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Abstract 

Lanthanum-modified Lead iron niobate ceramic oxides having chemical formula Pb(1-

x)Lax(Fe0.5Nb0.5)(1-x/4)O3 (x=0.00, 0.02, 0.04, 0.06, 0.08) have been prepared using traditional  

solid state reaction route. Preliminary structural, microstructural and electrical studies were 

carried out by the powder x-ray diffraction, scanning electron microscopy and complex 

impedance spectroscopic technique in awide experimental conditions. The x-ray diffraction 

study confirmed the formation of perovskite structures of the newly modified ceramics. The 

lattice parameters were calculated using standard IUCR software CHECKCELL. Crystallite sizes 

of the samples were calculated from Williamson-Hall method. Microstructure/morphology of the 

materials was analyzed from SEM images. Dieletric and impedance spectroscopic studies of the 

materials were carried out as a function of temperature for a wide range of frequencies. The pure 

PFN ceramic oxide shows the phase transition from ferroelectric to paraelectric state around 

115
0
C. There is a notable decrease in the transition temperature of La-PFN(x=0.02) ceramic and 

above 4% La concentration, the transition temperature falls below room temperature. 

 

 

 

 

 

 



 
 

CHAPTER 1 

 

1.1 Introduction 

Significant advances have been made in the field of ferroelectrics due to its fundamental physical 

and potential device applications. The phenomenon of ferroelectricity was discovered in 1921 by 

Valsek in Rockchell salt [1]. Since the discovery of barium titanate (BaTiO3), breakthrough in 

the research on ferroelectric materials came in picture during 1950’s, leading to the widespread 

use of lead based ceramics in capacitor applications and piezoelectric transducer device 

applications. Since then, many other ferroelectric ceramics including lead titanate (PbTiO3), lead 

zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), and relaxor ferroelectrics like 

lead magnesium niobate (PMN) have been discovered, studied and utilized for a variety of 

potential device applications [2]. With the development of   advanced ceramic processing and 

thin film technology, many new device applications have emerged. The largest application of 

ferroelectric ceramics has been in the areas such as dielectric ceramics for capacitor application, 

ferroelectric thin film for non-volatile memories, piezoelectric materials.  

Ceramics are defined as compounds that consist of metallic and non-metallic elements 

which are synthesized by the application of temperature and pressure. The properties of the 

ceramics are wear-resistant, brittle, refractory, thermal insulators, electrical insulators, 

nonmagnetic, oxidation resistance, and thermal shock prone and chemically stable. The property 

of the ceramic materials is represented by nature of bonding between the atoms and type of 

atoms. Ceramic materials are basically covalent and ionic bonded [3].  
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Most of the ceramic materials are dielectrics which can be controlled by electrostatic 

field. Electrical conductivity of ceramics basically depends on temperature and frequency. This 

is due to the reason that charge transport mechanisms are frequency and temperature dependent. 

Thermal energy provides the activation energy for the charge migration. In general, ceramic 

materials have high dielectric strength for storage device applications. 

 

1.1.1 Characteristics feature of the ferroelectric materials  

(1) Lack of center of symmetry i.e. spontaneous polarization. 

(2) Ferroelectric crystals must be piezoelectric though the converse is not true. 

(3) Ferroelectric materials have one or more Curie temperature. 

(4) Ferroelectric transitions are structural transitions. 

(5) Ferroelectric materials obey Curie-Weiss law. 

(6) Ferroelectric materials exhibits hysteresis loop. 

The ferroelectrics are characterized by the ferroelectric hysteresis loop, i.e., the polarization is a 

double-valued function of the applied electric field. As the electric field is high enough, all the 

ferroelectric domains are aligned in the direction of field, and the polarization is saturated. The 

extrapolation of the linear portion of the curve at high field back to the polarization axis 

represents the value of the spontaneous polarization Ps. When the electric field is removed, most 

of the domains remain aligned and the crystal still exhibit polarization [4]. The polarization at 

zero fields after saturation is called remnant polarization Pr. The remnant polarization can be 

removed when a field in the opposite direction is applied and reaches a critical value. The 
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strength of the electric field required to reduce the polarization to zero is called the coercive field 

Ec. 

 

 

 

 

 

 

(Fig 1.1.1: Typical hysteresis loop of ferroelectric material) 

 

1.1.2 Division of ferroelectric materials 

 Corner Sharing Octahedra 

(1) Perovskites (ABO3) 

(2) Pyrochloro (A2B2O7) 

(3) Tungsten Bronze type Compounds ( (A1)2(A2)4(C)4(B1)2(B2)8O30 ) 

(4) Bismuth Oxide Layer Structured Ferroelectrics ((Bi2O2)
+2, (An-1,Bn O3n-1)

-2) 

 compounds containing hydrogen bonded radicals 

 organic polymers 

 ceramic polymer composites 
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1.2 Perovskite structure: 

Among different ferroelectrics perovskites are most studied materials for device applications. 

The perovskite structure, of chemical formula ABX3, 

consists of two distinct cation sites (A and B) and one anion 

site (C). Crystals of the prototypical perovskite, CaTiO3, were 

first discovered in 1839. A-site can be monovalent, divalent or 

trivalent and B-site can be pentavalant, tetravalent or trivalent 

.The coordination number of A-site cation is 8 to 10 and B-site 

cation is 6. 

 

The structures of perovskites are determined by short range attractive (bonding) and 

repulsive forces between nearby ions, as well as long range electrostatic interactions between 

unit cells. The stability of perovskite is represented by tolerance factor (t) and determines the 

property of the perovskite. 

 

 

 

(1) t ≥ 1, for ferroelectric perovskites, BaTiO3, PbTiO3 and KNbO3 ,  

(2) t < 1 for antiferroelectric perovskites PbZrO3 , NaNbO3 and BiFeO3 .  

(3) t=1 corresponds to an ideal perovskite 

   

While  at  t<1 Indicates tilting or rotation of the BO6  octahedral and for t>1 a displacive  

distortion  within  the  BO6  octahedral.  

)(2
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OB
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t
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(Fig 1.2: Perovskite Structure (ABO3) 
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1.3 Ferroelectric Phase Transition 

The transition from ferroelectric (non-centro symmetric) to paraeletric (centro-symmetric) phase 

is accompanied by a structural or crystallographic phase transition. In phase transition quite often 

referred to symmetry breaking. 

 

 

 

 

 

 

 

Types of ferroelectric phase transition  

(1) Displacive phase transition 

(2) Order-disorder phase transition 

 

Displacive transitions proceed through a small distortion of the bonds (dilatational or rotational). 

As the key for the ferroelectricity, spontaneous polarization arises due to the non-coincidence of 

the positive and negative charge centers in the unit cell that implies non-centrosymmetric nature. 

In ABO3 ferroelectricity results from the off center displacement of the B cation leading to 

displacive phase transition [5]. This off center displacement in the perovskite ferroelectrics is the 

Fig 1.3: B cation off-centre displacement and the 

double-well energy diagram of ABO3 ferroelectrics 
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result of competition between the short range repulsion force between adjacent electron clouds of 

ions, which favors the non-ferroelectric centro-symmetric structure and additional bonding 

between B cation and oxygen ions.  

 

Order-disorder transitions proceed through substitution between atoms possibly followed by 

small atomic displacements. They are commonly found in metals and alloys but also in some 

ceramics. 

 

1.4 Order Parameter 

The phase transitions are characterized by the appearance of some non-zero quantity in the 

ordered state and the same vanishes in the disorder state. Such quantity is called order parameter. 

Type of phase transition according to order parameter. 

(1) First order phase transition, characterized by the appearances of latent heat, finite change 

in volume and hysteresis. (First derivative of Gibb’s free energy is discontinuous.) 

(2) A second order phase transition, characterized by discontinuity in the specific heat. 

    (Second derivative of Gibb’s free energy is discontinuous.) 

 

It is known that order parameter is a decreasing function of temperature and must varnish at 

critical temperature. If the order parameter vanishes discontinuously at Tc, then the transition is 

said to be first order while if it vanished continuously, it is called second order. Near   the   Curie   

point   or   phase   transition   temperature,   thermodynamic properties   including   dielectric,   

elastic,   optical,   and   thermal   constants   show   an anomalous behavior.  This is due to the 

distortion in the crystal as the phase changes. The temperature dependence of the dielectric 

constant above the Curie point (T>TC) in most of the ferroelectric crystals is governed by the 
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Curie-Weiss law:  

 

 

Where, ε is the permittivity of the material, ε0 is the permittivity of the vacuum, C is the Curie 

constant and T0 is the Curie-Weiss temperature. In general  the Curie-Weiss  temperature  T0 ,  is  

different from  the  Curie  temperature  TC . For  first  order  transitions,  T0 <TC   while  for  

second  order  phase  transitions,  T0 =TC . 

Complex  perovskite  type  ferroelectrics  basically show   DPT (diffuse phase transition)  

which   is   characterized   by   a   broad   maximum   for   the   temperature dependence  of 

dielectric  constant (ε)  and  dielectric  dispersion  in  the  transition region. For DPT, ε follows 

modified temperature dependence Curie Weiss law.  

 

          

  

where,  T m     is  the  temperature  at  which  ε  reaches  maximum  (εm ),  C  is  the  modified 

Curie constant and  γ  is  the  critical exponent.  The γ factor explains  the  diffusivity  of the  

materials,  which  lies  in  the  range  1<γ<2.  In case of  γ  equals  to  unity,  normal Curie–

Weiss  law  is  followed  and  it  shows  the  normal  ferroelectric  phase  transition. 
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CHAPTER 2 

 

Literature Survey 

 

2.1 Lead Iron Niobate and related materials 

 

Lead  iron  niobate Pb (Fe0.5 Nb0.5) O3 (PFN) is  a  lead based  complex  perovskite  which  

is  of  great  interest  for multilayer capacitors owing to its high dielectric constant discovered by 

Smolenskii et al [6].  PFN exhibits monoclinic structure with a Curie temperature of 114 °C, 

therefore becomes a possible candidate for making new relaxor ferroelectrics exhibiting 

attractive piezoelectric properties. It has been studied ceramic powders, single crystal and also 

thin films. Raymond et al [7]. extensively studied the structural, thermoelectric, dieletric and 

impedance spectroscopic studies of lead iron niobate. Wang et al [8]. showed the enhanced 

dielectric properties in 0.94PFN-0.06PT single crystals.   Kumar et al [9]. studied the enhanced 

electrical properties of PFN thin films. Mishra et al [10]. reported the dieletric relaxation and 

magnetic properties of the PFN ceramics. Sahoo et al [11]. studied the effect of V5
+
 and Y

+3
 

substitutions on dieletric and ferroelectric properties of PFN. Varshney et al. reported the 

dieletric properties of Ba
2+

 modified lead iron niobate. 
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2.1.1 Based on the literature survey, some of the main problems associated 

with PFN based material are 

(1) Difficult to synthesize single phase PFN material. For example, when synthesized using 

conventional solid-state synthesis  route,  a  pyrochloro  phase  ( Pb3Nb4O13 or  Pb2Nb2O7 

type ) with lower dielectric constant always coexists with the desired  perovskite  phase  

in  PFN  ceramics.  

 

(2)  PFN ceramics or similar  iron-doped    systems, the occurrence of Fe 
2+

 and oxygen 

vacancies originated during  the  sintering  process  increase  electrical  conductivity, 

large frequency dispersion of dielectric constants, dielectric loss, space-charge  

accumulation  at  the  grain boundary,   all of them   inhibition   to   optimal   device 

performance. PFN ceramics also exhibit lower resistivity, for example, makes it almost 

impossible to pole PFN ceramics to determine the piezoelectric constants as well as to 

measure the polarization hysteresis characteristics. 

 

 

Among the various methodologies available in literature, one of the important methods to solve 

the above mention problems is suitable substitutions. In the present study, we have planned to 

substitute La at the Pb-site of the complex perovskite PFN. 
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2.2 Materials under investigation: 

 

Pb (1-x) La x (Fe0.5 Nb0.5)1-x/4 O3 

 

(x=0.00, 0.02, 0.04, 0.06, 0.08) 

 

 

 

 

2.3 Main Objectives: 

 

The following will be the main objectives of the proposed work. 

(1) Preparation of La modified PFN compounds using high temperature solid state reaction 

route. 

(2) Studies of the structural & micro-structural properties of the materials. 

(3) Studies of dielectric responses as a function of frequency & temperature.  

(4)  Studies of Impedance and conductivity studies of the sample. 
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CHAPTER 3 

 

Experimental Technique 

This chapter discuss about the basic principles and various analytical techniques used for the 

preparation as well as characterization of ceramic materials. After preparation of the studied 

material, they have been subjected to a series of tests that include structural analysis, surface 

morphology study and dielectric measurements.  

 

3.1 Introduction 

Many of the important aspects of present-day ceramic fabrications are required to produce, a 

material with specific properties, a body of required shape and size within specified dimensional 

tolerances and the required component at an economic cost [13]. Eventually synthesis of these 

materials is of a greater importance to the progress of material science. The fabrication process 

comprises five stages: the specification, purchase and storage of raw materials; preparation of a 

composite in powder form; forming the powder into a shape; densification; finishing. There are 

several method for synthesis of ceramic materials such as solid state reaction route, high energy 

ball milling (top to bottom approach), soft chemical route (bottom to top approach). To achieve a 

qualitative product with respect to purity, homogeneity, reactivity each method is having its own 

advantages and disadvantages. In this view, solid-state reaction route is found to be easier and 

low cost method by means of performance and economy. 
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3.2 Solid State reaction route 

The solid state reaction route is one of the commonly used method for breaking up of agglomerates 

and forming an intimate mixture of constituents in order to prepare polycrystalline ceramics from a 

mixture of starting raw materials. Mixing of solids do not take place at room temperature over 

normal time scales, so it is necessary to heat them to much higher temperatures. The various 

factors which affect the feasibility and rate of a solid state reaction are, reaction conditions, 

structural properties of the reactants, surface area of the solids, their reactivity and 

the thermodynamic free energy change associated with the solids. In addition, the higher 

temperature allows the interdiffusion of neighbouring particles which increases the probability of 

formation of desired compound and the time taken to complete the process will be proportional 

to the square of the particle size. If the particles are consisting of aggregates of crystals rather 

than individual crystals then the whole process will be considerably slower [14]. A  number  of  

procedures  are  used  to  reduce  the  time  needed  for synthesis. Chemical composition, particle 

size, degree of aggregation and reactivity are few important aspects that specify the choice of 

raw material in order to carry out the solid state reaction process. 
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3.3 Experimental Details 

Polycrystalline powder of   Pb(1-x)Lax(Fe0.5Nb0.5)1-x/4O3 (x=0.00, 0.02, 0.04, 0.06, 0.08) were 

synthesized by a conventional solid-state reaction route. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig 3.3: Flow chart for the preparation of samples by a solid-state reaction technique. 
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The high purity oxides (PbO, Fe2O3, Nb2O5, La2O3,) (LOBA Chemie   Private   Limited,   

Mumbai,   India)   of   required   precursors   were weighed according to the stoichiometric ratios 

and mixed by agate mortar and pestle for 2 hours then in wet (acetone) medium to obtain a 

homogeneous mixture for 4 hrs. As the melting point of lead (II) oxide is 888
0
C which is less 

than the calcined temperature, so 3% extra PbO was taken in order to compensate lead loss at 

high temperature. The dried mixture was put in alumina crucible and calcined at a particular 

temperature about 900 
O
 C for 6 hours in furnace. The above calcined powder formed into a 

lump as it had usually undergone a limited amount of sintering and it was grinded till it becomes 

fine powder. Phase formation was checked by XRD at room temperature. The above calcined 

powder was incorporated with an organic binder of 6% PVA (polyvinyl alcohol) in mortar and 

pestle. The primary function of the binder was to give a dry shape of sufficient strength to 

survive the handling necessary between shaping and sintering. The binder mixed powder was 

compacted to form pallet by a hydraulic press at 6 x 10 
7 

kg/m
 2

   pressure using 10mm die set. 

The sintering of the pellet sample was carried out at an optimized temperature of 1000 
O
C. The 

sintered pallets were polished by emery paper and painted with silver paste as an electrode for 

electrical measurement.  

3.4 X-ray powder diffraction 

X-ray   diffraction is a (XRD) powerful non-contact and non-destructive technique, which makes 

it ideal for situ studies. It uniquely identifies the crystalline phases present in the material and  

measures the structural properties like phase composition, grain size, preferred orientation, strain 

state, defect structure and epitaxy of these phases present in the compound. The intensities 

obtained from the XRD can provide quantitative as well as accurate information on the atomic 

arrangements at interfaces. Materials having different composition of elements can be 
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successfully identified with XRD, but it are very much sensitive to the elements having large 

atomic number, because the diffracted intensities are very large as compared to the elements 

having lower atomic number. It predicts the quantitative phase analysis as well as qualitative 

structural and microstructural analysis. The wavelength λ of X-ray beam is typically 0.7 - 2 Å 

which corresponds to X-ray energies (E = 12.4 keV / λ) of 6 – 17 keV. X-rays are used to 

produce the diffraction pattern because their wavelength is typically the same order of magnitude 

(1–100 angstroms) as the spacing d between planes in the crystal. 

 

 

 

 

 

 

 

 

The diffraction satisfies the Bragg equation 

2dsinθ=nλ 

Here d is the spacing between diffracting planes,  is the incident angle, n is any integer, and λ is 

the wavelength of the beam.  

 

Fig 3.4: Demonstration of Bragg’s law 
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The information in an XRD pattern is a direct result of three things: 

1. The size and shape of the unit cells, which determine the relative positions of the diffraction 

peaks. 

2. Atomic positions within the unit cell, which determine the relative intensities of the diffraction 

peaks electron (charge density distribution) 

3. Peak broadening is related to microstructural parameters (crystallite size, r.m.s strain and 

dislocation density) 

It is impossible to find two different materials having same x-ray diffraction pattern. 

Therefore it can be used as fingerprint to identify the material. 

The determination of lattice constants from the line positions or d spacing can be found from a 

general formula  

 

    
    [                                   ] 

 

Where; V = volume of the unit cell   

    (                                )    

 

Here a, b, c, α, β and γ are lattice parameters and h, k, l are the miller indices. The above formula is used 

to calculate lattice parameters for all the compositions [15]. 

The microstructural parameters crystallite size (D) and strain are related by Williamson-Hall Equation. 

β Cosθ= 4ЄSinθ +λ/D 
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Here β is full width half maxima and Є is the r.m.s strain in the material. 

In the present study we have recorded the XRD-pattern using PAnalytic diffractometer. 

3.5 Scanning electron microscopy 

The scanning electron microscopy (SEM) is a powerful non-destructive imaging technique that 

scans the surface of specimen to   study   the topography, morphology and composition of the 

materials with much higher resolution. When a highly energetic electron beam strikes the 

specimen, ejection of the secondary electrons (SE), x-rays and back-scattered electrons (BSE) 

takes place from the sample surface. These  electrons  are  then  collected  by  the  detector  and  

convert into signal that displays on a screen. The magnification in a SEM can be varied from 10X 

-300,000X. In the present study, the SEM micrograph was taken on the scanning electron 

microscope (JEOL-330 scanning microscope JEOL).  As the samples are non-conducting, a thin 

layer of platinum is coated using a sputter coater.  

 

 

 

 

                                        

 

(Fig 3.5: Interaction of electron beam with specimen) 
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3.6 Dielectric Study 

The dielectric study of a ceramic material gives valuable information about the behavior of 

localized electric charge carriers that leads to a greater understanding about the mechanism of 

dielectric polarization in the material. A good dielectric is, of course, necessarily a good insulator 

but the converse is not possible. When a dielectric material is subjected to an external electric 

field, the material becomes polarized due to induced dipole and permanent dipole moments. The 

polarization is directly proportional to the macroscopic field i.e.  

P = α E 

Here α is the polarizabilty of atoms and molecules. 

Types of polarizations are  

1.        Electronic polarization  

2.        Atomic or ionic polarization  

3.        Dipolar polarization  

4.        Interface or space charge polarization 

 

 

 

 

 

Fig 3.6:  Frequency dependent dielectric constant 
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When  a  dielectric  is  subjected  to  the  ac  voltage,  the  electrical  energy  is absorbed  by  the  

material  and  is dissipated  in  the  form  of  heat. The dissipation is called dielectric loss (tanδ). 

So for a dielectric material, the conductivity increases if dielectric loss increases. This relation 

can be written as: 

σa.c=ωε″=ωε′tanδ 

where                    ε″ = ε′tanδ 

A.c. conductivity is one of the studies that give correlation between microstructure and electrical 

properties of the material. This technique is generally applied on the solids in order to 

characterize the bulk resistance of the material. In this work , to  measure  the  relative  

permittivity  (dielectric  constant)  and  dielectric  loss PSM 1735 was used .The electroded 

samples were used to make the measurements. The PSM was interfaced with the computer and 

the data (capacitance and D factor) was collected as a function of temperature at different 

frequencies. The measured capacitance was then converted into dielectric constant using the 

following formula: 

C= εo ε r A / d 

εr =C d/ εo A 

  

 Where, C: Capacitance in farad (F)   

ε: Permittivity of free space in farad per meter (8.85 x 10 
-12

 F/m)  

εr: Dielectric constant or relative permittivity of the sample.  

A: Area of each plane electrode in square meters (m
2
 )  

d: Separation between the electrodes in meters (m) 
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CHAPTER 4 

 

Results and Discussion 

4.1 Structural analysis 

 

 

 

 

 

 

 

 

 

 

(Figure 4.1: Room temperature X-ray diffraction pattern of Pb(1-x)Lax(Fe0.5Nb0.5)(1-x/4)O3 

(x=0.00,0.02,0.04,0.06,0.08) )  
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Figure 4.1 represents the room temperature XRD patterns of calcined powder of Pb(1-x) Lax (Fe0.5 

Nb0.5)(1-x/4)O3 (x=0.00,0.02,0.04,0.06,0.08). The diffraction pattern is different from that of 

ingredients suggest the formation of PFN with a presence of small amount of pyrochloro phase 

(around the peak position of 27
o
). It has also been observed that, with the increase in substitution 

concentration of Lanthanum (La
+3

) there is a change in the peak position, peak intensity and peak 

shape of PFN. The full width at half maximum FWHM (β) and intensity of each peak were 

calculated using commercially available software (PEAK FIT). Indexing of X-ray diffraction 

patterns was carried out using the input parameters as diffraction angle (2θ) and intensity value 

of each peak by a standard open source IUCR software CHECK-CELL. The best agreement in 

observed and calculated 2θ (i.e., Δθ (2θobs-2 cal) = minimum) for monoclinic system (Table-

4.1(a)). The crystal structure was found to be monoclinic for all compositions. The lattice 

parameters, unit cell volume, of the samples are listed (Table-4.1(f)).The lattice parameters were 

observed to be decrease with increase in La concentration. The decrease in the Peak intensity 

with increase in La
+3

 substitutions may be due to decrease in the crystallite size i.e. increasing in 

amorphous nature. 

Table-4.1(a): (h, k, l) planes obtained for the composition x= 0.00 

Pb(1-x) Lax (Fe0.5 Nb 0.5)(1-x/4)O3    x=0.00 

Sl 

No. 

2θ(observed) 

degree 

2θ(calculated) 

degree 

    2θ 

difference 

h k l 

1 22.1344 22.1357 -0.0013 0 0 1 

2 31.5138 31.4979 0.0159 2 0 0 

3 38.8482 38.8370 0.0112 0 2 1 

4 45.1709 45.1561 0.0148 0 0 2 

5 50.7530 50.8009 -0.0479 -1 1 2 

6 56.1055 56.0951 0.0104 0 2 2 

7 65.8126 65.8299 -0.0173 2 2 2 

8 70.3305 70.3272 0.0033 0 0 3 

9 74.7229 74.7076 0.0153 -1 1 3 
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Table 4.1(b): (h, k, l ) planes obtained for the composition x= 0.02 

Pb(1-x) Lax (Fe0.5 Nb 0.5)(1-x/4)O3    x=0.02 

Sl 

No. 

2θ(observed) 

degree 

2θ(calculated) 

degree 

    2θ 

difference 

h k l 

1 22.2348 22.1780 0.0568 -1 1 0 

2 31.6164 31.5551 0.0613 0 2 0 

3 38.9645 38.9607 0.0038 2 0 1 

4 45.2759 45.2461 0.0298 -2 2 0 

5 50.9582 50.9709 -0.0127 2 2 1 

6 56.2217 56.1961 0.0256 1 3 1 

7 65.9011 65.8863 0.0148 0 4 0 

8 70.4006 70.4054 -0.0048 1 3 2 

9 74.8287 74.9018 -0.0731 -2 4 0 

 

Table 4.1(c): (h, k, l ) planes obtained for the composition x= 0.04 

Pb(1-x) Lax (Fe0.5 Nb 0.5)(1-x/4)O3    x=0.04 

Sl 

No. 

2θ(observed) 

degree 

2θ(calculated) 

degree 

    2θ 

difference 

h k l 

1 22.0875 22.1322 -0.0447 0 0 1 

2 31.5523 31.5505 0.0018 0 2 0 

3 38.7717 38.8164 -0.0447 -2 0 1 

4 45.2336 45.2003 0.0333 -2 2 0 

5 50.9489 50.9088 0.0401 2 2 1 

6 56.1892 56.1764 0.0128 1 3 1 

7 65.8144 65.8506 -0.0362 2 2 2 

8 70.4006 70.4254 -0.0248 0 4 1 

9 74.7496 74.7166 0.0330 -1 1 3 

 

 

Table 4.1(d): (h, k, l ) planes obtained for the composition x= 0.06 

Pb(1-x) Lax (Fe0.5 Nb 0.5)(1-x/4)O3    x=0.06 

Sl 

No. 

2θ(observed) 

degree 

2θ(calculated) 

degree 

    2θ 

difference 

h k l 

1 22.1666 22.1807 -0.0141 -1 1 0 

2 31.5940 31.5574 0.0366 0 2 0 

3 38.8508 38.8773 -0.0265 0 2 1 

4 45.2734 45.2519 0.0215 -2 2 0 

5 50.8698 50.8452 0.0246 1 1 2 

6 56.2343 56.1815 0.0528 1 3 1 

7 65.8144 65.8374 -0.0230 2 2 2 

8 70.4006 70.4371 -0.0365 0 4 1 

9 74.9078 74.9162 -0.0084 3 3 1 
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Table 4.1(e): (h, k, l ) planes obtained for the composition x= 0.08 

Pb(1-x) Lax (Fe0.5 Nb 0.5)(1-x/4)O3    x=0.08 

Sl 

No. 

2θ(observed) 

degree 

2θ(calculated) 

degree 

    2θ 

difference 

h k l 

1 22.0875 22.0962 -0.0087 0 0 1 

2 31.5556 31.5483 0.0073 0 2 0 

3 38.7717 38.7849 -0.0132 -2 0 1 

4 45.2455 45.2171 0.0284 -2 2 0 

5 50.8698 50.8322 0.0376 1 1 2 

6 56.1676 56.1725 -0.0049 1 3 1 

7 65.8144 65.8465 -0.0321 2 2 2 

8 70.4006 70.4061 -0.0055 0 4 1 

9 74.9078 74.9054 0.0024 3 3 1 

 

The broadening in the X-ray line profile is mainly due to crystallite size and anisotropic strain. 

Since both the effects are independent of each other we can separate out by Williamson–Hall 

method.                           

 

 

 

 

 

 

 

 

(Figure 4.1(A): Williamson–Hall plot of PFN) 

0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

(
-
1
 
1
 
3
)

(
2
 
2
 
2
)(
0
 
2
 
2
)

(
0
 
0
 
2
)

Pb(1-x)Lax(Fe0.5Nb0.5)(1-x/4)O3

 

 

 

x=0.00


c
o
s


Crystallite size=1988 A
0
(27)

sin

(
0
 
2
 
1
)

23 



 
 

Williamson-Hall equation 

                                                          β Cosθ= 4ЄSinθ +λ/D 

 

Here, D crystallite size, λ wavelength used Є r.m.s strain in the samples.  

By plotting βcos θ vs. sinθ, r. m. s. strain can be calculated from the slope and the crystallite size 

can calculated from the ordinate intercept. The deviation from the linear correlation corresponds 

to strain anisotropy. Crystallite size decreases with increase in La incorporation at Pb site of 

PFN. 

 

 

 

 

 

 

 

 

 

           (Figure 4.1(B): Crystallite size dependence on x) 

Table-4.1(f): Lattice parameters of the sample forx=0.00, 0.02, 0.04, 0.06, 0.08 

Compos

ition 

(x) 

a(Ao) b(Ao) c(Ao) α= 

γ 

 

β 

(degr

ee) 

Crystalli

te size 

(Ao) 

0.00 5.6805(44) 5.6800(47) 4.0157(09) 90 90.14 1988 

0.02 5.6764(20) 5.6704(30) 4.0206(15) 90 90.13 1039 

0.04 5.6764(63) 5.6712(29) 4.0163(22) 90 90.11 914 

0.06 5.6754(84) 5.6700(27) 4.0179(63) 90 90.02 891 

0.08 5.6721(33) 5.6716(17) 4.0228(23) 90 90.20 724 
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4.2 Scanning Electron Microscopy (SEM) 

 

 

(Figure 4.2: Room temperature SEM micrographs of Pb(1-x)Lax(Fe0.5Nb0.5)(1-x/4)O3 (x=0.00 

(a), 0.04 (b) ,0.06 (c), 0.08 (d)) 

 

The SEM micrographs show the polycrystalline nature of microstructure where grain sizes are 

inhomogeneously distributed throughout the sample surface with certain degree of porosity.  The 

grain and grain boundaries are clearly distinct in the micrograph. The average grain size 

decreases with increase in La concentration at Pb site as observed by visual examination. The 

average grain size distributions of the samples were found to be 7μm to 3μm. The densification 

increases continuously during sintering from x=0.00 to 0.06.  
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4.3 Dielectric Study 

Figure 4.3(a) Shows the temperature dependence of dielectric constant for La modified PFN 

ceramics from room temperature to 250
o
C at several frequencies with oscillation amplitude of 

1V. It is observed that εr decreases monotonically on increasing frequency at all the 

temperatures, which represents the behavior of polar dielectric materials. It can be seen from the 

graph that εr increases with increase in temperature, attains its maximum value (εmax) and then 

decreases. As the La concentration increases from x=0.00 to 0.02, it is observed that dielectric 

anomaly shifts toward lower temperature and falls below the room temperature for x=0.04, 0.06, 

0.08. This dielectric anomaly is observed for La-modified PFN represents the ferroelectric –

paraelectric phase transition which is diffuse type. It is also observed that dielectric constant 

decreases with increase in La substitution at Pb site which may be due to switching off of 

polarizibility of Pb in PFN. The former observation is related to the decrease of grain size due to 

the La
3+

 ions doping as observed from SEM and also decrease in crystallite size as seen from 

XRD. Figure 4.3(b) represents the temperature dependence of tanδ for selected frequencies. It  is  

observed  that  for  all  the  samples  tanδ  increases  on increasing temperature with one anomaly 

in the temperature range 50-250
o
C .This  anomaly in  tanδ shifting towards the high temperature 

side and the broadening of the peak increases with  increase in frequency. The reason for 

increase in tanδ at high temperature is due to the generation of space charge polarization in the 

ceramic materials. Rapid increase in tanδ at high temperatures is attributed to increase in 

electrical conductivity of the material.  
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(Figure 4.3(a): Temperature dependence of dielectric constant for Pb(1-x)Lax(Fe0.5Nb0.5)(1-x/4)O3 

(x=0.00,0.02,0.04,0.06,0.08) )  
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(Figure 4.3(b): Temperature dependence of dielectric loss (tanδ) for Pb(1-x)Lax(Fe0.5Nb0.5)(1-

x/4)O3 (x=0.00, 0.02, 0.04, 0.06, 0.08))  
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4.4 Conductivity studies 

Figure 4.4 Shows the variation of ac electrical conductivity (ζac) of PFN as a function of   

frequency at different temperatures and for all La modified PFN ceramics. The a.c.  conductivity 

was  calculated  using  the  relation  ζac = εoεrω tan δ. In the low frequency region, ac 

conductivity remains frequency independent, representing d.c conductivity. Whereas the 

dispersion of conductivity was observed in the higher frequency region. The crossover from the 

frequency independent region to the frequency dependent regions  represents  the  starting of  the  

conductivity  relaxation, indicating  the  transition  from  long  range  hopping  to  the short-

range ionic motion in the compound. The frequency dependence of ac conductivity obeys 

Jonscher’s power law, i.e. ζac = ζ0 + Aω
n
 , where  ζ0 is  frequency  independent  conductivity  

(which  is related to dc conductivity), A is the temperature dependent pre-exponential  factor  

and  n is  frequency  exponent,  (0 < n  <  1). As ac conductivity increases with rise in 

temperature, all the compounds have negative temperature coefficient of resistance (NTCR) 

behavior which is the typical behaviour of semiconducting material. 
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(Figure 4.4: Frequency variation of ζac for Pb(1-x)Lax(Fe0.5Nb0.5)(1-x/4)O3 (x=0.00, 0.02, 0.04, 

0.06, 0.08 ))  
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4.5 Impedance Spectroscopic studies 

  Figure 4.5 represents   the   temperature   dependent   complex impedance (Nyquist plot) of  

La-modified PFN ceramics. The linear variation of Z
//
 with Z

/
 in the complex impedance plot in 

low temperature range from room temperature to 200
◦
C indicates the insulating properties of the 

material. Above 200 
◦
C, circular arc formation trend started which is due to the increase of 

conductivity. The impedance plots seem to have two overlapped semicircles. Each semicircle of 

the Nyquist plot corresponds to the different contribution to the electrical response. The high 

frequency semicircle can be attributed to the bulk (grain) property and low frequency 

corresponds to grain boundary property of the material .The relaxation process is non-ideal or 

non-Debye type in nature. The intercept of the semicircular arc on the real axis of the complex 

impedance plane gives the dc resistance of the material. It is seen that the dc resistance increases 

with increase in the Lanthanum concentration in the material. 
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(Figure4.5: Nyquist plot for Pb(1-x)Lax(Fe0.5Nb0. 5)(1-x/4)O3 (x=0.00, 0.02, 0.04, 0.06, 0.08) ) 
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CHAPTER 5 

Conclusion 

In the present work, we have  synthesized and  studied the complex perovskite ceramics oxides 

having the general chemical formula Pb(1-x)Lax(Fe0.5 Nb 0.5)(1-x/4)O3  (x=0.00, 0.02, 0.04, 0.06, 

0.08). The structural (XRD), microstructural/morphological (SEM) and electrical (dielectric and 

impedance) properties of the proposed compounds have been studied extensively.  

Based on our results following conclusions have been made. 

 PFN and La-modified PFN samples were prepared by high temperature solid-state 

reaction route 

 X-ray diffraction (XRD) studies show the formation of the compounds with monoclinic 

crystal system. Lattice parameters and crystallite size obtained from XRD data found to 

be decreased with increase in La
+3

 concentrations.  

 Scanning electron micrographs of the compounds showed (1) polycrystalline nature of 

microstructure, (2) decrease in grain size with increase in La
+3

 concentration, (3) uniform 

distribution of grain size with high density.  

 The ferroelectric phase transition temperature was found to be 115
o
C for PFN and 

decreases with increase in La
+3

 incorporation and falls below the room temperature for 

x=0.04, 0.06 and 0.08.  

 The ac conductivity of the La-modified PFN obeyed the Jonsher’s power law behavior.  

 Complex impedance spectroscopy method has been employed for better understanding of 

relaxation process and to establish relationship between the microstructure–electrical 

properties of the compounds.  
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