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ABSTRACT 

 

A floating-point unit (FPU) colloquially is a math coprocessor, which is a part of a 

computer system specially designed to carry out operations on floating point numbers [1]. 

Typical operations that are handled by FPU are addition, subtraction, multiplication 

and division. The aim was to build an efficient FPU that performs basic as well as 

transcendental functions with reduced complexity of the logic used reduced or at least 

comparable time bounds as those of x87 family at similar clock speed and reduced the 

memory requirement as far as possible. The functions performed are handling of Floating 

Point data, converting data to IEEE754 format, perform any one of the following arithmetic 

operations like addition, subtraction, multiplication, division and shift operation and 

transcendental operations like square Root, sine of an angle and cosine of an angle. All the 

above algorithms have been clocked and evaluated under Spartan 3E Synthesis environment. 

All the functions are built by possible efficient algorithms with several changes incorporated 

at our end as far as the scope permitted. Consequently all of the unit functions are unique in 

certain aspects and given the right environment(in terms of higher memory or say clock speed 

or data width better than the FPGA Spartan 3E Synthesizing environment) these functions 

will tend to show comparable efficiency and speed ,and if pipelined then higher throughput.  
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1.1 INTRODUCTION 

Floating-point units (FPU) colloquially are a math coprocessor which is designed specially 

to carry out operations on floating point numbers [1]. Typically FPUs can handle operations 

like addition, subtraction, multiplication and division. FPUs can also perform various 

transcendental functions such as exponential or trigonometric calculations, though these are 

done with software library routines in most modern processors. Our FPU is basically a single 

precision IEEE754 compliant integrated unit. 

In this chapter we have basically introduced the basic concept of what an FPU is, in the 

section 1.2. Following the section we have given a brief introduction to the IEEE 754 

standards in section 1.3. After describing the IEEE 754 standards, we have explained the 

motivation and objective behind this project in section 1.4. And finally the section 1.5 

contains the summary of the chapter. 

1.2 FLOATING POINT UNIT 

When a CPU executes a program that is calling for a floating-point (FP) operation, there are 

three ways by which it can carry out the operation. Firstly, it may call a floating-point unit 

emulator, which is a floating-point library, using a series of simple fixed-point arithmetic 

operations which can run on the integer ALU. These emulators can save the added hardware 

cost of a FPU but are significantly slow. Secondly, it may use an add-on FPUs that are 

entirely separate from the CPU, and are typically sold as an optional add-ons which are 

purchased only when they are needed to speed up math-intensive operations. Else it may use 

integrated FPU present in the system [2]. 

The FPU designed by us is a single precision IEEE754 compliant integrated unit. It can 

handle not only basic floating point operations like addition, subtraction, multiplication and 
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division but can also handle operations like shifting, square root determination and other 

transcendental functions like sine, cosine and tangential function.  

1.3 IEEE 754 STNDARDS 

IEEE754 standard is a technical standard established by IEEE and the most widely used 

standard for floating-point computation, followed by many hardware (CPU and FPU) and 

software implementations [3]. Single-precision floating-point format is a computer number 

format that occupies 32 bits in a computer memory and represents a wide dynamic range of 

values by using a floating point. In IEEE 754-2008, the 32-bit with base 2 format is officially 

referred to as single precision or binary32. It was called single in IEEE 754-1985. The IEEE 

754 standard specifies a single precision number as having sign bit which is of 1 bit length, 

an exponent of width 8 bits and a significant precision of 24 bits out of which 23 bits are 

explicitly stored and 1 bit is implicit 1.  

Sign bit determines the sign of the number where 0 denotes a positive number and 1 denotes 

a negative number. It is the sign of the mantissa as well. Exponent is an 8 bit signed integer 

from −128 to 127 (2's Complement) or can be an 8 bit unsigned integer from 0 to 255 which 

is the accepted biased form in IEEE 754 single precision definition. In this case an exponent 

with value 127 represents actual zero. The true mantissa includes 23 fraction bits to the right 

of the binary point and an implicit leading bit (to the left of the binary point) with value 1 

unless the exponent is stored with all zeros. Thus only 23 fraction bits of the mantissa appear 

in the memory format but the total precision is 24 bits. 

For example:  

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 

                                    31 30            23 22                                             0 
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IEEE754 also defines certain formats which are a set of representation of numerical values 

and symbols. It may also include how the sets are encoded. 

The standard defines [4]: 

 Arithmetic formats which are sets of binary and decimal floating-point numbers, 

which consists of finite numbers including subnormal number and signed zero, 

a special value called "not a number” (NaN) and infinity. 

 Interchange formats which are bit strings (encodings) that are used to exchange a 

floating-point data in a compact and efficient form. 

 Rounding rules which are the properties that should be satisfied while doing 

arithmetic operations and conversions of any numbers on arithmetic formats. 

 Exception handling which indicates any exceptional conditions (like division by 

zero, underflow, overflow, etc.) occurred during the operations. 

The standard defines the following five rounding rules: 

 Round to the nearest even which rounds to the nearest value with an even (zero) least 

significant bit. 

 Round to the nearest odd which rounds to the nearest value above (for positive 

numbers) or below (for negative numbers) 

 Round towards positive infinity which is a rounding directly towards a positive 

infinity and it is also called rounding up or ceiling. 

 Round towards negative infinity which is rounding directly towards a negative 

infinity and it is also called rounding down or floor or truncation.  
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The standard also defines five exceptions, and all of them return a default value. They all 

have a corresponding status flag which are raised when any exception occurs, except in 

certain cases of underflow. The five possible exceptions are: 

 Invalid operation are like square root of a negative number, returning of qNaN by 

default, etc., output of which does not exist. 

 Division by zero is an operation on a finite operand which gives an exact infinite 

result for e.g., 1/0 or log(0) that returns positive or negative infinity by default. 

 Overflow occurs when an operation results a very large number that can‟t be 

represented correctly i.e. which returns ±infinity by default (for round-to-nearest 

mode). 

 Underflow occurs when an operation results very small i.e. outside the normal range 

and inexact (denormalised value) by default. 

 Inexact occurs when any operation returns correctly rounded result by default. 

1.4 MOTIVATION AND OBJECTIVE 

Floating-point calculation is considered to be an esoteric subject in the field of Computer 

Science [5]. This is obviously surprising, because floating-point is omnipresent in computer 

systems. Floating-point (FP) data type is almost present in every language. From PCs to 

supercomputers, all have FP accelerators in them. Most compilers are called from time to 

time to compile the floating-point algorithms and virtually every OS have to respond to all FP 

exceptions during operations such as overflow. Also FP operations have a direct effect on 

designs as well as designers of computer systems. So it is very important to design an 

efficient FPU such that the computer system becomes efficient. Further, FPU can be 

improvised by using efficient algorithm for the basic as well as transcendental functions, 

which can be handled by any FPU, with reduced complexity of the logic used. This FPU 
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further can be worked upon to improvise further complex operations-viz. exponent, etc. It can 

be designed so that it can handle different data types like character, strings etc, can serve as a 

backbone for designing a fault tolerant IEEE754 compliant FPU on higher grounds and such 

that pipeline can be implemented. 

Motivated by the need of efficient FPU for different kind of operations, the objective of thr 

proposed work are as follows: 

 To develop an efficient algorithms for FP operations like addition, subtraction, 

division, multiplication and few transcendental functions. 

 To implement the proposed algorithm using Verilog. 

 To synthesize the above proposed algorithm. 

1.5 SUMMARY 

The chapter briefly describes the meaning of FPU and when and how they are used and the 

IEEE 754 standard, different rounding modes, arithmetic formats, exceptions and interchange 

formats. This chapter also gives an overview about the motivation and the objective which 

drove us to this project. 
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2.1 INTRODUCTION 

Our Floating Point Unit is a single precision IEEE754 compliant integrated unit. It 

incorporates various basic operations like addition, subtraction, multiplication, division, 

shifting and other transcendental functions like square root determination and trigonometric 

operations like sine, cosine and tangential value evaluation. 

In this chapter, the section 2.2 gives a brief about the literature review and the details of the 

related work in the field of developing an efficient FPU. Section 2.3 gives a brief description 

about the features implemented in our FPU like the rounding modes it handles, the operations 

it can carry out, the exceptions it can handle etc. After this section we have section 2.4 which 

describes implementation in nutshell. This section describes a brief about the algorithms 

implemented by us. This chapter also describes the basic algorithm of our initial FPU model 

in the section 2.5. And lastly, the section 2.6 gives a summary of the chapter. 

2.2 LITERATURE REVIEW 

When a CPU is executing a program that calls for a FP operation, a separate FPU is called to 

carry out the operation. So, the efficiency of the FPU is of great importance. Though, not 

many have had great achievements in this field, but the work by the following two are 

appreciable.  

Open Floating Point Unit – This was the open source project done by Rudolf Usselmann 

[6]. His FPU described a single precision floating point unit which could perform add, 

subtract, multiply, divide, and conversion between FP number and integer. It consists of two 

pre-normalization units that can adjust the mantissa as well as the exponents of the given 

numbers, one for addition/subtraction and the other for multiplication/division operations. It 

also has a shared post normalization unit that normalizes the fraction part. The final result 

after post-normalization is directed to a valid result which is in accordance to single precision 
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FP format. The main drawback of this model was that most of the codes were written in 

MATLAB and due to this it is non-synthesizable. 

GRFPU –This high Performance IEEE754 FPU was designed at Gaisler Research for the 

improvement of FP operations of a LEON based systems [7]. It supports both single precision 

and double precision operands. It implements all FP operations defined by the IEEE754 

standard in hardware. All operations are dealt with the exception of denormalized numbers 

which are flushed to zero and supports all rounding modes. This advanced design combines 

low latency and high throughput. The most common operations such as addition, subtraction 

and multiplication are fully pipelined which has throughput of one CC and a latency of three 

CC. More complex divide and square root operation takes between 1 to 24 CC to complete 

and execute in parallel with other FP operations. It can also perform operations like converse 

and compliment. It supports all SPARC V8 FP instructions. The main drawback of this model 

is that it is very expensive and complex to implement practically. 

2.3 FEATURES IMPLEMENTED IN THIS DESIGN OF THE FPU 

This document describes a single precision floating point unit. The floating point unit is fully 

IEEE 754 compliant. The design implemented here incorporates the following modules. Both 

the module name and its functionality have been specified in the table 2.1 in sequence of the 

manner they appear in the attached code:- 
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Module Name Functionality 

Cnvrt_2_integral_form Converts 32 bit integral and 32 fractional part into single novel 

integral representation 

cnvrt_2_ieee Converts 32 bit binary to its equivalent IEEE-754 format 

pre_normalization Adjusts the operands by performing the necessary shifts before an 

add or subtract operation 

add Performs addition 

sub Performs subtraction 

post_normalization Normalizes the result of add/sub operation to its IEEE754 form 

multiplication Performs pre-normalization and multiplication of the operands 

intended to be multiplied and finally post-normalization of the 

result 

Division Performs pre-normalization and division of the operands intended 

to be divided, determines the remainder and finally post-

normalization of the result 

Squareroot 

determination 

Evaluates the square root of the first operand op1_ieee 

Shifting Performs the shifting of the operand to the specified bit in 

specified direction 

Cordic Performs the trigonometric evaluation 

Table 2.1: Modules and its Functionalities 
 

2.3.1 ROUNDING MODES 

 

Since the input is taken initially without consideration of the decimal point the only rounding 

method used is truncation. The table 2.2 gives the detail about the rounding mode supported 

by our FPU. 

 

 

 

Table 2.2 Rounding Mode 

 

 

 

Rmode Rounding Mode 

0 Truncation 
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2.3.2 OPERATION MODES 

Table 2.3 gives a detail about the operations that our FPU can handle and the operation mode 

corresponding to the operations. 

fpu_op Operation 

0 Add 

1 Subtract 

2 Multiply 

3 Divide 

4 Shifting 

5 Find Square Root 

6 Find Trigonometric values 

Table 2.3 Operation Modes 
 

However by allocating two special parts i.e. INTEGER_OP and FRACTIONAL_OP, we 

have introduced the working for fractional parts too and include any one of the following 

rounding techniques:- 

 Round to nearest even 

 Round to nearest odd 

 Round to  zero 

 Round to infinity 

2.3.3 INTERFACES 

This table 2.4 lists all inputs and outputs of the FPU and provides a general description of 

their functions.  
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Signal Name Width Type  Description 

Clk 1 bit Input System Clock 

Rst 1 bit Input Reset values for initializing 

Op1 32 bit Input Operand 1 

Op2 32 bit Input Operand 2 

Oper 2 bit Input Mode of operation 

Rmode 2 bit Input Mode of rounding 

Op1_ieee 32 bit Output IEEE-754 format of Operand 1 

Op2_ieee 32 bit Output IEEE-754 format of Operand 2 

Oper_result 32 bit Output Result of the selected operation in IEEE format 

Underflow 1 bit Output If operand or result is below range of representation 

Overflow 1 bit Output If operand or result is above range of representation 

Div_by_0 1 bit Output If the divisor is zero then this exception is raised 

Table 2.4 Interfaces 

2.4 IMPLEMENTATION IN A NUTSHELL 

The entire design is implemented by the following steps in progression. 

 Conversion of the Floating Point Number into a novel integral representation. 

 Conversion of the binary integer to its IEEE754 format. 

 Pre-normalization of the operands 

 Performing the selected operation. 

 Post-normalize the output obtained. 

 Detecting and handling the exceptions encountered. 

2.4.1 CONVERSION OF FLOATING POINT NUMBER INTO A NOVEL INTEGRAL 

REPRESENTATION 

As our FPU works with floating point numbers, the operations, intermediate calculations and 

output are conventionally in the same floating point structure. But this invariably increases 

the complexity of calculation and the number of adjustments required at each level to obtain 

the correct result. Our proposal is to convert the floating point number into a simple yet quite 
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precise integral representation and perform the calculations on the same, followed by the final 

conversion of the output into its expected floating point result format. 

 The floating point data is inputted in two parts. The first part is a 32 bit binary value of the 

integer part of the floating point operand and other is a 32 bit binary value of fractional 

part of the floating point operand. This is done because Verilog cannot deal with floating 

point numbers. So we need to consolidate the two parts (integral and fractional) of the 

operand into a single 32 bit effective operand. This is done by the following algorithm 

explained in the figure 2.1: 

Step 1: The sign bit (31
st
 bit) of the input integer part becomes the sign bit 

of the effective operand. 

Step 2: Then the position of 1
st
 significant 1 is searched in the input integer 

part from RHS. This position is stored. 

Step 3: All the bits from this position to the end of the input integer part (i.e. 

till the 0
th

 bit) is taken and inserted into the effective operand from 

its 30
th

 bit onward.(This step stores the actual useful bits of the 

integer part as not all the 32 bits are used to accommodate the 

integer part.) 

Step 4: If there are still positions in the effective operand that are not filled, 

then it is filled with the bits from the input fractional part from its 

MSB down to the number of bits equal to places left to be filled.(This 

step stores the just requisite number of bits from the fractional part to 

complete the 32 bit representation) 

Figure 2.1 Algorithm for Convert to Integral Form 
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This can be explained with the help of an example. 

Float_op_int = 32‟b00000010101000110101000011100000 

Float_op_frc = 32‟b11111111111110000000000111111111 

Step 1: Assign output[31] = Float_op_int[31] 

Step 2: Pos of 1
st
 1 from LHS of Float_op_int = 25(pos counted from RHS) 

Step 3: Assign output = Float_op_int[25:0] 

Step 4: Remaining bits left to be assigned in  

          remaning = 32-26-1 = 5 

Step 5: output[4:0] = Float_op_frc[31:27] 

Output = 0 10101000110101000011100000 11111 

  (From Integer part)     (From Integer part)  (From Fraction part) 

So, basically our technique gives preference to the fractional part for smaller numbers and the 

integer part for larger ones thus keeping intact the effective precision of the floating point 

number. 

2.4.2 CONVERSION OF THE BINARY INTEGER TO ITS IEEE754 FORMAT 

As our FPU is IEEE754 compliant, the next step is to convert the input (here the effective 

operand into the IEEE specified format. 

 IEEE754 single precision can be encoded into 32 bits using 1 bit for the sign bit (the most 

significant i.e. 31
st
 bit), next eight bits are used for the exponent part and finally rest 23 bits 

are used for the mantissa part. 
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S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF   

  `         31 30            23 22                                             0 

 

 However, it uses an implicit bit, so the significant part becomes 24 bits, even though it 

usually is encoded using 23 bits.  

This conversion can be done using the below algorithm of figure 2.2: 

Step1: Sign bit of the binary number becomes the sign bit (31
st
 bit) of the IEEE 

equivalent. 

Step 2: 30
th

 bit to 8
th

 bit of the binary number becomes the mantissa part of the IEEE 

equivalent. 

Step 3: The exponent part is calculated by subtracting the position of the 1
st
 one 

obtained in the algorithm described in section 2.2.1. 

Step 4: A bias of 127 is added to the above exponent value. 

Figure 2.2 Algorithm for convert to IEEE form 
 

This can be explained with the help of an example. 

Output = 01010100011010100001110000011111 

Pos = 25 (from above calculation) 

Step 1: op_ieee[31] = output[31] 

Step 2: op_ieee[30:23] = 29-pos+127 = 131 

Step 3: op_ieee[22:0] = 01010001101010000111000 

   (bits that follows the 1
st
 1 from LHS of output) 

      Op_ieee = 0 10000011 01010001101010000111000 

   S Exponent             Mantissa 
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2.4.3 PRE-NORMALIZATION OF THE OPERANDS 

 Pre-normalization is the process of equalizing the exponents of the operands and 

accordingly adjusting the entire IEEE754 expression of the inputs to produce correct results 

maintaining the IEEE754 standard throughout all calculation steps inclusive of the 

intermediate calculations and their outputs.  

This conversion can be done using the below algorithm figure 2.3: 

Step 1: Insert the implicit 1 in the mantissa part of each of the operands. 

Step 2: Find positive difference between the exponents of the operands 

Step 3: Set the lower operand‟s exponent same as that of the operand with higher 

exponent.  

Step 4: Right shift mantissa of the lower operand by steps equal to difference 

calculated. 

Figure 2.3 Algorithm for Pre-Normalization 
 

This can be explained with the help of an example. 

      Op1_ieee = 0 10000011 01010001101010000111000 

      Op2_ieee = 0 10000010 01010001101011100111000 

Temp_op1_ieee = 101010001101010000111000 (After adding implicit 1 to  

Op1_ieee‟s mantissa) 

Temp_op2_ieee = 101010001101011100111000 (After adding implicit 1 to  

  Op2_ieee‟s mantissa) 

Exponent of Temo_op1_ieee(10000011)> Exponent of Temp_op2_ieee(10000010) 

Difference = 1 (10000011-10000010) 
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Temp_op2_ieee = 010101000110101110011100 

Note: This algorithm for normalization is used only for addition and subtraction. Pre-

normalization for other operations are done separately along with their calculation. 

2.5 PERFORMING THE SELECTED OPERATION 

After completion of the preliminary steps the next step is to perform the actual operation. The 

choice of operation is taken as input via a 4 bit wire oper. Following is the table 2.5 that 

describes the functions and their corresponding operation code. 

fpu_op Operation 

0 Add 

1 Subtract 

2 Multiply 

3 Divide 

4 Shifting 

5 Find Square Root 

6 Find Trigonometric values 

Table 2.5 Operations 

 

2.5.1 MODULE ADD 

Addition is a mathematical operation which represents combining a collection of objects 

together to form larger collection. The process of developing an efficient addition module in 

our FPU was an iterative process and with gradual improvement at each attempt. 

2.5.1.1 ADD USING THE “+” OPERATOR 

The initial attempt was to add using the simple in-built “+” operator available in Verilog 

library. It used a 23 bit register sum and a 1 bit register Co (for carry). The algorithm for the 

addition can be described in figure 2.4: 

Step 1: Check if oper = 4‟b0000 
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Step 2: {Co,Sum} = Temp_op1_ieee[22:0] + Temp_op2_ieee[22:0] 

Step 3: If carry is 1, then 

 Resultant_exponent = Larger_exponent + 1; 

           Else if carry is 0, then do 

 Resultant_exponent = Larger_exponent – (21-difference) (difference as in 

sec.2.2.3) 

Step 4: Check for overflow and underflow- 

 If for any of the operands (sign(operand with greater exponent)==0 & 

(exp_greater + 1 > 255)) then, Set the overflow flag to 1. 

 Else if (sign(operand with lesser exponent==0) & (exp_lesser<0)), then set the 

underflow flag to 1 

Step 5: Aggregate the result as concatenation of {Sign_bit,Resultant_exponent,Sum} 

Figure 2.4 Algorithm for addition using "+" operator 
 

2.5.2 SUBTRACT MODULE 

Subtraction is an operation which is treated as inverse of addition operation. The process of 

developing an efficient SUB module followed the iterative development of the ADD module.  

2.5.2.1 SUB USING THE “-” OPERATOR 

The initial attempt was to subtract using the simple in-built “-” operator available in Verilog 

library. It used a 23 bit register diff and a 1 bit register borrow (for borrow). The algorithm 

for the subtraction module can be described in the figure 2.5:  

Step 1: Check if oper = 4‟b0001 

Step 2: {borrow.diff} = Temp_op1_ieee[22:0] - Temp_op2_ieee[22:0] 

Step 3: Resultant_exponent = Larger_exponent + (21-difference) (difference as in  

sec.2.2.3) 
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Step 4: Check for overflow and underflow- 

 If for any operand (sign(operand with greater exponent)==1 AND 

(exp_greater + 1 < 0)) 

  Set the overflow flag to 1 

 If for any operand (sign(operand with exponent)==1'b1 AND 

(exp_lesser>8'd255)) 

         Set the underflow flag to 1 

Step 5: Aggregate the result as concatenation of {Sign_bit,Resultant_exponent,diff} 

Figure 2.5 Algorithm for subtraction using "-" operator 

2.5.3 MULTIPLICATION MODULE 

The process of developing an efficient multiplication module was iterative and with gradual 

improvement at each attempt. The product of two n-digit operands can be accommodated in 

2n-digit operand.  

2.5.3.1 MULTIPLICATION USING “*” OPERATOR 

It used a 47 bit register to store the product. The algorithm is explained in figure 2.6 

Step 1: Check if oper = 4‟b0010 

Step 2: product = Temp_op1_ieee[22:0] * Temp_op2_ieee[22:0] 

Step 3: Resultant_exponent = op1_ieee[30:23] + op2_ieee[30:23] - 127 

Step 4: If for product ( Resultant_exponent >255 ), then do,   

 Set the overflow flag to 1 

Step 5: Sign_bit = op1_ieee[31] ^op2_ieee[31]  

Step 6: Aggregate the result as concatenation of { Sign_bit, Resultant_exponent, 

product } 

Figure 2.6 Algorithm for multiplication using "*" operator 
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2.5.4 MODULE DIVISION 

Division is regarded as the most complex and time-consuming of the four basic arithmetic 

operations. Given two inputs, a dividend and a divisor, division operation has two 

components as its result, quotient and a remainder.  

2.5.4. DIVISION USING „/‟ OPERATOR 

The initial attempt was to divide two numbers using the simple in-built “/” operator available 

in Verilog library. It used a 32 bit result_div_ieee register to store the quotient and register 

remainder to store the remainder of the division operation. The algorithm is described in 

figure 2.7. 

Step 1: Check if the oper = 4 bit 0100 

Step 2: result_div_ieee = temp_op1_ieee[22:0] / temp_op2_ieee[22:0] 

Step 3: If op2_ieee[30:0] is all 0 

 Set div_bby_zero flag to 1 

Step 4: Aggregate the result as concatenation of {Sign_bit, Resultant_exponent, 

result_div_ieee} 

Figure 2.7 Algorithm for division using "/" operator 

 

The figure 2.8 shows the block diagram of the FPU. The two inputs are first converted to its 

novel integral form in the convert to novel integral form block, which are the converted to the 

IEEE 754 format in the convert to IEEE standard block. The IEEE format operands are then 

pre-normalized i.e. they are converted in some computable form. There are various unit 

blocks for different operations as shown in the block diagram. The results are then post 

normalized to convert the output into IEEE format. There is various exception handling 

operations carried out by the exception handling block.
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Figure 2.8 Block Diagram Of FPU 

2.6 SUMMARY 

The chapter gives a brief about the literature review and the related works in the field of 

developing efficient FPU. This chapter also describes the basic functionalities that are 

performed by the FPU. The basic algorithm that was used initially is described and 

illustrated. The block diagram of figure 2.8 gives an overview of the implementation of our 

FPU. 
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3.1 INTRODUCTION 

As the efficiency of the FP operation carried out by the FPU is very much responsible for the 

efficiency of the Computer System, It is very much necessary to implement not only efficient 

algorithms, but to reduce the memory requirement, reduce the clock cycles for any 

operations, and to reduce the complexity of the logic used. In the path to make a better and 

efficient FPU, we have tried to use the preexisting efficient algorithms and incorporate few 

changes in them or combine different positive aspects of already existing algorithms. This has 

resulted in positive and better or at least comparable results than that of preexisting FPUs 

results of which has been provided in the last chapter. 

This chapter describes a brief about the efficient algorithms used in the FPU that lead us to 

the path of improvising the FPU developed initially. The section 3.2 describes the efficient 

addition algorithm. Section 3.3 introduces efficient subtraction algorithm. Likewise, section 

3.4 describes efficient multiplication algorithm, section 3.5, efficient division algorithm, 

section 3.6 shifting algorithm and section 3.7 efficient square root algorithms. Finally section 

3.8 gives the summary of the chapter. 

3.2 EFFICIENT ADDITION ALGORITHM 

We initially tried to implement Carry Look Ahead (CLA) addition algorithm for the addition 

operation of 24 bits, using four 6-bit adders. But since CLA has fan-in problem due the large 

no. of inputs required to generate a carry bit esp. for higher bit carries, we had implemented 

block CLA where output carry of one block is input to the other adder block. Further, to 

reduce the number of gate required, we have implemented further variations in the CLA 

algorithm which has been explained in section 3.1.3. 
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3.2.1 ADD USING THE CLA 

This adder works on the principle of generating and propagating a carry. [8] The structure of 

this adder is simplest and theoretically the most efficient in terms of time required for 

generation of carry for every single bit of the operand pair. It uses two function called 

Generate Function and Propagate Function. If the generate function for any stage (say i) is 

1 then, carry for stage i+1 will be 1 independent of the input carry for the stage i. Propagate 

function means that, if either xi or yi is 1, then carry for that stage will be produced. 

           Generate function  Gᵢ = op1[i] & op2[i] 

Propagate function  Pᵢ = op1[i] ^ op2[i] 

Sum for the i
th

 bit pair of operand1 and operand2  Sᵢ = Pᵢ ^ C i-1 

Carry for the i
th

 bit pair of operand1 and operand2  Cᵢ = Gi-1 + P i-1 C i-1 

Thus in general:- 

C1 = G0 + P0.C0 [Where C0 is the initial Carry-in bit] 

C2 = G1 + G0.P1 + P1.P0.C0  

………………………………………………………. 

C24 =G23 + G22.P23 + G21.P23.P22 + G20.P23.P22.P21 +………………………………+ 

         P23.P22.P21.P20.P19………………………….P1.P0.C0 

The algorithm in figure 3.1 can be described as follows: 

Step 1: Check if oper = 4‟b0000 

Step 2: Generate all the Gi„s and Pi‟s. 

Step 3: Generate al the Ci‟s and Si‟s 
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Step 4: Consolidate all the Si‟s to Sum. 

Step 5: Co = C24 

Step 6: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 7: Check for underflow and overflow same as in Section 2.3.1.1. 

Step 8: Same as Step 5 in Section 2.3.1.1. 

Figure 3.1 Algorithm for CLA adder 
 

3.2.2 ADD USING THE BLOCK CLA 

The initial algorithm has a fan-in problem due the large no. of inputs required to generate a 

carry bit esp. for higher bit carries. A solution to this is to divide the bits into blocks that 

propagate carry at block level as in Ripple Carry Adder and at intra-block level perform the 

CLA add structure [8]. We have a 24 bit add and this is divided into 4 blocks of 6 bits the 

formula for calculation from Gi to Gi+5 remains the same as above. 

The algorithm in figure 3.2 is described as follows:   

Step 1: Check if oper = 4‟b0000 

Step 2: Generate all the Gi„s and Pi‟s. 

Step 3: Generate al the Ci‟s and Si‟s of a block. 

Step 4: Propagate the final carry. 

Step 5: Repeat steps 3 and 4 for every block. 

Step 6: Consolidate all the Si‟s to Sum. 

Step 7: Co = C24 

Step 8: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 9: Check for underflow and overflow same as in Section 2.3.1.1. 
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Step 10: Same as Step 5 in Section 2.3.1.1. 

Figure 3.2 Algorithm for Block CLA adder 
 

3.2.3 ADD USING THE BLOCK CLA ADDER WITH REDUCED FAN IN  

Our motivation was to reduce the no. of AND/OR gates used in the sub-expressions for each 

block further reducing the fan-in. So at the expense of a little propagation delay we tried to 

reduce the gate nos. thereby considerably reducing the GATE DELAYS. Thus we can 

achieve the reduced gate requirement which has been explained in the following example. 

For example, in block 1 

C1 = G0 + P0.C0 

C2 = G1 + P1 (G0 + P0.C0)  (Saves 1 gate & causes 1 gate delay) 

C3 = G2 + P2.G1 + P2.P1 (G0 + P0.C0)      (Saves 2 gates & causes 1 gate delay) 

C4 = G3 + P3 (G2 +P2.G1) + P3.P2.P1 (G0 + P0.C0)  (Saves 4 gates & causes 2 gate delay) 

C5 = G4 + P4.G3 + P4.P3 (G2 + P2.G1) + P4.P3.P2.P1 (G0 + C0)   

(Saves 6 gates & causes 2 gate delay) 

C6 = G5 + P5.G3 + P5.P4.G2 + P5.P4 (G2 + P3.G1) + P5.P4.P3.P2 (G0 + P1.C0)  

(Saves 6 gates & causes 2 gate delay) 

Total gates saved in block 1 = 1+2+4+6+6 = 19 

Total delay caused by gate saving = 1+1+2*4 = 10 

So total time saved = 19*0.5-10*0.5=4.5 units 
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So basically it‟s a faster technique which not only eliminates fan-in problem of CLA but 

reduces the required number of gates too. The algorithm in figure 3.3 is described as follows: 

Step 1: Check if oper = 4‟b0000 

Step 2: Generate all the Gi „s and Pi‟s. 

Step 3: Generate al the Ci‟s and Si‟s of a block using the new formula. 

Step 4: Propagate the final carry. 

Step 5: Repeat steps 3 and 4 for every block. 

Step 6: Consolidate all the Si‟s to Sum. 

Step 7: Co = C24 

Step 8: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 9: Check for underflow and overflow same as in Section 2.3.1.1. 

Step 10: Same as Step 5 in Section 2.3.1.1. 

Figure 3.3 Algorithm for improvised CLA 

3.3 EFFICIENT SUBTRACTION ALGORITHM 

Subtraction can be interpreted as addition of a positive and a negative number. So using the 

same algorithm as that of addition, we can complete the subtraction operation by taking 

complement of the negative number and adding 1 to the complement. This is same as taking 

the 2‟s complement of the negative number. Doing this we interpreted the negative number as 

positive and carry the addition operation. 

3.3.1 SUB USING THE CLA ADDER 

Basically subtraction can be implemented using same CLA, which was used for the addition 

operation and now will work for the subtraction of two operands, one is a positive operand 
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and other will be 2‟s complement of the second operand. The algorithm in figure 3.4 can be 

explained in the following way: 

Step 1: Check if oper = 4‟b0001 

Step 2: Two‟s complement the 2
nd

 operand 

Step 3: Now consider the operand1 and the one obtained in step2 as the summands. 

Step 4: Generate all the Gi„s and Pi‟s. 

Step 5: Generate al the Ci‟s and Si‟s 

Step 6: Consolidate all the Si‟s to diff. 

Step 7: borrow = C24 

Step 8: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 9: Check for underflow and overflow same as in Section 2.3.2.1. 

Step 10: Same as Step 5 in Section 2.3.2.1. 

Figure 3.4 Algorithm for subtraction using CLA 
 

3.3.2 SUB USING THE BLOCK CLA ADDER 

Works the same way as CLA block, generates values for a 6 bit block where there are 4 such 

blocks. Similarly as in addition operation, here the carry output of i
th

 block will be the carry 

input of the (i+1)
th

 block, where the carry propagation at block level is similar to Ripple 

Carry Adder but at intra-block level is similar to the CLA add structure. Here the second 

operand is use in its two‟s compliment form. The subtraction operation using the CLA can be 

explained using the following algorithm in figure 3.5: 

Step 1: Check if oper = 4‟b0001 

Step 2: Two‟s complement the 2
nd

 operand 

Step 3: Now consider the operand1 and the one obtained in step2 as the summands. 
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Step 4: Generate all the Gi„s and Pi‟s. 

Step 5: Generate al the Ci‟s and Si‟s of a block. 

Step 6: Propagate the final carry. 

Step 7: Repeat steps 3 and 4 for every block. 

Step 8: Consolidate all the Si‟s to diff. 

Step 9: borrow = C24 

Step 10: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 11: Check for underflow and overflow same as in Section 2.3.2.1. 

Step 12: Same as Step 5 in Section 2.3.2.1. 

Figure 3.5 Algorithm for subtraction using Block CLA 
 

3.3.3 SUB USING THE BLOCK CLA ADDER WITH REDUCED FAN IN  

This algorithm works in the same way as CLA block used in addition operation which 

generates values for a 6 bit block where there are 4 such blocks using the compound common 

taking expression obtained in section 3.1.4. We take the two‟s compliment of the second 

operand to carry out the subtraction operation. The algorithm used can be described in the 

following figure 3.6 way: 

Step 1: Check if oper = 4‟b0001 

Step 2: Two‟s complement the 2
nd

 operand 

Step 3: Now consider the operand1 and the one obtained in step2 as the summands. 

Step 4: Generate all the Gi„s and Pi‟s. 

Step 5: Generate al the Ci‟s and Si‟s of a block using the new formula. 

Step 6: Propagate the final carry. 

Step 7: Repeat steps 3 and 4 for every block. 



AN EFFICIENT IEEE 754 COMPLIANT FPU USING VERILOG  2012

 

Page | 41  

 

Step 8: Consolidate all the Si‟s to diff. 

Step 9: borrow = C24 

Step 10: Set sign bit (as we consider only same sign nos. sign bit is and of the 

individual sign bits of the operands.) 

Step 11: Check for underflow and overflow same as in Section 2.3.2.1. 

Step 12: Same as Step 5 in Section 2.3.2.1. 

Figure 3.6 Algorithm for subtraction using improvised CLA 

3.4 EFFICIENT MULTIPLICATION ALGORITHM 

Multiplication of negative number using 2‟s complement is more complicated than 

multiplication of a positive number. This is because performing a straightforward unsigned 

multiplication of the 2's complement representations of the inputs does not give the correct 

result. Multiplication can be designed in such that it first converts all their negative inputs to 

positive quantities and use the sign bit of the original inputs to determine the sign bit of the 

result. But this increases the time required to perform a multiplication, hence decreasing the 

efficiency of the whole FPU. Here initially we have used Bit Pair Recoding algorithm which 

increases the efficiency of multiplication by pairing. To further increase the efficiency of the 

algorithm and decrease the time complexity, we have combined the Karatsuba algorithm with 

the bit pair recoding algorithm. 

3.4.1 MULTIPLICATION USING BIT PAIR RECODING 

This technique divides the maximum number of summands into two halves. It is directly 

derived from the Booth‟s algorithm [9]. It basically works on the principle of finding the 

cumulative effect of two bits of the multiplier at positions i and i+1 when performed at 

position i. This is further clarified in the following table. 
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Multiplier bit pair Multiplier bit on the right Multiplicand selected at position i 

i+1 i i-1 Effective oper.x M 

0 0 0 0 x M 

0 0 1 +1 x M 

0 1 0 +1 x M 

0 1 1 +2 x M 

1 0 0 -2 x  M 

1 0 1 -1 x M 

1 1 0 -1 x M 

1 1 1 0 x M 

Table 3.1Bit Pair Recoding 
 

The algorithm in figure 3.7 can be described as follows: 

Step 1: Pair the bits of the multiplicand. 

Step 2: Refer the table and operate on M accordingly find summands at i
th

 level 

Step 3: Increase by 2 value of i. 

Step 4:  Repeat steps 2 & 3 till the last possible value of i ( here 22) 

Step 5: Add the summands obtained in each step. 

Step 6: Execute steps 3-5 of algorithm in section 2.4.1. 

Figure 3.7 Algorithm for efficient multiplication 
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Further, the algorithm is being explained with the help of an example:- 

 

0 1 1 0 1 (+13) 

X        1 1 0 1 0 (-6) 

----------------------------------- 

----------------------------------- 

 0  1  1  0  1        (+13) 

X        1 -1 +1 -1 0  

----------------------------------- 

 0 0 0 0 0 0 0 0 0 0 

 1 1 1 1 1 0 0 1 1 

 0 0 0 0 1 1 0 1 

 1 1 1 0 0 1 1 

 0 0 0 0 0 0 

------------------------------------- 

 1 1 1 0 1 1 0 0 1 0    (-78) 

 

0  1  1  0  1        (+13) 

X  0     -1   -2 

---------------------------------------- 

1 1 1 1 1 0 0 1 1 0 

1 1 1 1 0 0 1 1 

0 0 0 0 0 0 

---------------------------------------- 

1 1 1 0 1 1 0 0 1 0    (-78) 

 

3.4.2 MULTIPLICATION USING BIT PAIR RECODING AND KARATSUBA 

ALGORITHM 

The Karatsuba algorithm is a fast multiplication algorithm that reduces the multiplication of 

two n-digit numbers to at most 3n
log

2
3
   3n

1.585 single-digit multiplications in general (and 

exactly n
log

2
3
 when n is a power of 2) [10]. 

The basic step of this algorithm is a formula that allows us to compute the product of two 

large numbers x and y using three multiplications of smaller numbers, each with about half as 

many digits as x or y, plus some additions and digit shifts. 
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Let x and y be represented as n-digit strings in some base B. For any positive integer m less 

than n, one can split the two given numbers as follows 

X = x1B
m

 + x0 

Y = y1B
m

 + x0 

Where x0 and y0 are less than B
m

. The product is then 

xy = (x1B
m

 + x0) + (y1B
m

 + x0) 

        = z2B
2m

 + z1B
m

 + z0 

      Where 

Z2 = x1y1 

Z1 = x1y0 + x0y1 

Z0 = x0y0 

Ad we can see these formulae require 4 smaller multiplications. Karatsuba observed 

that xy can be calculated in only 3 multiplications, at the cost of few extra additions 

operations: 

Let Z2 = x1y1 

Let Z0 = x0y0 

Let z1 = (x1 +  x0) * (y0 + y1) – z2 – z0   

             Since 

Z1 = x1y0 + x0y1 

      = (x1 y1 + x0 y1 + x0y0 + x1y0) - x1y1 - x0y0     
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    = (x1 + x0) * (y0 + y1) - x1y1 - x0y0     

Example: 

To compute the product of 1234 and 5678, choose B = 10 and m = 2. Then 

12 34 = 12 × 10
2
 + 34 

56 78 = 56 × 10
2
 + 78 

z2 = 12 × 56 = 672 

z0 = 34 × 78 = 2652 

z1 = (12 + 34)(56 + 78) − z2 − z0 = 46 × 134 − 672 − 2652 = 2840 

Result = z2 × 10
2×2

 + z1 × 10
2
 + z0 = 672 × 10000 + 2840 × 100 + 2652 = 7006652. 

We implemented an algorithm combining both Karatsuba and bit pair recoding and hence, 

reducing the simultaneous solving of summands by ¼ 
th 

of the normal multiplication. 

Moreover the number of summands and also the size of the multiplicand were found to be 

reduced by half further facilitating quick and smaller multiplications. The algorithm in figure 

3.8 can be described as follows: 

Step 1: Divide the multiplicand into two equal halves. (Let them be A and B each 12  

bits) 

Step 2: Divide the multiplier into two halves. (Let them be C and D each 12 bits) 

Step 3: Perform bit recoding and find Z2 

Step 4: Perform bit recoding and find Z1. 

Step 5: Perform bit recoding and find Z0. 

Step 6: Calculate Z2 x 2
2m

 + Z1 x 2
m

 + Z0 (Here m=12) 

Figure 3.8 Algorithm for improvised multiplication 
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So basically: 

 The time complexity of bit pair recoding = O(n/2) 

 The time complexity of Karatsuba = O(n
log3/log2

) 

 The time complexity of bit pair recoding = O(n/4) 

3.5 EFFICIENT DIVISION ALGORITHM 

As already discussed before, division is the most complex and time-consuming operation of 

the four basic arithmetic operations. Given two inputs, a dividend and a divisor, division 

operation has two components as its result i.e. quotient and a remainder. 

3.5.1 DIVISION USING NON-RESTORING DIVISON (NRD) 

The division that has been used in our FPU is based on the Non-restoring division algorithm. 

It is considered as a sequence of addition or subtraction and shifting operations [10]. Here, 

correction of the quotient bit, when final remainder and the dividend has different sign, and 

restoration of the remainder are postponed to later steps of the algorithm, unlike restoration 

division. In this algorithm, restoration of the operation is totally avoided. Main advantage of 

this NRD algorithm is the compatibility with the 2‟s complement notation used for the 

division of negative numbers. The algorithm in figure 3.9 follows in the following manner: 

Step 1: Check if oper = 4‟b0100 

Step 2: Set the value of register A as 24 bit 0 

Step 3: Set the value of register M as Divisor (24 bit) 

Step 4: Set the value of register Q as Dividend (24 bit)  

Step 5: Concatenate A with Q 

Step 6: Repeat the following “n” number of times (here n is no. of bits in divisor): 

If the sign bit of A equals 0, shift A and Q combined, left by 1 bit, and subtract   
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M from A. Else shift A and Q combined, left by 1 bit and add M to A 

         Now if sign bit of A equals 0, then set q0 as 1, else set q0 as 0 

Step 7: Finally if the sign bit of A equals 1 then add M to A. 

Step 8: Check for division by zero exception as in section 2.3.4.1 

Step 9: Assign value of register A to output register remainder and value of register 

Q[22:0] to output register result_div_ieee[22:0] 

Figure 3.9 Algorithm for NRD 
 

For negative numbers, the approach is little bit different. We convert the negative operand 

into its 2‟s complement form. 2‟s complement of any number is determined by taking 

complement of the number and then adding 1 to that number. If both of the numbers are 

negative, we perform normal NRD using the two numbers. But if only one of the operand is 

negative and other is positive then, following algorithm in figure 3.10 is carried out: 

Step 1: Check if oper = 4‟b0100 

Step 2: Set the value of register A as 24 bit 0 

Step 3: Set the value of register M as 2‟s compliment of the Divisor (24 bit) 

Step 4: Set the value of register Q as Dividend (24 bit)  

Step 5: Concatenate A with Q 

Step 6: Perform the normal NRD using the positive number and the 2‟s complement 

of the negative number. 

Step 7: If the remainder is not equal to zero, then perform: 

Increment the quotient by one. 

The value of the remainder is calculated using the formula 

Remainder = divisor * quotient – dividend (all three are positive) 

Step 8: Finally set the sign bit of the quotient as 1.  
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Step 9: Check for division by zero exception as in section 2.3.4.1 

Step 10: Assign value of register A to output register remainder and value of register 

Q[22:0] to output register result_div_ieee[22:0] 

Figure 3.10 Algorithm for improvised NRD 

3.6 EFFICIENT SHIFTING ALGORITHM 

Barrel shifters are a combinational logic circuit that can shift a data input in a single clock 

cycle. It has three inputs i.e. the number to be shifted (32 bit register op1), the direction 

where the number is shifted (1 bit register direction-1 for left and 0 for right) and the value by 

which the input number is shifted (5 bit register shift_val) and one output (32 bit register 

result) giving the value after the input number is shifted to the direction by the input value. 

The algorithm in figure 3.11 used for shifting operation is described as follows:  

Step 1: Check if the oper is 4 bit 0101. 

Step 2: Do the following for n number of times (n is the number of bits in shift_val) 

Check the MSB of the bit 5 of the register shift_valIf it is 1, we copy bits 

[15:0] of register op1 and save it in bits [31:16] of register result and rest 

[15:0] as 0 if direction is 1shift and if direction is 0, copy the 0 bit from bits 

[31:16] of register result and rest part will consist of the [31:16] bits of the 

op1. 

If it is 0, we do not alter anything and use the same value for next iteration 

Figure 3.2 Algorithm for shifting 
 

If the shift_val is 01000, as normal shift operator (>>, << or >>>) does 1 bit shifting per 

clock cycle, it will take 8 clock cycle to complete the shifting. But our algorithm shifts the 

operand in a single clock cycle as it directly copies bits [23:0] of register op1 to bits [31:8] of 

result and rest bits of register result are assigned 0 for left shift and copies bits [31:8] of 
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register op1 to bits [23:0] of register result and rest bits of result are assigned 0 for right shift, 

in a single clock cycle. Thus our algorithm is time efficient. 

3.7 EFFICIENT SQUARE ROOT DETERMINATION ALGORITHM 

The non-restoring square root determination algorithm focuses on the “partial remainder” 

with every iteration and not on “each bit of the square root” [11]. At each iteration, this 

algorithm requires only one traditional adder or subtractor, i.e., it does not require other 

hardware components, such as multipliers, or even multiplexors. It generates the correct 

result even for the last bit position. Based on the result of the last bit, a precise remainder is 

obtained immediately without any addition or correction operation. It can be implemented at 

very fast clock rate as it has very simple operations at each iteration [12]. The algorithm in 

figure 3.12 is described as follows: 

Initial condition: 

 Set value of register Remainder as value 0 

 Set the value of register Quotient as value 0 

 Set the register D as the value of the number whose square root is to be 

obtained 

Do the following for n 15 till n value decreases to 0 (Done for every root bit) 

Step 1: If the value of register Remainder is greater than or equal to 0, do 

Set the value of register Remainder as (Remainder<<2)|((D>>(i+1))&3) 

Then set the value of register Remainder as Remainder–((Quotient<<2)|1) 

Step 2: Else do 

Set the value of register Remainder as (Remainder<<2)|((D >>(i+1))&3) 

Then set the value of register Remainder as Remainder+((Quotient<<2)|3) 

Step 3: If the value of register Remainder is greater than or equal to 0 then do 
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Set the value of Quotient as ((Quotient<<1)|1) 

Step 4: Else do 

Set the value of Quotient as ((Quotient<<1)|0) 

Step 5: If the value of register Remainder is less than 0 then do, 

Set the value of register Remainder as Remainder+((Quotient<<1)|1) 

Table 3.12 Algorithm for Non Restoring Square Root Determination 
 

Finally the value of square root is obtained from the register Q and the value of remainder is 

obtained from the register Remainder. The algorithm is generating a correct bit of result in 

each iteration including the last one. For each iteration addition or subtraction is based on the 

sign of the result obtained from previous iteration. The partial remainder is generated in each 

iteration which is used in the successive iteration even if it is negative (satisfying the meaning 

of non-restoring our new algorithm). In the last iteration, if the partial remainder is positive, it 

will become the final remainder. Otherwise, we can get the final remainder by addition to the 

partial remainder. 

3.8 SUMMARY 

This chapter describes the efficient algorithm that was implemented to enhance the operation 

of the FPU. The algorithms are implemented and the results were compared to prove that the 

algorithms were better or somewhat comparable to the algorithms already implemented, thus 

increasing the efficiency of the FPU.  
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4.1 INTRODUCTION 

A transcendental function is a function whose coefficients are themselves polynomials and 

which does not satisfy any polynomial equation. In other words, it is a function that 

transcends the algebra in the sense that it is not able to express itself in terms of any finite 

sequence of the algebraic operations like addition, multiplication, and root extraction. 

Examples of this function may include the exponential function, the logarithm, and 

the trigonometric functions. In the approach of developing an efficient FPU, we have tried to 

implement some transcendental functions such as sine function, cosine and tangential 

functions. The operation involves usage of large memory storage, has large number of clock 

cycles and needs expensive hardware organization. To reduce the effect of the above 

mentioned disadvantages, we have implemented CORDIC algorithm [13]. It is an effective 

algorithm to be used in our FPU as it can fulfill the requirements of rotating a real and an 

imaginary pair of a numbers at any angle and uses only bit-shift operations and additions and 

subtractions operation to compute any functions. 

Section 4.1 describes the efficient trigonometric algorithm using the CORDIC algorithm. 

Section 4.1.1 gives a brief introduction about the CORDIC function. The section further, i.e. 

section 4.1.2 and 4.1.3 describes the efficient trigonometric algorithm that was improvised to 

improve the operations of the FPU. 

4.1 EFFICIENT TRIGONOMETRIC ALGORITHM 

Evaluation of trigonometric value viz. sine, cosine and tangent is generally a complex 

operation which requires a lot of memory, has complex algorithms, and requires large 

number of clock cycles with expensive hardware organization. So usually it is implemented 

in terms of libraries. But the algorithm that we use here is absolutely simple, with very low 
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memory requirements, faster calculation and commendable precision which use only bit-shift 

operations and additions and subtractions operation to compute any functions. 

4.1.1 CORDIC FUNCTION 

CORDIC (COordinate Rotation DIgital Computer algorithm) is a hardware efficient 

algorithm [14]. It is iterative in nature and is implemented in terms of Rotation Matrix. It can 

perform a rotation with the help of a series of incremental rotation angles each of which is 

performed by a shift and add/sub operation. The basic ideas that is incorporated is that - 

 It embeds elementary function calculation as a generalized rotation step. 

 Uses incremental rotation angles. 

 Each of these basic rotation is performed by shift or and/sub operation 

Principles of calculation in figure 4.1 - 

 If we rotate point (1,0) by angle Ø then the coordinates say (X,Y) will be 

X= cos Ø and Y= sin Ø 

 Now if we rotate (X.Y) we get say 

(X´, Y´), then it is expressed as- 

X´= X.cos Ø – Y.sin Ø 

Y´= Y.cos Ø + X.sin Ø 

 Rearranging the same- 

X´= cos Ø [X – Y. tan Ø] 

Y´= cos Ø [Y + X. tan Ø] 

Where tan is calculated as steps-  

tan Ø = ± 2-I  

       

 

Figure 4.1 Cordic Angle Determination 
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The figure 4.1 describes the determination of the rotation angle by which the angles are 

determined to evaluate the trigonometric functions. The angle β used in the diagram is same 

as the angle Ø in the equations. So, basically CORDIC is an efficient algorithm where we 

would not prefer use of a hardware based multiplier and we intend to save gates as in FPGA. 

Now, since our conventional input is in degrees we built a look-up table in degrees. We are 

working towards a 12-bit precision structure. Moreover since all our floating point numbers 

have been converted to integers thus we satisfy the criteria of fixed-point format. But since 

our calculations are all integer based we need a look-up table that is integral in nature. So we 

multiply the values in table by a value = 2048 (= 2
11

 as we need a precision of 12 bits). So 

our look-up table 4.1 is as follows- 

Index Ø Ø * 2048 

0 45 92160 

1 26.565° 54395 

2 14.036° 28672 

3 7.125° 14592 

4 3.576° 7824 

5 1.789° 3664 

6 0.895° 1833 

7 0.4476° 917 

8 0.2241° 459 

9 0.1123° 230 

10 0.0561° 115 

11 0.0278° 57 

Table 4.1 Look Up Table 
 

We will assume a 12-step system so that it will yield 12 bits of accuracy in the final answer. 

Note that the Cos Ø constant for a 12 step algorithm is 0.60725. We also assume that the 12 

values of Atan (1/2
i
) have been calculated before run time and stored along with the rest of 
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the algorithm. If true FP operations are used then the shift operations must be modified to 

divide by 2 operations. 

4.1.2 INITIAL APPROACH: 

The initialization specifies the total angle of rotation and sets the initial value of the point at 

(1,0) and multiplied by the constant 0.60725. 

 Set register A to the desired angle. 

 Set register Y to value 0  

 Set register X to value 0.60725 

4.1.2.1 COMPUTATION 

The algorithm in figure 4.2 is described below. Do the following for i<12 times: 

Step 1: Set dx to value after shifting X right by i places (It effectively calculates 

X*tan Ø for this step) 

Step 2: Set dy to value after shifting Y right by i places (effectively calculates Y*tan 

Ø for this step) 

Step 3: Set da to value Atan (1/2
i
) (From the small lookup table) 

Step 4: if value of A >= 0 (to decide if next rotation would be clockwise or 

anti-clockwise) then do, 

Set value of X to value of X - dy (to compute X-Y*Tan Ø) 

Set the value of Y to the value of Y + dx (To compute Y+X*Tan Ø) 

Set the value of A to the value of A - da (To update the current angle) 

Step 5: if the values of A < 0 (to decide if next rotation would be clockwise or anti-

clockwise) then do, 
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Set value of X to value of X + dy (to compute X-Y*Tan Ø) 

Set the value of Y to the value of Y - dx (To compute Y+X*Tan Ø) 

Set the value of A to the value of A + da (To update the current angle) 

Figure 4.2 Algorithm for CORDIC 
 

The Sine of the desired angle is now present in the variable Y and the Cosine of the desired 

angle is in the variable X. This algorithm requires the use of non-integral numbers. This 

presents certain inconvenience so the algorithm is modified to work with only integral 

numbers. The modified algorithm is given below. As we have been working with an 

algorithm using 12 bits, our output angle ranges from –2048 to +2047. So, we will have to 

assume 16 bit calculations throughout. 

4.1.3 EFFICIENT CORDIC IMPLEMENTATION 

 Set register A to the desired angle*2048   

 Set register Y to value 0 

 Set register X to the value of 0.60725*2048    

 Setup the lookup table to contain 2048*Atan (1/2
i
) 

4.1.3.1 COMPUTATION 

The algorithm in figure 4.3 is described below. Do the following for i<12 times: 

Step 1: Set the value of dx to the value of after shifting X right by i places  (done to 

effectively calculate X*tan Ø) 

Step 2: Set the value of dy to the value after shifting Y right by i places (done 

effectively to calculate Y*tan Ø) 

Step 3: Set the value of da from the lookup (1/2
i
) (From the small lookup table) 

Step 4: if the value of A >= 0 (to decide if our next rotation is clockwise or anti 
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clockwise), then do, 

Set the value of X to the value of X – dy (to compute value of X-Y*Tan Ø) 

Set the value of Y to the value of Y + dx (to compute value of Y+X*Tan Ø) 

Set the value of A to the value of A – da (to update the current angle) 

Step 5: if the value of A < 0 (to decide if our next rotation is clockwise or anti 

clockwise), then do, 

Set the value of X to the value of X + dy (to compute value of X-Y*Tan Ø) 

Set the value of Y to the value of Y - dx (to compute value of Y+X*Tan Ø) 

Set the value of A to the value of A + da (to update the current angle) 

Figure 4.3 Algorithm for efficient Trigonometric Evaluation 
 

The Sine of the desired angle is now present in the variable Y and the Cosine of the desired 

angle is in the variable X. These outputs are within the integer range –2048 to +2047. 

4.2 SUMMARY 

Thus we have implemented an efficient algorithm for evaluating trigonometric functions that 

is absolutely simple, which incurs very low memory usage, which is faster in calculation and 

incorporates commendable precision which use only bit-shift operations and additions and 

subtractions operation to compute any functions. 
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5.1 INTRODUCTION 

In this chapter we analyze the results of simulation, RTL results and synthesis results for all 

the algorithms that we have implemented in our FPU. Then we compared the performance of 

our FPU to that of X87 family at similar clock speed. The synthesis was done in FPGA 

Spartan 3E Synthesizing Environment. The comparison is done with respect to 

 Memory Requirement 

 Gates Used 

 Clock Cycle 

 Complexity of the logic 

5.2 SIMULATION RESULTS 

The code was simulated in Xilinx 13.3. We have given some of the screen shots of the 

simulations that were obtained as a result of simulation in Xilinx software. 

5.2.1 FLOAT TO INTEGER CONVERSION 

 

Figure 5.1 Float to Integer Conversion simulation result 
 

The figure 5.1 gives the simulation result of float to integer conversion. The inputs are two 32 

bit operands, one for integral part and the other is fractional part. The output is the novel 

integral form of the input operands. 
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5.2.2 ADDITION 

 

Figure 5.2 ADD simulation result 
 

Figure 5.2 shows the simulation result of integer to IEEE format conversion. The input is the 

integer operand which was the output of the binary to integer representation conversion. The 

output is the IEEE representation of the input operand. The round mode is 00 and the 

operation mode is 0000. 

 

5.2.3 SUBTRACTION 

 

Figure 5.3 SUB simulation result 
 

Figure 5.3 shows the simulation result for the subtraction operation. The input is the operands 

in the IEEE format and the output shows the resultant of the subtraction operation. The result 

also shows any exception encountered during the operation. The rounding mode is 00 and the 

operation mode is 0001. 
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5.2.4 MULTIPLICATION 

 

Figure 5.4 Multiplication simulation result 
 

Figure 5.4 shows the simulation result for the multiplication operation. The input is the 

operands in the IEEE format and the output shows the resultant of the multiplication 

operation. The result also shows any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0010. 

5.2.5 DIVISION 

 

Figure 5.5 Division simulation result 
 

 

Figure 5.5 shows the simulation result for the division operation. The input is the operands in 

the IEEE format and the output shows the resultant of the division operation. The result also 

shows any exception encountered during the operation. The rounding mode is 00 and the 

operation mode is 0100. 
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5.2.6 SHIFTING 

 

Figure 5.6 Shifting simulation result 
 

Figure 5.6 shows the simulation result for the shifting operation. The input is the operands in 

the IEEE format and the output shows the resultant of the shifting operation. The result also 

shows any exception encountered during the operation. The rounding mode is 00. 

5.2.7 SQUARE ROOT DETERMINATION 

 

Figure 5.7 Square root simulation result 
 

Figure 5.7 shows the simulation result for the square root determination operation. The input 

is the operands in the IEEE format and the output shows the resultant of the square root 

operation. The result also shows any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0011. 
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5.2.8TRIGONOMETRIC EVALUATION 

 

Figure 5.8 Trigonometric simulation result 
 

Figure 5.8 shows the simulation result for the trigonometric operation. The input is the 

operands in the IEEE format and the output shows the resultant of the trigonometric 

operation. The result also shows any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0110. 

5.3 SYNTHESIS RESULTS 

After the simulation of the code was successful, we proceeded for the synthesis analysis. The 

simulation results gave a detailed description of the memory usage of the operation, i.e. the 

total number of registers required, total gates used, total multiplexers, LUTs, 

adders/subtractors, latches, comparator, flip--flops used. It also gives a detailed description of 

the device utilization summary, and detailed timing report which consists of time summary, 

timing constraints and delay. These details of the initial algorithm used which were discussed 

in chapter 2 were compared with that of the efficient algorithms discussed in chapter 3 and 

found that the efficient algorithms used less registers and gates. Number of IOs used was less 

in efficient algorithms and the delay were reduced too. 

For an example in table 5.1, the addition algorithm which was implemented using block CLA 

adder with reduced fan-in was using less number of gates and registers than used by normal 

block CLA and delay was also reduced in CLA with reduced fan-in. 



AN EFFICIENT IEEE 754 COMPLIANT FPU USING VERILOG  2012

 

Page | 64  

 

 Block CLA Block CLA with reduced Fan-in 

1 Bit Register 52 28 

24-Bit Register 2 3 

Flip-Flops 100 70 

1 Bit XORs 24 2 

24-Bit XORs 1 2 

Number of IOs 136 96 

Delay (ns) 8.040 4.734 

Table 5.1 Block CLA Vs. Block CLA with reduced fan-in 
 

The synthesis report shows that the CLA with reduced fan-in is much more efficient than the 

normal CLA block algorithm. Thus proving the efficiency of the FPU designed. 

According to the simulation and synthesis results, we have compared the performance of our 

FPU with that of X87 family (PENTIUM/MMX). The following table 5.2 shows the result of 

comparison. 

FPU MAX 

CLK 

FREQ 

DATA 

WIDTH 

FADD 

/FSUB 

FMUL FDIV FSQRT FSIN 

/FCOS 

PENTIUM 

/MMX 

160-300 

MHz 

8 bit 1-3 1-3 39-40 70 17-173 

OUR FPU 

(12 bit 

precsion) 

50-250 

MHz 

32 bit 2-3 2-3 72 75-80 31 

Table 5.2 OUR FPU Vs. PENTIUM/MMX 
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6.1 CONCLUSION 

We have proved in the last chapter that the performance of our FPU was comparable to that 

of the X87 family (PENTIUM/MMX). The algorithm that we have used for the final FPU 

was comparable or even better in some case than the already existing efficient algorithms like 

in the case of block CLA and CLA with reduced fan-in in terms of memory used, delay, and 

device utilization. Because we have built the FPU using possible efficient algorithms with 

several changes incorporated at our ends as far as the scope permitted, all the unit functions 

are unique in certain aspects and given the right environment (in terms of higher memory or 

clock speed or data width better than the FPGA Spartan 3E synthesizing environment), these 

functions will tend to show comparable efficiency and speed and if pipelined then higher 

throughput may be obtained.  

6.2 FUTURE WORK 

Tough we have succeeded to achieve small amount of success in improvising the FPU, i.e. as 

per the results of synthesis and simulation, we have proved that our FPU have less memory 

requirement, less delay, comparable clock cycle and low code complexity, but still we have a 

vast amount of work that can be put on this FPU to further improvise the efficiency of the 

FPU. We can further implement operations like Exponential functions and Logarithmic 

functions. Further implementing Pipelining for the above operations can further increase the 

efficiency of the FPU. We also can encompass further exception logics like snan, qnan, ine, 

etc. We can also implement the FPU in Double precision format. Further, this code can serve 

as a skeleton for development of fault tolerant FPU at an exceedingly higher level. 
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