑚/2−1, 𝑎𝑚−1}]
𝑠2 = [𝑚𝑖𝑛{𝑎0, 𝑎𝑚/2}, 𝑚𝑖𝑛{𝑎1, 𝑎𝑚/2+1}, . . . , 𝑚𝑖𝑛{𝑎𝑚/2−1, 𝑎𝑚−1}] (4.1)

46

Chapter 4 Rank Based Identification using Bitonic Sort

This operation of splitting a bitonic sequence of size 𝑚 into two bitonic subse-

quences is known as a bitonic split [1]. The above equation is used recursively to ob-

tain shorter bitonic subsequences for each of the bitonic sequences until subsequences

has size one.

Bitonic sorting can be performed on the following architectures:

(𝑎) Special Purpose Architecture (SPA) (e.g. Sorting Network)

(𝑏) General Purpose Architecture (GPA)

Two types of comparators namely, Increasing comparator (+) and Decreasing

comparator (−) shown in Figure 4.2 are generally used to undergo the sorting using

compare-exchange criteria in parallel. The usage of the comparators is explained in

the further sections.

A bitonic sorting algorithm can be implemented in a sorting network [42]. A

sorting network contains 𝑚/2 comparators to sort votes received by 𝑚 gallery iris

images with 0 ≤ 𝑚 ≤𝑀 , where, 𝑀 denotes the total vote counts which corresponds

to the total number of gallery iris images that can receive votes (assumed to be power

of 2). Here, 𝑚 ⊆ 𝑀 because a proper subset of total number of gallery images may

get votes during retrieval phase.

This algorithm involves several stages to produce sorted order of vote count for

different gallery iris images. Each stage involves 𝑚/2 compare–exchange operations

using 𝑚/2 comparators to sort 𝑚 vote count. Each stage 𝑗 has 𝑗 number of steps

with 𝑚/2 comparators in each step. The total number of stages involved to perform

the sorting is log2𝑚. Figure 4.3 shows the stages in sorting network to sort eight vote

counts in descending order. As it is evident from the figure, a total of six steps are

there in the three stages of the sorting network. It may be observed that the bitonic

sort algorithm is computation–intensive clearly obvious and involves a lot of inter–

process communication in the sorting network. So, to reduce this, Batcher introduced

parity strategy to alleviate the spurious communication between the processors in the

sorting network [41].

An effort has been made to use both non–parity and parity based strategy in

bitonic–sorting algorithm to sort the vote counts through a general–purpose parallel

47

Chapter 4 Rank Based Identification using Bitonic Sort

Stage 1 Stage 2 Stage 3

- - - -

- - -

- - -

-- -

-

- -

- -+

+

+ +

++

Figure 4.3: Sorting network for 8 vote counts for decreasing sequence

architecture. A general–purpose parallel architecture is chosen such that the travel-

ing distance during the communication among the processors is minimum. So, the

parallel architecture in which there is interconnection between the processors differing

in exactly one bit exhibits the above property. SIMD array processor with static in-

terconnection network like hypercube and mesh connected parallel computers are the

best known to fall under this category [1]. Section 4.2 describes the proposed bitonic

sorting scheme.

4.2 Proposed Bitonic Sorting using Hypercube Mesh

Architecture

A bitonic sorting algorithm can also be performed in general–purpose parallel archi-

tecture. In the proposed scheme, a variant of hypercube i.e. a mesh connected parallel

architecture with each processor connected to every other processor with their labels

differing by exactly one bit. The compare–exchange operations take place between the

processors whose binary represented labels differ in exactly one bit. The architecture

is termed as hypercube mesh architecture(𝐻𝑀𝐴). A hypercube mesh architecture

with 𝑚 (power of 2) processors are chosen to sort 𝑚 vote count [1, 43]. The 𝑚/2 pairs

48

Chapter 4 Rank Based Identification using Bitonic Sort

of processors involved during the inter–processor communication at each stage repre-

sent the𝑚/2 comparators of the sorting network discussed in Section 4.1. Bitonic sort

uses 𝑑–dimensional hypercube in 𝑑𝑡ℎ stage , where 𝑑 = log2𝑚. In the variant archi-

tecture, the hypercube architecture is converted into a hypercube mesh architecture

as discussed below.

The 𝑗𝑡ℎ stage of bitonic sort uses the 𝑑𝑡ℎ dimension of hypercube, where 𝑑 = 𝑑1 + 𝑑2

and 𝑑 is the dimension of the hypercube. The 2𝑑1+𝑑2–node hypercube has been embed-

ded into 2×2𝑑1+𝑑2−1 mesh connected topology. There are 𝑚/2𝑗 numbers of (2× 2𝑗−1)

HMA. Figure 4.4 demonstrates the embedding of 1-D, 2-D and 3-D hypercube to 2×1,
2× 2, 2× 4 𝐻𝑀𝐴, respectively. Similar conversions of hypercube to hypercube mesh

architecture can be made for higher dimensions as well.

The bitonic sorting in 𝐻𝑀𝐴 can be accomplished in two ways:

(i) Non–parity strategy based bitonic sort

(ii) Parity strategy based bitonic sort

4.2.1 Non–Parity Strategy based Bitonic Sort

Each processor is labeled with a number from 0 to 𝑚− 1. The binary representation

of each label contains log2𝑚 bits. In 𝐻𝑀𝐴 the labels of neighboring nodes differ in

exactly one bit.

The original sequence of vote counts are converted into a bitonic sequence prior to

the final stage of bitonic sort. During the first step of this stage, the processors which

differ only in (log2𝑚)𝑡ℎ bit (𝑖.𝑒., the most significant bit) of the binary representation

of their labels compare–exchange their vote counts. Similarly, during the second step

of the algorithm, the compare–exchange operation occurs among the processors whose

binary representation of labels differ in (log2𝑚− 1)𝑡ℎ bit.

So, in general, during the 𝑗𝑡ℎ step of the final stage, inter–process communication

prevails between the processors whose binary represented labels differ in

(log2𝑚− (𝑗 − 1))𝑡ℎ bit (the least significant bit).

For better understanding of the problem, an example has been taken to find the top

rank among 8 gallery iris images which has received votes during retrieval. The votes

49

Chapter 4 Rank Based Identification using Bitonic Sort

(a
)

(b
)

(c
)

F
ig
u
re

4.
4:

(a
)
E
m
b
ed
d
in
g
1D

H
y
p
er
cu
b
e
to

2
×

1
H
y
p
er
cu
b
e
M
es
h
(b
)
E
m
b
ed
d
in
g
2D

H
y
p
er
cu
b
e
to

2
×

2
H
y
p
er
cu
b
e
M
es
h

(c
)
E
m
b
ed
d
in
g
3D

H
y
p
er
cu
b
e
to

2
×
4
H
y
p
er
cu
b
e
M
es
h

50

Chapter 4 Rank Based Identification using Bitonic Sort

Stage 1

Step 1 Step 2Step 1 Step 1 Step 2

Stage 3

Step 3

Stage 2

Figure 4.5: Knuth Diagram for eight vote counts (decreasing sequence)

obtained by different gallery iris images are given as {16, 11, 10, 15, 17, 12, 13, 14}.
Since there are 8 gallery images which has received votes, so sorting will be performed

in 3 𝑖.𝑒., log2 8 stages. In this strategy, the compare–exchange takes place between

processors. The compare–exchange operation and the type of comparator used during

the communication between the processors is decided through the Knuth diagram

[41]. A Knuth diagram shows how to program the algorithm in a parallel architecture

(Figure 4.5). In Knuth diagram, each horizontal line represents the number of votes

received by a gallery iris images stored in each processor and each vertical arrow

represents a pair of processors reading two votes from each processor, comparing them,

and writing them back to the corresponding processor in proper order. The processors

(𝑃𝑎 and 𝑃𝑏) which are involved in the communication is depicted in Table 4.1. The

type of comparators which is to be incorporated between pair of processors are decided

from 𝐹𝐿𝐴𝐺1 as shown in the table. If 𝐹𝐿𝐴𝐺1 is TRUE, increasing comparator (I)

is used otherwise decreasing comparator (D) is used.

The states of different processors during each step of a particular stage is shown

in Figure 4.6. Each stage 𝑗 has 𝑚/2𝑗 numbers of 2 × 2𝑗−1 𝐻𝑀𝐴. Figure 4.6 also

shows the 𝐻𝑀𝐴 to be used at each stage. The right side of the figure shows the

comparators which are incorporated within the processor. The left arrows and right

arrows represent the decreasing and increasing comparator, respectively. The type

of comparators which are to be incorporated within pairs of processors are decided

through Knuth diagram and can also be found in Table 4.1. The type of compara-

51

Chapter 4 Rank Based Identification using Bitonic Sort

tors decides the correct placement of the vote count. The second stage produces

the bitonic sequence. The bitonic sequence is given as input to the final stage which

gives the necessary sorted sequence. Algorithm 5 shows non–parity based bitonic sort.

Algorithm 5: Bitonic sort with Hypercube Mesh (Non–Parity Based)

Input : A : Array of 𝑀 vote counts

Output: A :Array of sorted vote counts

For all comparators in parallel

𝐹𝐿𝐴𝐺1 ← FALSE1

for j = 1 to log2𝑀 do2

if ⌊2 ∗ 𝑐𝑜𝑚𝑝/2𝑗⌋ mod 2 ∕= 0 then3

𝐹𝐿𝐴𝐺1 ← TRUE4

𝑑𝑖𝑚← 2𝑗−1
5

while 𝑑𝑖𝑚 ≥ 1 do6

𝑄 ← 𝑛𝑜 % 𝑑𝑖𝑚7

𝑅 ← 𝑛𝑜 +𝑄8

𝑎𝑑𝑑𝑟1 ← 2 ∗𝑅 +𝑄9

𝑎𝑑𝑑𝑟2 ← 𝑎𝑑𝑑𝑟1 + 𝑑𝑖𝑚10

Read two vote counts (𝐾1 and 𝐾2) from 𝑎𝑑𝑑𝑟1 and 𝑎𝑑𝑑𝑟211

𝐹𝐿𝐴𝐺 = 𝐹𝐿𝐴𝐺112

if 𝐾1 < 𝐾2 then13

𝐹𝐿𝐴𝐺 ← !𝐹𝐿𝐴𝐺14

if 𝐹𝐿𝐴𝐺 = TRUE then15

Swap 𝐾1 and 𝐾216

𝑑𝑖𝑚 ← 𝑑𝑖𝑚/217

Write two vote counts (𝐾1 and 𝐾2) back to respective processor18

Store all the vote counts back to array 𝐴19

Exit20

However, the main demerit of non–parity based bitonic sorting algorithm is that

52

Chapter 4 Rank Based Identification using Bitonic Sort

Table 4.1: Inter–Processor Communication in Non–Parity Based Strategy
(a) Stage - 1, Step - 1

Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type
0 0 1 F D
1 2 3 T I
2 4 5 F D
3 6 7 T I

(b) Stage - 2, Step - 1
Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type

0 0 2 F D
1 1 3 F D
2 4 6 T I
3 5 7 T I

(c) Stage - 2, Step - 2
Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type

0 0 1 F D
1 2 3 F D
2 4 5 T I
3 6 7 T I

(d) Stage - 3, Step - 1
Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type

0 0 4 F D
1 3 7 F D
2 1 5 F D
3 2 6 F D

(e) Stage - 3, Step - 2
Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type

0 0 2 F D
1 1 3 F D
2 4 6 F D
3 5 7 F D

(f) Stage - 3, Step - 3
Comparator 𝑃𝑎 𝑃𝑏 𝐹𝐿𝐴𝐺1 Comparator–type

0 0 1 F D
1 2 3 F D
2 4 5 F D
3 6 7 F D

53

Chapter 4 Rank Based Identification using Bitonic Sort

Figure 4.6: Non–Parity Based Bitonic Sorting

54

Chapter 4 Rank Based Identification using Bitonic Sort

the bandwidth of the interconnection network must be substantial to guarantee good

performance. During the bitonic sorting, each processor reads two vote counts, com-

pares them, and writes two vote counts back to the respective processor through the

interconnection network. Access through the interconnection network can be slow,

since a read and write request may have to pass through multiple stages in the inter-

connection network. Hence, there is substantial degradation in performance due to

communication through heavy network during bitonic sorting on a realistic machine.

The main idea employed in the next section is that if each processor has enough local

memory to store one vote count in each processor then each processor reads only one

vote count from shared global memory, compares it to the vote count in its own local

memory and writes only one vote count back to shared memory whereas the other

vote count stays in the local memory. This reduces the number of shared memory

accesses to half, therefore, leads to the performance improvement. This strategy is

called as parity strategy [41]. Bitonic sort using the parity strategy in 𝐻𝑀𝐴 is briefly

discussed in Section 4.2.2.

4.2.2 Parity Strategy based Bitonic Sort

The parity is defined by the number of 1–bits in binary representation of the labels of

the processors; if the labels has an even number of 1–bits then the processor has even–

parity (i.e., 10111); if the label has an odd number of 1–bits then the processor has

odd parity(e.g., 10011). In bitonic sort, each processor with even–parity label always

pairs with an odd–parity label for comparison. The communication can be decreased

by allowing each processor to retain the even–parity vote count in its shared global

memory and just read and write the odd-parity vote count from and to local memory.

The vote counts are stored in the processor. The vote counts which are stored in

the even–parity index are copied to the corresponding location of the shared global

memory. The communication takes place between the odd–parity indexed processor

and even–parity location of shared global memory. Since the shared global memory is

available to all the processors, the odd parity indexed processor reads the votes from

even parity index of shared global memory, checks the type of comparator and writes

55

Chapter 4 Rank Based Identification using Bitonic Sort

back a relevant value to the shared global memory storing the other value in its own

local memory.

Two flags (𝐹𝐿𝐴𝐺1 and 𝐹𝐿𝐴𝐺2) are used to determine that the local memory

of which processor retains maximum or minimum vote count. 𝐹𝐿𝐴𝐺1 decides the

type of comparator as described in Section 4.1 that has to be incorporated within

𝐻𝑀𝐴. If 𝐹𝐿𝐴𝐺1 is TRUE, increasing comparator is used or otherwise. 𝐹𝐿𝐴𝐺2

depicts whether the index of local memory (𝑙𝑚𝑖) or global memory (𝑔𝑚𝑖) is greater.

If 𝐹𝐿𝐴𝐺2 = TRUE, the local memory index is greater than global memory index. If

𝐹𝐿𝐴𝐺1 = 𝐹𝐿𝐴𝐺2 the local memory is minimum or otherwise. Table 4.2 shows the

values of the 𝐹𝐿𝐴𝐺1 and 𝐹𝐿𝐴𝐺2.

The different phases of parity based bitonic sort using shared global memory and

𝐻𝑀𝐴 is shown in Figure 4.7. The communication takes place between the shared

global memory and local memory of odd–parity index of the processor of the 𝐻𝑀𝐴.

The indices which makes communication is decided from the connectivity of the pro-

cessor in 𝐻𝑀𝐴. The higher value is always stored in the direction of the arrow. The

bitonic sequence is found in second stage.

56

Chapter 4 Rank Based Identification using Bitonic Sort

Algorithm 6: Bitonic sort with Hypercube Mesh (Parity Based)

Input : A : Array of 𝑀 vote counts

𝑙𝑚𝑖 : local memory index (Even Parity)

𝑔𝑚𝑖 : global memory index (Odd Parity)

𝑋𝑂𝑅 :
⊕

Output: A :Array of sorted vote counts

For all comparators in parallel

Load 𝑀/2 vote counts into 𝑙𝑚𝑖 of even parity processors1

Load 𝑀/2 vote counts into shared 𝑔𝑚𝑖 accessible to all the processors2

𝐹𝐿𝐴𝐺1 ← FALSE3

for j = 1 to log2𝑀 do4

if ⌊2 ∗ 𝑐𝑜𝑚𝑝/2𝑗⌋ mod 2 ∕= 0 then5

𝐹𝐿𝐴𝐺1 ← TRUE6

𝑑𝑖𝑚← 2𝑗−1
7

while 𝑑𝑖𝑚 ≥ 1 do8

Obtain the index of the even–parity vote count: 𝑔𝑚𝑖 ← 𝑙𝑚𝑖
⊕

𝑑𝑖𝑚9

READ a vote count from even-parity index from shared global memory10

if 𝑙𝑚𝑖 > 𝑔𝑚𝑖 then11

𝐹𝐿𝐴𝐺2 ← TRUE12

else13

𝐹𝐿𝐴𝐺2 ← FALSE14

if 𝐹𝐿𝐴𝐺1 = 𝐹𝐿𝐴𝐺2 then15

LOAD lowest vote count into 𝑙𝑚𝑖16

else17

LOAD highest vote count into 𝑙𝑚𝑖18

LOAD highest vote count into 𝑙𝑚𝑖19

𝑑𝑖𝑚 ← 𝑑𝑖𝑚/220

Store all the vote counts back to array 𝐴21

Exit22

57

Chapter 4 Rank Based Identification using Bitonic Sort

Figure 4.7: Parity Based Bitonic Sorting

58

Chapter 4 Rank Based Identification using Bitonic Sort

Table 4.2: Local–Global Memory Communication in Parity Based Strategy
(a) Stage - 1, Step - 1

Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction
𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖

0 0 1 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
1 3 2 T T 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
2 5 4 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
3 6 7 T F ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖

(b) Stage - 2, Step - 1
Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction

𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖
0 0 2 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
1 3 1 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
2 5 7 T T 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
3 6 4 T F ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖

(c) Stage - 2, Step - 2
Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction

𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖
0 0 1 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
1 3 2 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
2 5 4 T T 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
3 6 7 T F ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖

(d) Stage - 3, Step - 1
Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction

𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖
0 0 4 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
1 3 7 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
2 5 1 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
3 6 2 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖

(e) Stage - 3, Step - 2
Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction

𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖
0 0 2 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
1 3 1 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
2 5 7 F T ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
3 6 4 F F 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖

(f) Stage - 3, Step - 3
Comparator LGC 𝐹𝐿𝐴𝐺1 𝐹𝐿𝐴𝐺2 vote count Direction

𝑙𝑚𝑖 𝑔𝑚𝑖 𝑙𝑚𝑖 𝑔𝑚𝑖
0 0 1 F F ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖
1 3 2 F T 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
2 5 4 F T 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 𝑔𝑚𝑖
3 6 7 F F ℎ𝑖𝑔ℎ 𝑙𝑜𝑤 𝑙𝑚𝑖

59

Chapter 4 Rank Based Identification using Bitonic Sort

4.3 Asymptotic Analysis

The number of votes that can be cast to a gallery iris image during retrieval phase is

in the range of [0, 𝑛𝐶2(𝑛 − 2)], where, 𝑛 denotes the number of keypoints present in

the probe iris image. The number of gallery iris images which can receive votes are

within a range 0 ≤ 𝑚 ≤ 𝑀 . So, the time complexity to sort the vote count of 𝑀

gallery images in two different strategies is given below.

Stage No. of Steps
1 1
2 2
. .
. .
. .

log2𝑀 log2𝑀

Table 4.3: Steps involved during Bitonic Sort

4.3.1 Non–Parity Strategy Based Bitonic Sort

Bitonic sort using non–parity based strategy in 𝐻𝑀𝐴 involves log2𝑀 stages and each

stage 𝑗 again contains 𝑗 steps. 𝑀 number of processors in the hypercube which can

be converted to mesh connected architecture is assumed.

Table 4.3 depicts the number of steps involved in each stage to sort 𝑀 vote counts.

Each step of a particular stage contains two read accesses from the processors and

two write backs to the respective processor. Thus, there are four inter–processor

references. So, the total number of references for each processor during bitonic sort

is given below.

𝑇 (𝑀) = 4×
log2 𝑀∑
𝑖=1

𝑖 =
4× log2𝑀 × (log2𝑀 + 1)

2

= 2× log2𝑀 × (log2𝑀 + 1)

= 2× (log22𝑀 + log2𝑀) (4.2)

60

Chapter 4 Rank Based Identification using Bitonic Sort

4.3.2 Parity Strategy Based Bitonic Sort

Bitonic sort using parity based strategy in 𝐻𝑀𝐴 involves log2𝑀 stages and each

stage 𝑗 in turn contains 𝑗 steps. Table 4.3 depicts the number of steps involved in

each stage to sort 𝑀 vote counts. Each step of a stage contains one read access to

the even parity vote count from shared global memory which is accessible to all the

processor. This vote count from the even parity index is compared with the vote count

of the local memory of odd parity index processor writes only one vote count back to

shared memory whereas the other vote count stays in the local memory. Hence, each

step of a stage has two shared memory references. So, the total number of shared

memory references to sort 𝑀 vote counts is given by below.

𝑇 (𝑀) = 2×
log2 𝑀∑
𝑖=1

𝑖 =
2× log2𝑀 × (log2𝑀 + 1)

2

= log2𝑀 × (log2𝑀 + 1)

= log22 𝑀 + log2𝑀 (4.3)

Hence, the total number of shared memory references per processor to sort 𝑀 vote

counts using parity strategy is log22𝑀 + log2𝑀 , which is half of that of that of non–

parity based strategy. Hence, a parity based strategy for bitonic sort is preferable.

4.4 Summary

Bitonic sort has been implemented in hypercube mesh architecture using non–parity

and parity based strategy to find the top 𝑘 matches in the retrieval phase. The

time complexity to sort the vote counts is 𝑂(log22𝑀) using non–parity based bitonic

sort. Since, non–parity based bitonic sorting has to undergo a lot of interprocessor

communication. So, parity based bitonic sorting is used to minimize the number of

references among processors. The bitonic sorting algorithm used to find the rank of

gallery iris images outperforms other sequential comparison–based sorting algorithms

in terms of time complexity.

61

Chapter 5

Conclusions and Future Work

This thesis proposes the introduction of parallelism in feature extraction and iden-

tification stages of iris biometrics. The first contribution has been made in feature

extraction stage. Feature extraction using SIFT constitutes various phases. In the

first stage, the construction of scale space is done to find the smoothed images. The

scale space contains various octaves. Parallelism has been introduced during this

stage (within octave and across octaves) using 𝑙𝑠 SIMD hypercube. This introduction

of parallelism has drastically improved the time complexity. The speedup gain due

to the introduction of parallelism at this stage is found to be 𝑙𝑠.

The second and most valuable contribution is done during the identification stage

of iris. Geometric hashing is a model based object recognition technique used to index

the geometric invariants into the hash table. Geometric hashing contains two phases,

indexing and retrieval. In this scheme, the geometric invariants for 𝑛𝐶2 basis pairs

are to be found. These invariants have to be found for both gallery images and probe

image. These geometric invariants can be found in parallel for each basis pair using

the SIMD hypercube. The computation of these geometric invariants is to be done in

parallel for both phases. This introduction of parallelism marks an improvement in

time complexity with the speedup gain given as 𝑛.

The third contribution is again done during the retrieval phase of identification

stage. The vote counts obtained by different gallery images during the retrieval phase

are always found in random order. So, to determine the top 𝑘 matches amongst the

62

Conclusions and Future Work

gallery iris images which has received votes is tedious. Bitonic sorting algorithm is

used as parallel sorting algorithm to sort the vote counts of different gallery iris images.

Bitonic sorting algorithm always involves a lot of interprocessor communication during

the sorting. Hence, to minimize the number of communication among the processors

parity based bitonic sorting algorithm is used to find the rank. The selection of parallel

sorting algorithm (bitonic sorting algorithm) gives an improved time complexity when

compared to the other sequential sorting algorithms.

To conclude this thesis deals with proposition of three different parallel algorithms

in an iris biometrics system. In the beginning, the stages which possess inherent

parallelism are identified and a SIMD hypercube or its variant are considered as the

underlying architecture. Further, SIFT features are extracted from annular iris for

matching using geometric hashing scheme. The algorithms suggested are namely given

as,

1. Parallel Scale Space construction for keypoint detection

2. Parallel Geometric Hashing for enrollment and retrieval

3. Parallel bitonic sorting for rank–based identification

The asymptotic time complexity for each problem has been devised for both serial

algorithm and its parallel counterpart. It has been observed that there is phenomenal

improvement in time complexity. However, the algorithms suffer from few limitations

due to different assumptions as described below:

1. The number of keypoints for each iris is considered to be fixed.

2. The hypercube consists of 2𝑥 numbers of processors.

3. The product of Gaussian scale levels (𝑠) and octaves (𝑙) is considered to power

of 2.

These assumptions may not be satisfied in reality. To deal with those situations it

can be further investigated for real time implementations of proposed algorithms. In

addition, investigations can be made to implement these algorithms in other parallel

architectures.

63

Dissemination of Work

1. Anukul Chandra Panda, Hunny Mehrotra, and Banshidhar Majhi. Paral-

lel Geometric Hashing for Robust Iris Indexing. Accepted for Publication in

Springer Journal of Real-Time Image Processing.

2. Anukul Chandra Panda, Pankaj K. Sa, and Banshidhar Majhi. Bitonic

Sort in Shared SIMD Array Processor. In Proceedings of ACM International

Conference on Communication, Computing; Security, (ICCCS ’11), Feb. 12–14,

2011, NIT Rourkela, Odisha, India, pages 273–276.

64

Bibliography

[1] Ananth Grama, Anshul Gupta, George Karypis, and Vipin. Introduction to Parallel Computing.

Pearson Education, second edition, 2007.

[2] Berna L. Massingill Timothy G. Mattson, Beverly A. Sanders. Patterns for Parallel Program-

ming. Addison-Wesley Professional, first edition, September 25, 2004.

[3] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability,Programmability.

McGraw-Hill, 1993.

[4] A. K. Jain, P. Flynn, and A. A. Ross. Handbook of Biometrics. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2007.

[5] J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for Video

Technology, 14(1):21 – 30, 2004.

[6] J. Daugman. The importance of being random: statistical principles of iris recognition. Pattern

Recognition, 36(2):279 – 291, 2003.

[7] L. Flom and A. Safir. Iris recognition system. U.S. Patent 4,641,349, 1987.

[8] J. Daugman. Biometric personal identification system based on iris analysis. U.S. Patent No.

5,291,560, 1994.

[9] A.L. Yuille, D.S. Cohen, and P.W. Hallinan. Feature extraction from faces using deformable

templates. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pages 104–109, 1989.

[10] R.P. Wildes. Iris recognition: an emerging biometric technology. Proceedings of the IEEE,

85(9):1348–1363, 1997.

[11] K.W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image understanding for iris biometrics: A

survey. Computer Vision and Image Understanding, 110(2):281–307, 2008.

[12] Y. Huang, S. Luo, and E. Chen. An efficient iris recognition system. In International Conference

on Machine Learning and Cybernetics, volume 1, pages 450–454, 2002.

[13] Y. Liu, S. Yuan, X. Zhu, and Q. Cui. A practical iris acquisition system and a fast edges locating

algorithm in iris recognition. In 20th IEEE Conference on Instrumentation and Measurement

Technology, volume 1, pages 166–168, 2003.

65

[14] H. Sung, J. Lim, J. Park, and Y. Lee. Iris recognition using collarette boundary localization.

In 17th International Conference on Pattern Recognition, volume 4, pages 857–860, 2004.

[15] Q. Tian, Q. Pan, Y. Cheng, and Q. Gao. Fast algorithm and application of hough transform in

iris segmentation. In International Conference on Machine Learning and Cybernetics, volume 7,

pages 3977–3980, 2004.

[16] G. Xu, Z.F. Zhang, and Y.D. Ma. Automatic iris segmentation based on local areas. In

International Conference on Pattern Recognition, volume 4, pages 505–508. IEEE Computer

Society, 2006.

[17] L.V. Birgale and M. Kokare. Iris recognition using discrete wavelet transform. In International

Conference on Digital Image Processing, pages 147–151, 2009.

[18] L. Masek and P. Kovesi. Matlab Source Code for a Biometric Identification System based on

Iris Patterns. The School of Computer Science and Software Engineering, The University of

Western Australia., 2003.

[19] C. Harris and M. Stephens. A combined corner and edge detection. In Proceedings of The

Fourth Alvey Vision Conference, pages 147–151, 1988.

[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision, 60(2):91–110, 2004.

[21] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In 9th European

Conference on Computer Vision, Graz Austria, 2006.

[22] A. Mhatre, S. Chikkerur, and V. Govindaraju. Indexing biometric databases using pyramid

technique. In International Conference on Audio and Video Based Biometric Person Authenti-

cation (AVBPA), pages 841–849, 2005.

[23] P. Gupta, A. Sana, H. Mehrotra, and C. Jinshong Hwang. An efficient indexing scheme for

binary feature based biometric database. volume 6539, page 653909. SPIE, 2007.

[24] U. Jayaraman, S. Prakash, Devdatt, and P. Gupta. An indexing technique for biometric

database. In International Conference on Wavelet Analysis and Pattern Recognition, volume 2,

pages 758–763, 2008.

[25] U. Jayaraman, S. Prakash, and P. Gupta. Indexing multimodal biometric databases using kd-

tree with feature level fusion. In 4th International Conference on Information Systems Security,

pages 221–234, Berlin, Heidelberg, 2008. Springer-Verlag.

[26] R. Mukherjee and A. Ross. Indexing iris images. In 19th International Conference on Pattern

Recognition, pages 1–4, 2008.

[27] N. B. Pusan and N. Sudha. A novel iris database indexing method using the iris color. In 3rd

IEEE Conference on Industrial Electronics and Applications, pages 1886–1891, 2008.

[28] Hunny Mehrotra, Banshidhar Majhi, and Phalguni Gupta. Robust iris indexing scheme using

geometric hashing of sift keypoints. J. Network and Computer Applications, 33(3):300–313,

2010.

[29] Hunny Mehrotra, Badrinath G. S., Banshidhar Majhi, and Phalguni Gupta. An efficient iris

recognition using local feature descriptor. In IEEE International Conference on Image Process-

ing (ICIP), pages 1957–1960, Egypt, November 2009.

[30] H.J. Wolfson and I. Rigoutsos. Geometric Hashing: An Overview. IEEE Computational Science

& Engineering, 4(4):10–21, 1997.

[31] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object recognition by affine invariant matching.

In Computer Vision and Pattern Recognition (CVPR), pages 335–344, 1988.

[32] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for local image

descriptors. In CVPR (2), pages 506–513, 2004.

[33] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf). Computer

Vision and Image Understanding, 110(3):346 – 359, 2008.

[34] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 27(10):1615 –1630, oct. 2005.

[35] Cong Geng and Xudong Jiang. Face recognition using sift features. In ICIP, pages 3313–3316.

IEEE, 2009.

[36] G.S. Badrinath and P. Gupta. Palmprint verification using sift features. In Image Processing

Theory, Tools and Applications, 2008. IPTA 2008. First Workshops on, pages 1 –8, nov. 2008.

[37] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability,Programmability.

McGraw-Hill, 1993.

[38] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. Pearson

Education. Addison-Wesley, second edition, 2007.

[39] Isidore Rigoutsos and Robert A. Hummel. Massively parallel model matching: Geometric

hashing on the connection machine. IEEE Computer, 25(2):33–42, 1992.

[40] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings of the

fifteenth annual ACM symposium on Theory of computing, STOC ’83, pages 1–9, New York,

NY, USA, 1983. ACM.

[41] Jae-Dong Lee and Kenneth E. Batcher. Minimizing communication in the bitonic sort. IEEE

Trans. Parallel Distrib. Syst., 11(5):459–474, 2000.

[42] K. E. Batcher. Sorting networks and their applications. In AFIPS ’68 (Spring): Proceedings

of the April 30–May 2, 1968, spring joint computer conference, pages 307–314, New York, NY,

USA, 1968. ACM.

[43] S.J. Johnsson. Combining parallel and sequential sorting on a boolean n-cube. Proceedings of

International Conference on Parallel Processing, 1984.

