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ABSTRACT 

Optimization  is  the  process  of  maximizing  or  minimizing  the  objective  function  which  

satisfies  the  given  constraints. There are two types of  optimization  problem  linear  and  

nonlinear. Linear  optimization  problem  has  wide range  of  applications,  but  all  realistic  

problem  cannot  be  modeled  as  linear  program,  so  here  non-linear  programming  gains  its  

importance. In  the  present  work  I  have  tried  to  find  the  solution  of  non-linear  

programming  Quadratic  problem  under  different  conditions  such  as  when  constraints  are  

not  present  and  when  constraints  are  present  in  the  form  of  equality  and  inequality  sign. 

Graphical  method  is  also  highly  efficient  in  solving  problems  in  two  dimensions. Wolfe’s  

modified  simplex  method  helps  in  solving  the  Quadratic  programming  problem  by  

converting  the  quadratic  problem  in  successive  stages  to  linear  programming  which  can  

be  solved  easily  by  applying  two – phase  simplex  method. A  variety  of  problems  arising  

in  the  area  of  engineering,  management  etc. are  modeled  as  optimization  problem thus 

making optimization an important  branch  of  modern  applied  mathematics. 
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Chapter-1  

INTRODUCTION TO OPTIMIZATION METHODS & QUADRATIC 

PROGRAMMING 
 

Optimization constitutes a very important branch of modern applied mathematics. A  

variety  of  problems  arising  in  the  field  of  engineering  design, operations  research,  

management  science,  computer  science,  financial  engineering  and  economics  can  

be  modeled  as  optimization  is  useful  in  real  life.  

                       It  was  the  development  of  the  simplex  method  for  linear  

programming  by  G.B. Dantzig  in  the  mid  40’s  which  in  the  sense  started  the  

subject  of  mathematical  optimization.  Another major development was due to 

H.W. Kuhn  and  A.W. Tucker  in  1951  who  gave  necessary/sufficient  optimality  

conditions  for  non-linear  programming  problem, now  known  as  Karush-Kuhn  

Tucker(KKT)  conditions. In  1939  W. Karush  had  already  developed  conditions  

similar  to  those  given  by  Kuhn  Tucker. 

                     The  presence  of  linearity  structure  on  the  given  optimization  problem  

gave  beautiful  mathematical  results  and  also  helped  greatly  in  its  algorithmic  

development.  However  most  of  the  real  world  applications  lead  to  optimization  

problems  which  are  inherently  nonlinear  and  are  void  of  linearity.  Fortunately  

most  often  this  nonlinearity  is  of  ‘parabola’  type  leading  to  the  convexity  structure  

which  can  be  used  to  understand  the  convex  optimization  problems  or  Quadratic  

programming  problem. 
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Chapter-2 

PRE-REQUISITES TO QUADRATIC PROGRAMMING 

Some definitions: 
 Vector:  A  vector  in  n  space  is  an ordered  set  of  n  real  numbers. 

  For e.g. a=(a1,a2, …..,an) is  a  vector  of  elements  or  components.  

 Null  vector: The null  vector  is  a  vector  whose  elements are  all  zero. 

0=(0,0,……,0).The null  vector  corresponds to  origin. 

 Sum  vector : The  sum  vector  is  a  vector  whose  elements are  all  one. 

1=(1,1,……,1). 

 Unit  vector (ei) :The  unit  vector(e i)  is  a  vector  whose i
th

 element is  one. 

ei=(1,0,……,0). 

E
2
,  there  are  two  unit  vectors. E

n
, there are n unit vectors. 

 Orthogonal  vectors:  Two  vectors a  and  b are  said  to  be  orthogonal  if  a.b=0 

 Linear  independence: A  set  of  vectors  a1,a2, …..,ak is  linearly  independent  if  

the equation  0.........2211  kkaaa    is  satisfied  only if

.0.........21  k  

 Linear  dependence: A  set  of  vectors  which are  not  linearly  independent  are  

called  linearly  dependent. 

 Spanning set: The  set  of  vectors a1,a2, …..,akin  E
n
  is a  spanning  set in E

n
 if  

every vector  in  E
n
  can be  expressed  as  a  linear  combination  of  vectors a1,a2, 

…..,ak. where (k<n). 

 Basis set: A  set  of  vectors a1,a2, …..,ak  in  E
n
 is  a  basis  set  if 

i) it  is  linearly  independent  set 

ii) it  is  a  spanning  set of  E
n 

  , if  it is  a  basis  then  k=n. 

 Standard  basis : The  set  of  unit  vectors  e1,e2,e3,………en  is  called  the  

standard  basis for  E
n
. 

 Matrix : A  matrix  is  a  rectangular  array  of  ordered  numbers,  arranged  into  

rows  and  columns.    A=  [a ij]mxn. The elements  a ij  for  i=j  i.e.  a11, a22, a33  and  

so on are  called  principal  diagonal  elements ,others  are  called  off  diagonal  

elements. 

 Square  matrix:  Any  matrix  in  which  number  of  rows  is  equal  to  number  of  

columns  is  known  as  square  matrix (m=n). 

 Diagonal  matrix:  A square  matrix  in  which  all  off  diagonal  elements  are  zero  

i.e, aij =0  for  (i≠j)  is  called  a  diagonal  matrix. 

 Identity  or  Unit  matrix : A  diagonal  matrix  whose  all  principal  elements  are  

1  is  called  an  Identity  or  unit  matrix  denoted  simply  by  I. 
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 Transpose  matrix: The  transpose  of  a  matrix  A=[a ij] denoted  by  A
T
is  a  

matrix  obtained  by  interchanging  the  rows  and  columns  of A. 

 Symmetric  matrix:  A  square  matrix  A  is  said  to  be  symmetric  if  the  matrix  

A  remains  the  same  by  interchanging  the  rows  and  columns  of  A(i.e,  a  ij= a 

ji  or  A
T
=A) 

 Row  matrix:  A  matrix  having  only  a  single  row  is called  a  row  matrix .It  is  

an  1xn  matrix. 

 Column  matrix: A  matrix  having  only  a  single  column  is  called  a  column  

matrix .It  is  an  mx1  matrix. 

 Null  matrix:  A  matrix  whose  all  elements  are  zero  is  called  a  null  matrix. 

 Rank  of  a  matrix: A  positive  integer  r  is  said  to  be the  rank  of  a  matrix  A  

denoted  by  ρ(A)  if 

i) Matrix  A  possess  at  least  one  r-rowed  minor  which  is  not  zero. 

ii) Matrix  A  does  not  possess  any  nonzero  (r+1)-rowed  minor. 

 Equivalent  matrices:  Two  matrices  A  and  B  are  said  to  be  equivalent,  if  and  

only  if  ρ(A)=ρ(B)  denoted  by  A~B. 

 Quadratic  forms:  Let x=(x1,x2, …..,xn)  and  nxn  matrix A=[a ij]  then  a  function  

of  n  variables  denoted  by  f(x1,x2, …..,xn)  or  Q(x)  is  called  a  quadratic  forms  

in  n  space  if    Q(x)=x
T
A x =   jiij xxa  

Properties   of  Quadratic  forms: 

i) Positive  definite : A  quadratic  form  Q(x)  is  positive  definite  iff  Q(x)  is  

positive  (>0)  for  all  x≠0. 

ii) Positive  semi-definite: A  quadratic  form  Q(x)  is  positive  semi  definite  

iff, Q(x)  is  non-negative  (≥0)  for all  x  and  there  exists  an  x≠0  for  

which  Q(x)=0  . 

iii) Negative  definite: A  quadratic  form  Q(x)  is  negative  definite  iff,  -Q(x)  

is  positive  definite. 

iv) Negative  semi-definite: A  quadratic  form  Q(x)  is  negative  semi- 

definite  iff,  -Q(x)  is  positive  semi- definite. 

v) Indefinite: A  quadratic  form  Q(x)  is  indefinite  if  Q(x)is  positive  for  

some  x  and  negative  for  some  other. 

 Difference  equation:  An  equation  relating  the  values  of  a  function  y  and  one  

or  more  of  its  differences Δy ,Δ
2
y,…  for  each  value  of  a  set  of  numbers  is  

called  a  difference  equation. 

 Order  of  difference  equation: The  difference  between  the  highest  and  the  

lowest  suffix  of  the  equation  is  called  the  order  of  difference  equation.  

Yk+1 + 3yk=0   

Here, k+1-k=1 is the order of the difference equation. 
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 Feasible  solution: Solution  values  of  the  decision  variables  xj(j=1,2,3,……,n)  

which satisfy the  constraints  and  non-negativity  conditions  is  known  as  

feasible  solution. 

 Basic  feasible  solution: Collection  to  all  feasible  solutions  to a  problem  

constitutes  a  convex  set  whose  extreme  points  correspond  to  the  basic  

feasible  solution. 

 Extreme  points  to  a  convex  set:  A  point  x  in  a  convex  set  c  is  called  an  

extreme  point  if  x  cannot  be  expressed  as  a  convex  combination  of  any  two  

distinct  points  x 
(1)

  and x 
 (2)

  in  c. 
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Chapter-3 

CONVEX   FUNCTIONS AND THEIR PROPERTIES 
 

Definition 

 

 Convex functions:  Let SR
n
  be  a  convex  set  and  f: S →R. Then  f  is  called  

a  convex  function  if  for  all  x, u  S  and  for  all 0≤ ≤1 ,we  have

)()1()())1(( ufxfuxf    

Some examples of convex functions are: 

               Rxxxfi  ,)() 2  

Rxxxfii  ,)()  

11,1)()

,)()

,)()

2 







xxxfv

Rxexfiv

Rxexfiii

x

x

 

 Concave  functions: Let SR
n
  be  a  convex  set  and  f: S →R. Then  f  is  called  

a  concave  function  if  for  all  x, u  S  and  for  all 0≤ ≤1 ,we  have  

)()1()())1(( ufxfuxf   . 

Some examples of convex functions are: 

)() xfi    , x>0 

Rxxxfii  ,)()  

11,1)() 2  xxxfiii  

 

 Properties 

1. If  a  function  is  both  convex  and  concave,  then  it  has  to  be a  linear  

function. 

2. A function may be neither convex nor concave. 

e.g. Rxxxfxf  ,)(or    
22

, xsin)( 3
 

3. The  domain  of  a  convex  function  has  to  be  a  convex  set. 

4. A convex/concave function need not be differentiable. 

5



 
 

e.g. Rxxxf  ,)(  is  convex  but  not  differentiable  at  x=0. 

5. Convex functions need not even be continuous. 

e.g. f(x)={x
2
  if -1≤x≤1}  and  {2  if  x=1} 

It is not continuous at x=2.  However,  convex  functions are  always  continuous  in  

the  interior  of  its  domain. 

6. If  f  and  g  are  two  convex  functions  defined  over  a  convex  set SR
n 
then 

i)        f+g 

ii)       αf(α≥0) 

iii)      h(x)=Max Sx (f(x),g(x))  are  convex  functions. 

7.  If  f  and  g  are  two  concave  functions  defined  over  a  convex  set SR
n 

then 

i)         f+g 

ii)        αf(α≥0) 

iii) h(x)=Min Sx (f(x),g(x))  are  concave  functions. 
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Chapter-4 

UNCONSTRAINED   PROBLEMS OF OPTIMIZATION 
Some important results: 

 A necessary condition for a continuous function      with continuous first and 

second partial derivatives to have an extreme point at x0is that each first partial 

derivative of f(x),evaluated at x0vanish 

i.e. 

                  
  

   
 
  

   
   

  

   
   

 is the gradient   vector. 

     A sufficient condition for a stationary point     to be an extreme point is that the 

Hessian matrix H evaluated at    is 

i) Negative definite when     is a maximum point and 

ii) Positive definite when    is minimum point. 

Example: Find the maximum or minimum of the function 

       
    

    
                  

Applying the necessary condition 

         

where    
  

   
 

  

   
 

  

   
           

  

   
          

  

   
          

 
  

   
           

The solution of these simultaneous equations is given by                           

             is the only point that satisfies the necessary condition. 

Now by checking the sufficiency condition we have to determine whether this point is 

maxima or minima. 
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Hessian matrix, evaluated at (2, 4, 6) is given by 

     

 
 
 
 
 
 

   

   
  

   

      

   
   

      
 

   

   
  

 
 
 
 
 

 

  
                    
                    
                    

  

   

The principal minor determinants of H:  

                                 

 

have the values 2, 4, 8 respectively. Thus, each principal minor determinant is positive. 
Hence, this is positive definite and the point (2, 4, 6) yields a minimum of f(x). 
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Chapter-5 

CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS 
Lagrangian method 

In  non-linear  programming  problem  if  objective  function  is  differentiable  and  has  equality  

constraints  optimization  can  be  achieved  by  the  use  of  Lagrange  multipliers. 

Formulation 

Consider  the  problem  of  maximizing  or  minimizing  z = f(x1,x2)  subject  to  the  constraints  

g(x1,x2) =c  andx1,x2≥0  where  c  is  a  constant.  We  assume  that  f(x1,x2)  and  g(x1,x2)  are  

differentiable  w.r.t  x1  and  x2.   Let  us  introduce  a  differentiable  function  h(x1,x2)  

differentiable  w.r.t  x1and  x2 and  defined  by h(x1,x2)≡g(x1,x2)-  c . 

The  problem  is  restated  as  maximize  z = f(x1,x2)  subject  to  the  constraints h(x1,x2)=0  and    

x1,x2  ≥0  . 

To  find  the  necessary  conditions  for  a  maximum (or  minimum)  value  of z ,a  new  function  

is  formed  by  introducing  a  Lagrange  multiplier   ,  as  212121 ,.(),(),,( xxhxxfxxL   ). 

The  number    is  an  unknown  constant  and  the  function ),,( 21 xxL   is  called  the  

Lagrangian  function  with  Lagrange  multiplier  .  The  necessary  conditions  for  a  

maximum  or  minimum  of f(x1,x2)  subject  to h(x1,x2)=0  are  thus  given  by 

Necessary  condition 

0
),,(

1

21 




x

xxL 
 

 

0
),,( 21 







xxL
 

Their  partial  derivatives  are  given  by 

111 x

h

x

f

x

L
















 

0
),,(

2

21 




x

xxL 
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222 x

h

x

f

x

L














  

h
L







   where  L  ,f  and  h  stand  for  the  functions. 

The  necessary  conditions  for  maximum  or  minimum  of f(x1,x2)  are  given  by  f1 =  h1  ; f 2  = h2  

and    -h(x1,x2)=0  . 

Sufficient  condition 

Let  the  Lagrangian  function  for  n  variables  and  one  constraint  be ).()(),( xhxfxL   . 

The  necessary  conditions  for  a  stationary  point  to  be  a  maximum  or  minimum  are 

0














jjj x

h

x

f

x

L
         (j=1,2,….,n)  and 

0)( 



xh

L


 

The  value  of      is  obtained  by  
j

j

xh

xf




   (  for  j=1,2,….,n) 

The  sufficient  conditions  for  a  maximum  or  minimum  require  the  evaluation  at  each  stationary  

point  of  n-1  principal  minors  of  the  determinant  

given:

 

 

 

 
  

  1

  

   
    

  

   

  

   

   

       
   

    

   

      
   

   

      
    

   

      
   

   

      

  

   

   

      
   

   

      

   

       
   

        
   

      
   

   

      

     
  

   

   

      
   

   

      

   

      
   

   

      
    

   

       
   

    

 

 

 

  1n  

If  Δ3> 0 , Δ4<0 , Δ5>0,  the  signs  pattern  being  alternate ,the  stationary  point  is  a  local  

maximum .If  Δ3< 0 , Δ4 <0 ,…….. Δn+1<0 ,  the  sign  being  always  negative,  the  stationary  point 

      is  a  local  minimum. 
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Example: 

Obtain  the  set  of  necessary  and  sufficient  conditions  for  the  following  NLP

20012282242z  3

2

32

2

21

2

1  xxxxxxMinimize  subject  to  the  constraints: 

0,,   ;11 321321  xxxxxx  

Solution: We formulate the Lagrangian function as

).11(20012282242),,( 3213

2

32

2

21

2

121  xxxxxxxxxxxL   

The necessary conditions for the stationary point are 

0)11(

084

0244

321

2

2

1

1
















xxx
L

x
x

L

x
x

L







 

The  solution  to  the  simultaneous  equations  yields  the  stationary  point  

0; )3,2,6(),,( 3210  xxxx .The  sufficient  condition  for  stationary  point  to  minimum  is  that  

both  the  minors Δ3 and Δ4should  be  negative. 

8

041

041

110

3  48

4001

0401

0041

1110

4   

Since Δ3 and Δ4 both  are  negative  , )3,2,6(0 x provides  the  solution  to  the  NLPP.  The  stationary 

point  is  local  minimum  .Thus,
)3,2,6(0 x

  provides  the  solution  to  NLPP. 

Sufficient  conditions  for a  NLPP  with  more  than  one  equality  constraints 

Optimize  
nRxxfz  ),( subject  to  the  constraints  

n)(m  (x)g-f(x))L(x,  0  x  ,....,2,1,0)(
m

1i

ii  


andmixg i

 

where    m= number  of  equality  constraints = number  of  Lagrangian  multipliers 

               n = number of  unknowns 

 

11



 
 

m1,2,....,jfor    0
L

n1,2,...,jfor    0











j

jx

L



 

Provide the necessary conditions for stationary points of    . The  function )(  and  )(),,( xgxfxL   all  

possess  partial  derivatives  of  first  and  second  order  with  respect  to  the  decision  variables. 

j  and  i  allfor    
),(2

nxni jxx

xL
M







  be  the  matrix  of  second  order  partial  derivatives  of 

),( xL  w.r.t  decision  variables. 

xn

i

jx

xg
V

m

)(




 where  i=1,2,…..,m;  j=1,2,……,n 

Define  the  square  matrix  
)(x)(

0

nmnm

TB
MV

V
H



 where  O  is  an  mxm  null  matrix. The  

matrix  HB  is  called  the  bordered  Hessian  matrix .Then  the  sufficient  conditions  for  

maximum  and  minimum  is:  (x*, * )  be  the  stationary  point  for  the Lagrangian  function  L 

(x, )  and  HB*  be  the  value  of  corresponding  bordered  Hessian  matrix 

i)  X *  is  a  maximum  point  ,  if  starting  with  principal  minor  of  order  (m+1),  the  

last  (n-m)  principal  minors  of HB*  form  an  alternating  sign  pattern  starting  

with  (-1)
m+n

 

 

ii) X *  is  a  minimum  point  ,  if  starting  with  principal  minor  of  order  (2m+1),  

the  last  (n-m)  principal  minors  of HB*  have  the  sign  of   (-1)
m

 

Example:  Optimize 21

2

3

2

2

2

1 424 xxxxxz  such  that

0,,  ; 202xx-2;15 321321321  xxxxxxx  

Solution:  21

2

3

2

2

2

1 424)( xxxxxxfz  such that 

0,,  ; 202xx-2)(

;15)(

3213212

3211





xxxxxg

xxxxg
 

The Lagrangian function is given by 
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20)-2xx-(2x-15)-xx(x-x4x-  x 2x 4x           

)()()(),(

3212321121

2

3

2

2

2

1

2211







 xgxgxfxL

 

The  stationary  point (x*,   * )  can  be  obtained  by  the  following  necessary  conditions 

)........(....................0)2022(

)(..............................0)15(

).........(..............................022

)(..............................044

).........(....................0248

321

2

321

1

213

3

1212

2

2121

1

vxxx
L

ivxxx
L

iiix
x

L

iixx
x

L

ixx
x

L




































 

Solving  equation  (i)  and  (v)  we  get 

2

2

4

2

4

2

21
3

1
2

21
1















x

x

x

 

Substituting  the  values  of  321 ,, xxx in  equation  (iv)  and  (v)  we  get 

)......(........................................80105

).......(........................................6057

21

21

vii

vi








 

Solving  equation  (vi)  and  (vii)  we  get  
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;
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;
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For this stationary point  *)*,( x  the bordered Hessian matrix is given by 
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Solving  equation  (i)  and  (v)  we  get 
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Substituting  the  values  of  321 ,, xxx
in  equation  (iv)  and  (v)  we  get 
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).......(........................................6057
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Solving  equation  (vi)  and  (vii)  we  get  
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;

9

52
;
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For  this  stationary  point  *)*,( x  the  bordered  Hessian  matrix  is  given  by the following 

necessary conditions 
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Solving  equation  (i)  and  (v)  we  get 
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Substituting  the  values  of  321 ,, xxx in  equation  (iv)  and  (v)  we  get 
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Solving  equation  (vi)  and  (vii)  we  get  
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For  this  stationary  point  *)*,( x  the  bordered  Hessian  matrix  is  given  by

72

20021

04411

04821

21200

11100































BH  

n-m=3-2=1 

2m+1=2x2+1=5 

The  determinant          has  sign  of  (-1)
2
  i.e. positive.Therefore  x*  is  a  minimum  point. 
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Chapter-6 

CONSTRAINTS IN THE FORM OF INEQUALITIES 

(Kuhn – Tucker Necessary conditions) 

Maximize  f(x),  x =(x1,x2,……….,xn)  subject  to  m  number  of  inequalities  constraints 

g i (x)≤ bi   ,i=1,2,…..,m. including  the  non-negativity  constraints x≥0  which  are  written  as  -

x≤0 , the  necessary  conditions  for a  local  maxima  or  stationary  point(s)  at  x   are 

i)
jx

L




(x ,  ,S )=0    j=1,2,…..,n 

ii) I  [g i(x )  -  bi]=0 

iii)g i(x )    ≤ bi 

iv)   i ≥ 0             i=1,2,……..,m. 

(Kuhn-Tucker Sufficient conditions) 

The  Kuhn-Tucker  conditions  which  are  necessary  are  also  sufficient  if  f(x ) is  concave  

and  the  feasible  space  is  convex , i.e.  if  f(x)  is  strictly  concave  and  gi(x), i=1,2,….m  are  

convex. 

Example: 

Determine x1, x2, x3  so  as  to  maximize  21

2

3

2

2

2

1 64 xxxxxz    subject  to  

constraints 0,  ; 213x2;2 212121  xxxxx  

Solution: 21

2

3

2

2

2

1 64)( xxxxxxf           x    

0,,2;13x2)(

;2)(

321212

211





xxxxxg

xxxg
 

First  we  decide  about  the  concavity  and  convexity  of  f(x) 

200

020

002







BH n=3, m=2,n-m=1 
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Therefore         .Thus, f(x) is concave.  Clearly  g1(x)  and g2(x)  are  convex  in  x 

.Thus  the  Kuhn-Tucker  conditions  will be  the  necessary  and  sufficient  conditions  for  a  

maximum. These conditions are obtained by partial derivatives of Lagrangian function. 

])([])([)(),,(
2

222

2

111 sxgsxgxfsxL   where s=(s1,s2),  =( 1, 2) and s1,s2 being  

slack  variables  and    1, 2 are Lagrangian  multipliers. The  Kuhn-Tucker  conditions  are  given  

by 

)s12-3x(2x-)s2-x(x-6x4x  x x--x  ),,()
2

2212

2

121121

2

3

2

2

2

1   sxLa  

0,0)

01232)

02))

.0)1232()

.0)2())

02)

0362)

.0242)

21

21

21

212

211

3

3

212

2

211

1




































d

xxii

xxic

xxii

xxib

x
x

L
iii

x
x

L
ii

x
x

L
i

 

Now, four different cases may arise: 

Case 1: ( 1=0,   2=0) 

In this case, the system (a)  of  equations  give:  x1=2, x2=3 ,x3=0. However, this  solution  

violates  both  the  inequalities  of  (c) given  above. 

Case2: ( 1=0,   2 0) 

In  this  case, (b)  gives  2x1+3x2=12  and  a(i)  and  (ii)  give -2x1+4=2 2 , -2x2+6=3 2 

Solution  of  these  simultaneous  equations  gives  x1=24/13,x2=36/13, 2=2/13>0  and  also  

equation  (a)  (iii)  gives  x3=0.This  solution  violates  c  (i). So,  this  solution  is  discarded. 

Case 3: ( 1 0,   2 0) 

In  this  case,  (b) (i)  and  (ii) gives  x1+x2=2  and    2x1+3x2=12.  These  equations  give  x1=-6  

and  x2=8.  Thus  (a)(i), (ii), (iii)  yield  x3=0, 1=68, 2=-26 .Since   2=-26  violates  the  

condition  (d).  So, this solution is discarded. 
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Case 4: ( 1 0,   2 0) 

In  this case (b) (i)  gives  x1+x2=2  .This  together  with  (a) (i)  and (ii)  gives  x1=1/2 ,x2=3/2 

, 1=3>0.  Further from  a (iii)  x3=0.This  solution  does  not  violate  any  of  the  Kuhn-Tucker  

conditions.  Hence,  the  optimum (maximum)  solution  to  the  given problem  is : 

x1=1/2 , x2=3/2 ,x3=0;  with   1=3,  2=0  the  maximum  value  of  the objective  function  is  

z=17/2. 
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Chapter-7 

GRAPHICAL METHOD (Non-linear objective function and linear constraints) 

Example:  Minimize  the  distance  of  the  origin  from  the  convex  region  bounded  by  the  

constraints  0, and ; 5x2;4 212121  xxxxx .Verify  that  Kuhn-Tucker  necessary  

conditions  hold  at  the  point  of  minimum  distance. 

Solution: Minimizing  the  distance  of  the  origin  from  the  convex  region  is  equivalent  to  

finding  the  length  of  radius  i.e. minimum  distance  from  origin  to  the  tangent which just  

touches  the  convex  region  and  is  bounded  by  the  given  constraints  

i.e. 0, and ; 5x2;4 such that     )min( 212121

2

2

2

1

2  xxxxxxxzr  

The  feasible  region  will lie  in  the  first  quadrant as 0, 21 xx  .We  plot  the  lines

 5x2;4 2121  xxx .The  region  shaded  by  the lines  is  the  unbounded  convex  feasible  

region.  We  have  to  search  for  a  point  ),( 21 xx  which  gives  a  minimum  value  of  

    
2

2

2

1 xx  and  lies  in  the  feasible  region 

 

The  (slope)gradient  of  the  tangent  to  the  tangent  to  the  circle  kxx   
2

2

2

1  

2

1

1

2

1

2
21 022

x

x

dx

dx

dx

dx
xx
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Slope  of  the  line   2-is  5x2  line    theof  slope  and   1- is ;4 2121  xxx . 

Case 1:  If  the  line  x1 + x2=4  is  tangent  to  the  circle kxx   
2

2

2

1   then
1

2

1

1

2 
x

x

dx

dx   

then  x1=x2.  On  solving  x1 + x2=4  and  x1=x2  we  get  x1=2  and  x2=2.The  line  touches  the  

circle   at  point  (2,2). 

Case2:IF  the  line    5x2  21 x is  tangent  to  the  circle kxx   
2

2

2

1 2
2

1

1

2 
x

x

dx

dx
  then  

x1=2x2.  On  solving    5x2  21 x and  x1=2x2  we  get  x1=2,x2=1.The  line  touches  the  

circle  at  the  point  (2,1). 

Out  of  these  two  points (2,1)  lies  outside  the  feasible  region  ,but  point  (2,2)  lies  in  the  

feasible  region.  So ,    2x2, x, 8 2  2 min 21

222

2

2

1  xxz  

Verification  of  Kuhn-Tucker  condition    :   To  verify  (2,2)  satisfies  Kuhn-Tucker  

conditions 

;)(
2

2

2

1 xxxf   

0,5;x2)(

;4)(

21212

211





xxxxg

xxxg
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222
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111 sxgsxgxfsxL   where s=(s1,s2), =( 1, 2)  and   s1  , s2 

Being  slack  variables  and    1  ,   2   are Lagrangian  multipliers .The  Kuhn-Tucker  conditions  

are  given  by  5)-x(2x-4)-x(x- xx  ),,( 212211

2

2

2

1   sxL  

0,0)

052)

04))

.0)52()

.0)4())

0,4get      wesolving  (2,2)  
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212
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(2,2)  satisfies  a), b), c)  conditions  of  the  Kuhn-Tucker  for  minima. 

Hence,  Min z= 8,  x1=2, x2=2  is  the  solution  and  it  satisfies  Kuhn- Tucker  conditions. 
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Chapter-8 

QUADRATIC PROGRAMMING (Wolfe’s method) 

kjjkjjj
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n

j

n

k

kjjk

n

j

jj

ccnjmixbx

xxcxcxfzMax











 

   where)...,,.........2,1;....,,.........2,1(0,a

:  sconstraint    theosubject  t  
2

1
)(    

1

ij

1 11
 

For  all  j  and  k ,  bi≥ 0  for  all  i=1,2,………,m.  Also  assume  the  quadratic  form 

  
1 1


 

n

j

n

k

kjjk xxc be  negative  semi-definite. 

Outline of the iterative procedure is   

Step 1: First  we  convert  the  inequality  constraints  into  equations  by  introducing  slack  

variables  q1
2
  in  the  i

th
  constraint  (i=1,2,3,………,m)  and  the slack  variables rj

2
  in  the  j

th
  

non-negativity  constraint (j=1,2,……,n). 

Step 2:  Then, we construct  the  Lagrangian  function 

),..,,.........,( 
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)...,,.........(
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][][)(),,,,(
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Differentiating L partially w.r.t.  the  components  of  x ,  q , r,   ,    and  equating  the  first  

order  partial  derivatives  to  zero , Kuhn-Tucker  conditions  are  obtained. 

Step 3: We  introduce  the  non-negative  artificial  variable  vj , j =1,2,…..,n  in  the  Kuhn-

Tucker  conditions
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k

kjkj axcc
11

function   objectivean   construct     toandn  1,2,.....,for     0  

nv vvvz  ..... 21 . 
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Step 4: We  obtain  the  initial  basic  feasible  solution  to  the  following  linear  programming  

problem sconstraint    theosubject  t  .....min   21 nv vvvz   
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Step  5:  Now  we  apply  2- phase  simplex  method  to  find  and  optimum  solution  of  Linear  

Programming  problem  in step 4 .The  solution  must  satisfy  the  above  complementary  

slackness  condition. 

Step 6 : Thus  the  optimum  solution  obtained  in  step 5  is  the  optimal  solution  of  the  given  

Quadratic  programming  problem  (QPP). 

Example:     

0x, xand  62x3x

subject to 2108 

2121

2

2

2

121



 xxxxzMax

 

Solution:We  convert  all  the  inequality  constraints  to  ≤ 

00,-xx- and  62x3x 2121   

Now we introduce slack variables 

0x-

0,x- 

and  62x3x

2

22

2

11

2

121







r

r

q

 

So  the  problem  now  becomes   

2

2

2

121 2108 xxxxzMax 
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To  obtain  the  Kuhn-Tucker  condition  we  construct  Lagrange  function 
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The  necessary  and  sufficient  conditions  are 
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Defining  s1=q1
2
  we  have   1s1=0  ,µ1x1=0 

62x3x 121  s 0,,,,, 121121 sxx   

Modified linear programming 

Now introducing artificial variables v1 and v2 we have 

623

1022

834  .
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Table 1 

BV CB XB X1(0) X2(0)  1(0) µ1(0) µ2(0) V1(-1) V2(-1) S1(0) 

V1 -1 8 4 0 3 -1 0 1 0 0 

V2 -1 10 0 2 2 0 -1 0 1 0 

S1 0 6 3 2 0 0 0 0 0 1 

 Zv=-

18 

 -4 -2 -5 1 1 0 0 0 
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�1 cannot  be  the  entering  variable,  since  s1  is  basic  variable  �1s1=0.  So  x  1  is  the  
entering  variable, since µ1  is  not  basic  variable.  (x2 can  also  be  the  entering  variable  as  µ2  
is  not  basic  variable) Min  ratio (8/4,6/3)  there  is  a  tie.  So  we  take  x2as  entering  variable.  
Min  ratio(10/2,6/2) 

Table 2 

BV CB XB X1(0) X2(0) �1(0) µ1(0) µ2(0) V1(-1) V2(-1) S1(0) 

V1 -1 8 4 0 3 -1 0 1 0 0 

V2 -1 4 -3 0 2 0 -1 0 1 0 

X2 0 3 3/2 1 0 0 0 0 0 ½ 

 Zv=-12  -1 0 -5 1 1 0 0 0 

 

Now  �1  can  enter  as  s1  is  not  basic  variable.  Leaving  variable (8/3,4/2)  is  v2.   

Table 3 

BV CB XB X1(0) X2(0) �1(0) µ1(0) µ2(0) V1(-1) V2(-1) S1(0) 

V1 -1 2 17/2 0 0 -1 3 1 -3 0 

�1 0 2 -3/2 0 1 0 -1 0 1 0 

X2 0 3 3/2 1 0 0 0 0 0 ½ 

 Zv=-2  -17/2 0 0 1 -3 0 4 0 

 

Min.  ratio (4/17,2) 
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Table 4 

BV CB XB X1(0) X2(0) �1(0) µ1(0) µ2(0) V1(-1) V2(-1) S1(0) 

x1 0 4/17 1 0 0 -2/17 6/17 2/17 -6/17 0 

�1 0 40/17 0 0 1 -3/17 8/17 20/17 -6/17 0 

X2 0 45/17 0 1 0 3/17 -9/17 -3/17 9/17 35/34 

 Zv=0  0 0 0 0 0 1 1 0 

 

The optimum solution is x1=4/17, x2=45/17, � 1=40/17. 

012112 ===== svv µµ  

This  satisfies  the  condition  �1s1=0  ,  µ1x1=0 ,  µ2x2=0  and  the  restriction  sign  of  the  
Lagrangian  multipliers.  So, the maximum value of z is max(z)  = 6137/289. 
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Conclusion 

Present  work  demonstrates  methods  to  solve  the  optimization  problems  which  are  of  

Quadratic  in  nature  .As  discussed  earlier  concept  of  convex  functions  have  been  used  to  

solve  the  optimization  problems. 

 Three different cases are considered when the problems are : 

i) Unconstrained 

ii) Constrained  in  form  of  equality 

iii) Constrained  in  form  of  inequalities 

 Graphical  method  has  proved  very  efficient  in  solving  problems  in  two  dimensions. 

Wolfe’s  method  converts  the  Quadratic  programming  to  linear  programming  in  successive  

steps  which  can  be  solved  easily  by  two  phase  simplex  method. Thus, the Quadratic 

Programming Problems can be handled easily. 
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