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ABSTRACT 
 

 

A power system stabilizer (PSS) installed in the excitation system of the synchronous 

generator improves the small-signal power system stability by damping out low frequency 

oscillations in the power system. It does that by providing supplementary perturbation signals in 

a feedback path to the alternator excitation system. 

 

In our project we review different conventional PSS design (CPSS) techniques along with 

modern adaptive neuro-fuzzy design techniques. We adapt a linearized single-machine infinite 

bus model for design and simulation of the CPSS and the voltage regulator (AVR). We use 3 

different input signals in the feedback (PSS) path  namely, speed variation(w), Electrical Power 

(Pe), and integral of accelerating power (Pe*w), and review the results in each case. 

 

For simulations, we use three different linear design techniques, namely, root-locus 

design, frequency-response design, and pole placement design; and the preferred non-linear 

design technique is the adaptive neuro-fuzzy based controller design. 

 

The MATLAB package with Control System Toolbox and SIMULINK is used for the 

design and simulations. 
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CHAPTER-1    

POWER SYSTEM STABILITY: INTRODUCTORY 

CONCEPTS 

Power System Stability, its classification, and problems associated with it have been 

addressed by many CIGRE and IEEE publications. The CIGRE study committee and IEEE 

power systems dynamic performance committee defines power system stability as: 

"Power system stability is the ability of an electrical power system, for  given operating 

conditions, to regain its state of operating equilibrium after being subjected to a physical 

disturbance, with the system variables bounded, so that  the  entire system remains intact and 

the service remains uninterrupted" [3]. 

The figure below gives the overall picture of the stability problem: 

 

                   

            

            

            

            

            

            

            

            

            

            

            

       Fig.1. Power-system stability classification [24]   
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Out of all the stability problems mentioned above, our specific focus in this project is of 

small disturbance stability which is a part of the rotor angle stability. Also, the voltage 

stability due to small disturbances is covered. 

Rotor angle stability:   

This refers to the ability of the synchronous generator in an interconnected power system to 

remain in synchronism after being subjected to disturbances. It depends on the ability of the 

machine to maintain equilibrium between electromagnetic torque and mechanical torque of 

each synchronous machine in the system [24]. Instability of this kind occurs in the form of 

swings of the generator rotor which leads to loss of synchronism. 

Small Disturbance Stability: 

Small Disturbance stability may refer to small disturbance voltage or rotor angle stability. 

The disturbances are sufficiently small so as to assume a linearized system model. Small 

disturbances may be small incremental load changes, small control variations etc. It does not 

however include disturbances due to faults or short circuits.
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CHAPTER-2 

THE EXCITATION SYSTEM OF THE SYNCHRONOUS 

GENERATOR: AN OVERVIEW 

In this chapter, we give a brief historical overview on the excitation system of the 

synchronous generator. Then we proceed to give the schematic diagram of the excitation 

system which we shall primarily use in this project to design the power system stabilizer. 

The first step in the sophistication of the primitive excitation system was the introduction of 

the amplifier in the feedback path to amplify the error signal and make the system fast acting. 

With the increase in size of the units and interconnected systems, more and more complex 

excitation systems are being developed to make the system as stable as possible. With the 

advent of solid-state rectifiers, ac exciters are now in common use. [11] 

A modern excitation system contains components like automatic voltage regulators (AVR), 

Power System stabilizers (PSS), and filters, which help in stabilizing the system and 

maintaining almost constant terminal voltage. These components can be analog or digital 

depending on the complexity, viability, and operating conditions. The final aim of the 

excitation system is to reduce swings due to transient rotor angle instability and to maintain a 

constant voltage. To do this, it is fed a reference voltage which it has to follow, which is 

normally a step voltage. The excitation voltage comes from the transmission line itself. The 

AC voltage is first converted into DC voltage by rectifier units and is fed to the excitation 

system via its components like the AVR, PSS etc. the different components are discussed 

later. 

    

                     Transmission line 

Synchronous 

generator 

 EXCITER 

Auxiliary control 

AVR 

Vref Fig.2. Schematic of the excitation system [11] 
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CHAPTER-3 

 POWER SYSTEM STABILIZER: AN INTRODUCTION 

STABILITY ISSUES AND THE PSS:- 

 Traditionally the excitation system regulates the generated voltage and there by helps 

control the system voltage. The automatic voltage regulators (AVR) are found extremely 

suitable (in comparison to „ammortisseur winding‟ and „governor controls‟) for the regulation 

of generated voltage through excitation control. But extensive use of AVR has detrimental 

effect on the dynamic stability or steady state stability of the power system as oscillations of 

low frequencies (typically in the range of 0.2 to 3 Hz) persist in the power system for a long 

period and sometimes affect the power transfer capabilities of the system [4]. The power 

system stabilizers (PSS) were developed to aid in damping these oscillations by modulation 

of excitation system and by this supplement stability to the system [5]. The basic operation of 

PSS is to apply a signal to the excitation system that creates damping torque which is in 

phase with the rotor oscillations. 

DESIGN CONSIDERATIONS:- 

Although the main objective of PSS is to damp out oscillations it can have strong 

effect on power system transient stability. As PSS damps oscillations by regulating generator 

field voltage it results in swing of VAR output [1]. So the PSS gain is chosen carefully so that 

the resultant gain margin of Volt/VAR swing should be acceptable. To reduce this swing the 

time constant of the „Wash-Out Filter ‟can be adjusted to allow the frequency shaping of the 

input signal [5]. Again a control enhancement may be needed during the loading/un-loading 

or loss of generation when large fluctuations in the frequency and speed may act through the 

PSS and drive the system towards instability. A modified limit logic will allow these limits to 

be minimized while ensuring the damping action of PSS for all other system events.  Another 

aspect of PSS which needs attention is possible interaction with other controls which may be 

part of the excitation system or external system such as HVDC, SVC, TCSC, FACTS. Apart 

from the low frequency oscillations the input to PSS also contains high frequency turbine-

generator oscillations which should be taken into account for the PSS design. So emphasis 

should be on the study of potential of PSS-torsional interaction and verify the conclusion 

before commission of PSS [5]. 
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PSS INPUT SIGNALS:- 

Till date numerous PSS designs have been suggested. Using various input parameters such as 

speed, electrical power, rotor frequency several PSS models have been designed. Among 

those some are depicted below.                                                      

   

  SPEED AS INPUT: - A power system stabilizer utilizing shaft speed as an input must 

compensate for the lags in the transfer function to produce a component of torque in phase 

with speed changes so as to increase damping of the rotor oscillations.   

  POWER AS INPUT: - The use of accelerating power as an input signal to the power 

system stabilizer has received considerable attention due to its low level torsional interaction. 

By utilising heavily filtered speed signal the effects of mechanical power changes can be 

minimized. The power as input is mostly suitable for closed loop characteristic of electrical 

power feedback.           

  FREQUENCY AS INPUT:- The sensitivity of the frequency signal to the rotor input 

increases in comparison to speed as input as the external transmission system becomes 

weaker which tend to offset the reduction in gain from stabilizer output to electrical torque 

,that is apparent from the input signal sensitivity factor concept.                                                                       

.                                        
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CHAPTER-4 

METHODS OF PSS DESIGN: A REVIEW 

 

In this chapter we shall design and review different aspects and methods of PSS design, its 

advantages, disadvantages and uses in field. 

First, we discuss conventional methods of PSS design and then move onto more advanced 

methods and recent developments. 

The schematic below represents different methods of PSS design:- 

 

            

            

            

            

            

            

            

            

            

            

            

    Fig.3. Methods of PSS design    

            

            

             

We will mainly focus on analog methods of PSS design which can be further divided into 

linear and non-linear methods. 
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The linear methods are:- 

1. Pole-placement method: Controllers designed using simultaneous stabilization design 

have fixed gain constant to adaptive controllers. The root locus technique can be utilized after 

designing gains separately to adjust the gains by which only dominant modes are selected. In 

a more efficient manner the pole-placement design was proposed in which participation 

factor were used to determine size and number of stabilizers in a multi machine system [8] 

[7]. 

2. Pole-shifting method: - By this method system input-output relationship are 

continuously estimated form the measured inputs and outputs and the gain setting of the self-

tuning PID stabilizer was adjusted in addition to this the real part of the complex  open loop 

poles can be shifted to any desired location [8] .      

3. Linear Quadratic Regulation: - This is proposed using differential geometric 

linearization approach [8]. This stabilizer used information at the secondary bus of the step-

up transformer as the input signal to the internal generator bus and the secondary bus is 

defined as the reference bus in place of an infinite bus. 

4. Eigen value Sensitivity Analysis: - Based on second order Eigen-sensitivities an objective 

function can be utilized to carry out the co-ordination between the power system stabilizer 

and FACTS device stabilizer. The objective function can be solved by two methods the 

Levenberg-Marquardt method and a genetic algorithm      in   face   of various     operating     

conditions [8] [15]. 

5. Quantitative Feedback theory: - By simply retuning the PSS the conventional stabilizer 

performance can be extended to wide range of operating and system conditions. The 

parametric uncertainty can be handled using the Quantitative feedback Theory [8] [16]. 

6. Sliding Mode control: - Due to the inexact cancellation of non-linear terms the exact 

input output linearization is difficult. The sliding mode control makes the control design 

robust. The linearized system in controllable canonical form can be controlled by the SMC 

method. The control objective is to choose the control signal to make the output track the 

desired output [8] [17]. 

7. Reduced Order Model: - Through aggregation and perturbation reduced order model can 

be obtained but as it is based on open loop plant matrix only the results cannot be accurate. 
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But with suitable analytical tools reduced order model can be optimized to obtain state 

variables those are physically realizable and can be implemented with simple hard-wares [8] 

[18]. 

8. H2 Control: - Application of H2 optimal adaptive control can be utilized for disturbance 

attenuation in the sense of H2 norm for nonlinear systems and can be successful for the 

control of non-linear systems like synchronous generators [8]. 

The Non-linear methods are:- 

1. Adaptive control:-Several adaptive methods have been suggested like Adaptive 

Automatic Method, Heuristic Dynamic programming. In adaptive automatic method the lack 

of adaptability of the PSS to the system operating changes can be overcome. Heuristic 

Dynamic programming combines the concepts of dynamic programming and reinforcement 

learning in the design of non-linear optimal PSS [8]. 

2. Genetic Algorithm: - Genetic algorithm is independent of complexity of performance 

indices and suffices to specify the objective function and to place the finite bounds on the 

optimized parameters. As a result it has been used either to  simultaneously tune multiple 

controllers in different operating conditions or to enhance the power system stability via PSS 

and SVC based stabilizer when used independently and through coordinated applications [8].

   

3. Particle Swarm Optimization:- Unlike other heuristic techniques ,PSO has 

characteristics of simple concept, easy implementation, computationally efficient , and has a 

flexible and well balanced mechanism to enhance the local and global exploration abilities 

[8].  

4. Fuzzy Logic: - These controllers are model-free controllers. They do not require an exact 

mathematical model of the control system. Several papers have been suggested for the 

systematic development of the PSS using this method [19] [22].    

5. Neural Network: - Extremely fast processing facility and the ability to realize 

complicated nonlinear mapping from the input space to the outer space has put forward the 

Neural Network. The work on the application of neural networks to the PSS design includes 

online tuning of conventional PSS parameters, the implementation of inverse mode control, 

direct control, and indirect adaptive control [19] [22].          
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6. Tabu Search: - By using Tabu Search the computation of sensitivity factors and Eigen 

vectors can be avoided to design a PSS for multi machine systems.    

  

7. Simulated Annealing: - It is derivative free optimization algorithm and to evaluate 

objective function no sensitivity analysis is required [8]. 

8. Lyapunov Method: - With the properly chosen control gains the Lyapunov Method 

shows that the system is exponentially stable. 

9. Dissipative Method:-A framework based on the dissipative method concept can be used 

to design PSS which is based on the concept of viewing the role of PSS as one of dissipating 

rotor energy and to quantify energy dissipation using the system theory notation of passivity 

[8].   

10. Gain Scheduling Method: - Due to the difficulty of obtaining a fixed set of feedback 

gains design of optimum gain scheduling PSS is proposed to give satisfactory performance 

over wide range of operation. As time delay can make a control system to have less damping 

and eventually result in loss of synchronism, a centralized wide area control design using 

system wide has been investigated to enhance large interconnected power system dynamic 

performance. A gain scheduling model was proposed to accommodate the time delay [8].  

  

11. Phasor Measurement: - An architecture using multi-site power system control using 

wide area information provided by GPS based phasor measurement units can give a step 

wise development path for the global control of power system [8].   
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CHAPTER-5 

THE ALTERNATOR STATE SPACE MODEL 

The model which was used for the design of the final PSS consists of a “single-machine 

infinite bus". It consists of a single generator and delivers electrical power Pe  to the infinite 

bus. It has been modelled taking into consideration sub transient effects. 

The below schematic diagram shows the model:- 

 

                U                                                                                 Pe                Transmission Line                                                                     

                                                                  Generator                               

                                          _ 

                   Infinite bus 

 Vref     +                                       

                        Fig.4. Excitation system control model [1]                                                                               

 

The voltage regulator controls the input u to the excitation system which provides the field 

voltage so as to maintain the generator terminal voltage Vterm at a desired value Vref. We 

consider the state –space representation of the above system [1] as follows:- 

There are 7 state variables, 1 input variable and 3 output variables y. 

Where state variables x= [δ  ω  Eq
‟ 
 ψ d  E‟d  ψ q  Vr  ] 

T
  

Output variables y= [Vterm ω  Pe]
T
  

Input variable u= Vref 

Where,  δ=  rotor angle in radian. 

ω= angular frequency in radian/sec. 

ψd, Ed‟=  direct axis flux and field. 

Ψq, E‟q= quadrature axis flux and field 

Vterm= terminal voltage 

EXCITER 

VOLTAGE 

REGULATOR 

 



         

11 
 

Pe= Power delivered to the infinite bus. 

The state eqn are:- 

Δx‟= AΔx +BΔu; 

Δy= CΔx 

Here, the matrices A, B depends on a wide range of system parameters and operating 

conditions [1].  

A= 

0     377.0  0  0  0  0  0    

-0.246   -0.156   -0.137   -0.123  -0.0124 -0.0546            0 

0.109   0.262   -2.17   2.30   -0.171   -0.0753      1.27 

-4.58  0  30.0   -34.3    0    0   0 

-0.161   0   0   0   -8.44   6.33   0 

-1.70   0   0   0   15.2   -21.5    0 

-33.9   -23.1  6.86   -59.5   1.5   6.63         -114 

 

B =[0 0  0   0  0  0  0 16.4]
T 

 

C=  -0.123  1.05   0.230  0.207  -0.105  -0.460  0 

      0  1  0  0  0  0  0 

      1.42 0.9  0.787  0.708  0.0713  0.314  0 
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CHAPTER-6 

DESIGN OF THE PSS: THE EXCITATION SYSTEM MODEL 

The SIMULINK
™

 model of the single machine excitation system is given below: 

Fig.5. SIMULINK model of the 1-machine infinite bus [1] 

The above SIMULINK model adapted from [1] was used by us to design an optimum 

Voltage regulator and the “power system stabilizer” using various design methods that we 

discuss later. 

The different parts of the model are discussed as follows:  

1. Vref- the reference voltage signal is a step voltage of 0.1 V. the final aim is to maintain the 

voltage at a constant level without oscillations. 

2. Voltage regulator (AVR) - The excitation of the alternator is varied by varying the main 

exciter output voltage which is varied by the AVR. The actual AVR contains: 

 Power magnetic amplifier 

 Voltage correctors 



         

13 
 

 Bias circuit 

 Feedback circuit 

 Matching circuit etc. 

For our simulations, we have utilized a  

1. Proportional VR Kv(s) =Kp (10, 20, 30…) 

2. PI VR Kv(s) = kpi =kp(1+ki/s) 

3. Lag VR (compensator or filter) 

4. Observer based controller VR (5
th

 order and 1
st
 order) 

 The effect of different types of control and different values of kp and ki on the AVR 

and the overall power system has been shown in the simulated results. 

3. POWER SYSTEM MODEL: -        

  As described in the previous section, we use a state space model [1] of the 

power system having 7 state variables, 1input and 3 output variables.The details of the 

model are given in the previous chapter. 

4. WASHOUT FILTER:- 

  The output w is fed back through a sign inverter to the washout filter which is 

a high pass filter having a dc gain of 0. This is provided to cut-out the PSS path when the 

steady state [1]. In our simulation we take the filter as a transfer function model of 

 F(s) = (10s/10s+1) 

5. TORSIONAL FILTER: - This block filters out the high frequency oscillatins due to the 

torsional interactions of the alternator. In our simulation, we take the transfer function 

model of this filter as Tor(s) = (1/1+0.06s+0.0017s
2
) [1]. 

6. PSS: -           

 This is the main part of our design problem. The power system stabilizer takes input 

from the filter outputs of the rotor speed variables and gives a stable output to the voltage 

regulator. The pss acts as a damper to the oscillation of the synchronous machine rotor 

due to unstable operating condition. It does this task by taking rotor speed as input (with 

the swings in the rotor) and feeding a stabilized output to the voltage regulator. A PSS is 

tuned by several methods to provide optimal damping for a stable operation. They are 

tuned around a steady state operating point which we shall try to design.  
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CHAPTER-7 

DESIGN OF AVR AND PSS USING COVENTIONAL 

METHODS 

In our model for the control of the single-machine excitation system, we have two aspects of 

design namely: 

a) Voltage regulator (AVR)  b)   Power system stabilizer (PSS) 

The power system stabilizer design performed by us has been grouped under three heads: 

1. Root-Locus approach (Lead-Lead compensator)  

2. Frequency response approach (Lead-Lead compensator) 

3. State-Space approach (Observer based Controllers) 

 

 

 

We now discuss each method in details; the steps involved, the results obtained and finally, 

give a brief review on the merits and demerits of each method. 

 

1. ROOT LOCUS METHOD: 

The root locus design method of the PSS involves the following steps: 

a) Design of the AVR: We take a PI controller as the voltage regulator having the 

transfer function, V(s) =  (  
  

 
). The constants Kp and Ki are to be chosen such 

that the design specs: tr < 0.5 sec and Mp < 10% are satisfied. For this, we make a 

table of different Kr and Kp values and their corresponding Tr and Mp values and 

choose the appropriate value as given in [Appendix-1.4, 1.5].  

We get Kp=35 and Ki=0.6 which satisfy the above specifications. 
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The output Vterm for different values of  Ki is plotted below in fig.6:

 

  Fig.6. Step response for regulation loop for different Ki values. 

b) Design of PSS: We close the VR loop with the above Kp and Ki and simulate the 

system response for a step input. The above plot shows that the steady state error =0. 

Hence, the system is able to follow the step input by introduction of the AVR; but due 

to the PI controller of the AVR, the swing mode (dominant complex poles) becomes 

unstable and oscillations are introduced in the output Vterm. Now, to reduce the 

oscillations, we have to introduce a feedback loop involving the swing in rotor 

angular speed (∆ω) as input to the PSS loop.  

First we analyse the root locus of the PSS loop from u to wf: 

 

Fig7. Root locus of PSS loop showing the dominant complex poles. 
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We see that the dominant complex poles are at (-0.4801+9.332i, -0.4801-9.332i). 

Next, we find the angle of departure (Φp) from the pole using MATLAB. We get Φp = 

43.28. Based on this angle we design the lead-lead compensator :              

 P(s) = K*  (
   

   
)+ *  (

   

   
)+ such that Φp=180º for perfect damping. Hence we 

have to add angle of 137º which cannot be done using a single lead compensator. So 

we use two lead compensators in series each adding an angle of 68.5º. K is chosen 

from the root locus plot of the final PSS loop such that damping ratio ζ > 15%. 

 

After the design we find that: 

z= 3.5  p= 24  Kα= 13.8  K= 0.4 

 

The final lead-lead compensator is given by: 

  

P(s) = 0.4*    (
     

    
)+ *    (

     

    
)+ 

 

Next, we implement this PSS and close the loop and simulate the response. The root-

locus plot of the final PSS loop and the comparison of responses are given below: 

 

 

Fig.8. Root-locus of the final PSS loop showing Φp  180º for dominant poles 
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Fig.9. Comparison of step response of uncompensated and compensated systems 

 

 

 

2. FREQUENCY RESPONSE METHOD: 

The frequency response design method involves the use of bode-diagrams to measure the 

phase and gain margin of the system and compensating the phase by using lag controller 

for AVR and lead controller for PSS. The design details are as below: 

a) Design of the AVR: First, we plot and analyse the bode plot of the open-loop Power 

system. From this, we find that: 

Gain margin Gm = 35dB Phase margin Pm = inf. DC gain= -2.57dB (0.74) 

The design specs [1] require the DC gain > 200 (=46dB) and phase margin > 80º. 

Thus the required gain Kc=10^((200+0.74)/20) = 269. Now, for the phase margin to 

be >80º, the new gain crossover frequency = 5rad/sec. 

To give the required phase lag to the system at this crossover frequency, we take a 

lag-compensator as the AVR, having transfer function: 

V(s) =   *
   

   
+ , where  Kl=

  

 
,  p=
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Now, the lag required at 5rad/sec is -18dB. Hence, 20   
 

 
 = -18, i.e. β=8. 

We choose the corner frequency 
 

 
 = 0.1 to make the system faster. So, z = 0.1. Hence, 

p=0.1/8 = 0.0125, Kl= 269/8 = 35. Thus the final AVR is: 

V(s) = 35*
     

        
+. 

The frequency response of the uncompensated and the compensated system are shown 

below: 

 

Fig.10. Comparison of frequency response with and without VR loop 
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Next, we implement this AVR in the SIMULINK model and get the step-response: 

 

Fig.11. Step response of the lag compensated VR 

Rise time tr= 0.48sec.  Maximum overshoot Mp= 7.36% 

 

b) Design of the PSS: As in case of the previous design method, we find that the 

introduction of the voltage regulator eliminates the steady state error and makes the 

system much faster. But it also introduces low frequency oscillations in the system. 

Hence we have to design the PSS loop taking input as the perturbation in rotor 

angular speed (∆ω). 

First, we generate the state-space model from Vref to ω with the regulation loop 

closed. As given in [1], figure 8, we isolate the path Q(s)= effect of speed on electric 

torque due to machine dynamics and find Aω matrix from the main matrix A. 

The resulting state-space model has input ∆ω and output τ (balancing torque). Thus 

we get A33(5*5 matrix) , a32 (5*1 vector), a23(1*5 matrix). [see Appendix1.2] 

We convert this state space model to transfer function and connect Q(s) to the 

torsional and washout filters to get F(s). Then we plot and analyze the frequency 

response of F(s) from 1rad/sec to 100 rad/sec. 
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From the above Fig.12, we find that: 

Phase at 2rad/sec = -37º  Phase at 20 rad/sec = -105º 

As per the design specs [1], we have to increase this phase at 2 to 20 rad/sec from the 

above values to approximately 0º to -15º, such that the feedback loop will add pure 

damping to the dominant poles. Thus we require a lead compensator of the form:      

P(s)=  *  (
   

   
)+ *  (

   

   
)+   where Kα = 

  

 
 

We need an additional phase of: 

35º at 2 rad/sec  60º at 12 rad/sec 100º at 20 rad/sec 

Hence, maximum phase addition Φm is at 20 rad/sec =100º. This is too large for a 

single lead compensator as shown in figure 13. below: 

 

Fig. 13. Maximum phase addition Φm vs alpha α 
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From the above figure, we see that for Φm>60º, α is too small. Hence we use two 

identical lead-compensators in series. Thus for each compensator Φm=50º. 

From the relation       
   

   
, we get α= 0.1325. Hence, 

Kα=1/α = 7.5  T= 
 

√  
 = 0.137  z = 

 

 
 =7.28         p=

 

  
=55 

From the root locus plot of the PSS loop we get K for ζ >15% K=5. Thus  

P(s) =  *   (
      

    
)+ *   (

      

    
)+  . 

Then we implement this PSS and close the loop and simulate the resultant model. We 

find the step response and the rise time and maximum overshoot of the compensated 

system. 

Below fig. 14 shows the root locus plot of the damping loop and  fig15. Shows the 

step-response of the final system: 

 

 

Fig.14. Root locus plot of the PSS loop showing the dominant poles 
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Fig.15. Step response of the final system with and without PSS loop 

 

 

3. STATE-SPACE METHOD: 

The state space design involves designing full state observers using pole placement to 

measure the states and then designing the controller such that the closed loop poles lie in the 

desired place. As before, we first design the voltage controller AVR such that the dominant 

pole is made faster by placing it away from the jω axis. Then, we design the PSS to stabilize 

the oscillations due to the VR loop by manipulating the swing mode (dominant poles). The 

details are given below: 

a) Design of the AVR: We first obtain the 1-input 1-output model of the power system 

as given in [1] from Vref to Vterm. Hence, we get A1 (7*7 matrix), B1 (7*1 vector), C1 

(1*7 matrix), and D1(1*1) as given in Appendix-1 in this text. We find the open loop 

poles of this system: 

(-114.33, -35.36, -26.72, -0.48±9.33j, -3.08, -0.1054). Hence the dominant real pole is 

-0.1054. 

For the controller design, we have to make this dominant pole faster and steady state 

error zero. We choose the shifted pole at -4.0+0.0j and leave the other poles 

unchanged. Then, using MATLAB, we find the gain matrix Kc for the controller. 
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 Kc= acker(A1, B1, modified poles) 

Next, we design the full-order observer to measure the states. We choose the observer 

dominant pole such that it is far from the jw axis, hence it decays very fast. We take it 

to be -8.0+0.0j and leave other poles unchanged. Again, using MATLAB, we find the 

observer gain matrix Ko. 

 Ko= place(A1', C1', modified poles)' 

Finally we find the state space representation and the transfer function of the above 

designed observer-controller as: 

 Ao= A1-(Ko*C1) – (B1*Kc) 

 Bo= Ko 

 Co= Kc 

Do= 0 

We get the 7
th

 order observer-controller as given in Appendix-1.3 in this text. We 

then minimize the order of this controller to 1
st
 order by approximate pole-zero 

cancellations as given below: 

Poles of observer-controller Zeros of observer-controller 

-114.22 -114.33 

-35.86 -35.36 

-26.72 -26.72 

-13.13  

-0.6129+9.58j -0.48+9.33j 

-0.6129-9.58j -0.48-9.33j 

-2.41 -3.07 

 

Thus, we are left with a single pole -13.13. So, the VR is given by: 

V(s) = 
   

       
 

We show the step response of the system after implementing the 7th order VR and the 

1
st
 order VR below in fig.16: 
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Fig.16. Step response comparison of 7
th

 order and 1
st
 order VR 

We find that the step response is identical except that due to minimization of order, 

oscillations are introduced in the 1
st
 order VR. Hence, we design the damping (PSS) 

loop to stabilize the system. 

b) Design of PSS: As mentioned above, use of the 1
st
 order AVR introduces oscillations 

in the system. Hence we design the PSS loop.  

First we find the 1-input, 1-output model of the system from Vref to ωf, including the 

1
st
 order VR designed previously. This is an 11

th
 order transfer function as given in 

Appendix-1 in this text. Thus we get the state space model Ag, Bg, Cg, Dg. From the 

root locus plot of this system, we find that the dominant complex pole is at (-0.48 ± 

9.33j).  

For the controller design, we have to shift the swing mode to get a faster response. 

We shift it to: (-1.5 ± 9.33j), leaving all other poles unchanged. 

Using MATLAB, we get the controller gain matrix Kc=acker (Ag, Bg, mod_poles). 

For the observer design, we choose the poles as (-4.5 ± 9.33j) so that it decays faster. 

Ko=place (Ag', Cg', poles_obs)'. 
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Thus we get the 11
th

 order observer-controller as: 

Ao= A1-(Ko*C1) – (B1*Kc) 

 Bo= Ko 

 Co= Kc 

Do= 0 

Next, we minimize this PSS from 11
th

 order to 5
th

 order by approximate pole-zero 

cancellations. 

Poles of observer controller Zeros of observer-controller 

-114.34 -114.33 

-36.106 -35.4 

-20.9+16.3j -18.01+16.3j 

-20.9-16.3j -18.01-16.3j 

-28.61 -193.03 

-26.74 -26.72 

-5.02+13.7j  

-5.02-13.7j  

-3.62 -3.10 

-0.091+0.0325 -0.105 

-0.091-0.0325 -0.100 

We incorporate these poles and zeros for the 5
th

 order PSS [Appendix-1.3] After 

implementing the PSS, we plot the root locus of the damping loop as below: 

 

Fig. 17. Root locus plot of the damping (PSS) loop with 5
th
 order PSS implemented 
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From the previous root locus plot, we find that the 5
th

 order PSS manifests a pure 

damping at the dominant pole as the angle of departure is approximately= 180º. The 

gain for ζ=15% is found to be 0.7. 

Finally, we implement the above design in the SIMULINK model and find the step 

response. It is shown in figure 18. below: 

 

Fig.18. Comparison of the step response of system with and without PSS 

We see that the PSS has reduced the oscillations to a large extent and improved the 

rise time. 
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CHAPTER-8 

REVIEW OF THE CONVENTIONAL DESIGN TECHNIQUES: 

Having completed the design of the AVR and the PSS in the above three methods, we now 

are able to give a brief review on the methods and their merits and demerits. 

AVR design:  

 We see that the root locus method (method-1) involves designing the voltage 

regulator as a PI controller by tuning it to achieve a particular value of Mp and tr. This 

although simpler is quite arbitrary and is achieved by trial and error.  

 

 The frequency response method (method-2) involves measuring the dc gain and phase 

margin of the system without the regulation loop; and increasing the dc gain to 

achieve zero steady state error. Then we adjust the phase margin by a lag compensator 

to achieve the required Mp and tr. This method, although less arbitrary than the PI 

controller, still does not give a direct idea about the time response, i.e. we cannot 

measure Mp and tr directly from the phase margin.  

 

 

 Finally, in the state-space method, we make use of a full-state observer based 

controller to directly shift the dominant pole of the regulation loop to its left to make 

it faster and satisfy the specifications. Although this gives an exact controller, the 

order of the controller is very high and hence is impractical to implement. Thus, it 

requires reduction of order by approximate pole-zero cancellations. Hence the system 

becomes slightly oscillatory. Thus, this method is a little cumbersome and time-

consuming, and the benefits of the higher order VR is negated by the approximate 

VR. 

 

PSS design After designing the voltage regulator in any of the above methods, we 

compare the step response after implementing the regulation loop in each case and find that, 

although the steady state error ess, Max. Overshoot Mp and the rise-time Tr conditions are 

satisfied, the system is not perfectly damped and there are oscillations in it. Hence, we design 
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a feedback loop (PSS) involving the perturbation in rotor velocity ∆ω as input which reduces 

the oscillations. 

 For PSS design using root-locus method, we find the dominant complex pole 

(swing mode) from the root locus plot of the open PSS loop and calculate the 

angle of departure from this pole. For perfect damping, the angle of departure 

should be -180. Hence we design a lead-lead compensator to adjust the angle of 

departure. This method is elegant and simple, yet manual calculation and plotting 

is required to find the zero and pole of the compensator. 

 

 In the frequency response-method, we have to first decompose the system into its 

damping component to perform the analysis [1], figure.8. Hence it requires the 

detailed understanding of the power-system model and its states. Then we 

manipulate the phase of the system in a frequency range (2rad/sec to 20rad/sec) by 

a lead-lead compensator to achieve the desired damping effect. Again, this does 

not give an idea about the actual time-response characteristics and we have to 

perform a root locus analysis again to find the Gain for the specified damping. 

 

 

 Finally, in the state-space method, an exact 11
th

 order controller is derived from a 

full order state-observer. This is highly impractical and expensive, and thus we 

need to minimize the order of the system by approximate pole-zero cancellations 

which make it a lengthy and cumbersome process. 
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CHAPTER-9 

DESIGN OF PSS BY ADAPTIVE METHODS 

 In the preceding chapters the low frequency oscillation problem is dealt with using 

conventional POWER SYSTEM STABILIZER. As explained earlier these PSS provide the 

supplementary damping signal to suppress the above mentioned oscillations and increase 

overall stability of the system. But these conventional PSS use transfer functions of highly 

linearized models around a particular operating point. So these systems are unable to provide 

satisfactory operations over wide ranges of operating conditions [22].  To overcome this 

problem artificial intelligence based approaches has been developed. These include fuzzy 

logic (FL), neural network (NN), and genetic algorithm (GA). Fuzzy Logic based controller 

shows great potential to damp out local mode oscillations especially when made adaptive. 

The adaptability is achieved through tuning with Neural-Network [19].  

FUZZY LOGIC: 

Fuzzy logic is based on data sets which have non-crisp boundaries. The membership 

functions map each element of the fuzzy set to a membership grade. Also fuzzy sets are 

characterized by several linguistic variables. Each linguistic variable has its unique 

membership function which maps the data accordingly [20]. Fuzzy rules are also provided 

along with to decide the output of the fuzzy logic based system. A problem associated with 

this is the parameters associated with the membership function and the fuzzy rule; which 

broadly depends upon the experience and expertise of the designer [23].  

 ANFIS: 

ANFIS is the abbreviation for the ADAPTIVE NEURO-FUZZY INFERENCE 

SYSTEM. In it a class of adaptive networks are used which is similar to fuzzy inference 

system. As the name adaptive suggests it consists of a number of nodes connected through 

directional links. Each node represents a process unit and the link between them specifies the 

causal relationship between them. All or some part of these nodes can be made adaptive 

which means that these node parameters can be varied depending on the output of the nodes. 

This adaptation depends on the rule table which is designed intuitively by the designer [20]. 
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Adaptive Neuro-Fuzzy design of PSS 

 In the following chapters a design technique for the off-line training of the power 

system will be elaborated. The design is divided into two parts. The first one is the design of 

an identifier for the identification of the plant parameters which cannot be obtained otherwise 

as the power plants are highly nonlinear systems. The second one is the design of the ANFIS 

controller which is trained off-line to control the plant outputs    and   . 

SYSTEM IDENTIFIER 

 The plant identifier is of immense importance for the determination of the plant 

parameters in order to successfully tune the PSS. The identifier parameters are estimated on 

the basis of the error between the estimated generator speed deviation and the actual value. A 

third order Auto Regression Moving Average (ARMA) model is used for the generating 

system and the Recursive Least Square (RLS) method with a variable forgetting factor [19] is 

used to obtain the coefficient vector of the generator system model.                                                             

The identifier is a third order ARMA model of the form       

   ( )    (   ) ̂(   )   ( )  

Where    (   )  [   (   )    (   )    (   )  (   )  (   )  (   )] 

 ̂(   )  [                 ]
  is a randomly chosen constant vector and e(t) is the 

identified error [19]. 

The co-efficient vector is updated using the following SIMULINK model which consists of 

the power system model and the special embedded function blocks. In it the delayed inputs 

both for power and angular velocity variation are obtained from the „delayed inputs’ block. 

 The „rls’ block implements the step 

      ( )   ( )   ̂( ) 

  where   ̂( )    (   ) ̂(   ) 

the co-variance matrix is determined by the step which is implemented by the block ‘covar’  
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     ( )  
[   ( )  (   )] (   )

 
                  where ρ is the forgetting 

factor which in this case is taken as 1. 

 

The gain is determined from the step below which is implemented using the ‘k’ block in the 

SIMULINK model    

  ( )  
 (   ) (   )

( ( )   (   ) (   ) (   ))
 

    Here also forgetting factor    is taken 1.    

The parameter   is updated using the following step implemented by the block ‘theta’ in 

Simulink diagram. 

      ̂( )   ̂(   )   ( ) ( ) 

 The Simulink model is given in the following figure 

Fig.19. SIMULINK model of the ARMA implementation of the system identifier 
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The output RLS block is compared with the desired output signal obtained from the PSS as 

given in figure 20.  

 

Fig.20. Comparison between ARMA output and actual output 

The above figure shows that the identifier output follows the desired PSS output and the error 

signal reduced to zero subsequently. 

 

 PSS DESIGN USING ANFIS 

The ANFIS PSS uses a zero order Sugeno type fuzzy controller with 49 rules. The input to 

the PSS is the speed and electrical power which are obtained from the wash-out filter that is 

used to eliminate any existing dc offsets. The fuzzy inference system consists of the 

fuzzification block, rule table block and the sugeno defuzzification block.   

For fuzzification Gaussian membership function is used which is of the form  

      
  
      (

(     
 
) 

   
  
) 

Where    is the jth input,   
 
 represents the ith linguistic term related to the jth input and 

  
 
,   

 
  are the centres and the spreads of the membership function related to   
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adjustable by the neural network block of the ANFIS. Seven linguistic variables are used for 

each input for the fuzzifiacation. 

 The fuzzy logic based controller is made adaptive by using feed forward neural-

network using a multilevel perceptron. The multilevel perceptron is implemented using the 

ANFIS-GUI block of MATLAB. The neural network can be trained using either OFFLINE 

method or ONLINE method. The details are as follows. 

 

 OFFLINE ADAPTATION USING ANFIS: 

Here we first generate the input-output data pair of the system using the identifier or directly 

from the model. Then, we use the ANFIS module in MATLAB to generate a fuzzy inference 

system. Two inputs are used, namely Δω and ΔP, and a single control output for the 

feedback. A Sugeno type FIS model is used. 

 

Fig.21. FIS model of the PSS 

The membership functions of the inputs are of Gaussian distribution type. We use 7 

membership functions for each input to cover the full range of the respective inputs. Thus, we 

get 49 rules for the output function which is linear relation of the inputs. The initial input 

parameters are arbitrarily chosen and output parameters are given in table5 (appendix-1). The 

output is governed by the AND function and thus the rules are generated. 
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Fig.22. Gaussian membership functions of the inputs 

The above generated fis file is opened in the ANFIS GUI for training. We also import the 

training data which was previously generated to the GUI.The neural network thus has four 

layers as given below: 

  

Fig.23. Structure of the Neural Network 

The first layer represents the input membership functions (MFs) which is Gaussian. The 

second layer represents the AND function. The third layer represents the normalized firing 
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strength as given in the sugeno model and, the fourth layer represents the combination of the 

rules and their weighted average to find the final output using sugeno defuzzification 

technique. 

Now, the training is started using the back-propagation method and the model is trained for 

100 epochs for greater reliability. The error is given as below: 

 

Fig.24. The training of ANFIS showing the training error 

Finally the trained model is tested against the output data as below: 

 

Fig.25. Comparison between trained and test data 
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As seen in the figure above, the trained data (red stars) almost faithfully follows the output 

(blue circles). This trained FIS model is exported for use in our fuzzy logic controller block 

(PSS). Thus, the offline-trained fis was used in the fuzzy controller to simulate the PSS. 

 

Fig.26. SIMULINK implementation of the fuzzy controller 
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The output responses as seen from the simulation results are crisp and have good design 

specifications such as rise time, overshoot and settling time.

 

Fig.27. w and Vt outputs using the fuzzy controller 

 

COMPARISON OF THE ANFIS PSS CONTROLLER WITH CPSS: 

Finally, we are in a position to compare the conventional PSS or CPSS with the PSS 

developed using Fuzzy inference system. As seen in Figure 28, the fuzzy PSS has the best 

output response (Vt), the least overshoot and settling time. Also, it produces the best damping 

which is manifested in the plot showing the rotor speed perturbation (w). Thus, by proper 

training algorithms, the fuzzy PSS can surpass the performance of the CPSS. 
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Fig.28. Comparison of Vt and w between CPSS and ANFIS PSS 
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CONCLUSION 

The optimal design of Power System Stabilizer (PSS) involves a deep understanding 

of the dynamics of the single machine infinite bus system. In this project, we have tried to 

design the PSS using control system principles and hence view the problem as a feedback 

control problem. Both conventional control design methods like root-locus method, 

frequency response method and pole placement method as well as more modern adaptive 

methods like neural networks and fuzzy logic are used to design the PSS. By comparison of 

these methods, it is found that each method has its advantages and disadvantages. 

The actual design method should be chosen based on real time application and 

dynamic performance characteristics. In general, it is found from our simulations that the 

ANFIS based adaptive PSS provides good performance if the training data and algorithms are 

selected properly. However, adaptive control involves updating controller parameters in real 

time using a system identifier which can be complicated and expensive. Hence, the 

economics of the process is also a constraint. 

 Although the first power system stabilizers were developed and installed during the 

1960s and a lot of work has been done to improve its performance, modern control design 

algorithms can further enhance the performance of the PSS. In particular, adaptive control of 

PSS is still an active area. Digital design of the PSS is also possible. Hence, the design of the 

Power System Stabilizer has a lot of scope for future research. 
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APPENDIX-1 

1. The power system model [1]: 

The state equations are:- 

Δx' = AΔx +BΔu 

Δy = CΔx 

Where state variables x=[δ  ω  Eq
‟ 
 ψ d  E‟d  ψ q  Vr  ] 

T
  

Output variables y=[Vterm ω  Pe]
T
  

Input variable u=Vref 

Where,  δ= rotor angle in radian. 

ω= angular frequency in radian/sec. 

ψd, Ed‟= direct axis flux and field. 

Ψq, E‟q= quadrature axis flux and field 

Vterm= terminal voltage 

Pe= Power delivered to the infinite bus. 

 

 

A=  

0 377.0 0 0 0 0 0 

-0.246 -0.156 -0.137 -0.123 -0.0124 -0.0546 0 

0.109 0.262 -2.17 2.30 -0.0171 -0.0753 1.27 

-4.58 0 30.0 -34.3 0 0 0 

-0.161 0 0 0 -8.44 6.33 0 

-1.70 0 0 0 15.2 -21.5 0 

-33.9 -23.1 6.86 -59.5 1.50 6.63 -114 

 

 B= 

0 

0 

0 

0 

0 

0 

16.4 

 

C= 

-0.123 1.05 0.230 0.207 -0.015 -0.460 0 

0 1 0 0 0 0 0 

1.42 0.900 0.787 0.708 0.0713 0.314 0 

 

2. The model for Gw(s). i.e. effect of the speed on electrical torque due to machine 

dynamics [1]. 

 

Aw =  
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K=0.2462,  D=0.1563 

 

The model of the damping loop [1] is 

ξ’= A33ξ + a32ω 

τ=  a23ξ 

Where, 

A33= 

-2.17 2.30 -0.0171 -0.0753 1.27 

30.0 -34.3 0 0 0 

0 0 -8.44 6.33 0 

0 0 15.2 -21.5 0 

6.86 -59.5 1.50 6.63 -114 

 

a32= 

0.262 

0 

0 

0 

-23.1 

 

a23= 

-0.137 -0.123 -0.0124 -0.0546 0 

 

3. transfer function of the 7
th

 order observer-controller VR : 

 

a) 
                                                             

                                                           
 

 

b) transfer function of 1
st
 order minimized VR: 

 
 

       
  

 

c) transfer function of the 5
th

 order minimized PSS 
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4. Tabulation of rise-time tr (sec) in a grid of Kp and Ki: 

Tr(sec) Ki=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Kp=5 6.072 4.228 3.487 3.046 2.745 2.505 2.364 2.224 2.104 1.984 

10 3.046 2.364 2.004 1.783 1.683 1.583 1.483 1.383 1.282 1.222 

15 1.843 1.683 1.563 1.262 1.162 1.102 1.062 1.022 1.002 0.962 

20 1.623 1.142 1.082 1.022 1.002 0.962 0.922 0.902 0.862 0.822 

25 1.062 1.022 0.982 0.942 0.902 0.882 0.821 0.761 0.641 0.581 

30 0.982 0.962 0.922 0.882 0.841 0.561 0.521 0.501 0.481 0.481 

35 0.942 0.922 0.541 0.501 0.461 0.461 0.441 0.441 0.421 0.421 

40 0.481 0.461 0.441 0.421 0.420 0.401 0.401 0.381 0.381 0.381 

45 0.421 0.401 0.381 0.380 0.380 0.360 0.360 0.360 0.340 0.340 

50 0.381 0.361 0.360 0.341 0.340 0.340 0.340 0.321 0.320 0.320 

 

5. Tabulation of Maximum-overshoot Mp (%) in a grid of Kp and Ki: 

Mp(%) Ki=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Kp=5 -2.737 6.508 11.98 16.31 19.80 22.70 25.18 27.42 29.43 30.93 

10 -0.318 5.237 9.496 12.80 15.85 18.00 20.50 22.37 23.71 25.23 

15 0.131 4.822 8.375 11.40 13.63 15.91 18.00 19.57 20.73 21.62 

20 1.156 5.201 8.220 10.86 13.05 14.63 16.27 18.19 19.80 21.11 

25 2.570 5.953 8.783 10.88 12.75 14.74 16.38 17.69 18.70 19.44 

30 4.156 7.233 9.523 11.55 13.45 14.99 16.19 17.09 17.81 19.41 

35 5.941 8.586 10.63 12.59 14.15 15.36 16.27 17.51 19.00 20.35 

40 7.769 10.11 12.00 13.69 15.02 16.02 17.16 18.60 19.88 21.03 

45 10.48 11.89 13.39 14.88 16.04 16.91 18.23 19.51 20.64 21.63 

50 17.67 18.74 19.28 19.82 20.53 21.26 22.00 22.91 23.85 24.79 
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APPENDIX-2 [LIST OF FIGURES] 

1. Figure-1, pp-1. The Power System Stability Classification 

2. Figure-2, pp-3. Schematic representation of the single machine excitation system 

3. Figure-3, pp-6. Different methods of PSS-design 

4. Figure-4, pp-8. Excitation System Control model 

5. Figure-5, pp-12. SIMULINK
™

 model of the 1-machine infinite bus system 

6. Figure-6, pp-15. Step-response for regulation loop for different Ki values for a PI VR 

7. Figure-7, pp-15. Root-locus plot of PSS-loop showing dominant complex pole 

8. Figure-8, pp-16. Root-locus of final PSS-loop showing Φp~ 180° from dominant pole 

9. Figure-9, pp-17. Comparison of step-response of uncompensated and compensated 

system (for root-locus method of design). 

10.  Figure-10, pp-18. Comparison of Frequency response with and without lag-

compensated VR. 

11. Figure-11, pp-19. Step-response of the lag compensated VR loop 

12. Figure-12, pp-20. Frequency response plot of the damping loop without PSS 

13. Figure-13, pp-20. Maximum phase compensation Φm vs. α 

14. Figure-14, pp-21. Root-locus plot of damping-loop with the lead compensated PSS 

showing dominant poles. 

15. Figure-15, pp-22. Comparison of step-response of uncompensated and compensated 

system (for frequency-response method of design). 

16. Figure-16, pp-24. Comparison of step-response of 7
th

 order and 1
st
 order VR. 

17. Figure-17, pp-25. Root-locus plot of the damping loop with 5
th

 order PSS 

implemented showing the angle of departure from dominant poles. 

18. Figure-18, pp-26. Comparison of step-response with and without PSS loop(for State-

Space design method). 

19. Figure-19, pp-31. SIMULINK model of the ARMA implementation 

20. Figure-20, pp-32. Comparison between ARMA and actual PSS output 

21. Figure-21, pp-33. FIS model of the PSS 

22. Figure-22, pp-34. Gaussian membership functions of the inputs 

23. Figure-23, pp-34. Structure of the Neural Network 

24. Figure-24, pp-35. Training of ANFIS showing the training error 

25. Figure-25, pp-35. Comparison between trained and test data 

26. Figure-26, pp36. SIMULINK implementation of the fuzzy controller 
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27. Figure-27, pp-37. w and Vt outputs using the fuzzy controller 

28. Figure-28, pp-38. Comparison of Vt and w between CPSS and ANFIS PSS. 
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APPENDIX-3  (MATLAB CODES) 

Here, we provide some of the MATLAB
™

 scripts used in the design and the simulation 

process: 

ROOT LOCUS DESIGN: 

1. To convert the power system model into transfer function: 

% this function converts the power system 

% model from state space to transfer function. 

  

% A,B,C,D are the state parameters 

  

% PS0 refers to transfer function matrix having 3 outputs 

% PS refers to transfer function with output=w 

% PS1 refers to transfer function with output=Vterm 

  

% all coeff having very small values are approximated 

% to zero in the saved variables 

  

clc 

clear 

A=[0, 377.0, 0, 0, 0, 0, 0; -0.246, -0.156, -0.137, -0.123, -

0.0124, -0.0546, 0; 0.109, 0.262, -2.17, 2.30, -0.0171, -0.0753, 

1.27; -4.58, 0, 30.0, -34.3, 0, 0, 0; -0.161, 0, 0, 0, -8.44, 

6.33, 0; -1.70, 0, 0, 0, 15.2, -21.5, 0; -33.9, -23.1, 6.86, -

59.5, 1.50, 6.63, -114]; 

B=[0; 0; 0; 0; 0; 0; 16.4]; 

C=[-0.123, 1.05, 0.230, 0.207, -0.105, -0.460, 0; 0, 1, 0, 0, 0, 

0, 0; 1.42, 0.900, 0.787, 0.708, 0.0713, 0.314, 0]; 

D=[0; 0; 0]; 

[numPS0,denPS0]=ss2tf(A,B,C,D); 

numPS=numPS0(2,:); 

denPS=denPS0; 

numPS1=numPS0(1,:); 

denPS1=denPS0; 

save 'tf_ps.mat' % saves the workspace variables to tf_ps.mat 

 

2. To compare the rise-time and maxium overshoot by taking a proportional VR 
 

% ROOT LOCUS DESIGN 

  

% to display the RISE-TIME & MAX-OVERSHOOT 

% by taking a PROPORTIONAL voltage regulator 

% and varying Kp 

% tolerance=0.08 of final value(unit step) 

% 10<= Kp <=100 

  

% also plots the step-response 

  

clc 

clear 

load tf_ps.mat; 
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denVR=1; 

numVR=0; 

t=linspace(0,10,500); 

for n=1:10 

    numVR=numVR+10;    numVR  % display gain of the VR 

    numG=conv(numPS1,numVR); 

    denG=conv(denPS1,denVR); 

    [numTotal,denTotal]=feedback(numG,denG,1,1); 

    [y,x,t]=step(numTotal,denTotal,t); 

    y=0.1.*y; 

    r=1; 

    while y(r)<0.08 

        r=r+1; 

    end; 

    rise_time=t(r-1)  %display rise time 

    ymax=max(y); 

    max_overshoot=(ymax-0.1).*1000  %display max overshoot 

    figure(n) 

    plot(t,y) 

end 

 

3. To tabulate the rise-time and maximum overshoot vs the Kp and Ki values by 

taking a PI VR: 
 

% ROOT LOCUS DESIGN 

  

% to tabulate the RISE-TIME & MAX-OVERSHOOT 

% by taking a PI voltage regulator 

% and varying Kp and Ki 

% tolerance=0.09 of final value(unit step) 

  

% 5<= Kp <=50 (different rows have diff Kp) 

% 0.1<= Ki <=1 (diff columns have diff Ki) 

  

clc 

clear 

load tf_ps.mat; 

denVR=[1,0]; 

numVR=0; Kp=0; 

t=linspace(0,10,500); 

for m=1:10 

   Kp=Kp+5; 

   Ki=0; 

   for n=1:10 

       Ki=Ki+0.1; 

       numVR=[Kp,Kp*Ki]; 

       numG=conv(numPS1,numVR); 

       denG=conv(denPS1,denVR); 

       [numTotal,denTotal]=feedback(numG,denG,1,1); 

       [y,x,t]=step(numTotal,denTotal,t); 

       y=0.1.*y; 

       r=1; 

        while y(r)<0.09 

            r=r+1; 

        end; 
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        rise_time(m,n)=t(r-1);  %store rise time 

        ymax=max(y); 

        max_overshoot(m,n)=(ymax-0.1).*1000;  %store max 

overshoot 

   end 

end 

 

4. To plot the step response and the root-locus plot (of regulation loop) for PI VR 
 

% ROOT LOCUS DESIGN 

  

% plots the step response taking PI Vr and 

% varying Ki 

  

% Vtpi imported from simulink model simulation 

clc 

clear 

load Vtpi; 

plot(t,Vtpi1,t,Vtpi2,t,Vtpi3,t,Vtpi4,t,Vtpi5,t,Vtpi6,t,Vtpi7) 

xlabel('time'); 

ylabel('voltage'); 

title('power system with PI VR (PSS loop open),Kp=20'); 

legend('Ki=0.1','Ki=0.5','Ki=1','Ki=2','Ki=2.5','Ki=3','Ki=3.5'); 

  

% also plots the root locus for the feed-forward loop 

% with PI VR 

load tf_ps; 

numVRpi=[35,14]; 

denVRpi=[1,0]; 

numG3=conv(numPS1,numVRpi); 

denG3=conv(denPS1,denVRpi); 

figure(2) 

rlocus(numG3,denG3) 

axis([-1,1,-20,20]) 

 

5. To calculate the final transfer function of the open-loop system incorporating the 

PI Voltage-regulator, the washout filters and the torsional filter: 
 

% calculates the transfer function of the open loop system 

  

% the system consists of the VR(numVR,denVR),Power system 

TF(numPS,denPS), 

% the filters WF,TOR and the PSS(numPSS,denPSS) 

% the open loop tf= [numFINAL,denFINAL] 

  

% it also shows the root locus plot of the open loop 

% shows the dominant poles and zeros only 

  

clc 

clear 

load tf_ps.mat 

numVR=[35,14]; 

denVR=[1,0]; 

numPSS=[0,1]; 

denPSS=[0,1]; 
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numWF=[10,0]; 

denWF=[10,1]; 

numTOR=[0,0,-1]; 

denTOR=[0.0017, 0.061, 1]; 

numG=conv(numPS,numVR); 

numFilters=conv(numWF,numTOR); 

numH=conv(numFilters,numPSS); 

numFINAL=conv(numG,numH); 

denG=conv(denPS,denVR); 

denFilters=conv(denWF,denTOR); 

denH=conv(denFilters,denPSS); 

denFINAL=conv(denG,denH); 

save 'finalTF.mat' 

  

rlocus(numFINAL,denFINAL); 

axis([-30,30,-50,50]); 

title('root locus (PSS loop)'); 

 

6. To calculate  angle of departure from the positive swing mode without the PSS: 
 

% ROOT LOCUS DESIGN 

  

% to calculate the angle of departure from the dominant pole 

% of the uncompensated system 

  

% we have to design the lead compensator so as to 

% make this angle of departure 180 deg 

% keeping other parameters as specified in design data 

  

% finalTF stores the tf of the complete open pss-loop 

  

clc 

clear 

load finalTF.mat; 

poles_ol=roots(denFINAL); 

p1=poles_ol(7); 

zeros_ol=roots(numFINAL); 

  

for m=1:11 

    angpole(m)=180./pi.*angle(p1-poles_ol(m)); 

end 

  

for n=1:6 

    angzero(n)=180./pi.*angle(p1-zeros_ol(n)); 

end 

  

sum1=0; 

for m=1:11 

    sum1=sum1+angpole(m); 

end 

  

sum2=0; 

for n=1:6 

    sum2=sum2+angzero(n); 

end 
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angle_dep=180-sum1+sum2; 

angle_dep  %display angle of departure 

 

7. To incorporate the lead-compensator in the PSS and plot the root locus and the 

step response: 
 

%ROOT LOCUS DESIGN 

  

% plots the root locus of the final compensated system 

% the angle of departure from the swing mode  

% of the dominant pole should be close to 180 degrees 

  

clc 

clear 

load finalTF; 

numCMP=[247,1729,3025]; 

denCMP=[1,48,576]; 

NUM=conv(numFINAL,numCMP); 

DEN=conv(denFINAL,denCMP); 

rlocus(NUM,DEN) 

axis([-20,20,-30,30]); 

title('root locus of compensated system'); 

 

%ROOT LOCUS DESIGN 

  

% step-response of the compensated and uncompensated systems 

% for comparison. 

  

% the data Vtcomp is taken from simulink model simulation 

% Vtcomp contains Vtcl and Vtclcom 

  

clc 

clear 

load Vtcomp; 

plot(tout,Vtcl,tout,Vtclcom); grid on; 

title('compensated PSS vs uncompensated PSS'); 

xlabel('time'); 

ylabel('terminal voltage'); 

legend('uncompensated','compensated'); 

 

 

FREQUENCY RESPONSE DESIGN: 

 

8. To plot the frequency-response of the regulation loop without the VR 
 

% FREQUENCY RESPONSE DESIGN 

  

% plotting the frequency response from u to Vterm 

% also shows the gain and phase margin 

% VR is assumed to have gain=1 

  

% also displays the uncompensated dc gain 

  

clc 
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clear 

load tf_ps 

w=logspace(-2,3,100); 

[mag,phase,w]=bode(numPS1,denPS1,w); 

margin(mag,phase,w); grid on; 

[Gm,Pm,wg,wp]=margin(mag,phase,w); 

Gm=20*log10(Gm); 

dcgain_uncomp=20*log10(mag(1)); 

sprintf('uncompensated dc gain= %f',dcgain_uncomp) 

 

9. Design of the lag-compensator for the VR and comparison of the frequency resp:  
 

% FREQUENCY RESPONSE DESIGN  

% this script is for the lag compensator design of VR 

  

% Reqd: min dc gain=200(~46dB), min phase margin=80 degrees  

% uncompensated dc gain=-2.57dB 

% hence K is calculated from above data 

clc 

clear 

dcgain_req=20*log10(200); 

K=ceil(10^((dcgain_req+2.57)/20)); 

sprintf('reqd gain addition: K=%d',K) 

  

% now the bode plot is drawn multiplying the calc K 

load tf_ps 

w=logspace(-2,3,100); 

figure(1); 

[mag1,phase1,w]=bode(numPS1*K,denPS1,w); 

margin(mag1,phase1,w); grid on; 

[Gm,Pm,wg,wp]=margin(mag1,phase1,w); 

sprintf('dc gain of gain compensated system = %f',mag1(1)) 

  

% now the compensator is designed so that phase margin 

% is close to 80 degrees 

  

% from the bode plot, we find that the   

% new gain crossover frequency should be = 5 rad/sec. 

% we have to bring the magnitude curve to 0dB at this frequency 

% i.e. approx 18dB attenuation 

% hence, 20log(1/B)= -18. or B=8 (approx) 

  

% also we choose zero position= 0.1  

% ( i.e. 1 octave to 1 decade below the new gain crossover freq.) 

% hence pole position = 0.1/8=.0125 

% reqd compensator is (270/8)*(s+0.1/s+0.0125) 

  

% now we plot the bode diag. of the compensated system 

sprintf('Kc=%d',ceil(K/8)) 

numCOMP=conv(numPS1,[40,4.0]); % we have taken Kc=40 here instead 

of 34 

denCOMP=conv(denPS1,[1,0.0125]); 

figure(2); 

[mag2,phase2,w]=bode(numCOMP,denCOMP,w); 

margin(mag2,phase2,w); grid on; 
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% comparison of the compensated and uncompensated bode plots 

figure(3); 

bode(numPS1,denPS1,w); hold; 

bode(numCOMP,denCOMP,w); grid on; 

title('comparison of uncompensated and lag compensated VR'); 

legend('uncompensated','lag compensated'); 

% end of code 

 

10. To plot the step-response of the regulation-loop and comparing the tr and Mp: 
 

% FREQUENCY RESPONSE DESIGN  

% this script calculates the rise time and max overshoot 

% of the compensated VR loop 

% the compensated VR parameters have been calculated in 

lag_compVR_F2.m 

% tolerance taken is 0.09 of unit step 

  

clc 

clear 

load tf_ps.mat; 

numVRcomp=[40,4.0]; 

denVRcomp=[1,0.0125]; 

t=linspace(0,10,500); 

numG=conv(numPS1,numVRcomp); 

denG=conv(denPS1,denVRcomp); 

[numVRloop,denVRloop]=feedback(numG,denG,1,1); 

[y,x,t]=step(numVRloop,denVRloop,t); 

y=0.1.*y; 

r=1; 

    while y(r)<0.09 

        r=r+1; 

    end; 

rise_time=t(r-1)  %display rise time 

ymax=max(y); 

max_overshoot=(ymax-0.1).*1000  %display max overshoot 

plot(t,y); grid on; title('step response with lag compensated 

VR'); 

xlabel('time(sec)--->'); ylabel('voltage(volt) --->'); 

  

% end of code 

 

11. To decompose the system into Q(s) i.e. the part of speed which affects the 

damping torque and plot the frequency response of the damping loop: 
 

% FREQUENCY RESPONSE DESIGN  

% this script develops the new state space matrices 

% after decomposing the PS state space model 

% into paths: Q(s)-> effect of w on electrical torque 

%             K=0.2462-> synchronizing torque loop 

%             D=0.1563-> damping torque loop 

% we get the new state space matrices from main A matrix as: 

% A=A33(square matrix 5*5), B=a32(column vector 5*1), C=a23(row 

vector 1*5) 
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% then we connect resultant t-f to the filters  

% and plot the freq. response of F(s) 

  

clc 

clear 

numVRcomp=[40,4.0]; 

denVRcomp=[1,0.0125]; 

A1=[-2.17,2.30,-0.0171,-0.0753,1.27;30.0,-34.3,0,0,0;0,0,-

8.44,6.33,0;0,0,15.2,-21.5,0;6.86,-59.5,1.50,6.63,-114]; 

B1=[0.262;0;0;0;-23.1]; 

C1=[-0.137,-0.123,-0.0124,-0.0546,0]; 

D1=0; 

[numQ,denQ]=ss2tf(A1,B1,C1,D1); 

numGw=conv(numQ,numVRcomp); 

denGw=conv(denQ,denVRcomp); 

  

numWF=[10,0]; 

denWF=[10,1]; 

numTOR=[0,0,-1]; 

denTOR=[0.0017, 0.061, 1]; 

  

numFilters=conv(numWF,numTOR); 

denFilters=conv(denWF,denTOR); 

numF=conv(numFilters,numGw); 

denF=conv(denFilters,denGw); 

  

w=logspace(0,2,100); 

[magF,phaseF,w]=bode(numF,denF,w); 

bode(numF,denF,w); grid on; 

title('Freq. response of the damping loop'); 

save 'decomp.mat' % saves the workspace variables 

  

% end of code 

 

12. To design the lead-compensator for the PSS: 
 

% FREQUENCY RESPONSE DESIGN  

  

% from the bode plot of F(s) in decomp_speedtorque_mat.m 

% we find that the phase at 2rad/sec=-37 degrees; phase at 12 

rad/sec=-65 d 

% and phase at 20 rad/sec= -105 degrees. 

  

% from the design specifications, we need: 

% phase of F(s).Kd(s) to be 0 to -20 degrees in the range 2 to 20 

rad/sec 

  

% hence, we require to add a phase of approximately: 

% 35 deg at 2 rad/sec; 50 to 60 deg at 12 rad/sec; 90 to 100 deg 

at 20 rad/sec 

  

% we plot Pm vs alpha to show the relation 

clc 

clear 

phi=linspace(0,90,1000); 
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alpha=(1-sind(phi))./(1+sind(phi)); 

plot(phi,alpha); grid on; 

title('Pm vs a'); xlabel('Pm (degrees)--->'); ylabel('alpha---

>'); 

  

% from the lead compensator design metod in K.Ogata: 

% we select max phase addition to be achieved in freq. 20 

rad/sec= 100 deg. 

% since the phase addition is too large for a single lead-

compensator, 

% we take 2 series lead-compensators, each providing 50deg add at 

20rad/s 

% sin(Pm)=(1-a)/(1+a); or, a=(1-sin(Pm))/(1+sin(Pm)) 

  

clc 

clear 

Pm=50; wm=20; 

a=(1-sind(50))/(1+sind(50)); 

T=1/(sqrt(a)*wm); 

z=(ceil((1/T)*100))/100; 

p=ceil(1/(a*T)); 

Kc=(1/a); 

sprintf('There are 2 identical lead-compensators in series') 

sprintf('for each compensator:') 

sprintf('max phase addition Pm = %d deg at wm = %d 

radian/sec',Pm,wm) 

sprintf('alpha=%f, T=%f',a,T) 

sprintf('zero at=%0.2f  pole at=%d',z,p) 

sprintf('gain Kc=%0.1f',Kc) 

 

13. To implement the lag compensated VR and lead compensated PSS and plot the 

root locus of the damping loop: 
 

%FREQUENCY RESPONSE DESIGN 

  

% from lead_control_design_F5.m, we get the lead controller for 

PSS loop: 

% Kd(s)=K*[7.5*(s+7.14)/(s+55)]^2 

  

% we implement this in the design and plot the root locus of it 

% from this root locus, we get K=15 to 20 for Z>=15% 

% we then imlement the full system in simulink model 

% final_compensated_systemF7.mdl 

  

clc 

clear 

load tf_ps.mat 

numVRcomp=[40,4]; 

denVRcomp=[1,0.0125]; 

  

numPSS=[56,800,2855]; 

denPSS=[1,110,3025]; 

  

numWF=[10,0]; 

denWF=[10,1]; 
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numTOR=[0,0,-1]; 

denTOR=[0.0017, 0.061, 1]; 

numG=conv(numPS,numVRcomp); 

numFilters=conv(numWF,numTOR); 

numH=conv(numFilters,numPSS); 

denG=conv(denPS,denVRcomp); 

denFilters=conv(denWF,denTOR); 

denH=conv(denFilters,denPSS); 

  

numFINAL1=conv(numG,numH); 

numFINAL=15.*numFINAL1; 

denFINAL=conv(denG,denH); 

  

rlocus(numFINAL1,denFINAL); 

axis([-25,5,-5,30]); 

title('root locus (PSS loop with lead compensator)'); 

 

14. To plot the step-response and frequency-response of the compensated and 

uncompensated system and compare the tr and Mp: 
 

% FREQUENCY RESPONSE DESIGN 

  

% plotting the step response of system with and without PSS loop 

% the variables are taken from simulink simulation 

% Vt1= output without PSS loop 

% Vtclcom= output with PSS loop 

  

clc 

clear 

load final_stepresponse.mat 

plot(tout,Vt1,tout,Vtclcom);grid on; 

axis([0,10,0,0.12]); 

title('comparison of step response with and without pss'); 

xlabel('time(sec)-->'); ylabel('voltage(V)-->'); 

legend('without PSS','with PSS'); 

  

% rise time and max overshoot of final system i.e. Vtclcom 

% tolerance= 85% of final value 

  

r=1; 

    while Vtclcom(r)<0.085 

        r=r+1; 

    end; 

rise_time=tout(r-1)  %display rise time 

ymax=max(Vtclcom); 

max_overshoot=(ymax-0.1).*1000  %display max overshoot 

 

% FREQUENCY RESPONSE DESIGN 

  

% the frequency response of compensated and uncompensated(PSS) 

system 

% is compared. 

% decomp.mat contains the decomposed matrices, Gw(s), and F(s) 

  

clc 
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clear 

load decomp.mat 

  

numPSS=[56,800,2855]; 

denPSS=[1,110,3025]; 

  

numF2=conv(numF,numPSS); 

denF2=conv(denF,denPSS); 

 

STATE-SPACE DESIGN: 

 

15. To design the full-order observer-controller for the VR: 
 

% STATE SPACE DESIGN  

  

% this script is to design the state feedback observer based  

% controller to shift the closed loop VR pole of the system  

% to a desirable position for a given time-const. 

  

clc 

clear 

load tf_ps.mat; 

[A1,B1,C1,D1]=tf2ss(numPS1,denPS1); % 1-output(Vt) state space 

model from u to Vt 

ol_poles=roots(denPS1); 

ol_zeros=roots(numPS1); 

rlocus(numPS1,denPS1); axis([-3,3,-12,12]); title('root locus of 

VR loop showing dominant pole'); 

  

dominant_pole=-(min(abs(ol_poles))); 

sprintf('dominant pole= %0.4f',dominant_pole) 

  

% this pole at -0.1054 needs to be made faster by shifting it to 

-4.0 in 

% the controller 

modified_poles=ol_poles; 

modified_poles(7)=-4.0+0.0i; 

  

% now we find the controller gain matrix using the ackerman's 

formula 

Kc=acker(A1,B1,modified_poles); 

  

% now we find the observer gain matrix by first shifting the 

% dominant pole to -8 

modified_poles_obs=ol_poles; 

modified_poles_obs(7)=-8.0+0.0i; 

Ko=place(A1',C1',modified_poles_obs);% observer gain matrix 

Ko=Ko.'; % transpose operation 

  

% now we obtain the transfer function of the observer-controller 

Ao=A1-(Ko*C1)-(B1*Kc);      Bo=Ko; 

Co=Kc;                  Do=0; 

[numVR_obs,denVR_obs]=ss2tf(Ao,Bo,Co,Do); 

tf(numVR_obs,denVR_obs) 
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% the poles and zeroes of the observer controller 

obs_poles=roots(denVR_obs); 

obs_zeros=roots(numVR_obs); 

  

% hence we have obtained the 7th order observer controller for 

the VR. now we save the variables in obs_cont.mat 

save 'obs_cont.mat' Ao Bo Co Do numVR_obs denVR_obs  

 

% in the next step, we minimize this controller to a 

% 1st order controller by approx pole-zero cancellations 

% end of code. 

 

16. To minimize the order of the VR controller and plot the step-response and 

frequency response of the regulation loop: 
 

% STATE SPACE DESIGN  

  

% this script is to reduce the order of the observer-controller 

% of the VR from 7th to 1st order by cancelling approx poles and 

zeroes 

  

% also it plots the freq response of both 7th and 1st order 

controller 

% also it plots the step-response of both 7th and 1st order 

controller 

  

clc 

clear 

load obs_cont_VR.mat; 

  

sprintf('Poles of the 7th order VR') 

sprintf('%d\n',obs_poles) 

sprintf('Zeros of the 7th order VR') 

sprintf('%d\n',obs_zeros) 

  

% by approx pole-zero cancellation, we find that all poles and 

zeros are 

% cancelled out except the pole at -13.14. 

% hence the reqd controller tf is: 

% Kv = 405/(s+13.14),  where 405 is the gain got by comparing 

poly(obs_zeros) and numVR_obs. 

numVR_final=480; % for zero steady state voltage error, we set 

gain=405*1.185 

denVR_final=[1,13.14]; 

tf(numVR_final,denVR_final) 

  

% now we plot the freq response of both the 1st and 7th order 

controllers 

w=logspace(-1,2,100); 

figure(1); 

bode(numVR_obs,denVR_obs,w); grid on; hold; 

bode(numVR_final,denVR_final,w); 

title('comparison of freq. response of 1st and 7th order 

controllers for VR'); 

legend('7th order VR', '1st order VR'); 
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% also we plot and compare the step response of 1st and 7th order 

controllers. 

% the variables are imported from simulink models for S1 and S2 

load step_resp_VR.mat; 

figure(2); 

plot(tout,Vt7th_order,tout,Vt1st_order); grid on; 

title('step response of 7th order and 1st order VR in closed loop 

operation'); 

legend('7th order VR','1st order VR'); 

  

% end of code 

 

17. To design the full-order observer based controller for the PSS, minimize the 

order, and finally implement it and plot the root locus, frequency response of the 

damping-loop and comparison of the step-response: 
 

% STATE SPACE DESIGN  

  

% this script is to design the PSS which is an  

% observer controller of 11th order 

% then we minimize the order with approx pole-zero cancellations 

% to get a 5th order PSS 

  

clc; 

clear; 

load tf_ps.mat; 

  

% now we find the transfer-function from Vref to wf 

% taking the 1st order VR 

numVR_final=[480]; 

denVR_final=[1,13.14]; 

numWF=[10,0]; 

denWF=[10,1]; 

numTOR=[0,0,-1]; 

denTOR=[0.0017, 0.061, 1]; 

numG=conv(numPS,numVR_final); 

denG=conv(denPS,denVR_final); 

numFilters=conv(numWF,numTOR); 

denFilters=conv(denWF,denTOR); 

  

numGw=conv(numG,numFilters); 

denGw=conv(denG,denFilters); 

  

% now we convert Gw from t-f to state-space model 

[Ag,Bg,Cg,Dg]=tf2ss(numGw,denGw); 

  

% we also see the swing mode of Gw in Root-Locus Plot 

figure(1); 

rlocus(numGw,denGw); axis([-10,5,-20,20]); 

title('swing mode of Gw(s)'); 

  

% from the root locus, we see that the swing mode is at: 

% -0.48 + 9.33i     We have to shift this to -1.5 + 9.33i  

% for 15% damping in the controller and -4.5 +9.33i  
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% for the observer to enable fast tracking of states. 

  

% now we design the controller by shifting the swing mode to -

1.5+9.33i 

poles_ol=roots(denGw); 

zeros_ol=roots(numGw); 

  

poles_control=poles_ol; 

poles_control(7)= -1.5+9.33i; 

poles_control(8)= -1.5-9.33i; % modified poles for the controller 

  

Kc=acker(Ag,Bg,poles_control); % the controller gain matrix for 

PSS 

  

% then we design the observer by shifting the swing mode to -

4.5+9.33i 

poles_obs=poles_ol; 

poles_obs(7)= -4.5+9.33i; 

poles_obs(8)= -4.5-9.33i; % modified poles for the observer 

  

Ko=place(Ag',Cg',poles_obs);    Ko=Ko.'; % observer gain matrix 

for PSS 

  

% the final step is obtaining the T-F of the observer controller 

Ao=Ag-(Ko*Cg)-(Bg*Kc);      Bo=Ko; 

Co=Kc;                  Do=0; 

[numPSS_obs,denPSS_obs]=ss2tf(Ao,Bo,Co,Do); 

sprintf('TRANSFER FUNCTION OF THE 11TH ORDER CONTROLLER:') 

tf(numPSS_obs,denPSS_obs) 

  

  

% this is an 11th order controller 

% next, we reduce the order by approx pole-zero cancellations 

Po=roots(denPSS_obs); 

Zo=roots(numPSS_obs); 

sprintf('Poles of the 11th order controller:') 

sprintf('%d\n',Po) 

sprintf('Zeros of the 11th order controller:') 

sprintf('%d\n',Zo) 

  

% we get the final 5th order controller 

numPSS_final=-20*[1,206,2579,522,27]; % 20 is the gain constant 

when converting to polynomial from its roots 

denPSS_final=[1,39,507,6183,1112,57]; 

sprintf('TRANSFER FUNCTION OF THE REDUCED 5TH ORDER CONTROLLER:') 

tf(numPSS_final,denPSS_final) 

  

% we plot the frequency response of 11th order PSS and 5th order 

PSS 

figure(2); 

w=logspace(-1,2,100); 

bode(numPSS_obs,denPSS_obs,w); grid on; hold; 

bode(numPSS_final,denPSS_final,w); 

title('Freq. Response comparison of 11th order and 5th order 

PSS'); 

legend('11th order','5th order'); 
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% we also plot the root locus of the damping loop 

% we see that the swing mode has almost -180 deg angle of 

departure 

% thus providing pure damping 

figure(3); 

rlocus(conv(numGw,numPSS_final),conv(denGw,denPSS_final)); 

axis([-10,5,-20,20]); 

title('root locus plot of the final damping loop with 1st order 

VR and 5th order PSS'); 

  

 

% STATE SPACE DESIGN  

  

% this script plots and compares the step response of the system 

% with and without implementing the 5th order PSS 

  

% in both the cases, the 1st order VR has been implemented 

  

clc 

clear 

load step_resp_PSS.mat 

  

plot(tout,Vt1st_order,tout,Vtfinal); grid on; 

title('comparison of step response of system with and without 

PSS'); 

legend('without PSS','with PSS'); 

xlabel('time--->'); 

ylabel('voltage--->'); 

 

% end of code 

 

 


