

NATURAL LANGUAGE BASED OBJECT-

ORIENTED SOFTWARE MODELLING

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Computer Science and Engineering

By

 TARANNUM

Roll: 108CS005

AVISIKTA SAHOO

Roll: 108CS006

Department of Computer Science and Engineering

National Institute of Technology

Rourkela-769008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NATURAL LANGUAGE BASED OBJECT-

ORIENTED SOFTWARE MODELLING

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Computer Science and Engineering

By

TARANNUM

Roll: 108CS005

AVISIKTA SAHOO

Roll: 108CS006

Under the Guidance of

PROF. S.K. RATH

Department of Computer Science and Engineering

National Institute of Technology

Rourkela-769008, Odisha, India

Department of Computer Science and Engineering

National Institute of Technology

Rourkela-769008, India, www.nitrkl.ac.in

CERTIFICATE

This is to certify that the thesis entitled “Natural Language Based Object-Oriented

Software Modelling” submitted by Tarannum and Avisikta Sahoo, in partial fulfilment of

the requirements for the award of Bachelor of Technology Degree in Computer Science and

Engineering at the National Institute of Technology, Rourkela is an authentic work carried

out by them under my supervision and guidance. To the best of my knowledge, the matter

embodied in the thesis has not been submitted to any other university / institute for the award

of any Degree or Diploma.

DATE:

Dr. S. K. Rath

ACKNOWLEDGEMENT

We express our sincere gratitude to Prof. S. K. Rath for his motivation during the course of

the project which served as an impetus to keep the work on schedule. We convey our regards

to all the other faculty members of Department of Computer Science and Engineering, NIT

Rourkela for their valuable guidance and advices at appropriate times. Finally, we would like

to thank our friends and family for their help and assistance all through this project.

Tarannum

Roll: 108CS005

Avisikta Sahoo

Roll: 108CS006

Abstract

Deriving useful information from natural language has been a task of much relevance for

fields ranging from machine translation, software modelling, and artificial intelligence and

so on. Sufficient literature is available on utilisation of grammatical inference in object

oriented software modelling. The major advancements in this field along with the challenges

faced by researchers as well as practitioners have been outlined. An amalgamation of ideas

taken from existing theories and models along with proposed methodology has been worked

out so as to utilise natural language text in the field of object oriented analysis and design.

The very first step of Natural Language (NL) text processing is Parts-of-Speech (POS)

tagging. Grammatical rules, some already existing and some deduced through careful

observation of NL structures has been extensively discussed and implemented. After

appropriate tagging the words to their respective parts of speech the objective is to recognise

the classes among them. The classes along with their attributes and methods were listed out.

These classes essentially are identified as part of the major functionalities in an information

system. The information system consists of requirement specification given by clients for their

target software. Comprehending client specification is a time consuming process. Therefore

analysing classes from the specification provided becomes mandatory. Several ambiguities

and redundancy in class identification were faced and were effectively resolved. Final classes

from the given requirement specification were found out. Subsequently the knowledge

acquired from the same is put to use while analysing these functionalities through various

UML (Unified Modelling Language) diagrams. There are several UML tools that serve the

purpose of drawing these diagrams. But the motive is to make the entire process of deriving

the UML diagrams in a logical and automated manner.

ABBREVIATIONS

NLP: Natural Language Processing.

POS: Parts of Speech.

OOA: Object-Oriented Analysis.

UML: Unified Modelling Language.

CASE: Computer Added Software Engineering.

SRS: Software Requirements Specification.

OOAD: Object-Oriented Analysis and Design.

SVO: Subject-Verb-Object.

LIST OF FIGURES

1.Flow diagram for Parts of Speech Tagging ... 15

2.Object-Oriented Modeling .. 19

3.Class Diagram for ATM specification .. 28

4.Class Diagram drawn based on the proposed Object Model .. 30

5.Screenshot of result obtained after POS Tagging .. 31

6.Screenshot of the result obtained after generation of Class Diagram in UMLet 32

CONTENTS

1. INTRODUCTION ... 2

 1.1 BRIEF REVIEW .. 2

1.2 NATURAL LANGUAGE PROCESSING ... 2

1.2.1 PARTS OF SPEECH TAGGING .. 3

1.3 OBJECT-ORIENTED MODELLING .. 3

1.3.1 UML DIAGRAMS .. 4

2. LITERATURE REVIEW ... 8

2.1 EARLIER WORK ON NATURAL LANGUAGE PROCESSING 8

2.2 EARLIER WORK ON OBJECT-ORIENTED SOFTWARE MODELLING 8

2.3 UML TOOLS BASED ON NLP .. 10

3. PARTS OF SPEECH TAGGING ... 12

3.1 INTRODUCTION ... 12

3.2 HIDDEN MARKOV MODEL ... 13

3.3 RULES USED ... 13

3.4 WORKFLOW .. 14

4. OBJECT-ORIENTED MODEL ... 17

4.1 PROPOSED SYSTEM .. 17

4.2 NEED FOR IMPROVEMENTS .. 17

4.3 FURTHER MODIFICATIONS ... 18

4.3.1 NL-TEXT PROCESSING ... 19

4.3.2 FINALISING CLASSES ... 20

4.3.3 GENERATION OF CLASS DIAGRAMS ... 20

5. DESIGN AND ALGORITHM .. 23

5.1 ALGORITHM ... 23

5.2 DESCRIPTION AND ANALYSIS OF THE ALGORITHM 24

5.3 IMPLEMENTATION AND DISCUSSION ... 26

6. CONCLUSION.. 33

7. BIBLIOGRAPHY ... 34

1

Chapter 1

INTRODUCTION

2

 Chapter 1

1 INTRODUCTION

1.1 BRIEF REVIEW

For development of any software, proper outline of client requirements is highly essential.

The motive is to analyse the major functionalities of proposed Information System. Any

given Software Requirements Specification (SRS) can be comprehended by humans but this

process becomes very time-consuming when big projects or software is taken into

consideration. So Object-Oriented Modelling is taken up for dynamic generation of the object

model using just the SRS as an input to the system. Researchers have categorised two main

approaches for this purpose:

1) Traditional approach

2) Object oriented approach (also referred as OOA)

The traditional approach focuses mainly on the identification of major functions of the

system, but the object-oriented approach takes into consideration the objects, the static

entities of the system and the associations among them. OOA applies the object oriented

paradigm to model information systems by defining classes, objects and the relationships

between them.

1.2 NATURAL LANGUAGE PROCESSING

The major challenge in the design of software is the ability to comprehend tedious, long-

drawn-out user requirements as outlined by the clients. The software analysis if done

precisely saves a lot of time of the system analyst and design phase can be started right away.

In the field of information technology, there has been innumerable change in the way this

3

problem has been tackled. Though there are many traditional approaches which aim at

recognising the functionalities of the information system, the modern object-oriented

approach based on Natural Language Processing has garnered maximum popularity because

of its strong role in object oriented modelling [12].

1.2.1 PARTS OF SPEECH TAGGING

Parts of Speech tagging, commonly known as POS Tagging or POST[24], is basically the

process of tagging or marking all the words in the input to their corresponding parts Of

Speech. It takes into consideration two major aspects. The first aspect is the definition or the

meaning of the word which is being tagged. The second aspect is the context in which the

word has been used. It refers to the relative positioning of the word i.e. it depends on the

surrounding words and their parts of speech. The first aspect is simple and is dealt by having

separate databases for all the parts of speech. For addressing the second aspect, several rules

have been proposed and implied successfully. Combining both the approaches, we conclude a

solution for POS tagging which addresses both the aspects discussed before.

1.3 OBJECT-ORIENTED MODELLING

The main focus of the object-oriented paradigm lies in recognising classes, objects and the

relationships between them. Object-oriented analysis design (OOAD) methodology uses the

tools of Unified Modelling Language (UML). OOAD based software modelling is also called

Component Added Software Engineering (CASE) [1]. Software that draw UML diagrams are

Rational Rose, Smart Draw, Visual UML, UMLet, UMLGraph, GraphViz and many

more[13]. R.J. Abott was the first person to propose that natural language can be used for

object-oriented software modelling two decades ago. After that, several rules and methods

4

have been proposed by researchers as well as practitioners to use the Natural Language (NL)

text for object-oriented software analysis. The object oriented modelling of the natural

language text is only possible once the grammatical parsing is done successfully. It uses the

result of the grammatical parsing to recognize the major entities required to model the object-

oriented model of the system. The model is facilitated by dynamic generation of UML

diagrams that would be discussed later.

1.3.1 UML DIAGRAMS

UML is a notation based on the object-oriented principles. It is a standardized general-

purpose modelling language in the field of OOA. It is considered as the standard for

modelling software in industries.

UML generally outlines nine types of diagrams given as follows:

 Class (package) Diagram-It is considered the backbone of object-oriented system

which depicts the static structure of a system. The functionalities of the classes are

given by methods and the associations represent relationship between classes.

 Object Diagram-It has a close link to the class diagrams. It is believed to be an

instantiation of a class diagram and represents the static structure of a system. It can

be used to test whether the class diagrams are accurate.

 Use-case Diagram-It represents the functionalities of the system using actors and use-

cases. Use cases are functions provided by the system to its users.

 Sequence Diagram-Sequence Diagram describes interactions among classes that

happen through sending and receiving of messages.

5

 Collaboration Diagram-It represents a combination of information taken from

diagrams such as class diagram, sequence diagram and use case diagram which

describe the static structure and dynamic behaviour of a system.

 Statechart Diagram-It shows how the classes behave when acted by triggers from

external source. It gives the information about how the control flows dynamically

from one state to another within a system.

 Activity Diagram-It illustrates the dynamic nature of a system by modelling the flow

of control from activity to activity.

 Component Diagram-It describes how components are included together to form large

components in a system.

 Deployment Diagram-Nodes, components, and connections which are the physical

resources of a system are depicted by deployment diagram.

The UML modelling can be categorized to three types:

 Structural Modelling

 Behavioural Modelling

 Architectural Modelling

Structural modelling captures the static features of a system. They consist of the following

diagrams:

 Class diagrams

 Object diagrams

 Deployment diagrams

 Package diagrams

6

 Composite structure diagrams

 Component diagrams

Structural model depicts all the components that are present in a system. All the above

mentioned diagrams represent these elements and describe the mechanism to assemble the

components. However they never describe the dynamic behaviour of the system. Among all

the structural diagrams, class diagram is the most popular diagram.

Behavioural model describes the interaction in the system. It shows how the structural

diagrams interact with each other. The dynamic nature of the system is represented through

this model. They consist of the following diagrams:

 Activity diagrams

 Interaction diagrams

 Use case diagrams

Architectural model comprises both the structural model and behavioural model. It is said to

give the complete picture of the system. Under architectural modelling only package

diagrams are considered.

7

Chapter 2

LITERATURE REVIEW

8

Chapter 2

2 LITERATURE REVIEW

2.1 EARLIER WORK ON NATURAL LANGUAGE

 PROCESSING

For last many decades natural language has been the area of interest for the researchers. In

the late 1960s and 1970s, several researchers like Chomsky [5], Chow, C., & Liu, C [6]

worked in the area of information retrieval from natural languages. They contributed in

understanding the natural language text, but still there was lot of effort required for its better

analysis. Some researchers who concentrated in this area in eighties and nineties are Krovetz,

R., & Croft, W. B [7], Salton, G., & McGill, M [8], Maron, M. E. and Kuhns, J. L [9], Losee,

R. M [10]. Pedro Domingos [11] presented Markov Logic which has ability to handle

uncertainty and learn from the training data which can be used for information extraction and

processing.

2.2 EARLIER WORK ON OBJECT-ORIENTED

 SOFTWARE MODELLING

It was R. J. Abbot who came up with an idea for the first time that natural language text can

be used for object oriented software modelling. It was his suggestion that classes or objects

can be recognised from nouns and the methods of the classes can be recognised from verbs

[14] in the sentence. Again Buchholz inferred that nouns are not only good indicators of

classes and objects but also properties [15] of those classes or objects. Kapur, Ravindra and

9

Brown [4] gave few propositions which are popularly called KRB method. It helps in finding

classes and objects manually. The KRB method has the following steps:

1. Identify candidate classes (nouns in NL).

2. Define classes (look for instantiations of classes).

3. Establishing associations (capturing verbs to create association for each pair of classes in 1

and 2).

4. Expanding many-to-many associations.

5. Identify class attributes.

6. Normalise attributes so that they are associated with the class of objects that they truly

describe.

7. Identify class operations.

The major objective of object-oriented analysis is to identify NL concepts that can be

modelled in the form of object-oriented concepts. This can then be further used to form UML

diagrams which depict the major functionalities in an information system. Subsequently

S. Naduri came up with the proposition that ‘associations’ in different objects can be pointed

out by verbs [12]. Again there are various kinds of associations that exist among the classes

and objects namely binary association, identification association, n-ary association, etc. This

detailed categorization of associations was done by N. Juristo [16]. Hector [17] developed the

tool GOOAL which automatically generates object models from natural language text. K. Li

also presented his work to solve problems related to natural language that can be addressed in

object oriented analysis and design [18]. Different NLP based tools have been proposed for

this purpose. Juristo and Moreno [16] categorized eight specific NL structures which describe

about the various associations and aggregation that exist as given below:

1. “is type of” denotes bottom-up simple inheritance.

2. “can be” denotes top-down simple inheritance.

10

3. “is a… and a…” denote multiple inheritances.

4. “does … and …” denote binary association.

5. “is identified by” denotes identification association.

6. “does … to … on …” denote n-ary association.

7. “contains … and …” and “are part of” denote aggregation.

However, incorporating these rules is a manual approach and no dynamic modelling is

considered. Thus, the discussed methods and techniques are not automatic as they require the

user to take many decisions during the object-oriented analysis and modelling.

2.3 UML TOOLS BASED ON NLP

As mentioned in the initial sections the researchers developed various Computer Added

Software Engineering (CASE) tools which used natural language text for object-oriented

modelling. A. Oliveira used natural language constituents for object-oriented data modelling

and made REBUILDER UML [19] which is an initial level CASE tool. It converts the given

natural language text into an UML class diagram. Another tool that performs object oriented

modelling from natural language text is LOLITA [20]. However, it can only identify objects

from the sample text but it cannot differentiate between classes, methods and their respective

attributes. Delisle [23] tried to enlist candidate objects, distinguishing between Subjects (S)

and Objects (O), and Verbs (V), using the S-V-O sentence structure. Harmain and Gaizauskas

made a noteworthy contribution as they developed the tool named CM-Builder [21].

However CM-Builder could only create a primary class model. The major drawback here is

that these systems were not able to automatically identify all object-oriented constituents. The

system analyst had to be prompted to help out while identifying the classes, objects and their

respective methods and attributes.

11

Chapter 3

PARTS OF SPEECH TAGGING

12

Chapter 3

3 PARTS OF SPEECH TAGGING

3.1 INTRODUCTION

It deals with marking the words to the part of speech (POS) they belong to. The major

challenges found here is that a particular word behaves as one part of speech at a time and as

another part of speech with change in context. This changing behaviour becomes difficult to

recognize. Some extra information is required in order to correctly define the part of speech.

This invites the concepts of Artificial Intelligence to come into picture.

POS tagging takes into consideration of the following two aspects:

 The meaning of the individual word.

 Relative positioning of the word.

For addressing the first aspect, a long list of the words can be maintained for different

categories of parts of speech. But the major challenge is dealing with the second aspect that

demands knowledge of the context in which the word is used. The relative positioning of the

words helps in deducing the probability of the word belonging to a specific POS.

 Different ‘multiple taggers’ are available in literature that returns more than one tag for a

particular word, but it is found that ‘single taggers’ are more adequate for this task. The POS

of a particular word does not only depend on that particular word but also the surrounding

word and the POS that those surrounding words belong to.

13

3.2 HIDDEN MARKOV MODEL

Hidden Markov Model is a statistical model which assumes the system to be modelled as a

Markov process. Researchers in Europe thought of utilising this model for POS tagging. They

made a table of probabilities for certain sequences of English NL structures. For instance a

word following the word ‘the’ can never become a verb. As specified in the Hidden Markov

model, chances of the word being a noun is 40%, that of being an adjective is 40% and a

number is 20% [2]. Similarly, it can be proposed that words following an article can never be

a verb. Thus, the ambiguity found with a particular word can be solved by looking at the

previous or the next word and their associated POS. For example in the ATM specification

[3] there is a sentence, ‘The shared system will be apportioned to the banks’. Clearly the

word ‘the’ has to be an article. But the word ‘shared’, is present both in the database for verbs

as well as in the database present for the adjectives. As the word ‘shared’ comes after an

article so its chances of being a verb are ruled out and it is concluded that the word is an

adjective. Similar rules for the different parts of speech to remove the ambiguity in

determining the correct parts of speech are to be applied.

3.3 RULES USED

After analysing different sentences, it is found out that the words following the set of words

{he, she, they, it, you, we etc.} generally belong to ‘verb’ category, whereas that following

the set {his, her, their, its, yours, ours etc.} never belong to the category of ‘verb’ but can

belong to ‘nouns’ or to the ‘adjectives’. Similarly in the previous case the words never belong

to the category of ‘nouns’ or ‘adjectives’ or ‘prepositions’ etc. It is found that an auxiliary

verb is generally followed by another auxiliary verb or a main verb. The concept of auxiliary

verbs is again a relative concept. For example if the word ‘is’ is followed by a noun, then it

14

becomes a main verb. But when it is followed by another auxiliary verb or any main verb

then it acts as an auxiliary verb. Also, nouns are never followed by pronouns. Thus all these

rules and deductions are combined in a module to help in determining the most probable part

of speech in the instances where ambiguities are faced.

The instances and the rules discussed above can be easily found to be related to two main

parts of speech, i.e. the nouns and the verbs. The reason behind this is that the words for

which POS generally changes with change in context are found to be nouns or verbs. The

next step deals with correctly determining these two most important parts of speech, which

will further help in building the object-oriented model. Thus, if any ambiguity is left

unobserved regarding these parts of speech then it would result in an incorrect model.

Further, the consistency of POS tagging is verified by checking the matching NP-VP rules

[22], in order to improve accuracy.

3.4 WORK FLOW

As discussed in the flow chart specified below, first we tokenize the input. The input is

parsed in such a way that all the individual words and symbols are separated. After

tokenizing the input, the words are checked for in the database. Depending upon the presence

of the words in the database, the words are tagged with their corresponding Parts of Speech

or the user is prompted to specify the POS and thus enrich the database, such that in future, if

the same word comes up, the user would need not specify the POS again, rather the previous

knowledge would be used this time. Therefore, the efficiency of this model increases with

increase in the use of this model for different input texts. The more the model is used,

additions are made to its database and it becomes more efficient and robust. After that, more

rules are used to finalize the tag. The Hidden Markov model is particularly used because it

eliminates the confusion of a word either being a noun or a verb. NP-VP rules may also be

15

included to confirm the syntax of the sentence though it is not required for object-oriented

modelling.

Figure 1: Flow Diagram for Parts of Speech Tagging

The proposed algorithm deals with construction of an object-oriented model based on this

POS tagging. It has been found that the different parts of speeches are good indicators of

different parameters of the object-oriented model.

16

Chapter 4

OBJECT-ORIENTED MODEL

17

Chapter 4

4 OBJECT-ORIENTED MODEL

4.1 PROPOSED SYSTEM

The object-oriented modelling done involves two steps:

 POS Tagging

 Classes Identification

The first step is the most essential step, which has already been discussed in the Chapter 3.

The second step mainly utilizes the output of the first step, using the concepts as given below:

 Nouns- name of the class

 Adjectives- attributes

 Verbs- methods/operations

4.2 NEED FOR IMPROVEMENTS

The relationships among these objects or classes need to be established. It can be of three

forms, i.e., Inheritance, Association and Aggregation. This can be determined only if some

NL-text processing concepts are introduced and the sequence and structures of the sentences

used in the text are noted. The attributes need not be only the adjectives associated with the

nouns. It may also be the first noun occurring after the word “if”. The constraints related to a

particular class can lead to formation of attributes of the nouns associated with those

constraints.

18

4.3 FURTHER MODIFICATIONS

To have a better model than that introduced in the initial attempt, some other modules are

included and the previous model is expanded to comprise the following modules:

 POS Tagging

 NL-Text processing

 Classes Identification

 Finalizing the classes

 Generation of Class Diagrams

Figure 2: Object-Oriented Modelling

The new modules introduced to the initial attempt are discussed in the following sections.

19

4.3.1 NL-TEXT PROCESSING

While identifying classes and its associated parameters, some pre-processing needs to be

done for the following reasons:

 The pronoun needs to be linked to the class it denotes. It can be done by examining

the noun that comes before this pronoun, may be in the same sentence or the previous

one.

 It helps in determining the NL-structures used to identify the type of relationships

between the classes [18].

 It provides solution to one of the two problems faced in Object Identification.

 Bad Classes

 Redundant Classes

Two consecutive nouns occurring in a text generally refer to one particular entity and thus

needs to be grouped to form one particular class by combining them with hyphen. For

example let the input ‘Human cashiers enter account data’. Here both human and cashiers are

nouns and are potential of forming two different classes. This leads to the formation of bad

classes or meaningless classes. Thus in, this step of NL-Text processing, whenever two

consecutive words are found to be nouns, they are combined using hyphen and after this

processing ‘Human-cashiers’ is identified as one single class.

Similarly, consecutive verbs can be combined to form one single verb. Generally, an

auxiliary verb is combined with the main verb to form one single verb. This makes the text

more compact and easy to deal with.

20

4.3.2 FINALIZING THE CLASSES

The classes identified in the module of ‘Classes Identification’ needs to be refined, as it may

have redundant classes. The work of refinement of the classes is done in this module. It may

be possible that two or more classes refer to the same entity. For example, in the ATM

specification [3] there are two classes namely bank and banks. As both of them refer to the

same entity, all the attributes and methods of both the classes are combined in one class and

hence the other class is removed. This eliminates the redundant classes and thus decreases the

total number of classes.

4.3.3 GENERATION OF CLASS DIAGRAMS

The class diagrams are generated using the tool UMLet. This tool helps in automation of

class diagrams using a text editor.

For drawing the class diagrams we need to identify the objects, classes, associations between

them and operations or methods. The result of POS-Tagging can help in identification of the

above entities.

Nouns are generally good indicators of classes and objects, verbs serve to be good indicators

of operations and methods, adjectives to be of attributes and for relationship identification.

Juritso and Moreno [16] proposed few NL structures presence of which denoted the three

types of relationships that exist among the classes. The classes may be associated through

inheritance, association and aggregation. The NL structures and the corresponding

relationship that they depict are as given below:

a)” is type of ” reflects bottom-up simple inheritance.

b)” can be” reflects top-down simple inheritance.

c)” is a… and a…” reflects multiple inheritances.

d)” is identified by” reflects identification association.

21

e)” are part of” reflects aggregation.

f) “contains … and …” also reflects aggregation.

g) “does … to … on …” reflects n-ary association.

Meanings of these phrases help in determination of the kind of relationship the classes share

between them. This idea can be further explored by taking into consideration the meaning of

further more words to help in analysis of the different features of the model to be constructed.

22

Chapter 5

DESIGN AND ALGORITHM

23

Chapter 5

5 DESIGN AND ALGORITHM

5.1 ALGORITHM

1) Do the following steps from a) to e) in the first scan.

 a. Parse sentence into tokens (Using StringTokeniser in Java).

 b. For each token, call find () function.

c. find() function (String b= find(a);) , finds the name of the parts of speech of the

token.

 d. If it is unable to identify the token then it returns null.

e. The value of the strings a and b are printed, i.e. the token- name of part of speech it

belongs to.

2) In the second scan do the following:

 a. If there is an article, then the possibility of the next word being a verb is ruled out.

 b. If there is an auxiliary verb, then the next word can never be a noun.

 c. If there is a pronoun, then the possibility of the next word being a verb is ruled out.

3) In the third scan, remove all the articles, the pronouns that are followed by some nouns, the

auxiliary verbs that are followed by any auxiliary.

4) The modified input is scanned and the entities of the object model are identified.

5) The entities identified in step 4) are used to generate the object model.

24

5.2 DESCRIPTION AND ANALYSIS OF THE ALGORITHM

1) Instead of taking one sentence as an input, we take a paragraph or even more than that

using text file as an input to the code. This way the input can also be increased to as much

number of lines as possible making the code more general.

2) Databases are enriched using more and more words collected from different websites as

stated in the reference page.

3) Another database for special symbols should also be made for symbols like full stop,

comma, inverted comma, semi colon, colon etc.. Care should also be taken for numeric

values which may be found in the text.

4) Database should be maintained such that all words are in same case (either upper case or

lower case) so that when matching is done both the cases can be taken care of without having

redundant values. While matching we search for the lower case of the token instead of

searching the token directly as all the databases are in lower case. For example, the database

for pronouns has the words as given below:

he

she

they

and the input sentence is “She is writing”. Here the word “She” is not present in the database

but “she” is there.

So we first convert the word “She” to “she” using toLowerCase() function and then search

for the word in the database. Else it would not find the right match returning null (incorrect

result, despite of having the word in the database) or we would have to store both of them

which would result in unnecessary data and make the database size double as required

unnecessarily.

25

5) To increase the efficiency of the model, a decision making part is also included, that asks

the user to specify the type of word when it is not in any of the database, i.e. when the find()

function returns null. It also updates the database simultaneously so that if in future the same

word comes up in any sentence then it would not ask the user to specify this time. Instead it

would give the result based upon what the user had specified the last time.

6) Care should be taken during the decision making process to see to it that the user should

specify the same name as that of the database else it would be of no use in the future as the

new name specified by the user will result in creating a new database about which the model

remains unaware and so would not access or search for that database in the future resulting in

no benefit of the decision making process that we designed.

7) This decision making process helps in making the model more and more efficient with

increase in the use of this model for different text inputs.

8) A particular word may act as more than one “parts of speech”. To resolve this ambiguity,

we check the relative positioning of the words and determine the correct parts of speech it

should refer to as in that context.

9) Number of scans is increased to achieve better accuracy in determining the parts of speech

as well as in modifying the original text to eliminate redundant data.

10) The modified text eases the process of identification of the object oriented entities.

11) Solution to the bad classes and redundant classes is already discussed in Chapter 4.

26

5.3 IMPLEMENTATION AND DISCUSSION

Case I

The ATM specification [3] given as input is “Design a software to support a computerized

banking network including both human cashiers and ATMs to be shared by a consortium of

banks. Each bank provides its own computer to maintain its own accounts and process

transactions against them. Cashier stations are owned by individual banks and communicate

directly with their own bank’s computers. Human cashiers enter account and transaction data.

Automatic teller machines communicate with a central computer which clears transactions

with the appropriate banks. An automatic teller machine accepts a cash card, interacts with

the user, communicates with the central system to carry out the transaction, dispenses cash,

and prints receipts. The system requires appropriate recordkeeping and security provisions.

The system must handle concurrent access to the same account correctly. The banks will

provide their own software for their computers; you are to design the software for the ATMs

and the network. The cost of the shared system will be apportioned to the banks according to

the number of customers with cash cards.” The classes identified are free of bad classes and

are as follows:

 software

 bank

 cashier-stations

 human-cashiers

 teller-machines

 teller-machine

 system

 banks

27

These classes are further refined as discussed in Chapter 4 and the final classes obtained after

the removal of redundant classes are as follows:

 software

 bank

 cashier-stations

 human-cashiers

 teller-machine

 system

Figure 3: Class Diagram for the ATM specification

28

This class diagram is generated after the POS tagging of the whole specification. The class

diagram for the ATM specification depicts the following:

 software supports teller-machine and human cashiers.

 teller-machine accepts cards, interacts with human cashiers and communicates with

system.

 cost of system is apportioned to the banks.

 cashier stations are owned by banks.

As seen above, the class diagram describes all the important features of the ATM

specification and hence can be used to as an efficient means of representation of any

information system.

Case II

If the input to the model is, “The institute wants to develop an integrated student information

system for monitoring admission, enrollment, payment of fees, academic activities in the

department, examination procedures and result publication. The admission is granted only if

previous CGPA is above 6.5 .The enrollment is possible only if the faculty advisor approves

the subjects desired by the students. The fees are accepted if it is paid before the due date.

The student is allowed to continue if he has a good background of discipline. The student is

allowed to write the exam if he has the attendance above 85 %. A student is given pass grade

P if his score is above 35 and overall CGPA is above 6.5.”

Then, the classes identified by this implementation are as follows:

 admission

 institute

 enrollment

29

 fees

 student

Class diagram drawn using the techniques described in the previous sections is given below.

Figure 4: Class Diagram drawn based on the proposed Object Model.

The representation of any information system in the form of class diagrams helps the user in

understanding the major functionalities of the information system. The class diagram that has

been obtained is done after the two major steps that include POS Tagging and Object-

Oriented Software Modelling. The outcome of each step is shown in the figures below.

30

The figure 5 gives the result of parsing the input text or the SRS and tags the POS to which

the words belong to. The classes and its different parameters are identified and stored in text

files.

Figure 5: Screenshot of result obtained after POS Tagging

31

Figure 6: Screenshot of the result obtained after generation of Class Diagram in UMLet.

The figure 6 draws the Class diagram in UMLet using the text editor specified at the right

most bottom of the UMLet.

32

The implementation was carried out using the parsing mechanism followed by the tagging of

words, with subsequent generation of class diagram through UMLet. This showed that

analysis of lengthy SRS could be done via this procedure in much lesser time. All the static

entities, the classes and the complete information of the methods and attributes could be

derived from it. The dynamic generation of class diagrams was yet another advantage for

system analysts to understand client requirement specification.

33

Chapter 6

CONCLUSION

34

Chapter 6

6 CONCLUSION

Various techniques developed earlier aim at making the analysis of user requirements easier.

But these techniques expect user interference, in terms of providing the client information

from time to time. The information available from the client in the form of natural language

text is analysed in such a manner that object-oriented modelling can be done by the system

analyst precisely. The methodologies for simplifying natural language need to be

straightforward, so that people can learn and apply them easily. It should be kept in mind that

the models generated must be easily comprehensible and the natural language from which

they have been derived can be traced back. The implementation of the proposed object

oriented model gives way to easier understanding of lengthy NL text and subsequent

validation of classes.

This work can be further extended by

 Segmentation of the NL text in such a manner that the different modules and packages

in the requirement specification can be identified.

 Improvement of parts of speech tagging by incorporating more rules in order to

identify the system elements more effectively.

 Removal of user assistance at any point of time for extracting information regarding

the functionalities of the system.

All in all, object-oriented software modelling when done using the concepts of natural

language processing helps software practitioners to perform faster analysis of the SRS, given

that the tagging is done logically.

35

7 BIBLIOGRAPHY

[1] Joseph Schmuller. Sams Teach Yourself UML. TechMedia, 1999.

[2] A. S. Fatima, A. Guessoum. A Hidden Markov model-based POS tagger for Arabic. Proc.

of 8th International Conference on the Statistical Analysis of Textual Data, France, pp. 31-42,

2006.

[3] James Rumbaugh, Michael Blaha, Williarm Premerlani, Frederic Eddy, and William

Lorenson. Object Oriented Modelling and Design Methodology. Prentice Hall,1991.

[4] D.W Brown. An Introduction to Object-Oriented Analysis Objects and UML in Plain

English. John Wiley, Inc. New York, 2002.

[5] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, Mass, 1965.

[6] C. Chow, C. Liu. Approximating discrete probability distributions with dependence trees.

IEEE Transactions on Information Theory, 1968, IT-14(3), 462–467, 1968.

[7] R. Krovetz, W. B. Croft. Lexical ambiguity and information retrieval. ACM Transactions

on Information Systems, 10, 1992, pp. 115–141, 1992.

[8] G. Salton, M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New

York, 1995.

[9] M. E. Maron, J. L. Kuhns. On relevance, probabilistic indexing, and information

Retrieval. Journal of the ACM, pp. 216–244, 1997.

[10] R. M. Losee. Parameter estimation for probabilistic document retrieval models .Journal

of the American Society for Information Science, 39(1), pp. 8–16, 1988.

[11] S. Kok,P. Domingos. Learning the structure of Markov logic networks. Proc. Of ICML-

05, Bonn, Germany, ACM Pres, pp 441–448, 2005.

36

[12] S. Naduri, S. Rugaser. Requirements Validation via Automated Natural Language

Parsing. Proc. 28th Hawaii International Conference, Systems Science: Collaboration Tech.,

Organizational Systems, and Technology, IEEE Computer Society, pp. 362-367, 1994.

[13] I. Bajwa, A. Samad, S. Mumtaz . Object Oriented Software Modelling Using NLP Based

Knowledge Extraction. European Journal of Scientific Research, ISSN 1450-216X, Vol.35,

No.1, pp 22-33, 2009.

[14] R.J. Abbott. Program Design by Informal English Descriptions. Communications of

the ACM, Nov. 26(11), pp. 882-894, 1983.

[15] H. Buchholz, A. Dusterhoft, B. Thalheim. Capturing Information on Behavior with the

RADD_NLI: A Linguistic and Knowledge Base Approach. Proc. 2nd Workshop Application

of Natural Language to Information System, IOS Press pp. 185-196, 1996.

[16] N. Juristo, A.M. Moreno. How to Use Linguistic Instruments for Object-Oriented

Analysis. IEEE Software, pp. 80-89, May/June 2000.

[17] Hector G. Perez-Gonzalez. Automatically Generating Object Models from Natural

Language Analysis. Proc. 17th annual ACM SIGPLAN conference on Object-oriented

Programming, systems, languages, and applications, ACM New York, USA, pp. 86 – 87,

2002.

[18] K. Li, R.G.Dewar, R.J.Pooley (2003) Object-Oriented Analysis Using Natural Language

Processing, www.macs.hw.ac.uk:8080/techreps/docs/files/HWMACS-TR-0033.pdf.

[19] António Oliveira, Nuno Seco, Paulo Gomes. A CBR Approach to Text to Class Diagram

Translation. TCBR Workshop at the 8th European Conference on Case-Based Reasoning,

Turkey, September 2006.

[20] L. Mich, R. Garigliano, A linguistic approach to the development of object-oriented

system using the NL system LOLITA. Object Oriented Methodologies and Systems,

(ISOOMS), LNCS 858, pp. 371-386, 1996.

37

[21] H.M. Harmain, R.Gaizauskas. CM-Builder: An Automated NL-based CASE Tool. Proc.

of 15
th

 IEEE International Conference on Automated Software Engineering, pp. 45-53, 2000.

[22] M. Steedman, Natural Language Processing. http://repository.upenn.edu/cisreports/323 .

[23] S. Delisle, K. Barker, I. Biskri. Object-Oriented Analysis: Getting Help from Robust

Computaional Linguistic Tools. Proc. 4
th
 International Conference on Applications of Natural

Language to Information Systems, Klagenfurt, Austria, pp. 167-171, 1999.

[24] Daniel Jurafsky, James H. Martin. Word Classes and Part-of-Speech Tagging.

www1.cs.columbia.edu/~julia/jmchapters/ch5.pdf.

