
Hardware Implementation

of

Densely Packed Decimal Encoding

An optimized approach supporting run-time user input

By

M.S.S.A.Raghuveer

Roll Number : 108CS077

B.Tech VIII Semester 2012

May 14, 2012

National Institute of Technology
Rourkela,Odisha - 769008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


National Institute of Technology
Rourkela,Odisha

Certificate

This is to certify that the work in the thesis entitled Hard-
ware Implementation of Densely Packed Decimal Encoding - An
optimized approach supporting run-time user input submitted
by M.S.S.A.Raghuveer is a record of an authentic work carried
out by him under my supervision and guidance in partial fulfill-
ment of the requirements for the award of the degree of Bachelor
of Technology in Computer Science and Engineering at National
Institute of Technology, Rourkela.

Place : NIT Rourkela
Date :

Dr. Ashok Kumar Turuk
Associate Professor

Head of the Department
Computer Science and Engineering

NIT Rourkela



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr.Ashok Ku-

mar Turuk,Department of Computer Science and Engineering for his able guid-

ance,wise suggestions and the never ending support and faith,without which my

work would not have been possible.

I would also like to extend my thanks to Prof.A.K.Swain,Department of Elec-

tronics and Communication Engineering and other senior members the VLSI

lab for their cooperation to my project work.

M.S.S.A.Raghuveer

(108CS077)

1



Abstract

BCD Encoding scheme represents each Decimal digit(Base 10) by its

own binary sequence of 4 bits.Though this scheme remains highly use-

ful for storage and simple operations on decimal data,compact represen-

tations hold more significance in some applications.An encoding scheme

was proposed by Chen and Ho named ”Chen-Ho Encoding”.This encoding

represents a three digit decimal in 10 bits unlike BCD which requires 12

bits,thus giving more efficiency and less wastage.This uses an algorithm

which uses simple boolean operations to compress the 12 BCD bits into

10 and also reverse the process[1].

DPD encoding is an improvisation of Chen-Ho encoding scheme.This

overcomes the limitation of Chen-Ho encoding which requires the decimal

number to be a multiple of 3 digits[2].This codes arbitrary length deci-

mal numbers as 10 bits.This enables the best use of available resources

like storage space and hardware registers.BCD encoding results in high

wastage of bit-pattern space.The objective of DPD compression is to use

this space for a long string of digits.

This thesis embodies the work done to implement an optimized Densely

Packed Decimal (DPD) encoding on hardware using VHDL and Xilinx

Spartan 3E FPGA.

2



Contents

1 Introduction 5

2 Literature Survey 6

2.1 Binary Coded Decimal(BCD) Encoding . . . . . . . . . . . . . . 6

2.2 Chen-Ho Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 DPD Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Details of encoding . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Proposed Hardware Logic . . . . . . . . . . . . . . . . . . 9

2.3.3 Optimized Compressor Module . . . . . . . . . . . . . . . 11

3 Implementation 14

3.1 Simulation of the Compressor Module with BCD inputs . . . . . 14

3.2 Simulation of Compressor Module with Binary inputs . . . . . . 14

3.2.1 Binary to BCD Conversion . . . . . . . . . . . . . . . . . 14

3.3 Implementation on FPGA with fixed inputs . . . . . . . . . . . . 19

3.4 Implementation on FPGA with run-time user inputs . . . . . . . 20

3.4.1 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 UART Receiver Subsystem . . . . . . . . . . . . . . . . . 21

3.4.3 Input Appending Module . . . . . . . . . . . . . . . . . . 23

3.4.4 Output Appending Module . . . . . . . . . . . . . . . . . 25

3.4.5 UART Transceiver System . . . . . . . . . . . . . . . . . 25

3.5 HyperTerminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



4 Conclusion 27

List of Figures

1 BCD Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Encoding/Compression . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Decoding/Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Simulation of Compressor Module . . . . . . . . . . . . . . . . . 15

5 Block Diagram of Binary to BCD Converter . . . . . . . . . . . . 17

6 Simulation of Binary to BCD converter . . . . . . . . . . . . . . 18

7 Block Diagram of UART Receiver . . . . . . . . . . . . . . . . . 22

8 Flow Chart of UART Receiver . . . . . . . . . . . . . . . . . . . 24

9 Flow Chart of UART Receiver(contd) . . . . . . . . . . . . . . . 24

List of Tables

1 Comparision of Encoding Schemes . . . . . . . . . . . . . . . . . 9

4



1 Introduction

The increasing usage of decimal data in various real time applications has led the

researchers to pursue a thorough work on various techniques for the implemen-

tation of Decimal Floating-Point Arithmetic.Decimal Floating-Point Arithmetic

holds high importance for its ability to represent decimal fractions exactly and

to mimic manual calculations that perform decimal rounding.Binary Floating-

Point Arithmetic can neither provide exact decimal rounding nor can repre-

sent many decimal fractions exactly.The software implementation of Decimal

Floating-Point Arithmetic eliminates these errors.However it is highly slower

than the Binary Floating-Point Arithmetic operations.Hence hardware imple-

mentation of DFP Arithmetic is expected to keep up the ever growing demands

of the industry.The inclusion of specifications for DFP Arithmetic in IEEE

Draft Standard for Floating-point Arithmetic(IEEE P754) and in IEEE-754-

2008 standard depicts the prominence of this area.

The IEEE 754-2008 specifies two encodings of decimal numbers corresponding

to the implementations of decimal arithmetic.Binary encoding allows for effi-

cient software operations,using native binary operations of a processor.Decimal

encoding(or DPD) was designed to make a hardware implementation of deci-

mal floating-point arithmetic reach the desired goals.In this format,significand

is encoded in a group of 3 digits,each group in 10 bits.

5



2 Literature Survey

2.1 Binary Coded Decimal(BCD) Encoding

BCD notation is one of the highly used notations of a decimal number because

of its simplicity.It requires a 4-bit binary pattern to represent a digit from 0 to

9(Figure 1).The 4-bit unit which stores the BCD digit is named a ’nibble’.

For example,the BCD notation for the number 192 is 0001 1001 0010 whereas

he pure binary notation is 11000000.

Figure 1: BCD Encoding

However much of the bit-pattern space is wasted by this notation.For example

comsider a 3 digit decimal.It requires 12 bits to be represented in this format.But

12 bits can represent 4096 patterns in binary whereas in decimal 3 digits can

represent only 1000 numbers.Thus the rest of 3096 patterns are wasted( 76

6



Hence a compression to squeeze out the unused space for efficient usage is rec-

ommended.If 10 bits are used for representation(since 1024¿1000),the wastage

can be reduced from 76% to approximately 2.5%.Two such encoding schemes

that do this are Chen-Ho Encoding and Densely Packed Decimal(DPD) En-

coding.The latter has the advantage that it represents a 2 digit number in an

optimal 7 bits and a single digit number in 4 bits as in BCD.

2.2 Chen-Ho Encoding

The Chen-Ho Encoding represents 3 decimal digits in 10 bits that can depict

upto 1024 patterns and therefore can encode the 1000 possibilities for 3 digits

in decimal system ensuring little waste of bit-pattern space.

Chen-Ho is better than the straight forward 10 bit bnary representation be-

cause it involves only simple boolean operations to convert from/to BCD for-

mat.This has an advantage over the variable-length schemes,because its fixed

length mapping allows simpler encoding and decoding logics.

This scheme works well when the decimal number has number of digits as

multiples of 3.It is less desired for other lengths because either digits must be

wasted or more than one encoding schemes have to be adopted to represent the

other digits of the number.

7



2.3 DPD Encoding

This scheme was first proposed by M.F.Cowlishaw and is an improvement over

the Chen-Ho encoding.It uses the coding scheme equivalent to the Chen-ho

but instead of using the Huffman code it uses a fresh arrangement of bits thus

obtaining some prime advantages over the Chen-Ho scheme as follows:

1. The limitation that the number of decimal digits must be a multiple of

three is overcome.This can encode any arbitrary number of decimal dig-

its.This represents a 2 digit number in an optimal 7 bits and a single digit

number in 4 bits.

2. The encoding decimal numbers can be expanded into a longer unit just by

padding with zero bits and no re-encoding is necessary,unlike the Chen-Ho

encoding which requires a complete re-encoding.

3. The decimal numbers in range 0 through 79 have the same right-aligned

notations as in BCD.In Chen-Ho encoding only numbers in the range 0

through 7 have the same notations as in BCD.

The above advantages clearly depict the fact that DPD Encoding is a better

choice than Chen-Ho Encoding for both hardware and software implementa-

tions.Here are some comparitive examples of various encoding schemes discussed

above:

2.3.1 Details of encoding

This encoding scheme categorizes each of the three digits as follows:

8



Decimal BCD Chen-Ho DPD

005 0000 0000 0101 000 000 0101 000 000 0101

009 0000 0000 1001 110 000 0001 000 000 1001

055 0000 0101 0101 000 010 1101 000 101 0101

099 0000 1001 1001 111 000 1001 000 101 1111

555 0101 0101 0101 010 110 1101 101 101 0101

999 1001 1001 1001 111 111 1001 001 111 1111

Table 1: Comparision of Encoding Schemes

• Small(0-7,requires 3 bits)

• Large(8 0r 9,requies 1 bit)

The most significant bit of each BCD digit is 0 for small values and 1 for large

values. In the following explanations,

• BCD representation of 3 digits are abcd,efgh,ijkm

• DPD representation of 3 digits are pqr,stu,v,w

The Encoding and Decoding particluars are shown in the following figures:

2.3.2 Proposed Hardware Logic

M.F.Cowlishaw[1] proposed the following logics for the hardware design of the

DPD encoder:

• p = (b I& a) — (j I& a I& i) — (f I& a I& e I& i)

9



Figure 2: Encoding/Compression

Figure 3: Decoding/Expansion

• q = (c I& a) — (k I& a I& i) — (g I& a I& e I& i)

• r = d

• s = (f I& e I& (a I& i))—(j I& ( a I& e I& i))—(e I& i)

• t = (g I& e I& (a I& i))—(k I& ( a I& e I& i))—(a I& i)

• u = h

10



• v = a — e — I

• w = a—(e I& i)—(j I& e I& i)

• x = e—(a I& i)—(k I& a I& i)

• y = m

2.3.3 Optimized Compressor Module

The compressor module proposed by M.F.Cowlishaw takes 4 gate delays for

completion.However by analyzing each signal at a time seperately from Figure.2

3 logic gate delay can be achieved using pipelining technique[3][4].

The details of each of the output signals analyzed seperately are as follows:

Logic Module for signal p

s1 ¡= b and not a;

s2 ¡= j and a and not i;

s3 ¡= f and a and not e and i;

p ¡= s1 or s2 or s3 ;

Logic Module for signal q

s1 ¡= b and not a;

s2 ¡= k and a and not i;

s3 ¡= g and a and not e and i;

q ¡= s1 or s2 or s3 ;

11



Logic Module for signal s

s1 ¡= f and not e and not i;

s2 ¡= f and not a and not e;

s3 ¡= j and not a and e and not i;

s4 ¡= e and i;

s ¡= s1 or s2 or s3 or s4 ;

Logic Module for signal t

s1 ¡= g and not a and not e;

s2 ¡= g and not e and not i;

s3 ¡= k and not a and e and not i;

s4 ¡= a and i;

t ¡= s1 or s2 or s3 or s4;

Logic Module for signal w

s1 ¡= j and not a and not e and not i;

s2 ¡= e and i;

w ¡= s1 or s2 or a;

Logic Module for signal x

s1 ¡= k and not a and not e and not i;

s2 ¡= a and i;

x ¡= s1 or s2 or e;

12



Logic Module for signal r,u,y

r ¡= d;

u ¡= h;

y ¡ = m;

13



3 Implementation

The implementation of the optimized DPD system with run-time user input is

done in an incremental manner as described below.

3.1 Simulation of the Compressor Module with BCD in-

puts

In the first step,testbenches were developed for the optimized compressor mod-

ule[2].Different inputs as BCD sequences each of 12 bits were taken and fed se-

quentially to the module and the outputs were recorded.Simulations were done

using Xilinx ISE 10.1.Figure 4 shows the result of the simulation:

3.2 Simulation of Compressor Module with Binary inputs

In the second step,a more closer real life situation is considered.A decimal num-

ber(in Binary form) is fed as input to the compressor module and simulations

are done.

3.2.1 Binary to BCD Conversion

The decimal number input fed to the compressor module needs to be converted

to BCD format and then the output of the conversion module(BCD sequence)

is fed as input to the compressor.

The conversion process is implemented by simple algorithm implemented in

VHDL[3].This takes the 8 bit binary number as input and gives 12 bit BCD

14



[!ht]

Figure 4: Simulation of Compressor Module

15



sequence as output.The algorithm follows the following steps:

1. The binary number is shifted to left by 1 bit

2. Three columns Units,Tens and Hundreds are defined each of 4 bit width

from left to right.

3. If value of a number in any of the BCD columns is 5 or greater, 3 is added

to it.

4. The first step is repeated till the entire binary number is shifted.

Figure 5 shows the block diagram of the Binary to BCD converter.The following

is an example of the conversion process with 11110011 as binary input explaining

the algorithm. 0000 0000 0000 11110011 Initialization

0000 0000 0001 11100110 S1

0000 0000 0011 11001100 S2

0000 0000 0111 10011000 S3

0000 0000 1010 10011000 Added 3 to 7

0000 0001 0101 00110000 S4

0000 0001 1000 00110000 Added 3 to 5

0000 0011 0000 01100000 S5

0000 0110 0000 11000000 S6

0000 1001 0000 11000000 Added 3 to 6

0001 0010 0001 10000000 S7

0010 0100 0011 00000000 S8

16



Figure 5: Block Diagram of Binary to BCD Converter

This converter is implemented before the compression process is taken place.The

simulation of Binary to BCD conversion is shown in Figure 6.

17



[!ht]

Figure 6: Simulation of Binary to BCD converter

18



3.3 Implementation on FPGA with fixed inputs

AN FPGA is an aronym for Field Programmable Gate Array.As the name sug-

gests,this is an integrated circuit that can be programmed/configured by the

customer or the designer as per the requirements of the logic design that is to

be implemented.Implementing a logic design on a FPGA usually includes the

following steps:

1. The description of the desired logic ciruit is entered and the FPGA is con-

figured in some hardware description language like VHDL or Verilog.In

this project,VHDL is used to code the logic design proposed to be imple-

mented for the compressor module and other functions.

2. A logic Synthsizer program is used to transform the HDL into a ’Netlist’.The

netlist is just a description of the various logic gates in your design and

how they are interconnected.

3. Implementation tools are used to map the logic gates and inter-connections

into the FPGA.The FPGA consists of many Configurable Logic Blocks,that

can be decomposed further into Look-Up Tables.The CLBs and LUTs are

interwoven with various Routing Resources.The ’Mapping’ tool collects

the netlist gates into groups that fit into the LUTs and then the ’Place

and Route’ tool assigns the groups to specific CLBs.

4. After the implementation step is finished,a program extracts the state of

the switches in the routing matrices and generates a bitstream where the

ones and zeroes correspond to open or closed switches

19



5. The bitstream is downloaded into a physical FPGA chip).The electronic

switches in the FPGA open or close in response to the binary bits in the

bitstream. Upon completion of the downloading, the FPGA will perform

the operations specified by your HDL code or schematic

Here we used the Xilinx Spartan 3E FPGA(Figure 7) for the implementa-

tion of the modules described before.The VHDL code for the Binary to BCD

conversion and BCD to DPD compression were implemented on this FPGA af-

ter proper synthesis,design implementation and constraint definitions.Fixed test

inputs were given to the synthesized code and the outputs were verified.

3.4 Implementation on FPGA with run-time user inputs

3.4.1 UART

UART is an acronym for Universal Asynchronous Receiver-Transmitter.It is a

circuit that sends parallel data through serial line.UARTs are frequently used

in conjunction with the EIA (Electronic Industries Alliance) RS-232 standard,

which specifies the electrical, mechanical, functional, and procedural charac-

teristics of two data communication equipment.[6] The Spartan 3E board has

a RS232 port with a standard 9-pin connector.The board contains The neces-

sary voltage converter chip is present on the board which configures the various

RS-232s control signals and automatically generates an acknowledgment for the

PCs serial port.

20



The UART contains a transmitter and a receiver.The transmitter is a shift

register that loads parallel data and shifts it out bit by bit at a predefined

rate.The job of the receiver is just the opposite.When the serial is idle,it main-

tains binary ’1’.The transmission starts with a start bit which is generally ’0’

followed by the data bits and then ends with stop bits at ’1’.To check errors

parity bits may also be included in the transmission sequence.

No clock signals are transmitted through the serial line.Hence it is named

’asynchronous’.Before the transmission starts,both the transmitter and receiver

agree upon a set of parameters like Baud Rate(Number of bits transmitted per

second),number of data bits(can be 6,7,8),stop bits and parity bits.

Here we use a Baud Rate of 19200 for a clock of 50MHz frequency.The se-

rial line parameters include one start bit(0),8 data bits and one stop bit(1).No

techniques for flow control or error control are included.The implementation of

UART integrated compressor module is performed in five phases

3.4.2 UART Receiver Subsystem

As no clock signals are transmitted through the serial line,the receiver takes in

the data bits according to the predefined parameters described above.Oversampling

scheme is used to estimate the middle points of transmitted bits and they are

retrieved at those points correspondingly.

The sampling rate used here is 16 times the Baud Rate(19200).This means

that each serial bit is sampled 16 times.This scheme basically performs the

21



Figure 7: Block Diagram of UART Receiver

function of a clock.Instead of considering the rising edge of the clock to accept an

input bit,the number of ticks are monitored.However this scheme is not suitable

for high data rates[5].The block diagram of the UART receiver subsystem is

shown in Figure 7.

In the above figure,Receiver is the circuit that accepts the data bots through

the oversampling procedure stated above.Baud Rate Generator is the circuit

that produces the sampling ticks.

mod-M Counter Here we use the mod-M counter as the Baud Rate Generator.Mod-

M Counter counts from 0 to (M-1) and then wraps around.This requires two

values as parameters

• M is the value to which it should count upto

• N is the number of bits required to count to the limit

22



The working of the receiver subsystem is shown in Figure 8 and Figure 9.

• Four states of working are defined Idle,Start,Data and Stop.When the

serial line is high at ’1’ it is in the idle state.When the ’rx’ bit becomes

’0’ the system enters the Start state.Then depending upon the value of ’s’

register the data is transmitted and the system enters the Stop state when

’n’ register reaches the limit of the number of data bits to be transmitted.

• Three sets of registers s,n,b are considered for three functions storing the

value of tick,number of bits transmitted and transmitted bit sequence

respectively.

3.4.3 Input Appending Module

The UART Receiver subsystem recieves the data bits following the process ex-

plained above.RS232 communication occurs in ASCII format(using HyperTer-

minal discussed later).A case map is adopted to obtain the corresponding BCD

value for every ASCII value that is received.Thus for every 8 data bits received

as ASCII the case map gives out 4 bits that are in BCD.

The compressor module accepts the bit sequence obtained from the Receiver

subsystem only when the sequence has 12 bits.It then compresses these 12 bits

to 10 DPD bits.Hence the Input Appending Module acts as a buffer between

the Receiver system and the Compressor module.It takes in the 4-bit BCD

sequences from Receiver and append them with each other sequentially and

gives out the 12-bit sequence to Compressor Module.This module also takes

23



Figure 8: Flow Chart of UART Receiver

Figure 9: Flow Chart of UART Receiver(contd)

24



care if the data transmission ends before a 12-bit sequence is made.It appends

the received sequence with necessary zeros and gives it to the compressor.

3.4.4 Output Appending Module

The core function of the Output appending module is same as the input ap-

pending module.The compressor module receives 12-bit BCD sequences from

the Input Appender Module and compresses it to 10-bit DPD sequence.But the

data transmission is carried out according to some predetermined parameters

as explained before.One of them is the number of data bits transferred(8 bits

here).

This module takes in 10-bit DPD sequences from the compressor module and

makes the necessary adaptations to make it satisfy the parameters defined.

3.4.5 UART Transceiver System

The organization of the transmitter system is same as the receiver system.The

UART transmitter is essentially a shift register that shifts out data bits at a

specific rate.The shift rate is controlled by one-clock-cycle Enable ticks gen-

erated by the Baud Rate Generator.Generally Transmitter system shares the

same Baud Rate Generator as the Receiver system.A data bit is shifted out

every 16 enable ticks.The working chart of the Transmitter system is similar to

the Receiver system(Figure 8).

25



3.5 HyperTerminal

On the user side,HyperTerminal of Windows was used.Windows’ HyperTerminal

is an application that can be used as a virtual terminal to interact with the

Spartan 3E board.The HyperTerminal connection is configured according to the

predetermined parameters.It uses the COM port of the PC to make a connection

with the FPGA.

Dynamic input from the user can be taken using this virtual terminal and the

processed data(After Compression) can be loop back to be shown on the same

window.

26



4 Conclusion

The optimized design of the compressor module is simulated with fixed in-

puts,both BCD and Binary.The VHDL code is also implemented on FPGA after

proper synthesis,constraint definitions and design implementation.Implementation

with Run-Time user input is also performed and verified.

27



References

[1] Tien Chi Chen and Irving T. Ho. Storage effcient representation of decimal

data. CACM, 18(1):49 52, January 1975.

[2] M. F Cowlishaw. Densely packed decimal encoding. IEEE Proceedings

Computers and Digital Techniques, 149(3):102 104, May 2002.

[3] L Eisen, J. W. Ward, H.W. Tast, N. Mading, J. Leenstra, S. M. Mueller,

C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough. Ibm power6 accel-

erators: Vmx and dfu. IBM Journal of Research and Development, 51(6):1

21, November 2007.

[4] Kamlesh Sulanki.Pipelined Implementation of Densely Packed Decimal En-

coding.18 May 2011.http://ethesis.nitrkl.ac.in/2555/

[5] Cowlishaw, M. F.,”Summary of Densely Packed Decimal encoding”.

http://speleotrove.com/decimal/DPDecimal.html.

[6] Pong P.Chu.FPGA prototyping by VHDL Examples-Xilinx Spartan 3 Ver-

sion.Wiley Publications 2008

[7] Douglas L. Perry. VHDL Programming : By Example McGraw-Hill Publi-

cations 4th Edition

[8] ISE Simulator In-depth Tutorial.UG682(v1.0)April 27,2009

[9] Spartan-3E Starter Kit Board User Guide.UG230 (v1.0) March 9, 2006

[10] http://www.xilinx.com/forums

28


